
University of Huddersfield Repository

McCluskey, T.L., Cresswell, S.N., Richardson, N.E. and West, Margaret M.

Automated acquisition of action knowledge

Original Citation

McCluskey, T.L., Cresswell, S.N., Richardson, N.E. and West, Margaret M. (2009) Automated
acquisition of action knowledge. In: International Conference on Agents and Artificial Intelligence
(ICAART), 19-21st January 2009, Porto, Portugal.

This version is available at http://eprints.hud.ac.uk/id/eprint/3292/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

AUTOMATED ACQUISITION OF ACTION KNOWLEDGE

T. L. McCluskey, S. N. Cresswell, N. E. Richardson, M. M. West
School of Computing and Engineering,The University of Huddersfield,Huddersfield HD1 3DH, UK

T.L.McCluskey@hud.ac.uk, S.N.Cresswell@hud.ac.uk, N.E.Richardson@hud.ac.uk, M.M.West@hud.ac.uk

Keywords: Planning and Scheduling, Machine Learning.

Abstract: AI planning engines require detailed specifications of dynamic knowledge of the domain in which they are to
operate, before they can function. Further, they require domain-specific heuristics before they can function
efficiently. The problem of formulating domain models containing dynamic knowledge regarding actions is a
barrier to the widespread uptake of AI planning, because of the difficulty in acquiring and maintaining them.
Here we postulate a method which inputs a partial domain model (one without knowledge of domain actions)
and training solution sequences to planning tasks, and outputs the full domain model, including heuristics that
can be used to make plan generation more efficient.
To do this we extend GIPO’s Opmaker system (Simpson et al., 2007) so that it can induce representations of
actions from training sequences without intermediate state information and without requiring large numbers of
examples. This method shows the potential for considerably reducing the burden of knowledge engineering,
in that it would be possible to embed the method into an autonomous program (agent) which is required to do
planning. We illustrate the algorithm as part of an overall method to acquire a planning domain model, and
detail results that show the efficacy of the induced model.

1 Introduction

Applications of AI planning technology require per-
sistent resources comprising of teams of highly
skilled engineers to formulate and maintain a plan-
ner’s knowledge base. The amount of effort needed to
encode error free, accurate action specifications and
planning heuristics, and to maintain them, is signif-
icant. Actions are real world operations that change
the state of object(s) in the world in some way. These
actions are invariably encoded in planning knowledge
bases as generalised representations called operator
schema. Additionally, heuristics are often hand coded
in the form of methods which encapsulate the pre-
ferred solutions of a generalised subtask. Our work is
aimed at automating the formulation of such operators
and methods by employing a trainer to create training
tasks and example solution sequences of these tasks.
The solutions are fed to a knowledge acquisition tool,
Opmaker2, as a sequence of action instances, where
each action instance is identified by name plus the ob-

ject instances that are affected by, or are necessarily
present at, action execution. The sequences are pro-
duced by a trainer - a domain expert who may not
be familiar with the languages and notations used by
planners. Opmaker2 constructs operator schema and
planning heuristics from training sessions which are
composed of a handful of such action sequences. In
other words, it outputs detailed specifications of oper-
ator schema from single action traces automatically,
without requiring intermediate state information for
each training example. The induced actions are de-
tailed enough for use in planning engines and com-
pare well with hand crafted operators.

This paper describes Opmaker2, an extension
of the earlier Opmaker system (McCluskey et al.,
2002), in that the latter is an interactive learning tool,
whereas the former can be run in batch mode with-
out the need for user assistance. Opmaker was im-
plemented within the GIPO system (Simpson et al.,
2007), an experimental tools environment for use
in the acquisition of AI planning knowledge, con-

taining a wide range of engineering and validation
tools. GIPO was based on the planning language
of OCL (McCluskey and Porteous, 1996). To moti-
vate the rest of the paper, we will describe in a little
more depth the problem that we are aiming to solve,
in terms of a learning, or more specifically a knowl-
edge acquisition problem. Automated planning sys-
tems can be logically described as having three com-
ponents.
(a) The domain model (sometime referred to as a

domain description) is the specification of the
objects, structure, states, goals and dynamics of
the domain of planning. The language family
used for the communication of domain models is
PDDL (AIPS-98 Planning Competition Commit-
tee, 1998), although in this paper we use a higher
level language called OCL(Liu and McCluskey,
2000) for domain modelling. Component (a) is
further split into:
(i) knowledge of objects, object classes, domain
constraints, and possible states of objects - collec-
tively called static knowledge.
(ii) knowledge of action and change - knowledge
of dynamics. This knowledge is in both PDDL
and OCL represented as a set of parameterised op-
erator schema representing generic actions in the
domain of interest.

