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Abstract 

 

This research focuses on classification of categorical events using advanced statistical 
models. Primarily utilised to detect and identify individual component faults and 
deviations from normal healthy operation of reciprocating compressors. Effective 
monitoring of condition ensuring optimal efficiency and reliability whilst maintaining the 
highest possible safety standards and reducing costs and inconvenience due to 
impaired performance.  

Variability of operating conditions being revealed through examination of vibration 
signals recorded at strategic points of the process. Analysis of these signals informing 
expectations with respect to tolerable degrees of imperfection in specific components. 

Isolating inherent process variability from extraneous variability affords reliable means 
of ascertaining system health and functionality. Vibration envelope spectra offering 
highly responsive model parameters for diagnostic purposes. 

This thesis examines novel approaches to alleviating the computational burdens of 
large data analysis through investigation of the potential input variables. Three 
methods are investigated as follows: 

Method one employs multivariate variable clustering to ascertain homogeneity 
amongst input variables. A series of heterogeneous groups being formed from each 
of which explanatory input variables are selected. 

Data reduction techniques, method two, offer an alternative means of constructing 
predictive classifiers. A reduced number of reconstructed explanatory variables 
provide enhanced modelling capabilities ensuring algorithmic convergence. 

The final novel approach proposed combines both these methods alongside wavelet 
data compression techniques. Simplifying number of input parameters and individual 
signal volume whilst retaining crucial information for deterministic supremacy.  
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“Looking for structure in a set of numbers, without imposing rigid parametric 
assumptions, but still within a statistical framework of some kind.” Silverman (1991). 
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Chapter 1  

Introduction 

 

 

 

 

This chapter outlines the research area including motivation, aims and objectives plus 
details of the thesis organisation. 

An overview of Condition Monitoring is presented, its importance measured and the 
process of information collection and data manipulation summarised.  
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1.1 An Overview of Condition Monitoring  
 

 

1.1.1 The Importance of Condition Monitoring 
 

Condition monitoring (CM) is concerned with preventing, or at the very least predicting, 
impending component failure. The past fifty years have seen exponential growth in the 
use of CM in process control for an increasing number of applications. CM is largely 
similar to medical diagnosis in that symptoms are detected and tested with the aim of 
diagnosing the problem. Alongside more traditional scheduled maintenance, based on 
set periods of time or production outputs, modern process monitoring is complemented 
with maintenance on demand. Maintenance based on real time observations of 
operation with respect to expected normal running principles [28, 79 and 80] 

The ultimate aim of CM is to prevent failure and unplanned or emergency intervention. 
Ideally interceding at the earliest possible onset or deviation from optimal operation. 
Thus efficiency of systems and components is enhanced through preventive and 
corrective maintenance supplemented with routine overviews and services [6 and 27].  

With increasing process performance and product quality CM becomes ever more 
vital. Gathering up to the minute information on operating condition and process 
efficiency. Fault management through continuous supervision ensures deviations from 
normal healthy operation are detected practically at onset. Immediate corrective 
measures enhance the efficiency and lifetime of both systems and components [29]. 

Supervision of processes utilising fault detection methods and diagnostic fault 
classification or inference methods is designed to highlight anomalies in the current 
behaviour of a process compared to expectations [10 and 55]. Thus aiding timely 
intervention should non-normal output measures be recorded. Ideally through 
appropriate corrective actions undesirable outcomes such as component malfunctions 
and failures should be minimised if not entirely eradicated.  

 

 

1.1.2 Information Gathering 
 

As the complexity of machinery increases, both component and system wise, so do 
the complexity and costs of maintenance programmes. A reliable method of assessing 
health and monitoring performance is required. Incorporating sensors into complex 
systems to collect output signals provides up to the minute condition information. Thus 
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continual assessment of different components at all stages of operation is possible. 
Sensors may be temporarily affixed for scheduled assessment of processes or be 
permanently attached and continuously monitored [107]. Accelerometers, for 
example, externally attached to mechanical components are non-intrusive and provide 
continuous localised vibration measurements. Response times to identification of 
deviations from normality are timely thus immediate steps can be taken should a 
process be operating at less than optimal efficiency [16]. 

Classical methods of process monitoring, suitable for overall process management 
include checking measureable variables against pre-set tolerances. Alarms being 
triggered should the boundaries on a number of process control rules be violated [30, 
78 and 100]. Alarms signifying appropriate intervention from operators unless a 
suspected dangerous state of the process is indicated when the necessary counter 
action or possible shutdown would be automated. 

 

 

1.1.3 Data Manipulation 
 

To locate and identify a specific fault it is necessary to convert collected signals into 
physical attributes and remove extraneous noise due to unrelated factors. 
Sophisticated modelling of signal patterns requires advanced data processing and 
multivariate statistical techniques. Analysis of data collected under known process 
conditions informs statistical models for future diagnostic use. Thus the major 
characteristics of faults can be determined and catalogued for comparison of current 
condition [18, 19 and 20].  

CM covers a vast number of diverse applications, techniques and monitoring methods. 
One area of study being detection and identification of faults in mechanical industrial 
processes. Enhanced multivariate statistical techniques are applied to signals 
retrieved from various stages of process operation. Vibration signals are particularly 
useful in describing mechanical process state of health [55 and 87]. Advances in 
model sophistication are prevalent using pattern detection of frequencies or 
combinations of frequencies from spectra. Surges in computational capabilities have 
facilitated massive increases in data processing potential. A search of current 
literature, however, reveals little or no specific research into the underlying 
characteristics of the input variables. 
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1.1.4 Research Application 
 

Reciprocating compressors (RC) are an intrinsic part of many industrial processes. 
For example, oil refineries, gas pipelines, chemical plants and refrigeration plants [1, 
2 and 11]. Component failure is therefore potentially life threatening as well as costly 
and time consuming. Efficiency and continued performance of these processes rely 
on early detection of RC component deterioration. Component failure in RCs is broadly 
due either to mechanical failure or loss of elasticity in sealing components. The latter 
being the most prevalent. Monitoring RCs is difficult mainly due to inaccessibility of 
component parts hence the importance of performance monitoring through suitably 
positioned sensors for signal capture [54, 72 and 82]. Although informative internally 
inserted pressure sensors are intrusive whilst accelerometers can be externally 
attached without direct interference with operation. Vibration signals collected via 
accelerometers provide high levels of information facilitating detailed and accurate 
assessment of system condition. RCs are susceptible to a multitude of faults, both due 
to mechanical and elastic deterioration, which can occur in isolation or combination. 
Extracting useful information is often hindered by the large amount of noise captured 
along with measured signals. For meaningful analysis this extraneous variation needs 
to be filtered out [12, 16, 28 and 87]. In reciprocating machines the problem is all the 
more apparent than in rotating mechanical systems due to the greater vibration 
amplitudes and increased complexity of interacting component parts. Thus the 
potential complexity of the RC faults lends itself perfectly to investigation through 
complex multivariate statistical models and their testing. Techniques which are then 
easily transferable to other mechanical processes with less intricacy.  
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1.2 Motivation 
 

The motivation arose during previous research detecting and diagnosing faults in RCs 
wherein classifiers were established using sophisticated modelling techniques [2]. For 
algorithmic convergence it was necessary to restrict the number of input parameters 
to as few as 15 hence decisions had to be made as to which parameters to include 
and which to omit [101 and 102]. Whilst it was apparent that certain parameters had 
particular relevance to a given class being repeatedly used in its presence, feature 
selection was more intuitive than rigorously quantitative. To optimise explanatory 
power of the model a rigorous selection procedure was necessary. Random selection 
of 15 variables from the possible 32 is clearly not a sensible proposition. Analysis of 
harmonic feature characteristics for homogeneity should allow a reduction in the 
number of input variables (harmonic features) through selection of a smaller number 
of heterogeneous harmonics and elimination of those with contributions to variability 
already accounted for by others. Thus by applying the underlying model building 
principles of sparse multivariate regression analysis, reduced feature sets with optimal 
explanatory powers should be realised [57, 61 and 73]. 

This research is primarily concerned with reducing the volume of input parameters 
prior to model construction whilst maintaining classification accuracy and avoiding 
bias. Methods of reducing input parameters are considered in three broad groups a) 
inputting fewer original variables identified through variable clustering to offer the 
highest levels of non-repeated information b) by using variable reduction techniques 
transforming all original variables into a reduced number of linear combinations of 
those original variables and c) a combination of the procedures detailed in a) and b). 
In addition the possibility of volume reduction through data compression is considered 
[77]. Throughout effectiveness of the selection criteria are illustrated by construction 
and evaluation of multivariate classifiers using both classical statistical and machine 
learning model building techniques. 
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1.3 Aim  
 

To explore the impact on multivariate classifier efficacy of differing input parameter 
selection techniques. Introduce robust selection criteria through identifying variable 
properties and correlations. Maintain the highest possible levels of model efficiency, 
avoiding bias and reducing input parameter volume with application to reciprocating 
compressor fault identification.  
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1.4 Objectives 
 

 

1.4.1 Time Domain  
 

To examine the characteristics of output signals from a reciprocating compressor rig 
to identify their physical attributes under normal, healthy, operating conditions. 

To explore inter-relationships between signal measurements during healthy 
operations in the time domain. 

To identify the most richly informative, non-intrusive output measurements with 
respect to their potential for explaining operating condition. 

 

 

1.4.2 Frequency Domain 
 

To convert output signals from the time to the frequency domain and examine 
characteristics of their frequency spectra. 

To de-noise output signals using fast Fourier transforms and identify salient features 
with respect to size and position of harmonic amplitudes. 

To utilise envelope spectra harmonic amplitudes to monitor condition of a process, 
detect and identify any faulty components present. 

 

 

1.4.3 Variable Selection 
 

To identify plausible class separation through class profiling Fourier transforms of 
output signals.  

To identify the output signal with optimal powers of explanation and minimal intrusive 
effect on the operating system. 

To identify homogeneous groups of envelope harmonics though variable clustering in 
order to select reduced numbers of input parameters with optimal explanatory power. 
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1.4.4 Classifier Construction 
 

To select representative group members, from each of the heterogeneous cluster 
groups, for inclusion as input parameters in multivariate statistical modelling. 

To establish models, or classifiers, to predict state of health of reciprocating 
compressors using reduced numbers of input parameters whilst maintaining 
classification accuracy. Also to investigate effect on model accuracy of varying 
numbers of input parameters in detecting and identifying increased numbers of faults. 

To establish multivariate classifiers through variable reduction techniques from classic 
multivariate statistical and machine learning methodologies. 

 

 

1.4.5 Extended Analysis 
 

To consider the impact of data compression on input parameter distributions, and 
possible effect on richness of signal information and ability to identify and classify 
faults. 

 

 

1.5 Organisation of Thesis 
 

This thesis is organised into nine chapters with the data analysis covering four main 
sections of investigation: 

 

 

Chapter 5: Exploratory data analysis in both the time and frequency domains. 

Chapter 6: Investigations into correlations and inter-dependencies, of the 
envelope spectra harmonics, to establish variable groupings. 

Chapter 7:  Classifier construction using the two proposed methodologies, 
reducing the number of input parameters and variable reduction 
techniques. 

Chapter 8: Combined methodologies incorporating data compression and 
identification of further work. 
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Chapter 1 introduces the thesis and outlines the research area including the motivation 
for the work studied, the overall research aim and research objectives. This is 
extended in chapter 2 where the background to existing condition monitoring 
methodology from a variety of disciplines is explored giving a brief overview of each 
area. Also further investigates use of vibration signals in detection of fault occurrence 
in mechanical processes. 

Chapter 3 gives a detailed account of the theory and applications of the multivariate 
statistical techniques employed in the analysis in subsequent chapters of the thesis. 
Their implementation in Matlab and possible adaptation to the field of CM. 

The engineering application of reciprocating compressors is reviewed in Chapter 4, 
including differing types of compressor, their basic functions and purpose, common 
faults and their implications. The test facilities and data collection process are also 
described with respect to the test rig employed, the output signals captured and the 
seeded faults to be identified. 

The first data analysis section begins with Chapter 5 which contains the exploratory 
data analysis, examination of individual signal outputs and characteristics in both the 
time and the frequency domain. Inter-relationships between the output signals 
measured and some preliminary investigations into fault diagnosis in the frequency 
domain. 

Chapter 6 heralds the start of the novel investigations and the second stage of the 
data analysis. Initially inspecting envelope harmonics in the frequency domain for key 
fault characteristics through class profiling using Fourier transforms with results 
displayed in the form of Andrews’ plots to determine potential for class separation. 
There follows a pre assessment of the variable characteristics through variable 
clustering from which heterogeneous representatives are selected for incorporating in 
the modelling process.  

Illustrative models are examined from both classical multivariate statistical methods 
and machine learning technologies in the third analysis stage. Classifiers are 
constructed and assessed using discriminant analysis and Naïve Bayes methods. The 
focus of the analysis in this chapter being the construction of multivariate classifiers 
for fault detection using reduced numbers of input parameters, identified through prior 
variable clustering, whilst maintaining fault classification accuracy. Modelling 
continues in chapter 7 which investigates the efficacy of multivariate classifiers 
constructed using variable reduction methods. Again examples are taken from both 
multivariate statistics and machine learning methodologies, namely principal 
component analysis and support vector machines. Once again the focus of the chapter 
being the ability of the input parameter selection technique to facilitate construction of 
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models with high classification capabilities and low computational output 
requirements. 

Combined methodology is considered in chapter 8 where the concept of data 
compression is also introduced. Further discussion is included of the potential for data 
compression and a combination of the techniques explored in chapters 6 and 7 to 
produce optimally sparse unbiased multivariate classifiers with reduced input 
parameter volume. This chapter forms the basis for identification of further research 
the primary focus being the construction of classifiers using the conjoined parameter 
selection techniques. 

Chapter 9 addresses the overall research conclusions, reviews the thesis 
achievements and objectives and details the thesis contributions to knowledge and 
novelties.  
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Chapter 2  

Current Practice in Condition Monitoring 

 

 

 

 

This chapter reviews CM from its onset in the 1960s to current day and examines the 
CM spectrum. In particular the CM of mechanical processes and the use of vibration 
signals in fault detection analysis. A review of the various types of compressor systems 
and their typical applications is presented. Also a brief overview of maintenance 
protocols, historical and emergent. Potential operational problems, major sources of 
poor performance or breakdown and impact on all aspects with respect to cost and 
efficiency. Prospect for further faults to develop due to worn or broken parts, increases 
in running costs and consequences of downtime due to major incidents.  
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2.1 The Growth of Condition Monitoring Practice 
 

 

With computer technology becoming readily available throughout the 1960s and being 
cheap in comparison to salaries, computer monitoring of systems was introduced and 
greatly increased during the 1970s. This was further enhanced and developed in the 
1990s to include diagnostic testing of systems. From then condition monitoring of 
systems and components has become the norm [80 and 107]. As process automation 
or condition monitoring expanded so did the demand for increasing process 
performance and product quality. Human operators were thus released from 
monotonous and arduous tasks [55]. This automation expansion is also evident in 
areas of technical production and precision mechanical devices which operate partially 
automatically or with integrated automatic functions. Thus an industrial process can 
be continually assessed with relevant and timely intervention should pre-determined 
limits or thresholds be violated. Maintaining quality of outputs and machine 
performance. However, whilst these methods provide a protective environment for 
operation, in particular for safety related issues, greater damage due to major faults 
may be detected too late. Enabling early diagnosis of the root cause before extensive 
damage and deterioration in performance is evident is essential [80, 87, 96 and 107]. 

 

 

2.1.1 The Condition Monitoring Procedure 
 

Monitoring of processes is conducted on three sub-levels of information processing; 
control level (feedback control), supervision level (observation and supervision of 
process) and higher level (management). Thus scheduled maintenance, based on set 
periods of time or production outputs, is complemented with maintenance on demand, 
based on real time observations of operation with respect to expected normal running 
principles [96 and 107]. 

Fault management through continuous supervision and diagnosis with performance 
and lifetime prognosis falls into three major categories maintenance, repair and 
reconfiguration with the first two being either planned or unplanned emergency 
maintenance [100]. The ultimate aim of condition monitoring is to prevent failure and 
unplanned or emergency intervention. To intercede at the earliest possible onset or 
deviation from optimal operation thus enhancing efficiency and lifetimes of systems 
and components. This is achieved through preventive and corrective maintenance 
supplemented with routine overviews and services [6]. 
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Naturally as the complexity of a machine increases so its expected maintenance costs 
and monitoring programme increase in size and complexity. A reliable method of 
assessing health and monitoring performance is thus sought to enable the machine 
lifetime to be prolonged to a maximum whilst maintaining an optimal operative state. 
De Botton et al (2000) describe the four-fold benefit of improving productivity, product 
quality, profitability and overall effectiveness of a system. 

 

 

2.1.2 The Condition Monitoring Cycle 
 

The condition monitoring cycle of detection of abnormalities, diagnosis or classification 
of faults and prognosis is continual and ideally an intrinsic part of the maintenance 
cycle. Timely intervention through perpetual signal measurement and data analysis 
complementing time based maintenance schedules [30, 56 and 85]. 

The major focus of condition monitoring being its prognostic and fault prediction 
abilities, the power of which is determined by selecting the appropriate analytical 
techniques.  Making correct distributional and theoretical assumptions is key to model 
robustness and strength of inference. Likewise a condition based rather than time 
interval based maintenance regime ensures near optimal performance for the duration 
of process operation. An ever increasing drive for environmental supremacy and the 
highest safety standards alongside increasing global competition forces companies to 
strive for the greatest possible achievements in both performance and quality [63 and 
76]. 

 

 

2.1.3 Data Collection for Informed Decisions  
 

Decisions are made daily about manufacturing processes in the presence of variability. 
Process specific knowledge allows quantification of the risks associated with various 
courses of action while statistics provides a common language to communicate 
information. A process is considered to be in a state of statistical control if any 
variations in observed measurements can be attributed to chance variation only not 
assignable variability which it is feasible to detect and identify, for example a loose 
belt, leaky valve etc. [78]. Thus a process under statistical control operating under the 
influence of common causes of variation only should be operating within the upper 
and lower control limits. Consequently in optimising process performance in all 
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aspects it is essential that deviations from the norm and or mechanical faults are 
detected, quantified and corrected in a timely manner [29].  

Data extracted via appropriately positioned sensors which capture output signals in a 
non-intrusive manner give relevant and timely information on the state of the observed 
process. Hence the current condition of a system can be assessed, failures predicted 
and remaining operating times estimated where applicable. Through suitably 
established statistical models condition predictors and reliability prognosis in systems 
is possible and of vital importance in maximising all aspects of efficiency [6, 55, 85 
and 107]. 

Supervision of processes utilising fault detection methods and diagnostic fault 
classification or inference methods is designed to highlight anomalies in the current 
behaviour of a process compared to expectations. Thus aiding timely intervention 
should non-normal output measures be recorded. Ideally through appropriate 
corrective actions undesirable outcomes such as component malfunctions and failures 
should be minimised if not entirely eradicated [100].  

 

 

2.1.4 Summary 
 

Optimisation goals can only be achieved if the right data is collected and appropriately 
analysed in sufficient time to enable corrective action to be taken. Data relevant to the 
analytic means and pertinent to the point of performance deviation. Increasingly 
sophisticated methods of analysis are being developed to cope both with growth in 
data collection and need for the upmost precision of detection and classification 
techniques. Generally these methodologies originate from either multivariate statistical 
techniques or from the machine learning environment. Technologies are more often 
than not application specific. Particular signals also lend themselves to certain areas 
of investigation more than others. Vibration signals, for example, tend to be poor 
indicators when applied to electrical systems as the system wiring interferes with 
output data; whereas they form the basis of much reliable diagnostic testing of 
mechanical processes. 
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2.2 Condition Monitoring Recent Research 
 

 

2.2.1 Breadth of Condition Monitoring Methodologies 
 

In [10] a review of 177 CM articles is presented classified by techniques and monitoring 
methods. Over the decade studied it was found approximately 20% were employing 
neural network techniques with around 12% of all studies analysing vibration data. 
These proportions are roughly similar today although ‘wavelet transform techniques’ 
might be a more appropriate collective noun than neural networks.  

Vibration signals can be collected via accelerometers in a non-intrusive manner, the 
signal amplitudes of the fast Fourier transforms are widely recognised as efficient 
pattern recognition features [12, 16 and 77]. Main areas of application being 
mechanical driven machinery as smaller electrical applications with additional wiring 
and transducers interfere with signal outputs. Major strengths of vibration analysis 
being its use for permanent as well as intermittent monitoring along with the high 
likelihoods of identifying specific faulty components [99]. Technological signal capture 
is further advanced through the use of micro electromechanical systems (MEMS) 
accelerometers directly attached to reciprocating compressor (RC) rotors [39]. 
Similarly motor current signature analysis which combines voltage and current outputs 
is a quick response and relatively cheap technique although is limited by equipment 
damage at low loads. 

Off and on-line tests are relatively popular although off-line tests are very time 
consuming and subject to untypical stresses components being detached from their 
usual supply. In addition to the long lead time and the actual fault and detection tests 
occurring almost at shutdown. On-line testing on the other hand whilst maintaining 
attachment to relevant components suffers performance decline throughout the testing 
period [12]. 

Temperature monitoring via internal motor sensors is particularly productive from an 
information point of view, offering immediate results without the need for complex 
analysis. Applications include bearing related mechanical faults and defects of 
systems deprived of air or water cooling, however, the extremely high cost of thermal 
imaging cameras and related software is prohibitive. 

Mathematical techniques offer faster monitoring and greater precision hence the 
continual growth in available techniques. Principal component analysis (PCA) was 
found to be most frequently used in application to chemical processes [7] with wavelet 
transforms rapidly increasing in importance as a signal processing tool. Wavelet 
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transform coefficients being utilised in the form of decomposed acoustic signals to 
monitor tool wear [111]. It is claimed in [45] that wavelet transform features offer faster, 
more reliable and sensitive means of monitoring than Fourier analysis. However, much 
research conducted utilising FFTs would contradict this claim giving equally precise 
and accurate diagnoses [1, 8, 21, 32, 35 and 46]. 

Neural networks remain the most oft used approach to system monitoring employed 
increasingly often alongside fuzzy logic or genetic algorithms (GA) for more complex 
fault diagnosis. Incorporating neural networks with 2 and 3-D graphs it is claimed in 
[59] leads to greater visualisation although essentially the characteristics and 
fundamental properties of the input variables remain hidden. GA are self-learning tools 
applied to training data to assign each case to one of a number of pre-determined sets 
related to normal operation and a number of faults. They may be incorporated into 
knowledge based or expert systems which do not require prior knowledge of the 
process but can be prone to overfitting. GA and artificial neural networks (ANNs) were 
combined in the analysis of vibration data, specifically employing GA to automate the 
fault classification process and minimise human interaction [70]. It was felt by the 
authors in [67] many models were not addressing specific problems being based on 
broad assumptions so failing to accurately identify dynamic characteristics.  

Models derived from multivariate data alone are prone to limitations if the faults are 
not known a priori and as the quantities of data and complexities of analysis continue 
to grow it is argued [22]. Solutions in the form of multi-dimensional path visualisations 
are offered in [24 and 43]. Acoustic signals from RCs are analysed using wavelet 
techniques [103 and 104] whilst wave matching differential evolution (DE) algorithms, 
which are akin to GA for feature extraction, are used prior to classification with support 
vector machines (SVM) in [83]. The authors in [83] arguing SVM have better 
generalisation than ANN especially for small sample problems. Limitations of these 
studies being a priori knowledge of the working principle to extract waveform features 
and the potential for hidden extraneous vibrations due to external effects. Findings in 
[104] concur, the authors claiming faster training and greater classification accuracy. 
However, in [63] it is noted that whilst data mining, ANN, SVM and other wavelet CM 
approaches might produce highly laudable results in a controlled experimental 
environment they show great weakness when applied in the real environment 
especially in monitoring wind turbulence effects. Perhaps confirmation that analysis 
via ‘black box’ techniques with no direct relation to the original signals and extraneous 
factors produces less than optimal solutions. 
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2.2.2 Increasing and Hidden Model Complexity 
 

Enhanced CM procedures monitor increasingly large numbers of faults for ever 
increasing volumes of data. Specific details of analysis though remain largely hidden 
within computerised learning technology. In addition there is a lack of evidence 
describing the nature and characteristics of the original input parameters. Ensemble 
clustering entails merging input cluster groups from a given data set to generate an 
improved final clustering fit [117]. However, the focus is squarely on gaining enhanced 
cluster separation rather than identifying pre-determined clusters. Where clusters are 
fixed such as RC fault types this methodology offers no solution. There is no apparent 
research analysis on associations between original variables with clustering very much 
a post classification procedure especially popular in process control. SVM and NB 
analyses are conducted employing random forests post hoc in [31]. Random forests 
provide grouping akin to clustering. Also correlation proximity is frequently employed 
in spectral clustering of samples post classification, the clustering parameters 
determined by trial and error with similar outcome to SVM. Another study, [71], 
highlights the inherent difficulties of on-line control systems violating computational 
capabilities in time constrained systems with large numbers of input parameters. 
Whilst there is much research into the value of particular output data measurements, 
vibration analysis, current signature analysis, temperature analysis etc. investigation 
of individual parameters within particular measurements is not apparent. 

