
University of Huddersfield Repository

MacFarlane, Katrinna

An Intelligent Multi-Agent System Approach to Automating Safety Features for On-Line Real Time
Communications: Agent Mediated Information Exchange

Original Citation

MacFarlane, Katrinna (2016) An Intelligent Multi-Agent System Approach to Automating Safety 
Features for On-Line Real Time Communications: Agent Mediated Information Exchange. Doctoral
thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/32669/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



    

 

 

 

An Intelligent Multi-Agent System Approach to Automating 

Safety Features for On-Line Real Time Communications 

Agent Mediated Information Exchange                                                                                                                      

 

 

 

Katrinna MacFarlane 

 

 

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements 

for the Degree of Doctor of Philosophy 

 

 

 

The University of Huddersfield  

 

September 2016 

  



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

For Dan and Raiven, everything I do is for you, and for the rest of my family, whose faith in me is a 

never-ending source of inspiration. 

  



3 
 

Acknowledgements 

I need to thank my children, Dan and Raiven, who have always been a source of inspiration, driving 

me to do the best that I can and, by their own determination to overcome many obstacles in the 

pursuit of their goals, have set me, as well as those around them, an excellent example of how to 

conquer adversity. I must thank my mother for encouraging to believe that I could do anything I set 

my mind to. 

I would like to thank Dr Violeta Holmes for her support, encouragement, patience and guidance 

throughout the lifespan of this work. We never fail to come up with numerous solutions to every issue, 

her enthusiasm to make progress is infectious and has ensured that, even in times of hardship, 

despondency, and frustration, the work has carried on. 

I also have to thank the rest of my family, friends and colleagues, who have had to put up with me 

through the highs and lows of developing the prototypes and writing the thesis. Their support and 

encouragement have been invaluable.  

Part of this work has used the Protégé resource, which is supported by grant GM10331601 from the 

National Institute of General Medical Sciences of the United States National Institutes of Health. 

The work presented in this thesis contains elements of all works, both published and pending 

publication, as described in the Publications section of this thesis on page 6, as well as reports 

presented for progression through the stages of PhD study at the University of Huddersfield. 

  



4 
 

Copyright Statement 

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any 

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right to 

use such Copyright for any administrative, promotional, educational and/or teaching 

purposes. 

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the 

regulations of the University Library. Details of these regulations may be obtained from the 

Librarian. This page must form part of any such copies made. 

iii. The ownership of any patents, designs, trademarks and any and all other intellectual property 

rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of 

copyright works, for example graphs and tables (“Reproductions”), which may be described 

in this thesis, may not be owned by the author and may be owned by third parties. Such 

Intellectual Property Rights and Reproductions cannot and must not be made available for use 

without the prior written permission of the owner(s) of the relevant Intellectual Property 

Rights and/or Reproductions. 

  



5 
 

Abstract 

Child safety online is a growing problem, governmental attempts to highlight and combat this issue 

have not been as successful as it was hoped, and still there are highly publicised cases of children, 

young people and vulnerable adults coming to harm as a result of unsafe online practices. This thesis 

presents the research, design and development of a prototype system called SafeChat, which will 

provide a safer environment for children interacting in online environments.   

In order to combat such a complex problem, it is necessary to integrate various artificial intelligent 

technologies and autonomous systems. The SafeChat prototype system discussed within this research 

has been implemented in Java Agent Development Environment (JADE) and utilises Protégé Ontology 

development, reasoning and natural language processing techniques. To evaluate our system 

performance, comprehensive testing to measure its effectiveness in detecting potential risk to the 

user (e.g. child) is in constant development. Initial results of system testing are encouraging and 

demonstrate its effectiveness in identifying different levels of threat during online conversation. 

The potential impact of this work is immense, when used as a plug-in to popular communications 

software, such as Facebook Messenger, Skype and WhatsApp. SafeChat provides a safer environment 

for children to communicate, identifying potential and actual threats, whilst maintaining the privacy 

of their discourse. The SafeChat system could be easily adapted to provide autonomous solutions in 

other areas of online threat, such as cyberbullying and radicalisation. 

 

  



6 
 

Publications 

2016 Multi-Agent System for Safeguarding Children Online - SAI Intelligent Systems Conference, 

September 20-22, 2016 | London, UK, Publication pending  

2009 MacFarlane, Katrinna and Holmes, Violeta (2009) Agent-Mediated Information Exchange: 

Child Safety Online. In: 2009 International Conference on Management and Service Science. 

IEEE, pp. 1-5 

2008 Agent Mediated Information Exchange -  In IMSI Conference Pisa, Italy (2008) 

 

Posters 

 

2010 Agent Mediated Information Exchange: Holmes, Violeta and MacFarlane, Katrinna (2009) 

Agent Mediated Information Exchange. In: University of Huddersfield Research Festival, 23rd 

March - 2nd April 2009, University of Huddersfield. 

2009 Agent Mediated Information Exchange (Poster) - British Computer Society, Hopper 

 Colloquium 2009. 

  



7 
 

Table of Contents 

Acknowledgements ................................................................................................................................. 3 

Copyright Statement ............................................................................................................................... 4 

Abstract ................................................................................................................................................... 5 

Publications ............................................................................................................................................. 6 

Table of Figures ....................................................................................................................................... 9 

List of Tables ......................................................................................................................................... 11 

Chapter 1: Introduction .................................................................................................................... 12 

1.1 Problem Identification ...................................................................................................... 16 

1.2 Aims and Objectives .......................................................................................................... 21 

1.3 Methodology and Implementation ................................................................................... 22 

1.4 Research Contribution ...................................................................................................... 23 

1.5 Organisation of Thesis ....................................................................................................... 24 

Chapter 2: Literature Review ............................................................................................................ 26 

2.1 Introduction ............................................................................................................................ 26 

2.2 Motivation of Study ................................................................................................................ 26 

2.3 Artificial Intelligence ............................................................................................................... 32 

2.4 Software Agent Technology .................................................................................................... 41 

2.5 Ontology Development ........................................................................................................... 55 

2.6 Natural Language Processing .................................................................................................. 73 

2.7 Summary ................................................................................................................................. 75 

Chapter 3: SafeChat System Design .................................................................................................. 78 

3.1 Introduction ............................................................................................................................ 78 

3.2 Software Design Methodologies ............................................................................................. 78 

3.3 Agent System Design ............................................................................................................... 81 

3.4 Message Application Design ............................................................................................. 87 

3.5 SafeChat Meeting Ontology Design .................................................................................. 88 

3.6 Summary ................................................................................................................................. 90 

Chapter 4: Implementing the SafeChat System ................................................................................ 91 

4.1 Introduction ............................................................................................................................ 91 

4.2 The Agent System ................................................................................................................... 91 

4.3 The Messaging System ............................................................................................................ 99 

4.4 Implementing the Ontology .................................................................................................. 102 

4.5 Summary ............................................................................................................................... 106 

Chapter 5: Testing and Results ....................................................................................................... 107 



8 
 

5.1 Introduction .......................................................................................................................... 107 

5.2 SafeChat Multiagent System Results .................................................................................... 107 

5.3 SafeChat Chat Application Results ........................................................................................ 111 

5.4 SafeChat Meeting Ontology Results ..................................................................................... 112 

5.5 Summary ............................................................................................................................... 115 

Chapter 6: Conclusion  .................................................................................................................... 117 

6.1 Introduction .......................................................................................................................... 117 

6.2 Research Findings ................................................................................................................. 117 

6.3 Research Contribution .......................................................................................................... 118 

6.4 Research Limitations ............................................................................................................. 119 

6.5 Future Work .......................................................................................................................... 120 

References .......................................................................................................................................... 121 

Bibliography ........................................................................................................................................ 130 

Appendices .......................................................................................................................................... 140 

 

38,073 words.  



9 
 

Table of Figures 
FIGURE 1: DAILY COMPUTER USE BY AGE GROUP IN THE UNITED KINGDOM ........................................................................... 13 
FIGURE 2: BREAKDOWN OF RESULTS OF PARENT QUESTIONNAIRE – WORRY ABOUT ONLINE SAFETY ............................................ 14 
FIGURE 3: BREAKDOWN OF RESULTS OF PARENT QUESTIONNAIRE – UNSUPERVISED ACCESS ...................................................... 14 
FIGURE 4: BREAKDOWN OF RESULTS OF PARENT QUESTIONNAIRE – APPLICATIONS .................................................................. 15 
FIGURE 5: BREAKDOWN OF RESULTS OF PARENT QUESTIONNAIRE – NEGATIVE EXPERIENCE ....................................................... 15 
FIGURE 6: SEMANTIC WEB SEARCH ENGINE - KNGINE ........................................................................................................ 37 
FIGURE 7: GOOGLE SEARCH RESULTS ............................................................................................................................. 38 
FIGURE 8: KQML PERFORMATIVE MESSAGE STRUCTURE ................................................................................................... 47 
FIGURE 9: FIPA AGENT COMMUNICATION LANGUAGE MESSAGE STRUCTURE ......................................................................... 48 
FIGURE 10: THE ESSEX IB MODEL SYSTEM DIAGRAM ........................................................................................................ 54 
FIGURE 11: THE MEANING TRIANGLE IN TERMS OF ONTOLOGY ............................................................................................ 55 
FIGURE 12: AN EXAMPLE OF A TAXONOMICALLY STRUCTURED ONTOLOGY ............................................................................. 56 
FIGURE 13: AN EXAMPLE OF THE TOP DOWN MODELLING APPROACH ................................................................................... 59 
FIGURE 14: AN EXAMPLE OF THE BOTTOM UP MODELLING APPROACH ................................................................................. 59 
FIGURE 15: AN EXAMPLE OF THE MIDDLE-OUT MODELLING APPROACH ................................................................................ 60 
FIGURE 16: AN EXAMPLE OF ONTOLOGY DEVELOPMENT LIFE CYCLE (LOPEZ ET AL., 1999) ....................................................... 64 
FIGURE 17: AN EXAMPLE OF AN ONTOLOGY CONCEPT MAP CREATED WITH CMAPTOOLS.......................................................... 67 
FIGURE 18: LINKBASE STRUCTURE (VAN GURP ET AL., 2006) ............................................................................................ 71 
FIGURE 19: RESULT OF THE SEARCH FOR “ONTOLOGY” USING WORDNET IN A WEB BROWSER .................................................. 72 
FIGURE 20: THE SAFECHAT SYSTEM .............................................................................................................................. 78 
FIGURE 21: THE ITERATIVE DEVELOPMENT METHOD ......................................................................................................... 81 
FIGURE 22: THE SAFECHAT MULTI-AGENT SYSTEM ......................................................................................................... 82 
FIGURE 23: SAFECHAT MULTI-AGENT SYSTEM CLASS DIAGRAM ........................................................................................... 83 
FIGURE 24: PERSONAL INFORMATION CHECKING AGENT SYSTEM SEQUENCE DIAGRAM ............................................................ 84 
FIGURE 25: MEETING CHECKING AGENT SYSTEM SEQUENCE DIAGRAM ................................................................................. 85 
FIGURE 26: SAFECHAT MESSAGE FLOW .......................................................................................................................... 86 
FIGURE 27: CHAT SERVER CLASS DIAGRAM ..................................................................................................................... 87 
FIGURE 28: CHAT CLIENT CLASSES ................................................................................................................................ 88 
FIGURE 29: THE COMPONENTS OF A MEETING ................................................................................................................. 89 
FIGURE 30: SAFECHAT ONTOLOGY TAXONOMY ................................................................................................................ 89 
FIGURE 31: RELATIONSHIPS BETWEEN ENTITIES AND CLASSES ............................................................................................. 90 
FIGURE 32: THE AGENTS CREATED IN THE NETBEANS IDE ................................................................................................. 91 
FIGURE 33: LOOKFORAGENTS CODE SNIPPET .................................................................................................................. 91 
FIGURE 34: THE RUNTIME ARGUMENTS TO CREATE AN INSTANCE OF EACH AGENT AND LAUNCH THE JADE GUI ........................... 92 
FIGURE 35: ALL AGENTS RUNNING FROM THE JADE GUI .................................................................................................. 92 
FIGURE 36: AGENTS SUCCESSFULLY REGISTERED WITH THE DIRECTORY FACILITATOR ............................................................... 93 
FIGURE 37: THE NOTIFICATION AGENT ACTION METHOD.................................................................................................... 94 
FIGURE 38: THE DETECTION AGENT ACTION METHOD SENDING A MESSAGE TO THE THREAT AGENT ............................................ 94 
FIGURE 39: THE PROFILE AGENT ACTION METHOD WHICH COMPARES THE MESSAGE CONTENT WITH USER DETAILS ....................... 95 
FIGURE 40: CONVERSION OF STRING TO INTEGER AND ALLOCATION OF MEETING ELEMENT VALUES ............................................ 96 
FIGURE 41: CREATION AND CALCULATION OF SAFETY LEVEL FOR USER .................................................................................. 97 
FIGURE 42: SAMPLE CONVERSATION ............................................................................................................................. 97 
FIGURE 43: MEETING ELEMENTS IN THE SAMPLE CONVERSATION ........................................................................................ 98 
FIGURE 44: THREAT LEVEL CALCULATION ........................................................................................................................ 98 
FIGURE 45: ALL SAFECHAT JAVA APPLICATIONS RUNNING INDEPENDENTLY ......................................................................... 100 
FIGURE 46: THE CHAT SERVER INTERFACE ..................................................................................................................... 101 
FIGURE 47: CHAT CLIENT SETUP TO INSTANTIATE THE SAFECHAT AGENTS ........................................................................... 102 
FIGURE 48: THE THREE ELEMENT CLASSES WITH THEIR RELATIONSHIPS ............................................................................... 103 
FIGURE 49: HERE SUBCLASSES HAVE BEEN ADDED TO THE LOCATION CLASS ......................................................................... 103 
FIGURE 50: THE INTENTION SUBCLASS ......................................................................................................................... 104 



10 
 

FIGURE 51: THE TIME CLASS ...................................................................................................................................... 104 
FIGURE 52: THE SAFECHAT MEETING ONTOLOGY CLASSES .............................................................................................. 105 
FIGURE 53: ALL AGENTS RUNNING SUCCESSFULLY .......................................................................................................... 108 
FIGURE 54: OUTPUT IF THE MESSAGE CONTAINS PERSONAL DETAILS .................................................................................. 109 
FIGURE 55: OUTPUT IF THE MESSAGE DOES NOT CONTAIN PERSONAL DETAILS ..................................................................... 109 
FIGURE 56: OUTPUT OF THE THREAT AGENT MESSAGE CALCULATION ................................................................................. 110 
FIGURE 57: OUTPUT OF THE THREAT AGENT THREAT AND SAFETY LEVELS ............................................................................ 110 
FIGURE 58: XXAMP CONTROL PANEL ......................................................................................................................... 111 
FIGURE 59: CHAT CLIENT RUNNING ............................................................................................................................. 111 
FIGURE 60: PROFILE AGENT TRIGGERED SUCCESSFULLY ................................................................................................... 112 
FIGURE 61: RESULT OF PROTÉGÉ SEARCH FOR THE “VUE” ELEMENT ................................................................................... 113 
FIGURE 62: RELATIONSHIPS AND RANGES IN THE ONTOLOGY ............................................................................................ 113 
FIGURE 63: CLASS USAGE FOR THE “MOVIES” ELEMENT OF THE ONTOLOGY ........................................................................ 114 
FIGURE 64: APACHE JENA FUSEKI SERVER..................................................................................................................... 114 
FIGURE 65: SPARQL TRIPLE QUERY ............................................................................................................................ 115 
FIGURE 66: THREAT AGENT TESTING PLAN .................................................................................................................... 116 
  



11 
 

List of Tables 
TABLE 1: EXAMPLE INSTANT COMMUNICATION APPLICATIONS ........................................................................................... 19 
TABLE 2: EXISTING APPLICATIONS AIMED AT PROTECTING CHILDREN..................................................................................... 20 
TABLE 3: RESEARCH CONTRIBUTION TO ARTICLES LISTED IN THE UNITED NATIONS CONVENTION ON THE RIGHTS OF THE CHILD ....... 28 
TABLE 4: HOME OFFICE CRIME STATISTICS ON SEXUAL GROOMING ...................................................................................... 29 
TABLE 5: MINISTRY OF JUSTICE STATISTICS ON CONVICTIONS OF SEXUAL GROOMING ............................................................... 29 
TABLE 6: RESEARCH INTO YOUNG PEOPLE’S ONLINE INTERACTIONS WITH STRANGERS .............................................................. 30 
TABLE 7: RUSSELL AND NORVIG’S DEFINITIONS OF ARTIFICIAL INTELLIGENCE (2014, P.2) ........................................................ 33 
TABLE 8: WOOLDRIDGE AND JENNINGS’S NOTIONS OF AGENCY (WOOLDRIDGE ANDJENNINGS, 1995) ....................................... 43 
TABLE 9: TYPES OF SOFTWARE AGENTS (COPPIN, 2016: ONLINE) ....................................................................................... 44 
TABLE 10: EXAMPLES OF TASK ENVIRONMENTS ............................................................................................................... 46 
TABLE 11: KQML PARAMETERS ................................................................................................................................... 48 
TABLE 12: NEGOTIATION PROTOCOLS AND THEIR BENEFITS ................................................................................................ 49 
TABLE 13: COMPARISON OF AGENT FRAMEWORKS ........................................................................................................... 52 
TABLE 14: EXAMPLES OF DIFFERENT ONTOLOGY CATEGORISATIONS ..................................................................................... 62 
TABLE 15: EXAMPLES OF ONTOLOGY TOOLS .................................................................................................................... 67 
TABLE 16: ONTOLOGY REPRESENTATION LANGUAGES ....................................................................................................... 68 
TABLE 17: SOFTWARE DEVELOPMENT LIFE CYCLE MODELS ................................................................................................. 80 
  



12 
 

Chapter 1: Introduction 

Global governmental efforts to address the issue of child safety in an online setting continue (OECD, 

2012: Online). The Internet Taskforce on Child Protection was established in the United Kingdom in 

March 2001. The task force went on to release a comprehensive set of guidelines for safe practice on 

the internet aimed at parents and children in 2010. Whilst this was well publicised at the time, it failed 

to address incidents of children compromising their safety. 

Recently, highly publicised cases of young people going missing as a result of meeting strangers 

contacted online (BBC, 2014: Online; Martin, 2010: Online; Hunt, 2014: Online), have emerged which 

suggests that the problem is still not being resolved with any great success. The whole issue is 

compounded by the fact that social networking mediums such as Facebook and sites like Ask.fm are 

becoming more popular than ever. Misuse of some of these sites, by anonymous users is leading to 

documented cases of young people going missing and in cases where cyber bullying is highlighted, 

committing suicide (NoBullying.com, 2015: Online). 

Another contributing factor is the proliferation of ubiquitous computing. The omnipresent connected 

society is reaching children much earlier in their development, where even the most informed parents 

are allowing children as young as five access to mobile devices (Press Association, The Guardian. 2013: 

Online). Consequently, children have access to social media and instant messaging applications 

available on those platforms, exposing them to risk. 

Recently the United Nations have published an updated version of the Convention on the Rights of 

the Child (UNICEF, 2015: Online). In article 17, it stipulates that children have a right to access 

information from mass media. In order to meet these requirements children must have access to the 

internet.  

According to the Office for National Statistics findings outlined in the Internet Access – Households 

and Individuals 2015 report released in August (2015: Online), that the internet in the United Kingdom 

was used by 78% (39.3 million) of adults on a daily basis.  Of these 96% of users, aged between 16 and 

24 accessed the internet from a mobile or work device. As figure 1 indicates, both internet usage and 

computer usage is on the rise across all age groups.  



13 
 

 

Figure 1: Daily computer use by age group in the United Kingdom 

The report goes on to state that the number of households in the United Kingdom with internet access 

has risen to 86% (22.5 million) in 2015 from 57% in 2006. 

In order to ascertain a level of adoption of government guidance for families with young children and 

adherence to the articles set out in the United Nations Convention, we have conducted a number of 

surveys over the last 7 years. At the outset of the project, research was carried out amongst 437 

schoolchildren, 59% of those who took part regularly chatted to people over the internet. 24% of those 

who did chat online admitted to giving out an element of their own personal information, these 

included home telephone number, mobile telephone number and home address with 37 of the 

children saying that they had arranged to meet someone they had met online (MacFarlane and 

Holmes, 2009).   

From December 2015 to March 2016 a focus group of 29 parents were asked to complete an online 

survey into online access, supervision, application and privacy for their children. A detailed breakdown 

of all the questions and their answers can be found in the appendix (item B). Whilst most parents 

stated that they did worry about their child’s safety in an online setting, as seen in figure 2, they went 

on to confirm that they would let their children access applications and the internet unsupervised 

once they reached a certain age.   

63 61 63
56

36

9

45

82 78
84

76 72

45

72

0
10
20
30
40
50
60
70
80
90

16-24 25-34 35-44 45-54 55-64 65+ All

Age group

%

Daily computer use by age group, 2006 and 2015

2006 2015



14 
 

 

Figure 2: Breakdown of results of parent questionnaire – worry about online safety 

When asked to specify a safe age for unsupervised access to online environments the parents gave a 

range of responses from the options available, over 50% of the parents consulted thought that only 

children over the age of 12 should be unsupervised on the internet, see figure 3. 

 

Figure 3: Breakdown of results of parent questionnaire – unsupervised access 

Out of the 29 parents polled, twenty confirmed that they had allowed their child to have a mobile 

phone. Figure 4 shows a breakdown of the applications parents would be happy for their children to 

use. It will be demonstrated later in the thesis (Table 1, page 20) that most of these applications allow 

free unsolicited access to all registered users, and some of them have billions of subscribers. This could 

suggest that the peer pressure that children experience which encourages them to have the latest 

trend in gadgets and software may affect their parents. This is validated by Deborah Bothun in 

Consumer Intelligence Series (Bothun, 2014) where she articulates that parents “recognise the role of 

peer pressure and status in their kids’ purchase requests”. 

23

6

0

5

10

15

20

25

Yes No

Pa
re

nt
s

Responses

Do you worry about the safety of your 
child(ren) when they are on-line?

10
9

2
1

7

0

2

4

6

8

10

12

Over 15 12 to 15 10 to 12 Under 10 Other

Pa
re

nt
s

Responses

What age do you think is safe for your child 
to have unsupervised access to the internet?



15 
 

 

Figure 4: Breakdown of results of parent questionnaire – applications 

 

Given that most parents, 23 of the 29 who took part in the survey, said that they were worried about 

the safety of their children whilst they were online, it is perhaps a little strange to see that some 

parents would allow children unsupervised access to the internet at 10-12 years old (2), and in one 

case younger than 10.   

 

Figure 5: Breakdown of results of parent questionnaire – negative experience 

Perhaps the most worrying statistic to come out of the short questionnaire was that 25 of the 29 

parents polled, said that their child had been negatively affected whilst online, as seen in figure 5. 

13
12

11

7 7

5

3
0

2

4

6

8

10

12

14

FaceTime Whatsapp Skype None of
these

Facebook Snapchat Viber

Pa
re

nt
s

Responses

Which of these would you be happy for your child to 
use?

25

3 1
0

5

10

15

20

25

30

Yes No Prefer not to say

Pa
re

nt
s

Responses

Has your child ever been negatively affected by 
anything that happened on-line?



16 
 

1.1 Problem Identification 

The British Broadcasting Company (BBC) reported on 12th February 2016 an article on the case against 

a prominent premiership footballer who, it is alleged, has “groomed” a 15-year-old female fan via 

Facebook and text messaging. It is alleged that he talked her into meeting him for a signed shirt. The 

article goes on to say; 

After the meeting they exchanged further messages, discussing whether Mr Johnson 

deserved a thank you kiss for the shirt-signing "or more" 

 (BBC [c], 2016: Online) 

It is also alleged that the third time they met there was sexual contact. The defendant pleaded guilty 

to one count of sexual activity with a child and one charge of grooming and was subsequently sacked 

by his football club as a consequence. He is also unlikely to be chosen to add to his tally of twelve 

games played for the England national football team. 

On the 10th July 2015, the Daily Mail reported that a seventeen-year-old girl had been found safe and 

well after disappearing to meet a man she had met on Facebook.   

In another harrowing report, 25th November 2014, the Independent online newspaper reported that 

a 19-year-old computer engineer admitted to the murder of a 14-year-old boy that he had met playing 

online video games (Withnall, 2013: Online). 

These three cases highlight some of the ways the dangers and risks associated with online grooming 

and unsafe practice can affect a child. Table 1 shows a range of the most popular communication 

applications across multiple platforms available today. It goes on to give the number of subscribers 

currently associated with these applications. 

These applications currently offer no protection from the dangers associated with grooming to those 

who may find themselves most at risk of unsafe practices. The solution presented in this thesis could 

be adapted to provide that layer of protection that works, once activated, from within the application.  

This could be set up like a profanity filter, which is used in some online games, including World of 

Warcraft, to ensure that younger players are not able to see bad language/cursing in their chat 

windows. 

  



17 
 

Example Instant Communication Applications  

Application 

Available 

Platforms Application Information 

Subscriber 

Information 

Facebook Mobile, 

Web, 

Desktop, 

Console 

Harvard college students launched this application in 2004. 

Users create a profile and then add “friends”, which could 

be people they know, people their friends know or people 

who request to be added to their friends list. Once 

someone has identified as a ‘friend’ they are able to 

exchange messages, pictures and links. Friends also have 

access, based on permission levels, to content and 

information on the user’s profile page or ‘wall’. Many other 

communication services, websites and application now 

encourage you to use you Facebook login details to access 

their services, this then allows those applications and 

services access to the user’s profile information. 

1.18 billion 

active users, 

Facebook 

(2015: Online) 

Skype Mobile, 

Web, 

Desktop, 

Console 

Skype was originally released in 2003, with the first public 

beta being made available to user in August of that year, 

Emirates News (2015: Online). This application allows users 

to add contacts, receive contact requests and communicate 

via VOIP (Voice Over Internet Protocol), video and instant 

messaging. Skype to Skype calls are free, but if you wish to 

use the application to make telephone calls you need to pay 

using the debit based user account system. In 2010, it was 

sold to the Microsoft Corporation and was then integrated 

into their products (mobile and computer operating 

systems and devices). Microsoft then phased out MSN 

Messenger, which had offered some of the same services, 

and replaced it with Skype. Now Skype automates the 

integration of Microsoft, Facebook and Skype accounts for 

its users.  

300 million 

active users as 

of November 

2015, Statista 

(2015: Online) 

Snapchat Mobile Snapchat was released in September 2011, it allows users 

to take a picture or a video and share it with their contacts 

for a limited time (1-10 seconds). Users can embed a text-

based message with their picture or video, or manipulate 

them with filters and effects. Once content is received it 

can only live on the Snapchat dedicated server for the 

allotted time, but users can screenshot the message on 

200 million 

active users as 

of November 

2015, Statista 

(2015: Online) 



18 
 

their mobile device to keep. In May 2014, the application 

added instant messaging and video chat functionality as 

stated in The Atlantic (2015: Online). 

WhatsApp Mobile, 

Web 

Originally released in January 2010, this application 

provides cross platform instant messaging functionality for 

smartphone users. WhatsApp allows users to send 

messages to individuals and groups, share media content 

and share their location, WhatsApp (2015: Online). It saves 

the user the cost of sending an SMS message. In February 

2014, Facebook acquired WhatsApp for approximately 16 

billion US dollars. Voice calling functionality has been 

integrated into the application since this acquisition. 

900 million 

active users as 

of November 

2015, Statista 

(2015: Online) 

Viber Mobile, 

Desktop 

This application is very similar to Skype in its functionality, 

although it was initially intended for use on mobile devices, 

Viber have recently released a desktop version of the 

application. Viber allows users to send messages, voice and 

video calls to other registered users free of charge, it allows 

for group chats and public chats. Public chats allow users to 

sign up to a group conversation with celebrities from the 

work of fashion, music, brands and sport (Viber, Online). 

Viber also makes use of ‘stickers’ which are an 

enhancement of ‘emoticons’. Stickers are small images 

depicting a thought, emotion or phrase that can be 

exchanged in place of a text based message. 

249 million 

active users as 

of November 

2015, Statista 

(2015: Online) 

World of 

Warcraft 

Desktop, 

Mobile 

World of Warcraft is one of the most successful video game 

of its genre; massive multiplayer online role-playing game 

(MMORPG). At the height of its popularity in 2010 it 

boasted 12 million active subscribers, Statista (2015: 

Online) and has held several world records based on 

subscriber and revenue statistics. Once users purchase the 

game and set up an account they are able to communicate 

through direct, area, group, guild and raid chat channels. In 

2011 Blizzard released a mobile application so that players 

could communicate with their friends when not logged into 

the game, us.battlle.net (2015, Online). 

5.5 million 

active 

subscribers, 

(Statista, 2015: 

Online) 

Minecraft Desktop, 

Mobile, 

Minecraft is a sandbox survival game, which saw its first 

release in May 2009. The game has gone on to achieve 

100 million 

registered 



19 
 

Console, 

Web 

record levels of success and popularity amongst gamers of 

all ages, but particularly with younger players, 20.5% of 

players are under fifteen years old, Minecraft-Seeds (2015: 

Online). Players communicate in this game when they 

select the multiplayer option, where they can log onto 

available player hosted servers or choose to create their 

own server. Once logged into a server, players can 

communicate in an area chat channel and send messages 

directly to another player.  

users (Makuch, 

E. 2014: 

Online) 

SMS (Short 

Message 

Service), 

also known 

as text 

messaging 

GSM, Web This technology was conceptualized in the early 1980’s, but 

was not offered to British consumers until 1993 by BT 

Cellnet (now known as O2). This technology is not reliant on 

internet connections and is one of the easiest and most 

effective ways to communicate, Nexmo (2015: Online). It 

boasts a read rate of 90% read rate of messages in minutes, 

which has led to SMS being the medium of choice for 

marketing and alert services. Up to 80% of all mobile 

telephone, users regularly use SMS messaging. In 2005 the 

average texts sent per user each month was 62, by 2014 

that figure has increased to an average of 491 per user per 

month according to the Statistic Brain Research Institute 

(2015: Online). In June 2014, the total number of text 

messages sent was 561,000,000,000. 

In 2014 the 

total number of 

global cellular 

phone 

subscriptions 

was 

6,931,000,000 

(Seth Institute, 

2015: Online) 

Table 1: Example Instant Communication Applications 

There are however, many tools available to parents to help them tailor their child’s access to internet 

sites and content. Popular web browsers, such as Microsoft Internet Explorer and Mozilla Firefox have 

easy to use built in functionality to help parents make choices. There are also applications that run 

inside the browser to provide an added layer of filter and protection. 

Existing Applications for Online Child Protection 

Application Safety Features/Restrictions Real-Time 

Protection 

Automated 

PlayMessenger This application offers all of the same functionality as 

standard communication applications; text, voice, video, 

group and person to person chat. Only users who have 

verified their adult status, by providing proof of all of the 

following; diver license number, social security number or 

No No 

 

 

 



20 
 

credit card information can set up an account and 

subsequently set up their children’s account. Parents can 

then set levels of trust, approve friends, block users, add 

language filters for all of their children. Parents have access 

to everything the child does using this application. (Social, 

2015: Online) 

Net Nanny Provides a suite of parental controls to allow parents to 

govern internet access for their children. Features include; 

internet filter, pornography blocker, time management 

system, profanity filter, social media monitoring, alerts and 

reporting, remote administration and user profile 

management. Parents have access to everything the child 

does using this application. (Net Nanny, 2015, Online). 

No No 

K9 Web 

Protection 

This small application runs inside the web browser and 

filters out unwanted content when activated. This 

application does not prevent any communication from 

websites unless the site is blocked. K9 does not affect any 

applications running outside of the web browser. (K9 Web 

Protection, 2015, Online). 

No No 

Spyrix Free 

Keylogger 

A key-logging application records all key strokes made. This 

tool will allow parents to monitor websites and messages 

sent via applications, but will not see the content of 

received messages. A parent can only go through this 

information after it is sent. Parents have access to 

everything the child does using this application. (Spyrix 

Software, 2015, Online). 

No No 

RooKids This application enables messaging over SSL (Secure Sockets 

Layer). It offers parental controls, a contacts list, time 

management, 24-hour support and a mechanism to report 

abuse of the system. Camera access in disabled in this 

application, and while parents have control of the contact 

list, the child’s actual conversations remain private. 

(Rookids, 2015: Online). 

No No 

Table 2: Existing applications aimed at protecting children 

Other applications that are recommended to parents include tools to monitor a child’s browsing 

habits, so that a parent can capture browsing history in a third party application (e.g. K9 web 

Protection). There are also tools to prevent children from accessing applications or allowing them to 



21 
 

install applications onto the device they are using. Table 2 examines some of the most popular 

software available to parents. 

All of these different tools have the same fundamental drawback, they do not allow for the monitoring 

of interactions between users on the fly, meaning that there is no opportunity to act before the child 

places himself or herself in a position of risk. Key logging software might alert a parent to bad practices, 

but the parent would only be made aware of this after the fact. These applications also compromise 

the child’s privacy, each one of these applications would give the parent the ability to access their 

child’s private conversations.  

Existing software tools could indeed help to find someone who is missing or provide evidence in a 

worst-case scenario. However, in order to provide a more robust and effective solution, we intend to 

utilise artificial intelligence techniques and integrate various technologies, Intelligent Agents, 

Ontology, Natural Language Processing and Web technologies, in the design and development of The 

SafeChat System.  

1.2 Aims and Objectives 

Based on initial investigations it was concluded that there is a need to check that safety guidelines are 

followed when children chat on-line.  Early iterations of development sought to create an application 

that autonomously ensured that users followed safety measures and that would go on to prevent 

meeting arrangements. 