(b) The planning engine is the software that rea-
sons with the knowledge in (a) to solve plan-
ning goals. The development of fast planning en-
gines which can deal with expressive variants of
PDDL (eg modelling domains containing durative
actions and metric resources) has been a primary
goal of the AI Planning community.

(c) A set of planning heuristics. The general problem
of AI Planning is well known to be intractable,
and a set of heuristics for each domain is required
to make the application of (b) to (a) tractable.
Whereas the form and content of (a) and (b)
are well understood, what form heuristics take is
more contentious. Putting domain heuristics with
the planning engine may limit its application (they
anticipate the domain). Encoding heuristics into
the domain model when constructing it is equally
contentious - as the authors of PDDL claim it is
for “physics and nothing else”(AIPS-98 Planning
Competition Committee, 1998).

The knowledge acquisition problem that this paper
addresses is:

Given knowledge of (a)(i), can we design a
simple process to enable a system to automat-
ically acquire knowledge of type (a)(ii) and
(c)?

The reason for setting up this knowledge acquisition
problem is that hand crafting knowledge of dynamics
(in particular operator schema), and planner and do-
main specific heuristics, is much harder than acquir-
ing knowledge of type (a)(i). The difficulty in acquir-
ing knowledge of actions is invariably pointed out in
reports of AI planning applications (for example, in
reports of Space applications (S. A. Chien (editor),
1997)).

The general method that we are proposing is for a
system to acquire knowledge from examples of solved
tasks, represented as sequences of actions, given to it
by a benevolent trainer. Operator schema (type (a)(ii)
knowledge) are induced from each example action,
whereas heuristics (type (c) knowledge) are induced
from the whole sequence of actions the trainer uses to
solve a task.

The rest of the paper is structured as follows: in
section 2 we outline the Opmaker2 system, starting
with its inputs and outputs, and then detail the op-
eration of its state-deriving component. We use a
tyre-change domain to illustrate the algorithm which
contains the knowledge acquisition process. Section
3 contains our experimental results, and Section 4 a
brief survey of related work.

2 THE OPMAKER2 SYSTEM

In this section we describe the Opmaker2 system, and
explain how it can form a solution to the knowledge
acquisition problem introduced in the last section. We
will use as a running example throughout the rest of
the paper a domain which represents changing the
tyre of a car wheel. This domain is an extended ver-
sion of the simpler ’tyre world’(Russell, 1989). It in-
volves knowledge about such objects as tyre, wheel,
nuts, wheel-trim, jack, wrench, and such actions as
undo-nuts, put-on-wheel etc.
In Opmaker2, components of type (a)(i) knowledge
are referred to collectively as the partial domain
model P DM . For our running example, the par-
tial domain of the tyre-change domain is provided
in the appendix, in the native code of OCL. There
are two inputs to Opmaker2: the P DM and a set of
hand crafted solution sequences to planning tasks. A
P DM consists of:

object identifiers and sort names: denoted Ob js
and Sorts respectively; there are a number of
sorts (or classes) each containing a set of objects
where each object belongs to one set (called a
sort). An example of an object is hub1 belonging
to the hub sort. The behaviour of each object in a

sort is assumed to be the same as all others in the
sort.

predicate definitions: denoted Prds, where each ob-
ject of each class may be related to objects
of other classes, and have property - value re-
lationships with sets of basic values (boolean
or scalar). Examples are on ground(hub),
jacked up(hub, jack), relating to whether an ob-
ject of sort hub is on the ground or jacked up.

object state expressions: denoted Exps; these de-
fine implicitly all the possible values of an ob-
ject’s state. An object’s state is defined by its re-
lationship with other objects and/or the value of
its properties. Sorts are engineered so that the ob-
ject state space is defined by a small number of
expressions. For example, the tyre-change P DM
specifies that any object H of sort hub can occupy
a state satisfying exactly one of the following ob-
ject expressions:

[on_ground(H),fastened(H)],
[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J),unfastened(H)],