 

 

2.2.3 Selection of Optimum Input Parameter Sets 
 

The problem in machine parameter setting for optimal outputs is considered in [86]. 
Present day machine process monitoring involves data sets with large numbers of 
input parameters. Identifying which factors will most affect the cost and quality of the 
products is key. Selection of optimum parameter sets for analysis is of paramount 
importance to satisfy all the conflicting objectives of the process. Due to the necessity 
to restrict numbers of input parameters especially for large data sets a well-defined 
and rigorous selection process is required. An artificial intelligence method is proposed 
and claimed superior to GA, Particle Swarm Optimisation (PSO) and other prevalent 
algorithms [86], again there is no report on properties of the original variables. The 
proposed solution, a Teaching-Learning Based Optimisation (TLBO) algorithm. Input 
parameter settings from the nth iteration are assessed by outcome measurements of 
quality aspects and thus inform levels set for the (n+1)th iteration. Algorithmic 
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approaches to input parameter selection in applications to classifier construction are 
similarly evolved in [2, 49 and 70].  

Computational run-time is considerably increased for large data sets and to achieve 
algorithmic convergence as few as ten input parameters might be an absolute 
maximum [2]. Selection based on original variable properties either in place of or prior 
to incorporating an algorithmic application is proposed as an area not currently 
explored.   

Likewise much research is published regarding the pros and cons of analysis in the 
time or frequency domain but individual variable characteristics are not identified. 

Vibration signals are optimally informative when monitoring mechanical industrial 
processes. In addition signals transformed to the frequency domain have superior 
deterministic properties over their time domain equivalents. With envelope spectra 
features highlighting salient signal features and removing extraneous interference. 
Envelope spectra harmonic amplitudes will form the basis of the novel investigations 
of this thesis. 

 

 

 

2.3 Envelope Spectra and Fast Fourier Analysis 
 

The basic concept of signal analysis is to reduce a complex signal in the time domain 
to its component parts in the frequency domain. Thus the salient features of the signal 
become apparent and confusion due to noise is removed.  

It is a common practice in condition monitoring to perform analysis in the frequency 
domain [4, 6, 12, 16, 27 and 46]. Of particular interest, [1, 2, 32, 33, 34, 35 and 39] 
used spectrum analysis to study vibrations from compressor rigs to detect and 
diagnose different faults.  

By applying the Fourier transform (FT) to a measured signal x(t), such as the vibration 
from a reciprocating compressor, the repetitive pattern hidden in the data can be 
highlighted with the Fourier coefficients which allows the key features of vibration to 
be recognised easily.  

The spectrum is the FT coefficients at corresponding frequencies. To find the 
frequency spectrum of such signals the fast Fourier transform (FFT) is the most 
efficient calculation method.  
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The FFT, X( f )  a function of the frequency, f, a continuous function of time, t, is given 
by: 

 

2πjftX(f) x(t)e dt
∞

−

−∞

= ∫         (2.1)  

 

For digital signals, the discrete Fourier transform (DFT) gives a numerical 
approximation and is widely used in Engineering. 
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k 0
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N

π
−

−

=

= ∑        (2.2) 

 

Where t = 0, 1, 2,…, (N-1), N is the number of samples taken, x (t) the value of the signal 
at time t and k the current frequency, 0 to (N-1)Hz. 

Finding the frequency spectrum provides valuable information about the underlying 
frequency characteristics of signal outputs and so is useful in defining condition 
characteristics of a system. Hilbert transforms were employed [45, 46 and 104] or 
wavelet transforms [59 and 111] to similar effect.  

Prior research [2] has shown that features extracted from envelope spectra in the 
frequency domain have superior deterministic properties over their time domain 
equivalents in monitoring the condition of RCs. Envelope spectra harmonics exhibit a 
number of discrete components mainly due to the fundamental frequency of the 
system and its associated harmonics. For the experimental compressor rig employed 
this fundamental frequency is 7.3Hz, the shaft rotation frequency. 

Envelope spectra show only the amplitude profile of original signals and so provide a 
clearer insight into the underlying behaviour. Signal variations due to noise are filtered 
out leaving variation due to machine health only. Once the problem becomes too 
serious nothing is detected but noise, past the point of useful demodulation. 
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2.4 Condition Monitoring of Reciprocating Compressors 
 

Due to their prevalence and importance in industrial processes there is naturally much 
research into detection and diagnosis of RC faults [103 and 104] to name but two. The 
remaining sections of this chapter give a brief overview of the types of RC commonly 
encountered, the RC operating cycle and common faults associated with RCs. 

 

 

2.4.1 Types of Compressor  
 

There are three basic types of air compressors namely reciprocating, rotary screw and 
rotary centrifugal. These types are further classified by the number of compression 
stages, the cooling method (air, water or oil), type of drive used (electrical motor, 
engine, steam etc.) and whether lubricated or not (i.e. whether lubricating oil is in 
contact with the compressed air). A reciprocating compressor increases the pressure 
in a quantity of air by reducing its volume. This is achieved by a piston encased in a 
cylinder, the piston compressing and displacing the intake of air [11 and 72]. 

A single-stage reciprocating compressor is typically used to achieve pressures in the 
range of 70 to 100psi (4.83 to 6.90bar) whereas a two-stage compressor unit is 
capable of achieving higher pressures in the range of 100 to 250psi (6.90 to 17.24bar), 
these higher pressures being achieved by a second piston and cylinder which acts on 
the air already compressed at the first stage. The rig’s simplicity is its strength, 
weaknesses being the propensity for leaky valves and, being externally cooled, 
damage due to the interior working parts being subject to extreme operating 
temperatures [11 and 85]. 

Rotary air compressors are another positive displacement compressor type with the 
most common being a single stage spiral lobe oil flooded air compressor consisting of 
two rotors which compress the air within a casing. A valve less and oil cooled system, 
working parts are not subjected to extreme temperatures and associated problems. 
Easy to maintain and operate, smooth pulse-free air outputs of compact size are 
produced over a long life [11 and 85]. 

Centrifugal compressors are dynamic and depend on energy transfer from a rotating 
impeller to the air. High speed rotation is necessary for efficient operation and so this 
machine type is designed for high capacity and compression of a continuous air flow. 
The flow, hence capacity, can be regulated by adjusting the inlet guide vanes. An oil 
free compressor with the lubricated driving gear sealed off from the air and vents [72].  
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2.4.2 Compression and Expansion Cycle 
 

The reciprocating compressor system is a relatively simple mechanical system which 
works on a gas, air for example, in order to increase its pressure. Capable of producing 
high pressures under variable loadings it is widely used [11, 32 and 72]. 

Air is drawn into stage one through the suction valve and compressed by the piston 
moving upwards in the cylinder. As the pressure of the air inside the cylinder reaches 
a critical point the discharge valve is activated and the compressed air is forced out of 
the cylinder either to a storage tank or onto a second stage for further compression. 
Once in top dead centre (TDC) position the piston ceases its upwards motion and 
reverses its direction down the cylinder, the compressed air having been discharged 
the discharge valve closes [11]. 

The suction valve opens as the piston travels downwards drawing in more air for 
compression. Note there is a small cavity between the TDC piston position and the top 
of the cylinder which houses the valves. 

Thus the piston returns to bottom dead centre (BDC) position, the cylinder is again full 
of non-compressed gas, again the suction valve closes and the cycle is repeated. 

Each of the valves allow one way air flow only i.e. the suction valve allows flow into 
the cylinder only and the discharge valve allows flow out of the cylinder only. 

Industrial processes generally require pressures in excess of 3.5bar which is about 
the limit of a single stage compressor’s capabilities thus multiple stage compression 
systems are the norm. In a two-stage compression system the air at atmospheric 
pressure is taken into the first stage cylinder and compressed to an intermediate 
pressure. On discharge the partially compressed air passes through an inter-cooler 
unit to reduce its temperature before being passed through the intake valve of a 
second cylinder. At the second stage the air is further compressed hence its pressure 
further increased after which it is passed in its final pressurised state to a storage tank. 
The second stage is mechanically identical to the first stage although second stage 
cylinders are smaller in order to achieve the desired pressure differentials [11 and 72]. 

Multi-stage air compressors are an obvious extension with multiple cylinders wherein 
the cooling process becomes increasingly vital and so more sophisticated [11, 32, and 
72]. 
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2.4.3 Faults and Implications  
 

There are two major groups of faults the first being failure of mechanical moving parts 
either through wear due to friction, vibration heat or a combination (for example valves, 
springs, pistons and piston rings) or parts of the lubrications circuit such as the 
bearings, crankshafts or connection rods. The second fault group being due to loss of 
elasticity in sealing components leading to air leaks in the compressor itself or its 
connective piping. 

Approximately 30% of faults are attributed to valve failures and a further 20% to piston 
ring failure [11]. Hence the focus of this research on valve leakage and related faults. 

 

 

2.4.4 Applications of Reciprocating Compressors 
 

Reciprocating compressors are an intrinsic part of many industrial processes whose 
performance and efficiency rely on early detection of RC component deterioration, for 
example, oil refineries, gas pipelines, chemical plants, natural gas processing plants 
or refrigeration plants. Consequently component failure or process shutdown is 
potentially life threatening as well as time consuming and costly. 

 

 

 

2.5 Summary 
 

Many advances have been made in the field of process CM over the past fifty years. 
With the enormous growth in use and power of computers information processing 
capabilities have vastly increased. However, as demand further increases for greater 
precision and more immediate responses, the burden in computational time especially 
for big data sets is becoming unattainable. 

Whilst there is much research into modelling classifiers, using both classical statistical 
methodology and machine learning techniques, there is little evidence of focus on 
input parameter quality. Computational time saving is much discussed alongside 
established variable reduction methodologies. Although it is abundantly clear most 
algorithms have limited process capacity pre selection of input variables is not fully 
explored. Reduction in complexity being achieved by within model manipulation of 
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original input variables without clear data properties being identified or preserved. It is 
the belief of the author that greater explanatory power is achievable if prior inspection 
of input parameters informs pre modelling variable selection. Whilst also keeping input 
parameter volume to a minimum. 

Theoretical proposals are to be applied to data from an experimental compressor rig. 
The major considerations being ability to detect the presence of faults and 
subsequently identify them. The primary research focus being to achieve reduction in 
input parameter volume. Experimental efficacy demonstrated by the ability of 
methodological approaches to correctly identify machine condition. Classical statistical 
methods and specifically developed machine learning techniques are evaluated 
throughout with all considered input parameter selection criteria. Refinements to 
current state of the art modelling techniques are thus assessed across both disciplines 
with respect to classification accuracy. As all these techniques are reliant on advanced 
multivariate statistical methodology further discussion and specific explanation is 
developed on the following pages. 

Chapter 3, therefore, extends the literature review with a focus on specific 
mathematical models, their application and potential benefit in CM fault detection and 
classification for RCs. Also detailing data presentation and manipulation in the 
MATLAB computer package. To facilitate analysis conducted using the MATLAB 
computational package data was formatted into structured arrays and meaningful 
class labelling vectors. 
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Chapter 3 

Multivariate Statistical Techniques 

 

 

 

 

 

This chapter gives the relevant theoretical background of typical multivariate statistical 
techniques alongside references for further reading. Each technique is defined then 
reviewed and its current practice considered with relevance to RC fault analysis. 
Specifically, its implementation and possible improvements in the field of CM are 
assessed in the MATLAB platform, specific codes for methods are included in 
Appendix 2. 
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3.1 Cluster Analysis 
 

Cluster analysis (CA) creates groups or clusters of data or variables. Clusters are 
formed in such a way that objects in the same cluster are very similar and objects in 
different clusters are distinct. Measures of similarity are application dependent and 
include Euclidean distance and Mahalanobis distance [20, 37 and 42]. 

Euclidean distance is the Pythagorean metric, the straight-line distance between two 
points in Euclidean space.  

 

 

 

The Euclidean distance, d( p,q ) , between the points, p and q, being given by 

 

n
2 2 2 2

1 1 2 2 n n i i
i 1

d( p,q ) ( q p ) ( q p ) ... ( q p ) ( q p )
=

= − + − + + − = −∑  (3.1) 

 

Mahalanobis distance measures the proximity of a point p to a distribution or cluster 
mean. A multivariate generalisation of the normal distribution measuring the number 
of standard deviations point p is from the mean of the cluster. A distance of zero is 
given if p is at the cluster mean and increases as p moves from the mean along each 
principal component axis. It should be noted that scaling the axes to unit variance 
equates the Mahalanobis distance to the standard Euclidean distance. Mahalanobis 
distance is a function of the data correlations and is scale invariant [20]. 

The Mahalanobis distance, DM (x), of an observation T
1 2 nx ( x ,x ,...,x )=  from a set of 

observations with mean T
1 2 nμ ( μ ,μ ,...,μ )=  and covariance matrix S  is defined as  

 

T 1
MD ( x ) ( x ) S ( x )µ µ−= − −       (3.2)  

 

Whilst there are many different CA algorithms there are two main groups, 
agglomeration techniques whereby all objects start as individuals and are 
systematically joined until all belong to a common group and division, the reverse 
process, whereby all objects originate from a single group. Both agglomeration and 
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division are hierarchic methods which directly facilitate generation of a dendrogram for 
easy visual group identification [20 and 73]. Hierarchical Clustering groups elements 
(data or variables) over a variety of scales the resulting cluster tree or dendrogram is 
not a single set of clusters, but rather a multilevel hierarchy. Applications generally 
dictate the most appropriate proximity measure. Similarity being assessed either on 
an individual to individual basis or by comparison of individuals to a group statistic. 

Pairwise Euclidean difference ijd , between the ith and jth observations, is given by 

 

2 '
ij i j i jd ( x x )( x x )= − −         (3.3)  

 

A square matrix of order m is generated with each entry (i, j) being the Euclidean 
distance between the observations i and j. From this an agglomerative hierarchical 
cluster tree is created using an appropriate linkage method. Agglomerative CA being 
to select first the two points which are most like i.e. ‘the nearest neighbours’ whereas 
the division algorithm would first select the ‘farthest neighbours’. Distances calculated 
according to the linkage method employed; simply the distance between individual 
data points in the case of single linkage methods; the distance between an individual 
and the group average for average linkage methods [20 and 73].  

Average linkage, ( r ,s )d , being calculated from the average distance between all pairs 

of objects in any two clusters as given in Equation 3.4.  

 

sr nn

( r ,s ) ri sj
i 1 j 1r s

1d dist( x ,x )
n n = =

= ∑∑       (3.4) 

 

Where rn  is the number of objects in cluster r, rix  the ith object in cluster r and sjx  the 

jth object in cluster s. 

 

 

3.1.1 Review and Current Practice 
 

Thus prior clustering of variables is beneficial in determining variable likenesses. Once 
clustered by similarity it is apparent which variables are homogeneous thus may 
‘explain’ the same variation and which are heterogeneous so would be expected to 
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uniquely account for model variation. CA provides a method of sorting variables into 
groups with uniform characteristics hence aids input parameter selection. Clustering 
is currently only regularly used for post hoc classification analysis predominantly in 
spectral group clustering [31].  

It is a novelty of this research that CA is used a priori to determine input parameter 
characteristics and so inform variable selection pre model construction. Extensions of 
use in CM for prior evaluation of potential input variables giving a clear indication of 
variable associations and potential redundancy. Visual output in form of the 
dendrogram gives an informative visual display showing proximities and 
interconnections between variables [20 and 97]. 

Whilst Mahalanobis distance is scale invariant and would be particularly useful should 
cross signal comparisons be envisaged standard Euclidean distance was used having 
physically sensible interpretations. Agglomeration was also employed the primary 
objective being to identify harmonic groups. 

Subsequently selected variables were used in constructing classification models to 
detect abnormal behaviour and identify specific faults. 

Models of data with a categorical response, for example the differing states of health 
in a compressor rig, are known as classifiers. A classifier is built from training data, for 
which classifications are known. On testing, and in practice, the classifier assigns new 
test data to one of the categorical levels of the response. Experimentally this is 
achieved by randomly partitioning data into a training group and one or more test 
groups. Fundamental to effective model building is the selection of a representative 
feature set which performs optimally across all cases. The following sections 3.3 to 
3.7 and 3.9 describe classifiers from both the multivariate statistical and machine 
learning fields. 

 

 

 

3.2 Discriminant Analysis  
 

Linear discriminant analysis (LDA) is a statistical method used in pattern recognition 
and machine learning whereby a linear combination of characteristic features is 
established with the aim of separating two or more classes or events [20 and 73].  

Categorical dependent variables are predicted by their scores on a discriminant 
function established using one or more continuous or binary independent variables. 
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Originally developed by Fisher in 1936 [41], unlike cluster analysis, discriminant 
analysis is utilised when groups are known a priori. The LDA technique is very similar 
to logistic regression or relevance vector machines (RVM) which attempt to express a 
categorical dependent variable as a linear combination of other measurements [42]. 
Similar also to analysis of variance (ANOVA) in its attempt to classify cases to known 
groups except that ANOVA uses a linear combination of categorical independent 
variables to classify a continuous dependent variable. Should it be unreasonable to 
assume the independent variables are normally distributed, a necessary assumption 
for robust LDA modelling, logistic regression offers an alternative method of predicting 
categorical responses from continuous independent variables. LDA is also similar to 
principal component analysis [20 and 42] in that a linear combination of continuous 
variables is sought to best describe the data, however, whilst LDA explicitly models 
the class differences PCA doesn’t take class differences into account. 

Discriminant analysis uses training data to estimate the parameters of discriminant 
functions of the predictor variables. Discriminant functions determine boundaries in 
predictor space between various classes. The resulting classifier discriminates among 
the classes i.e. the categorical levels of the response, for example the machine states, 
‘Healthy’, ‘ICL’ etc. based on the predictor data [20, 37, 42, 57 and 89]. 

Given a set of observations, x , (features, attributes, variables or measurements) on 
each sample of an event with known class, y, in the training data set; the aim is to 
identify a good predictor for the class, y, from any similar sample, not necessarily 
belonging to the training data set, given any observation x.  

For the two class case an observation with log likelihood ratio greater than a threshold 
T is predicted to belong to the first class, Equation 3.5, assuming the conditional 
probability density functions p( x | y 0 ) =

 and p(x|y 1)=
 are normally distributed with 

means 0 1,  µ µ and covariances 0 1,∑ ∑  respectively. Observations being predicted to 

belong to the second class if the log of the likelihood ratios are below the threshold, T, 
resulting in the quadratic discriminant classifier. 

 

T 1 T 1
0 0 0 0 1 1 1 1( x ) ( x ) ln | | ( x ) ( x ) ln | | Tµ Σ µ Σ µ Σ µ Σ− −− − + − − − + >

          (3.5) 

 

If homoscedacity can be assumed then the class covariances can be assumed equal,

0 1Σ Σ Σ= =  the covariance matrices have full rank and Equation 3.5 simplifies to the 

decision criterion being based on the dot product 
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w.x c>
 

  

 

for some threshold constant c where:  

 

1
1 0w ( )µ µ−= −∑  

  

1 1
0 0 0 1 1 1

1
2

T Tc (T )µ µ µ µ− −= − +∑ ∑          (3.6) 

 

Thus the model is a function of a linear combination of the known observations [20, 
41, 57, 73, 89 and 91]. 

For more than two classes the analysis can be extended to defining sub-spaces which 
appear to contain all the elements of a given class. In practice the class means and 
covariances are not known but are estimated from the training data set using either 
the maximum likelihood estimate or maximum a posteriori estimates. Consideration 
should also be given to the ratio of sample measurements per class to the number of 
samples in each class, should the former exceed the latter the covariance matrices 
will be invertible not having full rank hence pseudo inverses or shrinkage estimation 
would be necessary. Linearity assumptions may also be unreasonable and a kernel 
function mapping might be more appropriate. Kernel functions are further discussed 
in the following sections [20, 38, 42 and 61]. 

 

 

3.2.1 Review and Current Practice 
 

Although DA has most commonly been used in its linear form for distinguishing 
between two groups extensions and generalisations are emergent. Incorporating a 
non-linear kernel function and more than two groups in small scale categorisation 
problems has been beneficial particularly where groups are overlapping. [68] used 
acoustic emissions and LDA to detect bearing faults with very high speed accurate 
results. Several others have investigated improvements to small-scale categorisation 
problems using LDA and discriminant partial least squares (DPLS). Fishers DA (FDA) 
was developed in [21] with DPLS and reported improved classification results over 
PCA. Most recently [38] proposed a large scale approximation to kernel LDA, 
individualised learning, in which each test sample is directly compared to all 



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 51  

classification samples. Essentially a one-against-one algorithm which produces large 
numbers of simple classification problems to solve. A technique more suited to 
discriminating between two plus groups is Naïve Bayes classification which is 
discussed in the following section. 

 

 

 

3.3 Naïve Bayes Classification  
 

Naïve Bayes is a relatively simple technique for constructing classifiers. Whilst based 
on Bayes conditional probability it is not strictly speaking a Bayesian statistical method. 
The Naïve Bayes classifier assumes features are independent within a class although 
good results are achieved even when the independence assumption is violated. Data 
is partitioned into training samples and prediction samples. A model is then 
established using the known classes for the training set and this is applied to the 
predictor data to ascertain efficacy. Posterior probabilities for each sample dictate 
group classifications [19 and 91]. 

The class-conditional independence assumption greatly simplifies the training step 
allowing individual estimation of the class-conditional density for each feature. Thus 
the Naïve Bayes classifier can better estimate accurate classification parameters. 
Deviations from the independence assumption have been shown to have little 
detrimental effect. Training time is much reduced hence Naïve Bayes offers an 
advantage where datasets have many parameters or features as for the compressor 
rig. Variables are assumed to be mutually independent.  

Classification is based on estimating the conditional probability k 1 np( C | x ,...,x )  for n 

independent variables or features 1 nx ( x ,...,x )=   

 

k k
k

p( C )p( x |C )p( C | x )
p( x )

=        (3.7) 

 

Since the evidence, z = p(x), is not dependent on class and is effectively constant 
under naïve conditional independence assumptions the probability model becomes 
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1
1

1 n

k n k i k
i

p( C | x ,...x ) p( C ) p( x |C )
Z −

= ∏      (3.8) 

 

Where the evidence, z = p(x), is a constant scaling factor dependent only on

1 nx ( x ,...,x )= . 

The classifier based on this probability model, the (Naïve) Bayes classifier is given by 

 

11

n

k i k
i

arg maxŷ p( C ) p( x |C )
k { ,...,k } =

=
∈ ∏       (3.9) 

 

For some k that assigns the class label kŷ C= . 

Different feature distributions are supported, normal and kernel for example. If feature 
distributions can be assumed normally distributed then each is modelled as such and 
the Naïve Bayes classifier estimates a further normal distribution for each of the 
classes by calculating the mean and standard deviation of the training data for the 
given class [13, 18, 19 and 91]. 

Features with a continuous distribution can be used along with the Kernel distribution 
which has the advantage of being robust even in the absence of normal distribution of 
features. However, greater computational time is required and more memory is utilised 
if distributions are skewed, multi peaked or multi modal, than with normally distributed 
variables. The Naïve Bayes classifier calculates a kernel density estimate for each 
class based on the training data for that class and a width for each class and feature, 
the kernel is by default normal. 

When response data are categorical and the exact nature of the relationship between 
variables is unknown a non-parametric classification tree can assist interpretation of 
the system. 

The tree predicts the response values at the circular leaf nodes based on a series of 
questions about the case at the triangular branching nodes. A true answer to any 
question follows the branch to the left; a false follows the branch to the right. 

It should be noted that whilst the tree may fit the training data set well outliers can 
have a significant effect on the lower branches in particular in which case it is wise to 
‘prune’ the tree [13, 36, 37, 62, 75 and 112]. 
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3.3.1 Review and Current Practice 
 

NB lends itself to increased numbers of groups and input parameters. Although a 
classification tree becomes overly complex, data is readily presented in matrix or 
graphical formats. Constructing a confusion matrix (class number by class number) of 
detailed case allocations records classification patterns. A 3-D bar chart of the 
confusion matrix data offers a clear visual display. Incorporating all groups with scatter 
plot visualisation is achievable through variable reduction techniques. 