Further research, into a range of issues, such as internet usage, application development and the sharp 

rise in the number of available applications for online communication led development in a different 

direction. Young people want to use popular applications, and popularity changes, as seen with the 

way Facebook became more popular than Twitter and Snapchat usage is on the rise. WhatsApp and 

Viber also attract a large number of users. Minecraft has become an immensely popular application 

and has communication embedded within the game, as seen in table 1. 

The aim is now to develop a platform independent system, which is able to integrate with any online 

communication scenario, which would contain the built in functionality to block the transmission of 

personal data to other users autonomously and any data that involves the arrangements of meetings 

between users. The system could then report any attempts to transfer safety-compromising data to 

the user’s nominated parent or guardian, as well as warn the user of the dangers involved. 

It is important that any solution also provides transparency for the user; care must be taken to ensure 

that the users experience does not alter noticeably with the introduction of the software. If the 

computing overheads of the system are too great, users may look to bypass any safety measures. 



22 
 

An ideal solution will protect the privacy of the child. It is important that children are free to express 

themselves without fear of repercussions, and application that compromised this may also provoke 

users to try to bypass the system. 

This leads to the following hypothesis: 

“The development of an intelligent multi-agent monitoring system and application 

specific ontology will provide a safer environment for children and vulnerable adults when 

communicating online.” 

In order to test this hypothesis, a range of technologies have been investigated. One part of the 

overarching SafeChat system will be a multi-agent system, which will need to demonstrate effective 

information blocking and threat level maintenance. An ontology will be produced to demonstrate 

provision of intelligence for use in decision making within the SafeChat system. The ontology should 

be imported into an environment where its rules, relationships and functionality can be interrogated 

using Simple Protocol and Resource Description Framework (RDF) Query Language (SPARQL). Finally, 

a simple chat server and client system will be developed to demonstrate that the multi agent system 

can be embedded and triggered for use when needed. 

A range of test scenarios will be needed to ensure that the various parts of the system act as intended 

when faced with different input.  Test conversations will be considered to help streamline the ontology 

and provide clarity on expected results.  

1.3 Methodology and Implementation 

Guba and Lincoln (2005) recommend that researchers select research methods that are appropriate 

to meet the aims and objectives of the work being carried out. A single method can be used if the 

research question is specific and highly focused (Holmbeck et al, 2002), but other avenues of research 

and the identification of varied approaches can be lost if a mixed method approach is not adopted. 

Mixed methodology approaches however, are not without limitation; they can be more time intensive 

and do rely on the researcher’s skills when capturing, collating and analysing data (Belk, 2007). The 

nature of this work lends itself to a mixed method approach, because whilst numerical data can give 

a value to some of the issues raised, it cannot articulate the effect on the subject.  In light of this, 

quantitive and qualitative data has been sought using primary and secondary sources. 

In order to identify literature that is recent and relevant, specific search terms were employed for 

internet and journal searches. Where appropriate, the literature collated in this work has been 

published with the last ten years, however where applicable to the technological background, and 

where advances have been developed, it has been necessary at times to exceed this time frame. 



23 
 

Interviews were sought with representatives from government departments dealing with Online 

Safety, the Child Exploitation and Online Protection Centre (CEOP), and from a range of application 

providers (Facebook, Microsoft and WhatsApp) to try to gain insight into the scope of their response 

to the issues raised in this thesis, but no positive responses were received within the timeline of this 

research. 

Observational research can show how people behave in certain settings, but for this research it was 

felt that the fact that subjects know that they are being observed would cause them to behave 

differently, and thus skew any data gathered.  

The SafeChat system has been developed using a range of software and techniques. The Java runtime 

environment has been used, as it provides platform independence as well as compatibility with the 

JADE agent development framework. 

The multi agent system part of the presented solution uses the Java Agent Development framework 

(JADE) developed by Telecom Italia to offer a simplified environment for the implementation of agent 

and multi-agent systems. The SafeChat multi-agent system has been programmed using the NetBeans 

integrated development environment (IDE). The simple chat system has also been developed using 

NetBeans. 

To facilitate testing, a messaging application was developed in Java, which utilised a user registration 

system that used a MySQL database housed on an apache server, accessed, and administered via 

PhPMyAdmin all running locally using XXAMP. 

The meeting ontology has been developed using Protégé, a free, open source ontology editor, which 

was created at Stanford University and can be used as a framework for building intelligent systems.  

A Fuseki Server running in Apache Jena has been implemented in order to execute SPARQL queries on 

the meeting ontology to test its functionality and refine the dataset, defined relationships and 

attributes. 

1.4 Research Contribution 

In this research the main contribution presented through this thesis is: 

Development of a novel system to monitor adherence to guidelines set out by the 

government to protect personal information and prevent children and vulnerable adults 

from making meeting arrangements autonomously. This novel system will be designed to 

provide or consider the following requirements: 



24 
 

 The system will be required to adapt to any other application (e.g. Facebook, Skype, 

etc.) or platform. This will ensure that this solution is available across the range of 

popular applications and connectivity devices available now and in the future. 

 As much as possible, the system should be transparent to the user, system overheads 

need to be managed so that the user experience is not compromised.  

  This system will protect the privacy of the child and monitor the threat level of 

discourse autonomously, and will not share the details of that discourse with anyone. 

 The system will be designed in such a way that it can be easily adapted to respond to 

other threats, such as cyberbullying or radicalisation. 

This research has been reviewed and published in the following papers, conference presentations 
and poster presentations:  

 MacFarlane, Katrinna and Holmes, Violeta (2016) Multi-Agent System for Safeguarding 

Children Online - SAI Intelligent Systems Conference, September 20-22, 2016, London, UK, 

Publication pending  

 MacFarlane, Katrinna and Holmes, Violeta (2009) Agent-Mediated Information Exchange: 

Child Safety Online. In: 2009 International Conference on Management and Service Science. 

IEEE, pp. 1-5  

 MacFarlane, Katrinna and Holmes, Violeta (2008) Agent Mediated Information Exchange -In 

IMSI Conference Pisa, Italy  

 MacFarlane, Katrinna (2009) Agent Mediated Information Exchange: (Poster) In: University of 

Huddersfield Research Festival, 23rd March - 2nd April 2009, University of Huddersfield. 

 MacFarlane, Katrinna (2009) Agent Mediated Information Exchange (Poster) British Computer 

Society, Hopper Colloquium. 

 

1.5 Organisation of Thesis 

This thesis in divided into six chapters. Each chapter starts with a brief introduction, which articulates 

how the work presented in that section fits with the overarching structure of the research, and ends 

with a summary of the ideas, concepts and research presented.  

Chapter 1: presents the fundamental problem addressed by this research. It contains an introduction 

and a discussion on the issues presented. Specific cases, existing solutions and the scope of the 

problem will be examined. This section will begin to look at the technologies, which will be employed 

in the development of the proposed solution as well as enter a brief discussion on how they will be 

used. 



25 
 

Chapter 2: presents the background research and a review of current literature. It articulates an 

analysis of previous studies and uses of technologies and techniques as they apply to similar problems. 

This chapter focuses on five areas of review; factors contributing to the motivation of study, artificial 

intelligence, agent technology, ontology development and natural language processing. 

Chapter 3: This chapter discusses the methodology employed to create the component parts required 

to provide an overarching SafeChat system solution. It goes on to look at the development of the 

software parts of the system, such as the multi-agent system and the simple instant messaging system. 

This chapter will also discuss the methodology applied to developing the SafeChat Meeting Ontology. 

Chapter 4: covers the implementation of the SafeChat system components. It articulates the 

implementation of the multi-agent system, the messaging application and the workings of the meeting 

ontology.  This chapter also examines the implementation and refinement of the agent decision-

making process.  

Chapter 5: discusses the results presented by the component parts of the SafeChat system and is 

made up of three parts, the first presents the results of testing the multi-agent system, the second 

part examines the results of the chat application, and the third discusses the results of querying the 

ontology.  

Chapter 6: is the final part of the thesis. It presents the conclusions as they apply to the research and 

development undertaken in the completion of the thesis, and associated work. This chapter will also 

discuss directions for future research or development of the work presented. 

Appendices are at the end of the thesis. Appendix item A is a sample of ontology exported files. 

Appendix item B is a detailed breakdown of the responses to the survey discussed in chapter 1. Item 

C presents a selection of project plans associated with this research, and finally appendix item D 

presents a testing plan and results associated with the threat level agent component of the SafeChat 

multi-agent system. 

  



26 
 

Chapter 2: Literature Review 

2.1 Introduction 

This chapter is a critical and analytical review of relevant literature, which has been identified using 

specific search terms across a range of platforms. Although the search was global and included 

international works, only materials presented in English language were accepted. The literature will 

provide a background to the research process carried out across five main areas to identify the 

theoretical and factual background knowledge essential to the success of the SafeChat project. These 

areas are; motivation of study, artificial intelligence, agent technologies, ontology development and 

natural language processing. 

A review of current literature across these specific areas will provide insight into what, if anything, has 

been done to address the issue already. It will also provide knowledge about what should be avoided 

in providing the proposed solution. 

2.2 Motivation of Study 

This project exists to provide children, young adults and vulnerable adults protection from placing 

themselves in danger and from those who would deliberately set out to do them harm. In order to 

fully explore the scope of this problem, there is a need to discuss aspects such as the levels and types 

of recorded crime, ways in which this population group uses the Internet, identify factors that 

contribute to users placing themselves at risk, how various stakeholder bodies are attempting to 

address safety issues and why an autonomous solution is needed to protect the privacy of the user.   

Stakeholder Response 

At a recent event in the United Arab Emirates, Baroness Shields, the Minister for Internet Safety and 

Security said; 

“We are living in a remarkable time in which the intersection of technology and humanity 

is enriching people’s lives and changing the ways we interact with each other. Technology 

offers endless benefits and possibilities to our children that we, as parents, never 

experienced. But as a result, childhood is being transformed beyond recognition.  

Technology empowers the curious, the creative, and the compassionate but equally, it 

empowers the criminal, the corrupt, and the coercive.” 

 (Shields, B.J., 2015: Online) 

The British Government formed the Child Exploitation and Online Protection Centre (CEOP) in April 

2006 to respond to the growing issue of national and international threats to children from online 



27 
 

activities including, but not limited to; production and distribution of child abuse material, grooming 

and trafficking of children. CEOP has since been absorbed into the National Crime Agency and is now 

known as the Child Exploitation and Online Protection Command. 

Writing in the CEOP Annual Review 2012- 2013, Rt. Hon. Theresa May, then Home Secretary stated 

that the centre works closely with a range of partners to protect children, including Microsoft, Visa 

and charities, such as the National Society for the Prevention of Cruelty to Children (NSPCC). 

Recently the children’s charity UNICEF published the updated articles contained in the United Nations 

convention on the Rights of the Child (2015: Online), which stipulates over forty different facets of 

protection for governments to work with adults to ensure the safety of the child. This project could 

contribute to some of those articles in providing a measure of safety for children; these are set out 

below in table 3. 

 United Nations Convention on the Rights of the Child 

Article Article Aim Research Contribution 

11: Kidnapping 

and trafficking 

This article states that governments must 

do everything possible to prevent children 

being removed from their country and 

ensure that children are allowed to return 

to their place of origin. 

The solution presented seeks to prevent 

children from making meeting 

arrangements with strangers in an 

online environment. This will negate the 

opportunity for predators to target 

children for kidnap or trafficking. 

13: Freedom of 

expression 

Children should be free to express their 

thoughts and feelings, and to seek 

information as long as it is lawful. 

This research seeks to offer a fully 

automated solution to preventing 

children from placing themselves at risk, 

which is intended to negate the need for 

a human to read a child's private 

conversations. 

15: Freedom of 

association 

Every child has the right to meet with other 

children and join with groups or 

organisations as long as this does not 

prevent others pursuing their rights. 

This software will allow children to 

communicate freely and without fear of 

monitoring with other children and their 

friends. The only thing a child will be 

unable to do is communicate personal 

details or arrange meetings. 

16: Right to 

privacy 

This article says that every child has the 

right to a private personal, family and home 

life. 

Once integrated, this software provides 

a deliberately autonomous solution in 

order to protect the privacy of the child. 



28 
 

17: Access to 

information 

from mass 

media 

Although this article recognises a child’s 

right to access reliable information from 

mass media, it goes on to stipulate that it 

should be in a form the child understands 

and places responsibility on the government 

to protect children from materials that 

could cause harm. 

If parents or guardians feel that a child is 

safer online, they will be more open to 

allowing children the freedom to explore 

mass media for general information and 

education purposes. 

19: Protection 

from all forms 

of violence 

This article entrusts the government with 

the responsibility of protecting children 

from all forms of violence, bad treatment, 

abuse or neglect from their parents or 

guardians.   

The solution presented will help protect 

children in an online environment 

autonomously, preventing children from 

being at risk of danger whilst also 

protecting their privacy. 

34: Sexual 

exploitation 

In this article the government is charged 

with ensuring that children are not exposed 

to sexual abuse or exploitation 

The solution presented seeks to prevent 

children from making meeting 

arrangements with strangers in an 

online environment. This will negate the 

opportunity for predators to target 

children for sexual or other exploitation. 

35: Abduction This article places responsibility on the 

government to protect children from being 

abducted or sold. 

The solution presented seeks to prevent 

children from making meeting 

arrangements with strangers in an 

online environment. This will negate the 

opportunity for predators to target 

children for abduction. 

Table 3: Research Contribution to articles listed in the United Nations Convention on the Rights of the Child 

Types of Recorded Crime 

Online grooming refers to the use of digital technology to prey on minors in order to facilitate online 

or offline sexual contact (NSPCC, 2016: Online). The Cambridge Online Dictionary defines online 

grooming as “the criminal activity of becoming friends with a child, especially over the internet, in 

order to try to persuade the child to have a sexual relationship” (2015: Online). Offline grooming 

situations can happen in places like parks, parties, schools and shopping centres. Online grooming can 

take place in situations including, online games, social networking sites, chat rooms and 

communication applications.  All of these scenarios offer opportunities for groomers to befriend 

children. 

Sexual Grooming Offences – England and Wales 2004-2013 



29 
 

Year 2004/5 2005/6 2006/7 2007/8 2008/9 2009/10 2010/11 2011/12 2012/13 

Recorded 

Offences 
186 237 322 274 313 393 309 371 373 

Table 4: Home Office crime statistics on sexual grooming 

Table 4 shows the total number of grooming offences recorded over a nine-year period. In the 2011/12 

period, 371 offences were recorded, but according to the Ministry of Justice, only 70 offenders were 

sentenced for meeting a child following sexual grooming in 2012, as seen in table 5. 

Prosecutions and Convictions for Sexual Grooming Offences 

Offence Outcome 2009 2010 2011 2012 

Meeting a girl under the age of 16 

following sexual grooming (Offender over 

18) 

Charged 33 47 49 59 

Convicted 40 60 51 63 

Sentenced 41 62 48 62 

Meeting a boy under the age of 16 

following sexual grooming (Offender over 

18) 

Charged 6 8 11 6 

Convicted 9 9 6 8 

Sentenced 9 9 6 8 

Table 5: Ministry of Justice statistics on convictions of sexual grooming 

Children on the Internet 

The internet, along with mobile technology, has changed the way we all communicate. Young people 

can now connect and communicate directly from their computer or mobile device. Many studies have 

examined how children interact with strangers online and some of those findings are set out below in 

table 6. 

Young people corresponding and meeting with strangers online and offline 

Source 

Reference /Time 

Period Sample Size 

Age 

Group 

% of total 

respondents 

who talked 

to a stranger 

online 

% of total 

respondents 

who had 

made offline 

contact 

UK Children Go 

Online (Livingstone 

and Bobber, 2005) 

‘Ever’ done in 

lifetime. 

Conducted 

January – March 

2004 

1,257 (UK children 

who used internet at 

least once a week) 

Random location 

sampling 

9-19 

years 

30% 

 

(377 

individuals) 

8% 

 

(101 

individuals) 



30 
 

EU Kids Online, 

European Sample 

(Livingstone et al. 

2011) 

‘Ever’ done in 

lifetime. 

Conducted May – 

June 2010 

25,142 internet-using 

children across 25 EU 

countries. Random 

stratified sample  

9-16 

years 

30% 

 

(7,543 

individuals) 

9% 

 

(2,263 

individuals) 

EU Kids Online, UK 

Sample (Livingstone 

et al. 2010) 

‘Ever’ done in 

lifetime. 

Conducted May – 

June 2010 

1,032 internet using 

UK children. Random 

stratified sample 

9-16 

years 

29% 

 

(299 

individuals) 

4% 

 

(41 

individuals) 

Harnessing 

Technology:  The 

learner and their 

context (Enyon, 

2009) 

‘Ever’ done in 

lifetime. 

Conducted 

December 2008 – 

February 2009 

941 internet using 

UK children. Random 

sample. 

8, 12, 

14, 17 

- 19 

years 

27% 

 

(254 

individuals) 

7.6% 

 

(71 

individuals) 

Bridging the digital 

divide (Bryce, 2008) 

‘Ever’ done in 

lifetime. 

 

650 children in North 

West of England. 

Non-random sample 

8-18 

years 

62% 

(403 

individuals) 

24% 

(156 

individuals) 

Agent-Mediated 

Information 

Exchange 

(MacFarlane and 

Holmes, 2009) 

‘Ever’ done in 

lifetime. 

 

January – March 

2007 

437 children in 

Lancashire, UK. 

 

Non-random sample 

11- 13 

years 

24% 

 

(105 

individuals) 

8.5% 

 

(37 

individuals) 

Table 6: Research into young people’s online interactions with strangers 

In a report for the European Commission on Grooming, Webster et al (2012) identify three categories 

of grooming victims; 

 Vulnerable individuals – these young people seek affection or ‘love’ online and are 

responsive to approaches that are articulated in this way. These individuals tend to 

suffer from low self-esteem and are particularly vulnerable given that they are 

unlikely to discuss their relationships with anyone. It is difficult to act on this type of 

risk because often the victim feels that they have a genuine relationship with the 

groomer.  

 Risk takers – these young people seek adventure and are over confident about their 

ability to handle risk. They often engage in multiple risk activities, deliberately seeking 

out older unknown people online and exposing themselves to risk of blackmail by 

exchanging or looking at pornographic images. Whittle et al (2013) discuss the fact 



31 
 

that development in adolescents is often typified by impulsive and risk taking 

behaviour. 

 Resilient individuals – these young people are able to identify risk and avoid it. They 

will fend off unwanted contact from strangers and are likely to disclose any issues. 

Child Exploitation and Online Protection Centre (2011: Online) have identified the following factors, 

which can make children more vulnerable to online abuse, when combined with frequent internet 

access: 

 Personal issues; low self-esteem, confusion about their sexuality and loneliness 

 Social isolation; perhaps through problems/dissatisfaction at school with limited 

support from their peer group or family 

 Lack of parental monitoring or involvement in online activities; coupled with factors 

such family problems 

Demographic information around victim characterisation show some clear patterns. In all aspects of 

research into this issue, there are many more reported instances of crime against girls than there are 

against boys. This may be true, but boys are less likely to report offences, so getting true statistics 

form a male victim perspective continues to be problematic. Whittle et al (2013) state that ‘it is likely 

that the sexual abuse of boys online is grossly underreported, primarily due to negative stigma 

discouraging boys from reporting’. 

Teenagers are likely to be more vulnerable to online threats than very young children for a number of 

reasons, these include, but are not limited to (McGuire and Dowling, 2013); 

 Teenagers are more likely to have access to smartphone, computers and other 

devices for their own use 

 Older children are less likely to be supervised online 

 They are more likely to be exposed to a greater range of online communication 

applications across multiple platforms 

 Young people aged 12 and over are a likely to be curious about relationships and 

their own developing sexuality 

Privacy and Transparency 

Kemp and Moore (2006) state that ‘Privacy is a difficult notion to define. Part of the problem is that 

privacy has been used to denote a wide number of interests including, personal information…’ 



32 
 

There is compelling evidence (Kemp and Moore, 2007; Mathiesen, 2013; Shmueli and Blecher-Prigat, 

2011) that young people need privacy in order to develop and mature so even if parents were able to 

monitor every interaction this would also be damaging for the child. This then dictates a need for any 

protective measures implemented to preserve the autonomy and privacy of the individual wherever 

possible. 

As shown previously most applications developed to ensure safety for children in online environments 

involve the need for parents to monitor closely online habits and interactions. Not only is this an 

invasion for the child, but time intensive for the parent, who would more than likely be uncomfortable 

intruding on their child’s autonomy. 

It is therefore safe to presume that children who value their privacy would avoid using software that 

provided functionality to monitor them. In a study of this issue Mathiesen (2013), 63% of young people 

between the ages of 12 and 19 reported that they had actively taken steps to protect the privacy of 

their online interactions from their parents. Mathiesen goes on to say that ‘the argument here is not 

that children have an absolute right to privacy in their informal exchanges, but that failing to respect 

their online privacy is a serious matter and should not be done lightly, or as a general policy’. 

Young people will prefer to use the same software as their peers and this will include the more popular 

applications (Bothun, 2014). This leads to the conclusion that any successful solution needs to be 

developed in such a way that it can be applied to a range of applications, and that it should be 

transparent to the user, meaning it should be invisible and not interfere with the application’s 

functionality. 

2.3 Artificial Intelligence 

Artificially intelligent machines can be seen as the Holy Grail for computer scientists and related 

researchers. In his book, On Intelligence (2004), Jeff Hawkins says; 

“For half a century we’ve been bringing the full force of our species’ considerable 

cleverness to trying to program intelligence into computers. In the process we’ve come up 

with word processors, databases, video games, the Internet, mobile phones and 

convincing computer animated dinosaurs. But intelligent machines still aren’t anywhere 

in the picture.” 



33 
 

Definition of artificial intelligence 

The Oxford English dictionary defines artificial intelligence as “The theory and development of 

computer systems able to perform tasks normally requiring human intelligence, such as visual 

perception, speech recognition, decision-making, and translation between languages.” (2015: Online) 

In their book Artificial Intelligence: A Modern Approach (2014), Russell and Norvig state that there are 

four categories of artificial intelligence and attribute each category with two definitions, as seen in 

table 7. 

 

Definitions of Artificial Intelligence 

Thinking Humanly 

 

“The exiting new effort to make computers 

think…machines with minds, in the full and literal 

sense.” (Hagueland, 1985) 

 

“[The automation of] activities that we associate 

with human thinking, actions such as decision-

making, problem solving, learning…” (Bellman, 

1978) 

Thinking Rationally 

 

“The study of mental faculties through the use of 

computational models” (Charniak and McDermott, 

1985) 

 

“The study of computations that make it possible to 

perceive, reason and act.” (Winston, 1992) 

Acting Humanly 

 

“The art of creating machines that perform functions 

that require intelligence when performed by people.” 

(Kurzweil, 1990) 

 

“The study of how to make computer do things at 

which, at the moment, people are better.” (Rich and 

Knight, 1991) 

  

Acting Rationally 

 

“Computational Intelligence is the study of the design 

of intelligent agents.” (Poole et al. 1985) 

 

“AI ….is concerned with intelligent behaviour in 

artifacts” (Nilsson, 1998) 

Table 7: Russell and Norvig’s definitions of Artificial Intelligence (2014, p.2) 

The actual term ‘Artificial Intelligence’ is attributed to John McCarthy, who defined it in 1956 as “the 

science and engineering of making intelligent machines”. 



34 
 

The foundations of artificial intelligence 

Artificial intelligence draws on several other significant fields of study, all of which contribute 

concepts, perspectives and techniques, which can be considered when applying intelligence to 

machines or software systems. 

 Philosophy –this discipline has long considered questions related to intelligence and 

how the mind works, which has in turn, has led to attempts to replicate this process 

in machines. Noted leaders in this field have contributed to the development of 

artificial intelligence in many ways. Aristotle (384-322 B.C.) created a set of laws, 

which he proposed, directed the rational part of the mind. His informal system of 

syllogisms (which means a kind of logical argument that applies deductive reasoning 

to help arrive at a conclusion based on at least two prepositions which are asserted 

or assumed to be true) for logical reasoning, which would theoretically, allow for 

mechanically generated conclusions to be drawn. Leonardo da Vinci (1452-1519) 

proposed a design for a mechanical calculator, which when constructed has been 

found to be functional. 

 Psychology – It is perhaps, cognitive psychology that contributes most to the field of 

artificial intelligence. In this discipline, the brain is viewed as a processing device for 

information. Working with Frederick Bartlett at the Applied Psychology Unit in 

Cambridge, Kenneth Craik first specified the key properties needed by a knowledge 

based agent in 1943. Developments of his work led Donald Broadbent to produce 

Perception and Communication in 1958, which modelled psychological occurrences 

as information processing. This linked to ongoing work in the field of cognitive science 

that was emerging around the same time.  Contributions from Noam Chomsky (1956) 

(Three Models of Language), Newell and Simon (1956) (The Logic Theory Machine) 

and George Miller (1956) (The Magic Number Seven) presented three papers which 

theorised that computer models could be used to replicate the psychology of logical 

thinking, memory and language. 

 Mathematics – There are three areas, which contribute most to AI, these are logic, 

probability and computation.  

o In terms of logic, the work of George Boole (1815-164) that started the thinking 

around propositional or Boolean logic. This was then extended to include 

objects and relations by Gottlob Frege (1848-1925) and this created first order 

logic.  



35 
 

o This led to the development of algorithms for computing results based on first 

order logic. Alan Turing (1912-1954) attempted to characterise what 

mathematical functions were computable in order to clarify which could be 

solved using a computer.  

o Probability provides an invaluable mathematical contribution to the study of 

artificial intelligence. Probability was first discussed in terms of gambling as a 

way to predict payoffs and has quickly become invaluable in dealing with 

uncertain or incomplete circumstance. Thomas Bayes (1702-1761) proposed a 

rule to update probability when presented with new evidence, Bayes rule 

contributes to modern AI solutions to uncertain reasoning environments.    

 Economics – In 1776, a Scottish philosopher, Adam Smith became the first person to 

treat economics as a science with the publication of An Enquiry onto the Nature and 

Causes of the Wealth of Nations.  Economics is in essence, the study of how decisions 

are made that lead to preferable outcomes. In mathematics, the treatment of 

preferred outcomes was developed by Leon Walras (1834-1910), improved by Frank 

Ramsey in 1931 and further enhanced by Jon von Neumann and Oscar Morgenstern 

in The Theory of Games and Economic Behaviour (1944). Preferred outcome is now 

more often referred to as utility. When combined, probability theory and utility 

theory give us decision theory. Decision theory provides a structure by which 

decisions can be applied to uncertain environments.  

 Computer Engineering – In order for artificial intelligence to become a reality, it 

needs a platform to work on. The platform of choice is the computer. The first 

working computer was the one built in 1940 by Alan Turing and his team to decipher 

German wartime transmissions. In 1943, the team built the Colossus, which was the 

first multi-purpose computer. There have since been massive advances in the 

technology, speed and storage in computer systems. Future increases to 

performance rely on parallelism rather than faster clock speeds, which is why there 

are more processing cores in modern machines.  

 Linguistics – In terms of artificial intelligence, the study of linguistics relates to 

computational linguistics or natural language processing and is considerably more 

complex than early studies suggested (Russell and Norvig 2014). For a computer to 

understand language it has to have some knowledge of the subject matter and 

context, rather than just the syntax. 



36 
 

Current developments 

IBM developed the Deep Blue supercomputer, which was the first computer to beat a grand master 

chess champion in 1996, when it won a game against then world champion Gary Kasparov, before 

being beaten in the match 4 to 2.  In light of this, Deep Blue was upgraded, and went on to win a match 

against Kasparov in May 1997, before IBM decided to retire the Deep Blue project.  

Since then IBM have gone on to develop Watson, the supercomputer that attempts to answer 

questions posed using natural language. In order to achieve this, the computer needs to draw on a 

number of areas of artificial intelligence and computer science. These include; natural language 

processing, information retrieval, distributed computing, parallel performance techniques and 

machine learning (Wagle, 2013). 

According to IBM, Watson can run at up to 80 petaflops. It does this by using 2,880 power 7 processors 

running at 3.55Ghz., it has access to 16 terabytes of random access memory (RAM) and a further 4 

terabytes of clustered on disk space. All of these resources are distributed across 90 IBM Power 750 

servers, which are connected by a 10 GB Ethernet network (IBM, 2016: Online).  

Utilising this processing and storage power enabled Watson to win Jeopardy, the US game show, 

where the statements are posed in the form of answers and contestants have to respond in the form 

of the correct question. The contestant who comes up with the correct question first wins the round.  

IBM state (2016: Online) that IBM Watson learns a new subject by having all related materials loaded 

into its memory, things like word documents, PDF files and web pages. Then question and answer 

pairing are created to help train IBM Watson on the new subject, and then any new information on 

that subject is automatically added to IBM Watsons ‘memory’ as it is published. To answer a question, 

IBM Watson searches all of the related documentation to find all possible answers, it then applies a 

scoring algorithm to rate the quality of the presented evidence and then ranks all of the possible 

answers based on its score. 

Although IBM Watson did very well in some subject areas on Jeopardy, the computer did not have it 

all its own way because its human adversaries were able to steal in with some correct answers 

(Endgadget, 2011: Online). It was clear when watching IBM Watson operate, that if the computer had 

access to the information, it would be able to select the answer quickly and more often than not, do 

so faster than its human counterpart. However, in areas where the computer did not have the 

information, like any human in this position, it was not able to answer.  

This is due, in part, to the decision to load all stored data into RAM memory, in order to achieve a 

speedy answer and provide a fairer platform for its human adversaries, “Watson is not connected to 



37 
 

the Internet or any outside source of information” (IBM, 2016: Online). If Watson had to scan disk 

drives full of information, it would take longer to come up with all possible answers and therefore 

response times would be affected.  

This problem could be addressed by allowing IBM Watson to have access to the internet.  The increase 

in time to ascertain the most likely correct answer, due to the overheads and wait times involved in 

searching the vast amounts of data contained across the internet would influence Watson’s 

performance.  The quest for intelligent and improved response, measured in time and quality of result, 

make smarter internet search engines are another significant development area in artificial 

intelligence (Technologies 2016: Online). 

In 2001, Tim Berners-Lee, the man largely known for helping with the creation of what we now call 

the World Wide Web, published an article in the May edition of the Scientific American journal. The 

article, co-authored by James Hendler and Ora Lassila, discussed the evolution of the web. They 

theorised that much of the data stored on the internet would benefit from added structure, which 

would better define the meaning of data so that a machine could more easily interpret data through 

a series of defined relationships and descriptors that would add context to data, helping the machine 

to respond to human requests. The article says, “For the semantic web to function, computers must 

have access to structured collections of information and sets of inference rules that they can use to 

conduct automated reasoning.” (Berners-Lee, et al. 2001). 

 

Figure 6: Semantic web search engine - Kngine 

Since the release of the article, although nowhere near as quickly as Berners-Lee would have 

envisioned, the semantic web has been developing. The paper discussed how web agents and 

ontologies could work together using eXtesible Mark-up Language (XML) and Resource Description 

Framework (RDF) to add description data and define relationships in data that could be understood 



38 
 

by machines. These technologies have been used to create semantic search engines like Kngine, which 

will respond to a query posed in natural language and aspires to be a “Web 3.0 Search Engine designed 

to provide customized meaningful search results” (Lur, 2015: Online). Advances to popular search 

engines like Google also include semantic technologies, if we compare the same search in the two 

search engines we get similar results, as seen in figure 7, Google Search returns much more 

information, than Kngine (figure 6). This difference should be expected, Google is a global brand with 

almost unlimited resources, and Google have secured several patents related to semantic searching. 

Google patents include; assigning terms of interest to an entity, interactive query completion 

templates, knowledge graph based search system and identification of search units from within a 

search query, to name just a few (Bhattacharya, 2015: Online).  

As the work into developing a computers understanding of natural language and the meaning and 

structure of stored data has progressed, the way humans interact with technology has evolved. Where 

once it was thought to be the norm to type away at a keyboard when using a computer, now users 

interact through the mediums of video and voice. Microsoft has the following aim “Cortana aims to 

serve the mobile world and smart devices that will have no keyboards, mice, or even screens” 

(Gallagher, 2015), for its embedded personal assistant software. 

 

Figure 7: Google search results 

Advancements in the development of touch screens mean that we are now able to manipulate 

software with ease. Human interactions are more immersive and varied than they once were, and 

intelligent systems, if they are to be successful, will have to consider these changes. This is articulated 



39 
 

well by James and Sebe (2007) when they said, “The wide range of computing devices available, with 

differing computational power and input/output capabilities, means that the future of computing is 

likely to include novel ways of interaction”. 

Speech or voice recognition is a development area within the computational linguistics section of the 

artificial intelligence field of study that does consider this interaction.  According to Dictionary.com 

(Dictionary [a], 2016: Online), speech recognition is defined as;  

“The computerized analysis of spoken words in order to identify the speaker, as in security 

systems, or to respond to voiced commands: the analysis is performed by finding patterns 

in the spectrum of the incoming sound and comparing them with stored patterns of 

elements of sound, as phones, or of complete words” 

Uses of this technology have traditionally been for security applications or for applications like Dragon 

Naturally Speaking, which lets users dictate speech into the computer to save time having to re-type. 

Other common uses included built in accessibility options in operating systems such as Microsoft 

Windows, who provide speech recognition as part of a suite of options and tools to “make it easier to 

see, hear, and use your computer including ways to personalize your PC” (Microsoft, 2016: Online). 

More recently, this technology has been embedded into applications, mobile devices and operating 

systems in the form of a virtual assistant.   

These virtual assistants are designed to provide a single multi-faceted interface to a host of 

applications and services, using both text and more commonly, audio input. There are several 

available across a range of platforms, but perhaps the most notable being Apple’s Siri and Google’s 

Google Now, which have been developed to work on mobile device platforms. Another example is 

Microsoft’s Cortana, which works on mobile platforms, and is embedded into the latest iteration of 

Microsoft’s operating system, Windows 10 (Warren, 2015: Online). 