[unfastened(H),jacked_up(H,J)]

(as a convention we choose upper case variables
as parameters - here J represents any object of sort
jack).

domain invariants: denoted Invs; these are used to
define domain constraints and are written in terms
of the predicates given above. Informally, a set
of invariants is adequate if any ‘common sense’
inference can be made from them, such as normal
inferences about spatial relations. For example:
“Only a single wheel can be on a hub”.
∀H : hub∀W1 : wheel∀W2 : wheel
wheel on(W1,H)∧
wheel on(W2,H)⇒ (W1 = W2)

The second input is a set of solution sequences
and the tasks that they solve. These are supplied by a
trainer (a domain expert). For the purposes of training
in Opmaker2, we define a task in terms of:

• an initial state comprising the initial states of ob-
jects in the domain

• a set of desired goal states for a set of objects

A solution sequence solves such a task and is writ-
ten in terms of verbs (action names) and affected ob-
jects. The trainer is expected to include references to
all objects that are needed for each action to be car-
ried out, indicating whether or not the objects change
as a result of the action. Typical tasks in the domain
should be chosen that often form the basis of solutions
to larger tasks. For example, in the sequence below a

changed wheel is secured on the hub and the vehicle
is made ready for use.

do_up unchanged - wrench0, jack0, wheel1;
changing - hub1, nuts1

jack_down unchanged - null
changing - hub1, jack0

tighten unchanged - wrench0, hub1, trim1;
changing - nuts1

apply_trim unchanged - hub1;
changing - trim1,wheel1

Objects preceded by unchanged remain unaf-
fected by the action, but have to be present in the
state during execution of the action. In the first ele-
ment of the sequence, wrench0, jack0 and wheel1 all
have to be in a certain state specified by initial state
of the task (wrench0 is available, jack0 is jacking up
the hub, and wheel1 is trimless to allow the nuts to
be screwed). The changing objects must change state
(hub1 becomes f astened and nuts1 are done up).

The output of Opmaker2 is a full domain model,
consisting of:

operator schema: they make up the knowledge of
type (a)(ii), and represent actions or events that
change objects’ states. They are specified by a
name, a list of parameters, and a set of object tran-
sitions. Transitions may be null (in which case
they act as prevail conditions), necessary or con-
ditional. The template of a schema is as follows:

name(list of parameters)
zero or more prevail condition;
one or more necessary transitions;
zero or more conditional transitions

Prevails are represented by object state expres-
sions, whereas necessary and conditional transi-
tions are written in the form LHS⇒ RHS where
LHS,RHS are object state expressions.

methods: each training sequence results in a param-
eterised method, similar in form to hierarchical
(HTN) methods found in AI Planning. A method
comprises of a name, prevail conditions, and a se-
quence whose members can comprise both opera-
tor schema and (other) methods. Methods can be
used as a heuristic in planning engines as they en-
capsulate preferred ways to solve planning prob-
lems.

2.1 The Opmaker2 Algorithm

The main innovation of Opmaker2 is that it com-
putes its own intermediate states using a combination
of heuristics and inference from the P DM and the
training tasks and solutions. This gives a fully au-
tomated solution to the knowledge acquisition prob-

lem described above - there is no need for user ad-
vice. In contrast, its predecessor Opmaker is a mixed
initiative knowledge acquisition tool which requires
the same inputs as above (a P DM and a set of solu-
tion sequences to tasks) and, additionally, it requires
user advice. As Opmaker creates an operator schema
from each action in a training solution sequence, it
asks the user to input, if needed, the target state that
each object would occupy after execution of the ac-
tion. In order to build up transitions that form an op-
erator schema, the LHS is taken as the current state of
the object (object transitions are tracked as each ac-
tion is processed). The RHS is taken from the user in-
put, which indicates, where there is a choice, the state
an object is left in (this becomes that object’s current
state). Having the start and end states for each object
involved in the action, Opmaker proceeds with a gen-
eralisation phase where object instances are replaced
with sort parameters, which then form the parameter
variables X1, . . .Xn of the resulting operator schema.