Naïve Bayes is essentially a machine learning technique although less prevalently 
utilised than ANNs which form the bulk of the learning algorithm methodologies. 
Authors of [62] use summary statistics (standard error, variance, kurtosis, range, 
maximum, minimum and sum) extracted from vibration signals to establish a NB 
classifier with 85% classification success rates.  
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3.4 Principal Component Analysis 
 

Principal component analysis (PCA) is a statistical procedure that generally uses an 
orthogonal transformation to convert a set of highly correlated variables into a set of 
linearly uncorrelated variables called principal components (PCs) [20, 42, 73 and 91]. 

The method is designed to reduce the number of correlated independent variables, X, 
to a much smaller number of uncorrelated PCs, Z, which are weighted combinations 
of them. Each case can then be described by a reduced number of PCs which account 
for most of the variance. The higher the correlations between the original variables the 
greater the benefit from this method. 

For an n by p matrix X consisting of n observations for each of p variables, a set of p-

dimensional weights or loadings vectors, ( ) ( )
( )1 p p

w   w , ,wp = … , map each row 

vector, x(i), of X, to a new vector of principal component scores, ( )1,i ) i(p( )
z  z ,z= … , is 

given by 

 

 ( ) (k i i ( k) )z  x .w= .         (3.10) 

 

The full principal component decomposition of X given by Z=XW, where W is the p by 
p matrix whose columns are the eigenvectors of TX X  and 
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          (3.11) 

 

No data assumptions are required hence its attraction for use with non-interval data 
or data of unknown distribution [20, 42, 73 and 91]. 

Initially a set of uncorrelated PCs is produced from the original correlated variables. 
The first PC accounting for the largest proportion of the variance in the sample; the 
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second, which must be uncorrelated with the first, the second highest, and so on. 
Initially as many PCs as original variables are generated together accounting for the 
total variance in the sample. However, the vast majority of the total variance can be 
assigned to the first few PCs alone with only a negligible amount ascribed to the 
remainder. Hence these latter PCs can be dropped from further analysis so reducing 
the ‘dimensionality’ of the data set. PCA is mostly used as a tool in exploratory data 
analysis prior to construction of predictive models. Executed in practice either by 
eigenvalue decomposition of a data covariance or correlation matrix or by singular 
value decomposition of a data matrix. The later usually after mean centering 
normalised Z-scores of the data matrix for each attribute. PCA results are usually 
discussed in terms of their factor scores and loadings. Factor or component scores 
being the transformed variable coefficients corresponding to particular data points and 
factor loadings being the weight by which each standardised original variable is 
multiplied to achieve the component score.  

 

( )i iVar Z   λ=   

( ) ( )
1

   
p

i
i

var Z trace C
=

=∑        (3.12) 

 

Where trace (C) is the sum of diagonal elements of matrix C, the covariance matrix, 
with the corresponding eigenvector Zi, for each eigenvalue iλ , given by  

 

 1 21 2i i ip piZ a X a X a X= + +…+ .      (3.13) 

 

Operation of PCA can be thought of as revealing the internal structure of the data in a 
way that best explains the variance in the data [14, 20, 21, 42, 50 and 73]. 

 

 

3.4.1 Factor Analysis 
 

Similar in purpose to PCA, however, distinct in that factor analysis (FA) is founded on 
a true mathematical model being based on the row ratios of the correlation matrix of a 
set of original variables. Discounting elements in the leading diagonal, the self-
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correlations, correlation matrices have the property that elements in any two rows are 
almost exactly proportional. Spearman first proposed the model over a hundred years 
ago (1904) on analysing standardised preparatory school exam scores and finding the 
common ratio for each of the subjects e.g. Classics and French; French and Music 
etc. to be approximately equal to 1.2. Hence proposing the model used today [73]. 

 

i i iX a F e= +          (3.14) 

 

Where Xi is the ith standardised score, mean zero and standard deviation one; ai is the 
factor loading which is a constant, F the factor value and ei the portion of Xi specific to 
the ith test only.  

Thus there is a constant ratio between the rows of the variable correlation matrix hence 
this is a plausible model for the data. It also follows that the variance of Xi is given by 

 

2
i i i

i i

var( X ) var( a F e )

a var( e )

= +

= +
 

          (3.15) 

 

Further, since the variables are standardised 

 

21i i ivar( X ) a var( e )= = +         (3.16) 

 

The square of the factor loading being the proportion of the variance of Xi that is 

accounted for by the factor. The sum of all the squared factor loadings, 2
ia∑  is the 

communality of Xi and describes the part of its variance related to the common factors. 
The remaining part of its variance, which is not accounted for by the common factors, 
being given by ivar( e ) , the specificity of Xi. Although there are no specific or widely 

accepted guidelines it is a generally accepted rule that loadings between ±0.3 to ±1.0 
represent salient loadings with the interpretation that the original variable is 
meaningfully related to that particular factor. Should the factor loadings be difficult to 
generalise being neither close to zero or ±1.0 a rotation of the solution could be 
considered. It should be noted that factor rotation is a mathematical aid to 
interpretation rather than a refitting of the model hence will not affect the overall 



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 57  

goodness of fit of the model simply the arbitrary axes along which the factors are 
measured [20]. 

Whilst FA has its limitations [20] it is of particular benefit in gaining insight into the 
nature of underlying variables in multivariate data. Its worth being as a descriptive tool 
for investigation through sensible means to uncover or describe underlying data 
structures albeit with consideration of methodological limitations. Thus although FA is 
largely an exploratory technique substantive and practical considerations should 
strongly guide the analytical process to effective gain. 

 

 

3.4.2 Review and Current Practice 
 

PCA is frequently used in CM of industrial systems. Prevalent in monitoring chemical 
processes and often incorporated with wavelet transform methods. Fault classification 
using PCA extensions [114] and recently emerging Kernel PCA (KPCA) [7, 93 and 
113] are increasingly employed. Kernel based PCA extends the method for use in non-
linear or overlapping cluster applications. Wavelet transform methods are evolving as 
an alternative feature extraction method to Fourier much favoured in [93]. Wherein 
superiority of the KPCA ability to extract higher-order non-linear interrelationships on 
application to data of higher orders of complexity is also claimed. The paper of [93] 
further investigates the benefits of using radial based kernel functions with varying 
parameters to match varying speeds of rotary machinery. Another extension to PCA, 
multi-scale PCA is considered in section 3.9. 

 

 

 

3.5 Support Vector Machines 
 

In machine learning, support vector machines (SVMs) are supervised learning models 
with associated learning algorithms that analyse data through pattern recognition, 
used for classification and regression analysis. Given a set of training examples, each 
marked for belonging to one of two categories, an SVM training algorithm builds a 
model that assigns new examples into one category or the other, making it a non-
probabilistic binary linear classifier [19, 26, 108 and 109]. An SVM model is a 
representation of the examples as points in space, mapped so that the examples of 
the separate categories are divided by a clear gap that is as wide as possible. New 
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examples are then mapped into that same space and predicted to belong to a category 
based on which side of the gap they fall on [26]. 

SVMs can also efficiently perform a non-linear classification using a kernel function, 
implicitly mapping inputs into high-dimensional feature spaces. Whereas the original 
problem may be stated in a finite dimensional space, often the sets to discriminate are 
not linearly separable in that space. Thus the original finite-dimensional space is 
mapped into a sufficiently higher-dimensional space, making separation easier. To 
keep the computational load reasonable, the mappings used by SVM schemes are 
designed to ensure that dot products may be computed easily in terms of the variables 
in the original space, by defining them in terms of a kernel function, k( x, y ) , selected 
to suit the problem. The hyperplanes in the higher-dimensional space are defined as 
the set of points whose dot product with a vector in that space is constant. The vectors 
defining the hyperplanes can be chosen to be linear combinations with parameters αi 
of images of feature vectors xi that occur in the data base. With this choice of a 
hyperplane, the points x in the feature space that are mapped into the hyperplane are 
defined by the relation: 

 

i ii
k( x ,x ) constantα =∑        (3.17) 

 

Note that if k( x, y )  becomes small as y grows further away from x, each term in the 
sum measures the degree of closeness of the test point x to the corresponding data 
base point xi. Hence the sum of kernels give a measure of the relative nearness of 
each test point to the data points originating in one or other of the sets to be 
discriminated [26]. 

 

Given a set of training data, D, a set of n points of the form  

 

11 1p n
i i i i iD {( x , y )| x , y { , }} == ∈ℜ ∈ −       (3.18) 

 

where iy  takes the value +1 or -1 indicating which class the point xi belongs to.  

 

https://en.wikipedia.org/wiki/Linear_separability
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Positive-definite_kernel
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Each xi is a p-dimensional real vector. The maximum-margin hyperplane dividing 
points with 1iy =  from those with 1iy = −  is given by the set of points x satisfying

0. b  − =w x . 

If the data are linearly separable, hyperplanes can be selected in such a way that they 
separate the data with no points between them. The region they bound, the margin is 
then maximised whilst ensuring no points are allowed to fall into it. The planes of the 
margin are given by . b  1− =w x  and . b  -1− =w x . Samples falling on the margin are 
called the support vectors.  The first class occupies the region i. b 1− ≥w x  and the 

second class the region i. b -1− ≤w x  jointly described as  

 

ii )( .  1y b− ≥w x  for all 1 i n≤ ≤      (3.19) 

 

 

 

Figure 3.1 SVM Illustration of Margins and Hyperplanes. 

 

 

3.5.1 Review and Current Practice 
 

Support vectors occur on, therefore define, the boundaries between groups. Vibration 
sensor outputs were used in [104] with SVM and fast training algorithms were reported 
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maintaining classification accuracy. Authors in [63] provide an overview of CM artificial 
intelligence techniques and show less confidence in their accuracy on application to 
real systems. Stationary features extracted from statistical moments of vibration 
signals were used in [108] to compare SVMs and ANNs in identifying butterfly valve 
defects. Massive computational requirements of solving quadratic optimisation 
problems were overcome using kernel functions. Kernel function selection in [108] was 
ultimately done by trial and error. Classification rates for their samples being 100% 
using SVM with chosen kernel function and 80 to 85% using ANNs. [109] extends the 
model comparisons to small refrigerator compressors further claiming SVMs to be 
more generalisable than ANNs due to their corresponding risk management 
strategies. Namely, SVMs minimise an upper bound on the expected risk whereas 
ANNs traditionally minimise the data training error. Authors of [83] concur with respect 
to improved generalisability of SVMs. Utilising SVM with a wave matching feature 
extraction method known as differential evolution (DE) akin to genetic algorithms (GA), 
(section 3.8). Waveform feature extraction requires prior knowledge of working 
principles and is prone to distortion due to interfering vibrations. Also SVMs are less 
successful in the analysis of large group problems. More successful with increased 
numbers of classes are RVMs (section 3.7) which also require significantly fewer 
descriptive vectors. 

 

 

 

3.6 Relevance Vector Machines 
 

Tipping [101] introduced a machine learning technique which is analogous to SVM. 
Relevance vector machines (RVM) use an iterative Bayesian inference approach to 
obtain parsimonious solutions for regression and probabilistic classification. The most 
probable values of a set of hyper-functions are iteratively estimated from the data by 
introducing a prior density over all the weights. Sparsity is achieved in practice as the 
posterior distributions of many of the weights are sharply peaked around zero. Having 
a Student t-distribution rather than being normally distributed the bulk of the relevance 
vectors are zero. This is advantageous in reducing the number required in the model 
but the distribution not probabilistic, hence not directly quantifiable. Furthermore the 
non-zero weights, the relevance vectors, are not associated with examples close to 
the decision boundaries as the support vectors are but appear to be representative of 
prototypical class examples. Its functional form is identical to that of SVM but its 
probabilistic classification is generally a Gaussian model with covariance function 
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n
T T

j j
j 1 j

1k( x,x ) ( x,x ) ( x ,x )
=

=∑ φ φ
α

       (3.20) 

 

 Where ϕ is a kernel function which is generally Gaussian, 

  jα  the variances of the prior on the weight vector -1w~N(0, I )α  

  1 nx ,...,x  the training set input vectors. 

 

RVM utilise dramatically fewer kernel functions (the relevance vectors) than SVM 
whilst maintaining equivalent performance capabilities thus generating sparse 
computationally efficient models whose non-zero weights are more representative of 
the classes [2, 19, 101 and 102]. 

Unlike SVM RVM are probabilistic models. The RVM probabilistic model with 1 nx ,...,x  

input training vectors and 1 nt ,...,t  corresponding target values. Target values are real 

values in applications to regression and are the class labels for classification models. 
Given a function y( x )  the parameters of which are to be inferred or determined in the 
machine learning process, the output is a linearly weighted sum of m, generally non-
linear, fixed basis functions 1

T
m( x ) ( ( x ),..., ( x ))=ϕ ϕ ϕ  

 

1

m
T

i i
i

y( x;w ) w ( x ) w ( x )ϕ ϕ
=

= =∑       (3.21) 

 

Where 1 2
T

mw ( w ,w ,...,w )=  are the prior weights and 

1
T

m( x ) ( ( x ),..., ( x ))ϕ ϕ ϕ=  the basis functions 

 

Only samples associated with non-zero weights, the relevance vectors, contribute to 
the decision function. RVM having dramatically fewer kernel functions whilst 
maintaining comparable predictive capabilities consumes far less test time than 
equivalent SVM models a particularly important feature in on-line fault detection. 
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3.7 Genetic Algorithms 
 

Genetic algorithm is a method for solving optimisation problems which mimics the 
process of biological evolution. The algorithm repeatedly modifies a population of 
individual solutions with each repetition producing a new generation of individuals 
whose fitness is determined relative to objective function values. In RCs fault analysis, 
the fitness function uses the classification rate of the training data. Optimal when errors 
are minimised. This new generation is in turn used in the next algorithmic iteration to 
produce a further generation and so.  

 

Termination of the process is governed by:  

• A solution being found that satisfies minimum criteria 
• A fixed number of generation being reached 
• An allocated budget or time constraint being reached 
• The fitness function plateauing 
• Manual inspection  
• A combination of the above. 

 
Limitations of the process: 

• Highly complex fitness functions require considerable computational time. 
• GA with a high number of mutating elements tend to exponentially increasing 

sample spaces. 
• As solution quality is relative to past solutions the fitness requirements are not 

easily defined a priori. 
• Tendency to converge on local optima rather than generating a global solution. 
• Operation on dynamic data sets gives rise to shifting targets which hinder 

convergence. 
• Not suitable for decision problems as there is no graded learning (on/ off, right/ 

wrong). 
 

Evolutionary GA such as grouping GA are used for clustering or partitioning groups or 
dividing items into distinct groups. Particle Swarm Optimisation (PSO) another 
population based search method inspired by observation of the collaborative 
behaviour of biological populations such as birds or bees. Specifically these 
populations are seen to demonstrate a collective intelligence [49, 70, 86 and 90]. Both 
GA and PSO are restricted to 10 to 15 input parameters maximum for convergence 
within reasonable time constraints.  
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Other algorithmic considerations with respect to computational outputs to be 
considered [2 and 101] whether to employ a one-against-all (OAA) or a one-against-
one (OAO) strategy. Whilst the OAO algorithm generates more individual classifiers 
to be solved they are of greater simplicity than the fewer more complex classifiers 
resulting from the OAA method and ultimately OAO algorithms show considerable 
reductions in overall process time for large data sets. 

Many current studies incorporate GA feature selection [2, 49, 70, 86 and 90]. Major 
advantages being prior knowledge of the process is not required to establish the best 
fit. Main criticisms being tendency to over fit and limitations of input parameters. 

 

 

 

3.8 Multiscale Principal Component Analysis 
 

Wickerhauser is credited with the original idea to jointly use wavelets and PCA [105] 
with the current model first proposed in [7]. Multiscale PCA (MSPCA) combines the 
ability of PCA to produce a set of uncorrelated variables with that of wavelet analysis 
to extract deterministic features. The wavelet coefficients of the PCA are calculated at 
each scale and selected results are combined. Only those scales showing significant 
events are included thus the process both de noises and simplifies the original 
multivariate signal. The technique is appropriate for modelling data with dynamic 
events due to its multiscale nature, hence its suitability for process fault detection. 

PCA captures the correlation and maximum variance between measurements and 
wavelet analysis captures the within measurement correlation. Thus both the variable 
correlation and the signal trend are accounted for by MSPCA. The complementary 
strengths of each procedure resulting in maximum information being extracted from 
complex multivariate measurements. The aim of multiscale PCA is to reconstruct a 
simplified multivariate signal, starting from an original multivariate signal and using a 
simple representation at each of a specified number of resolution levels. Multiscale 
principal components analysis generalises the PCA of a multivariate signal 
represented as a matrix by simultaneously performing a PCA on the matrices of details 
at different levels. A PCA is performed on the coarser approximation coefficients 
matrix in the wavelet domain as well as on the final reconstructed matrix. By selecting 
the numbers of retained principal components, interesting simplified signals can be 
reconstructed. Rules for retention of PCs are akin to those of PCA for example Kaiser’s 
rule retains all PCs with eigenvalues greater than the mean eigenvalue i.e. those 
contributing greater than average explanatory power. 
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Each input variable is decomposed at a specified level, L using a discrete wavelet 
transform (DWT).  

The wavelet approximation models, LA , from each variable are stored in a single 

matrix (of size m by L
n
2

) with the wavelet details from each of the L levels stored in 

matrices of size i
nm
2

× , i 1,2,...,L= .  

A total of L 1+  matrices 1L L( A ,D ,...,D )  each representing a different scale and the 

captured trends at that scale. PCA is performed on all L 1+ matrices with the objective 
of extracting correlation across the sensors. Highly correlated variables are then 
clustered and fed in as sets to local PCA models for sensor validation. Thus a normal 
PCA model is constructed with this data set being used to build the normalising model 
[3, 7, 74 and 105]. 

 

 

Figure 3.2 Schematic Representation of MSPCA Process Reproduced from [74]. 

 

3.8.1. Review and Current Practice 
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MSPCA is a natural progression in that it combines both waveform feature extraction 
and PCA variable reduction. Much previous research has emulated this technique but 
not as an embedded methodology. However, its embedded principle is also a 
weakness in that specific techniques cannot be tailored to application requirements. A 
bespoke coupling was used in [103] to diagnose RC valve faults, joining Teager-Kaiser 
and deep belief networks. The former to estimate the envelope amplitudes which are 
de-noised by wavelet transform methods and the latter to establish the fault classifier. 
Likewise wave matching feature extraction methods along with SVM were employed 
in [83] for classifying vibration signals for fault detection. MSPCA with prior data 
compression and signal simplification is shown to be effective in reducing input 
parameter volume [98] with much improved classification rates for identifying RC 
component faults.  
 
 
 

3.9 Andrews Plots of Fourier Profiles 
 

Having identified suitable input parameters for the model building process it is sensible 
to consider the feasibility of class separation. One useful profile method is found in 
Andrews plots, a Fourier transform of the signal data. This exploratory data analysis 
technique attempts to identify structure within the data. If there are distinct data 
groupings, e.g. the classes examined on the compressor rig, then a Fourier profile plot 
may highlight differences and so assist in distinguishing between groups (classes). 

Andrews’ plots of the multivariate data in the matrix X. The rows of X correspond to 
observations, the columns to variables. Andrews plots represent each observation by 
a function f ( t )  of a continuous dummy variable t over the interval [0,1]  f ( t ) is 
defined for the ith observation in X as 

 

X( i,1)f ( t ) X ( i,2 )sin( 2 t ) X ( i,3 )cos( 2 t ) ...
2

= + π + π +    (3.22) 

 

Since X contains a large number of observations an Andrews’ quantile plot showing 
only the median and quantiles of f ( t ) for each t might be utilised to aid interpretation 
[19, 73, and 91]. 
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3.9.1 Review 
 

Prior assessment of signal profiles for healthy and faulty systems allows realistic 
understanding of fault detection potential. If the Fourier profiles are not distinct at any 
point it is unlikely a classifier could be established using envelope spectra harmonics 
which is capable of differentiating between the classes. However, no evidence was 
uncovered reporting prior analysis of class profiles in literature searches despite much 
analysis of this nature. 

 

 

 

3.10 Summary of Multivariate Statistical Techniques 
 

CA gives a clear measure of variable connections and dissimilarities whereas RVM 
and SVM do not, neither do they give a clear indication of variable properties. Variable 
clustering is employed to gain insight into variable characteristics. Proximity measures 
in CA are application dependent. Euclidean distance is considered the most apt for 
these analyses measuring the physical distance between two data points. 
Agglomerative CA algorithms applied to variable clustering highlights the most like 
variables. Illustrated on a dendrogram the clustering gives a clear indication of group 
formation at progressive levels hence is preferable to division in this instance. 

Data mining techniques, ANN, SVM and other wavelet methods are discussed in terms 
of computational efficiency and classification rates applied to wind energy. [63] 
conclude most controllers are not validated in the field. Hence whilst standard CM 
approaches may provide accurate results in controlled experimental environments 
they show weaknesses on application in less predictable circumstances and turbulent 
winds. Weaknesses which are difficult to evaluate without the ability to identify true 
relationships to original variable properties. 

Class Fourier profiles can be examined for all suitable variables to assess potential for 
separation. Hence realistic expectations and tolerance setting is feasible.  

Construction of appropriate classification models to determine adequacy of input 
parameters is feasible. CA has the capability to inform input parameter selection in 
both statistical and machine learning methodologies. In addition, variable reduction 
techniques offer further illumination with respect to classification success rates.  



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 67  

Chapter 4  

Condition Monitoring Data Acquisition from a 

Compressor Rig 

 

 

 

 

This chapter presents details relating to the test rig specification and data collection 
process. Functionality of the testing rig is described along with the process of collecting 
data pertaining to the various faults studied. Experimental procedures and conditions 
for ensuring reliable readings are also explained. Configuration of the testing rig and 
the process layout are illustrated verbally, diagrammatically and pictorially. Transducer 
specifics are stipulated and ranges of capability. 

Findings from exploratory investigations of signals captured at strategic points of the 
compression process are also detailed. A summary of the physical attributes and 
interrelationships between different signals measured during healthy operation is 
reported. Salient behaviours are scrutinised and catalogued.  
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4.1 Reciprocating Compressors 
 

Reciprocating compressors (RC) are vital components of many potentially volatile 
industrial processes. For example, oil refineries, gas pipelines, chemical plants and 
refrigeration plants. Component failure is therefore potentially life threatening as well 
as costly and time consuming. Efficiency and continued performance of these 
processes rely on early detection of RC component deterioration. Monitoring RCs is 
difficult mainly due to inaccessibility of component parts hence the importance of 
performance monitoring through suitably positioned sensors for signal capture. 
Vibration signals can provide high levels of information facilitating detailed and 
accurate assessment of system condition. RCs are susceptible to a multitude of faults, 
both due to mechanical and elastic deterioration, which can occur in isolation or 
combination. Extracting useful information is often hindered by the large amount of 
noise captured along with measured signals. For meaningful analysis this extraneous 
variation needs to be filtered out. In reciprocating machines the problem is all the more 
apparent than in rotating mechanical systems due to the greater fluctuations in 
vibration amplitudes and increased complexity of interacting component parts. Thus 
the potential complexity of RC fault monitoring lends itself perfectly to investigation 
through complex multivariate statistical models. Techniques which are then easily 
transferable to other mechanical processes with less intricacy [72 and 85].  

Details of the experimental rig employed and the structure of data acquired are given 
in the following sections. 

 

 

 

4.2 Test Facilities and Data Collection 
 

An inherent difficulty in the condition monitoring of RCs is that of accessing component 
parts which are most apt to fail, the valves for example. This makes direct methods of 
monitoring more problematic in their application.  A suitably monitored test rig was 
thus utilised with sensors attached at critical stages to record outputs from the process. 
Thus the process is monitored operating under normal ‘healthy’ conditions with 
components in fully operational mode. Resulting measurements provide a bench mark 
against which to compare the outputs generated once operating under altered 
conditions simulating various faults which are subsequently introduced to the system 
[1, 2, 32, 33, 34, 35, 46, 69, 82 and 103]. 
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The ultimate aim being not only to diagnose a non-optimal operational state but to pin 
point the precise problem(s) and predict efficacy so as to avoid inefficient process 
operation.  Ultimately aiming for prognostic specification i.e. predicting precise time to 
intervention before loss of quality is currently beyond the scope of this research. 