These applications attempt to receive sound in the form of natural speech, translate this into 

instructions that the machine or applications understand, and then process the request into what it 

thinks is the desired outcome. This could involve looking up a phone number, searching for a web page 

or finding the nearest supermarket. They are most effective when they are linked to complex natural 

language processing (NLP) systems and the semantic web services used by more sophisticated search 

engines. Automated personal assistants are attempting to compute what is said by the user, what that 

actually means, and therefore what the user wants to happen consequently (Woodford, 2015: Online). 

These applications are an example tools that utilise several different artificial intelligence  



40 
 

Ethical Considerations  

Recently, there have been a flurry of news articles (Aguirre et al., 2015: Online; Zolfagharifard, 2016: 

Online), online discussions and debate around the dangers of artificial intelligence and intelligent 

machines. Some the world’s leading thinkers, such as Stephen Hawking, Elon Musk, Mark Zuckerberg 

and Stuart Russell, have raised concerns over the direction of some intelligent systems, whilst 

indicating support for the growing insistence that these technologies are used to improve society and 

for the betterment of mankind, Future of Life Institute (2015: Online).  

Many people accept that there are many ways intelligent systems and machines can help society, but 

there are applications that give cause for concern. Many worry that robots will take jobs away from 

people, and that this will increase wealth divide. Stephen Hawking indicated that this concern has 

merit in an online question and answer session when he responded; 

“If machines produce everything we need, the outcome will depend on how things are 

distributed. Everyone can enjoy a life of luxurious leisure if the machine-produced wealth 

is shared, or most people can end up miserably poor if the machine-owners successfully 

lobby against wealth redistribution. So far, the trend seems to be toward the second 

option, with technology driving ever-increasing inequality.” 

Stephen Hawking (2015: Online) 

Martine Rothblatt (Terms, 2016: Online), biotech and satellite entrepreneur, predicted that stored 

personal data could be used to create intelligent digital clones, which could be used, or programmed 

to act autonomously. Christof Koch, chief scientific officer of the Allen Institute for Brain Science, 

warned that although he believed intelligent software could never be conscious, it could still harm us 

if not designed correctly (Senior, 2014: Online).  

There have been numerous protests, some making headline news, around vigorous opposition to 

automated weapon systems. In a report (Watch, 2016: Online) delivered to the United Nations, the 

organisation Human Rights Watch articulated the dangers surrounding the use of such systems and 

offered guidance to limit their impact. The recommendations were to; 

 Prohibit the development, production, and use of fully autonomous weapons through 

an international legally binding instrument. 

 Adopt national laws and policies that prohibit the development, production, and use 

of fully autonomous weapons. 

Human Rights Watch (2015: Online) 



41 
 

The clear consensus (Kablan, 2016: Online; Gray, 2016: Online) is that the focus should be on 

intelligent systems and machines that will help humankind and better society. This is evidenced by the 

fact that the open letter, “Research Priorities for Robust and Beneficial Artificial Intelligence” (Future 

of Life Institute, 2016: Online) invited readers to sign up to an agreement to the priorities set out in 

the letter. The agreement has had 8,600 signatures so far, many of those from leading stakeholders 

in the field of artificial intelligence research and the industries that apply intelligent systems.   As with 

all areas of research, ethical considerations should be carefully considered into all of the possible uses 

of any outputs or system developments. 

2.4 Software Agent Technology 

In the preface to his book, An Introduction to Multi-Agent Systems (2009), Michael Wooldridge says 

that; 

“Multiagent systems are systems composed of multiple interacting computing elements, 

known as agents. Agents are computer systems with two important capabilities. First, 

they are at least to some extent capable of autonomous action – of deciding for 

themselves… Second they are capable of interacting with other agents – not simply by 

exchanging data, but by engaging in analogues of the kind of social activity that we all 

engage in every day of our lives…” 

When initial research dictated that decision-making and autonomy were necessary requirements of 

this system, the solution gravitated toward a software agent or multi-agent based development.  

Software agents lend themselves well to complex problems where decision-making needs to be 

performed on an ad hoc basis without the direct involvement of the user or system (Russell and 

Norvig, 2014; Wooldridge, 2009; Macfarlane and Holmes, 2009). This ability to function autonomously 

is precisely what is needed in the SafeChat system. 

Software Agent Definition 

Google defines an agent as: 

“a person who acts on behalf of another, in particular: 

synonyms: representative, negotiator, business manager, emissary, envoy, factor, 

go-between, proxy, surrogate, trustee, liaison, broker, delegate, spokesperson, 

spokesman, spokeswoman, frontman, mouthpiece;”  

(Google [c], 2016: Online) 



42 
 

Google is clearly talking about a person in this instance, but most of the definition would still apply to 

a software agent. After all, the software agent is specifically designed to act on behalf of the system 

or the user, it represents them, and if designed properly, will act on their behalf to accomplish 

something.  

Russell and Norvig classify a software agent as “anything that can be viewed as perceiving its 

environment through sensors and acting upon that environment through actuators” (Russell and 

Norvig, 2014 p. 35).  Whilst Michael Wooldridge says, “An agent is a computer system that is situated 

in some environment, and that is capable of autonomous action in this environment in order to meet 

its delegated objectives” (Wooldridge, 2009, p. 21). 

Both of these definitions about a software agent are correct, but Wooldridge defines an agent more 

thoroughly for the purposes of the work presented in this thesis. 

Software Agent Characteristics and Types 

In 1995, the Knowledge Engineering Review published an article by Michael Wooldridge and Nicholas 

Jennings titled “Intelligent agents: theory and practice”. In this article, they discuss notions of agency 

and apply characteristics in terms of weak and strong agents that are used to help distinguish agent 

types today, as seen in table 8. 

Software Agent Characteristics 

Weak notions of agency Strong notions of agency Other notions of agency 

Autonomy: agents operate 

without the direct intervention of 

humans or others, and have some 

kind of control over their actions 

and internal state; 

Pro-activeness: agents do not 

simply act in response to their 

environment; they are able to 

exhibit goal-directed behaviour by 

taking the initiative. 

Reactivity: agents perceive their 

environment and respond to it in 

timely fashion to changes that 

occur in it. 

In addition to having the 

properties identified as weak 

notions of agency, a strong agent 

is either conceptualised or 

implemented using concepts that 

are applied to human beings. For 

example, it is quite common in 

artificial intelligence to 

characterise an agent using 

mentalistic notions, such as 

knowledge, belief, intention, and 

obligation.  

Mobility: the ability of an agent to 

move around a network 

Veracity: agent will not knowingly 

communicate false information 

Benevolence: agents do not have 

conflicting goals and always try to 

do what is asked of it. 

Rationality: an agent will act in 

order to achieve its goals and will 

not act in such a way as to prevent 

its goals being achieved” 



43 
 

Social Ability: agents interact 

with other agents (and possibly 

humans) via some kind of agent-

communication language. 

Table 8: Wooldridge and Jennings’s notions of agency (Wooldridge and Jennings, 1995)  

 

Agents will be made up of some or all of the characteristics listed, and depending on their function, 

can be categorised into types (Mahmoud, Unknown: Online), as seen in table 9. 

Agent Types 

Type Description 

Rational Agent  This agent will do the right thing – conceptually, e.g. if its job is to fill in a database 

it will be successful if every entry in a table is filled out correctly. 

Reactive Agent  This is also known as a reflex agent and will normally use a production system to 

determine what action to carry out based on current inputs 

 Example: spam mail filter 

 Does not perform well when the environment changes. 

 Does not deal well with unexpected events  

 Is of the form if event then action 

Goal-based Agent  These agents are more complex than reactive agents are. 

 They use search and/or planning techniques  

 No regard to technique or efficiency 

 Example uses:  

 Find pages on the Internet for A.I. 

 Design agent to load Web pages 

 Identify the goal 

 Report results 

Utility-Based 

Agent 

 These agents attempt to achieve some specified goal, usually using search or 

planning methods. 

 An agent, for example, might have the goal of finding interesting web pages. 

 The agent would have various actions it could perform such as fetching web pages 

and examining them 

 This agent will attempt to maximize efficiency 

 

Interface Agent  An interface agent acts as a personal assistant 

 Example: a tool used to help a user learn to use a new software package 



44 
 

 Interface agents observe a user’s behavior and make recommendations accordingly 

Mobile Agent  Mobile agents can move from one location to another  

 This can mean physical locations (for robots) or network locations 

 A computer virus is a kind of mobile agent. Viruses are usually autonomous but not 

intelligent 

 Mobile agents are efficient, but can pose a severe security risk 

 Mobile agents can be combined to produce a distributed computing architecture 

Information 

Agent 

 Also known as internet agents or bots 

 Information agents gather information from the Internet (or other source of data) 

 Can be static or mobile 

 Can be taught by example: “find me more information like this” 

 Information agents need to be sophisticated to deal with the “dirty” nature of 

much of the data on the Internet 

Learning Agent  Agents learn using mechanisms such as neural networks and genetic algorithms 

 Learning enables an agent to solve problems it has not previously faced, and to 

learn from past experience 

 Multi-agent learning can produce much more impressive results 

 Such learning can be centralized or decentralized – agents learn individually or 

contribute to the learning of the whole group 

Robotic Agent  Unlike software agents, robotic agents exist in the real world 

 Robots operate in a stochastic, inaccessible environment, and must also be able to 

deal with large numbers of other agents (such as humans) and other complicating 

factors 

 It is important for robotic agents to deal with change and uncertainty well 

Table 9: Types of software agents (Coppin, 2016: Online) 

Agent Task Environments 

Depending on the system and its function, the environment an agent or agent system will have to 

work in can be categorised into general types (Wooldridge, 2009). Russell and Norvig (2014) articulate 

the following properties for the classification of agent environments; 

Accessible versus inaccessible – In the accessible environment, an agent can monitor every aspect of 

the environment and will always have access to all of the information it needs to be able to assess the 

state of the environment. The inaccessible environment is more like the real world, where it is not 

possible to have all of this information at hand. 



45 
 

Deterministic versus non-deterministic – In a deterministic environment there can be a certainty on 

the effect of a selected action, it will achieve a set outcome. In a non-deterministic environment, the 

effect of an action is unknown.   

Static versus dynamic – In a static environment it can be assumed that it will only change as a result 

of any impact of actions taken by the agent. Only if the agent’s actions influence the environment will 

it change. In a dynamic environment, there are other factors, which could affect change, therefore the 

environment is more fluid and the agent cannot be certain that the environment will stay the same 

regardless of any actions it takes. The real world is a dynamic environment. If the environment itself 

is static and will not change over time, but the agent’s parameters or performance is likely to change, 

this is classified as a semi dynamic environment 

Discrete versus continuous – A discrete environment is one where there are a finite number of actions 

and rules available to the agent. In contrast, a continuous environment will have no such limitations. 

Episodic versus sequential – In the episodic environment the agent works in an atomic fashion, in 

each round of execution the agent will receive a percept and then perform a given action. It is 

important to note that in each round of actions there is no reliance on actions taken in previous 

rounds. In a sequential environment, the current action could have an impact on all future decisions. 

Single agent versus multi-agent – Although the difference between these two environments may 

seem obvious, it is worth noting that even a single agent may have to operate alongside other entities 

that it will have to treat as though they are other agents. This means that a single agent can be working 

in a multi-agent environment. 

Known versus unknown – This distinction refers to the agents (or program designer’s) knowledge or 

perception of the environment. In a known environment, the outcomes for actions taken are 

understood. Conversely, in an unknown environment the outcomes of actions taken will be uncertain. 

Table 10 gives some sample systems or tasks and looks at the environments they would inhabit. From 

a programming and development point of view, the most complex environment to work in would be 

an inaccessible, non-deterministic, dynamic, continuous, unknown and multi-agent environment. 

Environment Examples 

 Accessible Deterministic Static Discrete Episodic Agent(s) 

Crossword Fully Deterministic Static Discrete Sequential Single 

Timed chess game Fully Deterministic Static Discrete Sequential Multi 

Poker Partially Non-deterministic Static Discrete Sequential Multi 

Taxi driving Partially Non-deterministic Dynamic Continuous Sequential Multi 



46 
 

Medical diagnosis Partially Non-deterministic Dynamic Continuous Sequential Single 

Image analysis Fully Deterministic Semi Continuous Episodic Single 

Part picking robot Partially Non-deterministic Dynamic Continuous Episodic Single 

Interactive tutor Partially Non-deterministic Dynamic Discrete Sequential Multi 

Table 10: Examples of task environments 

Agent Architectures 

Agent systems can be developed using different kinds of architectures, these architectures will provide 

the foundational mechanisms needed to support agents to behave appropriately in changing 

environments (Bellifemine et al. 2007).  

Cognitive agent architecture will have some artificial intelligence and decision theory mechanisms to 

allow agents to behave in what is hoped to be a rational manner. Agents in this type of architecture 

with have goals that they need to achieve. The agents could have several states to choose from and 

each state will have a different level of utility, a rational agent will choose the state that yields the 

highest utility. 

First Order Predicate Logic (FOPL) architecture uses a symbolic representation of knowledge, and uses 

inference in the logic deduction and theorem to help decide on a course of action (Russell and Norvig, 

2014). The advantages of using this architecture are that it is simple and elegant in creation and has 

specifications that can be executed. It does however have some drawbacks, including a difficulty in 

representing changes over time, and because the decision making process works on deduction, it can 

take longer than necessary in some cases to reach the goal. 

Beliefs Desires and Intentions (BDI) architecture is based on the theory of rational human actions and 

is arguable the most popular architecture in use (Rao and Georgeff, 1995). Beliefs are what the agent 

knows about the world or environment it lives in, desires are the goals that the agent wants to achieve, 

and intentions are desires that the agent is committed to achieve. BDI performs means end analysis 

and it weighs the competing alternatives in order to achieve the highest utility. Intentions play a critical 

role in BDI as they drive the means end analysis, they are persistent and influence future practical 

reasoning. 

In a reactive agent architecture, an agent has Task Accomplishing Behaviours (TAB), a competence 

module represents each of these TAB’s. Competence modules operate in parallel and are often 

responsible for a clearly defined simplified task. Reactive architecture has a hierarchical approach and 

lower level modules have a higher priority and can block higher-level module operations. Lower level 



47 
 

modules tend to be responsible for basic tasks, while higher-level modules are responsible for 

behaviour that is more complex and incorporate a subset of the tasks of the lower level modules. 

Layered Agent architectures combine reactive and proactive behaviours (Bellifemine et al. 2007, page 

5), they can be layered horizontally and have horizontal I/O flow, or vertically layered with vertical I/O 

flow. This architecture has a control subsystem, which contains a set of control rules. 

Agent Communication 

An agent’s communication language is what provides it with the capability to exchange knowledge 

and information with other agents. A communication language can handle rules, actions and 

propositions and any semantics attached to them. This language describes a desired state in a 

declarative language instead of a procedure or method. This enables agents to have conversations 

rather than just exchange messages. 

The type of messaging agents use in communication languages is known as ‘Speech Acts’, which are 

inspired by speech act theory. In this theory (Witek, 2015), the language used tries to be as close to 

the natural language used by people to achieve goals and desires. We can identify five kinds of speech 

acts; Representatives or Assertives, Directives, Comissives, Expressives and Declaritives. These 

communication languages need to be able to translate syntactically between languages, preserve 

semantic content between applications and be able to communicate complexity. 

 

Figure 8: KQML performative message structure 

Knowledge Query and Manipulation Language (KQML) is a protocol used in the exchange of 

information and knowledge among agents and applications (Finin et al. 1994). The structure of a KQML 

message can be seen in figure 8. A description of the parameters of a KQML message can be seen in 

table 11.  

Parameter Meaning 

: sender Sender of the message 

: receiver Intended recipient of the message 

: language Language in which the message is expressed  



48 
 

: ontology Vocabulary of the “word” in the message 

: content Content of the message 

Table 11: KQML parameters 

Agents who communicate using KQML have a client server relationship and can communicate in either 

a synchronous or an asynchronous manner (Finin et al. 1994). For a synchronous communication, a 

sending agent waits from a reply, whilst in an asynchronous communication, the sending agent 

continues with its reasoning or actions, which would then be interrupted when replies arrive at a later 

point in time. 

Agent Communication Language (ACL) was developed by the Foundation for Intelligent Physical 

Agents (FIPA), as seen in figure 9. It is quite similar to KQML but ACL has only two basic performatives 

inform and request; all other performatives are macro definitions defined in terms of these. The 

inform and request performatives, can be defined in two parts, precondition and rational effect. ACL 

does not provide facilitator services.  

 

Figure 9: FIPA agent communication language message structure 

“FIPA is an IEEE Computer Society standards organisation that promotes agent-based 

technology and the interoperability of its standards with other technologies.” 

(Dale, 2013: Online) 

Agent Negotiation 

Negotiation between the agents in multi-agent systems may involve exchange of information, the 

relaxation of original goals and mutual concession. This negotiation needs to be governed by a 

mechanism or a protocol in order to define the rules of engagement and to set the rules by which 

agents can come to agreements. These protocols, in order to achieve maximum utility, should have 

preferred outcomes, as seen in table 12.  

Negotiation Protocols 

Preferred Outcome Benefit 



49 
 

Guaranteed success By agreeing to this action, the agent will definitely 

achieve its goals 

Individual rationality This is the most sensible course of action for the agent 

Stability This course of action will not compromise the success 

of the system or goals 

Distribution This course of action will delegate the task, or part of 

the task to ensure achievement of goals  

Simplicity This is the easiest/shortest/cheapest/most efficient 

way to achieve the goal 

Maximum social welfare This will achieve the goal with the best possible 

outcome for all parties  

Table 12: Negotiation protocols and their benefits 

Agent Decision Making 

Agent and multi-agent systems provide autonomy by making decisions on behalf of the user 

(Wooldridge, 2009; Das, 2008). These decisions can be dependent on many variables and often involve 

reacting to uncertain events. Das articulates that, “The concept of epistemic states is often used to 

represent an actual or possible cognitive state that drives the human-like behaviour of an agent.” Das 

goes on to propose three common models of epistemic states an agent can inhabit (Das, 2008). These 

are: 

1. A propositional model, where the epistemic state is represented by propositions 

that are accepted by the agent. Propositions, in this case, are expressed in an object 

language using sentences. 

2. A probabilistic model, where the epistemic state is defined by a measure of 

probability, which is derived from a collection of variable values. In this case, the 

measure of probability provides the agent with a degree of belief about the variable 

values contained in the epistemic state. 

3. A possible world model, where the epistemic state is represented by possible 

worlds that includes the world that the agent is in, as well as worlds which are 

compatible with the agents pre-defined beliefs and knowledge. In this epistemic 

state, the worlds are made up of propositions that the agent considers to be true to 

its epistemological worldview. 

Regardless of the agent’s epistemic state, the agent needs to have access to some kind of knowledge 

domain in order to inform any decision making. An agent may not always be able to fully automate 

decision making, this is dependent on the type of system and knowledge domain it has access to. For 



50 
 

example, a medical diagnosis system, may present a range of outcomes which all match patient 

symptoms, from which a human doctor would then make the final decision. 

Utility drives decision making in agent systems, utility in this case is the measurement of payoff or 

success secured by the decision. Wooldridge (2009, p225), compares utility to money, meaning that 

the benefit for the agent making decision can be compared to the amount of money which will be 

earned. He goes on to clarify that it is not that simple in reality. Often the agent is dealing with events 

or situations which are varied and where the outcome is measured against priorities assigned to the 

agent, so success is measured against how much the agent or agent system benefits from the final 

decision.  

For example, we are seeing the introduction of driverless vehicles, which are driven by automated 

systems. These vehicles can plan a route based on what is known about the traffic at a given point in 

time, but if something happens on route, that plan would have to change in order for the desired 

outcome to be achieved. In fact, certain events would make the outcome unachievable (for example, 

a bridge collapsing or an accident blocking a key road in the selected route).  

Regardless of the agent’s epistemic state, decision making often has a degree of uncertainty attached. 

In terms of diagnosis, for medicine, vehicle faults, network errors etc., any decision making will involve 

a degree of uncertainty. When we try to apply propositional logic rules to diagnosis we see how the 

logic breaks down (Russell and Norvig, 2014). Consider the following rule; 

Car won’t start => flat battery 

The problem with this simple rule is that it is not guaranteed to be true, there are several reasons why 

the car may not be starting; no fuel, faulty starter motor etc. Consider the refined rule; 

Flat battery => car won’t start 

This rule is true, if a car has a flat battery, it cannot start. The problem with this rule is that changing 

the battery is not guaranteed to make the car start, there could be other problems with the car that 

would prevent it from starting. At best, the agent can only have a partial belief in these rules, therefore 

a mechanism for dealing for partial belief is needed. Russell and Norvig (2014) assert that the best tool 

for this problem is probability theory. A logical agent treats a rule as being true or false, whereas a 

probabilistic agent applies a numerical value of belief to each rule, 0 meaning the rule is absolutely 

false, or 1 meaning the rule is absolutely true. 

When applied to the general rule, probability theory gives a summary of the uncertainty that emerges 

from a given rule. There is no certainty that replacing the flat battery of the car will make it start. But 



51 
 

using statistical analysis and other experiential information, the conclusion could be drawn that in 80% 

(or 0.8 in probability terms) of cases where a car with a flat battery had a new battery fitted the car 

then started. This gives the agent more information, and this along with other information (for 

example, the car’s fuel status) can be used to evaluate and inform a decision in an uncertain 

environment. If the car battery is flat and the car has no fuel the probability that replacing the battery 

will enable the car to start may be reduced to 0% (0 in probability terms), but we can say that the 

probability of the car needing a new battery before it can start is 100% (1 in probability terms). These 

statements are not contradictory as each articulates a belief which is applied to a different knowledge 

state.  

If we apply this to a more complex problem, like planning to get to an appointment on time using our 

automated vehicle, the vehicle could come up with one plan that would give us a 97% chance of 

getting to our appointment on time, but this plan may not be the rational choice, other plans may give 

higher probabilities of success, but may involve setting off a lot earlier and having to wait at the 

appointment area for a long time. In order to be able to differentiate between these plans the agent 

needs to have knowledge of preferences between the different possible outcomes of a plan. These 

outcomes must be completely specified in order to allow the agent to select the best decision. For our 

example this will involve, arriving on time and not having to wait at the appointment. Utility theory 

can be used to represent and reason with preferences, to enable agents to select a plan which yields 

the highest utility based on user preferences as they apply to a given scenario. 

Probabilities, linked with preferences allocated based on utility give the foundation for decision 

making. As articulated by Russell and Norvig (2014, p491); 

Decision theory => probability theory + utility theory 

This means that a rational agent will decide on an action (or plan of actions) that yields the greatest 

possibility of success based on articulated user preferences. 

Agent Frameworks 

Agent frameworks or toolkits help the developer create robust agents, complete with the tools, 

attributes, features and rules needed to meet the challenges of the complex problem that agent faces 

(Serenko and Detlor, 2002). Whilst there is no universal definition for agent frameworks, they have 

been described as “An integrated tool suite for constructing intelligent software agents” 

(AgentBuilder, 2000), and alternatively “A software framework to make easy the development of 

agent applications…for interoperable multi-agent systems” (Bellifemine et al., 2000). 



52 
 

There are different categories of frameworks available, these are:  

 Mobile Agent Toolkits 

 Multi-agent Toolkits 

 General Purpose Toolkits 

 Internet Agent Toolkits 

The SafeChat system is a multi-agent system, therefore when researching frameworks, multi- agent 

frameworks became the research focus. These are the most complex frameworks because, in most 

cases, an agent cannot solve a complex problem alone and needs co-operation with other agents to 

exchange data and information with or delegate tasks to. Table 13 details some common agent 

development frameworks. 

Java Development Framework (JADE) – This framework was developed by researchers at the 

University of Parma. It provides a set of tools to support development and de-bugging of multi-agent 

systems. The JADE environment supports the use of ontology and is fully FIPA compliant. It is 

maintained and has a suite of add-ons, which help with cross platform and ontology integration 

support.  

Java Agent Template Lite (JATLite) – This framework was developed by researchers at Stanford 

University and is used to build agents that are able to communicate effectively over the Internet 

through the Agent Message Route Facilitator, via a registration process.  

ZEUS - The ZEUS toolkit was developed by British Telecom and consists of three main components: an 

agent component library, an agent building tool, and a suite of utility agents comprising name server, 

facilitator, and visualisation agent. 

MadKit – MadKit was developed at the University of Montpellier. It is a multi-agent toolkit, which 

builds upon the AGR (Agent/Group/Role) organisational model. It allows high heterogeneity in agent 

architectures and communication languages, and various customisations. 

Name Open Source Maintained FIPA Compliant 

MadKit Yes Yes No 

Zeus Yes No No 

JADE Yes Yes Yes 

JATLite Yes No No 

Table 13: Comparison of agent frameworks 



53 
 

Example Agent System Developments  

When considering weather, a problem is complex enough to warrant a multi-agent system approach 

much has to be considered. Ayllet et al., (1998) state that “a multi-agent approach would be sensible 

for problems that are inherently (physically or geographically) distributed where independent 

processes can be clearly distinguished”. Wooldridge points towards increasing trends towards 

intelligence and delegation asserting the demand for more complexity in software solutions 

(Wooldridge, 2009). Most experts agree that agent systems are best suited to problems where there 

is a need to address complexity, planning, autonomy and decision-making.  

Examining existing multi-agent systems gives an insight into the breadth of application areas and the 

levels of complexity and challenge being dealt with by system developers. It also, if the developers are 

kind, gives information on the pitfalls and shortcuts encountered throughout the development 

process. 

Genghis was developed to act as a carpooling system to help alleviate the problems of congestion on 

the roads and in turn reduce harmful emissions to help the environment (Kothari, 2004).  

In this system, a UserAgent represents a human user and interacts with the other agents in the system. 

ProxyAgents handle HTTP requests and act as middleware between the JADE containers and the web 

portal application.  A JourneyRoundupAgent flags journeys that are underway or that cannot be joined. 

A JourneyNotifyAgent monitors needed and active journeys and reports any available matches to the 

UserAgent. 

The idea is that the user logs on via a web portal and inputs a desired journey and time, the system 

then scans journeys that are active at that time and where possible reports matches back to the user. 

In the case of more than one match, results are ranked in accordance with a pre-set ranking criterion. 



54 
 

 

Figure 10: The Essex IB Model system diagram 

The Essex IB Model, seen in figure 10, is a multi-agent intelligent building application (Callaghan et al. 

2000). In this application software agents control the heating, lighting and security of a building 

autonomously, and learn from user input. Each room or area, such as a corridor, is assigned an agent. 

It is logical to assume that control and learning behaviour are different depending on the room we are 

in, for example, we could want our recreation room to be comfortably warm, while we might want 

our kitchen and bedrooms to be cooler. 

In essence, the system is a collection of parallel, distributed agents, all monitoring their own area and 

responding to whatever is happening in that area. This is more effective because the agents learn to 

respond to the needs of the users of that room, rather than treating the whole building the same. This 

system would be ideal for something like a nursing home, where occupants have their own living 

areas. Agent communication is in effect; in cases of emergencies, an alarm can be spread quickly to 

each different area of the building. 

Calvin is a multi-agent personal information retrieval system (Bauer T., Leak D.B., 2002). Each user is 

assigned a personal profile, which is developed by analysis agents. These analysis agents then 

generate descriptions of the current requirements of that user. Retrieval agents use these descriptions 

to query standard search engines. Results are then reported to a user interface agent to be presented 

back to the user. 



55 
 

Users interact with Calvin via a web interface; this interface also acts as an agent, by recording any 

web pages the user chooses to access and passing this information to the user analysis agents. Calvin 

has two retrieval agents, GoogleBot and AltaBot. These agents interact with Google and Alta-Vista and 

refine searches by presenting queries with the appropriate syntax and keywords.  

2.5 Ontology Development 

Ontology based solutions are being employed with great effect in the Semantic Web, where intelligent 

agents are being used to filter existing web pages to return only information that is relevant, or at 

least more relevant, to user queries (MacFarlane and Holmes, 2009). Ontology are being used in a 

wide variety of artificial intelligence research projects, according to (Davies et al. 2002 p.4) the reason 

they are so attractive in the field of artificial intelligence is because they are said to promise “… A 

shared common understanding of a domain that can be communicated between people and 

application systems”. 

 
Figure 11: The meaning triangle in terms of ontology 

In humans, the theory of communication is expressed generally, in communication context using the 

triangle of meaning (Ogden and Richards, 1927). They theorised that the triangle represented the 

three relationships between concepts (thoughts), terms (words) and objects (things). Figure 11 shows 

these relationships, expresses an indirect link between terms, and objects (Sawsaa, 2013).  If a human 

is presented with a term he or she has no knowledge of, they will not understand the term and 

therefore cannot link to the object.  

For example, if you ask a human to describe a C250, most will not know what is being asked of them, 

but if you ask them to describe a Mercedes, they will likely describe a car. The term Mercedes stands 

for the object car in this example. A computer is always in the position that it does not know the 

meaning of the term or its relationship to the object. Ontology development seeks to rectify this and 

provide the knowledge needed to appreciate the concept, terms and objects associated with a body 

of knowledge. 



56 
 

Definition of ontology 

Google uses its improved semantic search techniques to define an ontology as “a formal naming and 

definition of the types, properties, and interrelationships of the entities that really or fundamentally 

exist for a particular domain of discourse. It is thus a practical application of philosophical ontology, 

with a taxonomy.” when applied to computer science (Google, 2016: Online). 

(Calero et al. 2010) conclude on page 10 that, in terms of a software engineer, an ontology “is a formal, 

explicit specification of a shared conceptualisation. Conceptualisation refers to an abstract model of 

some phenomenon in the world by having identified the relevant concepts of that phenomenon”. 

According to Tom Gruber, an artificial intelligence specialist at Stanford University, an ontology is "the 

specification of conceptualisations, used to help programs and humans share knowledge." (Larose and 

Cruse, 2005: Online) 

Overview of Ontologies 

Ontology has its roots in early philosophy, where it refers to the study of existence, or being, and the 

organisation of reality (Jakus et al. 2013, page 29). In terms of computer science, it is used in the 

artificial intelligence discipline to represent the real world in a way that can be understood by a 

computer. 

Ontologies are a mechanism to allow the organisation of related concepts, an example of this is 

illustrated in figure 12. By grouping concepts in this way and then applying a property or definition to 

the relationship between concepts, a clearer understanding of the overall entity is achieved.  

 
Figure 12: An example of a taxonomically structured ontology 



57 
 

The value of ontological development lies in the fact that they are often created to cover a whole 

domain of knowledge. If an ontology is modelled carefully, it can be re-used (Studer et al. 1998; Jakus 

et al. 2013; Corcho et al. 2010). That is not to say that ontologies cannot be developed to fit a specific 

task, but that where possible, these resources should be open and shared.  The primary aspects of 

ontologies are (Studer et al. 1998; Jakus et al. 2013); 

 Ontologies are conceptualisations. They are abstract models, which contain the relevant 

concepts needed to describe the real word, or chosen part thereof. This means that ontologies 

can be said to provide a surrogate reality in terms that can be processed by a machine. 

 Ontologies should be explicit, meaning that the ideas and relationships and other components 

depicted in a given ontology are explicitly defined. 

 Ontologies need be formal, in order to be used correctly by computer systems the use of 

natural language is not appropriate, due to the ambiguous and inconsistent way that natural 

language is expressed. 

 Ontologies should be shared, especially when they contain accepted proven knowledge for a 

given domain of thought. If ontologies are to be shared, some consideration must be given to 

enabling revision of the knowledge contained in the ontology, in light of any newly accepted 

evidence or discovery. 

Corcho et al. (2010) and Gruber (1993) suggest the following design principles for ontology 

engineering, as an objective set of guidelines which should be employed in the creation and evaluation 

of ontology development; 

Clarity – the ontology should clearly articulate the intended meaning of defined terms. 

Definitions should be objectives and can be stated on formal axioms.  Where possible 

they should be complete, but where it is necessary, partial definitions are acceptable. 

Natural language should be used to document definitions. 

Employ minimal encoding bias – this means that the ontology conceptualisation should 

be specified at the knowledge level and not be dependent on a specific or personalised 

symbol level encoding. Adhering to this guideline helps with the sharing and 

interoperability of a given ontology. 

Extendibility – this means that the ontology should able to define new properties or 

terms for special use based on the existing vocabulary used in the ontology. This should 

allow for additions without the need to revise existing definitions. 



58 
 

Coherence – this means an ontology should be easily understood, and should only allow 

inferences that are consistent with its definitions. If, under interrogation, a concept can 

be developed from the ontology that contradicts its stated definitions, the ontology is 

said to be incoherent. 

Encourage minimal ontological commitment – Given that ontological commitment relies 

on the consistent use of vocabulary, it may be prudent to minimise ontological 

commitment by specifying the basic theory. The ontology should then only define terms 

that are essential to the communication of knowledge, which is consistent with that 

theory. 

Other general software development techniques should be applied to ontology development, for 

example clear naming conventions, to help those working with the ontology to understand its content. 

It is important to note that, although an ontology is produced as a piece on software, it is not a 

program and will not run as an application.  

Ontology Modelling Approaches 

There are three approaches to designing and developing software, all of which are well established in 

the field (Sawsaa, 2013). When deciding on the appropriate one for ontology development, it is 

important to weigh the advantages and disadvantages of each before selecting the one that is best 

suited to the task. 

Top-down – this approach is also known as stepwise design. Essentially the system or problem is 

broken down in an effort to gain insight into the sub-systems that it contains. Using this approach, an 

overview of the system is created, specifying but not detailing the lower levels of the system. For 

example, in top down design, you would examine the concept first, and then identify entities within 

that concept, illustrated in figure 13. This approach is useful for most projects; it provides greater 

control of the design encourages object-oriented programming with encapsulation and has proven to 

be successful for functional programming. It is challenging to ensure that the initial design will deliver 

an adequate stem using this approach, testing has to wait until a large part of the system is complete 

and it is more likely that redundancies will appear in the system (Volin, 2010: Online). 