In supplying the solution sequences, the trainer
specifies what objects take part in what actions. As
actions are executed, objects go through state transi-
tions and occupy intermediate states en route to reach-
ing their goal states. The space of states that an object
may occupy are defined implicitly by the state expres-
sions of the P DM . To be able to automatically ac-
quire operator schema, Opmaker was able to resolve
exactly what are the intermediate states of each object
affected in the training sequence by asking for user
advice. In Opmaker2, the DetermineStates procedure
performs this function by tracking the changing states
of each object referred to within a training example,
taking advantage of the static, object-state informa-
tion and invariants within the domain model. The
output from DetermineStates is, for each object re-
ferred to in a training solution sequence, a map which
associates with each object its unique state value at
each point in the training sequence. Uniqueness is not
guaranteed, however, and depends on the information
in the P DM , hence sometimes this map may return
a set of states rather than a unique one (we return to
this problem below). Once the map determining in-
termediate states has been generated, the techniques
of the original Opmaker algorithm are used to gener-
alise object references and create parameterised oper-
ator schema.

2.1.1 A Description of the DetermineStates
Procedure

To illustrate the workings of the Procedure, we
will use the example tyre domain solution se-
quence to form the initial stage of an example
walk-though. Let us consider A(1)-A(4) = do up,

jack down,tighten,apply trim as given above. The al-
gorithm is as follows:

Procedure DetermineStates
In:

P DM ,
I, F are maps of objects to their Initial, Final state, resp.
T = A(1)..A(N): training sequence of N actions

Out:
maps Ci, i = 1, ...,N +1, defining the state space of objects
throughout the execution of the training sequence T

Define A.c to be the set of A’s changing objects
1. i := 1;C1 := I;CN+1 = F ;
2. for each i ∈ 1, ...,N−1
3. for each object O 6∈ A(i).c
4. Ci+1(O) := Ci(O);
5. end for
6. for each object O ∈ A(i).c
7. if O 6∈ A(i+1).c∪ ...∪A(N).c then
8. Ci+1(O) := F(O)
9. else
10. generate Ci+1(O) = any legal state using P DM
11. test the choice using the following constraints
12. – Ci+1(O) 6= Ci(O)
13. – parameters of Ci+1(O) must all be
14. satisfiable by objects in A
15. – the conjunction of Ci+1(O) for all O,
16. must be consistent with P DM ’s invariants
17. end if
18. end for
19. end for

In Line 1 the first and last components of the map
C are initialised to be the same as the initial and final
state respectively. The algorithm then iterates for all
actions in the sequence. When i = 1, Lines 3-5 define
C2 as the same as C1 when applied to non-changing
objects in the domain. Lines 6-18 attempt to deter-
mine the rest of map C2 where it is applied to objects
that change as a result of the execution of A(1). Line
6 identifies the changing objects (hub1 and nuts1) - let
us consider hub1. Lines 7-8 look ahead to see if hub1
will not change again in a subsequent action and find
that it does in the second action in the sequence. If
we had chosen an example where the object does not
change again after the first action then Line 8 would
set the object’s state to be the final state. Consider-
ing Line 10, using the partial domain model there are
four potential values for C2(hub1):

a. [on_ground(hub1),fastened(hub1)]
b. [free(hub1),jacked_up(hub1,jack0),

unfastened(hub1)]
c. [jacked_up(hub1,jack0),fastened(hub1)]
d. [unfastened(hub1), jacked_up(hub1,jack0)]

Lines 12-16 of the algorithm determine which of
these states is appropriate. The constraint in Line
12 makes sure the new object state is different from
the last. hub1’s current state is [unfastened(hub1),
jacked up(hub1,jack0)], so this eliminates d. Lines

13-14 checks that an object state has no unreferenced
parameters (if part of the state description references
an object not taking part in the transition, then that
state would be inappropriate). This does not eliminate
any of the choices in the example. Lines 15-16 check
that the union of all the chosen states (in this case in-
corporating choices for hub1 and nuts1) are consis-
tent. Using these constraints, the states a. and b. are
eliminated, leaving c. to be chosen as the value of
C2(hub1).

To complete the Opmaker process, once the state
space map C has been determined, operator instances
are constructed by creating prevail components for
each unchanging object, and creating necessary tran-
sitions for each object that is changed by an action.
These instances are generalised to schema on the ba-
sis that each object in a sort behaves the same, and can
be replaced by a ’sort parameter’. The systems stores
the definition of the operator schema and checks them
against any previous definition. Finally, a method is
generated by combining the induced operator schema,
using the original Opmaker code.