 

 

4.2.1 Reciprocating Compressor Rig 
 

Output signals were collected from transducers mounted on a two-stage, single-acting 
Broom Wade TS9 reciprocating compressor rig. A compressor widely utilised in 
industry. The rig incorporates two cylinders, opposed at 90°, in the form of a ‘V’. Intake 
air passes through a filter to ensure it is sufficiently clean and dry prior to entering the 
compressor. Air is drawn into the first stage cylinder and compressed, the low pressure 
and low vibration measurements are monitored at this point via sensors attached to 
this first stage cylinder. Compressed air is then transferred to the second stage, the 
second cylinder, and further compressed. High pressure and high vibration 
measurements are similarly recorded via a second pair of sensors attached to cylinder 
two. The doubly compressed air is thus transferred to a horizontal holding tank. 
Temperature sensors also record measurements at both stage 1 and stage 2 of 
compression. Further transducers are attached to the motor crank shaft to measure 
electrical current and instantaneous angular speed with a static pressure sensor on 
the horizontal tank measuring the reservoir pressure. A safety valve on the storage 
cylinder was incorporated to guard against excessive pressure build up. Splash 
lubrication protected moving parts. The compressor drives a vane flywheel. Coiled 
copper piping performs heat removal within the intercooler.  

Valve leakage faults were simulated via 2mm diameter drilled holes, an approximate 
2% leakage. As joint leakage in the IC is common, the joint adjacent to the second 
cylinder was loosened by a half turn to simulate malfunction. The LB was simulated 
by reducing the standard distance between pulley centres by 1.5mm. 

The RC was operated under healthy conditions and with four independently seeded 
faults (suction valve leakage (SVL), discharge valve leakage (DVL), intercooler 
leakage (ICL) and loose drive belt (LB)), each run being repeated 24 times. Thus a 
total of 120 observations were recorded at each of six pressure loads. 

Sensors attached at appropriate positions of interest yield measurements recorded in 
Matlab.bin files which in turn are read into the Matlab computing programme. These 
digital messages are subsequently translated into physical quantities. Trends and 
interrelationships between the variables during normal running of the system and with 
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seeded faults were analysed to find identifiable patterns for model building purposes. 
The ultimate goal being to characterise and so enable identification of fault onset in a 
timely fashion. 

 

A total of seven measurements were taken during the course of the operation, namely: 

 

1. Low Pressure, pL, the pressure reading at the first stage of compression, 
2. High Pressure, pH, the pressure reading at the second stage of compression, 
3. Vibration at the first stage of operation, vL. 
4. Vibration at the second stage of operation, vH. 
5. Angular speed of the crank shaft, ang. 
6. Index angular speed, ind. 
7. Motor current, i. 

 
 
These measurements being repeated for each of the six loads, pd. Pressure being 
directly proportional to the load, as the load increases then so does the pressure in 
the system. The load effect on the above variables was also investigated. The load 
measurements varied between 0 (empty cylinder) and 120 (full cylinder), with 
measurements taken on the seven variables at 10 unit load increments between 70 
and 100psi (4.83 and 6.90bar).  

Each of the seven variables was recorded in binary form via seven channels linked to 
a converter connected in turn to a PC thus a seven by ‘number of channel points’ array 
of data values was generated. The number of data points per channel depending on 
the sampling frequency, Fs. The sampling process was repeated three times per 
simulation thus generating three batches of measurements per channel i.e. 3 x the 
number of channel points per section, typically 6x104 data points in all three sections. 
It should be noted that whilst these sections will be homogeneous, obvious changes 
between sections will be observed which should signify only an interruption in 
measurements taken rather than any significant change in the data readings.  

All measurements were initially investigated with respect to their variation and relation 
to physical measurements. A mainly graphical inspection was made at this stage with 
each of the channel outputs plotted either against time in seconds or crank shaft angle, 
θ, in degrees. 

the number of channel pointstime ( s )
the sampling frequency

=      (4.1) 
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440t 2 t
60

θ ω π= = ×         (4.2) 

 

As the motor operates at 440 revolutions per minute. 

 

 
Figure 4.1 Broom WadeTS9 Reciprocating Compressor Rig. 

 

TABLE 4.1 TWO-STAGE BROOM-WADE RECIPROCATING COMPRESSOR SPECIFICATION. 

Type TS9 

Maximum working pressure 1.379MPa (13.8bar) 

Number of cylinders  2 (90 degrees opposed in V shape) 

First stage piston diameter 93.6mm 

Second stage piston diameter 55.6mm 

Piston stroke 76mm 

Crank speed 440rpm 

Motor power 2.2kW 

Supply voltage 380/ 420 V 

Motor speed 1420rpm 

Current 4.1/ 4.8A 
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4.2.2 Sensor Details and Specification 
 

A three phase, squirrel cage, air cooled driving motor mounted on the receiver 
transfers power to the compressor through a pulley drive belt system. Motor type KX-
C184, transmission ration 3:2 and crank shaft speed 440rpm when operated at 
1420rpm. Transducers were connected to the Data Acquisition system (DAS) via 
coaxial BNC cables to reduce signal noise. 

Accelerometers, type YD-5-2, were attached to the head of each cylinder alongside 
the suction and discharge valves. Each with a frequency range between 0 and 15kHz; 
sensitivity of 45mVms-2 and a temperature tolerance up to 150°C and accelerations 
up to 2000ms-2. Robust enough to withstand high and fluctuating temperatures and 
large shock levels yet sufficiently sensitive to measure very low acceleration levels. 
Affixed via screw threaded brass studs and sealed with suitable ceramic cement 
offering the additional advantage of buffering heat surges. Signal measurements were 
relayed to the computerised DAS for storage. 

Dynamic strain gauge pressure transducers, GEMs type 2200 were inserted into 
cylinder pipes also at the cylinder head. With an output of 100mV used with a 10Vd.c. 
power supply. A range up to 4MPa (600psi) and upper frequency limit of 4kHz. No 
amplification being required these sensors connect directly to the CED and PC. 

Storage tank, static, pressure sensor was recorded by GEM type PS20000. With a 
maximum outage of 100mV for a 15V supply. Temperature range between -20°C and 
105°C and operating pressure range between 0 and 1.35MPa (200psi). 

Temperature measurement was via linear response k-type thermocouples positioned 
inside the cylinder pipe between the pressure sensors and the cylinder head. 
Responsive between -20°C and 220°C. An operational safety check for both the 
pressure sensors and the compressor itself. 

A Hengstler incremental optical encoder attached to the drive shaft using a spindle 
adapter monitors IAS to one degree recording 360 pulses per revolution.  

A Hall Effect current transducer, RS 286-327, mounted on a printed circuit board 
measured stator current without necessity to connect to the circuit. Operating 
temperature between 0°C and 70°C; bandwidth 100kHz; output voltage 5V; supply 
voltage ±15Vd.c. (±5%); response time <1μsecond. 

The DAS, CED 1401, a multifunctional data collection interface converts the analogue 
voltage to a digital value. Recording waveform, digital and marker information and 
generating output simultaneously for real-time multi-faceted experimental systems 
such as the CR. With a powerful processor and good memory capabilities high 
measurement accuracy is achievable.  
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National Instruments Lab Windows software Tm/ CVI/ version 5.5, written in the C 
language, enables data storage and conversion into Matlab bin files for export and 
analysis. A large number of instrument control libraries enable data acquisition and 
analysis. Eight of the available sixteen data channels were utilised. The set-up panel 
allows adjustments to specific experimental task. Sampling frequency, Fs, was set to 
62.5kHz and the data length to 30.642 thus time between consecutive data points was 
0.4903 seconds.  

 

 

 

4.3 Experimental Configuration 
 

Data acquisition follows strict procedural steps thus ensuring identical conditions for 
each run. General safety procedures were routinely performed and maintained 
isolating the area and ensuring moving parts are suitably covered yet free from 
interference. Mains connection and all wiring examined to verify correct connectivity 
and eradicating signs of wear prior to switch on. Access via password protection to the 
data acquisition channels initiates the second level of safety and procedural checks. 
Once approved for operation any prior data collection files are deleted and the system 
allowed to run whilst monitored on line. During this stage each sensor is validated. The 
CED (Cambridge Electronic Design Ltd.) setup ‘trigger’ is applied for data saving with 
‘view’ enabled to test signal sensitivity. Lightly tapping cylinders to provoke a response 
and check connectivity. For null response a reduction in the sampling rate may be 
required. Seven channels allow simultaneous recording of each of seven signals: the 
first and second stage cylinder pressures; first and second stage cylinder vibrations; 
an index signal detailing crank shaft rotations alongside crankshaft rotation variability 
and the motor current. Each set of signals being measured at six storage tank loads. 

The integrated PC has the capacity for one data run alone so each data batch requires 
external storage and internal deletion prior to a further run. Data collected is binary 
and is conveyed to the MATLAB software as .bin files for analysis. 

Graded faults in components are seeded into the process with data collection repeated 
as for the healthy system. Signal responses are thus directly comparable. 

Reproducibility is checked by repeated running of a given condition.  
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4.4 Data Structure for MATLAB analysis 
 

Advanced multivariate analysis was conducted on the amplitudes of the envelope 
spectra harmonics. The first 32 harmonics were collected and their amplitudes for 
each of 120 samples stored. Measurements comprised 24 repetitions for each of the 
five classes studied. These 32 harmonics, each a vector of length 120, being the 
potential input variable set. Collectively a data matrix, X , was constructed of size 120 
by 32 i.e. 120 observations by 32 variables. The observations being arranged by class 
with the first 24 rows corresponding to the healthy class, the next 24 to the first fault 
and so on. 

Hence in this format the classification matrix, X , of observations per class by variables 
could be directly incorporated in the multivariate analysis. Relevant variables being 
incorporated in the analysis by selection of corresponding columns of X . Rows of X  
representing envelope harmonic amplitudes for a particular case i.e. a particular 
experimental run. 

 

 X=[s(1).Aeh'; s(2).Aeh'; s(3).Aeh'; s(4).Aeh'; s(5).Aeh'] 
 
Where s(i).Aeh denotes the set of harmonic amplitudes for the ith class of 
measurements (i=1,…, 5) [18, 19 and 44]. 
 

 

 

4.5 Summary 
 

Clearly compressors form an intrinsic part of many industrial processes and their 
healthy maintenance is key to continued process efficiency. Deterioration of valves 
and other soft components has a direct effect on the compressors performance. 
Detection and identification of these fault types will form the basis of the research 
problem in this thesis. 

A compressor widely used in industry was selected for experimentation. Transducers 
were chosen to give accurate readings within the desired range but with sufficient 
capacity to withstand surges in temperature and shocks. Measurement protocols were 
enforced to ensure direct comparability of all experimental runs. Seeded faults were 
designed to emulate actual in process faults hence provide realistic and informative 
data analysis modelling capabilities. 
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Data taken from a reciprocating compressor rig operating under various conditions of 
health was analysed to determine key characteristics of decaying parts and sub-par 
operation. Output data signals collected during operation were investigated to 
ascertain which most efficiently describe the salient features of machine condition, 
hence which have the greater worth in determining existence and nature of faults. 

 

 

4.6 Physical Attributes of Output Signal Data and Measurements 
 

This section investigates the characteristics of the output variables, measured in a 
healthy compressor, operating normally. 

An experimental compressor rig imitates the process of industrial machines, allowing 
the researcher to observe and record performance by conducting a sequence of 
controlled trials. Thus a healthy fully operational system can be observed and signal 
outputs from it compared and contrasted with similarly controlled outputs generated 
during operation with various seeded faults. 

 

 

4.6.1 Low Pressure Measurements  
 

Air drawn into the system directly from the atmosphere has a pressure just below 2bar 
(0.2MPa). The compression stage begins immediately as the piston moves upwards 
in its cylinder until a pressure of nearly 4bar is achieved as shown in Figure 4.2 and 
Figure 4.3. The pressurised volume having been discharged a further quantity of air 
enters the chamber whilst the piston is drawn back down the cylinder. The suction 
stage is identifiable by a sudden pressure drop back to less than 2bar. This process 
is repeated seven times per second, each cycle of suction and compression being 

completed in approximately 1
7

= 0.143 seconds. Clearly the three recorded sections 

are homogeneous indicating experimental uniformity and operating consistency. The 
discharge valve opens for approximately 0.025 seconds whilst the suction valve opens 
for almost three times as long. Intake gas transfers more slowly due to its being of 
lower pressure and so less agitated. Gas is discharged at greater pressure thus with 
more forceful expulsion. 

Evidently the pressure increases during the compression stage as the piston moves 
upwards in the cylinder towards the top dead center (TDC) position and the available 
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volume decreases. The discharge valve oscillates as the pressurised air is forced 
through it and closes as the piston reverses its direction to travel back down the 
cylinder towards the bottom dead center (BDC) position. Conversely throughout the 
expansion stage the pressure is reduced as the available volume increases. During 
the expansion stage the suction valve opens, also oscillating but less forcibly, and 
more air is drawn into the cylinder. The compression stage then restarts as the piston 
again travels towards TDC position and so the cycle continues repeatedly. 

 

 

 

 
Figure 4.2 Comparison of the Low Pressure Measurements per Section. (a) Section 1, (b) Section 2 and (c) Section 3. 

 

 

4.6.2 High Pressure Measurements  
 

Again widened fluctuating sections at maximum and minimum pressures indicate 
opening and closing of valves which are pliant so vibrate against their seal, Figure 4.4. 
Pressure cycle patterns from each stage are reasonably uniform across the observed 
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period. Low pressure maximums are approximately 3.75bar with high pressure 
maximums approaching 7bar. Note the intake pressure at stage two is reduced to 
around 2.5bar during transition from the first to the second stage. Pressures at each 
stage exhibit the seven cycles per second expected (440rpm/ 60s). The first stage 
discharges as the second stage suctions, visibly illustrated in Figure 4.5. Subsequently 
the second stage discharge valve opens as the first stage cylinder is in its compression 
stage. Hence the two stages work in harmony and the package of air is efficiently 
passed through the system under increased pressure. Compression at the first stage 
takes longer and is less abrupt than that of the second stage whilst discharge for both 
stages are of comparable duration. 

 

 

 

 
Figure 4.3 Annotated Plot of First Stage (Low) Pressure Cycle. 
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Figure 4.4 Comparison of First and Second Stage Pressure Measurements. 

 
Figure 4.5 Comparison of Compression and Discharge Phases for First and Second Cylinder Pressure Stages. 
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4.6.3 First Stage Vibration Measurements  
 

Once again signal output is clearly periodic completing seven cycles per second. 
Inspection of times between peak values highlighted possible inconsistencies in shaft 
speed. However, comparison across the three sections shows similar amplitudes and 
periodicity. There is evidence of a trend drift in the third section, Figure 4.6, indicated 
by the red trace deviating from the horizontal. This is most likely due to external 
influence, the accelerometers being highly sensitive and so susceptible to 
interference. Measurements were normalised by the calibrated sensitivities of the 
transducers. Sensitivity, the root mean square of the signal voltage, was calculated to 
be 211.0682mV / ms− for the vibration at the first stage and 211.7972mV / ms−  for the 
vibration at the second stage.  

 

×
=2 Voltage 1000Acceleration (m/s )

Sensitivity
     (4.3) 

 

 

4.6.4 Second Stage Vibration Measurements  
 

Valve vibrations are influenced by temperatures and by external noise. Extraneous 
influences induce a trend drift from the zero horizontal thus the de-trended data is 
analysed to facilitate investigation of compressor vibration inherent features. Whilst 
the third segment measurements, Figure 4.7, demonstrate an approximately 
horizontal trend, drift is observed in the other two segments. 

Examination of the vibration data over the three segments show clear breaks between 
the sections this being a discontinuity in measurement recording rather than a 
significant change in measured trend. 

Closer comparison of the first and second stage vibrations over the first 0.2 seconds, 
Figure 4.8, shows continual noise with intermittent larger peaks which indicate opening 
and closing of suction and discharge valves. Reassuringly, the first and second stage 
vibration signals can be seen to follow the same synchronisation as the first and 
second stage pressures. Peak disturbance corresponding to opening and closing of 
valves on suction and discharge. 
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Figure 4.6 First Stage Vibration Measurements of Each Segment. 

 
Figure 4.7 Comparison of the Second Stage Vibrations In Each Of the Three Number Segments. 
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Figure 4.8  First and Second Stage Vibrations Highlighting Offset Actions of Suction and Discharge. 

 
Figure 4.9 Comparison of Speed Measurements by Section Displaying Sensor Pulses. (a) Section 1, (b) Section 2 and (c) 

Section 3. 
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4.6.5 Speed Measurements  
 

The speed sensor rotates with the crank shaft recording one pulse per revolution. 
From Figure 4.9 it is clear that seven revolutions per second are executed. Exact 
location of these pulses enables calculation of the crank shaft speed and consistency 
comparisons throughout the duration of operation. The pulse peaks, of approximately 
4.5V, being the maximum voltage used by the machine. 

To compare the speed across the period of data acquisition the times to each pulse 
and the average speed per section were calculated, Table 5.1. For example the time 
in section 1 to the first pulse was 0.1354 seconds i.e. the first revolution took 0.1354 
seconds hence the speed for the first revolution was  

 

1   7.3831Hz 
0.1354

 442.9831 revolutions per minute (rpm).

=

=
    (4.4) 

 

A t-test at the 5% level showed the average revolutions per minute for each section 
were not significantly different to 440rpm, the stipulated engine speed. The average 
revolutions per minute being calculated as in Equation 4.4 for each of the seven 
intervals between pulses. 

 

TABLE 4.2 DISPLAYS THE MEAN REVOLUTIONS PER MINUTE AND CORRESPONDING STANDARD DEVIATIONS FOR EACH OF THE THREE 
SECTIONS. 

Section Mean rpm Standard deviation 

1 442.9831 0.0608 

2 442.9536 0.0443 

3 443.9144 0.0443 

 

 

4.6.6 Angular Speed Measurements  
 

Angular speed is measured via shaft encoder sensors which record 360 pulses per 
revolution. Initial inspection of the output is hampered by sheer volume of data, 
however, closer inspection reveals many hundreds of readings which are utilised in 
precisely calculating the instantaneous angular speed (IAS), Figure 5.9. IAS (rpm.) 
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fluctuates periodically with the load on the system. The load automatically varies 
throughout the compression cycle stages being lower during the suction stage and 
higher during compression. 

 

 

4.6.7 Current Measurements 
 

Sinusoidal output as expected is evident also exhibiting fluctuations with maximum 
amplitude ±0.85 Amps, as shown in Figure 4.11. The amplitude is not constant but 
also varies sinusoidally. Thus a low frequency cycle is observable corresponding to 
the 7 cycles per second of the motor speed in addition to the high frequency current 
cycle at 50Hz.  

 

 

 

4.7 Waveform Features 
 

This section investigates the characteristics of the output variables measured and their 
interrelationships in a healthy compressor operating normally. Waveform feature 
analysis is conducted in the time domain. 

 

 

4.7.1 First Stage Pressure and Vibration Measurements in Relation to Index Pulse 
 

All output measurements exhibit about seven cycle per second fluctuation which is a 
direct consequence of the crankshaft speed of 440rpm (or 7.3Hz). Likewise, each of 
the outputs exhibit the same periodicity as seen in Figure 4.12. Features are further 
highlighted in Figure 4.13 where the cycle is displayed between the first two index 
pulses only. Positions of the index pulse mark the first complete recorded cycle. This 
first cycle has a duration of approximately t=0.13s falling within the times t=0.135 and 
t=0.265 seconds. Vibration measurements can be seen to surge on opening and 
closing of both the suction and discharge valves. The relationship between the 
pressure and vibration measurements throughout the cycle is also highlighted. As the 
cylinder valves are opened for either suction or discharge of air the vibration signals 
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oscillate with an acceleration of approximately ±100m/s2 during stage 1 and ±200m/s2 
on discharge of pressurised air. 

4.7.2 Second Stage Pressure and Vibration Measurements in Relation to Index Pulse 
 

Again at the second stage signal outputs display similar behavioural patterns albeit 
with increased amplitudes. Figure 4.14 and Figure 4.15 show the pressure and 
vibration are obviously synchronised. The amplitudes of both the high pressure and 
vibration are greater than those for stage one. With the air more highly pressurised the 
duration of both suction and discharge stages are reduced and the valves vibrate more 
aggressively as the air forces its way in and out.  

Investigation of IAS in relationship to pressure at both the first and second stages 
shows clearly that the variables are synchronised with each stage in the cycle. IAS 
fluctuations corresponding directly to particular stages of the compression and 
expansion cycle of the first and second stage cylinders. 

A normalised plot was considered, demonstrating a more direct comparison of the 
output signals, Figure 4.17. IAS at its minimum as the first stage cylinder is in the 
compression phase and the second stage cylinder is in its discharge phase. IAS 
increases to its maximum as the first stage cylinder discharges and moves back into 
BDC position taking in a further volume of non-compressed air; meanwhile the second 
stage cylinder is travelling towards TDC position and maximum pressure in the 
system. This cycle repeating seven times per second with the IAS returning to its 
minimum value as the second stage discharges. 

 

 

4.7.3 Relationship between Cylinder Pressure and Reservoir Pressure 
 

Impact of varying load (reservoir pressure) on cylinder pressure was investigated for 
a range of loads from 80 to 120psi (5.52 to 8.27bar), values recoded at 10 psi intervals. 
Both the first and second stage pressures were found to be directly proportional to the 
applied load. Figure 4.18 and Figure 4.19 illustrate findings with pressure increases at 
the second stage, which show more noticeable increases with load. 

Readings taken from the first cycles of the maximum measurements for the first and 
second stage pressures and time (seconds) are given in Table 4.3.  
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Figure 4.10 From Top: Inspection Of Pulses In First Hundredth Of A Second; The Differences Between Successive Pulses; 

Number Of Samples Between Successive Pulses; The Instantaneous Angular Speed Which Can Be Seen To Fluctuate 
Periodically. 

 
Figure 4.11 Motor Current During First Cycle. 
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Figure 4.12 Comparison of First Stage Pressure and Vibration Signals in Comparison to Index Marker (First Section). 

 
Figure 4.13 Comparison Of First Stage Pressure And Vibration Over First Cycle Relative To Pulse. 
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Figure 4.14 Second Stage Pressure And Vibration Cycles With Index Reference. 

 
Figure 4.15 Comparison Of Second Stage Pressure And Vibration Within First And Second Pulses In Relation To Index Pulse. 
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Figure 4.16 Relative Values of IAS, First Stage Pressure and Vibrations In Comparison to the Index. 

 
Figure 4.17 Standardised Values for Direct Comparison [IAS-430; 10*pL/ Mean (pL); 10*pH/ Mean (pH). 
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Figure 4.18 Comparison Of First Stage Cylinder Pressure By Reservoir Load. Note: 80psi=5.52bar, 90psi=6.21bar, 

100psi=6.90bar, 110psi=7.58bar, 120psi=8.27bar. 
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Figure 4.19 Comparison Of Second Stage Cylinder Pressure By Reservoir Load. Note: 80psi=5.52bar, 90psi=6.21bar, 

100psi=6.90bar, 110psi=7.58bar, 120psi=8.27bar. 
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Strong positive linear relationships between both the first and second stage maximum 
pressures and load applied are revealed.  

Correlation coefficient matrix, Pd,pLmax, for the first stage maximum low pressure 
measurements with respect to load is 

 

 Pd,pLmax  = 1.0000 0.9914 

    0.9914 1.0000 

Regression model pLmax =  3.1764 + 5.64x10-3 Pd    (4.5) 

 

Correlation coefficient matrix, Pd,pHmax, for the second stage maximum low pressure 
measurements with respect to load is 

 

Pd,pHmax = 1.0000 0.9970 

   0.9970 1.0000 

Regression model pHmax= 0.2322 + 0.0816 Pd    (4.6) 

 

Thus for unit increase in the load the first stage pressure increases by 5.64mbars and 
the second stage pressure increases by 0.0816bar. 

Both models demonstrate near perfect positive correlation between the applied load 
and the pressure with goodness of fit statistics of almost 100% implying variations in 
the pressure can be almost entirely explained by variations in applied load. Thus 
confirming the systems efficiency. 