59 
 

 
Figure 13: An example of the top down modelling approach 

Bottom-up – this is the opposite of the top down approach, here the base parts of the system are 

defined and linked together to compose the total system, as seen in figure 14. This method has some 

advantages, testing can take place earlier in the design process and it leads to reusable code. It may 

prove more difficult to link things together in this approach and the resulting system could be 

unorganised and difficult to navigate. Finally, and most importantly in the case of ontology design, this 

approach may lead to ambiguities of the relationships between elements in the overarching design 

(Sawsaa, 2013; Volin, 2010: Online).  

 

Figure 14: An example of the bottom up modelling approach 

 

Middle-out – this approach starts by examining what is already known about the problem and then 

using that to define the upper levels of the concept, then lower levels are subsequently added. This 

can be seen in figure 15. In this example, the types of animal are the focus for the beginning of the 

development (Sawsaa 2013).  



60 
 

 

Figure 15: An example of the middle-out modelling approach 

Ontology Structure 

An ontology is made up of different component parts. The names of these components are different 

depending on the selection of ontology language employed. There are two types of ontology 

component, the first articulates the entities within the domain, whilst the second describe the 

ontology itself or enable its use (Lord, 2010: Online). Stephens (2001: Online), stated that an ontology 

was made up of four main components; concepts, relationships, instances and axioms (Corcho et al. 

2010).  

 Concept – from an ontology perspective, a concept represents a group of entities or things 

that exist within a domain. Car is a concept within the vehicle domain. 

 Relationships – articulate the interactions between concepts or their properties 

 Instances – are the elements represented by the concept, for example, a Mercedes in an 

instance of the concept car 

 Axioms – are used to represent values for classes or instances 

This is still the case in modern ontology development, but the components of an ontology can be 

broken down further and more components identified to better understand the way an ontology 

functions (Sawsaa, 2013); 

 Classes or entities: clearly identified things that represent concepts 

 Instances or individuals: present elements contained within the ontology  

 Property: link relationships between instances, or from instances to other values, such as data 

and they can be functional, symmetric or transient. Semantic Links between entities can be; 

o Hierarchical -  superclass and subclass 

o Equivalent – similar to a synonym of terms 

 Associative relation: describes links between concepts 



61 
 

 Restrictions: provide information about entities or classes about how they can be used 

 Axioms: represent information that is true, axioms can be used to infer new knowledge  

Categories of Ontology 

Many authors have developed a set of categories for ontologies, but they have done so from slightly 

different perspectives, this has resulted in diversity in classification of ontologies that have differing 

applications. Sawsaa (2013) and Calero et al. (2010) cite the work of Guarino (1998), who defined a 

classification for ontology based on their generality.  

High-level ontology – these ontologies discuss general concepts, for example things like; material, 

objects, space and time. This type of ontology is free of specific domains or problems, and are used by 

a number of interested parties to combine principles. 

Domain ontology –refers to an ontology, which considers concepts related to generic domains (for 

example, information systems, medicine or astrophysics). A domain ontology uses the concepts 

articulated in high-level ontologies.  

Task ontology – describes the vocabulary related to a generic activity or task, such as sales or 

development. A task ontology uses the concepts articulated in high-level ontologies. 

Application ontology – These ontologies are created to describe concepts as they relate to a specific 

application. 

Sawsaa states, “… ontologies are categorised from different approaches and have many classifications 

based on their structure” (Sawsaa, 2013: p27). Ontologies are very different from each other; they 

perform different functions and contain varied structures, which make them distinctive. Table 14 

presents alternative approaches to ontology categorisation. 

Approach Ontology Categorisations 

Sowa (2000)  Formal Ontology 

 Informal Ontology 

 Domain Ontology  

Jurisica et al. (2004)  Static ontologies 

 Dynamic ontologies 

 Intentional ontologies 

 Social ontologies 

Fensel (2003)  Generic or common sense ontologies 



62 
 

 Representational ontologies 

 Domain ontologies 

 Method and task ontologies 

Lassila and 

McGuinness (2001) 

 Controlled vocabularies 

 Glossaries 

 Thesaurus 

 Informal is-a relationships 

 Formal instance 

 Frames, value restrictions 

 General logic constraints 

Table 14: Examples of different ontology categorisations 

 

Ontology Methodologies 

When considering which development methodology to employ, careful consideration must be given 

to the following factors; the principles, methods, processes, practices and other activities used to 

design, build, test and deploy the ontology in question (Gasevic et al. 2006 p. 65). There are several 

methodologies available and they have been evaluated in the literature. Examining the work of 

(Fernandez Lopez, 1999; Corcho et al., 2002; Staab and Studer, 2009; Swasaa 2013) leads to the 

conclusion that; 

 Most of the methodologies proposed for ontology development focus on constructing 

ontologies. 

 There are methodologies for ontology development, which include consideration of merging, 

maintaining, re-engineering, maintaining and evolving ontologies. 

 Some methodologies use enhanced software development practices and process to develop 

ontologies 

(Noy and McGuinness, 2001) say, “Concepts in the ontology should be close to objects (physical or 

logical) and relationships in your domain of interest. These are most likely to be nouns (objects) or 

verbs (relationships) in sentences that describe your domain” in their proposal for a simple 

methodology. The 7 steps contained in their methodology are; 



63 
 

Step 1: Determine the domain and scope of the ontology -  this should help develop a concise vision 

of the constraint of the ontology, what it will be used for, the knowledge and related queries 

encapsulated by the ontology and guidelines on the maintenance of the ontology. 

Step 2: Consider re-use of existing ontologies – given that ontology development is demanding, it is a 

good idea to check to see if someone else has already done the work of developing an ontology that 

fits your domain of interest and made it publicly available, so that it can be tweaked or refined to suit 

a similar application or task. It is important to consider things like language support and other software 

environment interoperability issues when selecting this route. 

Step 3: Articulate the important terms in the ontology – this is the first step to constructing the 

ontology, and here consideration is given to things like; what are the terms the ontology need to 

discuss? What properties do the terms have? What needs to be said about those terms? 

Step 4: Define the classes and the class hierarchy of the ontology. This step works closely with Step 5 

in this methodology and can be performed using one of the three ontology modelling approaches. Top 

down (identifying the upper most concepts and classes first), bottom up (identifying the most specific 

classes and concepts first), middle out (starting from some important middle layer classes and 

expanding in both directions), or by using a combination of these approaches.   

Step 5: Define the properties of the classes in the ontology – this step describes the internal structure 

of concepts by applying properties to defined classes. Properties can be extrinsic (for example; name, 

duration and use) or intrinsic (for example; weight, height and colour). In this step, relations to other 

classes and individuals within those classes is also articulated. 

Step 6: Define the facets of the properties applied to the classes in the ontology – properties can have 

different facets describing the type of value it represents. These are things like property value and 

type, the allowed values (range and domain), number of values (cardinality), and other attributes that 

can be applied to the property. 

Step 7: Create instances – the final step in this ontology development methodologies involves creating 

instances of the classes defined within the hierarchy of the ontology. Creating and individual instance 

of a class is a three-step process. The first step is (1) choose a class, (2) create and individual instance 

of that class and (3) define the property values as they apply to the specific individual instance of the 

class.    

An example of a more comprehensive methodology is the Methontology Framework (Lopez et al., 

1999). Using this methodology, it is stipulated that the start of the design process requires the 

standardisation and characterisation of the complete ontology like cycle – from the specification of 



64 
 

requirements through to plans for upkeep – as well as approaches and practices which will steer the 

development of the ontology through its life cycle (Gasevic et al., 2006; Swasaa 2013). The 

Methontology framework includes the following elements;  

 identification of the ontology development process; 

 a life cycle model which is based on evolving prototypes; 

 the Methontology methodology, which details steps for completing each activity, the 

practices involved, the outputs of each activity stage, and an evaluation technique 

for the developed ontology. 

 
Figure 16: An example of ontology development life cycle (Lopez et al., 1999) 

 

In Methontology, once development starts the activity is started there are three stages, the first of 

which is specification (Calero et al., 2010). This is where the goals, purpose, strategy, scope and 

terminology of the ontology is identified. This is where the reasons for the ontology are articulated, 

and designers may choose to formulate formal and informal questions to establish and solidify the 

constraint of the ontology (Fernandez-Lopez et al., 1997). This is an important part of ontology 

development, it helps to ensure that the knowledge contained within the ontology is current, useful 

and accurate (Sawsaa, 2013). 



65 
 

The second stage is conceptualisation. This where the knowledge gained through the specification 

stage is organised given structure. This is then modelled using semi-formal concept design techniques 

so the designer and knowledge expert can easily understand the knowledge represented by the 

ontology and agree on accuracy and relevance (Gasevic et al., 2006). 

The final stage is the implementation stage, this is where the products of the first two stages are 

implemented, usually in an ontology development environment (such as, Protégé), to produce the 

concepts, hierarchies and relationships that bring together the working ontology. 

As seen in figure 16, other processes run alongside these three main stages of ontology development. 

These involve evaluation, documentation, configuration management and integration. This provides 

a level of quality assurance for the ontology development life cycle (Lopez et al., 1999; Gasevic et al., 

2006).  The Methontology methodology is particularly effective when building an ontology from 

scratch or re-engineering, or re-purposing an existing ontology (Fernandez-Lopez, 1999).   

A four-stage ontology development methodology was proposed in 1995 by Uschold and King (Calero 

et al., 2010). The four stages are: 

1. Identify the purpose of the ontology 

2. Build the ontology 

i. Identify the concepts and relationships within the domain of interest 

ii. Produce clearly articulated definition for the agreed concepts and relationships 

iii. Create the vocabulary or terms to refer to the concepts and relationships 

3. Evaluate the ontology 

4. Document the ontology 

As well as this, “…it should include a set of techniques methods principles and guidelines for each 

stage as well as indicating what relationships exist between the stages” (Uschold and King 1995).  

(Gasevic et al., 2006) and (Noy and McGuinness, 2001) state that no methodology can be identified as 

the best because it depends what the proposed ontology needs to achieve. This claim makes sense, 

because ontology development is by nature an iterative process, and depending on the results of 

testing, the selected methodology may need to be revised.  

Ontology Tools 

There are a range of tools available for modelling and building ontologies. Selecting an existing tool 

helps to ensure that the created ontology adheres to the design rules set out to make ontologies 

shareable, extendable and coherent (Sawsaa, 2013). Standard ontology development tools now 



66 
 

include representation languages, graphical development environments and ontology-learning tools 

(Gasevic et al., 2006). Table 15 describes some example tools. 

Tool Information Use 

CmapTools CmapTools is an application, which allows users to create graphical 

representations of knowledge models, which are known as concept 

maps, as seen in figure 18. This software is a “result of research 

conducted at the Florida Institute for Human and Machine Cognition 

(IHMC). It empowers users to construct, navigate, share and criticize 

knowledge models…” (IMHC, 2014: Online) 

Ontology 

planning 

(graphical) 

OntoStudio This is a commercial modelling environment user to develop and 

maintain ontologies. “OntoStudio is also able to import many 

structures, schemas and models. Some of OntoStudio’s most 

important functions are the mapping tool, which can be used to match 

heterogeneous structures quickly and intuitively, the graphic rule 

editor which specialists can use to model complex correlations or the 

integrated test environment…” (GmBH, 2012: Online). A trial version 

of this software is available, but it only lasts for a month.  

Ontology 

development 

Protégé  Protégé was developed by the Stanford Medical Informatics team at 

Stanford University. According to the website, it is an “ontology editor 

and framework for building intelligent systems” (Protégé, 2016: 

Online). The ontology editor is the heart of this application; it allows 

the creation of standalone and shared ontologies. There are a range 

of add-ons for the application (e.g. SnoRocket, one of range of 

different reasoners, which will check the logic of the created ontology 

and OWLViz a tool that provides a visual representation of the 

elements and relationships for a given ontology). This software is 

open source and therefore is free to use under licence.  

Ontology 

development 

WebODE This is a collection of tools for ontology engineering, which is based on 

an application server. This suite of tools was initially developed in 

1999, development continued until 2006 when support was 

withdrawn. “WebODE was built as a scalable, extensible, integrated 

workbench that covers and gave support to most of the activities 

involved in the ontology development process (conceptualization, 

reasoning, exchange, etc.) and supplied a comprehensive set of 

Ontology 

development 



67 
 

ontology related services that permit interoperation with other 

information systems.”  (WebODE, 2016: Online). It supports a host of 

languages, including; XML, RDF(S), OIL, DAML and OWL. 

Table 15: Examples of ontology tools 

 

 
Figure 17: An example of an ontology concept map created with CmapTools 

There are several ontology representation languages to choose from, table 16 presents an overview 

of some of the more prominent ones. Some have been developed purely by AI researchers (Gasevic 

et al., 2006), whilst others, from the late 1990’s have been developed in conjunction the World Wide 

Web Consortium (W3C) (Antoniou et al. 2012).   

 

 

Language Description 

DAML+OIL This is a semantic markup language, which builds on some of the earlier 

standards like RDF and RDF Schema to provide richer modelling 

primitives (Connolly et al., 2001). 

Loom This is a knowledge representation language, which was developed by 

researchers at the University of Southern California in the Information 

Sciences Institute (Loom, 2006). This language is based on description 



68 
 

logics, meaning that the declarative knowledge in Loom is made up of 

definitions, facts and default rules. 

KIF Knowledge Interchange Format (KIF) is a first order logic based language 

designed to enable computer systems to share information and re-use 

knowledge (Genesereth et al., 1992) 

OIL Ontology Interchange Layer (OIL) is a semantic markup language and 

used description logics implemented using frame based representation 

primitives (Fensel et al., 2001).  

OWL Web Ontology Language (OWL) is designed for use by applications to 

share knowledge by asserting context to declared entities. This language 

is the evolution of DAML+OIL and is currently the most popular 

representation language (OWL, 2004). 

RDF Resource Description Framework (RDF) is a model for enabling the 

exchange of data on the internet. It has features for data merging from 

differing data representations and supports the evolution of 

representations over time (RDF Working Group, 2014). 

RDF 

Schema 

RDF Schema is a data modelling vocabulary for data, which is 

represented using RDF (Brickley and Guha, 2014). The combination of 

RDF and RDF Schema is known as RDF(S). 

Table 16: Ontology representation languages 

Ontology Evaluation 

Evaluating an ontology can prove to be problematic, there is no one size fits all solution and as is the 

case with all ontology development tools and techniques, different ontologies require their own 

evaluation methods (Sawsaa, 2013; Calero et al., 2010). The most well-known and enduring ontologies 

(for example, SENSUS, Cyc Ontologies etc.) have no real documentation or publications that articulate 

how they were evaluated.  

Gomez-Perez (2001), recognised that there is a lack of specific mechanisms for evaluating ontologies 

and knowledge sharing technologies in general and went on to propose a series of steps that would 

go some way to creating a framework for ontology evaluation, these are; 

1. Evaluate the ontology from 2 perspectives, the developer and the user. 

2. Create a set of terms for the ontology, ensuring that standard definitions exist for 

those terms 



69 
 

3. Define a criterion, by which the technical and user evaluation process can be 

measured 

4. Develop tool or mechanisms which will allow some evaluation of an ontology during 

its creation 

5. Create tools to evaluate existing technologies 

6. Include evaluation methods in tools used to create ontologies 

Later a different approach was offered, which involved evaluation the ontology from two 

perspectives; ontology validation and ontology verification (Gomez-Perez et al., 2004). The validation 

process evaluates weather the ontological definitions match those of the real world (depending on 

the purpose of the ontology), whilst the verification process ensures that the ontology is built in the 

correct way to support the implementation of its definitions. The emphasis of evaluating ontologies 

in this way is to ensure that concepts are designed correctly. There are two areas of concern for this 

evaluation method; 

Consistency – there are no contradictions in the classes or elements and the data 

presented will not give contradictory conclusions 

Completeness – the ontology successfully represents the whole domain of knowledge 

represented by the ontology and does not have any completeness errors 

The validation process can be performed automatically by a Description Logic Reasoner (DLR), and 

these can be found embedded within ontology development tools or added as a bolt on application.  

An example of this is FaCT++, which is a DLR that can be used within the Protégé ontology 

development application (FaCT++Reasoner, 2016: Online). This validation approach is important to 

assess the quality of the knowledge represented in the ontology, and as such has some criteria to 

assess the level of quality. The quality criteria are (Sawsaa, 2013); 

1. Consistency – there should be no contradiction between the concepts presented in 

the ontology 

2. Completeness – the ontology should cover the whole area of knowledge as it applies 

to the domain, all concepts should be fully defined and there should be no missing 

concepts 

3. Conciseness – there should not be any needless or redundant information presented 

in the ontology 

4. Clarity – the ontology declares concepts which effectively present the knowledge 

domain concerned 



70 
 

5. Generality – the ontology can be used for a more than one purpose in the same 

domain 

6. Robustness –the ontology can support future changes to the domain 

7. Semantic data richness – the ontology is rich and diverse in its conceptualisation 

8. Subject coverage – the ontology covers the particular domain well 

The has been the proposition of cohesion metrics to evaluate ontologies (Yao et all, 2005). They 

propose an approach which involves testing cohesion by measuring the number of root classes, the 

number of leaf classes and the average depth of inheritance between tree of leaf nodes. 

Another approach to ontology evaluation involves the investigation of how well the ontology fits the 

domain of knowledge that it represents (Brewster et al., 2004). This involves comparing the ontology 

concepts and relations against text documents which contain domain specific knowledge. 

Ontology evaluation is required throughout the ontology life-cycle, particularly during the stages of 

pre-modelling, before release and after release (Bilgin et al., 2015). Ontologies are seen as vital to the 

knowledge description domain and pivotal to the development of the semantic web (Hlomani and 

Stacey, 2014), therefore mechanisms to evaluate their effectiveness and improve their development 

are just as important. 

Example Ontologies 

LinKBase is a natural language based ontology for the medical profession and is defined as “A 

conceptual representation of medical information computers can understand and process” (Nuance, 

2016: Online). The aim of LinKBase is to provide third party application with an ontology that supports 

Natural Language Processing(NLP) and Natural Language Understanding (NLU) for biomedical data 

applications (van Gurp et al., 2006).  

This ontology has been structured using Basic Formal Ontology (BFO), which provides an upper level 

ontology framework for the creation of scientific research focused ontologies (Stenzhorn, 2008: 

Online).  

“Theories of endurants and perdurants, mereology, topology, universals and particulars, 

biological classes and instantiations, space and time and granular partitions are all 

included in the BFO theory.” 

(van Gurp et al., 2008) 

There are more than 570,000 types articulated in LinKBase, which represent entities in the real 

world. To allow for semantic reasoning they have been structured hierarchically using a real life 



71 
 

approach; child types represent a subclass of a parent type in every single instance. This means 

that relationships in this ontology are able to maintain consistency in their meanings, as seen in 

figure 18. For example, rash will never occur as a subclass of allergic reaction because a rash is 

not purely caused by an allergic reaction (van Gurp et al., 2006). This ontology also boasts a 

lexicon of over 1.5 million terms, which are used to represent types in the real world. Terms can 

be translations, synonyms, singular or plural forms of the type they represent. 

 

 

Figure 18: LinKBase structure (van Gurp et al., 2006) 

 

The creators of LinKBase have been successful in building and maintaining a useful and relevant 

ontology that integrates with other software to provide knowledge for the medical domain, this is 

evident in the fact that it is used by Nuance (a company that provides healthcare solutions to 

healthcare professionals) to support medical services to individuals and businesses (Nuance, 2016: 

Online). 

WordNet is a lexical database of the English language. It is made up of Synsets (cognitive groups of 

nouns, verbs, adverbs and adjectives) each describing a singular concept. These synsets are linked 

together by conceptual-semantic and lexical relationships (Princeton, 2016: Online). WordNet can be 

explored using a web browser, as seen in figure 19, and is freely available for public download. 



72 
 

WordNet has many applications, (Pal et al., 2014) used it to research query expansion (QE), a widely 

used technique, which tries to increase the occurrence of relevant matches made between a query 

and the data being queried. They theorise that adding semantically related terms to a query, that the 

user will receive more relevant returns and experience improved query performance. They conclude 

that after experimentation, their proposed way of querying WordNet outperformed WordNet’s own 

methods for QE. 

 
Figure 19: Result of the search for “ontology” using WordNet in a web browser  

WordNet has been used as a semantic hub to help increase the integration of linked open data (LOD) 

(Ballatore et al., 2014). The way synsets work make this ontology attractive to other developments as 

the links between words and word senses is encapsulated well in the construction of the synset and 

its applied relationships. Bellatore et al., go on to document the development of the Voc2WordNet 

algorithm, used to generate syntactic mappings between vocabularies and the WordNet ontology. 

They conclude that WordNet provides a shared semantic grounding to enable interoperability for 

heterogeneous vocabularies. 

WordNet does face challenges, it was developed in English, using all of the rules that apply to tense 

etc. that the English language follows, and this has proven to be problematic when translating it into 

different language sets. Overall it has been a successful in providing a solid foundation for other 

knowledge based semantic applications. 

  



73 
 

2.6 Natural Language Processing 

An alternative solution to the meeting detection problem would be to employ conventional Natural 

Language Processing (NLP) techniques directly. As stated by Jackson and Moulinier (2002) the term 

NLP refers to the function of software or hardware used to analyse spoken or written language within 

a computer system (MacFarlane and Holmes, 2009). Dictionary.com defines natural language 

processing in the technology section as: 

“artificial intelligence  

(NLP) Computer understanding, analysis, manipulation, and/or generation of natural 

language. 

This can refer to anything from fairly simple string-manipulation tasks like stemming, or 

building concordances of natural language texts, to higher-level AI -like tasks like 

processing user queries in natural language.” 

(Dictionary [b], 2016: Online) 

 

Elizabeth Liddy in the paper, Natural Language Processing (2001), gives the following, more 

articulated definition: 

“Natural Language Processing is a theoretically motivated range of computational 

techniques for analyzing (sic) and representing naturally occurring texts at one or more 

levels of linguistic analysis for the purpose of achieving human-like language processing 

for a range of tasks or applications.” 

(Liddy, 2001: Online) 

Overview 

The human race displays a unique capacity for language, when compared to any other known species. 

Humans developed the ability to talk to one another around 100,000 years ago, and began recording 

experience and thought through written communication around 7,000 years ago. Although some 

animals display vocabularies made up of hundreds of signs, only humans have proven to be able to 

communicate in many different ways using an unquantifiable number of messages on any topic using 

discrete signs (Russell and Norvig, 2014). 

A computer needs to understand language for two main reasons, one to communicate more 

effectively with humans, and the other is to provide the computer with the capacity to understand 

knowledge presented in the wealth of written information available today (DeAngelis and Solutions, 

2016: Online).  



74 
 

The challenges facing any language detection solution, centre around the fact that the knowledge of 

language needed to understand complex language behaviour can be broken down into six categories, 

as set out by Jurafsky and Martin (2008) 

 Phonetics and Phonology – phonetics relates to the production of speech sounds and 

how they are then perceived, whist phonology relates to the way speech sounds are 

interpreted 

 Morphology – this is the study and description of the structure of a given languages’ 

linguistic units (words and parts of words), for example, parts of speech, root words, 

affixes, intonations, or the context implied. 

 Syntax – the rules used in the formation of grammatical sentences, specifically phrase 

structure and word order. 

 Semantics – the meaning of language, split into two main areas of concern; logical 

semantics (sense, reference, presupposition and implication) and lexical semantics 

(word meaning and word relationships). 

 Pragmatics – deals with the ways in which language is used to accomplish goals, 

including deixis (the function or use of deictic words, forms, or expressions (Google [d], 

2016: Online), conversation semantics, and the organisation of text. 

 Discourse – linguistic occurrences (written or spoken communication) that are bigger 

than a single utterance, for example, discussion and debate. 

 

Manning and Schutze (2001, p. 18) further explain the problem when they assert that an effective NLP 

solution must be able to disambiguate decisions involving word sense, word category, syntactic 

structure and semantic scope. 

 

Applications of Natural Language Processing 

There are many applications for NLP, there are five main areas of application (Sandhu, 2016: Online), 

these are; 

Machine Translation – a lot of the worlds stored information can be found online and 

needs to be more accessible. The challenge of making this wealth of information available 

to all, regardless of language or location has become too large for human translators. 

Machine translation solutions are being developed and offered, Google is one of the 

largest companies working in this field and uses a proprietary statistical engine to power 

its Google Translate service (Chitu, 2010: Online).  



75 
 

Information Extraction – NLP is being wildly implemented in applications which strive to 

make sense of written information for one reason or another. The computer may be 

looking for news pertinent to the stock market, scanning for mentions of a particular 

incident on social media or collating information for medical purposes. For example, the 

Protein Active Site Template Acquisition (PASTA) and the Enzyme and Metabolic 

Pathways (EMPathIE) projects (Humphreys et al., 1999).   

Summarisation – In an age where the amount of digital text available is staggering and 

far exceeds our capacity to understand it all, we need a way to present information in a 

more condensed way in the first instance. This enables us to search for more appropriate 

information in a more expedient manner. Applications are available to provide 

summaries of documents for a variety of purposes (SMMRY, 2016: Online), and this 

branch of NLP will become increasingly useful as a marketing asset (S, 2016: Online). 

Fighting Spam – Spam filtering is a very important and increasingly challenging field of 

NLP. The false-positives and false-negatives are at the crux of spam management, which 

relies on extracting and correctly identifying the meaning of strings of texts. Bayesian 

spam filtering is proving to be more effective in the battle against the plethora of 

unwanted emails being received (Graham, 2002: Online) 

Query Resolution – Search engines provide a gateway to immense amounts of 

information and digital resources. NLP techniques are being used to help search engines 

recognise natural language questions (Al-Rfou et al., 2016: Online). This is one of the 

major challenges for NLP and is a large research focus area (Sandhu, 2016: Online).  

2.7 Summary 

For this project, it would be beyond the scope, both in terms of resources and time to create a single 

intelligent machine like IBM’s Watson. As is the case with Cortana and Siri, there is no need for a 

dedicated super computer because the problem is much more focused and needs to run in a smaller, 

more measured environment. In order to be effective, the system will need access to semantic 

knowledge and natural language processing techniques, which eventually will have to develop into 

the realms of speech recognition, taking into consideration the changing interactions between 

humans and their computing devices. 

Therefore, efforts will need to focus on developing a system that uses the same various component 

technologies as some of the current developments presented, so that the SafeChat system will be able 

to automate decisions based on what is known about the ongoing interaction between two users.  



76 
 

Any proposed system has taken into consideration ethical issues. System processes need to be 

designed to act autonomously to protect users in an online communication environment. 

Conversations should not be recorded, although anonymising discourse data may help in future 

development cycles if machine-learning techniques were to be employed to refine system 

performance. These recorded or stored conversations could easily be anonymised to protect the 

privacy of those involved.  

Agent technologies are an integral part of the new semantic web features, and will be used to make 

searching for information much more effective.  (Bellifemine et al. 2007 p.77) state that the JADE 

platform uses the FIPA compliant Agent Communication Language to communicate and syntax is 

known as content language.  Research suggests, as seen in table 13, that the Java Agent Development 

Environment (JADE) environment is the best suited to the requirements of an agent system. This is 

because it is fully FIPA compliant, supports ontology development, is fully maintained and has useful 

add-ons to assist integration across multiple platforms (e.g. the Leap add-on allows agents to function 

on standard mobile phone devices) (JADE Team, 2016: Online). 

Research into existing systems, starting on page 53, has been highly beneficial. Small but ultimately, 

crucial concepts lead to further developments. For example, the Genghis system, much like IBM’s 

Watson, applies a ranking system to the possible outcomes presented. The SafeChat system will need 

to rank discourse according to current level of risk, any ultimately use this cumulatively to decide on 

the overall safety level of a conversation.   

Initial research centred upon the development of a single messaging application with built in 

protection, but users would be free to join several virtual ‘chat rooms’. The Essex- IB model provided 

an insight into multi-faceted, distributed agent systems, which will still need to be considered, as a 

user is likely to be communicating using multiple applications. 

The agents any proposed solution will be required to communicate for the appropriate actions to be 

taken and to assure system efficiency, research into how agents communicate has proven to be vital 

in understanding how this should work, and has also influenced the choice of multi-agent framework. 

Research into this negotiation amongst agents and agent system development informs essential 

techniques required to ascertain maximum utility from the agents in a system.   

Utility theory could be used in conjunction with probability theory to refine agent decision making and 

would enable a multi-agent system to allocate a level of threat to a given conversation and decide 

which messages to allow and which need to be blocked to ensure that safety of the user is maintained.  



77 
 

With regards to any proposed solution, the environment in which it must operate (mobile, desktop, 

wireless, fast and slow connectivity and limited storage space), and the specific nature of the domain 

of knowledge required, the most logical conclusion would be to create a focused ontology, which is 

application specific. This would limit the computing overheads involved in checking message content 

and inter system communications.   

It is proposed that an ontology, once completed will provide a comprehensive vocabulary for referring 

to the terms in a specific subject area (Gasevic et al. 2006 p.51), which in this case is the 

conceptualisation of a meeting. With this knowledge, a system would be able to make informed 

decisions on elevating the threat levels contained within a message or conversation, and then take 

the appropriate defined actions based on the current value of said threat level. 

An ontology will need to adhere to accepted ontology design practice, it would need to be updated, 

as any language oriented ontology would. Language is an evolving thing, it changes and adapts 

constantly, an ontological solution should take this into consideration. The ontology will need to be 

clear, concise and fit for purpose, but also be lean in its design, so as to minimise computational 

overheads and preserve transparency.  

Protégé is widely used to develop ontological solutions, this suite of tools provides a graphical user 

interface to develop ontologies, has built in description logic reasoners to validate ontologies, and 

offers functionality to export an ontology into a range of ontology languages. The ontology language 

support that Protégé provides is hugely beneficial for use in agent systems, as it will enable third party 

developers, who wish to embed the ontology into their messaging applications, flexibility to do so with 

minimal encoding bias.  

Most uses of natural language processing and by extension, NLP based Ontologies, are working with 

existing information sets or scanning documents. Any proposed system will need to achieve this ‘on 

the fly’, therefore the ontology must act as the data set. NLP techniques are embedded in the 

ontological engineering. The definition of relationships between words can provide the knowledge 

and understanding of natural language so that a proposed system would be able to correctly identify 

meeting elements within communications. 

  



78 
 

Chapter 3: SafeChat System Design 

3.1 Introduction 

This chapter will discuss software development methodologies and identify the methods used to 

develop the SafeChat system. It will go on to detail the design and development of the various 

components of the system.  

The research articulated in chapters 1 and 2 of this thesis indicates that there is a need to provide an 

autonomous solution to ensuring the safety of children communicating online. The SafeChat system 

has been developed to achieve this goal. 

The system needs to provide an autonomous solution that protects the privacy of its users, to block 

the transfer of personal information, provide an indication of the threat or safety level of current 

discourse between two users, and act if the threat level threshold is exceeded. The system must also 

have as limited a computational footprint as possible to be transparent to the user.   

3.2 Software Design Methodologies 

The SafeChat System, as seen in figure 20, is made up of three component software systems, each 

diverse enough in their composition to require a slightly different methodology for their development. 

The multi-agent system and the simple chat system are more obviously aligned to more traditional 

software development life cycle paradigms. The SafeChat Meeting Ontology requires the application 

of an ontology development methodology. 

 
Figure 20: The SafeChat System 



79 
 

There are many Software Development Lifecycle (SDLC) methodologies available (Purcell, 2016), each 

with its advantages and disadvantages depending on the application area. SLDC has five main areas of 

consideration (Requirements Analysis, System Design, Implementation, System Testing, and 

Evolution). Table 17 describes the leading software development models (TechTalk, 2015: Online; 

Purcell, 2016: Online). 

 

SDLC Model Description 

Waterfall 

Model 

This is the oldest SDLC model. The Waterfall model follows sequential step by 

step process; each preceding step must be complete before moving to the next 

stage of development. The steps are; requirements analysis => software design 

=> implementation => verification => maintenance. The problem with this 

method lies in the inability to review steps or introduce new knowledge at any 

stage, meaning that the finished product may be obsolete or incomplete by the 

time it is produced (Purcell, 2016: Online). 

Spiral Model The spiral SDLC model was developed in response to the weaknesses apparent 

in the waterfall model. This model includes risk analysis, prototype 

development, measurements, software design, next phase development and 

review steps. Information and feedback is gathered and acted upon as the cycle 

is repeated. This method helps to provide indication of risk, costs and functions, 

and users can be involved in the system early due to the prototyping. The 

weaknesses of this model are in time spent on continual assessment and risk 

evaluation. This is a complex model and the spiral may continue indefinitely if 

the process is not tightly managed (Purcell, 2016: Online).  

Rapid 

Prototyping 

This method puts less emphasis on planning and more onto development and is 

iterative in nature. It only has four steps; planning, design, system development 

and implementation. The strengths associated with this model are; time and 

money savings, focused code development. This method employs modelling 

concepts to identify and capture data and processes. Identified weaknesses of 

this method includes; risk of achievement, difficult to merch with legacy 

systems, works better for modular systems and developers must deliver to tight 

schedules. (TechTalk, 2015: Online) 

Iterative 

Model 

This model implements a small prototype containing some of the software 

requirements and iteratively adds and enhances the evolving version of the 



80 
 

software until all of the requirement are met and working as intended (Spence, 

2005: Online). The advantages of this method is that feedback is obtained 

between each phase of development from coding teams and end users, this can 

then fully inform and enhance the end product, as seen in figure 21.  

Object-

Oriented 

Model 

In object oriented development there are five conceptual tools to help the 

programmer, these are; encapsulation, data protection, inheritance, interface 

and polymorphism. The idea behind this model is that classes, methods, 

relationships and properties of objects are developed from a real world view 

(McKay, 1988- 2016: Online).  

