Search:
Computing and Library Services - delivering an inspiring information environment

Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal

Bulman, Sophie E. L., Tronci, Giuseppe, Goswami, Parikshit, Carr, Chris and Russell, Stephen J. (2017) Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal. Materials, 10 (8). ISSN 1996-1944

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Manuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing. When physically coated on to a cellulosic hydroentangled nonwoven fabric, it was found that concentrations of 0.0054 mg cm−2 of MGO in the form of MH and MGO were sufficient to achieve a 100 colony forming unit % bacteria reduction against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae, based on BS EN ISO 20743:2007. A 3- to 20-fold increase in MGO concentration (0.0170–0.1 mg cm−2) was required to facilitate a good antibacterial effect (based on BS EN ISO 20645:2004) in terms of zone of inhibition and lack of growth under the sample. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was also assessed for MGO in liquid form against three prevalent wound and healthcare-associated pathogens, i.e., Staphylococcus aureus, gram-negative Pseudomonas aeruginosa and gram-positive Enterococcus faecalis. Other than the case of MGO-containing fabrics, solutions with much higher MGO concentrations (128 mg L−1–1024 mg L−1) were required to provide either a bacteriostatic or bactericidal effect. The results presented in this study therefore demonstrate the relevance of an MGO-based coating as an environmentally friendly strategy for the design of functional dressings with antibiotic-free antimicrobial chemistries.

Item Type: Article
Uncontrolled Keywords: Manuka honey; methylglyoxal; nonwoven; antibacterial; wound dressing
Subjects: R Medicine > RS Pharmacy and materia medica
Schools: School of Art, Design and Architecture
Related URLs:
Depositing User: Jonathan Cook
Date Deposited: 06 Sep 2017 09:40
Last Modified: 08 Sep 2017 17:46
URI: http://eprints.hud.ac.uk/id/eprint/33128

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©