 

4.7.4 Relationship between Speed and Reservoir Pressure 
 

The motor speed is unaffected by the load applied as illustrated in Figure 4.20, the 
seven cycle pattern being identical for each of the five loads applied. Hence the crank 
shaft speed and so the index position is comparable for all signal outputs throughout 
the compression cycle. Direct comparisons are thus feasible. 
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Figure 4.20 Speed of Motor under Varying Loads (psi). Note: 80psi=5.52 bar, 90psi=6.21 bar, 100psi=6.90 bar, 110psi=7.58 

bar, 120psi=8.27 bar. 
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Chapter 5  

Exploratory Data Analysis 

 

 

 

 

Extended experimentation incorporating system faults being similarly analysed 
emergent blueprints for system health are presented.  

Elementary models in both the time and the frequency domains are considered and 
show promising fault detection potential. 

Lastly the research prompting the original motivation for much of this thesis work is 
presented and appraised. 
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5.1 Fault Classification Using Statistical Modelling and Graphical Means 
in the Time Domain  
 

This section focuses on the classification of fault types by identifying abnormal 
behaviour patterns in the time domain. 

Prior to any complex analysis or model building it is essential to gain insight into the 
data and its distributional patterns. Exploratory data analysis through visual or 
graphical displays offers global inspection and an opportunity to identify and further 
investigate any anomalies. Variable profiling in the form of a simple time series plot of 
measurements by classification group allows direct comparisons. Analysis of output 
signals across a range of faults with a view to identifying any characteristic features 
which may best describe behaviour so providing a means to identify faults. 

Figure 5.1 shows the pressure at the first stage by fault type (load fixed at 100psi = 
6.90bar). Whilst the periodicity is consistent evidently there are some striking visual 
differences in the amplitudes of these measurements across the five classes. A leak 
in the inter-cooler system would appear to be easily distinguishable from the healthy 
fault free case. The first stage pressure in the faulty intercooler simulation has a far 
narrower band of values (max +0.9184bar, min -0.4243bar) than in the healthy case 
(max +1.7182bar, min-0.8873bar). For the loose belt and leaky suction valve faults 
there is little visible difference in comparison to the healthy case whereas more 
extreme amplitudes (-0.9987, 2.0621) were observed when the discharge valve 
leaked. Although the simple time series plot of the variables provides a useful check 
of signal properties with respect to frequency and amplitude it does not of course 
provide a robust method for fault identification in itself.  

Figure 5.2 gives a magnified view of the first cycle and clearly shows that whilst first 
stage pressure readings for the SVL and LB are little removed from those of the 
healthy system there are obvious differences in the case of both DVL and ICL. For the 
DVL the pressure exceeds its healthy maximum by 0.5bar (healthy maximum 4.0bar, 
DVL 4.5bar) whereas with an ICL the maximum pressure achieved is barely greater 
than ±0.5 bar. In addition the corresponding ICL pressure trace continues to be 
considerably closer to zero than those of the other classes. 
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Figure 5.1 Healthy and Faulty Signals Comparison: First Stage Pressure Measurements (load 100psi). 

 
Figure 5.2 First Stage Pressure for Each of the Five Single Fault Cases. 
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Inspection of data distributions is essential prior to numerical analysis. Distributions by 
fault are illustrated by the multiple boxplots Figure 5.3. All distributions are clearly 
negatively skewed; again it is the case of the faulty intercooler seal which is most 
obviously different. ICL median value is also significantly different to the other four 
groups. Having detected a deviation from the norm during operation accurate 
diagnosis of the source is critical and the more extreme the fault characteristics the 
easier to pinpoint the fault. Obviously the more timely and precise the diagnosis of a 
fault, the greater the opportunity for planned maintenance potentially reducing the 
impact of disruption due to need for emergency intervention. Symmetry, location and 
spread of the distributions are immediately comparable on inspection of the boxplot 
series and should the pressure at first stage not exceed one bar a leak in the 
intercooler is highly probable. Profile and box plots are ideal for identifying pattern 
differences between fault distributions and highlighting rogue measurements but may 
not provide criteria for fault identification and a more comprehensive rule is necessary 
if each fault is to be accurately identified. 

 

 

 
Figure 5.3 Boxplots displaying first stage pressure characteristics by fault (load 100). 

 

-1

-0.5

0

0.5

1

1.5

2

Healthy DVL ICL Loose Belt SVL
Fault

P
re

ss
ur

e 
(B

ar
)



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 97  

Characteristics of each fault type were compared and contrasted by their summary 
statistics, Table 5.1. 

Figure 5.4 shows a clustering of the mean pressure values for each of four data 
segments plotted against corresponding kurtosis values. It can be seen that each 
observation could be classified with relative ease to the correct case by defining 
suitable kurtosis boundary values. The greatest difficulty will arise in separating those 
with a SVL from the healthy case since both the mean and kurtosis values for these 
two groups are very similar. A rule of the form: 

 

Kurtosis < 1.9 indicates a loose belt;  

Kurtosis >2.2 implies an intercooler leak;  

Kurtosis = 2.0±0.01 suggests a DVL     (5.1) 

 

 

TABLE 5.1: SUMMARY STATISTICS FOR FIRST STAGE PRESSURE MEASUREMENTS (LOAD 100PSI=6.90BAR). 

Low pressure Healthy DVL ICL Loose Belt SVL 

Median -0.5866 -0.6751 -0.1764 -0.5845 -0.6049 

50% range [-0.7277,  

0.9698] 

[-0.6751,  

1.0221] 

[-0.2650,  

0.2515] 

[-0.7340,  

0.9926] 

[-0.7536, 

0.9848] 

Min 

Max 

-0.8873  

1.7182 

-0.9987  

2.0621 

-0.4243  

0.9184 

-0.8886  

1.6930 

-0.9176  

1.8071 

Mean -8.7413e-015 3.7512e-015 5.2778e-015 1.1843e-014 1.3790e-014 

RMS 0.9287 1.0833 0.3256 0.9295 0.9618 

Kurtosis 1.9229 2.0024 2.2163 1.8873 1.9310 

 

 

To adequately separate the healthy cases and those with leaking suction valves the 
overall kurtosis values for the groups 1.9229 (healthy) and 1.9310 (SVL) could be used 
with suitable cut off values for the mid-range. Thus allocate to the healthy group if 1.9< 
kurtosis< 1.9270 and for 1.9270< kurtosis< 1.95 allocate to the leaking suction valve 
group. It should be noted that this rule applies only in consideration of the first stage 
pressure with the load restricted to 100psi. 
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Since the distribution of the vibration variable is considerably different to that of the 
first stage pressure this simple rule could not be directly applied in this format. 

Although some clustering is evident, Figure 5.5, groups are not sufficiently separate 
to assign cases one or two-dimensionally based on mean and kurtosis measurements.  
Closer inspection of the summary statistics of the first stage vibration measurements 
and the upper and lower warning bands (calculated at σ± 2x ) indicate significant 
differences in the width of the warning bands with the DVL giving rise to far greater 
range of measured vibrations. Again this in itself proved insufficient to devise a rule 
for separation of each of the fault types from the healthy case. 

Partitioning pL measurements by number segment proved effective in determining an 
elementary rule for assigning to classes. However, this technique was ineffective using 
vL signals. Although plots of segment means against kurtosis showed case clustering 
for both variables, the technique would not be robust should a sequence of faults 
develop. On the other hand clustering algorithms based on the raw data would, if 
computationally possible, put too great a burden on resources. Data and variable 
reduction techniques such as PCA provide alternative means of scrutiny. Rules for 
group allocations via multivariate analysis of the variables as a whole offering greater 
model sophistication. The most effective parameter combinations being determined to 
distinguish between individual faults and fault combinations. Chapters 6 to 8 explore 
the potential. 

Establishing a statistically robust model often requires strict adherence to the 
underlying model assumptions particularly in terms of data distributions. Rarely does 
experimental data bear close resemblance to the normal distributions assumed in 
parametric statistics. If these deviations are slight a useful model may still be 
developed, however, great care should be taken to assess model accuracy through 
appropriate residual analysis. Figure 5.6 highlights the distributional differences 
between fault runs even for apparently identical simulations. 
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Figure 5.4 Scatter Plot to Show the Mean Vs Kurtosis of First Stage Pressure Per Number Segment. 

 
Figure 5.5 Plot of Mean and Kurtosis for the Vibration Measurements at First Stage with Load 100psi (6.90 bar). 
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TABLE 5.2 SUMMARY STATISTICS FOR FIRST STAGE VIBRATION (LOAD 100). 

First stage vibration measurements 'Healthy DVL ICL Loose belt SVL 

Mean 0.0691 -0.0349 0.0080 -0.0638  0.0413   

RMS  0.2430 0.3235 0.2479 [0.2605 0.2338 

Kurtosis 5.4286 2.8116 16.1214 3.2880 4.0229 

Lower limit/ warning band -0.4169    -0.6819    -1.1338    -0.5130    -0.4263 

Upper limit/ warning band 0.5551     0.6121    0.1422     0.5290     0.5089 

Difference between warning bands   0.9720             1.2940 0.9916 1.0420     0.9352 

 

 

 

 
Figure 5.6 Class Distributions in Healthy Compressor Rig. 
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5.2 Signal Analysis in the Frequency Domain 
 

The fast Fourier transform (FFT) of the envelope signals from vibration sensors were 
calculated by applying 87835 point filter with Hanning windows. The magnitude of the 
FFT being taken as the amplitude or FT spectrum in the spectrum analysis. Envelope 
spectra show only the amplitude profile of original signals and so provide a clearer 
insight into underlying behaviour of the compressor [45, 46, 88 and 104]. 
Measurements for the seven variables were recorded for each of five machine 
conditions, one healthy and four with seeded faults. Variable measurements included 
the vibration at the first and second stage of the compressor cycle. A demodulated 
signal was considered to 32 harmonics by passing through a Hilbert filter and applying 
an envelope technique, the env1 MATLAB function. 

 

 

5.2.1 Frequency Spectra of the First Stage Vibration Signals 
  

Figure 5.7 and Figure 5.8 illustrate the frequency spectra of the first stage RC vibration 
signals. By plotting the spectra of all five classes simultaneously they can be compared 
directly to reveal their unique signal characteristics. The harmonics, displayed by the 
tick marks at 7.3Hz intervals, clearly pick out the subsequent signal peaks which are 
coincident for all faults. Hence, once rules are assigned, these signal characteristics 
can be used to differentiate between healthy and faulty systems and so identify 
different faults. 

The spectrum plots clearly show that the first fundamental frequency, due to the shaft 
rotation speed per second, occurs at 7.3Hz regardless of fault type. Subsequent peaks 
are at integer multiples of this fundamental frequency. 

Whilst positioning of the fundamental frequency and its higher order harmonics are the 
same across all classes, the spectra display differing amplitudes. In particular the 
amplitude of the ICL signal is less than half that of all other signals at the first harmonic. 
This could provide an effective means to differentiate this fault from the others. 
However, it is difficult to see substantial differences between others in these original 
spectra, therefore a universal rule is unattainable.  

To identify clear differences between all other faults, the amplitudes of their harmonic 
components up to the 32nd order were extracted. Focus on fault amplitudes at specific 
harmonic orders offers insight into machine condition. Thus even with limited data 
input, rules are established to provide a means for efficient exploration.  
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Figure  5.8 highlights two major spikes in the first stage vibration signal spectrum, the 
first at the 18th and the second at the 22nd harmonic component. Each class amplitude 
being visibly distinct at the 22nd harmonic, the first stage vibration signal frequency 
spectrums would appear to offer a means of distinguishing between machine states 
at this point. Differences in class amplitudes would be statistically significant if each 
amplitude variance be sufficiently low that the confidence intervals are non-
overlapping. However, this is not the case for the ICL which clearly displays amplitudes 
very similar to the healthy signal. Harmonic spectra from vibration signals are 
obviously information rich. Amplitudes also visibly varied with load throughout the 
cycle. Although interesting this is not currently relevant the aim of this research being 
to provide a non-intrusive diagnostic for each of the considered simulated faults. 

 

 

5.2.2 Frequency Spectra of the Second Stage Vibration Signals 
 

The spectra for the second stage vibration signals, Figure 5.9, give similar results to 
those at the first stage. But it seems that by using the values at the first harmonic 
component it is possible to detect differences between all classes. 

For each of the five cases the mean amplitude per harmonic and associated standard 
deviations were calculated. Thus 95% confidence intervals of the spectrum amplitudes 
at the first harmonic were calculated per class, Table 5.3. Clearly the ICL amplitudes 
are significantly different to all other cases. Note the confidence interval for ICL is not 
overlapping with those of any other distributions.  

Confidence intervals of spectrum amplitudes at other notable harmonics were 
investigated, however, despite apparent visual differences at particular harmonics only 
the ICL was found to have a significantly different distribution at the 5% level.  

 

 

5.2.3 Envelope Spectrum Analysis of Vibration Signals 
 

As shown in section 5.2.2, spectral analysis of the original signals is not sufficiently 
sophisticated to differentiate between different classes. Therefore, to pursue accurate 
identification of machine faults more advanced analysis is required. 
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Figure 5.7 Spectrum Plot: Fundamental Frequency For Each Machine State, First Stage Vibration Signal. 

 
Figure 5.8 Frequency Spectra for First Stage Vibration Measurements to 32nd Harmonic (Fundamental Frequency 7.3Hz). 
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Through spectrum analysis it was found that the main changes occur at the operating 
frequency and its high order harmonics thus envelope analysis is used to enhance this 
feature. 

Envelope spectra, as previously stated, show only the amplitude profile of original 
signals and so provide a clearer insight into the underlying behaviour. A demodulated 
signal is considered to 32 harmonics by passing through a Hilbert filter and applying 
an envelope technique, env1 Matlab function. Signal variations due to noise are 
filtered out leaving variation due to machine health only. Once the problem becomes 
too serious nothing is detected but noise, past the point of useful demodulation. 

Envelope spectra of the first and second stage vibration signals are displayed in Figure 
5.10 and Figure 5.11 respectively. Envelope spectra at the second stage with 
amplitude labelling at decisive harmonics are illustrated in Figure 5.12. 

 

 

 

 

TABLE 5.3 SUMMARY OF FREQUENCY SPIKES AND AMPLITUDES BY FAULT TYPE,  

 First major spike at the 18th 
harmonic 

Second major spike at the 
22nd harmonic 

Healthy 1.333 4.202 

ICL 1.938 3.956 

Loose belt 1.333 3.406 

SVL 2.482 2.163 

DVL 1.663 1.435 
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TABLE 5.4 95% CONFIDENCE INTERVALS OF THE FIRST HARMONIC AMPLITUDES. 

 Mean St. Dev. 95% Confidence 
Interval 

Significant at 5% 

Healthy 0.3269 0.0927 0.1452, 0.5086  

DVL 0.3454 0.1042 0.1412, 0.5496  

ICL 1.1658 0.1971 0.7795, 1.5521 * 

Loose Belt 0.3769 0.1186 0.1444, 0.6094  

SVL 0.3805 0.0772 0.2292, 0.5318  

 

 

 

TABLE 5.5 95% CONFIDENCE INTERVALS OF AMPLITUDE SPECTRA AT GIVEN HARMONICS. 

 9th Harmonic 11th Harmonic 

   Mean 
  St. 
Dev. 95% CI   Mean    St. Dev 95% CI 

Healthy 0.3269 0.0927 0.1452 0.5086 0.1676 0.1681 -0.1619 0.4971 

DVL 0.3454 0.1042 0.1412 0.5496 0.1645 0.1424 -0.1146 0.4436 

ICL 1.1658 0.1971 0.7795 1.5521 0.2403 0.2594 -0.2681 0.7487 

LB 0.3769 0.1186 0.1444 0.6094 0.2560 0.1578 -0.0533 0.5653 

SVL 0.3805 0.0772 0.2292 0.5318 0.1777 0.1276 -0.0724 0.4278 

         

 15th Harmonic 17th Harmonic 

   Mean 
  St. 
Dev. 95% CI   Mean   St. Dev. 95% CI 

Healthy 0.2615 0.3265 -0.3784 0.9014 0.1365 0.0189 0.0995 0.1735 

DVL 0.3396 0.3332 -0.3135 0.9927 0.1539 0.0215 0.1118 0.1960 

ICL 0.2679 0.4142 -0.5439 1.0797 0.5750 0.0474 0.4821 0.6679 

LB 0.2737 0.4037 -0.5176 1.0650 0.1849 0.0285 0.1290 0.2408 

SVL 0.3262 0.3577 -0.3749 1.0273 0.2690 0.0188 0.2322 0.3058 

 

 



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 106  

As seen it is possible to separate the four faulty cases from the healthy through 
inspection of the envelope spectrum amplitudes at given harmonics. Note a series of 
harmonics are required to fully identify all four faults. Specifically: 

 

 

 

• At the 9th harmonic the spectra for the DVL and SVL are of obviously different 
magnitudes to that of the healthy case. The amplitude for the ICL is too similar 
to that of the healthy case to identify at this point. 

• However, at the 15th harmonic the ICL has an amplitude well in excess of the 
healthy case. 

• The loose belt fault lags the healthy case with a peak at the 7th harmonic (4.071) 
following a peak of similar amplitude in the healthy case at the 6th harmonic.  

• The loose belt displays a slightly larger amplitude at the 11th harmonic than the 
healthy signal (2.956 and 2.441 respectively). More obviously the loose belt has 
a far larger amplitude (2.624) at the 17th harmonic where the healthy peak is 
less than 2. 

• The healthy signal envelope spectrum rises sharply from the 19th harmonic and 
is clearly greater than all other spectra between the 21st and 27th harmonics.  
It’s amplitude of 2 being double those of all the fault cases. 

 
 
 
 

Clearly the condition of a system can be ascertained by analysing the vibration signals 
at strategic points, here at the first and second stage of the operation. Through 
comparison of the envelope spectrum for each of the four faults and the healthy case 
a non-intrusive method of diagnosis is established. The results show that it is possible 
to both distinguish between healthy and faulty systems and to accurately identify the 
particular fault. Further investigations into distributional characteristics of the data 
show the ICL to be significantly different thus identifiable, Table 5.8 summarises key 
findings. 
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TABLE 5.6 SPECTRUM AMPLITUDES FOR THE SECOND STAGE VIBRATION SIGNAL. 

Machine Condition Amplitude of Envelope Spectra at Stipulated Harmonics 

9th Harmonic 15th Harmonic 17th Harmonic 

Healthy 2.014 1.553 <2 

DVL 3.86   

SVL 1.117   

ICL  1.838 2.843  

LB   2.624 

 

 

 

5.2.4 Envelope Spectra for the Motor Current Signals 
 

Envelope spectra for the motor current signal are particularly well defined Figure 5.13 
and Figure 5.14, with the fundamental frequency at 7.3Hz as anticipated. Each 
harmonic peak again occurs at multiples of the fundamental frequency and is easily 
identifiable with sidebands also clearly present. However, due to excessive noise 
motor current spectra are only really useful up to about the tenth harmonic i.e. to 
approximately 73Hz. Further investigations are suspended at this point to focus on the 
vibration signal readings which offer more profitable developments with respect to 
input parameter selection and manipulation. 
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Figure 5.9 Second Stage Frequency Spectra for Healthy System and Four Machine Faults. 

 
Figure 5.10 Envelope Spectrum of First Stage Vibration Signal. 
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Figure 5.11 Envelope Spectra Of Second Stage Vibration Signal. 

 
Figure 5.12 Envelope Spectra Displaying Amplitudes At Decisive Harmonics In Second Stage Vibration Signal. 
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Figure 5.13 Envelope Spectrum for Motor Current Showing Peaks at Fundamental Frequency Multiples. 

 
Figure 5.14 Envelope Spectrum for Motor Current Against Harmonic Order. 
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5.3 Preliminary Investigation into Fault Diagnosis in the Frequency 
Domain 
 

This section details a collaborative investigation which was felt to be optimal at time of 
publication [2]. The subsequent analysis and findings serving as motivation for the 
undertakings within this thesis. Although the study made major contributions in the 
field it is now considered a less than optimal solution. 

Data from the compressor rig was analysed in the frequency domain with the overall 
aim of detecting and identifying faults induced. The major focus of the study to achieve 
computational savings and training algorithm convergence alongside classification 
accuracy. 

Through previous analysis it had been shown that a classifier using the RVM technique 
was far more efficient than using SVM sample wise hence computational time wise. 

 

Using just two input parameters, features 4 and 7, it was demonstrated an SVM model 
used 24 samples whilst a comparable RVM model required just 4, Figure 5.15 and 
Figure 5.16 respectively.  

Envelope harmonics extracted from the frequency domain were utilised rather than 
their time domain equivalent as they most efficiently describe modulations due to fault 
presence as discussed in section 5.2. Figure 5.17 gives a direct comparison of the 
envelope frequency spectra of different machine states, clearly showing the 
compressor’s fundamental frequency to be 7.3Hz and highlighting the differences in 
both size and location of harmonic amplitudes for faulty and healthy systems. Hence 
the envelope harmonic amplitudes were included as input parameters.  

Feature set size was determined by the limitations of the RVM algorithm which could 
accommodate a maximum of 16 input variables to remain stable hence the harmonic 
components 2 to 15 from the envelope spectra were used. Feature 1 had previously 
been shown to have little explanatory value and was thus eliminated.  

80 data samples for each of 8 classes were selected and randomly assigned to one 
of two groups of 40 which formed the training data set and the validation data set 
respectively.  
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Figure 5.15 Comparison of Model Complexity 24 Sample SVM. 

 

Figure 5.16 Comparison of Model Complexity 4 Sample RVM. 
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Figure 5.17 Comparison of Envelope Spectra of Faults to Healthy (baseline). 

 

 

Although a one-against-one (OAO) training algorithm leads to far more individual 
classifiers than a one-against-all (OAA) algorithm the OAO option was selected as the 
preferable training approach since the overall computational time to solution was 
vastly reduced. Classifiers generated through OAA algorithms are typically highly 
complex and generally require much greater computational efforts than the equivalent 
multiple OAO classifiers. 

Hence RVM models were trained and evaluated using the partitioned data set and a 
OAO training algorithm first without genetic algorithm (GA) feature selection then with 
GA feature selection [Section 3.8, 49, 70, 86 and 90]. A GA is an automated algorithm 
for selecting a reduced number of parameters. Gradient based searches highlight 
feature usage patterns and so offer a practical means for selecting the most prevalent 
parameters. Eight classes in total were seeded into the rig, four single and four 
combined as detailed in Table 5.7.  

Incorporating GA feature selection algorithms into the model showed improved 
classification success across the classes. A visual summary of the harmonic features 
selected per class is given in Figure 5.17 and appears to show a strong association 
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between the two variables. Average classification rates are summarised in Table 5.8. 
A numerical summary of feature usage by class is given in Table 5.9. 

 

 

TABLE 5.7 FAULTS INDUCED IN SIMULATIONS. 

Class Number 
Class 
Code 

Class 
Abbreviation 

Class Description 

1 C1 H Healthy 

2 C2 DVL Discharge Valve leakage 

3 C3 SVL Suction Valve leakage 

4 C4 LB Loose Drive Belt 

5 C5 IL Intercooler Leakage 

6 C6 DVL+SVL 
Discharge Valve leakage with Suction Valve leakage 
combined fault 

7 C7 SVL+IL Suction Valve leakage with Intercooler combined fault 

8 C8 DVL+IL 
Discharge Valve leakage with Intercooler combined 
fault 

 

 

TABLE 5.8 AVERAGE CLASSIFICATION RATES. 

Cases Input Harmonics 

 
Classification Rate (test data) 

(%) 
RVM-OAO Without GA 

 
Classification Rate (test data) 

(%) 
RVM-OAO With GA 

Overall 
 

2-15 
 

95.95 
 

97.00 

Healthy 2-15 90.00 93 
DVL 2-15 100.00 97.5 
SVL 2-15 97.50 93 
LB 2-15 95.00 100 
ICL 2-15 95.00 100 
DVL+SVL 2-15 100.00 100 
SVL+ICL 2-15 90.00 93 
DVL+ICL 2-15 100.00 100 
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Figure 5.18 Features Selected by Class. 

 

 

TABLE 5.9 FEATURE USAGE BY CLASS. 

 
f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

 

𝐶𝐶1 1 5 5 2 4 4 5 5 3 0 1 4 3 2 

𝐶𝐶2 1 5 6 2 1 7 5 7 6 3 0 2 5 4 

𝐶𝐶3 3 4 6 3 2 6 5 3 5 2 2 4 3 2 

𝐶𝐶4 2 3 4 4 2 6 2 4 5 3 2 4 3 1 

𝐶𝐶5 2 6 6 1 1 6 6 4 6 2 3 1 6 6 

𝐶𝐶6 1 7 5 0 2 5 5 7 5 0 1 0 7 5 

𝐶𝐶7 0 5 7 2 1 6 6 6 5 2 0 2 5 5 

𝐶𝐶8 2 5 5 2 1 6 6 4 5 2 1 3 4 3 
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Consequently a further summary of the dominant features present for each of the 
classes was constructed, Table 5.10. Note each of the classes is seen to contain a 
dominant pair of features, 4 and 7, which form the ‘base’ model for the following 
analysis and later experimental classification models. 