For some domain models complications arise in
the binding of paramerterised object states from the
P DM to actual states (Line 10), in that more than
one binding may be possible. This, and the fact that
the tests (in Line 12-16) may not determine a unique
state, sometimes produce a non-deterministic map C.
However, we have found that this depends on the
strength of the invariants that are supplied with the
P DM .

3 EXPERIMENTS AND RESULTS

Opmaker2 has been implemented in Sicstus Prolog
incorporating the algorithm detailed above. We use
the same experimental approach that was used to test
the original Opmaker system, which was to:

• Compose training tasks and solution sequences
from a range of domains that have already been
captured within a hand-crafted model. The set of
training tasks should contain at least one instance
of each action in the domain, and each task is se-
lected on the basis of whether it is likely to form
building blocks for the solution of more complex
tasks. The (initial) partial domain model input
into Opmaker2 is the hand crafted domain with-
out its operator schema.

• Use Opmaker2 to induce operator schema and
methods from the training tasks and solution se-
quences, and the partial domain model.

• Use a planning engine to check that the automati-

cally acquired operator schema can solve the same
set of problems that the hand-crafted set has been
applied to.

• Use a planning engine to compare performance
of the old hand-crafted action schema versus the
induced schema and methods. In this case Hy-
HTN (McCluskey et al., 2003), a HTN planner
which can take advantage of the induced methods,
was used. For a comparison with a planner which
uses only operator schema (without methods), we
use Hoffman’s FF planner (Hoffmann, 2000). 1

Success is judged using the following kinds of cri-
teria:

1. Uniqueness: is a set of unique operator schema
acquired from the training tasks and the partial do-
main model that originated from the hand crafted
domain model? Or, more subtly, can Opmaker2
induce unique schema without having to encode
many invariants into the domain models?

2. Validity: Can a set of operator schema output
from Opmaker2 be used by a planner to solve
the same tasks that the original training sequences
were aimed at?

3. Efficiency: Is it more efficient, in terms of plan-
ning time, to solve tasks using Opmaker2 de-
fined operator schema and methods, rather than
the original hand-crafted operators?

We detail the results for the extended tyre domain
below, and describe other domains on which we have
experimented. More details can be found in a recent
doctoral thesis (Richardson, 2008).

Results in the Extended Tyre Domain: The
handcrafted version of the extended tyre domain has
26 objects in 9 sorts, with 22 operators. We engaged
a researcher (who was not the author of Opmaker2
software) to create 7 sequences of tasks of between 2
and 5 actions in length, encapsulating useful subtasks
such as taking a wheel off a hub, or bringing tools
out of the car’s boot. When input to OpMaker2 with
the initial partial domain model, procedure generate
did not have enough information to discover unique
sequences of states for all objects in the training se-
quences. However, adding extra ’common sense’ in-
variants to the partial domain model (shown in the
appendix) was sufficient to allow DetermineStates to
generate a unique set of state sequences, leading to
a set of 22 operator schema generated (Richardson,
2008). On inspection, these were identical in structure

1We use the GIPO tool to translate the generated OCL
domain models into PDDL (the strips version with typing,
equality, conditional effects) so that they can be input to
generally available planners.

to the original hand crafted version. This was con-
firmed by running the full domain model with a plan-
ner and ensuring that all tasks were correctly solved.
In addition to operators, the 7 sequences of training
tasks input lead to 7 methods being output. For ex-
ample, one of the 7 generated methods encapsulating
solution heuristics is as follows:

method(
% name
discover_puncture(Tyre1,Boot,Pump0),
% pre-condition
[pump_in(Pump0,Boot)],
% necessary transitions of objects
[flat(Tyre1) => punctured(Tyre1),
closed(Boot) => open(Boot)

],
% static constraints
[],
% temporal constraints
[before(1,2),before(2,3),before(3,4)],
% decomposition
[open_container(Boot),
fetch_pump(Boot,Pump0),
find_puncture(Pump0,Tyre1),
putaway_pump(Boot,Pump0)]
)

Generating plans up to 10- 12 operations in length
was possible with standard planning engines, but
tasks demanding solutions of greater length were not
possible with the planning engines at our disposal.
However, when the induced operator schema and the
methods were used together with HyHTN, plan times
were significantly shorter. For example, a complex
planning problem for this extended domain is para-
phrased as: “A car has two flat tyres: one is intact and
can be fixed by use of the pump, whilst the other is
punctured and requires a full tyre change”. No solu-
tion was found to this problem after 36 hours using
FF or HyHTN without the induced methods. How-
ever, using the induced domain schema and methods
a correct solution of length 24 was found by HyHTN
after only 11 seconds. It is not surprising that HTN-
type domain models are so efficient: this is supported
by fielded planning applications. What is significant
here is that both the operator schema and the HTN-
type methods used in the domain model were gener-
ated by Opmaker2.