Agent-

Oriented 

Model 

Early agent oriented software development models attempted to design multi 

agent systems using a societal view of the system, defining relationships 

between concepts in much the same way as they are defined in our own society 

(Wooldridge et al., 2000). The Gaia model proposed by Wooldridge et al., 

defines concepts as either abstract or concrete. Abstract concepts include; 

roles, permissions, responsibilities, protocols. Concrete concepts include; agent 

types, services and acquaintances. Another agent oriented methodology 

developed to support analysis and design activity for agent systems is Tropos 

(Bresciani et al., 2004). In this methodology there are five main areas of 

development; early requirements, late requirements, architectural design, 

detailed design and implementation.  

Agile Software 

Model 

Agile software development methods try to reduce the risks associated with 

software development, by developing software in short time periods, often 

referred to as iterations. These iterations can last from one to four weeks 

typically and one includes all the work involved in completing this iteration of 

the development, including; planning, requirements analysis, design, coding, 

testing, and documentation (Association of Modern Technologies Professionals, 

2016: Online). This method promotes collaboration with the end users of 

systems and requirements change, or requirements creep, is a welcomed part 

of development (Greer et al., 2011). Unremitting design improvement, system 

testing and continuous integration are all features of Agile software 

development models (Misra and Singh, 2016). 

Table 17: Software development life cycle models  



81 
 

 
Figure 21: The iterative development method  

The development method chosen for each component system of the SafeChat system is different, but 

they share the same principles, as seen in all the presented SDLC’s. The SafeChat multi agent system 

has been designed using elements from agent oriented, iterative and agile software development 

methods. The simple messaging application is more traditional and therefore uses elements from 

iterative, object oriented and agile software development methods. The SafeChat Meeting Ontology 

has been developed using the Methontology ontology methodology discussed in Chapter 2, sub-

section 2.5. 

3.3 Agent System Design 

The SafeChat agent system, as seen in figure 22, can be defined as a system of agents working together 

to autonomously ensure that safe practice guidelines are followed, which will provide safety for 

children communicating in an online environment. The system needs to block the transfer of personal 

information, which could be used to target the child, and it needs to block attempts at arranging 

meetings with children. The system needs to achieve this autonomously in order to protect the child’s 

privacy, and to a certain extent, allow the child to act autonomously in ways which would not place 

them in danger.  



82 
 

 
Figure 22: The SafeChat Multi-Agent System 

During a recent development iteration, an agent was removed from the system. The WarningAgent 

was responsible for sending warnings to the user in cases where a message was found to be unsafe 

(MacFarlane and Holmes, 2009). There are two types of unsafe messages in the system, the first 

contains any elements of personal information. The other type of unsafe message contains elements 

that make up meeting arrangements. Another agent, the NotificationAgent is responsible for sending 

a warning message to the registered parent of the child in cases where messages were deemed to be 

unsafe. The responsibility for all warnings/notifications now resides with the NotificationAgent, thus 

rendering the WarningAgent superfluous to system requirements. 



83 
 

 
Figure 23: SafeChat multi-agent system class diagram  

As seen in figure 23, the SafeChat multi agent system has five agents in its current iteration, here is a 

description of each agent and its intended functionality; 

ProfileAgent - This agent performs a comparison between the message and the stored 

user information, if it finds a match the message is tagged as unsafe. The ProfileAgent 

informs the NotificationAgent what kind of information was being sent, so that the 

NotificationAgent can then take appropriate action, and the message is blocked. If the 

message is safe, the ProfileAgent sends the message through to the DetectionAgent. 

DetectionAgent - This agent captures each safe message from the ProfileAgent; it passes 

it to the ontology query mechanism and waits for a numerical response, once received 

the numerical response and the original message is sent through to the ThreatAgent. 

ThreatAgent - This agent will monitor and maintain a threat level for the current 

conversation. This agent is a pro-active agent and it will check all numerical data passed 

to it from the DetectionAgent passed through the system, in order to effectively maintain 

an accurate measure of the current threat level. While the threat level is deemed as safe, 

messages will be allowed through the system. If the threat level exceeds safety 



84 
 

parameters, the messages are blocked and the NotificationAgent will be informed that 

warnings need to be issued. 

NotificationAgent - This is a reactive agent, it does nothing until it receives instructions 

from the ProfileAgent or NotificationAgent that there is a problem, when this happens it 

triggers and email to the parent of the child and transmits a warning message to the user 

with details of the transgression. 

LookForAgents - This is used as a housekeeping agent to monitor running agents and 

ensure that the agents are successfully registering with the Directory Facilitator. 

All of the agents in the system register their services with the Directory Facilitator in the Java Agent 

Development Framework (JADE). This will allow agents to find services offered by other agents in this 

co-operative multi-agent system. This functionality is not used in the current iteration of the system, 

but in future developments it may be required.  

 
Figure 24: Personal information checking agent system sequence diagram  

The steps involved in checking for personal information within a message are outlined in figure 24. As 

shown, the message content is checked against stored information and if a match is identified, the 



85 
 

Profile agent takes one course of action, if there is no match the message continues through the 

system. 

 
Figure 25: Meeting checking agent system sequence diagram  

Detecting meeting elements within a message or conversation provides a greater challenge 

(MacFarlane and Holmes, 2016). The agent system needs access to knowledge about language, and 

this can be provided by the ontology. What the agent then does with this knowledge is outlined in 

figure 25. The agent will need to record the last known threat level of the last known conversation 

between the same users in order to maintain the true threat level of the interactions between 

particular users. The last known threat level could be stored in a secure database or encrypted file.  

 



86 
 

 
Figure 26: SafeChat message flow  

Figure 26 illustrates the route of each message through the multi-agent system, and indicates that 

there are many steps a message must go through before it is released to its intended recipient. This 

will present a challenge for the system, as extensive delays will be noticed by the users, which will in 

turn compromise the transparency of the system.  

 



87 
 

3.4 Message Application Design 

Initially the focus of the messaging application was to develop a fully working, platform independent 

instant messaging application, which would be used specifically for children. The prototype 

development included functionality for; chat server, chat client, database connectivity, message 

exchanges and friends (or contacts) lists.  

 
Figure 27: Chat Server class diagram 

The messaging application needs to be in two parts, one part is the Chat Server, this part connects 

with the database and handles user login, sending messages and receiving messages (as seen in figure 

28). The Chat Client part of the application allows the user to login and creates the chat interfaces 

needed for the exchange of messages. Other functionality includes; sending/receiving messages, 

maintaining friends lists and, most importantly, the SafeChat multi-agent system in launched from 

within the Chat Client application. 



88 
 

 
Figure 28: Chat Client classes 

 

3.5 SafeChat Meeting Ontology Design 

The first step in planning the ontology involved specifying the purpose, scope and goals of the 

ontology. Research suggested that the Methontology development method would be best suited to 

provide a robust, reusable ontology. The SafeChat system requires knowledge about the language of 

meetings. It more specifically, needs to be able to identify the components of a meeting, figure 29 

identifies the elements that make up a meeting in conversation.   

Next, the system needs to understand what these elements are and how they relate to each other. 

Using a top down approach, a taxonomy was developed for the meeting ontology and a snapshot of 

this can be seen in figure 30. 



89 
 

 
Figure 29: The components of a meeting  

 

 
Figure 30: SafeChat ontology taxonomy  

In developing the taxonomy, the relationships between classes begins to take shape and further 

planning can then take place to identify these relationships, as seen in figure 31. This is the last step 

before beginning production of the ontology. To test the robustness of the relationships, reasoners 

can be used to ensure that the relationships, classes and entities are defined appropriately, a small 

prototype ontology can be developed, so that time is not wasted.  



90 
 

 
Figure 31: Relationships between entities and classes  

3.6 Summary 

This chapter discusses the design of the SafeChat system. It presents the different software design 

methodologies and articulates those chosen for each aspect of the system. The three main 

components of the overarching system require different approaches and these have been discussed 

as they apply to each part.  

The multi-agent system design focuses on the role of each agent, their decision making and their 

utility. In cases where that utility has not been worth the cost of running an agent, as was the case 

with the WarningAgent, decisions can be taken at the design stage to address this. Figure 26 shows 

the route a message takes through the system, this gives the developer assurance that the system is 

taking the appropriate steps, but also highlights the possible overheads needed to ensure safety. By 

seeing this in a diagrammatical model, the risk to system transparency becomes clear, and steps can 

be taken at design stage to address this issue, where appropriate. 

Initially, the messaging application was being developed as a stand-alone application, much like the 

PlayMessenger application discussed in Chapter 1 on page 19. Concurrent research and the surge in 

popularity of smart phones and social media applications meant that this initial idea had to be 

abandoned in favour of an approach that would provide SafeChat functionality to any messaging 

application. Efforts therefore focused on initialising the multi-agent system from the messaging 

application. 

In designing the ontology, it was clear that selecting the classes and defining their relationships closely 

would be the key to producing a working, effective ontology. The use of diagrammatical tools in 

mapping these relationships proved to be crucial in defining these relationships correctly. 



91 
 

Chapter 4: Implementing the SafeChat System  

4.1 Introduction 

This chapter will describe the implementation of the SafeChat system components. It will discuss the 

development of the code and articulate decisions taken to ensure that system functionality is as 

intended. Problems encountered will be examined along with solutions developed to solve them. 

Images will be used extensively in this chapter to illustrate points of discussion. 

4.2 The Agent System  

The agent system was developed in the NetBeans IDE, using the Java programming language. In order 

for the agents to function properly the Java Agent Development (JADE) libraries must be imported 

into the project so that they can be called upon once the agents are instantiated from the agent class. 

As seen in figure 32, there are two libraries, the jade.jar and the commons-codec-1.3.jar. 

 
Figure 32: The agents created in the NetBeans IDE 

Once the libraries are imported the agents can be developed and will call on them for a variety of 

functions. In figure 33, in code lines 8 through to 11 library components are being called to enable the 

java class to function as an agent in the JADE environment. 

 
Figure 33: LookForAgents code snippet 



92 
 

In NetBeans, agents can be launched by providing the appropriate runtime arguments in the project 

properties menu. The command -gui will ensure that the JADE GUI will boot so that agents can be 

tracked, checked, monitored or terminated. Each agent argument then needs a unique identifier or 

name and the argument for each agent is; uniqueName:packageName.AgentName. In figure 34 the 

SafeChat system agents are being instantiated all at once and the GUI is being loaded from the 

argument line. 

 

Figure 34: The runtime arguments to create an instance of each agent and launch the JADE GUI 

Figure 35 shows the agents running in the JADE GUI with the unique names that were allocated in 
the runtime arguments. 

 
Figure 35: All agents running from the JADE GUI 



93 
 

All agents in the SafeChat system register their services with the Directory Facilitator, which acts as a 

registry for available services information for all agents so that other agents can find them and are 

aware of services offered. This also helps to check that the agents are behaving as expected. 

 
Figure 36: Agents successfully registered with the Directory Facilitator 

Once the agents are setup and running, their individual functionality can be added. The LookForAgents 

agent is merely a housekeeping agent and therefore only the four active agents will be discussed in 

detail in this section. 

The Notification Agent 
This agent has absorbed the functionality of an earlier agent, the Warning agent. In the event of a user 

transmitting personal data, this agent displays a warning to the user and notifies the user’s registered 

parent that a transgression has occurred. 

To achieve this, the agent has a MessageListener class and the following methods;  

 a setup method which defines the agents name, location and services  

 a registerService method which registers the defined services with the directory 

facilitator 

 an action method which receives messages and performs actions based on their 

content, seen in figure 37 



94 
 

 
Figure 37: The notification agent action method 

The Detection Agent 
This agent will receive messages from the instant messaging application and from the ontology and 

send the content to the profile agent and the threat level agent. For the purposes of testing, messages 

have been hard coded into this agent so that system functionality can be thoroughly tested. 

This agent is made up of the following components; 

 a setup method which defines the agents name, location and services  

 a SimpleBehaviour which allows messages to be sent to the other agents in the 

system 

 two action methods, one to send a message to the profile agent, whilst the other 

sends a message to the threat agent, seen in figure 38 

 a registerService method which registers the defined services with the directory 

facilitator 

 
Figure 38: The detection agent action method sending a message to the threat agent 



95 
 

The Profile Agent 
The profile agent maintains a record the user’s personal details, again in the prototype system this has 

been hardcoded for ease of testing, but in a live application setting, this information would be drawn 

from the details stored in the messaging application, or set up by the parent. This agent checks the 

content of received messages against the stored details and then sends a message to the notification 

agent based on the outcome of the test. 

 
Figure 39: The profile agent action method which compares the message content with user details 

 

This agent contains the following code components; 

 a setup method which defines the agents name, location and services 

 a registerService method which registers the defined services with the directory 

facilitator  

 a MessageListener class which allows messages to be received by the agent 

 an action method which has been designed to cycle through user details to look for 

any matches and take actions based on the result of the test. If the message does not 

match any stored details it is allowed to progress and no action is taken. If a match is 

found, the message is blocked, seen in figure 39. 

The Threat Agent 
This agent provides two main services, it calculates and maintains the current threat level for a given 

conversation and based on that, provides feedback to the user on the safety level of a given 

conversation. It receives messages from the detection agent. 

This agent contains the following code components; 

 a setup method which defines the agents name, location and services 



96 
 

 a registerService method which registers the defined services with the directory 

facilitator  

 a MessageListener class which allows messages to be received by the agent 

 an action method which “listens” or waits for a message to be received, once a 

message is received the agent converts the string into a numerical value and then 

breaks the numerical value down to ascertain the presence and type of meeting 

elements recorded in the code. Once this has been done the threat level is calculated 

and the safety level is generated based on this calculation. This information is then 

passed to a file so that the current threat level can be recorded, and the safety level 

can be displayed to the user. 

Figure 40 shows a part of the code responsible for receiving a message in string format. The 

integer. parseInt instruction (on code line 71) converts the content of the string into an integer 

value. This integer value is then broken down into separate numerical values, with each number 

signifying the presence, or otherwise of a meeting element. The message was originally made 

up of three characters in a binary format. For example, 010 or 111, each character represents a 

meeting element with 1 indicating the presence of an element and 0 meaning this particular 

element is not present.  

 
Figure 40: Conversion of string to integer and allocation of meeting element values 



97 
 

Initial calculations using the three-digit message, or code produced some success, but if the leading 

element was not present and the message started with a zero, the calculation did not work. This is 

because a mathematical calculation is being used on a numerical value to break it down into separate 

values. This means that the zero will be discounted by the programme as though it does not exist and 

an incorrect result is returned. To overcome this a simple check bit has been included at the start of 

the code with a value of 3. This ensures that the number never starts with a zero and the correct values 

are allocated to each element.  

 
Figure 41: Creation and calculation of safety level for user   

Figure 41 shows the code snippet that allocates a safety level for the current conversation. This could 

be communicated to the user to help them monitor their own safety. 

Refining the Decision-Making Process 
In the SafeChat system, the threat level agent needs to monitor messages and conversation and 

calculate a level of threat based on the presence of elements that make up a meeting arrangement. 

Currently it does this by assigning a numerical value of each meeting element. This is because in 

conventional conversation, we could see locations and times being discussed frequently, as people 

talk about their day they would note the timing of events as naturally as they would the events 

themselves. The sample conversation in figure 42 is an example of this: 

 
Figure 42: Sample Conversation 



98 
 

A human could quite easily see that this conversation did not contain a meeting arrangement and 

identify as safe to let this conversation continue. As long as the intention part of an ontology was 

carefully coded the computer would detect a location and a time in this conversation. If the system 

elevates the threat for every instance of a location and time element, the system would report false 

positives, figure 43 shows a sample conversation that has two locations and an intention.  

 

Figure 43: Meeting elements in the sample conversation 

If we counted every element when used the threat level would continue to grow. If this was the case, 

the system would take action against the conversation in figure 41, but this would be a false positive.  

 

Figure 44: Threat level calculation 

Without some way of further refining the decision-making process the system would likely encounter 

a high number of false positives and be rendered all but useless. The whole premise is for the system 



99 
 

to be protective without being restrictive, as identified previously, if the system proved to be 

restrictive or problematic for users, they would stop using it or look for more open, unsafe 

alternatives. 

The system is set therefore, to record the last known threat level at an element level, so that it knows 

if a particular element has been present in the conversation previously. And the system is coded not 

to increase the threat level when another element of the same kind is recorded. 

Figure 44 is the code which controls the threat level calculation, the time and location elements are 

set to a value of 1 if they are present, even if they were present previously. testLoc is the current 

location value and lastLoc is the previous location value in code line 99, regardless of both values, the 

result will be a value of 1 if a location has been discussed. Finally, the intention element carries a 

higher value that the other meeting elements. This is because an intention is a definite statement 

about a meeting and cannot relate to erroneous discourse, so when an intention is present the threat 

will always be greater. By allocating the value of 2 to the intention element we ensure that the safety 

level of the conversation is set to the value red whenever it is accompanied by another element and 

amber when it is the lone element present.  

4.3 The Messaging System  

Initial attempts at creating a messaging application failed, because they were being created in the 

same environment as the chat agents.  A messaging application has been developed in its own 

environment to enable testing of the system. The application is in two parts; the chat server and the 

chat client, as seen in figure 45. 

The chat application provides a range of functionality; it incorporates a database to register and 

authenticate users. For this prototype system, a local database has been configured to enable testing 

and ease of validation using XXAMP. The system also provides functionality for a contacts or friends 

list and sending/receiving messages. Development of the chat system ceased when it became clear 

that focus needed to shift from a single child safe application, to a system that could be adapted or 

plugged in to any online communication medium. 

 



100 
 

 
Figure 45: All SafeChat java applications running independently 



101 
 

The Chat Server 

The chat server application needs to be running before the chat client can run. The client logs on to 

the server and the server application opens the connection to the user database to authenticate users. 

It is made up of five java classes, these are; 

 the ChatServer class is the main class and instantiates the application, defines the 

server interface (seen in figure 46) and calls upon functionality from other classes, 

such as SendS.  

 the DatabaseConnection class opens the connection to the database, populates the 

database with new user details and updates and retrieves the friend or contacts 

information from the database. 

 the ReceiveS class enables the chat server to receive messages 

 the SendS class handles outgoing messages  

 the User class manages information about currently logged in users  

 
Figure 46: The chat server interface 

The Chat Client 

The chat client allows users to log on, register and communicate with their friends. Initially this was to 

be developed further and be the only application that would offer the SafeChat multi-agent system 

protection, but this application still provides a valuable resource for testing and developing the system 

as a whole.  It contains the following java classes; 

  the AddPanel class controls elements of the client user interface 

 the ChatClient class is the main class and controls other elements of the user 

interface and calls upon methods from the other classes in the chat client application 

 the ChatPanel class controls some user interface elements, updates and refreshes 

the contents of the chat window and friend’s list 

 the Friends class manages messages between friends  



102 
 

 the Login class connects to the database to authenticate users and in the event of a 

successful login, instantiates the SafeChat multi-agent system 

 the Options class provides an options interface 

 the Receive class handles incoming messages 

 the Register class handles new user registration, it populates the database with user 

details and provides a layer of data validation 

 the SendMessage java class handles all outgoing messages 

 the StartProfileAgent class creates the start-up environment for the SafeChat agents 

and calls the agent from the chatagents.jar, seen in figure 47 

 
Figure 47: Chat client setup to instantiate the SafeChat agents  

4.4 Implementing the Ontology  

Protégé has been selected as the best tool to design and implement an ontology solution for the Safe-

Chat system. It offers a package of tools and add-ons to construct ontology solutions using the Web 

Ontology Language (OWL) W3 (2010: Online) developed as a vocabulary extension to the Resource 

Development Framework (RDF) (MacFarlane and Holmes, 2009). OWL is a semantic mark-up language 

developed by the WC3 to allow the sharing and publication of ontology solutions on the Internet 

(Horridge et al. 2004). 

Creating ontology in Protégé involves creating its classes and subclasses and then defining the 

relationships between those classes. 

A meeting arrangement is made up of three elements; a time, a location and an intention, these 

elements would then make up the main classes in the ontology, seen in figure 48. 



103 
 

 
Figure 48: The three element classes with their relationships 

Setting up the location class is more challenging, but it is possible to add fine grain definition by adding 

more subclasses. For example, it can be specified that a location can have the subclass Cinema, and 

then go on to add that Cinema can also have the subclasses of all other terms that describe a cinema 

including brand names and slang terms like movies, pictures and Apollo. Similarly, the location 

restaurant can have the subclasses cafe, diner and McDonalds. Each subclass can be further broken 

down into further subclasses (MacFarlane and Holmes, 2009). MacDonald’s is an example of this in 

figure 49. 

 
Figure 49: Here subclasses have been added to the location class 

An intention can be made up of many phrases, for example “let’s meet”, “meet me” or “can I see 

you?”  This class and the time class are trickier to construct as words are used in phrases, rather than 

one word identifiers, as seen in figure 50. 



104 
 

 
Figure 50: The Intention subclass 

Another complication when it comes to interacting with natural language is that we often have several 

ways of saying the same thing. This is further complicated when the use of colloquial slang is 

introduced into the vocabulary. We can overcome this by applying relationships accurately (as can be 

seen in the time class in figure 51) and including known slang and abbreviations in the ontology.  

 
Figure 51: The time class 

Given the range of relationships, and the complicated structure (seen in figure 52), it is important to 

maintain a logical, informed decision making process for the agents using the ontology. To check the 



105 
 

logic applied to the ontology, a reasoner can perform a logic test on the ontology, Protégé comes with 

several built-in reasoners and they have been developed for different kinds of ontologies. 

 
Figure 52: The SafeChat Meeting Ontology classes 

 



106 
 

4.5 Summary 

This chapter examined the implementation of the three sub-systems that make up the SafeChat 

system. The agents within the multi-agent system have been presented and their respective methods 

were discussed and their usage demonstrated. The agent framework is presented and this illustrates 

the environment that the agents inhabit once instantiated. Work on refining the agent decision 

making process is also discussed in this chapter. Initially the agents had a three-digit code to work 

with, but this was problematic and the solution identified to overcome this problem has been 

presented. The weightings for each of the elements within the meeting ontology could not be equal, 

because the way language is used must be considered. 

The messaging system is presented, and although it is now not necessary for the SafeChat system, 

working on it and developing a working system helped inform the multi-agent system development, 

and provided insight into how these systems operate. 

The last sub-section of this chapter presents the implementation of the ontology design. Here, Protégé 

has been used to articulate a meeting, using classes, sub-classes and relationship definition. 

 

 
  



107 
 

Chapter 5: Testing and Results  

5.1 Introduction 

This chapter will focus on the results of testing each component part of the SafeChat System. In cases 

where initial results did not match the desired or expected outcome in the first instance, this will be 

reported alongside steps taken to resolve the issues. 

5.2 SafeChat Multiagent System Results 

This part of the thesis will focus on presenting the results of testing each aspect of the multi-agent 

system, from launching the agents to individual agent performance.  

Launching the Agents 
All agents launch successfully when the system is started (figure 53), they all specify their name and 

location information as expected. The only issues encountered with this part of system performance 

were encountered early on in the development stage, when the java integrated development 

environment (IDE) was changed from JCreator to NetBeans. This was a deliberate move to a more 

industry standard IDE, JCreator did not offer as much integration support as NetBeans and agents had 

to be started from command line driven batch files. The move to NetBeans meant that agent start-up 

arguments could be developed and defined from within the IDE. 

The java files compile successfully and when the project runs the JADE user interface is triggered as 

expected and can be used to verify that the agents have registered with the directory facilitator. 

Agent Functionality 
A message is sent from the Detection agent to test the functionality of the Profile agent; this message 

can be changed to test weather personal details are successfully blocked or are allowed through. Initial 

problems were encountered when all agents ran at the same time, some outputs became garbled as 

all agents worked at the same time. This was resolved by using the doWait (); java command and 

carefully cascading the running order of the agents. 

 



108 
 

 
Figure 53: All agents running successfully 

 

If the message contains personal data, it is successfully blocked and the Notification agent successfully 

receives the appropriate instructions to warn the user and nominated parent, as seen in figure 54. If 

the message does not contain personal details then the message is allowed thorough and the 

Notification agent does not take action, this can be seen in figure 55. 

 



109 
 

 
Figure 54: Output if the message contains personal details 

Test results for the threat level agent are encouraging. The message is successfully received from the 

Detection agent and takes the format of a four-digit string (e.g. 3010). The Threat agent then converts 

this to a numerical value and then performs a mathematical calculation to break 3010 down into single 

digit values for the check bit, location, time and intention variables. Figure 56 shows this is being done 

accurately by the prototype system. 

 
Figure 55: Output if the message does not contain personal details 



110 
 

 
Figure 56: Output of the threat agent message calculation 

Once the threat agent has broken the message down correctly it then allocates a value to the current 

time, location and intention variables. This is based on not only the current value of each meeting 

element, but also on the last known element in the conversation. This is important because the 

meeting arrangements may take place over several conversation sessions, and would certainly involve 

more than one message. The threat agent is also responsible for setting a safety level for the current 

conversation, figure 57 shows that outputs are changing appropriately and that the threat and safety 

levels are working as intended. 

 
Figure 57: Output of the threat agent threat and safety levels 

The threat level agent successfully creates a meet.txt file to record the last known threat levels for 

each element. This can be used to inform the agents decision making process.  

  



111 
 

5.3 SafeChat Chat Application Results 

Once the XXAMP application launches the apache server and the MySQL server, the chat server 

application can be started, as seen in figure 58. 

 
Figure 58: XXAMP control panel 

This needs to be running because the chat server application needs to connect to the MySQL database 

to authenticate users. Once this is running, the chat client application can be started. Figure 59 shows 

the chat interface that appears when a validated user logs into the application. It also shows the chat 

server monitoring messages being sent through the chat interface. This is where message content 

would be captured by the SafeChat System as it records the message sender, receiver and content.  

 
Figure 59: Chat client running 



112 
 

The next test for the chat application is that of initialising the autonomous agents. For testing purposes 

the Profile agent is being triggered, and will only trigger once an authenticated registered user 

successfully logs into the application. Figure 60 shows that this functionality is working as intended. 

 
Figure 60: Profile agent triggered successfully 

 

5.4 SafeChat Meeting Ontology Results 

There are several ways to examine the ontology prototype available from within the Protégé 

application. Elements can be reviewed by using the search function, this will return information based 

on usage and occurrence and can be seen in figure 61. 



113 
 

 
Figure 61: Result of Protégé search for the “vue” element 

Another way to check that the relationships between classes and elements are set robustly, is to use 

the object property view. This shows component ranges and equivalences and can be seen in figure 

62. 

 
Figure 62: Relationships and ranges in the ontology 

Protégé also provides a class usage view to help ensure that the ontology relationships and uses are 

accurate and informed. This can be evidenced in figure 63. 



114 
 

 
Figure 63: Class usage for the “Movies” element of the ontology 

Another way to test functionality and run bespoke queries on the ontology is to export it into an 

Apache Jena Fuseki local server, as seen in figure 64. Once this has been completed, it is possible to 

load the ontology into memory and execute SPARQL queries on it. 

 
Figure 64: Apache Jena Fuseki server 

Once a query has been executed on the ontology the results can be exported into several file formats 

for closer inspection. Figure 65 shows a SPARQL query to select triple information from the ontology.  



115 
 

 
Figure 65: SPARQL triple query 

 
5.5 Summary 

The testing strategy for the SafeChat system relied on iterative development techniques. Functionality 

was developed for the agents in the multi-agent system, and then the agents were systematically 

executed to ensure behaviour was as expected. This saved time where the same functionality was 

needed in more than one agent, for example, when a message was successfully sent from one agent 

and received by its intended recipient, that code could be re-used in other agents. Each function was 

tested and the results recorded. Figure 66 shows the testing plan for the maintenance of the threat 

and safety levels performed by the threat agent. 



116 
 

 
Figure 66: Threat agent testing plan 

Results were 100% accurate once the check bit had been added to the integer, and around 33% 

accurate before this correction was made. 

The messaging application underwent the same strategy, with each function being tested and 

corrected before moving onto the next function or class. Some problems were encountered triggering 

the agents from the messaging application. This was due to the JADE environment not shutting down 

fully between tests. Once this was discovered and dealt with, the agents triggered successfully all the 

time. 

In testing the ontology, SPARQL was used to ensure that the declared classes and their relationships 

appeared as intended. The Protégé development suite has built in tools to check relationships within 

the ontology are declared accurately. The ontology will need to be integrated with a live system and 

be extended before it can be fully tested. 

Further evidence of testing can be found in Appendix Item D. 

  



117 
 

Chapter 6: Conclusion  

6.1 Introduction 

This thesis has been broken down into six chapters, chapter 1 presented the problem using case 

studies, it reviewed and critically evaluated existing solutions and attempted to define the scope of 

the problem. Chapter 2 contains an examination of the literature and presented research into 

available technologies which may provide a solution to the problem. Chapter 3 presented the 

methodologies used to design the SafeChat system. Chapter 4 discussed the implementation of the 

SafeChat system and each component system was examined and debated. Chapter 5 examined the 

results of testing the SafeChat system. Finally, this chapter presents the conclusion of research that 

began some time ago by the results of a survey inspired by the authors’ concerns about child safety 

online. It culminates in the design, development and implementation of the SafeChat System.  

The research problem and the proposed solution are evaluated against the aims of the research. The 

achievements of the research are discussed as well as the limitations presented by the solution. The 

research began by identifying the problem and the proposed solution eventually became the 

development of a prototype system, comprising a multi-agent system working alongside an 

application specific ontology and an instant messaging application. Iterative development has insured 

that all three component applications have benefited from a degree of testing at various stages to 

ensure effective operation. The current iterations of the multi-agent system, meeting ontology and 

messaging application are presented in this thesis. At the end of this chapter future developments and 

possible future research areas are discussed. 

6.2 Research Findings 

As this work progressed the hypothesis identified was; 

“The development of an intelligent multi-agent monitoring system and application 

specific ontology will provide a safer environment for children and vulnerable adults when 

communicating online.”   

This led to the creation of the development of the SafeChat system, which went through an iterative 

process to provide automated, adaptable and transparent protection in an online setting. 

The main achievement of this study is the creation of working prototypes that will serve as a first step 

towards creating safer environments for children, young people and vulnerable adults communicating 

online. The SafeChat multi-agent system performs as expected and correctly manages and maintains 

a threat and safety level of interactions between users.  



118 
 

The Chat application was superfluous to the system in many ways once the decision to create an 

application independent add-on system was made. It did however, still prove to be useful in proving 

that the agents could be triggered from an external application and in working out when this would 

be appropriate in the conversation life cycle. 

The SafeChat meeting Ontology has moved through three of the four stages of its creation processes: 

specification, conceptualisation and formalisation, and will be fully evaluated once the opportunity to 

work with a live application is realised.  

6.3 Research Contribution 

In this research, the main contributions presented in the thesis are: 

The development of a novel system to monitor adherence to guidelines set out by the government to 

protect personal information and prevent children and vulnerable adults from making meeting 

arrangements autonomously. This novel system was designed to provide or consider the following 

requirements: 

 The SafeChat system will monitor the threat level of discourse autonomously and 

take action should pre-determined safety levels be compromised. 

o The system clearly prevents the transfer of personal data, and as seen in 

figure 54, the system will block such a message and inform the user and 

designated parent that a transgression has occurred 

o The system maintains a threat level and a safety level for discourse by 

tracking the number and type of meeting elements within a conversation 

and calculating a threat level based on these values, as seen in figure 56. 

o Based on the current threat level of the conversation the Threat Agent also 

calculates a safety level for the user and displays this for then, this is 

evidenced in figure 57 and is acting as expected when the values are 

adjusted using the testing plan shown in figure 66. 

 This system will protect the privacy of the child and will not share the details of that 

discourse with anyone. 

o The system will only take action if conversation contains personal 

information or a number of meeting elements which exceeds safety 

parameters and only records the last known threat level,  this ensures that 

all other conversation is allowed freely through the system. 

 The system has been developed to be able to adapt to any other application (e.g. 

Facebook, Skype, etc.) or platform. This will ensure that this solution is available 



119 
 

across the range of popular applications and connectivity devices available now and 

in the future. 

o A simple chat client has been developed and figure 60 shows that the agent 

system can be successfully triggered from a separate environment. 

 The system has been designed to use an application specific ontology, so that other 

ontologies can be developed to respond to other threats, such as cyberbullying or 

radicalisation. 

o Although the meeting ontology has not been tested in a live scenario, 

ontology relationships have been interrogated to ensure that they are fit for 

purpose and the Protégé development tools show that these relationships 

are articulated properly, as seen in figures 61, 62 and 63. This is further 

demonstrated in figure 65, which shows the initial results of a simple 

SPARQL triple query. 

The potential impact of this work is immense, when implemented as a plug-in to widely used chat 

software, for example, Facebook chat, Snap Chat, WhatsApp etc. It will provide a safe environment 

for children to communicate, identifying potential and actual threats, whilst maintaining the privacy 

of the discourse. This potential was demonstrated as part of the testing and evaluation of the system. 

This solution could only be realised by integrating a selection of relevant components, informed by 

the results of current research into artificial intelligence, ontology and agent technologies. 

6.4 Research Limitations 

The inability to secure live testing of the ontology is one limitation of this work, and efforts to secure 

opportunities to do so will continue. 

It has proved to be problematic that no other similar works exist for this problem, there is nothing 

available to evaluate against, and as a consequence, no good practice that can be drawn upon. 

Attempts were made throughout the time of study to work with industry developers in order to 

integrate the system or parts of it, into live communications software. This was never realised, but 

would have provided a wealth of information and direction for future studies. 

The scope of the work attempted proved to be a lot larger than anticipated. The change in focus from 

a single application to a system that could work in any application, whilst absolutely the right decision, 

made development times longer and meant that a large quantity of development time working on the 

chat application, was, on reflection, not fully utilised. 