 

 

TABLE 5.10 DOMINANT FEATURES USED IN CLASSIFICATION. 

Class Cases Features Used 

𝐶𝐶1 Healthy 3,4,6,7,8,9,13 

𝐶𝐶2 DVL 3,4,7,8,9,14 

𝐶𝐶3 SVL 3,4,7,8,10,13 

𝐶𝐶4 LB 4,5,7,9,10,13 

𝐶𝐶5 ICL 3,4,7,8,9,14,15 

𝐶𝐶6 DVL+SVL 3,4,7,8,9,10,14 

𝐶𝐶7 SVL+ICL 3,4,7,8,9,10,14,15 

𝐶𝐶8 DVL+ICL 3,4,7,8,9,10,14 

 

 

Finally a multiclass multi-kernel RVM (mRVM) was trained for four classes (H, ICL, 
DVL+ICL and SVL+DVL) again using the two input parameters envelope features 4 
and 7. 

The main purpose of mRVM algorithms is to gain high predictive accuracy rates whilst 
maintaining computational efficiency. mRVMs produce more sparse solutions both 
sample and kernel wise enabling application to large-scale multi-feature multinomial 
classifications. Performance across the four faults, Table 5.11, Figure 5.19, for the two 
parameter mRVM was extremely good with 100% for binary and 97.5% accuracy rates 
for combined faults. However, it has since been demonstrated, for example in the DA 
in section 6.3, that the two envelope features 4 and 6 have still greater explanatory 
power. 

A mainly intuitive experimental exploration of the effect on mRVM classifications of 
using differing numbers of classes and input harmonics was undertaken, Table 5.12. 
It became apparent that the physical mechanisms were potentially related to input 
features. Further that particular harmonic features were strongly associated with 
specific fault characteristics being repeatedly used in their presence. Some features 
were found to have strong associations with more than one fault, for example, the 
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‘base’ model of features 4 and 7. Feature 9 was used repeatedly in the presence of 
the DVL whilst the SVL diagnosis relied heavily on features 8 and 10. Confounding 
factors were also obvious with the ICL emulating some of the characteristics of other 
faults. Detection and accurate diagnosis of an increased number of faults whilst 
maintaining computational efficiency is only achievable through optimal input 
parameter selection. 

 

TABLE 5.11 CLASSIFICATION RATES FOR MRVM. 

 

 

Figure 5.19 mRVM Classification Plot and Decision Boundaries. 
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Number of 
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Correct  
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Healthy 40 40 100% 

  
0.0125% 

ICL 40 40 100% 

SVL+IL 40 39 97.5% 

ICL+DVL 40 39 97.5% 

Overall   98.75%   



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 118  

Whilst a GA based approach optimised input feature selection with improved 
classification accuracy across a large number of classes when compared to RVMs 
without GA, using mRVM with 2 input features (4 and 7) achieved near perfect 
explanation of fundamental behaviour in all cases. However, it has now been 
demonstrated that more optimum solutions still are possible with respect to 
explanatory power of individual harmonic features. Hence the motivation for further 
investigating input parameter properties and their interrelationships. Thus enabling 
optimal input parameter selection in generating models with further inflated powers of 
separation. It should be noted that a feature being ‘little used’ does not render it 
useless being potentially of vital importance in fine tuning the classification process. 

 

TABLE 5.12 CLASSIFICATION RESULTS USING MRVM WITH VARYING NUMBERS OF INPUT PARAMETERS AND CLASSES. 

 

 

 

5.4 Summary 
 

Each signal measurement from the RC rig was seen to have a cyclic output of 
approximately seven cycles per second. Interrelationships between signals were also 
well defined and could be directly attributed to position in the two-stage compressor 
cycle.  

Analysis in the time domain showed reasonable separation potential across the 
different classes with the second stage pressure amplitudes showing quite different 
profiles. Most noticeably, although not surprisingly, the ICL signal had very low second 

Classes  Harmonic 
Orders 
  

Accuracy 
  

Error Rate 
  

1,4,6,7 4-15 98.75% 0.0125 

1,4,5,7,8 4-15 86% 0.160 

1,2,4,5,7,8 2-15 73.75% 0.2625 

1,2,3,4,5 2-15 77.0% 0.23 

1,2,3,4,5,6,7 2-15 59.29% 0.4071 

1-8 4,5,6,10,15 24.16 %   0.3969 

1-8 2-15 50% 0.50 
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stage pressure amplitude. However, there were no clear rules for separation of all 
faults simultaneously. 

Analysis of vibration signals in the frequency domain highlights the unique signal 
characteristics. Frequency spectra clearly show the fundamental frequency of the rig 
and higher harmonics at its integer multiples. However, whilst the positioning of the 
fundamental frequency is the same for all classes position and size of amplitudes 
varies across the classes. This forms the basis of reliably distinguishing between fault 
types. Further, harmonics extracted from the envelope spectra of vibration signals in 
the frequency domain are seen to have superior deterministic properties over their 
time domain equivalents. Amplitudes of the envelope harmonics being specific to 
process condition with a greater amplitude or displaced amplitude implying presence 
of a fault. Envelope spectra show only the amplitude profile of original signals and so 
provide a clearer insight into the underlying behaviour of a process having extraneous 
noise removed. 

Findings from the preliminary investigation into fault diagnosis in the frequency domain 
showed how great the potential for detecting and identifying faults using envelope 
spectra from the second stage vibration signals. High classification success rates were 
achieved using RVM identifying single and compound faults. The limiting factor of the 
study being the algorithmic restrictions on numbers of input parameters for model 
convergence. Subsequent investigations revealed strong associations between 
specific fault characteristics and particular envelope harmonics. Whilst incorporating a 
GA was seen to further improve classification success rates the underlying input 
parameter structure was unknown as physical characteristics were not preserved. 
Findings motivating continued research, the following chapter begins with the 
exploratory investigation of the envelope spectra harmonic traits.  
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Chapter 6  

Multivariate Classifiers Using Reduced Number of 

Input Parameters  

 

 

 

 

Novel methods for inspection of fault signal profiles to aid identity of separable classes 
prior to analysis is demonstrated. Variable clustering techniques and input parameter 
grouping are introduced at the outset of this chapter. Followed by construction and 
appraisal of multivariate classifiers established using reduced numbers of input 
variables determined through variable clustering and the efficacy of the multivariate 
models constructed.  Discriminant analysis and Naïve Bayes classification models are 
established for both two and five classes.  
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6.1 Identification of Separable Classes  
 

 

6.1.1 Andrews Plots of the Second Stage Vibration Signal 
 

In addition to identifying suitable input parameters for the model building process, it is 
sensible to consider the feasibility of class separation. One useful profile method is 
found in Andrews plots, a Fourier transform of the signal data. 

Greatest profile differences occur at approximately t=0.4s as shown in Figure 6.1 and 
Figure 6.2. Although the healthy case is difficult to decipher across the range, the faulty 
cases do appear to form distinct groups and as such should be identifiable. Obviously 
the greater the differences in profile plots the more easily the cases are separated.  

 

 

6.1.2 Andrews Plots of the Motor Current Signal 
 

The Andrews plots based on the motor current signal show mostly distinct profiles for 
each of the classes, thus models with high classification capabilities are anticipated as 
shown in Figure 6.3 and Figure 6.4. Most closely woven classes being the DVL and 
SVL along with the Healthy system so it might be expected these would be more 
troublesome to differentiate between. On the other hand the ICL profile suggests a far 
more straightforward classification to be achievable. Indeed classifications based on 
the motor current envelope features gave high rates of success for both discriminant 
analysis and Naïve Bayes classifiers. However, since the envelope spectra for the 
motor current consists mainly of noise from around the tenth harmonic this line of 
enquiry was not pursued and modelling focused on the second stage vibration 
envelope features 
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Figure 6.1 Andrews Plot Showing the Feature Profiles by Class Against time(s). 

 
Figure 6.2 Andrews Class Profiling using Second Stage Vibration Signal Against time (s). 
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Figure 6.3 Andrews Plots for each of the Five Cases using Motor Current Signal Against time(s). 

 
Figure 6.4 Andrews Plots using Motor Current: Medians and Quartiles Against time(s). 
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6.2 Variable Clustering  
 

As the main focus of the CA was to identify variable similarity an agglomerative method 
was employed thus group formation and structure were easily observable. Euclidean 
distance was used as proximity measure since the measurements represent harmonic 
amplitudes. 

Investigations into feature similarities through clustering are displayed in the 
dendrogram Figure 6.5. Classification matrix, X (120 by 32) comprised 120 
observations, 24 repeated runs of all 5 classes or machine states, at each of the first 
32 harmonic features extracted from the envelope spectrum analysis. Dendrograms 
were based on the pairwise Euclidean distance between each of the variables 
generating a differences vector of length m(m-1)/2 = 32*31/2=496.  

 

 

6.2.1 Clustering of Second Stage Vibration Signal Envelope Harmonics 
 

A summary of the second stage vibration cluster results is given in Table 6.1. Harmonic 
features 23, 24, 27 and 28 were found to be most similar whilst the group containing 
features 3 and 5 is least like all others Figure 6.5. There are several other early 
groupings of harmonic features which would be expected to explain similar variation 
between cases. Other harmonics would also appear to readily form group pairs. For 
example, harmonics 13 and 14 and harmonics 11 and 16. Interestingly many of these 
early groupings are between harmonic features within the range selected in the 
preliminary investigation, discussed in section 5.5, which would suggest discriminating 
power may have been lost due to duplication.   

Extended inspection highlights the existence of 3 main harmonic groups plus 3 
independent harmonic features. The five ‘semi-independent’ features (6, 7, 8, 10 and 
15) shown outside the group 3 brackets not being included in any grouping until the 
distance, T>14 suggests they are heterogeneous and potentially provide unique 
information with respect to separation of cases. Envelope harmonics are grouped by 
similarity thus forming homogeneous sets. A representative feature was selected from 
each group through inspection of the envelope spectra with the criteria of maximum 
case separation i.e. maximum amplitude discrepancy. Group 3 had a number of late 
joining features which can be considered as partial outsiders which are likely to provide 
additional explanatory power to the model. 

It is reasonable to expect the variation within each group might be explained by one 
representative feature from that group since within group characteristics are 
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homogeneous. Between group differences confirm findings from prior research 
showing cases to be associated with specific harmonic features. 

Prior research has shown RVM based on envelope features to be effective in 
separating classes. The authors in [2] employed genetic algorithms for feature 
selection with near perfect classification results. Clustering of features here highlights 
similarities within groups of features and heterogeneity between groups. Subsequently 
cluster scatter diagrams were constructed using single group representatives to 
explore visual separation of observations per class. 

 

 

 

 

Figure 6.5: Dendrogram Displaying Feature Similarity (colour threshold T=6.1) Second Stage Vibration Envelope Feature. 
Clustering Based on Euclidean Distance between Pairwise Observations. 
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TABLE 6.1 SECOND STAGE VIBRATION ENVELOPE FEATURE CLUSTER GROUPS (GROUP THRESHOLD SET AT 6.0 WITH SUB-SETS 
SHOWN IN BRACKETS FORMING PRIOR TO THIS DISTANCE). 

 Group Members 

Group 1  4 selected as representative of large group of like features. 

Group 2 (13,14), (11,16) 

Group 3 (3, 5)  6, 7, 8, 10, 15 

Independent features  2, 9 (1 omitted as has been shown to have little discriminating 
power). 
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6.2.2 Cluster Analysis of the Motor Current Signal Envelope Harmonics 
 

Motor current envelope features formed three main groups with a further five features 
joining those groups at a greater distance.  Features 27 and 28 although very similar 
to each other are seen to be least like most of the other envelope features as shown 
in Figure 6.6. Feature 2 being the greater outsider by far.  

 

Envelope features are grouped by similarity thus forming homogeneous sets of 
features.  A representative feature was selected from each group through inspection 
of the envelope spectra with the criteria of maximum case separation. Features late 
joining groups can be considered as partial outsiders, namely 3, 4, 5, 7 and 14, and 
as such are likely to provide additional explanatory power to the model. 

 

 

 

Figure 6.6 Dendrogram of Motor Current Feature Clustering Based on Euclidean Distance Between Pairwise Observations. 
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TABLE 6.2 MOTOR CURRENT HARMONIC FEATURE CLUSTER GROUPINGS  

 Group Members 

Group 1 Large number of features including  

[1 6 8 9 10] 5 

Group 2 [13 15 26] 7 4 

Group 3 [27 28] 3 14 

Independent 2  
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6.2.3 Cluster Analysis of the Second Stage Pressure Signal Envelope Harmonics 
 

Clustering of the second stage pressure output signal envelope harmonics, 
demonstrates high levels of uniformity in group formation. Findings clearly support the 
selection of relevant model input parameters through clustering to identify variable 
duplication so reduce numbers of input variables in model construction. 

 

 

 

Figure 6.7 Dendrogram for Second Stage Pressure Envelope Features. 

 

 

 

Homogeneous feature groupings can be identified from the dendrogram, Figure 6.7, 
with selection of optimum group representatives via inspection of the envelope 
frequency spectrum diagram. Ideally the harmonic feature should illustrate effective 
separation for all classes. Pressure signal groups are formed in a particularly balanced 
manor. The first three groups being formed evenly within a distance of 0.1 and as such 
are especially homogeneous. 
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Figure 6.8 highlights within group similarity with practically identical scatter plots using 
either harmonic feature 3 or 5. Similarly identical plot series are achieved using a 
chosen feature, fi, as a representative of group i plotted against any feature fj from any 
other group, j. For example feature 6 plotted against any of the group of features 9, 
12, 14, 15 or 24. Clearly this indicates the repeated capabilities of group members and 
suggests a reduced parameter model is practical. Harmonic 25 is the only exception 
being unlike all others and should be considered an individual. 

It should be noted that Euclidean distance is variable dependent hence the difference 
in scales. Further the same harmonics are not grouped together for each of the signal 
measurements considered despite their having been generated simultaneously. Also 
of note, whilst the pressure signal envelope harmonics form particularly uniform 
homogeneous groupings their use is not pursued due to the invasive nature of signal 
collection.  

 

 

6.2.4 Investigative cluster scatter plots  
 

Proximity of measurements using envelope harmonic features 4 and 7 alone were 
investigated as they fell into different cluster groups, hence are assumed 
heterogeneous. Previously features 4 and 7 have been shown to have superior 
discriminating powers in construction of mRVM models [2]. Figure 6.9 shows clear 
grouping of observations by class using these two harmonic features alone. Further 
2-D plots illuminate the separation potential of different envelope harmonics.  

Figure 6.10 highlights the similarities between harmonic features 6 and 7 alongside 
the obvious differences in harmonic 12 whereas Figure 6.11 suggest features 4 and 
6, both from the ‘independent’ group of features, would be ideal for separation of the 
healthy and ICL classes. 

Clearly the healthy and ICL measurements are readily formed into distinct groups so 
highlighting the possibility of discrimination between these classes using just two 
envelope features derived from the second stage vibrations of the compressor. 

Each class exhibits fundamental characteristics which can be utilised in differentiating 
between machine states. Class profiles can be further visually investigated using 
multivariate graphical techniques, Andrews plots for example. 
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Figure 6.8 Scatter Plots Showing Classification Similarities for Homogeneous Harmonics 3 and 5 from the Second Stage 

Vibration Signal.  

 

Figure 6.9 Scatter Plot: All Cases Using Envelope Spectrum Features 4 and 7 from the Second Stage Vibration Signal. 
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Figure 6.10 Comparison of Homogeneous and Heterogeneous Feature Pairings. 

 
Figure 6.11 Two-Dimensional Cluster Plot Displaying the Distinct Groups of Healthy and ICL Using Envelope Features 4 and 6. 

(Second Stage Vibration Signal)  

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

Feature 4

Fe
at

ur
e 

7

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

Feature 4

Fe
at

ur
e 

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

Feature 4

Fe
at

ur
e 

12

 

 

Healthy
DVL
ICL
Loose Belt
SVL

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Feature 4

Fe
at

ur
e 

6

Clustering of Healthy and ICL Data

 

 
Healthy
ICL



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 133  

6.3 Discriminant Analysis 
 

 

Choice of input parameter is of paramount importance hence the value of optimum 
selection. Previously, although highly informative, harmonic features 4 and 7 proved 
insufficient to fully separate the two class groups ‘healthy’ and ‘ICL’, Figure 6.12. 
Whereas Figure 6.13 displays a particularly successful discrimination between the 
same two classes using harmonic features 4 and 6 and is offered here to visually 
demonstrate the principle for the two dimensional two group case.  

Ideally a discriminant function would be developed for separation of all classes. 
However, since this would necessarily be as high a dimension as 12, suggested by 
the envelope feature clustering in the dendrograms it is not possible to offer a visual 
representation in this format. 

All cases are clearly grouped by categorical class using only features 4 and 6, Figure 
6.14, with the ICL cases once again almost entirely separate. However, further 
information is required to achieve complete class isolation. Addition of features to 
represent each of the cluster groups identified through the CA plus all the 
‘independent’ set supplies greater explanatory power to the discriminant function. 
Achievement measured through classification success rate is akin to the goodness of 
fit improvements in multivariate regression analysis [37, 42, 73 and 91]. Additional 
measures of overall fit of the discriminant function are available. Most commonly 
stipulated values being Wilkes Lambda or D2 which measure the degree to which the 
group means differ in multivariate analysis of variance (MANOVA). Additionally the 
partial F-values indicate which variables have the greatest impact on a model. A higher 
partial F-value implying a variable has greater impact on the discriminant function [37]. 
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Figure 6.12 Discriminant analysis Using Features 4 and 7 To Separate the Healthy and Inter-Cooler Leak Classes. 

 

Figure 6.13 Successful Discrimination between the Healthy and ICL using Features 4 and 6. 
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Figure 6.14 Scatter Plot of All Five Classes using Features 4 and 6 Alone. 
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6.4 Naïve Bayes Classification  
 

 

This section explores the potential of the NB technique to correctly classify cases firstly 
considering the two class instance then all five classification groups. 

Consider a NB classification system using just two input parameters from the second 
stage vibration signal. A simple classification rule was established using harmonic 
features 4 and 6 alone, although not highly successful it illustrates the NB technique. 
The classification tree, Figure 6.15, provides a useful visual method of classifying any 
further sample using measurements on features 4 and 6. 

For example a case with a feature 4 amplitude of 0.8 and a feature 6 amplitude of 2.2, 
i.e. f4 =0.8 and f6 = 2.2, would be allocated to the healthy group after passing through 
six decision nodes, detailed in Table 6.3. Allocation paths are easily identified on the 
tree plot Figure 6.15. 

 

 

 

TABLE 6.3 CLASSIFICATION STEPS USING MEASUREMENTS ON FEATURES 4 AND 6 

Step 1  f4 < 0.985049  True (move left) 

Step 2  f6 < 1.17358   False (move right) 

Step 3  f6 < 2.32193   True (move left) 

Step4  f4 < 0.717411  False (move right) 

Step 5  f6 < 1.47048   False (move right) 

Step 6  f4 < 0.834252  True (move left) 

Decision:     Allocated to the Healthy group.  
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Figure 6.15 Naïve Bayes Classification Tree Using Two Input Parameters (Features 4 and 6). 

 

 

Overall classification rates using just two input parameters even when restricted to the 
two group case were relatively poor with approximately 60% success rates. 

However, for the two group case 100% success rate was achieved using five input 
parameters. Envelope features [2, 7, 9, 12 and 17], from the second stage vibration 
signal were 100% successful in separating the two classes ‘healthy’ and ‘ICL’. 

Consideration of all five classes required a much larger set of input parameters to 
achieve reasonable classification success rates. Classification success rates were 
calculated for a number of models constructed using the features indicated through 
the cluster analysis,  

Table 6.4. Exploratory classification analyses were performed using incremental 
feature sets based on the cluster analysis groupings. Initially the group one harmonic, 
4, and a group three representative, 6, were added as the previously demonstrated 
effective two parameter model. Further parameters were iteratively included to 
represent each group. However, whilst inclusion of harmonic 9 from the outsider group 
resulted in a 16% improvement in the overall classification rate on the original two 
parameter model, addition of certain parameters was found to reduce the overall 
success rates. Closer inspection showed that these parameters may be of 
considerable benefit in identifying a particular fault but to the detriment of other group 
classifications. The highest classification rate achieved was 82% using both the 10 
parameter model [3, 4, 6, 7, 8, 9, 10, 11, 14 and 15] and the 12 parameter model 
[adding 13 and 14]. Further inspection of the scatter plot, Figure 6.14, and the cross 
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classification bar chart, Figure 6.16, reveal the ICL group to be almost entirely 
separate with a single DVL case embedded in the ‘wrong’ cluster. Classification 
confusion between the overlapping groups of healthy, DVL and LB is similarly obvious. 
As expected overlapping groups with very similar measurements on the parameters 
used are far more difficult to distinguish between. Individual parameters have greater 
capacity to detect specific deviations and a balance of capabilities is required for the 
best overall modelling success. For example inclusion of harmonic 14 appears to 
increase the models ability to correctly classify SVL faults although a greater number 
of incorrect assignments to SVL are also observed in its presence. 

Perfect 100% classification rate is indicated if the classification matrix equates to 24I 
(I being the 5 by 5 identity matrix). Specific model comparisons are given in Table 6.4 
and Table 6.6. Input parameter set [3, 4, 6, 9 and 11] gave 81% overall classification 
rate. Adding 14 to the input parameter set [3, 4, 6, 9, 11 and 14] gave 78% 
classification rate, an overall reduction in correct allocations with only one misallocated 
SVL but fewer correct allocations to all other groups except DVL. Further evidence 
input parameter capabilities are complex and their effects interconnected. 

Overall success rates increased across all five classes once the full ten feature model 
was established as seen Figure 6.16 in and Table 6.5. Ironically inclusion of all 32 
envelope harmonics as input parameters resulted in an overall reduction in 
classification rate across all five classes. Table 6.6 gives a direct comparison per class 
to the 10 parameter model. 

 

 

 

TABLE 6.4 EFFECT ON CLASSIFICATION RATES OF INCLUSION OF HARMONIC 14 

Class Input parameter set [3, 4, 6, 9 and 11] 
(81%) 

Input parameter set [3, 4, 6, 9, 11 and 14] 
(78%) 

Healthy 
DVL 
ICL 
LB 
SVL 

17     3     0     4     0 
1     23     0     0     0 
1      2     20    0     1 
4      2     0    16     2 
1      1     0     1     21 
 

16     3     0     5     0 
1    23     0     0     0 
1     3    18     0     2 
6     2     0    13     3 
1     0     0     0    23 
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TABLE 6.5: CLASSIFICATION RATES FOR ALL 5 CLASSES USING THE SECOND STAGE VIBRATION ENVELOPE HARMONICS. 

Number of 
model 
parameters. 

Harmonics Miss 
classification 
rate 

Classification 
success 

2 [4, 6] 48/120 60% 

3 [4, 6, 9] 29/120 76% 

4 [3, 4, 6, 9] 22/120 82% 

5 [3, 4, 6, 9, 11] 23/120 81% 

6 [3, 4, 6, 9, 11, 14] 27/120 78% 

10 [3, 4, 6, 7, 8, 9, 10 11, 14, 15] 22/120 82% 

12 [3, 4, 6, 7, 8, 9, 10 11, 13, 14, 15, 16] 22/120 82% 

14 [2, 3, 4, 6, 7, 8, 9, 10 11, 13, 14, 15, 16] 22/120 82% 

15 [2, 3, 4, 6, 7, 8, 9, 10 11, 12 13, 14, 15, 16] 24/120 80% 

32  30/120 75% 

 

 

TABLE 6.6 COMPARISON OF CLASSIFICATION BY CLASS 

Class 10 parameter model classification matrix 32 parameter model classification matrix 
Healthy 
DVL 
ICL 
LB 
SVL 

17     4     0     3     0 
 0    24     0     0     0 
 0     3    19     0     2 
 5     1     0    17     1 
 1     2     0     0    21 

16     4     0     4     0 
 1    23     0     0     0 
 0     2    20     1     1 
 6     6     0    12     0 
 1     4     0     0    19 

 

 

TABLE 6.7 CLASSIFICATION SUCCESS RATES PER NUMBER OF GROUPS AND PER MODEL 
Model type and input parameters utilised. 2 groups (Healthy 

and ICL) 
5 groups 

DA using 2 input parameters [4, 6] 100%  

NB using 2 input parameter [4, 6] 94% 53% 

NB using 5 input parameters [2, 7, 9, 12, 17] 100% 64% 

NB using 15 input parameters  

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] 

n/a 80% 
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Figure 6.16 Second Stage Vibration, NB 10 Parameter Model With 82% Successful Classification Across All 5 Groups. 