Experiments with other Domains: We experi-
mented with an OCL encoding of a Blocks Domain,
with 7 blocks stacked on a table. 6 action names were
devised and one long training sequence that solved
the following task was created: given a set of seven
blocks stacked bottom to top block 1 to block7, use a
gripper to move one block at a time until the blocks
are in two stacks. The order of the blocks in these
stacks (bottom to top) is block6, block2, block4 form

Task No. Actions Operator Schema
1 4 2
2 2 2
3 2 2
4 4 4
5 2 2
6 2 2
7 22 6

Table 1: Operator Testing in Blocks World Full Problem

first stack; block5, block1, block7, block3 form the
other stack. A 22 solution sequence was composed
and fed into Opmaker is 6 separate batches, to enable
methods and operator schema to be induced. With the
original partial domain model enhanced with 4 invari-
ants, 6 operator schema were output by Opmaker2.
These operators were identical in structure to the
hand-coded ones for this domain, and can be used op-
erationally by planning engines. Table 1 shows that
the overall task can be tackled in chunks (Tasks 1 - 6),
as well as in one sequence (task 7). Each of the 7 tasks
resulted in unique and accurate operator schema.

The Hiking Domain was used to illustrate the orig-
inal Opmaker, and models ’lazy’ hikers (recreational
walkers) who use two cars to carry their equipment
around a long (several day) circular route. Automated
planning is used to work out the logistics of where
to leave their cars, to put up their tent, to transport
their luggage etc. For Opmaker2 to produce an accu-
rate, unique set of operator schema, the partial domain
model required one extra invariant to strengthen it suf-
ficiently. This compares well with the original use of
the domain (McCluskey et al., 2002) which required
a fairly laborious interactive session before outputting
operator schema.

4 RELATED WORK

In his Ph.D. thesis (Grant, 1996) Grant showed
how a system could induce operators from a knowl-
edge of inconsistent constraints. In more recent
work (Grant, 2007) he shows how his system, Plan-
ning Operator Induction (POI), extends to a multi-
agent system. The work is based on representations of
operators and constraints which between them model
the domains. The emphasis is on how the recipient
agent assimilates the knowledge another agent has
given it into its own knowledge.

Learning expressive theories from examples is
a central goal in the Inductive Logic Programming
community. In his thesis (S.S.Benson, 1996), Ben-

son describes an ILP method for learning more ex-
pressive operator schema than Opmaker2, using mul-
tiple examples. However, the focus of Opmaker2 is
to learn from (ideally) one example sequence, and to
learn heuristics as well as operator structure.

Perhaps closest to our work is ARMS (Wu et al.,
2005), a system in which operators are learned with-
out the need for user intervention. Further work by
these authors (Yang et al., 2007) involves learning re-
cursive HTN structures. The authors focus on match-
ing sub-sequences to tasks assuming no knowledge
of observed states achieved by low-level actions. The
output consists of pairs of action sequences and the
high-level tasks achieved by them. As with our sys-
tem they begin with solution sequences of defined
tasks, and compare learned methods to hand-crafted
ones to judge success. Whilst ARMS does not require
a partial domain model, it requires many training sets
(about 40 training sets is quoted). Once learned they
were fine tuned by domain experts by hand. By con-
trast our system does not require multiple examples,
as we focus on an expert transferring heuristic knowl-
edge encapsulated in a handful of well chosen exam-
ples solution sequences.

5 CONCLUSIONS

In this paper we have set up a knowledge acquisition
problem which is very relevant to tackling the cen-
tral problem of using AI planning engines - the ac-
quisition of formulations of actions (in the form of
operator schema), and acquisition of heuristics (in the
form of HTN-type methods). Our work and the re-
sults reported here depend on a structured view of par-
tial domain knowledge about objects being available.
Whereas in propositional, classical planning (epit-
omised by the PDDL language (AIPS-98 Planning
Competition Committee, 1998)), states are fairly ar-
bitrary sets of propositions, we assume that the space
of states is restricted in that objects are pre-conceived
to occupy a fixed set of plausible states. Within this
framework, we have described a method for inducing
operator schema that advances the state of the art in
that it requires no intermediate state information, or
large numbers of training examples, to induce a valid
operator set. Further, our results give some evidence
that the methods induced with the operator schema
lead to more efficient domain models.