120 
 

6.5 Future Work 

There are many directions this work could take. Whilst the prototypes presented are functional they 

would benefit from further refinement and added sophistication. This would be better if it was done 

on a live system, so there is a need to resource partners willing to invest some time and manpower 

into the realisation of a complete live, working system.  

The SafeChat meeting ontology requires further consideration in order to be evaluated thoroughly, it 

needs to be expanded and then applied in order for this to be completed. As with all language based 

problems, a solution to the nature of language evolution needs to be sourced and applied to the 

ontology. One idea for this is an artificial neural network, which could be developed to detect new 

slang words, and by analysing the context in which the words are used, apply an informed meaning to 

them. The ontology will also need to be expanded in order to effectively recognise abbreviations and 

text speak. Consideration must also be given to the size of the ontology, as it must fully cover the 

domain of knowledge, but this comes at a cost, computationally speaking as the larger the ontology 

becomes, the longer it will take to process queries. Poor spelling could also render the ontology 

ineffective, a solution to this could be to apply spell checking mechanisms to messages, although this 

could further compromise system transparency.   

Further work on analysing online discourse on a larger scale could theoretically inform the threat 

agents decision making process. This could be done by anonymising existing data and using Hadoop 

to look for patterns of meeting arrangements, which in turn could inform a more defined set of rules 

for threat management, possibly including the introduction of probability measures. 

Once a working system has been completed, the system could easily be adapted to manage other 

threats, for example, cyberbullying, identity theft etc. 

As we develop more sophisticated and higher speed networks and communication applications, voice 

and video based systems will be employed more commonly. Applications like Apple’s FaceTime and 

Microsoft’s Skype already employ these features and Sony have launched their PlayStation Network, 

which utilises voice over IP communications. This means that the SafeChat solution would become 

obsolete if these technologies became more commonplace. Future iterations must begin to look at 

ways to provide the same level of safety across these mediums, which, because of their higher 

bandwidth usage will make transparency of use, a more vital consideration. 

It is the authors’ intention to present this work to UNICEF in order to contribute to the implementation 

of the articles set out in their charter on the rights of the child.  



121 
 

References 
Aguirre, A., Brynjolfsson, E., Calo, R., Dietterich, T., George, D., Hibbard, B., Hassabis, D., Horvitz, E., 
Kaelbling, L.P., Manyika, J., Muehlhauser, L., Osborne, M., Parkes, D., Roff, H., Rossi, F., Selman, B. and 
Shanahan, M. (2015) Research priorities for robust and beneficial artificial intelligence. Available at: 
http://futureoflife.org/data/documents/research_priorities.pdf (Accessed: 1 May 2016). 

AI open letter - FLI - future of life institute (no date) Available at: http://futureoflife.org/ai-open-letter/ 
(Accessed: 1 May 2016) 

Al-Rfou, R., Pickett, M., Snaider, J., Sung, Y.-H., Strope, B. and Kurzweil, R. (2016) Conversational Contextual 
cues: The case of Personalization and history for response ranking. Available at: 
https://arxiv.org/pdf/1606.00372v1.pdf (Accessed: 26 July 2016). 

Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R. (2012) A Semantic Web Primer 3rd Ed. MIT Press. 
Cambridge, Massachusetts, London, England.  

Association of Modern Technologies Professionals. (2016) Software development methodologies. Available 
at: http://www.itinfo.am/eng/software-development-methodologies/ (Accessed: 2 August 2016) 

Aylett, R., Brazier, F., Jennings, N., Luck, M., Nwana, H. and Preist, C. (1998) Agent Systems and 
Applications. The Knowledge Engineering Review, vol. 13, no. 3, pp. 303-308. 

Ballatore, A., Bertolotto, M. and Wilson, D.C. (2014) Linking geographic vocabularies through WordNet.  
Annals of GIS, 20(2), pp. 73–84. 

Bauer T. and Leak D.B. (2002) Handling Complex Information Environments: A Multi-Agent Framework. 
Proceedings of the Fourth International Bi-Conference Workshop on Agent-Oriented Information Systems 

BBC [c] (2016) Former Sunderland footballer Adam Johnson ‘abused position in society’. Available at: 
http://www.bbc.co.uk/news/uk-england-35559931 (Accessed: 1 May 2016). 

Bellifemine, F., Caire, G., Greenwood, D. (2007) Developing Multi-Agent Systems with JADE. John Wiley and 
Sons Ltd. Chichester, England. 

Belk, R.W. (ed.) (2007) Handbook of qualitative research methods in marketing. Cheltenham, UK: Edward 
Elgar Publishing. 

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G. (2008) JADE: A software framework for developing multi-
agent applications. Lessons learned. Information and Software Technology vol. 50, pp. 10-21   

Bellifemine, F., Caire, G., Trucco, T., Rimissa, G., Mungenast, R. (2007) JADE Administrators Guide, Online 

Bellifemine, F., Poggi, A., Rimassa, G. (2001) Developing Multi-Agent Systems with a FIPA-Compliant Agent 
Framework. Software- Practice and Experience 31, 103-128 

Berners-Lee, T. Hendler, J. Lassila, O. (2001) The Semantic Web. Scientific American, May 2001. 

Bhattacharya, J. (2014) How Google processes queries in a semantic web environment. Available at: 
https://ahrefs.com/blog/google-processes-queries-semantic-web-environment/ (Accessed: 1 May 2016). 

Bilgin, G., Dikmen, I. and Birgonul, M.T. (2014) Ontology evaluation: An example of delay analysis. Procedia 
Engineering, vol. 85, pp. 61-68. 

Bothun, D. (2014) Consumer Intelligence Series: Technology, media and content usage among kids and 
teens. PCW LLP. 



122 
 

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopoulos, J. (2004) Tropos: An Agent-Oriented 
Software Development Methodology. Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203-
236. 

Brewster, C., Alani, H., Dasmahapatra, S. and Wilks, Y. (2004) Data driven Ontology evaluation. Available at: 
http://www.cbrewster.com/papers/BrewsterLREC.pdf (Accessed: 19 July 2016). 

Brickley, D. Guha, R. V. (eds) (2014) RDF schema 1.1. Available at: https://www.w3.org/TR/rdf-schema/ 
(Accessed: 31 May 2016) 

Calero, C., Ruiz, F., Piattinni, M. (eds) (2010) Ontologies for Software Engineering and Software Technology. 
Springer-Verlag. Berlin, Germany. 

Callaghan, V. Clarke, G. Pounds-Cornish, A. Sharples, S. (2000) Buildings as Intelligent Autonomous Systems: 
A Model for Integrating Personal and Building Agents. Conference proceedings: 6th Intelligent Autonomous 
Systems.  

Cambridge free English dictionary and thesaurus (2016) Available at: http://dictionary.cambridge.org/ 
(Accessed: 1 May 2016). 

Child exploitation and online protection centre - internet safety (2013) Available at: 
https://www.ceop.police.uk/Media-Centre/Press-releases/2013/ALARMING-NEW-TREND-IN-ONLINE-
SEXUAL-ABUSE/ (Accessed: 1 May 2016). 

Child exploitation and online protection centre - internet safety (no date) Available at: 
https://www.ceop.police.uk/safety-centre/ (Accessed: 1 May 2016). 

Chitu, A. (2010) How Google translate works. Available at: 
http://googlesystem.blogspot.co.uk/2010/08/how-google-translate-works.html (Accessed: 26 July 2016). 

Connolly, D., van Harmelen, F., Horrocls, I., McGuinness, D., Patel-Schneider, P., Stein, L. (2001) DAML+OIL 
(march 2001) reference description. Available at: https://www.w3.org/TR/daml+oil-reference (Accessed: 31 
May 2016) 

Coppin chapter 19.ppt (2016) Available at: http://studylib.net/doc/15495156/coppin-chapter-19.ppt 
(Accessed: 6 September 2016). 

Corcho, O., Fernandez-Lopez, M., Gomez, Perez, A., Lopez-Cima, A. (2004) Building Legal Ontologies with 
Methontology and WebODE. Law and the Semantic Web. 

Dale, J. (2016) Welcome to the foundation for intelligent physical agents. Available at: http://www.fipa.org/ 
(Accessed: 1 May 2016). 

Das, S.K. 2008, Foundations of decision-making agents: logic, probability and modality, World Scientific, 
London;Singapore;. 

Davies, J., Fensel, D., Van Harmelen, F. 2007, Towards the Semantic Web (Ontology Driven Knowledge 
Management). John Wiley and Sons Ltd. Chichester, England.  

DeAngelis, S.F. and Solutions, E. (2016) The growing importance of natural language processing. Available 
at: http://www.wired.com/insights/2014/02/growing-importance-natural-language-processing/ (Accessed: 
21 July 2016). 

Dictionary [a] (2016) The definition of voice recognition. Available at: 
http://www.dictionary.com/browse/voice-recognition (Accessed: 1 May 2016). 



123 
 

Dictionary [b] (2016) ‘The definition of natural language processing’, in Available at: 
http://www.dictionary.com/browse/natural-language-processing (Accessed: 21 July 2016). 

Engadget (2011) IBM’s Watson supercomputer destroys humans in jeopardy | Engadget. Available at: 
https://www.youtube.com/watch?v=WFR3lOm_xhE (Accessed: 1 May 2016). 

FaCT++ Reasoner (2016) Available at: http://owl.cs.manchester.ac.uk/tools/fact/ (Accessed: 19 July 2016). 

Features | Roo kids (2016) Available at: http://www.rookidsapp.com/features/ (Accessed: 1 May 2016). 

Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L. and Patel-Schneider, P.F. (2001) OIL: an ontology 
infrastructure for the Semantic Web, IEEE Intelligent Systems, vol. 16, no. 2, pp. 38-45. 

Fernandez Lopez, M. (1999) Overview of Methodologies For Building Ontologies, In Proceedings of the IJCAI-
99 workshop on Ontologies and Problem-Solving Methods (KRR5) Stockholm, Sweden. 

Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994) KQML as an agent communication language.  ACM, 
pp. 456. 

Gallagher, S. (2015) Cortana for all: Microsoft's plan to put voice recognition behind anything. New York: 
Condé Nast Publications, Inc. 

Gasevic, D., Djuric, D., Devedjic, V. (2006) Model Driven Engineering and Ontology Development. Springer-
Verlag. Berlin, Germany.  

Genesereth, M.R., Fikes, R.E., Bobrow, D., Brachman, R., Gruber, T., H, P., Letsinger, R., Lifschitz, V., 
Macgregor, R., Mccarthy, J., Norvig, P., Patil, R. and Schubert, L. (1992) Knowledge interchange format 
version 3.0 reference manual. Available at: 
https://www.cs.auckland.ac.nz/courses/compsci367s2c/resources/kif.pdf (Accessed: 31 May 2016) 

Gómez-Pérez, A. (2001) Evaluation of Ontologies. International Journal of Intelligent Systems, vol. 16, no. 3, 
pp. 391-409. 

Google [a] (2016) Available at: https://www.google.co.uk/webhp?sourceid=chrome-
instantandion=1andespv=2andie=UTF-8#q=how+old+was+winston+churchill+when+he+died (Accessed: 1 
May 2016). 

Google [b] (2016) Available at: https://www.google.co.uk/webhp?sourceid=chrome-
instantandion=1andespv=2andie=UTF-8#q=internet%20usage%20statistics%20uk (Accessed: 1 May 2016). 

Google [c] (2016) Available at: https://www.google.co.uk/webhp?sourceid=chrome-
instantandion=1andespv=2andie=UTF-8#q=agent+definition (Accessed: 12 May 2016). 

Google [d] (2016) Available at: https://www.google.co.uk/webhp?sourceid=chrome-
instantandion=1andespv=2andie=UTF-8#q=deixis (Accessed: 21 July 2016). 

Graham, P. (2002) A plan for Spam. Available at: http://www.paulgraham.com/spam.html (Accessed: 26 July 
2016) 

Greer, D. and Hamon, Y. (2011) Agile Software Development. Software: Practice and Experience, vol. 41, no. 
9, pp. 943-944. 

Gruber, T. (1993) Towards principles for the design of ontologies used for knowledge sharing. In Guarino, N., 
Poli, R. (Ed’s) International Workshop on Formal Ontology in Conceptual Analysis and Knowledge 
Representation. Padove, Italy 



124 
 

Guarino, N. (1998) Formal Ontology in information systems: Proceedings of the 1st international conference 
June 6-8, 1998, Trento, Italy, Vol. 1. United States: IOS Press, US. 

Guba, E. G., and Lincoln, Y. S. (2005). Paradigmatic controversies, contradictions, and emerging confluences.  
In Denzin N. K., and Lincoln, Y. S. (Ed’s), The sage handbook of qualitative research (3rd Ed.).  Sage pp191-
215 

Hawkins, J., Blakeslee, S. (2005) On Intelligence. Owl Books. New York, USA.  

Hlomani, H. and Stacey, D. (2014) An extension to the data-driven ontology evaluation. Proceedings of the 
2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014) 

Holmbeck, G. N., Li, S. T., Schurman, J. V., Friedman, D., and Coakley, R. M. (2002). Collecting and managing 
multisource and multimethod data in studies of paediatric populations. Journal of Paediatric Psychology, 27, 
pp 5–18 

Home Office and Ministry of Justice (2013) An overview of sexual offending in England and wales. Available 
at: https://www.gov.uk/government/statistics/an-overview-of-sexual-offending-in-england-and-wales 
(Accessed: 1 May 2016). 

Horridge, M., Knublauch, H., Rector, A, Steverns, R., Wroe, C. (2004) A Practical Guide to Building Ontologies 
Using the Protégé- OWL Plugin and CO-ODE Tools. The University of Manchester, United Kingdom.  

Hsu, F. (1999) IBM's Deep Blue Chess grandmaster chips. IEEE Micro, vol. 19, no. 2, pp. 70-81 

Humphreys, K., Demetriou, G. and Gaizauskas, R. (1999) ‘Two applications of information extraction to 
biological science journal articles: Enzyme interactions and protein structures’, Biocomputing 2000, . doi: 
10.1142/9789814447331_0048. 

Hunt, K. (2014) Ex-parish council chairman Christopher Worrall jailed after booking Tunbridge wells hotel to 
abuse teenage boy groomed on Facebook. Available at: http://www.kentonline.co.uk/tunbridge-
wells/news/parish-council-chairman-jailed-21139/ (Accessed: 1 May 2016). 

IBM systems magazine - it’s technical, dear Watson (2016) Available at: 
http://www.ibmsystemsmag.com/ibmi/trends/whatsnew/It%E2%80%99s-Technical,-Dear-Watson/ 
(Accessed: 1 May 2016). 

IBM. (2016) Text Analytics, Watson, and healthcare. Available at: https://vimeo.com/25516026 (Accessed: 1 
May 2016). 

Innovation, I. (2015) Stephen hawking: Should we fear artificial intelligence? Available at: 
http://www.internationalinnovation.com/stephen-hawking-should-we-fear-artificial-intelligence/ 
(Accessed: 1 May 2016). 

Investors (2015) Facebook reports First quarter 2015 results. Available at: 
http://investor.fb.com/releasedetail.cfm?ReleaseID=908022 (Accessed: 1 May 2016). 

Irowe, S. (2012) Pros and cons of research techniques. Available at: 
https://staceylrowe.wordpress.com/2012/01/16/pros-and-cons-of-research-techniques/ (Accessed: 11 
December 2016). 

JADE Ontologies (no date) Available at: 
http://www.iro.umontreal.ca/~vaucher/Agents/Jade/Ontologies.htm (Accessed: 1 May 2016). 

jade-develop] getting protégé OWL individuals exported into JADE agent knowledgebase (no date) Available 
at: http://jade.tilab.com/pipermail/jade-develop/2010q2/015306.html (Accessed: 1 May 2016). 



125 
 

Jaimes, A., Sebe, N. (2007) Multimodal human–computer interaction: A survey. Computer Vision and Image 
Understanding, vol. 108, no. 1, pp. 116-134. 

Jakus, G., Milutinovic, V., Omerovic, S., Tomazic, S. (2013) Concepts, Ontologies, and Knowledge 
Representation. Springer, London, United Kingdom. 

Jurafsky, D., Martin, J. (2008) Speech and Language Processing (An Introduction to Natural Language 
Processing, computational Linguistics and Speech Recognition). Prentice-Hall, Inc. New Jersey, USA. 

K9 web protection (2010) Available at: http://www1.k9webprotection.com/ (Accessed: 1 May 2016). 

Kablan, A. (2016) AI is not a threat to humanity, but an Internet of ‘smart’ things may be! Available at: 
http://techcrunch.com/2016/04/20/artificial-intelligence-is-not-a-threat-to-humanity-but-an-internet-of-
smart-things-may-be/ (Accessed: 1 May 2016). 

Kemp, R., Moore, A. (2007) Privacy. Library Hi Tech vol. 25, pp. 58-57  

Kngine (2012) Ask me anything. Available at: 
http://kngine.com/#Know!q=how%20old%20was%20Winston%20Churchill%20when%20he%20died 
(Accessed: 1 May 2016). 

Kothari, A. (2004) Ghengis - A Multi-Agent Carpooling System. PDF, Online. 

Larose, G. and Kruse, P. (2005) What is ontology? - definition from WhatIs.com. Available at: 
http://whatis.techtarget.com/definition/ontology (Accessed: 1 May 2016). 

Liddy, E.D. (2001) Natural language processing recommended citation. Available at: 
http://surface.syr.edu/cgi/viewcontent.cgi?article=1043andcontext=istpub (Accessed: 21 July 2016). 

Loom (2006) Available at: http://www.isi.edu/isd/LOOM/ (Accessed: 31 May 2016). 

Lopez, M.F., Gomez-Perez, A., Sierra, J.P. and Sierra, A.P. 1999, "Building a chemical ontology using 
Methontology and the Ontology Design Environment" IEEE Intelligent Systems and their Applications, vol. 
14, no. 1, pp. 37-46 

Lord, P. (2010) Components of an Ontology. Available at: http://ontogenesis.knowledgeblog.org/514 
(Accessed: 1 May 2016). 

Lur, X. (2012) Kngine: The smartest search engine ever? Available at: http://techxav.com/kngine-the-
smartest-search-engine-ever/ (Accessed: 1 May 2016). 

M. Uschold, and M. King.  (1995) Proc. of IJCAI95's WS on Basic Ontological Issues in Knowledge 
Sharing, Montreal, Canada, 

MacFarlane, K., Holmes, V. (2009) Agent-Mediated Information Exchange: Child Safety Online, in 
Management and Service Science. MASS 2009.  

Makuch, E. (2014) Minecraft passes 100 million registered users, 14.3 million sales on PC. Available at: 
http://www.gamespot.com/articles/minecraft-passes-100-million-registered-users-14-3-million-sales-on-
pc/1100-6417972/ (Accessed: 1 May 2016). 

Manning, C., Schutze, H. (2001) Foundations of Statistical Natural Language Processing. MIT Press. 
Cambridge, Massachusetts, London, England.  



126 
 

Martin, A. (2014) ‘Canterbury cannibal’ found GUILTY of sexually grooming a child. Available at: 
http://www.dailymail.co.uk/news/article-2699897/Canterbury-cannibal-told-14-year-old-girl-wanted-kill-
eat-GUILTY-sexually-grooming-child.html (Accessed: 1 May 2016). 

Mathiesen, K. (2013) The Internet, Children and Privacy: The case against parental monitoring. Springer 
Science and Business, Dordrecht: online. 

McGuire, M., Dowling, S. (2013) Cyber-crime: A review of the evidence, Home Office Research Report 75, 
Chapter 3: Cyber-enabled crimes-sexual offending against children 

McKay, V. (1988- 2016) What is a software development process? Available at: 
http://www.selectbs.com/analysis-and-design/what-is-a-software-development-process (Accessed: 1 
August 2016). 

Microsoft (2015) Accessibility in windows 10. Available at: 
https://www.microsoft.com/enable/products/windows10/ (Accessed: 1 May 2016). 

Misra, S.C. and Singh, V. (2015) Conceptualizing open agile software development life cycle (OASDLC) 
model. International Journal of Quality and Reliability Management, vol. 32, no. 3, pp. 214-235. 

Noy, N.F. and McGuinness, D.L. (2001) Ontology development 101: A guide to creating your First Ontology. 
Available at: http://protege.stanford.edu/publications/ontology_development/ontology101.pdf (Accessed: 
2 May 2016). 

NSPCC (2016) Grooming. Available at: https://www.nspcc.org.uk/preventing-abuse/child-abuse-and-
neglect/grooming/ (Accessed: 1 May 2016). 

Nuance. (2016) Nuance healthcare. Available at: http://www.nuance.com/for-healthcare/resources/clinical-
language-understanding/ontology/index.htm (Accessed: 19 July 2016). 

OECD (2012) The protection of children online. Available at: 
https://www.oecd.org/sti/ieconomy/childrenonline_with_cover.pdf (Accessed: 1 May 2016). 

Ogden, C.K., and Richards, I.A. (1927). Meaning of meaning. Harcourt, Brace and Company, New York 

OWL - semantic web standards (2004) Available at: https://www.w3.org/2001/sw/wiki/OWL (Accessed: 1 
May 2016). 

Pal, D., Mitra, M. and Datta, K. (2014) Improving query expansion using WordNet.  Journal of the Association 
for Information Science and Technology, vol. 65, no. 12, pp. 2469-2478. 

Parents’ guide to the Internet (2001) Available at: http://www2.ed.gov/pubs/parents/internet/index.html 
(Accessed: 1 May 2016). 

Press Association. (2013) Nearly one in 10 children gets first mobile phone by age five, says study. Available 
at: http://www.theguardian.com/money/2013/aug/23/children-first-mobile-age-five (Accessed: 1 May 
2016) 

Princeton (2016) About WordNet - WordNet - about WordNet. Available at: https://wordnet.princeton.edu/ 
(Accessed: 19 July 2016). 

Purcell, J.E. (2016) Comparison of software development Lifecycle methodologies. Available at: 
http://software-security.sans.org/resources/paper/cissp/comparison-software-development-lifecycle-
methodologies (Accessed: 1 August 2016). 



127 
 

Rao A.S., Georgeff, M. (1995) BDI Agents: From Theory to Practice. In Proceedings of the 1st International 
Conference on Multi-Agent Systems pp .312-319 San Francisco, CA. 

RDF Working Group (2014) RDF - semantic web standards; Available at: https://www.w3.org/RDF/ 
(Accessed: 31 May 2016). 

Russell, S., Norvig, P. (2014) Artificial Intelligence: A Modern Approach 3rd Ed. Pearson Education Ltd. 
Harlow, Essex, England. 

Sandhu, R. (2016) 5 applications of natural language processing technology how will NLP shape the future of 
the tech world? Available at: http://newtech.about.com/od/semanticweb/tp/5-Applications-Of-Natural-
Language-Processing-Technology.htm (Accessed: 26 July 2016). 

Sawsaa, A. (2013) A Generic Model of Ontology to Visualize Information Science Domain(OIS). Doctoral 
thesis, University of Huddersfield 

Senior (2014) What it will take for computers to be conscious. Available at: 
https://www.technologyreview.com/s/531146/what-it-will-take-for-computers-to-be-conscious/ (Accessed: 
1 May 2016). 

Serenko, A. and Detlor, B. (2002) AGENT TOOLKITS: A GENERAL OVERVIEW OF THE MARKET AND AN 
ASSESSMENT OF INSTRUCTOR SATISFACTION WITH UTILIZING TOOLKITS IN THE CLASSROOM. Available at: 
http://www2.econ.iastate.edu/tesfatsi/Agent_Toolkits_Working_Paper.SerenkoDetlor2002.pdf (Accessed: 
1 May 2016). 

Seth and Institute, S.B.R. (2015) Text message statistics. Available at: http://www.statisticbrain.com/text-
message-statistics/ (Accessed: 1 May 2016). 

Shields, B.J., Home Office and Department for Culture, Media and Sport (2015) UK Internet safety and 
security minister’s speech to the WeProtect summit. Available at: 
https://www.gov.uk/government/speeches/uk-internet-safety-ministers-speech-to-the-weprotect-summit 
(Accessed: 5 May 2016). 

Shmueli, B., Blecher-Prigat, A. (2011) Privacy for Children. Columbia Human Rights Law Review. 

Smmry (2016) About. Available at: http://smmry.com/about (Accessed: 26 July 2016). 

Social, P.D. (2016) PLAYMessenger - kids safe chat – Android Apps on Google play. Available at: 
https://play.google.com/store/apps/details?id=com.pgdigital.playmessengerandhl=en_GB (Accessed: 1 May 
2016). 

Staab, S. and Studer, R. (eds.) (2009a) Handbook on ontologies. 2nd edn. Berlin: Springer-Verlag Berlin and 
Heidelberg GmbH and Co. K. 

Statista. (2016) Leading social networks worldwide as of April 2016, ranked by number of active users (in 
millions). Available at: http://www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/ (Accessed: 1 May 2016). 

Statistics (2009) Minecraft. Available at: https://minecraft.net/stats (Accessed: 1 May 2016). 

Stenzhorn, H. Basic formal Ontology (BFO) (2008) Available at: http://ontology.buffalo.edu/bfo/ (Accessed: 
19 July 2016). 

Stories of 7 teen suicides because of ask.FM bullying (2013) Available at: http://nobullying.com/stories-of-7-
teen-suicides-because-of-ask-fm-bullying/ (Accessed: 1 May 2016). 



128 
 

Studer, R., Benjamins, V.R. and Fensel, D. (1998) Knowledge Engineering: Principles and methods. Data and 
Knowledge Engineering, vol. 25, no. 1-2, pp. 161-197. 

Technologies, S. (2016) How are we building smarter search engines in the big data age?. Available at: 
http://www.searchtechnologies.com/smart-search-engines-with-big-data (Accessed: 1 May 2016). 

TechTalk. (2015) System development life cycle (SDLC) approaches. Available at: https://tech-
talk.org/2015/01/21/system-development-life-cycle-sdlc-approaches/ (Accessed: 1 August 2016). 

Terms (2016) Martine Rothblatt on AI, mind clones and the future of the self. Available at: 
http://www.campaignlive.com/article/martine-rothblatt-ai-mind-clones-future-self/1338436 (Accessed: 1 
May 2016). 

UNICEF (2015) A Summary of the UN Convention on the Rights of the Child, United Kingdom, Online. 

Van Gurp, M., Decoene, M., Holvoet, M., Casella, M. and Santos (2006) LinKBase®, a philosophically-inspired 
Ontology for NLP/NLU applications. Available at: http://ceur-ws.org/Vol-222/krmed2006-p08.pdf (Accessed: 
19 July 2016) 

Volin, V. (2010) SuperProfundo. Available at: http://superprofundo.com/2010/12/13/top-down-and-
bottom-up-pros-and-cons/ (Accessed: 1 May 2016). 

Wagle, K. 2013, IBM Watson: Revolutionizing healthcare? Young Scientists Journal, vol. 6, no. 13, pp. 17. 

Warren, T. (2014) The story of Cortana, Microsoft’s Siri killer. Available at: 
http://www.theverge.com/2014/4/2/5570866/cortana-windows-phone-8-1-digital-assistant (Accessed: 1 
May 2016). 

Watch, H.R. (2016) Mind the gap. Available at: https://www.hrw.org/report/2015/04/09/mind-gap/lack-
accountability-killer-robots (Accessed: 1 May 2016). 

Webster, S., Davidson, J., Bifulco, A., Gittschalk, P., Carreti, V., Pham, T. (2012) European Online Grooming 
Report. European Comission, Safer Internet Plus Programme. 

Whittle, H., Hamilton-Giachritsis, C., Beech, A. and Collings, G. (2013) "A review of young people's 
vulnerabilities to online grooming", Aggression and Violent Behaviour vol. 18, no. 1, pp. 135-146 

Witek, M. (2015) ‘Linguistic under determinacy: A view from speech act theory’, Journal of Pragmatics, 76, 
pp. 15–29. doi: 10.1016/j.pragma.2014.11.003. 

Withnall, A. (2014) Breck Bednar murder: Teenage video gamer admits killing British schoolboy after 
meeting arranged online. Available at: http://www.independent.co.uk/news/uk/crime/breck-bednar-
murder-teenage-video-gamer-admits-killing-british-schoolboy-after-meeting-arranged-9882590.html 
(Accessed: 1 May 2016). 

Woodford, C. (2015) Voice recognition software. Available at: 
http://www.explainthatstuff.com/voicerecognition.html (Accessed: 1 May 2016). 

Wooldridge, M. and Jennings, N.R. (1995) Intelligent agents: theory and practice. The Knowledge 
Engineering Review,vol. 10, no. 2, pp. 115-152. 

Wooldridge, M. and Jennings, N.R. (1999) SOFTWARE ENGINEERING WITH AGENTS: Pitfalls and Pratfalls. 
IEEE INTERNET COMPUTING, June pp. 20-27. 

Wooldridge, M., Jennings, N.R. and Kinny, D. (2000) The Gaia Methodology for Agent-Oriented Analysis and 
Design. Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 285-312. 



129 
 

Wooldridge, M.J. 2009, An Introduction to Multi Agent Systems, 2nd Ed, Wiley, Chichester. 

Yao, H., Orme, A.M. and Etzkorn, L. (2005) Cohesion metrics for Ontology design and application. Journal of 
Computer Science, 1(1), pp. 107–113. 

Zolfagharifard, E. (2016) Elon musk opens AI GYM to train machines on Atari games. Available at: 
http://www.dailymail.co.uk/sciencetech/article-3564752/Elon-Musk-opens-AI-GYM-train-machines-Atari-
games-Billionaire-says-initiative-help-computers-think-like-humans.html (Accessed: 1 May 2016). 

 

  



130 
 

Bibliography 
24, E. and Administrator, S. (2016) Happy birthday Skype: Even monkeys use it now. Available at: 
http://www.emirates247.com/news/happy-birthday-skype-even-monkeys-use-it-now-2013-08-28-1.519060 
(Accessed: 1 May 2016). 

Abretti, M.-L. (2013) More than a million British kids get first mobile phone by the time they’re five. 
Available at: http://www.uswitch.com/media-centre/2013/08/more-than-a-million-british-kids-get-first-
mobile-phone-by-the-time-theyre-five/ (Accessed: 1 May 2016). 

AI open letter - FLI - future of life institute (no date) Available at: http://futureoflife.org/ai-open-letter/ 
(Accessed: 1 May 2016) 

Aoqui, L.G.F. (2014) Build a real-time chat app with Node-RED in 5 minutes. Available at: 
http://www.ibm.com/developerworks/cloud/library/cl-rtchat-app/ (Accessed: 1 May 2016). 

Ashrafian, H. (2015) AIonAI: a humanitarian law of artificial intelligence and robotics", Science and 
engineering ethics. vol. 21, no. 1, pp. 29-12. 

Association, P. (2016) Nearly one in 10 children gets first mobile phone by age five, says study. Available at: 
http://www.theguardian.com/money/2013/aug/23/children-first-mobile-age-five (Accessed: 1 May 2016). 

Bagić Babac, M. and Jevtić, D. (2014) AgentTest: A specification language for agent-based system testing. 
Neurocomputing, vol. 146, pp. 230-248. 

BBC [b] (2014) Boy held over internet grooming of girl in Manchester. Available at: 
http://www.bbc.co.uk/news/uk-england-manchester-28265452 (Accessed: 1 May 2016). 

Blizzard. (2011) Remote guild chat now on Android, iPhone, and iPod touch [UPDATED 4/26]. Available at: 
http://us.battle.net/wow/en/blog/2653949/remote-guild-chat-now-on-android-iphone-and-ipod-touch-
%5Bupdated-426%5D-4-26-2011 (Accessed: 1 May 2016). 

Bogdan, S., Rigo, I., Miklic, D. (2008) Fuzzy Logic Navigation in Multi Agent Systems. IEEE International 
Symposium on Intelligent Control 

Branisso, L., Kato, E., Pedrino, E. (2013) A Multi-Agent System Using Fuzzy Logic to Increase AGV Fleet 
Performance in Warehouses, in III Brazilian Symposium on Computer Systems Engineering  

Chalabi, M. (2016) 36m Brits use the internet every day - but what are they all doing? Available at: 
http://www.theguardian.com/news/datablog/2013/aug/08/36-million-brits-internet-every-day-habits-use 
(Accessed: 1 May 2016). 

Chandrasekar, R. (2014) "Elementary? Question answering, IBM's Watson, and the Jeopardy! 
challenge", Resonance, vol. 19, no. 3, pp. 222-241. 

Chaware, S. Rao, S. (2010) Integrated Approach to Ontology Development Methodology with Case Study. 
International Journal of Database Management Systems (IJDMS), vol. 2, no. 3, pp. 13-19 

Child-monitoring App pulled amid security fears (2015) Available at: 
http://news.sky.com/story/1580261/child-monitoring-app-pulled-amid-security-fears (Accessed: 1 May 
2016). 

Cia, Y., Yeung, C., Leung, H. (2012) Fuzzy Computational Ontologies in Contexts: Formal Models of 
Knowledge Representation with Membership Degree and Typicality of Objects, and Their Applications.  
Springer. London, United Kingdom. 



131 
 

Coplien, J.O., Bjr̜nvig, G. and Books 24x7, I. (2011). Lean architecture for Agile software development, 1. 
Aufl.;1; edn, Wiley, Chichester. 

Core JavaTM: Volume I—Fundamentals, ninth edition (2012) Available at: 
http://my.safaribooksonline.com/9780137082346 (Accessed: 1 May 2016). 

Cosslett, R.L. (2014) The ignore no more app is wrong because parenting should be about trust. Available at: 
http://www.theguardian.com/commentisfree/2014/aug/19/ignore-no-more-app-parenting (Accessed: 1 
May 2016). 

Cresswell, S., McCluskey, T., West, M. (2013) Acquiring Domain Models Using LOCM. Knowledge Engineering 
Review. 

de Blanc, P. (2011) Ontological Crises in Artificial Agents’ Value Systems. Machine Intelligence Learning 
Institute. 