 
Figure 6.17 Second Stage Vibration, NB 32 Parameter Model With 75% Successful Classification Across All 5 Groups. 
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6.5 Summary 
 

 

Inspection of Fourier profiles allows a visual appreciation of the potential for class 
separation. Class profiles which are most distinct being more readily identifiable. 
Fourier profiling using Andrews’ plots gave a clear indication which classes would be 
most easily separable and which might be more problematic. 

Clustering variables by proximity measures such as Euclidean distance gives insight 
into variable properties and similarities. Like variables being allocated to 
homogeneous groups. Variable clustering using different output signal harmonic 
amplitudes highlighted both cluster distances and cluster patterns were signal 
dependent. 

Within cluster variables were demonstrated to have almost identical explanatory 
powers with superior parameter sets being selected across the range of 
heterogeneous clusters. Notably scatter plots constructed with the sixth harmonic 
amplitudes and either 16th or 17th harmonics were practically identical. Nevertheless, 
replacing harmonic 7 with harmonic 6 alongside harmonic 4 delivered superior results.  

Classification success varies extensively depending on the number of groups 
considered and the number of parameters incorporated in the model. A two-
dimensional DA gave perfect classification in the two group case (healthy and ICL) as 
did a five parameter NB model. However, considering all five classes simultaneously 
requires far greater model complexity and was not achieved using DA although a 10 
parameter NB model accomplished 82% success rate, Table 6.7. 

Again model complexity hence computational efforts are significantly reduced by prior 
evaluation of variables. Enabling selection of a reduced number of heterogeneous 
input parameters to ensure maximum explanatory power across all classes. The NB 
classification tree established using two input parameters provides a useful visual 
method for future sample classifications. Classification success rates were calculated 
for a number of NB models using the features indicated through the cluster analysis. 
The highest classification rate achieved across all five classes was 82% using various 
input parameter sets. Although on one occasion requiring 15 input features, it should 
be noted that 15 parameters exceeds the maximum number permitted for many 
algorithms. However, since the full 32 parameter model realised reduced overall 
classification rates it would seem prudent to focus on parameter set quality rather than 
improved means of manipulating large numbers of variables. 

  



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 142  

Chapter 7  

Multivariate Classifiers Using Variable Reduction 

Methods 

 

 

 

 

This chapter investigates the efficiency of multivariate classifiers established through 
the variable reduction methods of principal component analysis (PCA), factor analysis 
(FA) and support vector machines (SVM). 

Previously input parameters have been selected through variable clustering 
techniques prior to model building i.e. a reduced number of heterogeneous variables 
were selected upon which to establish classifiers. 

This next section focusses on classifiers constructed through variable reduction 
techniques. Firstly using PCA, whereby all variables, the 32 envelope harmonics, are 
input and a number of PCs are established based on these original variables. 
Secondly through construction of SVMs.  

The purpose being to compare and contrast efficiency of the two methods of variable 
selection prior to establishing a classifier, as discussed in Chapter 6, and variable 
reduction techniques, Chapter 7. 
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7.1 Principal Component Analysis of Envelope Harmonics 
 

 

The focus of the analysis in this section was to seek underlying principal components 
(PCs) to define the variation in the system which could then be used as input variables 
in construction of classifiers to identify machine health. As emphasised in Chapter 3, 
ideally a smaller number of PCs will account for the vast majority of the total variance. 
Hence a reduced number of highly representative new variables are established each 
of which incorporates elements of all the original variables. 

Envelope harmonics 1 to 32 for the second stage vibration signal were stored for each 
of the 120 observations across the 5 classes. PCA was performed on the subsequent 
covariance matrix. Whilst all 32 PCs were retained relatively few were expected to 
contribute towards construction of the diagnostic model. Decisions as to how many of 
the constructed PCs to include being application dependent in part. For example it 
may be felt that a model must account for a minimum percentage of the variation hence 
the number of PCs is chosen to reflect this. Alternatively there may be limits placed on 
model dimensionality. Often a diagrammatic representation of the PC variance is used 
to assist decisions. Using a scree plot of the eigenvalues the gradient change is 
generally considered as the cut-off point. A reasonable assumption as the gradient 
change represents a more abrupt reduction in the eigenvalue size. Since only the first 
three PCs had eigenvalues greater than one, hence contribute substantially towards 
the total variation in the system, a two and three PC model were investigated in this 
analysis. Any PC with an eigenvalue greater than one is considered to contribute ‘more 
than its’ share’ towards explaining the variance in the system. With λ1 = 12.3416 the 
majority of the variance, almost 60%, was incorporated in PC1 with an additional 14% 
from the second PC and approximately 8% from the third, results are summarised in 
Table 7.1.  

Thus the first two PCs accounted for approximately 73% of the total variation in 
measurements. Clearly when all the cases are plotted against these first two PCs the 
SVL group, Figure 7.1, is seen to be entirely separate from all other classes having 
the lowest scores on both the 1st and 2nd principal components. For further information 
PC scores by class are summarised in Table 7.3. 

Identifying the SVL fault is particularly straightforward the first two PCs forming a 
sufficiently sophisticated model for successful classification. Even using just two PCs 
all other cases are reasonably well grouped by class and with the addition of a third 
PC, which increases the cumulative sum of the model to 81%, classification rates 
improve further still. The fourth PC has a variance very close to one and could 
reasonably be incorporated to further improve model accuracy. However, the 
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remaining PCs all have variances less than one and so offer increasingly negligible 
contributions in deterministic terms thus further classification improvements are not 
realistic using PCA. The cumulative sums for the first 14 principal components are 
reported in Table 7.2. Whilst 81% of the total variation in the system is accounted for 
by the first three PCs alone the first ten PCs are required to achieve 95%. 

 

 

TABLE 7.1 SUMMARY OF EIGENVALUES AND PC VARIANCE FOR THE FIRST THREE PCS. 

Variance (PC1) λ1= 12.3416 
Variance (PC2) λ2= 2.9228 
Variance (PC3) λ3= 1.7662 
Total variance (PC1+PC2+PC3) λ1+ λ2+ λ3= 17.0321 
Total variance in system Σλi = 21.201 
Cumulative sum of variance 17.0321/ 21.201=0.8103 

 

 

TABLE 7.2 CUMULATIVE SUMS FOR THE FIRST 14 PRINCIPAL COMPONENTS 

(1) 
0.5872 

(2) 
0.7262 

(3) 
0.8103 

(4) 
0.8556 

(5) 
0.8824 

(6) 
0.9037 

(7) 
0.9198 

(8) 
0.9328 

(9) 
0.9449 

(10) 
0.9545 

(11) 
0.9616 

(12) 
0.9673 

(13) 
0.9713 

(14) 
0.9750  

 

 
TABLE 7.3 CLASS SCORES ON THE FIRST TWO PRINCIPAL COMPONENTS. 

Class Range of scores on principal 
component 1 

Range of scores on principal 
component 2 

Healthy [-4.351, -1.326] [0.262, 0.576] 

SVL [-5.980, -4.576] [-1.595, -0.280] 

DVL [-2.926, 1.291] [0.225, 0.818] 

LB [2.304, 6.850] [0.394, 2.379] 

ICL [1.301, 4.677] [0.445, 2.033] 
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Figure 7.1 Fault Clustering Using the First Two Principal Components. 

 
Figure 7.2 Fault Clustering Using the First Three Principal Components Accounting for 81% of the Total Variation.  
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7.2 Confirmatory Factor Analysis 
 

Since there appear to be underlying generic health conditions governed by collective 
groups of harmonic features a confirmatory factor analysis was conducted. 

Inspection of the factor loadings on the first two factors shows high factor 1 loadings 
for harmonic features 6 and 7 thus these two harmonics are highly correlated as might 
be expected, also both have negligible factor 2 loadings. On the other hand harmonic 
feature 4 has a high factor 2 loading with much lower factor 1 loading so is less 
correlated with features 6 and 7 but more highly correlated with features 3 and 5. 

The specific variance of harmonic 6 is 0.0632 which is close to zero so implies the 
variable is almost entirely determined by its common factors, in fact 93% of the 
variance of harmonic 6 is accounted for by factor one hence its superior deterministic 
power. 70% of the variance of harmonic 7 is explained by factor one. In comparison 
harmonic 9 has a specific variance of 0.9710 almost 100% which implies there is 
practically no common factor component in the variable. Indeed harmonic 9 possesses 
just 2% common variance in factor one and considerably less in factor two. 

 

 

TABLE 7.4 FACTOR LOADINGS AND SPECIFIC VARIANCE FOR KEY HARMONICS. 

Factor 
loadings 

Envelope harmonic 
2 3 4 5 6 7 9 12 13 14 

Factor 1 
 

0.6679 0.1804     0.3615 0.1735     0.9659 0.8343 0.1459 0.2905 -0.1865 -0.1239 

Factor 2 
 

0.6448 0.7963  0.7810 0.8083 -0.0622 0.3980 -0.0877 0.7282 0.8267 0.7816 

Specific 
variance 

0.1381 0.3333 0.2593 0.3166 0.0632 0.1455 0.9710 0.3854 0.2817 0.3738 

T2=     0.7707    0.6372 
    -0.6372    0.7707 
Log likelihood= -24.6256 with 433 degrees of freedom and highly significant association  
Chi-square = 2.6144e+003, p: 1.2702e-307. 

 

 

Hotelling’s multivariate T2 test is highly significant, summary details Table 7.4, thus 
rejecting the null hypothesis of equal means. Concluding there are significant 
differences in the mean envelope harmonic factor loadings.  
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7.3 Support Vector Machine Classification 
 

An established machine learning technique, SVM uses data partitioning to first train 
the algorithm then classify the remaining test data set. Samples are randomly 
allocated to one data set only. Again the method highlights the benefit of careful input 
parameter selection. 

Cases were randomly assigned to either the training or test data set, data was equally 
partitioned between the two. The classifier structure established first incorporated a 
linear kernel function using the second stage vibration envelope harmonics 4 and 7. 
The two group instance ‘healthy’ and ‘faulty’ was initially considered, Figure 7.3. Note 
for computational purposes data belong to one of two binary groups 0 or 1, healthy 
and not healthy respectively i.e. the ‘healthy’ class were represented by 0 and the 
‘faulty’ class by 1. Whilst 77% of cases were correctly classified it is clear a very high 
proportion of samples were incorporated in the model which is likely to be over 
specified. Including a hard-margin condition in the analysis, Figure  7.4, proved equally 
high in sample use but with classification rate reduced to 68% no improvement. 
Interestingly repeat analysis using harmonic features 4 and 6 had little impact on the 
classification rates although the classifier format was clearly altered. Combining all 
faults into one group clouding interpretation and whilst the classification success might 
be enhanced through the use of quadratic or radial based kernel functions the primary 
focus of this thesis is the impact of the input parameters on model supremacy. 

Further analysis was conducted with the data groups classified by ‘SVL’ and ‘all others’ 
since it had previously been shown sensible to assume the groups were roughly 
linearly separable hence inclusion of the second model embedding a hard margin 
hyperplane is justified. Using harmonics 4 and 7 gave improved and identical 
classification rates for both models of 88.33%, however, the number of samples 
employed in the model specification was still extremely high with 35 and 41 samples 
respectively. Repeat analysis using harmonics 4 and 6 gave further improved and 
again identical classification rates of 93.33% in addition both showed a dramatic 
reduction in the number of support vector samples required to specify the classifier, 
Figure 7.5, Figure 7.6, just three in the case of the hard-margin hyperplane. 
Classification success of 98% was realised in the three parameter model utilising 
harmonics 4, 6 and 7. 
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7.4 Summary 
 

Variable reduction techniques utilise all variables creating a new set each a weighted 
sum of the originals. General guidance on the number of PCs to retain is application 
specific to an extent although usually at most two to three are preferable. 

For the RC, the first two PCs accounted for approximately 73% of variation in the 
system and were sufficient to identify and classify the SVL. 81% classification success 
was achieved across all 5 classes when the first 3 PCs were retained. Directly 
comparable to the previous NB models for all 5 classes. 

Confirmatory FA revealed underlying harmonic characteristics suggested in CA and 
subsequent modelling successes. Both harmonics 6 and 7 had very high loadings on 
factor 1 with negligible loadings on factor 2 confirming the high correlation between 
them. Harmonic 4 having the opposite loading pattern being uncorrelated with both 6 
and 7 i.e. harmonic 4 is heterogeneous to harmonics 6 and 7 and hence explains 
different system variation. Heterogeneous harmonics are vital as efficient input 
parameter pairings. With negligible specific variance (0.06) 93% of harmonic 6 is 
accounted for by factor 1 hence its superior deterministic properties.  Similarly with a 
specific variance of 0.97, harmonic 9 contributes only 2% towards the common 
variance hence its poor explanatory power. 

SVM offer an alternative variable reduction method. High classification success rates 
were achieved in the studied two group cases. Unsurprisingly the greater the 
explanatory power of the individual input parameter the greater the classification 
success rate. This also resulted in fewer SVs required for specification therefore 
reduced computational efforts in the classification rules. 98% classification success 
rate was achieved for the two group case using just three input harmonic variables. 
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Figure 7.3 SVM Classification Linear Kernel Function (‘Healthy’ and ‘Not healthy’) Using Harmonics 4 and 7. 

 
Figure 7.4 SVM Including Hard-Margin, Using Harmonics 4 and 7 (‘Healthy’ and ‘Not Healthy’). 
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Figure 7.5 SVM Linear Kernel Using Harmonics 4 and 6 (SVL Identified). 

 
Figure 7.6 SVM Including Hard-Margin Using Harmonics 4 and 6 (SVL Identified)  
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Chapter 8  

A Combined Approach to Variable Reduction 

Incorporating Signal Compression 

 

 

 

 

During this chapter elements analysed in the preceding chapters are contemplated as 
the basis for further work beyond the remit of this thesis. The concepts studied 
separately in chapters 6 and 7 are jointly considered in a proposed combined variable 
reduction technique. 

The benefits of inputting reduced numbers of variables into models in a controlled 
manner along with variable reduction techniques have separately been explored in the 
preceding chapters of this thesis. Should it be possible not only to effectively combine 
these two techniques but also to trim or de-noise the data signals or envelope 
harmonics using data compression a much reduced input parameter volume might be 
achievable. Thus reducing computational efforts whilst maintaining model efficiency 
and avoiding classifier bias. 
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Possible extensions to approaches are investigated in this chapter. Selection of a 
reduced number of input parameters being utilised in conjunction with variable 
reduction techniques. These conjoined methods are considered along with prior data 
compression. Data compression is a wavelet technique which can be ‘lossy’ or 
‘lossless’ [48 and 77] terms which refer to the statistical information contained in the 
signal. Should data compression be accomplished which has negligible effect on the 
explanatory power of an input variable then its contribution to input volume reduction 
is clearly valuable.  

 

 

 

8.1 Combined Variable Reduction Technique 
 

Comparative PCA analyses were conducted using the reduced sets of input 
parameters suggested through CA. Ten envelope harmonics [3, 4, 6, 7, 8, 9, 10, 11, 
14 and 15] were incorporated in a PCA model with visibly improved classifications. 
Although the first eigenvalue was not nearly so dominant as the model using the entire 
set of envelope harmonics, the variance accounted for by the first 3 PCs was increased 
to 81.45% and only the first 6 PCs were required to account for over 95%. Figure 8.1 
shows each class is visibly separated with the SVL, DVL and healthy groups being 
particularly tightly clustered. 

Including all 15 dominant envelope harmonics from the CA (the ten parameter set plus 
2, 5, 12, 13 and 16) PCA gave slightly improved results both visually and cumulative 
percentage wise. PCs one to three accounting for 82.23% of the system variance but 
the first 7 PCs were required to exceed 95%. 

Controlled selection of the most pertinent input parameters along with variable 
reduction techniques appears to be a realistic proposition. The computational savings 
along with improved classification accuracy being evident albeit not overly dramatic. 
However, further analysis incorporating CA selections into algorithms with restricted 
input capabilities would be expected to result in desirable outcomes. Exploratory 
analysis proposed for future work. 

In the next two sections, 8.2 and 8.3, data compression is investigated as a further 
means of reducing input parameter volume. 
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Figure 8.1 PCA Using Reduced Number of 10 Input Parameters Indicated by CA 

 

 

 

8.2 Multiscale PCA  
 

The aim of multiscale PCA is to reconstruct a simplified multivariate signal, starting 
from an original multivariate signal and using a simple representation at each of a 
specified number of resolution levels. Multiscale principal components analysis 
generalises the PCA of a multivariate signal represented as a matrix by simultaneously 
performing a PCA on the matrices of details of different levels. A PCA is performed on 
the coarser approximation coefficients matrix in the wavelet domain as well as on the 
final reconstructed matrix. By selecting the numbers of retained principal components, 
interesting simplified signals can be reconstructed.  
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repetitions of each of 5 operating classes) by envelope spectra harmonics. A 
multiscale PCA at level 5 using Matlab ‘sym4’was executed with PCs retained 
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mean eigenvalue value. Signal compression results are shown for harmonics 4, 6, 7 
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and 9 for both the initial signal simplification and improvements on reducing the 
number of retained PCs, Figure 8.2 and Figure 8.3. 

From a compression perspective the results are good. The percentages reflecting the 
quality of column reconstructions given by the relative mean square errors are close 
to 100%.  

The cumulative percentage variation for the first seven PCs is very good from a 
compression perspective all values being close to the maximum 100% i.e.  97.2383   
98.3299   87.5594   93.8073   87.0964   92.6310 and 97.2287. 

Initially 7 components were retained according to Kaiser’s rule >λ λ  the vector of 
components retained, npc, being npc = [1, 1, 1, 1, 1, 2, 2]. Results illustrated in Figure 
8.2. However, these initial results are improved by retaining fewer principal 
components, removing the first three PCs which are primarily composed of noise with 
small contributions to the signal is an effective albeit rather crude de-noising process, 
Figure 8.3. 

The npc vector, the number of retained principal components selected by Kaiser’s rule 
is updated to [0 0 0 2 2 1 3]  

As expected, the rule keeps two principal components, both for the PCA 
approximations and the final PCA, but one principal component is kept for details at 
each level. 

Demonstrated in Figure 8.3, results are visibly greatly improved with the noisy original 
signal being smoothed and simplified on reconstruction. 
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Figure 8.2 First Stage Multiscale PCA Results 

 
Figure 8.3 Improved Multiscale PCA Signal Comparisons. 
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8.3 Data Compression 
 

Initial investigation into the potential benefits of signal compression methods was 
focussed on a small sample of harmonics. Previous analysis has shown that up to 32 
envelope harmonics may be incorporated into the model building process in one form 
or another thus if signal compression is a realistic a priori de-noising technique huge 
cumulative volume savings can reasonably be expected overall.  

Analysing the 4th envelope harmonic signal a comparison of the original signal, Figure 
8.5, and the compressed signal, Figure 8.6, visibly highlights the capabilities of 
compression. Clearly the salient features of the original signal are preserved but minor 
fluctuations are smoothed and simplified. Should the smoothed compressed signal 
preserve the explanatory power of the original then the potential for great volume 
reduction in input parameters especially for large data sets is vast.  

Compression appears to have an impact on the signal distribution with the 
compressed 4th harmonic signal being more positively skewed than the original, Figure 
8.4. One-way analysis of variance (ANOVA) is significant at 97%, however, the 
correlation between the original and compressed signal being 0.8003 the goodness of 
fit statistic R2=64% is much lower. 

 

 

TABLE 8.1 ONE-WAY ANOVA 4TH HARMONIC. 

Source SS df MS F Prob.>F 
Columns 0.001 1 0.00058 0 0.9732 
Error 121.687 238 0.51129   
Total 121.688 239    

 
TABLE 8.2 ONE-WAY ANOVA 6TH HARMONIC. 

Source SS df MS F Prob.>F 
Columns 0 1 0.00035 0 0.985 
Error 238.24 238 1.00101   
Total 238.24 239    
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Figure 8.4 Distributional Comparison of 1. 4th Harmonic Amplitudes and 2. Compressed 4th Harmonic Amplitudes. 
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Figure 8.5 Original Signal Envelope Harmonic 4. 

 
Figure 8.6 Compressed Signal Envelope Harmonic 4.  
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Analysis of the summary statistics for the 6th harmonic and its compressed signal show 
the mean values to be almost identical, 2.2023 and 2.2047 respectively. With a 
correlation coefficient of 0.8493 between them hence a goodness of fit statistic 
R2=72%. A high proportion of information was removed which was clearly due to the 
local fluctuations. The key question is how relevant are these local fluctuations to the 
explanation of variation in fault amplitudes. A one-way ANOVA is significant at 98.5% 
as shown in Table 8.2, confirming the null hypothesis of equal group means for the 
original 6th harmonic and its compressed signal.  

Distribution wise again the signals are not alike with the compressed signal of 
harmonic 6 showing near perfect normal distribution whilst the original signal is 
positively skewed and has a far upper outlier, Figure 8.7. 

Thus signal compression does not appear to have a uniform effect on the signal 
distribution, Figure 8.8. 

However, a scatter plot of the cases by class as shown in Figure 8.9, using the 
compressed signals shows a marked improvement from the original model with most 
classes clearly depicted in near linear tracks.  

Outstandingly a NB classification model for all classes, using compressed 4th and 6th 
harmonics alone, realised an 83.3% classification success which far exceeds the prior 
rates. Previously comparable rates requiring 10 plus input parameters. Refer to Table 
6.5, Section 6.4 for a summary of NB models using uncompressed envelope 
harmonics. Recall also the 2 parameter NB using the original signal harmonics 4 and 
6 resulted in just 60% successful classification. 

The 3-D classification plot is illustrated in Figure 8.10. The classification matrix, below, 
gives specific numerical details of group allocations. The healthy group, row 1, having 
the greater number of cases allocated to other groups with 3 to the DVL and 5 to the 
LB groups. All DVL cases were correctly allocated. False positive allocations of healthy 
to fault states are inconvenient although less critical than false negative classifications.  

 

 

H 16   3 0 5 0 
DVL 0 24 0 0 0 
ICL 0 1 22 0 1 
LB 3 2 0 17 2 
SVL 1 1 0 1 21 
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False negative errors, or type I errors, give a measure of the significance level, α. 
Sensitivity of a test being defined as (1- α) i.e. the proportion of faults correctly 
identified as faults. Specificity or power of a test being the proportion of healthy cases 
correctly identified as healthy. Sensitivity and specificity are complementary measures 
intrinsic to the test not dependent on fault prevalence. A balance between the two is 
sought to maximise information gain. Affording equal weight to the true positive and 
false positives rates optimises test information and leads to a convenient measure of 
worth, the information gained. Table 8.3 displays the test summary information from 
which the information gain is calculated to be 0.484, by definition an informed decision, 
Equation 8.1.  

Note equivalence to zero implies chance-level performance and <0 perverse use of 
information. 

 

Information gain  = specificity + sensitivity -1  

= 0.913 + 0.571 -1 = 0.484 > 0   (8.1) 

 

 

TABLE 8.3 CALCULATION OF TEST SENSITIVITY AND SPECIFICITY 

 Predicted Condition 
Healthy Faulty  

True Condition Healthy TP = 16 
 

FP = 8 
Type 11 Error (β) 
 

Faulty FN = 12 
Type 1 Error (α) 
 

TN = 84 

 Sensitivity (power) 

1 − 𝛽𝛽 =
16
28

= 0.571 

Specificity 

1 − 𝛼𝛼 =
84
92

= 0.913 

 

 

Successful classification of the DVL class was indeed expected, on inspection of the 
Fourier profiles of faults Figure 8.11, its profile being entirely separate in the first 
phase. The Andrews plot,  Figure 8.8, based on the compressed 4th and 6th signals 
alone in fact shows great promise with respect to separable classes with a clearly 
defined sinusoidal pattern. Over the range 0<t<0.5 the DVL is distinct with the LB and 
Healthy signals very well grouped. The second phase, 0.5<t<1.0 shows clear ICL 
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separation with promising indication for SVL which is only slightly overlapped with the 
LB.  