Opmaker2 is an improvement on Opmaker in
that it eliminates the need for the user or trainer to
give the system intermediate state information. Af-
ter Opmaker2 automatically infers this intermediate
state information, it proceeds in the same fashion as

Opmaker and induces the same operator schema. Our
experimental results show, however, that partial do-
main models may have to be strengthened with extra
invariants before a unique set of operator schema can
be synthesised. Hence, we could summarise our work
as arguing for the creation of planning domain models
by the crafting of a strong partial domain model, and
a set of training tasks, rather than crafting operator
schema and planning heuristics manually.

There are several directions for future work:

1. can our work be extended to capturing domains
with durative or probabilistic actions, or other,
more expressive formulations for action? What
extra details would be required as input to the op-
erator induction process?

2. can the Opmaker2 system be extended to deal
with model maintenance (for instance by incre-
mental learning), so that old operator schema can
be refined in the presence of new example solution
sequences?

3. what resilience does our approach offer in the face
of errors in training tasks or in the partial domain
model?

Finally, we believe that this line of research is es-
sential if intelligent agents are to have general plan-
ning capabilities. If this is to be the case, it seems
unlikely that intelligent agents will always rely on hu-
man experts to encode and maintain their knowledge.
It seems reasonable that they would need the capabil-
ity to acquire knowledge of actions themselves, per-
haps by observing the actions of other agents, and us-
ing pre-existing static domain knowledge, to induce
operator schema and domain heuristics.

REFERENCES

AIPS-98 Planning Competition Committee (1998). PDDL
- The Planning Domain Definition Language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.

Grant, T. (2007). Assimilating planning domain knowl-
edge from other agents. In Proceedings of the 26th
Workshop of the UK Planning and Scheduling Spe-
cial Interest Group, Prague, Czech Republic, Decem-
ber 2007.

Grant, T. J. (1996). Inductive Learning of Knowledge-Based
Planning Operators. PhD thesis, de Rijksuniversiteit
Limburg te Maastricht, Netherlands.

Hoffmann, J. (2000). A Heuristic for Domain Independent
Planning and its Use in an Enforced Hill-climbing Al-
gorithm. In Proceedings of the 14th Workshop on
Planning and Configuration - New Results in Plan-
ning, Scheduling and Design.

Liu, D. and McCluskey, T. L. (2000). The OCL Language
Manual, Version 1.2. Technical report, Department of
Computing and Mathematical Sciences, University of
Huddersfield .

McCluskey, T. L., Liu, D., and Simpson, R. M. (2003). Gipo
ii: Htn planning in a tool-supported knowledge engi-
neering environment. In Proceedings of the Thirteenth
International Conference on Automated Planning and
Scheduling.

McCluskey, T. L. and Porteous, J. M. (1996). Engineering
and Compiling Planning Domain Models to Promote
Validity and Efficiency. Technical Report RR9606,
School of Computing and Maths, University of Hud-
dersfield.

McCluskey, T. L., Richardson, N. E., and Simpson, R. M.
(2002). An Interactive Method for Inducing Operator
Descriptions. In The Sixth International Conference
on Artificial Intelligence Planning Systems.

Richardson, N. E. (2008). An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. PhD
thesis, School of Computing and Engineering, Uni-
versity of Huddersfield, UK.

Russell, S. J. (1989). Execution architectures and compila-
tion. In Proc. IJCAI.

S. A. Chien (editor) (1997). 1st NASA Workshop on Plan-
ning and Scheduling in Space Applications. NASA,
Oxnard, CA.

Simpson, R. M., Kitchin, D. E., and McCluskey, T. L.
(2007). Planning domain definition using gipo. Jour-
nal of Knowledge Engineering, 1.

S.S.Benson (1996). Learning Action Models for Reactive
Autonomous Agents. PhD thesis, Dept of Computer
Science, Stanford University.