Dentler, K., Cornet, R., ten Teije, A., de Keizer, N. (2011) Comparison of Reasoners for Large Ontologies in 
the OWL 2 EL Profile. Semantic Web vol. 1, pp. 1-5 

Eckel, B. (2006) Thinking in Java 4th Ed. Pearson Education, New Jersey, USA 

Elkan, C. and Greiner, R. (1993) ‘Building large knowledge-based systems: Representation and inference in 
the cyc project’, Artificial Intelligence, 61(1), pp. 41–52. 

Enough is enough: Protecting our children online (no date) Available at: 
http://www.enough.org/inside.php?tag=statistics (Accessed: 1 May 2016). 

EnoughSM, E.I. (2009) InternetSafety101.org: Statistics. Available at: 
http://www.internetsafety101.org/Predatorstatistics.htm (Accessed: 1 May 2016). 

Enyon, R. (2009) Harnessing Technology: The learner and their context. Mapping young people’s uses of 
technology in their own contexts. Oxford, BECTA 

Ermolayev, V., Davidovsky, M. (2012) Agent-Based Ontology Allignment: Basics, Applications, Theoretical 
Foundations and Demonstration, in ACM 2012 

Estival, D., Nowak, C., Zschorn, A. (2004) Towards Ontology Based Natural Language Processing. Human 
Systems Integrations Group, Australia.  

Fallenstein, B., Soares, N. (2015) Vingean Reflection: Reliable Reasoning for Self-Improving Agents. Technical 
report 2015–2. MIRI 

Fensel, D. (2003) Ontologies: A silver bullet for knowledge management and electronic commerce. 2nd edn. 
Germany: Springer-Verlag Berlin and Heidelberg GmbH and Co. K. 

FERNÁNDEZ-LÓPEZ, M., GÓMEZ-PÉREZ, A. (2002) Overview and analysis of methodologies for building 
ontologies. The Knowledge Engineering Review, vol. 17, no. 2, pp. 129-156. 

Ferndndez, M., Gomez-Perez, A. and Juristo, N. (1997) METHONTOLOGY: From ontological Art Towards 
ontological engineering. Proceedings of the AAAI97 Spring Symposium Series on Ontological Engineering. 

Finin, T.; Fritzson, R.; McKay, D.; McEntire, R. (1994) KQML as an agent communication 
language. Proceedings of the third international conference on Information and knowledge management - 
CIKM '94. p. 456. 



132 
 

Ford, P. (2015) Our fear of artificial intelligence. Available at: 
https://www.technologyreview.com/s/534871/our-fear-of-artificial-intelligence/ (Accessed: 1 May 2016). 

Friedrich, A. (2015) Fight the cold cyberwar with analytics. Available at: 
http://www.ibmbigdatahub.com/blog/fight-cold-cyberwar-analytics (Accessed: 1 May 2016). 

Fuentes-Fernandez, R., Hassan, S., Pavon, J., Galan, J., Lopez-Parades, A. (2012) Metamodels for Role-Driven 
Agent-Based Modeling. Computation and Mathematical Organisation Theory vol. 18, pp .91-112  

Gani, A. (2015) Kate Winslet says children being harmed by social media. Available at: 
http://www.theguardian.com/film/2015/nov/01/kate-winslet-says-children-being-harmed-by-social-media 
(Accessed: 1 May 2016). 

Gate (2016) Available at: https://gate.ac.uk/ (Accessed: 12 May 2016) 

Gawich, M., Badr, A., Ismael, H., Hegazy, A. (2012) Alternative Approaches for Ontology Matching, in 
International Journal of Computer Applications vol. 49, no. 18. 

GmbH, semafora systems – (2012) Semafora systems: Home. Available at: http://www.semafora-
systems.com/en/ (Accessed: 12 May 2016). 

GO Consortium. (2012) Gene Ontology Annotations and resources. Nucleic Acids Research, 41(D1), pp. 
D530–D535.  

Gómez-Pérez, A., Fernández-López, M. and Corcho, O. (2004) Ontological engineering: with examples from 
the areas of knowledge management, e-commerce and the Semantic Web. Springer, London. 

Gomez-Sans, J., Fernandez, R., Arroyo, J. (2010) Model Driven Development and Simulations with the 
INGENIAS Agent Framework. Simulation Modelling Practice and Theory vol. 18, pp. 1468-1482 

Gray, R. (2016) Pepper the ‘emotional’ humanoid becomes first robot to attend SCHOOL. Available at: 
http://www.dailymail.co.uk/sciencetech/article-3540307/Pepper-grows-Emotional-humanoid-robot-enroll-
SCHOOL-Japan.html (Accessed: 1 May 2016). 

Grier, D.A. (2008) Edward Elgar's Facebook Page. Computer vol. 41, no. 11, pp. 6-8. 

Griss, M., (2001) Software Agents as Next Generation Software Components, in Component-Based Software 
Engineering: Putting the Pieces Together. 

Gunasekera, K., Zaslavsky, A., Loke, S., Krishnaswamy, S. (2008) Context Driven Adaptation of Mobile Agents 
in Mobile Data Management Workshops, MDMW 2008. 

Hanewald, R. (2013) From Cyber Bullying to Cyber Safety: Issues and Approaches in Educational Contexts. 
Nova Science Publishers, New York, USA. 

Hinks, J. (2015) Best free parental control software: 5 programs to keep your kids safe in 2015. Available at: 
http://www.techradar.com/news/software/applications/best-free-parental-control-software-9-programs-
to-keep-your-kids-safe-1140315 (Accessed: 1 May 2016). 

Holmes, Violeta and MacFarlane, Katrinna (2009) Agent Mediated Information Exchange. In: University of 
Huddersfield Research Festival, 23rd March - 2nd April 2009, University of Huddersfield. 

Home (2016) ‘World of Warcraft’, 18 April. Available at: http://eu.battle.net/wow/en/?- (Accessed: 1 May 
2016). 



133 
 

Home. (2015) PLAYMessenger, your child’s first messaging app. Available at: 
http://www.playmessenger.com/home/ (Accessed: 1 May 2016). 

Huhns, M., Singh, M. (1997) Ontologies for Agents, IEEE Internet Computing, 81-83 

IHMC (2014) CmapTools. Available at: http://cmap.ihmc.us/ (Accessed: 12 May 2016). 

Inc, W. (2016) WhatsApp: Home. Available at: https://www.whatsapp.com/ (Accessed: 1 May 2016). 

Internet Society. (2015) Global Internet report 2015. Available at: 
http://www.internetsociety.org/globalinternetreport/?gclid=CIDl3baz78gCFdVAGwodP9INwA (Accessed: 1 
May 2016). 

Iqbal, R., Azrifah, M., Murad, A., Mustapha, A. and Sharef, N.M. (2013) ‘An analysis of Ontology engineering 
methodologies: A literature review’, Research Journal of Applied Sciences, Engineering and Technology, vol. 
6 no. 16, pp. 2993–3000. 

Jackson, P., Moulinier, I. (2002) Natural Language Processing for Online Applications (Text Retrieval, 
Extraction and Categorization). John Benjamins Publishing Co. Amsterdam, Netherlands.  

Jaishankar, K. (2011) Cyber Criminology: Exploring Internet Crimes and Criminal Behaviour. CRC Press, Boca 
Raton, USA. 

Janowicz, K., Cuenca-Grau, B. and Hoekstra, R. (2010) ‘The knowledge Reengineering bottleneck’, 1(1). 

Java and MySQL - create a login authentication (2016) Available at: 
http://stackoverflow.com/questions/15165024/java-mysql-create-a-login-authentication (Accessed: 1 May 
2016). 

Jurisica, I., Mylopoulos, J. and Yu, E. (2004) Ontologies for Knowledge Management: An Information Systems 
Perspective. Knowledge and Information Systems, vol. 6, no. 4, pp. 380-401. 

Jurisica, I., Mylopoulos, J., Yu, E. (2004) Using Ontologies for Knowledge Management: An Information 
Systems Perspective, in KAISj04 

K.L. (1998) How to pass values between classes? (beginning java forum at Coderanch). Available at: 
http://www.coderanch.com/t/531304/java/java/pass-values-classes (Accessed: 1 May 2016). 

Kent and Courier, S. (2014) Gay Scout leader travelled 230 miles to have sex with a teenage boy in 
Tunbridge wells he groomed on internet. Available at: http://www.courier.co.uk/Gay-Scout-leader-traveled-
230-miles-sex-teenage/story-22018626-detail/story.html (Accessed: 1 May 2016). 

Khoo, C.S.G. and Na, J. (2006) Semantic relations in information science. Annual Review of Information 
Science and Technology, vol. 40, no. 1, pp. 157-228. 

Klein, E., Potter, S. (2004) An Ontology for NLP Services, School of Informatics. University of Edinburgh, 
Edinburgh, Scotland 

Kless, D., Milton, S., Kazmierczak, E. and Lindenthal, J. (2015) Thesaurus and ontology structure: Formal and 
pragmatic differences and similarities. Journal of the Association for Information Science and 
Technology, vol. 66, no. 7, pp. 1348-1366. 

Kourtesis, D., Paraskakis, I., Simons, A. (2012) Policy Driven Governance in Cloud Application Platforms: An 
ontology-based approach, in FOIS 2012. 

Ladd, S. (1997) Java Algorithms. McGraw Hill, Berkshire, England 



134 
 

Lassila, O. and Mcguinness, D. (2001) The role of frame-based representation on the semantic web. 
Available at: http://www.ida.liu.se/ext/epa/ej/etai/2001/018/01018-etaibody.pdf (Accessed: 26 April 2016). 

Lehman, J. (2016) Teens and privacy: Should I spy on my child? Plus: The 4 tactics kids use when they get 
caught. Available at: https://www.empoweringparents.com/article/teens-and-privacy-should-i-spy-on-my-
child-plus-the-4-tactics-kids-use-when-they-get-caught/ (Accessed: 1 May 2016). 

Liben, L., Muller, U. (2015) Handbook of Child Psychology and Developmental Science, 7th Ed. John Wiley 
and Sons, New Jersey, USA. 

Liefooghe, A. (2012) Deal with Cyber Bullying. Strategic HR Review vol. 11, no. 4 

Lincoln, S., Robards, B. (2014) 10 Years of Facebook. New Media and Society vol. 16, no. 7, pp. 1047-1050. 

Livingstone, S., Haddon, L., Gorzig, A. Olafsson, K. (2010) Risks and Safety for Children on the Internet: the 
UK Report. London: LSE, EU Kids Online. 

Livingstone, S., Haddon, L., Gorzig, A. Olafsson, K. (2011) Risks and Safety for Children on the Internet: the 
perspective of European Children. Full Findings. London: LSE, EU Kids Online. 

LLC, W.A. (2015) Alpha: Computational knowledge engine. Available at: http://www.wolframalpha.com/ 
(Accessed: 1 May 2016). 

Lord, P., Stevens, R.D., Goble, C.A. and Horrocks, I. (2005) ‘Description logics: OWL and DAML+OIL’, 
in Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. Wiley-Blackwell. 

Luck,M., Ashri, R., D’Inverno, M. (2004) Agent Based Software Development. Artech House Inc. Norwood, 
MA, USA.  

M. Uschold, and M. King.  (1995) Proc. of IJCAI95's WS on Basic Ontological Issues in Knowledge 
Sharing, Montreal, Canada, 

Madhu, G. Govardhan, A. Rajinikanth, T. (2011) Intelligent Semantic Web Search Engines: A Brief Survey. 
International journal of Web and Semantic Technology vol. 2, no. 1.  

Mahmoud, Q. Software Agents: Characteristics and Classification, 
http://www.cis.uoguelph.ca/~qmahmoud/post/agentsoft.pdf. 

Maniraj, V., Sivakumar, R. (2010) Ontology Languages – A Review, International Journal of Computer Theory 
and Engineering vol. 2, pp. 1793-820 

Marr, B. (2015) Big Data: Using Smart Big Data, Analytics and Metrics to Make Better Decisions and Improve 
Performance. John Wiley and Sons Ltd. Chichester, England.  

Maynard, D., Li, Y., Peters, w. (2008) NLP Tecniques for Term Extraction and Ontology Population, in 
Ontology Lerning and Population: Bridging the Gap Between Text and Knowledge, pp. 10-27 

Messieh, N. (2010) Top 7 semantic search engines as an alternative to Google. Available at: 
http://www.makeuseof.com/tag/top-7-semantic-search-engines-alternative-google-search/ (Accessed: 1 
May 2016). 

Meyer, R. (2014) The new terminology of Snapchat. Available at: 
http://www.theatlantic.com/technology/archive/2014/05/the-new-terminology-of-snapchat/361651/ 
(Accessed: 1 May 2016). 



135 
 

Miller, G. (1995) WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-
41.  

Miller, P. (2011) Theories of Developmental Psychology 5th Ed. Worth Publishers, New York, USA. 

Milojicic, D. (2000) Agent systems and applications. IEEE Concurrency, vol. 8, no. 2, pp. 22-23 

Minecraft. (2013) Our Blog - Minecraft seeds. Available at: http://minecraft-seeds.net/blog/minecraft-
player-demographics/ (Accessed: 1 May 2016). 

Morelli, A.O. and Dombeck, M. (no date) Allowing for children’s privacy - self-esteem. Available at: 
http://www.communitycounselingservices.org/poc/view_doc.php?type=docandid=37625andcn=96 
(Accessed: 1 May 2016). 

Muehlhauser, L., Salamon, A. (2013) Intelligence Explosion: Evidence and Import. In Singularity Hypotheses. 
Springer. 

Murray, R. (2011) How to Write a Thesis 3rd Ed. McGraw Hill, Berkshire, England 

ndex.html (no date) Available at: https://gate.ac.uk/ (Accessed: 1 May 2016). 

News, S. (2014) Google reports Gmail user’s ‘child abuse images’. Available at: 
http://news.sky.com/story/1312967/google-reports-gmail-users-child-abuse-images (Accessed: 1 May 
2016) 

Noy, N.F. and McGuinness, D.L. (2001) Ontology development 101: A guide to creating your First Ontology. 
Available at: http://protege.stanford.edu/publications/ontology_development/ontology101.pdf (Accessed: 
2 May 2016). 

Nwana, H.S. (1996) Software agents: an overview. The Knowledge Engineering Review, vol. 11, no. 3, pp. 
205-244. 

O'Leary, M. 2009, Wolfram Alpha: Not Quite the Alpha Dog, Information Today, Inc, Medford. 

Ontologies for agents - introduction to ontologies and semantic web - tutorial (no date) Available at: 
http://www.obitko.com/tutorials/ontologies-semantic-web/ontologies-for-agents.html (Accessed: 1 May 
2016). 

Ontology (information science) (2016) in Wikipedia. Available at: 
https://en.wikipedia.org/wiki/Ontology_(information_science)#Editor (Accessed: 1 May 2016). 

Ontology Support in JADE (no date) Available at: 
https://web.fe.up.pt/~eol/SOCRATES/Palzer/ontologysupportJADE.htm (Accessed: 1 May 2016). 

Ontoprise: Video of the latest features of OntoStudio, a professional modelling environment (no date) 
Available at: http://www.semafora-systems.com/fileadmin/user_upload/product-
videos/OntoStudio/OntoStudio3-Video.html (Accessed: 1 May 2016). 

Ontosaurus: Loom web Browser (1998) Available at: http://www.isi.edu/isd/ontosaurus.html (Accessed: 12 
May 2016). 

OWL API by owlcs (no date) Available at: http://owlcs.github.io/owlapi/ (Accessed: 1 May 2016). 

OWL API by owlcs (no date) Available at: http://owlcs.github.io/owlapi/ (Accessed: 2 May 2016) 

OWL web Ontology language overview (2004) Available at: https://www.w3.org/TR/owl-features/ 
(Accessed: 31 May 2016). 



136 
 

P999: What teenage messages really mean (2015) Available at: http://news.sky.com/story/1547640/p999-
what-teenage-messages-really-mean (Accessed: 1 May 2016). 

Phillips, E., Pugh, D. (2015) How to Get a PhD 6th Ed. McGraw Hill, Berkshire, England 

PhPMyAdmin (no date) Available at: 
http://sost.blackburn.ac.uk/phpmyadmin/index.php?db=kmandtoken=2214d5f4e913ed7d42704fad500c50
d4 (Accessed: 1 May 2016). 

Picton, P. (2000) Neural Networks 2nd Ed. Palgrave, Hampshire, England 

Poggi, A., Rimassa, G., Tomaiuolo, M. (2001) Multi-User and Security Support for Multi-Agent Systems, 
Online 

Pranoto, H., Gunawan, F.E. and Soewito, B. (2015) "Logistic Models for Classifying Online Grooming 
Conversation",Procedia Computer Science vol. 59, 357-365 

Princeton (2016) Citing WordNet - WordNet - citing WordNet. Available at: 
https://wordnet.princeton.edu/wordnet/citing-wordnet/ (Accessed: 1 May 2016). 

Promoting Internet Safety through Public Awareness Campaigns Guidance for Using Real Life Examples 
Involving Children or Young People Issued by the Home Office Taskforce for Child Protection on the Internet 
November 2005  

Protégé (2016) Available at: http://protege.stanford.edu/ (Accessed: 1 May 2016) 

Protégé (2016) Available at: http://protege.stanford.edu/ (Accessed: 1 May 2016). 

Rabhi, F., Lapalme, G. (1999) Algorithms: A Functional Programming Approach. Pearson Education, Essex, 
England. 

Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublach, H., Stevens, R., Wang, H., Wroe, c. (2004) OWL 
Pizzas: Practical Experience of Teachin OWL-DL: Common Errors and Common Patterns 

Renkl, M. (2016) A child’s need for privacy. Available at: http://www.parenting.com/article/a-childs-need-
for-privacy (Accessed: 1 May 2016). 

Reporter, D.M. (2010) Teenage girl missing after going to meet a man she had fallen for on Facebook. 
Available at: http://www.dailymail.co.uk/news/article-1260830/Teenage-Facebook-user-missing-going-
meet-man-met-online.html (Accessed: 1 May 2016). 

Ridley, D. (2012) The Literature Review: A Step-by-Step Guide for Students 2nd ED. Sage Publications LTD. 
London, United Kingdom 

Rouse, M. (2006) What is semantic web? - definition from WhatIs.com. Available at: 
http://searchsoa.techtarget.com/definition/Semantic-Web (Accessed: 1 May 2016). 

Rydel, T.J., Ravichandran, K.G., Tulinsky, A., Bode, W. and Huber, R. 1990, "The Structure of a Complex of 
Recombinant Hirudin and Human (alpha)-Thrombin",Science, vol. 249, no. 4966, pp. 277. 

S, V.M. (2016) Free calls and messages. Available at: http://www.viber.com/en/ (Accessed: 1 May 2016). 

Sales, T., Barcewlos, P., Guizzardi, G. (2012) Identification of Semantic Anti-Patterns in Ontology-Driven 
Conceptual Modelling via Visual Simulation, in FOIS 2012. 



137 
 

Sample, I. (2016) Neuroscientists create ‘atlas’ showing how words are organised in the brain. Available at: 
https://www.theguardian.com/science/2016/apr/27/brain-atlas-showing-how-words-are-organised-
neuroscience?CMP=fb_gu (Accessed: 21 July 2016). 

Schindler, W. 2004, Silanterminierte Polyether mit Alpha-effekt. Adhaesion Kleben und Dichten, vol. 48, no. 
12, pp. 28. 

Shaffer, D., Kipp, K. (2014) Developmental Psychology: Childhood and Adolesence 9th Ed. Wadsworth, 
California, USA. 

Sheldon, F., Elmore, M., Potol, T. (2003) An Ontology-Based Agent System Case Study. Applied Software 
Engineering Research Group, Oak Ridge National Lab. 

Sicilia, M., García-Barriocanal, E., Sánchez-Alonso, S. and Rodríguez-García, D. (2009) Ontologies of 
engineering knowledge: general structure and the case of Software Engineering. The Knowledge 
Engineering Review, vol. 24, no. 3, pp. 309-326 

Simon, J., Dos Santos, M., Fielding, J. and Smith, B. (2006) Formal ontology for natural language processing 
and the integration of biomedical databases. International Journal of Medical Informatics, vol. 75, no. 3, pp. 
224-231 

Site, J. (2015) JAVA agent dEvelopment framework. Available at: http://jade.tilab.com/ (Accessed: 1 May 
2016). 

Site, J. (2016) Add-Ons. Available at: http://jade.tilab.com/download/add-ons/ (Accessed: 1 May 2016). 

Soares, N. (2015) Formalizing Two Problems of Realistic World-Models. Technical report 2015–3. MIRI 

Soares, N., Fallenstein, B. (2015) Toward Idealised Decision Theory. Machine Intelligence Learning Institute. 

Social media domestic abusers face jail (2015) Available at: http://news.sky.com/story/1613587/social-
media-domestic-abusers-face-jail (Accessed: 1 May 2016). 

Solidtuber (2013) Java GUI with MySQL database for login authentication error. Available at: 
http://www.dreamincode.net/forums/topic/330773-java-gui-with-mysql-database-for-login-authentication-
error/ (Accessed: 1 May 2016). 

Sowa, J.F. (1999) Knowledge representation: logical, philosophical, and computational foundations. PWS, 
Boston, Mass; London 

Spence, I. (2005) What is iterative development? Available at: 
http://www.ibm.com/developerworks/rational/library/may05/bittner-spence/ (Accessed: 1 August 2016). 

Staff writer. (2014) Lake county man arrested for sexual contact with minor he met online. Available at: 
http://legacy.wkyc.com/story/news/local/lake-county/2014/07/23/lake-county-man-arrested-for-sexual-
contact-with-minor-he-met-online/13047595/ (Accessed: 1 May 2016). 

Strickland, J. (2006) How Google works. Available at: 
http://computer.howstuffworks.com/internet/basics/google1.htm (Accessed: 1 May 2016). 

Stula, M., Stipanicev, D., Maras, J. (2013) Distributed Computation Multi-Agent System. New Generation 
Computing vol. 31, pp. 187-209 

Swartout B, Patil R, Knight K, Russ T. Towards distributed use of large-scale ontologies. In: Spring Symposium 
Series on Ontological Engineering, Stanford University, CA, 1997, p 138-148. 



138 
 

Systems, W.M. (2006) User authentication using mySQL and JDBC. Available at: 
https://www.wowza.com/forums/showthread.php?1365-User-Authentication-Using-mySQL-and-JDBC 
(Accessed: 1 May 2016). 

Tagg, C. (2012) The Discourse of Text Messaging: Analysis of SMS Communication. Continuum International 
Pub. Group, London. 

Tanha (2008) Software development discussion community. Available at: 
https://www.daniweb.com/programming/software-development/threads/119702/login-form-verification-
mysql-java (Accessed: 1 May 2016). 

TED (2015) Monica Lewinsky: The price of shame. Available at: 
https://www.youtube.com/watch?v=H_8y0WLm78U (Accessed: 1 May 2016). 

Tolentino, J. (2015) Why are people still using SMS in 2015? Available at: http://thenextweb.com/future-of-
communications/2015/02/16/people-still-using-sms-2015/ (Accessed: 1 May 2016). 

Torrance, S. (2013) Artificial agents and the expanding ethical circle. AI and SOCIETY. vol. 28, no. 4, pp. 399-
414 

Turing, A.M. (1950) Computing Machinery and Intelligence. Mind, LIX (236), pp. 433–460 

UKCCIS (2012) Online Offending Behaviour: Findings from the European Online Grooming Project, Online 

UKCCIS (2012) Young People’s Online Behaviour: Findings from the European Online Grooming Project, 
Online  

Unicef (no date) What is the UNCRC? | children’s rights | Unicef UK. Available at: 
http://www.unicef.org.uk/UNICEFs-Work/UN-Convention/ (Accessed: 1 May 2016). 

Uschold, M. Gruniger, M. (1996) Ontologies Principles Methods and Applications. Knowledge Engineering 
Review, Vol. 11 No. 2 

van Aart, C., Pels, R. (2002) Creating and Using Ontologies in Agent Communication 

van der Hof, S., van den Berg, B., Schermer, B. (2014) Minding Minors Wandering the Web: Regulating 
Online Child Safety, T.M.C. Asser Press, Dordrecht. 

van der Vet, P. Mars, N. (1998) Bottom-Up Construction of Ontologies. IEEE TRANSACTIONS ON 
KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 4, PP. 513-526 

Van Gurp, M., Holvoet, M., Casella, M. and Santos (2008) LinKBase® and SNOMED: Some distinct features 
and impact on NLP. Available at: http://ceur-ws.org/Vol-410/Paper05.pdf (Accessed: 19 July 2016) 

Vila, X., Schuuster, A., Riera, A. (2007) Security for a Multi-Agent System Based on JADE. Computers and 
Security vol. 26, pp. 391-400 

Wallace, M., Wray, A. (2011) Critical Reading and Writing for Postgraduates 2nd Ed.  Sage Publications LTD. 
London, United Kingdom. 

Ward, M. (2013) Why Minecraft is more than just another video game. Available at: 
http://www.bbc.co.uk/news/magazine-23572742 (Accessed: 1 May 2016). 

WebODE (2016) Available at: http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/old-technologies/60-
webode/ (Accessed: 12 May 2016). 



139 
 

Weinberger, M. (2015) The 11 top-grossing video games of all time. Available at: 
http://www.techinsider.io/the-11-top-grossing-video-games-of-all-time-2015-8 (Accessed: 1 May 2016). 

Weiss, G. (1999) Multi-Agent Systems (A Modern Approach to Distributed Artificial Intelligence). The 
Massachusetts Institute of Technology, USA.  

What is an Ontology? (no date) Available at: http://www.cs.man.ac.uk/~stevensr/onto/node3.html 
(Accessed: 1 May 2016). 

What is IBM Watson? (no date) Available at: http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-
is-watson.html (Accessed: 1 May 2016). 

Winson, A. (2000) Wiley higher education supplementary Website. Available at: 
http://www.wiley.com/legacy/wileychi/bellifemine_jade/ (Accessed: 1 May 2016). 

WordNet search - 3.1 (2016) Available at: 
http://wordnetweb.princeton.edu/perl/webwn?s=ontologyandsub=Search+WordNetando2=ando0=1ando8
=1ando1=1ando7=ando5=ando9=ando6=ando3=ando4=andh= (Accessed: 19 July 2016). 

Yang, S., Lee, D. and Chen, K. (2011) A new ubiquitous information agent system for cloud computing - 
Example on GPS and Bluetooth techniques in Google Android platform. pp. 1929 

Zhao, C., Wysocki, B.T., Liu, Y., Thiem, C.D., McDonald, N. and Yi, Y. (2015) Spike-Time-Dependent Encoding 
for Neuromorphic Processors. ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 12, 
no. 3, pp. 1-21. 

Zitouni, I. (2014) Natural Language Processing of Semitic Languages. Springer, London. 

 

  



140 
 

Appendices 
A. Exported Ontology Files 
B. Parent Survey Results 
C. Project Plans 
D. Testing Resources 

 



An Intelligent Multi-Agent System Approach to Automating Safety Features for On-Line Real Time Communications:  
Agent Mediated Information Exchange 
 

Katrinna MacFarlane  September 2016 

 

 

 

 

 

 

 

 

 

 

Appendix A – Exported Ontology Files 
 

 

 

 

 



package Meeting;

import java.util.Collection;

import org.protege.owl.codegeneration.WrappedIndividual;

import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;

/**
* 
* <p>
* Generated by Protege (http://protege.stanford.edu). <br>
* Source Class: Intention <br>
* @version generated on Mon Aug 03 09:17:45 BST 2015 by 
Katrinna
*/

public interface Intention extends Meeting {

    /* ***************************************************
     * Common interfaces
     */

    OWLNamedIndividual getOwlIndividual();

    OWLOntology getOwlOntology();

    void delete();

}

1



package Meeting;

import java.util.Collection;

import org.protege.owl.codegeneration.WrappedIndividual;

import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;

/**
* 
* <p>
* Generated by Protege (http://protege.stanford.edu). <br>
* Source Class: Location <br>
* @version generated on Mon Aug 03 09:17:45 BST 2015 by 
Katrinna
*/

public interface Location extends Meeting {

    /* ***************************************************
     * Common interfaces
     */

    OWLNamedIndividual getOwlIndividual();

    OWLOntology getOwlOntology();

    void delete();

}

1



package Meeting;

import java.util.Collection;

import org.protege.owl.codegeneration.WrappedIndividual;

import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;

/**
* 
* <p>
* Generated by Protege (http://protege.stanford.edu). <br>
* Source Class: Time <br>
* @version generated on Mon Aug 03 09:17:45 BST 2015 by 
Katrinna
*/

public interface Time extends Meeting {

    /* ***************************************************
     * Common interfaces
     */

    OWLNamedIndividual getOwlIndividual();

    OWLOntology getOwlOntology();

    void delete();

}

1



package Meeting;

import org.semanticweb.owlapi.apibinding.OWLManager;
import org.semanticweb.owlapi.model.IRI;
import org.semanticweb.owlapi.model.OWLClass;
import org.semanticweb.owlapi.model.OWLDataFactory;
import org.semanticweb.owlapi.model.OWLDataProperty;
import org.semanticweb.owlapi.model.OWLObjectProperty;

/**
* Vocabulary class to provide access to the Manchester OWL 
API representatives for 
* various entities in the ontology used to generate this 
code.<p> 
* 
* Generated by Protege (http://protege.stanford.edu).<br>
* Source Class: ${javaClass}
*
* @version generated on Mon Aug 03 09:17:45 BST 2015 by 
Katrinna
*/

public class Vocabulary {

private static final OWLDataFactory factory = 
OWLManager.createOWLOntologyManager().getOWLDataFactory();

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Apollo
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class APOLLO.<p>
     * 
     */
    public static final OWLClass CLASS_APOLLO = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Apollo"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Cinema
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class CINEMA.<p>
     * 
     */
    public static final OWLClass CLASS_CINEMA = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Cinema"));

1



    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Football_match
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class FOOTBALL_MATCH.<p>
     * 
     */
    public static final OWLClass CLASS_FOOTBALL_MATCH = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Football_match"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Intention
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class INTENTION.<p>
     * 
     */
    public static final OWLClass CLASS_INTENTION = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Intention"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Location
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class LOCATION.<p>
     * 
     */
    public static final OWLClass CLASS_LOCATION = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Location"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Macdonalds
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MACDONALDS.<p>
     * 
     */
    public static final OWLClass CLASS_MACDONALDS = 

2



factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Macdonalds"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Meeting
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MEETING.<p>
     * 
     */
    public static final OWLClass CLASS_MEETING = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Meeting"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Movies
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MOVIES.<p>
     * 
     */
    public static final OWLClass CLASS_MOVIES = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Movies"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Restaurant
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class RESTAURANT.<p>
     * 
     */
    public static final OWLClass CLASS_RESTAURANT = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Restaurant"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Time
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class TIME.<p>

3



     * 
     */
    public static final OWLClass CLASS_TIME = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Time"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#Vue
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class VUE.<p>
     * 
     */
    public static final OWLClass CLASS_VUE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#Vue"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#asda
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ASDA.<p>
     * 
     */
    public static final OWLClass CLASS_ASDA = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#asda"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#book_store
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class BOOK_STORE.<p>
     * 
     */
    public static final OWLClass CLASS_BOOK_STORE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#book_store"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#borders
     */

4



    /**
     * A constant to give access to the Manchester OWL api 
representation of the class BORDERS.<p>
     * 
     */
    public static final OWLClass CLASS_BORDERS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#borders"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#burger_king
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class BURGER_KING.<p>
     * 
     */
    public static final OWLClass CLASS_BURGER_KING = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#burger_king"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#burger_place
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class BURGER_PLACE.<p>
     * 
     */
    public static final OWLClass CLASS_BURGER_PLACE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#burger_place"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#cafe
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class CAFE.<p>
     * 
     */
    public static final OWLClass CLASS_CAFE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#cafe"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588

5



5586.owl#do_you_think_we_should_meet
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class DO_YOU_THINK_WE_SHOULD_MEET.<p>
     * 
     */
    public static final OWLClass 
CLASS_DO_YOU_THINK_WE_SHOULD_MEET = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#do_you_think_we_shoul
d_meet"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#flicks
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class FLICKS.<p>
     * 
     */
    public static final OWLClass CLASS_FLICKS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#flicks"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#footie
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class FOOTIE.<p>
     * 
     */
    public static final OWLClass CLASS_FOOTIE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#footie"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#game
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class GAME.<p>
     * 
     */
    public static final OWLClass CLASS_GAME = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont

6



ologies/2010/0/Ontology1264435885586.owl#game"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#game_exchange
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class GAME_EXCHANGE.<p>
     * 
     */
    public static final OWLClass CLASS_GAME_EXCHANGE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#game_exchange"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#game_store
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class GAME_STORE.<p>
     * 
     */
    public static final OWLClass CLASS_GAME_STORE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#game_store"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#hmv
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class HMV.<p>
     * 
     */
    public static final OWLClass CLASS_HMV = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#hmv"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#in_an_hour
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class IN_AN_HOUR.<p>
     * 

7



     */
    public static final OWLClass CLASS_IN_AN_HOUR = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#in_an_hour"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#in_five_minutes
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class IN_FIVE_MINUTES.<p>
     * 
     */
    public static final OWLClass CLASS_IN_FIVE_MINUTES = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#in_five_minutes"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#italian
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ITALIAN.<p>
     * 
     */
    public static final OWLClass CLASS_ITALIAN = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#italian"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#kfc
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class KFC.<p>
     * 
     */
    public static final OWLClass CLASS_KFC = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#kfc"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#lets_meet
     */

    /**

8



     * A constant to give access to the Manchester OWL api 
representation of the class LETS_MEET.<p>
     * 
     */
    public static final OWLClass CLASS_LETS_MEET = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#lets_meet"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#meet_me
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MEET_ME.<p>
     * 
     */
    public static final OWLClass CLASS_MEET_ME = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#meet_me"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#morrisons
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MORRISONS.<p>
     * 
     */
    public static final OWLClass CLASS_MORRISONS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#morrisons"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#music_store
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class MUSIC_STORE.<p>
     * 
     */
    public static final OWLClass CLASS_MUSIC_STORE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#music_store"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#next_week