Wu, K., Yang, Q., and Jiang, Y. (2005). Arms: Action-
relation modelling system for learning acquisition
models. In Proceedings of the First International
Competition on Knowledge Engineering for AI Plan-
ning, Monterey, California, USA.

Yang, Q., Pan, R., and Pan, S. J. (2007). Learning recursive
htn-method structures for planning. In Proceedings
of the ICAPS’07 Workshop on Artificial Intelligence
Planning and Learning.

APPENDIX

% Sorts
sorts(primitive_sorts,[container,nuts,hub,
pump,wheel, wrench,jack,wheel_trim,tyre]).

% Objects
objects(container,[boot]).
objects(nuts,[nuts1,nuts2,nuts3,nuts4]).
objects(hub,[hub1,hub2,hub3,hub4]).
objects(pump,[pump0]).
objects(wheel,[wheel1,wheel2,

wheel3,wheel4,wheel5]).
objects(wrench,[wrench0]).
objects(jack,[jack0]).

objects(wheel_trim,[trim1,trim2,trim3,trim4]).
objects(tyre,[tyre1,tyre2,tyre3,tyre4,tyre5]).
% Predicates
predicates([closed(container),open(container),
tight(nuts,hub),loose(nuts,hub),have_nuts(nuts),
on_ground(hub),fastened(hub),jacked_up(hub,jack),
free(hub),unfastened(hub),have_pump(pump),
pump_in(pump,container),have_wheel(wheel),
wheel_in(wheel,container),wheel_on(wheel,hub),
have_wrench(wrench),wrench_in(wrench,container),
have_jack(jack),jack_in_use(jack,hub),
jack_in(jack,container),trim_on(wheel_trim,wheel),
trim_off(wheel_trim),fits_on(tyre,wheel),
full(tyre),flat(tyre),punctured(tyre)]).

% Object Class Definitions
substate_classes([
container(C,[[closed(C)], [open(C)]]),
nuts(N,[[tight(N,H)],[loose(N,H)],

[have_nuts(N)]]),
hub(H, [[on_ground(H),fastened(H)],

[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J),unfastened(H)],
[unfastened(H),jacked_up(H,J)]]),

pump(Pu, [[have_pump(Pu)],[pump_in(Pu,C)]]),
wheel(Wh, [[have_wheel(Wh)],[wheel_in(Wh,C)],

[wheel_on(Wh,H)]]),
wrench(Wr,[[have_wrench(Wr)],[wrench_in(Wr,C)]]),
jack(J,[[have_jack(J)],[jack_in_use(J,H)],

[jack_in(J,C)]]),
wheel_trim(WT,[[trim_on(WT,Wh)],[trim_off(WT)]]),
tyre(Ty, [[full(Ty)], [flat(Ty)],

[punctured(Ty)], [fits_on(Ty,Wh)]])]).
% Invariants
atomic_invariants([fits_on(tyre1,wheel1),
fits_on(tyre2,wheel2), fits_on(tyre3,wheel3),
fits_on(tyre4,wheel4), fits_on(tyre5,wheel5)]).

invariant(all(H:hub,fastened(H)<==>
ex(N:nuts,tight(N,H)\/loose(N,H)))).

invariant(all(H:hub,all(J:jack,jack_in_use(J,H)
<==>jacked_up(H,J)))).

invariant(all(H:hub,˜free(H)<==>
ex(W:wheel,wheel_on(W,H)))).

invariant(
all(T:wheel_trim,all(W:wheel,trim_on_wheel(T,W)
<==>trim_on(W,T)))).

%Hub may only have one set of nuts attached
invariant(all(H:hub,all(N1:nuts,all(N2:nuts,
(tight(N1,H)\/loose(N1,H)) /\
(tight(N2,H)\/loose(N2,H))==>(N1=N2))))).

%Hub may only have one wheel attached.
invariant(all(H:hub,all(W1:wheel,all(W2:wheel,
wheel_on(W1,H)/\wheel_on(W2,H)==>(W1=W2))))).

%If nuts are tight then hub must be on the ground.
invariant(
all(H:hub, ex(N:nuts,tight(N,H))==>on_ground(H))).

%If a trim is on a wheel, then the wheel is on
% a hub and the nuts are tight.
invariant(
all(W:wheel,ex(T:wheel_trim,trim_on_wheel(T,W))
==>

ex(H:hub,wheel_on(W,H)/\ex(N:nuts,tight(N,H))))).