9



     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class NEXT_WEEK.<p>
     * 
     */
    public static final OWLClass CLASS_NEXT_WEEK = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#next_week"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_friday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_FRIDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_FRIDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_friday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_monday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_MONDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_MONDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_monday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_saturday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_SATURDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_SATURDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_saturday"));

    /* ***************************************************

10



     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_sunday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_SUNDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_SUNDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_sunday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_teusday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_TEUSDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_TEUSDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_teusday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_thursday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_THURSDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_THURSDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#on_thursday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#on_wednesday
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class ON_WEDNESDAY.<p>
     * 
     */
    public static final OWLClass CLASS_ON_WEDNESDAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont

11



ologies/2010/0/Ontology1264435885586.owl#on_wednesday"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#park
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class PARK.<p>
     * 
     */
    public static final OWLClass CLASS_PARK = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#park"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#pictures
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class PICTURES.<p>
     * 
     */
    public static final OWLClass CLASS_PICTURES = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#pictures"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#pizza_hut
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class PIZZA_HUT.<p>
     * 
     */
    public static final OWLClass CLASS_PIZZA_HUT = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#pizza_hut"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#pizza_place
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class PIZZA_PLACE.<p>
     * 

12



     */
    public static final OWLClass CLASS_PIZZA_PLACE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#pizza_place"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#safeway
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class SAFEWAY.<p>
     * 
     */
    public static final OWLClass CLASS_SAFEWAY = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#safeway"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#see_you_at
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class SEE_YOU_AT.<p>
     * 
     */
    public static final OWLClass CLASS_SEE_YOU_AT = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#see_you_at"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#shopping
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class SHOPPING.<p>
     * 
     */
    public static final OWLClass CLASS_SHOPPING = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#shopping"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#spaghettii_house
     */

    /**

13



     * A constant to give access to the Manchester OWL api 
representation of the class SPAGHETTII_HOUSE.<p>
     * 
     */
    public static final OWLClass CLASS_SPAGHETTII_HOUSE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#spaghettii_house"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#supermarket
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class SUPERMARKET.<p>
     * 
     */
    public static final OWLClass CLASS_SUPERMARKET = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#supermarket"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#tesco
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class TESCO.<p>
     * 
     */
    public static final OWLClass CLASS_TESCO = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#tesco"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_game
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_GAME.<p>
     * 
     */
    public static final OWLClass CLASS_THE_GAME = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_game"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_match

14



     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_MATCH.<p>
     * 
     */
    public static final OWLClass CLASS_THE_MATCH = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_match"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_park
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_PARK.<p>
     * 
     */
    public static final OWLClass CLASS_THE_PARK = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_park"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_slide
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_SLIDE.<p>
     * 
     */
    public static final OWLClass CLASS_THE_SLIDE = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_slide"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_swings
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_SWINGS.<p>
     * 
     */
    public static final OWLClass CLASS_THE_SWINGS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_swings"));

    /* ***************************************************

15



     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#the_wreck
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class THE_WRECK.<p>
     * 
     */
    public static final OWLClass CLASS_THE_WRECK = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#the_wreck"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#tomorrow
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class TOMORROW.<p>
     * 
     */
    public static final OWLClass CLASS_TOMORROW = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#tomorrow"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#tomoz
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class TOMOZ.<p>
     * 
     */
    public static final OWLClass CLASS_TOMOZ = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#tomoz"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#wanna_meet_up_at
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class WANNA_MEET_UP_AT.<p>
     * 
     */
    public static final OWLClass CLASS_WANNA_MEET_UP_AT = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont

16



ologies/2010/0/Ontology1264435885586.owl#wanna_meet_up_at"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#we_could_meet_at
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class WE_COULD_MEET_AT.<p>
     * 
     */
    public static final OWLClass CLASS_WE_COULD_MEET_AT = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#we_could_meet_at"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#weekend
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class WEEKEND.<p>
     * 
     */
    public static final OWLClass CLASS_WEEKEND = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#weekend"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#wh_smiths
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class WH_SMITHS.<p>
     * 
     */
    public static final OWLClass CLASS_WH_SMITHS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#wh_smiths"));

    /* ***************************************************
     * Class 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#whsmiths
     */

    /**
     * A constant to give access to the Manchester OWL api 
representation of the class WHSMITHS.<p>
     * 

17



     */
    public static final OWLClass CLASS_WHSMITHS = 
factory.getOWLClass(IRI.create("http://www.semanticweb.org/ont
ologies/2010/0/Ontology1264435885586.owl#whsmiths"));

    /* ***************************************************
     * Object Property 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#hasComponent
     */
     
    /**
     * A constant to give access to the Manchester OWL API 
representation of the object property HASCOMPONENT.<p>
     * 
     */
    public static final OWLObjectProperty 
OBJECT_PROPERTY_HASCOMPONENT = 
factory.getOWLObjectProperty(IRI.create("http://www.semanticwe
b.org/ontologies/2010/0/Ontology1264435885586.owl#hasComponent
"));

    /* ***************************************************
     * Object Property 
http://www.semanticweb.org/ontologies/2010/0/Ontology126443588
5586.owl#isComponent
     */
     
    /**
     * A constant to give access to the Manchester OWL API 
representation of the object property ISCOMPONENT.<p>
     * 
     */
    public static final OWLObjectProperty 
OBJECT_PROPERTY_ISCOMPONENT = 
factory.getOWLObjectProperty(IRI.create("http://www.semanticwe
b.org/ontologies/2010/0/Ontology1264435885586.owl#isComponent"
));

    /* ***************************************************
     * Object Property 
http://www.w3.org/2002/07/owl#topObjectProperty
     */
     
    /**
     * A constant to give access to the Manchester OWL API 
representation of the object property TOPOBJECTPROPERTY.<p>
     * 
     */
    public static final OWLObjectProperty 
OBJECT_PROPERTY_TOPOBJECTPROPERTY = 
factory.getOWLObjectProperty(IRI.create("http://www.w3.org/200
2/07/owl#topObjectProperty"));

    /* ***************************************************
     * Data Property 
http://www.w3.org/2002/07/owl#topDataProperty

18



     */
     
    /**
     * A constant to give access to the Manchester OWL API 
representation of the data property TOPDATAPROPERTY.<p>
     * 
     */
    public static final OWLDataProperty 
DATA_PROPERTY_TOPDATAPROPERTY = 
factory.getOWLDataProperty(IRI.create("http://www.w3.org/2002/
07/owl#topDataProperty"));

}

19



An Intelligent Multi-Agent System Approach to Automating Safety Features for On-Line Real Time Communications:  
Agent Mediated Information Exchange 
 

Katrinna MacFarlane  September 2016 

 

 

 

 

 

 

 

 

 

 

Appendix B – Survey Responses 
 

 

 

 

 



3/29/2016 Surveys for Facebook

https://apps.facebook.com/mysurveys/?fb_source=bookmark&ref=bookmarks&count=0&fb_bmpos=_0 1/5

Surveys for Pages
Results

How many children do you have?

29 answers (0 locked)

View as pie chart

Do you have children under 18?

29 answers (0 locked)

View as pie chart

Do you worry about the safety of your
child(ren) when they are online?

29 answers (0 locked)

View as pie chart

You can view 11 more answers with the free plan. Upgrade to a Premium plan to remove this limitation.

13 18 votes 62.1%

1 6 votes 20.7%

4 or more 5 votes 17.2%

Yes 23 votes 79.3%

No 6 votes 20.7%

Yes 23 votes 79.3%

No 6 votes 20.7%

https://survey.fbapp.io/polls
https://survey.fbapp.io/polls
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://survey.fbapp.io/polls/ttgvfo/subscription/new


3/29/2016 Surveys for Facebook

https://apps.facebook.com/mysurveys/?fb_source=bookmark&ref=bookmarks&count=0&fb_bmpos=_0 2/5

Please help us understand why you
selected the answer above?

28 answers (0 locked)

What age do you think is safe for your
child to have free access to the internet?

29 answers (0 locked)

View as pie chart

Displaying the last 10 answers. View more

I do limit and monitor currenlty what the children have access to
as although we have discussed internet safety and this is also
discussed at school I feel they are still too young to fully
unsderstand the dangers that are out there online

now old enough to make own choices

I realise that the internet can be abused by those wishing to do
harm

More access to Internet rather than just PCs as it was years ago

There are a lot of horror stories in the media of online predators
and how they use social media to groom children.

Too easy for an adult to groom children, pretending to be child
themselves

Immaturity of children can expose them to a lot of wrong stuff out
there! !!!

I worry about strangers on Facebook, adding my daughter.

It is not just about the anonymity of other users online i.e. in chat
rooms but the free availability of inappropriate content and the
increasing rise in social media and apps such as snapchat,
Instagram, Pinterest where they can post things that could
potentially affect their lives off line through bullying and then later
on employment prospects because they are too naive to
understand exactly what it is they are putting out there and for
how long.

You don't know who's on the other side of any Internet
interactions

Over 15 10 votes 34.5%

1215 9 votes 31.0%

Other 7 votes 24.1%

1012 2 votes 6.9%

Under 10 1 vote 3.4%

javascript:void(0)
javascript:void(0)
javascript:void(0)


3/29/2016 Surveys for Facebook

https://apps.facebook.com/mysurveys/?fb_source=bookmark&ref=bookmarks&count=0&fb_bmpos=_0 3/5

Does your child have a Facebook
account?

29 answers (0 locked)

View as pie chart

What age do you think is safe for your
child to have a Facebook account?

29 answers (0 locked)

View as pie chart

Have you discussed internet safety with
your child?

29 answers (0 locked)

View as pie chart

Does your child have a mobile phone?

29 answers (0 locked)

View as pie chart

What age do you think is safe for your
child to have a mobile phone?

29 answers (0 locked)

View as pie chart

No 18 votes 62.1%

Yes 11 votes 37.9%

Over 15 14 votes 48.3%

1215 11 votes 37.9%

Other 2 votes 6.9%

1012 2 votes 6.9%

Under 10 0 votes 0%

Yes 22 votes 75.9%

I didn't have to  my kids know more about
this than I do!

3 votes 10.3%

No 3 votes 10.3%

I wouldn't know where to start. 1 vote 3.4%

I didn't have to  the school did this for me. 0 votes 0%

Yes 20 votes 69.0%

No 9 votes 31.0%

1215 12 votes 41.4%

1012 12 votes 41.4%

Over 15 3 votes 10.3%

Other 1 vote 3.4%

Under 10 1 vote 3.4%

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


3/29/2016 Surveys for Facebook

https://apps.facebook.com/mysurveys/?fb_source=bookmark&ref=bookmarks&count=0&fb_bmpos=_0 4/5

Have you used or heard of the following
applications? Please select all that apply.

29 answers (0 locked) (156 votes)

View as pie chart

Which of these would you be happy for
your kids to use? Please select all that
apply

29 answers (0 locked) (58 votes)

View as pie chart

Has your child ever been negatively
affected by anything that happened on
line?

29 answers (0 locked)

View as pie chart

How important is your child's privacy to
you

29 answers (0 locked) with a median of 4.8

View as pie chart

WhatsApp 28 votes 96.6%

Facebook messenger 28 votes 96.6%

Skype 28 votes 96.6%

Snapchat 27 votes 93.1%

Face Time / iMessage 26 votes 89.7%

Viber 19 votes 65.5%

Face Time / iMessage 13 votes 44.8%

WhatsApp 12 votes 41.4%

Skype 11 votes 37.9%

None of the above 7 votes 24.1%

Facebook messenger 7 votes 24.1%

Snapchat 5 votes 17.2%

Viber 3 votes 10.3%

No 25 votes 86.2%

Yes 3 votes 10.3%

I prefer not to answer 1 vote 3.4%

1 0 votes 0%

2 0 votes 0%

3 3 votes 10.3%

4 1 vote 3.4%

5 25 votes 86.2%

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


3/29/2016 Surveys for Facebook

https://apps.facebook.com/mysurveys/?fb_source=bookmark&ref=bookmarks&count=0&fb_bmpos=_0 5/5

Please help us by explaining your
answer

29 answers (0 locked)

All surveys

Displaying the last 10 answers. View more

Account  Contact us  FAQ  Examples

This application is developed and managed solely by Code Rubik inc. It is in no way sponsored, endorsed or
administered by Facebook.

I cannot tick the above question but the childrens privacy is
extremely important to me

internet use should be controlled or supervised until children
know how to protect themselves

All children need privacy, research suggest that if a child does
not have privacy, even from their parents, it can be damaging to
their development

If you wouldn't do it in real life don't do it in social medua

Ultimately a lack of respect for a child's privacy can erode the
bond between parent and child, with many children who are
spied upon by their parents often losing trust in those parents. It's
a recognised issue for many families, and there are several
groups that are actually in part dedicated towards addressing
this.

Find a balance between protecting them yet also allowing an
element of privacy

My child is only 3 still but I get worried at times about the random
videos that appear in the suggested section of you tube!!! As well
as impact on health due to using Internet.

I feel all children should be able to feel safe on line

As stated previously it is important that children do not naively
put things out there that may impact on their future lives
negatively.

I want my children to be able to use the Internet, which makes
their privacy a primary concern and necessity

Statistics Participants Share results

https://survey.fbapp.io/polls
javascript:void(0)
https://survey.fbapp.io/account
javascript:void(0)
http://fbsurvey.co/faq
http://fbsurvey.co/examples
https://survey.fbapp.io/polls/ttgvfo/stats
https://survey.fbapp.io/polls/ttgvfo/answers
javascript:void(0)


An Intelligent Multi-Agent System Approach to Automating Safety Features for On-Line Real Time Communications:  
Agent Mediated Information Exchange 
 

Katrinna MacFarlane  September 2016 

 

 

 

 

 

 

 

 

 

 

Appendix C – Project Plans 
 

 

 

 

 



ID Task Name Duration Start Finish
1 Database Connection 9 days Tue 22/10/13 Fri 01/11/13
2 Agent Integration with Data/Chat 15 days? Sat 02/11/13 Wed 20/11/13
3 Develop Threat Level Agent 24 days? Tue 22/10/13 Wed 20/11/13
4 Modify crisp rules -> fuzzy rules 24 days? Mon 11/11/13 Tue 10/12/13
5 Finalise class relationships in the ontology 24 days? Mon 18/11/13 Wed 18/12/13
6 System Testing Starts 69 days? Thu 19/12/13 Mon 24/03/14
7 Different Ontology Reasoners 11 days? Mon 04/11/13 Sat 16/11/13
8 Crisp vs Fuzzy rules in ThreatAgent 11 days? Wed 18/12/13 Tue 31/12/13
9 Test Conversations 16 days? Wed 01/01/14 Wed 22/01/14
10 Real Conversations 9 days? Thu 23/01/14 Tue 04/02/14
11 Finalise Writeup 28 days Mon 24/03/14 Wed 30/04/14

S S M T W T F S S M T W T F S S M T W T F S S
09 Sep '13 16 Sep '13 23 Sep '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 1

Project: Latest Project Plan.mppDate: Sat 03/09/16



S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S
30 Sep '13 07 Oct '13 14 Oct '13 21 Oct '13 28 Oct '13 04 Nov '13 11 Nov '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 2

Project: Latest Project Plan.mppDate: Sat 03/09/16



M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M
11 Nov '13 18 Nov '13 25 Nov '13 02 Dec '13 09 Dec '13 16 Dec '13 23 Dec '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 3

Project: Latest Project Plan.mppDate: Sat 03/09/16



T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W
23 Dec '13 30 Dec '13 06 Jan '14 13 Jan '14 20 Jan '14 27 Jan '14 03 Feb '14

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 4

Project: Latest Project Plan.mppDate: Sat 03/09/16



W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W
03 Feb '14 10 Feb '14 17 Feb '14 24 Feb '14 03 Mar '14 10 Mar '14 17 Mar '14

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 5

Project: Latest Project Plan.mppDate: Sat 03/09/16



T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
24 Mar '14 31 Mar '14 07 Apr '14 14 Apr '14 21 Apr '14 28 Apr '14

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 6

Project: Latest Project Plan.mppDate: Sat 03/09/16



ID Task Name Duration Start Finish Predecessors
1 Generate working chat system 45 days Mon 12/11/12 Fri 11/01/13
2 Create mobile develoment suite (NetBeans, JADE, Protégé) 1 wk Mon 12/11/12 Fri 16/11/12
3 Develop GUI's and integrate existing agents 4 wks Mon 19/11/12 Fri 14/12/12 2
4 Connect to database to enable registration 4 wks Mon 17/12/12 Fri 11/01/13 3
5 Write up progress to thesis - First Stage 1 wk Mon 14/01/13 Fri 18/01/13 4
6 Produce a working Ontology 40 days Mon 12/11/12 Fri 04/01/13
7 Kate - Design a test set large enough to produce valid test results 8 wks Mon 12/11/12 Fri 04/01/13
8 Violeta - Enlist help to auto populate 8 wks Mon 12/11/12 Fri 04/01/13
9 Write up progress to thesis - Second Stage 1 wk Mon 21/01/13 Fri 25/01/13 5
10 Produce Ontology Paper 2 wks Mon 28/01/13 Fri 08/02/13 9
11 Re-engineer MAS 40 days Mon 28/01/13 Fri 22/03/13 5
12 Meeting detection agent 2 wks Mon 28/01/13 Fri 08/02/13 9
13 Threat level icrementation and notification 3 wks Mon 11/02/13 Fri 01/03/13 12
14 Ontology integration 3 wks Mon 04/03/13 Fri 22/03/13 13
15 Write up progress to thesis - Third Stage 1 wk Mon 25/03/13 Fri 29/03/13 14
16 Produce Paper on System Enhancements 2 wks Mon 12/11/12 Fri 23/11/12
17 Mobile system adaptation 50 days Mon 01/04/13 Fri 07/06/13
18 Research JADE Leap 4 wks Mon 01/04/13 Fri 26/04/13 15
19 Export system onto mobile platforms 4 wks Mon 29/04/13 Fri 24/05/13 18
20 Produce Mobile Platform Paper 2 wks Mon 27/05/13 Fri 07/06/13 19
21 Complete and submit Thesis 10 wks Mon 10/06/13 Fri 16/08/13 20

S S M T W T F S S M T W T F
12 Nov '12 19 Nov '12

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 1

Project: SafeChat.mppDate: Sat 03/09/16



S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T
26 Nov '12 03 Dec '12 10 Dec '12 17 Dec '12 24 Dec '12 31 Dec '12 07 Jan '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 2

Project: SafeChat.mppDate: Sat 03/09/16



T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F
07 Jan '13 14 Jan '13 21 Jan '13 28 Jan '13 04 Feb '13 11 Feb '13 18 Feb '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 3

Project: SafeChat.mppDate: Sat 03/09/16



F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M
25 Feb '13 04 Mar '13 11 Mar '13 18 Mar '13 25 Mar '13 01 Apr '13 08 Apr '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 4

Project: SafeChat.mppDate: Sat 03/09/16



M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
08 Apr '13 15 Apr '13 22 Apr '13 29 Apr '13 06 May '13 13 May '13 20 May '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 5

Project: SafeChat.mppDate: Sat 03/09/16



T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S
27 May '13 03 Jun '13 10 Jun '13 17 Jun '13 24 Jun '13 01 Jul '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 6

Project: SafeChat.mppDate: Sat 03/09/16



S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W
08 Jul '13 15 Jul '13 22 Jul '13 29 Jul '13 05 Aug '13 12 Aug '13 19 Aug '13

Task
Split
Milestone
Summary
Project Summary
External Tasks
External Milestone

Inactive Milestone
Inactive Summary
Manual Task
Duration-only
Manual Summary Rollup
Manual Summary
Start-only

Finish-only
External Tasks
External Milestone
Progress
Deadline

Page 7

Project: SafeChat.mppDate: Sat 03/09/16



Safe Chat Development Plan 

 

1. Produce a working ontology 
 Investigate the possibility of finding a faster way to populate it – or decide on a cut off 

point for a realistic working test set. 
2. Generate GUI’s 

 Chat windows 
 Registration/ log in 

3. Threat level Agent 
 We need this to increment (into the database or text file) every time there is a threat 

generated by the user, then once the number gets to a specified level the system can 
take action. 

4. Export options for ontology 
 Need to research different options in an effort to find the most efficient. Might even 

have to split the ontology? 
5. Modify existing agents 

 Detection agent – needs to search through ontology efficiently (look at various search 
algorithms). 

 Register/ Log in needs to be resolved somehow. 
 Profile agent needs to read database or file. 
 Notification agent needs to read from database or file. 

6. Generate new documentation for system 
 Flow diagrams. 
 Class diagrams. 
 Project plans- Gantt charts 

 

 



An Intelligent Multi-Agent System Approach to Automating Safety Features for On-Line Real Time Communications:  
Agent Mediated Information Exchange 
 

Katrinna MacFarlane  September 2016 

 

 

 

 

 

 

 

 

 

 

Appendix D – Testing Resources 
 

 

 

 

 



/*
* Agent Mediated Information Exchange: Child Safety Online
* SafeChat Development Files
* Katrinna MacFarlane 2016
*/
package database;
import java.sql.*;
import java.sql.DriverManager;

public class DataBase {

    public static void main(String[] args) {
   
        String url  = "jdbc:mysql://localhost:3306/km";
        String user = "root";
       String password  = "";
          
          try{
              Connection myCon = 
DriverManager.getConnection(url, user, password);
              
              Statement myStmt = myCon.createStatement();
              
              String sql = "insert into tbl_Users "
                               + " (Last_Name, First_Name, 
Email)"
                               + " values ('Violeta', 
'Holmes', 'v.holmes@hudd.com') ";
              
              myStmt.executeUpdate(sql);
              System.out.println("Insert Complete");
          }
          catch (Exception exc){
              exc.printStackTrace();
          }
    }
    
}

1



/*
* Agent Mediated Information Exchange (2015)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package test;

import java.util.Scanner;

public class getConversation {
    public void getMessage(){
       String conversation;
       Scanner sc = new Scanner(System.in);
       
       Test sendConvo =new Test();
       
       System.out.println("Enter your text");
       conversation = sc.nextLine();
       
       sendConvo.printConvo(conversation);
       sc.close();
}
}

1



/*
* Agent Mediated Information Exchange (2016)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package testpackage;

public class TestPackage {

    public static void main(String[] args) {
  
        String msg1 = "2010";
        int msgCon1 = Integer.parseInt(msg1);
        
        System.out.println(msgCon1);
        
        int testT = 0;
        int testLoc = 0;
        int testTim = 0;
        int testInten = 0;

        testInten = (msgCon1 % 10);
        testTim = (msgCon1 % 100)/ 10;
        testLoc = (msgCon1 % 1000)/ 100;
        testT = (msgCon1 % 10000)/ 1000;
       
        System.out.println("Location= " +testLoc + " Time = " 
+ testTim + " Intention = " + testInten);

        int intention;
        int time;
        int location;
        
        if (testLoc <= 0){
                    location=0;
             }
                else{
                    location=1;
                    }
        if (testTim <= 0){
                    time=0;
             }
                else{
                    time=1;
                    } 
        if (testInten <= 0){
                    intention=0;
             }
                else{
                    intention=2;
                    }
             
       int threatLevel = 0;
        
        threatLevel = (location+time+intention);
      
        System.out.println("The current threat level for this 

1



conversation is: " + threatLevel);
    }
   
}

2



/*
* Agent Mediated Information Exchange (2016)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package test;

import java.util.Scanner;

public class Test {
    public static void main(String args[]){
        getConversation callClass = new getConversation();
        callClass.getMessage();
    }
    
    public void printConvo(String recievedConvo){
        System.out.println("You entered: "+ recievedConvo);
    }
}
      
     /* //now we need to parse the conversation and look for 
elements
                    // then do if location == true - send 
message
                    // then do if time == true - send message
                    // then do if intention == true - send 
message
    
      String search = (new String (conversation));
      String searchString "cinema";
           if searchString = (true){
           searchString = location;
                   }
           else {location = "";
        }

doWait(2500); //we sleep here
                        ACLMessage msg = receive();
                        //System.out.println(msg);
                            if (msg!=null){
                        String test=msg.getContent();
                        if (test.equals(location)){
                        ACLMessage msg1 = new 
ACLMessage(ACLMessage.INFORM);
                        msg1.addReceiver(new AID("Threat", 
AID.ISLOCALNAME));
                        msg1.setLanguage("English");
                        msg1.setContent("elevate");
                        send(msg1);
                        finished = true;             
                        }
                        else{
                            if (test.equals(time)){
                            ACLMessage msg1 = new 
ACLMessage(ACLMessage.INFORM);
                            msg1.addReceiver(new AID("Threat", 
AID.ISLOCALNAME));

1



                            msg1.setLanguage("English");
                            msg1.setContent("elevate");
                            send(msg1);
                            finished =true;
*/

2



/*
* Agent Mediated Information Exchange (2016)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package testone;

public class TestOne {

    public static void main(String[] args) {

         String msg1 = "3101";
        int msgCon1 = Integer.parseInt(msg1);
        
        System.out.println(msgCon1);
        
        int testT = 0;
        int testLoc = 0;
        int testTim = 0;
        int testInten = 0;

        

        testInten = (msgCon1 % 10);
        testTim = (msgCon1 % 100)/ 10;
        testLoc = (msgCon1 % 1000)/ 100;
        testT = (msgCon1 % 10000)/ 1000;
       
        System.out.println("Location= " +testLoc + " Time = " 
+ testTim + " Intention = " + testInten);
    }
    
}

1



/*
* Agent Mediated Information Exchange (2016)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package testtwo;

import java.io.*;

public class TestTwo {
      
    public static void main(String[] args) {
        
    File f = new File("meet.txt"); // Here we open a file to 
record the last 
                            //known threat levels for each of 
the meeting elements
    
    String msg1 = "3110"; // For testing purposes we are using 
a hard coded message 
                                            //this will be 
sent from the DetectionAgent in a live system
    
// Here the message is converted from a string into integer 
values        
    int msgCon1 = Integer.parseInt(msg1);
// Here we print out the message to ensure accuracy        
        System.out.println("The result of the meeting element 
query is: " + msgCon1);
       
// The meeting element variables are declared below:        
        int testT = 0;
        int testLoc = 0;
        int testTim = 0;
        int testInten = 0;

// Here we take the integer value and separate it into its 
component values        
// This is why we have to add the CheckBit value 
//the number cannot start with a 0 so a CheckBit with  value 
of 3 is being used
        testInten = (msgCon1 % 10);
        testTim = (msgCon1 % 100)/ 10;
        testLoc = (msgCon1 % 1000)/ 100;
        testT = (msgCon1 % 10000)/ 1000;
       
System.out.println("Checkbit:" + testT + " Location:" + 
testLoc + " Time:" + testTim + " Intention:" + testInten);
        
// This part of the code sets the current value of the meeting 
elements
        int intention;
        int time;
        int location;
        
        if (testLoc <= 0){
                    location=0;

1



             }
                else{
                    location=1;
                    }
        if (testTim <= 0){
                    time=0;
             }
                else{
                    time=1;
                    } 
        if (testInten <= 0){
                    intention=0;
             }
                else{
                    intention=2; //Intention caries more 
weight than the other elements
                    }
// This part of the code sets the current threat level of the 
conversation             
       int threatLevel;
        
        threatLevel = (location+time+intention);  
        System.out.println("The current Threat Level for this 
conversation is: " + threatLevel);
        
// This part of the code sets the current Safety Level of the 
conversation 
// This could be displayed to the user for information     
        String safeLevel = "";
            
        if (threatLevel <= 1) {
            safeLevel = "Green";           
        }
        else if (threatLevel <= 2){
               safeLevel = "Amber";           
        }
        else{
            safeLevel = "Red!";
        }       
       System.out.println("The current Safety Level for this 
conversation is: " + safeLevel); 

// This part of the code writes the last known threat levels 
for each element to the meet.txt file     
        int chkBit;
        int lastLoc;
        int lastTim;
        int lastInten;
        
        chkBit=3;
        lastLoc=location;
        lastTim=time;
        lastInten=intention;
        
        try{
           FileWriter fw =new FileWriter(f);
           fw.write( chkBit+ " " +lastLoc + " " + lastTim + " 

2



" + lastInten);
           fw.close();
            
        }catch (Exception ex){
           
        }
    }
}

3



/*
* Agent Mediated Information Exchange (2016)
* Katrinna MacFarlane 
* PhD Working Examples
*/
package filewriter;

import java.io.*;

public class TestThree {

    public static void main(String[] args) {
       File f = new File("test.txt");
        try{
           FileWriter fw =new FileWriter(f);
           fw.write("Hello");
           fw.close();
            
        }catch (Exception ex){
           
        }
    }
    
}

1



Conversation 1 

Joe: Hi there, how are you today? 

Betty: I’m ok - bored though 

Joe: really - what do you feel like doing 

Betty: I want to go to McDonalds but no one will take me 

Joe: that’s too bad - hope you feel better soon 

 

Conversation 2 

Joe: Hi there, how are you today? 

Betty: I’m ok - bored though 

Joe: really - what do you feel like doing 

Betty: I want to go to McDonalds but no one will take me 

Joe: that’s too bad - hope you feel better soon 

Betty: what are you doing today? 

Joe: I’m going to the movies with my dad 

Betty: aww I want to go too 

Joe: Got to run - see you later 

 

Conversation 3 

Joe: Hi there, how are you today? 

Betty: I’m ok - bored though 

Joe: really - what do you feel like doing 

Betty: I want to go to McDonalds but no one will take me 

Joe: that’s too bad - hope you feel better soon 

Betty: what are you doing today? 

Joe: I’m going to the movies with my dad 

Betty: aww I want to go too 

Joe: I will ask my dad if you can come 

Betty: no maybe we can go next week 

Joe: cool - lets meet on Saturday 

 



Conversation 4 

Joe: I would really like you to meet me at the movies on Saturday, we can see the new adventure 

film Tomorrow Never Dies 

Betty: ok 

 

Conversation 5 

Joe: Hi there, how are you today? 

Betty: I’m ok - bored though 

Joe: really - what do you feel like doing 

Betty: I want to go play on my iPad-but its broke  

Joe: that’s too bad - hope you feel better soon 

 

Conversation 6 

Betty: hello my name is Betty 

Joe: hey Betty - I'm joe  

Betty: how are you Joe? 

Joe: fine thank you, how are you? 

Betty: good thanks, where do you live? 

Joe: I live in Manchester 

Betty: oh that’s nice - what is your last name joe? 

Joe: my last name is Bloggs 

 

Conversation 7 

Betty: You will never guess what happened today 

Joe: oh?  

Betty: this morning Jack came into class and told everyone he got picked for the team 

Joe: wow- that’s good news 

Betty: Yes, his dad took him to McDonalds because that’s his favourite and he asked if he wants to 

go to Disneyland on holiday 

 

 



Conversation 8 

Joe: Hi there, how are you today? 

Betty: I’m ok - bored though 

Joe: really - what do you feel like doing 

Betty: I want to go to McDonalds but no one will take me, or to the match – or even the movies 

Joe: that’s too bad - hope you feel better soon, I went to the movies last week 

Betty: what did you see? 

Joe: I saw Tomorrow Never Dies, it’s my favourite 

Betty: aww I want to see that too  

Joe: I will ask my dad if you can come next week 

Betty: ok that would be great 

 



 "subject"  "predicate"  "object" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#in_five_minutes"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#in_five_minutes"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#hasComponent"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#ObjectProperty" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#hasComponent"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#FunctionalProperty" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#hasComponent"  "http://www.w3.org/2000/01/rdf-schema#range"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Meeting" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_match"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_match"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Macdonalds"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Macdonalds"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Restaurant" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Apollo"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Apollo"  "http://www.w3.org/2002/07/owl#equivalentClass"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Movies" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Apollo"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_thursday"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_thursday"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#come_to"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#come_to"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Football_match"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Football_match"  "http://www.w3.org/2002/07/owl#equivalentClass"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#footie" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Football_match"  "http://www.w3.org/2002/07/owl#equivalentClass"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_game" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Football_match"  "http://www.w3.org/2002/07/owl#equivalentClass"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_match" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Football_match"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#tomorrow"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#tomorrow"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Meeting" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#burger_king"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#burger_king"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Macdonalds" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Meeting" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pictures"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pictures"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#kfc"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#kfc"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Restaurant" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#cafe"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#cafe"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Restaurant" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_wreck"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_wreck"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#park" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#spaghettii_house"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#spaghettii_house"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_place" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#we_could_meet_at"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#we_could_meet_at"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_friday"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_friday"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_slide"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#the_slide"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#park" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#do_you_think_we_should_meet"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#do_you_think_we_should_meet"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#shopping"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#shopping"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_saturday"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_saturday"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#wh_smiths"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 



 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#wh_smiths"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#whsmiths" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#italian"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#italian"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_place" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#meet_me"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#meet_me"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#asda"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#asda"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#supermarket" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_monday"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_monday"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Meeting" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#lets_meet"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#lets_meet"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Intention" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#burger_place"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#burger_place"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Macdonalds" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#whsmiths"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#whsmiths"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#book_store" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_teusday"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#on_teusday"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Time" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#music_store"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#music_store"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#shopping" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#park"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#park"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Cinema"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Cinema"  "http://www.w3.org/2002/07/owl#equivalentClass"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Movies" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Cinema"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#flicks"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#flicks"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Location" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_place"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_place"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#Restaurant" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#game_store"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#game_store"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#shopping" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_hut"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_hut"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#pizza_place" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#tomoz"  "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"  "http://www.w3.org/2002/07/owl#Class" 
 "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#tomoz"  "http://www.w3.org/2000/01/rdf-schema#subClassOf"  "http://www.semanticweb.org/ontologies/2010/0/Ontology1264435885586.owl#tomorrow" 