Compression would appear to have trimmed output signals reducing profile overlap, a 
feature further illuminated in the scatter plot Figure 8.9, thus isolating salient class 
characteristic trends.  
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Figure 8.7 Distributional Comparison of 1. 6th Harmonic Amplitudes and 2. Compressed 6th Harmonic Amplitudes. 

 
Figure 8.8 Comparison of Distributions of Compressed Signals 1. 4th Harmonic 2. 6th harmonic. 
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Figure 8.9 Scatter Plot by Class Using Compressed Signals. 

 
Figure 8.10 NB Classification for all 5 Classes using Two Compressed Harmonics (4 and 6). 
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 Figure 8.11 Andrews Plot using Compressed 4th and 6th Harmonics Only.  

 

A natural progression would be to extend the single signal compression to a universal 
compression of all the stored harmonics prior to analysis of input parameters i.e. a 
multi-signal compression and wavelet analysis. 

Analysis was extended by production of a three dimensional surface representation of 
the two dimensional Andrews plot. Thus a more detailed visual inspection of behaviour 
within and between faults was possible, Figure 8.12. Clearly the signals are locally 
irregular and noisy but nevertheless five different general shapes can be distinguished 
relating to the class profiles. 

Surface representation of the original data using both de-noising and compression, 
Figure 8.13, retains the five class groups distinction thus highlighting the periodicity of 
the multi signal, however, the reconstruction is not as complete as desired and the 
residuals retain much of the original variations. Greater sophistication is required in 
the wavelet decomposition to gain further insight. Another area which shows promise 
for further investigations. 
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Figure 8.12 Surface Plot of Original Envelope Harmonics. 

 
Figure 8.13 Wavelet Decomposition of Fault Profiles. 
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8.4 Summary 
 

With both variable reduction and pre-selection of input parameters being beneficial in 
classifier construction a combined analysis was anticipated to give still greater 
classification success. Indeed improved group clustering was evident in both the ten 
and fifteen input parameter PCA models along with higher proportions of the system 
variance being explained by fewer PCs. 

Compression of input parameters was shown to preserve mean values whilst 
smoothing localised fluctuations. Classifiers constructed using the compressed 
signals gave much improved successful classification rates using far fewer input 
parameters. It would thus seem the information loss on compression was not pertinent 
to fault detection and identification. The compressed two parameter NB model having 
a classification rate of 83% across all five classes compared to 60% for the non-
compressed model. Visually displayed through Fourier profiling and scatter plots which 
would appear to demonstrate unequivocally the signals are trimmed to the benefit of 
fault determination. 
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Chapter 9  

Review of Thesis Achievements 

 

 

 

 

This chapter gives a summary of the work undertaken throughout the PhD and its 
worth. Contributions to knowledge are detailed and evidenced as are the research 
novelties. Thesis achievements are reviewed and critically appraised against the initial 
objectives. Achievements are consolidated and form the basis for suggested extended 
analysis.  
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9.1 Review of Thesis Objectives 
 

 

9.1.1 Time Domain 
 

Measurements captured via sensors attached at strategic points of the process were 
converted to MATLAB read inputs, translated into physical quantities and 
subsequently analysed. Each signal output was shown to demonstrate the same cyclic 
pattern of approximately seven cycles per second. Points on cyclic traces relating 
directly to stage of compression process. 

Signal synchronisation was readily identified whilst the compressor rig operated in a 
healthy state through relating physical characteristics of each signal relative to the 
revolution index pulse. Visual displays of signal outputs describing all aspects of the 
physical process. 

Trends and interrelationships between measured variables during normal running of 
the system and with faulty components introduced were analysed. Subsequently 
condition specific patterns were identified for model building purposes. Thus enabling 
identification of fault characteristic patterns through signal inspection during process 
operation. 

The ultimate aim being to characterise and so enable identification of fault onset in a 
timely fashion. Signal analysis in the time domain across all fault classes showed 
plausible separation potential. 

Whilst the second stage pressure signal readily highlighted ICL characteristics it was 
less useful in simultaneously determining other compressor rig defects. 

Underlying distribution patterns for each fault were compared with respect to symmetry 
and skew via multiple boxplots and once again exposed the ICL as significantly 
different to all other conditions. All distributions were skewed to varying degrees and 
plots of amplitude arithmetic mean against kurtosis provided a crude classification rule 
utilising the first stage pressure measurements. Extreme deviations from the norm are 
most readily recognised, however, detection and accurate diagnosis of performance 
flaws at early onset reaps far greater benefit. Hence further scrutiny was necessary. 

Specific details of the experimentation and analysis in the time domain are reported in 
section 4.6 ‘Physical Attributes of Output Signal Data and Measurements’; 4.7 
‘Waveform Features’ and 5.1 ‘Fault Classification Using Statistical Modelling in the 
Time Domain’. 
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9.1.2 Frequency Domain 
 

FT spectra for all captured signals operating under each machine state, healthy and 
the four seeded faults, were computed. Subsequently the FFT, FT spectrum 
amplitudes, were calculated and their profiles analysed. Demodulated signals were 
considered to 32 harmonics and demonstrated to display individual characteristics.  

Spectrum plots, regardless of process health or variable inspected, clearly indicated 
the fundamental frequency to occur at 7.3 Hz. A direct consequence of the shaft 
rotation speed per second. Also subsequent spectral peaks occurred at integer 
multiples of this fundamental frequency. Defining characteristics due to type of fault 
present were indicated by the harmonic amplitudes. Thus harmonic amplitudes offer 
the key to machine condition and so enable a fingerprinting database to be 
established. 

Envelope spectrum plots of the second stage vibration signal for all five classes 
simultaneously clearly display unique condition characteristics. Hence credible rules 
for discriminating between healthy and faulty systems can be established and 
individual faults identified. Envelope spectra harmonics were demonstrated to possess 
superior deterministic power over their time domain equivalents hence were favoured 
for subsequent analysis. 

Summary of analysis and findings from section 5.2 ‘Signal Analysis in the Frequency 
Domain’. 

 

 

9.1.3 Variable Selection 
 

Through Fourier profiling using Andrews plots, differences in fault characteristics are 
highlighted hence suitability for class separation is clearly illustrated. 

Whilst the pressure signal envelope harmonics form particularly uniform 
homogeneous groupings their use is not pursued for modelling purposes due to the 
invasive nature of signal collection. Hence, due to ease of continual monitoring and 
uninterrupted signal collection along with its outstanding ability to describe the process 
condition, the second stage vibration output signal was utilised for classifier 
construction. 

Agglomerative CA and the subsequent visual illustration via dendrograms illuminated 
variable proximities and highlighted group formation. Both within and between group 
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proximities are readily identifiable hence homogeneous groupings ascertained with 
ease. 

Once clustered heterogeneous variables were selected to represent each group and 
demonstrated, through simple scatter plots, to allocate cases to distinct groupings in 
two and three dimensional space. Thus highlighting the potential discriminatory 
powers of reduced sets of input parameters. 

Full details of the variable selection process are contained in sections 6.1 
‘Identification of Separable Classes’ and 6.2 ‘Variable Clustering’. 

 

 

9.1.4 Cluster Construction 
 

It should be noted that Euclidean distance is variable dependent hence the difference 
in dendrogram threashold scales. Further the same harmonics are not grouped 
together for each of the variables considered despite their having been generated 
simultaneously. However, for whichever signal considered, variable clustering was 
employed, using Euclidean distance as a proximity measure, to sift harmonics 
according to spectrum amplitudes. Resultant groupings of like harmonics were then 
readily displayed in dendrograms with colour threashold labelling added for easy 
cluster associations.  

 

Using harmonic features identified through CA multivariate classifiers were 
established to discriminate amongst the classes. Two class models being highly 
successful and giving 100% classification accuracy using just two input parameters. 
Discriminatory power decreased as the number of classes increased necessitating 
greater numbers of input parameters to better describe variation among cases. 

Similar trends were disclosed utilising Naïve Bayes although NB was better able to 
accommodate the increased complexity of simultaneously differentiating between up 
to five different classes.  

Utilising all original variables a reduced weighted parameter set was constructed using 
PCA. The variation in the entire system was hence explored incorporating just a subset 
of the new weighted variables.  

 

PCA models utilising the first two and first three PCs gave classification success 
results which were directly comparable to the NB models across all five classes. 
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Likewise SVM gave high classification success rates in the two group cases. Not 
surprisingly, incorporating input parameters previously found to possess high 
explanatory powers resulted in greater successful allocations with fewer SVs being 
required for specification. 

Confirmatory FA added further evidence to the belief that not all input parameters are 
equally capable of discerning fault characteristics. Highly successful input parameters 
displaying very high factor loadings on factors one or two with minimal loadings on the 
other. Highly correlated, homogeneous, harmonics having high loadings on the same 
factor with optimal harmonic pairings, heterogeneous harmonics, having high loadings 
on opposite factors. 

Further details and graphical outputs in sections 7.1 ’Principal Component Analysis of 
Envelope Harmonics’, 7.2 ‘Confirmatory Factor Analysis’ and 7.3 ‘Support Vector 
Machine Classification’. 

 

 

9.1.5 Extended Analysis 
 

Data compression was incorporated as a means to further reduce input parameter 
volume hence lessen computational requirements. 

Compressing envelope harmonics 4 and 6 appeared to retain information relevant to 
classification success. The localised irregular fluctuations being eliminated the input 
parameter volume was considerably diminished yet marked improvements were 
obvious with clear case grouping when viewed as scatter plots. Indeed the two 
parameter NB using compressed harmonics 4 and 6 achieved a classification success 
rate of 83.3% greatly improving on the prior rate of 60%. 

A PCA using a reduced set of input parameters gave some visible improvements in 
classification success.  Whilst the first eigenvalue wasn’t nearly so dominant, hence 
the first PC didn’t account for as large a proportion of the variance, overall the variance 
accountability was increased. Additionally only 6 PCs were required to explain over 
95% of the process variability compared to 10 PCs in the non-restricted model. 
Additional modelling added weight to the benefits of pre selecting input parameters 
both with and without data reduction techniques. 

Chapter 8 contains an expansion of these findings and further preliminary 
investigations considering total compression for all input variables alongside potential 
developments with MSPCA. 
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9.2 Contributions to Knowledge 
 

 

9.2.1 Development of a methodology to identify feasibility of class separation a priori 
through application of Fourier profiles in the form of Andrews plots. Separable 
classes being visibly identifiable. Reciprocating compressor fault Fourier 
profiles exposed the likelihood of distinguishing between different fault types. 
Evidenced in section 6.1 where fault profiles were compiled using the 
envelope spectra from second stage vibration, pressure and motor current 
spectra. 
 

9.2.2 Potential input parameters were demonstrated to form homogeneous cluster 
groupings, within group harmonics seen to demonstrate comparable 
properties. Assimilation of envelope spectra harmonic features into 
homogeneous cluster groups enabled selection of heterogeneous 
representatives as a sparse input parameter set. Restricting models to fewer 
highly informative variables enables algorithmic execution and convergence 
within manageable computational expenditures. Reducing input parameter 
volume benefits algorithmic convergence. Model efficiency was maintained as 
only duplicitous variables are eliminated. Reduced complexity of input 
parameter set results in reduced computational efforts keeping both time and 
costs at a minimum. Highly laudable classifiers were fabricated. Refer to 
section 6.2 for details of application to RC envelope harmonics. 
 

9.2.3 Confirmatory factor analysis was utilised to reveal underlying harmonic 
characteristics suggested through variable cluster analysis. A pair of 
heterogeneous parameters each with high specificity established an 
extremely effective SVM classification rule for RC faults. Confirmatory factor 
analysis also revealed high correlations between harmonic pairs through like 
extreme loadings on factors 1 or 2. Successful heterogeneous pairings were 
demonstrated to be uncorrelated each with a high specific score on opposing 
factors. SVM were seen to give much increased classification success rates 
for the two input parameter case when heterogeneous harmonics with high 
specificity were utilised. Further details in Chapter 7 section 7.1.1. 

 
9.2.4 Compression of signal data resulted in further input parameter volume 

reduction with vastly improved classification success rates. Repeated 
modelling using compressed signals proffered greatly improved precision in 
all cases. Accuracy in classification of RC faults improving dramatically. In 
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particular a two parameter NB attained 83% successful classifications across 
five classes compared to the 60% success for the non-compressed model. 
Further information in section 8.2.  
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9.3 Conclusions 
 

The purpose of this thesis was to compare and contrast statistical methods for optimal 
selection of model input parameters. Comparing and contrasting findings for each 
subsequent model with respect to classification accuracy.  

Over the past fifty years as computational power and processing capabilities have 
vastly increased the exponential growth in data collection has been accommodated 
with relative ease. However, as demand for ever greater precision and more 
immediate feedback continues to grow alongside increasing structural complexity the 
burden on computational time is telling. A new approach to data validation wherein 
data is pre-sorted and filtered to eliminate superfluous elements has been 
demonstrated and shown to be effective.  

 

 

9.3.1 Initial Exploratory Analysis Findings 
 

Each measured signal taken directly from the compressor rig displayed the same 
cyclic output regardless of point of collection or variable type. Thus first and second 
stage pressures and vibration measurements had a common seven cycle per second 
profile. Inter-relationships between these outputs were seen to be clearly defined and 
directly attributable to collection point in the compression cycle. Distinctive pattern 
changes were observable in the presence of faults. Moreover, groups of pattern 
changes were fault specific thus fault blueprints could be established hence the 
suitability of this method for CM purposes. 

Time domain analysis was found to give rudimentary explanation of pattern differences 
albeit generally isolating a smaller number of faults. However, scrutiny failed to form 
clear rules of separation for all faults simultaneously. 

Consideration of signals in the frequency domain highlighted the unique signal 
characteristics with the frequency spectra clearly showing the fundamental frequency 
of the rig and higher harmonics at its integer multiples. However, whilst the positioning 
of the fundamental frequency was the same for all classes, position and magnitude of 
higher order amplitudes varied. This formed the basis of reliably distinguishing 
between fault types. Being non-intrusively collected and robust in mechanical 
applications, if external interference be controlled, the second stage vibration signals 
were deemed the most informative source for continual monitoring purposes.  
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Moreover, harmonics extracted from the envelope spectra of vibration signals in the 
frequency domain were seen to have still more superior deterministic properties over 
their time domain equivalents. Amplitudes of the harmonics being specific to process 
condition with an altered amplitude size or displaced amplitude implying presence of 
a fault. Envelope spectra showing only the amplitude profile of original signals 
provided a clearer insight into the underlying behaviour of a process having 
extraneous noise removed. 

Envelope spectra taken from the second stage vibration signals revealed the potential 
for detecting and identifying faults. High classification success rates were achieved 
using RVM to identify both single and compound faults. Algorithmic capabilities with 
respect to numbers of input parameters being the limiting factor. Model convergence 
was achievable for reduced numbers of parameters only.  

Subsequent investigations revealed strong associations between specific fault 
characteristics and particular envelope harmonics. Incorporating GA to aid input 
selection was seen to further improve classification success rates. However, the 
underlying input parameter structure was then unknown as physical characteristics 
were not preserved. Hence this preliminary study fuelled the motivation for further 
exploratory investigations into both the individual merits of each envelope spectra 
harmonic and parameter selection criteria.  

Most algorithms have the capability to process only a limited number of input variables. 
Computational time saving is of course a priority and established variable reduction 
methodologies offer input parameter simplifications. However, pre selection of input 
variables is not yet recognised practice. Reduction in complexity, if any, being 
achieved by within model manipulation of original input variables without clear data 
properties being identified or preserved. Greater explanatory power is achievable 
whilst keeping input volume to a minimum if prior inspection of available parameter 
properties informs pre modelling variable selection. 

 

 

9.3.2 Class Profiling and Variable Selection 
 

Group profiling through the use of Andrews Fourier plots indicated the potential for 
class separation thus gave a measure of the likely classification success of any 
subsequently developed classifier. Class Fourier profiles can be examined for all 
suitable output variables to assess potential for separation. Hence realistic 
expectations and tolerance setting is feasible.  
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Investigation of variable interdependencies though data clustering techniques 
provides a robust method for exploratory variable analysis. Deepening understanding 
of variable properties facilitates reduction in the number employed in establishing 
classifiers. A major advantage in condition monitoring being that optimum feature sets 
are reliably selected prior to incorporation in model algorithms. Reducing run time and 
ensuring convergence whilst maintaining explanatory power. Simultaneously 
algorithm sensitivity is maximised thus increasing opportunities for intervention and 
health prognosis. 

Model efficiency was optimised through clustering potential input parameters with 
respect to similarities leading to enhanced understanding of variable characteristics 
so defining an optimal set of variables for compressor fault classification.  

CA revealed underlying variable characteristics highlighting connections and 
dissimilarities. Homogeneous groups of variables were easily identifiable and a 
heterogeneous set selected for modelling purposes. Variable reduction techniques 
and machine learning methodologies such as RVM and SVM do not preserve original 
variable features hence the models cannot be directly related to the physical aspects 
of the application. Whilst data mining techniques support high computational efficiency 
the impact of controlled experimental measures is unattainable and not validated in 
the field. 

Classifiers constructed using a simplified input parameter set pertinent to point of 
interest was demonstrated to benefit both accuracy and computational savings. Highly 
successful classifiers being developed using both discriminant analysis and naïve 
Bayes methods. A method generalisable to all mechanical process monitoring 
applications.  

For the two group case, both DA and NB models achieved 100% classification success 
with two and five input parameters respectively. Across all five fault classes a ten 
parameter NB model was seen to be highly efficient demonstrating the efficacy of input 
parameter selection from heterogeneous groups. 

Variable reduction techniques provided an alternative approach wherein all the original 
variables were reconstructed as a smaller number of new variables. Again 
computational savings were made due to reduced input volume and resulting 
classification success rates were high although the original variable characteristics are 
not preserved.  
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9.3.3 Classifier Construction 
 

Classification success was shown to vary extensively depending on the number of 
fault groups considered and the number of parameters incorporated in the model.  

Again model complexity hence computational efforts were significantly reduced by 
prior evaluation and selection of a reduced number of heterogeneous input parameters 
to ensure maximum explanatory power across all classes.  

Naïve Bayes was shown to lend itself to classification of increased numbers of groups 
and input parameters. 

Reductions in successful classification rates on inclusion of all 32 envelope harmonics 
compared to restricted input parameter sets determined by CA is indicative of the 
necessity for combined techniques.  

 

 

9.3.4 Extended Analysis 
 

Compression of input parameters was demonstrated to preserve mean values whilst 
smoothing localised fluctuations. Classifiers constructed using the compressed 
signals gave much improved successful classification rates using far fewer input 
parameters. Any information loss not being pertinent to fault detection and 
identification. The compressed two parameter NB model having a classification rate 
of 83% across all five classes compared to 60% for the non-compressed model. 
However, greater precision and process control is achievable if compression 
thresholds be theoretically determined. Han et al. (2016) propose an automated 
empirical formula based on auto-regressive moving average models with ‘Swing Door 
Trending’ which they claim provides a dynamic self-regulatory feature. Certainly pre-
defining expectations through threashold specification promises greater controls over 
potential information loss. 
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9.4 Novelties 
 

 

9.4.1 Application of Fourier profiles in the form of Andrews plots to determine a priori 
feasibility of class separation applied to reciprocating compressor faults. Plot 
of Fourier profiles of output signal envelope spectra against time revealed 
class separation potential. Should Fourier based fault profiles not display 
separation at least in part then attempts to distinguish between the classes 
using FFT harmonics is futile [Section 6.1]. 

 
9.4.2 Focus on pre-evaluation of potential input parameters by clustering variables 

offers a novel approach to reducing algorithmic volumes. Excess bulk 
eliminated pre computation hence duplicity in variability accounted for per 
input parameter avoided. Organisation of envelope harmonics into 
homogeneous groupings both informs model construction and offers greater 
understanding of individual parameter associations and complexities. Key to 
maximising explanatory power. Sifting potential input variables prior to 
incorporating in computational algorithms affords real advantages in 
controlled classifier construction [Section 6.2]. 

 
9.4.3 Heterogeneous input parameters which complement one another were pre-

selected with the priority of optimising explanatory power of classifiers. This 
informed choice ensuring complete coverage of all eventualities studied whilst 
reducing computational requirements. Properties and characteristics of input 
parameters were preserved unlike standard executions of SVM and RVM. 
Thus meaningful interpretation of outcomes is facilitated. RC faults can be 
identified and associated with original input parameters. Visual output in form 
of the dendrogram gives a clear visual mapping showing proximities and 
interconnections between variables [Section 6.2]. Surges in computational 
capabilities have facilitated massive increases in data processing potential 
although ever increasing data volumes foil progress. Research in this thesis 
reveals the underlying characteristics of the input variables and offers a viable 
solution to the big data problem [Chapters 6, 7 and 8].  

 
9.4.4 Harmonic characteristics were further explored and validated through 

confirmatory factor analysis. Resultant identification of high energy input 
parameter pairings a major boost to modelling efficiency and reduced model 
complexity. Individual parameter worth assessed by specificity thus identifying 
unique attributes of individual variables [Section 7.1.1].  
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9.4.5 Compressed signal harmonics offered still greater input parameter volume 
reduction. Repeated modelling using compressed signals proffered greatly 
improved precision in all cases. Whilst local fluctuations were removed on 
compression signal means were preserved [Section 8.2].  
 

9.4.6 Generalisation to wide range of on-line monitoring systems. Classical 
statistical and machine learning techniques are merged to mutual benefit 
with input variables pre-selected, compressed and input into both 
multivariate statistical and wavelet models with increased fault classification 
capabilities [Chapter 8]. 
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A2 MATLAB Code 
A2.1 MATLAB Code for Cluster Analysis   
 
Using the classification matrix, X: [observations-by-variables]organised by 
class e.g. the first 24 measurements on the healthy system given by s(1).Aeh 
(‘Aeh’the amplitude of the envelope harmonics) and so on for each class of 
fault. 
                             
   X=[s(1).Aeh'; s(2).Aeh'; s(3).Aeh'; s(4).Aeh'; s(5).Aeh']; 
    
% cluster analysis. 1/10/14 
% data is now arranged in a matrix X (obs by features)  (120 by 32)  
d = pdist(X');  % the pairwise Euclidean distance(default measure) between 
each of the obs. 
% 1 by 496 = 32*31/2=m(m-1)/2 
% Z = linkage(d);  % an (m-1) by  
% c = cluster(Z,'maxclust',3:5); 
% construct a dendrogram for clustering of variables (features) 
%re order matrix into 32-by-120 (amplitudes for each load by harmonic 
features) 
 z = linkage(d); 
 c = cluster(z,'maxclust',6); 
 crosstab(c); 
[H,T]=dendrogram(z, 'COLORTHRESHOLD',3.1); %Colour threashold is set to 3.1 
title ('Dendrogram: Feature clustering based on Euclidean Distance Between 
Pairwise Observations'); 
xlabel('Harmonic'); 
ylabel('Distance'); 
 

A2.2 MATLAB Code for Discriminant Analysis  
DISCRIMINANT ANALYSIS-CLASSIFICATION (12Nov14) 
% 32 COLUMNS OF 120 MEASUREMENTS [MATRIX X] 
% select two variables for 2-d plot 
% e.g. X(:,4) for harmonic 4 etc 
% GROUP = label 
% DISCRIMINANT ANALYSIS-CLASSIFICATION  
  
%Define the variables within the matrix X 
%each being 24 by 32 sub matrix 
%X=[s(1).Aeh'; s(2).Aeh'; s(3).Aeh'; s(4).Aeh'; s(5).Aeh']; 
H= s(1).Aeh'; 
DVL= s(2).Aeh'; 
ICL= s(3).Aeh'; 
LB=s(4).Aeh'; 
SVL=s(5).Aeh'; 
  
figure(16),clf 



Characterisation of Condition Monitoring Information for Diagnosis and Prognosis Using Advanced Statistical Models 

 195  

X2Gp=[s(1).Aeh'; s(3).Aeh']; %just the healthy and ICL data 
Gps2={Group{:,1} Group{:,3}}'; 
%group = 2Groups %label   
%label={Group{:,1} Group{:,2} Group{:,3} Group{:,4} Group{:,5}}'; 
%eg for healthy and SVL use 2Groups={Group{:,1} Group{:,5}}'  
 
Plot the two groups (H and ICL) data using harmonics 4 and 6 

 
h1 = gscatter(X2Gp(:,4),X2Gp(:,6),Gps2,'rb','v^',[],'off'); 
set(h1,'LineWidth',2) 
title ('Scatter Plot of Healthy and ICL'); 
xlabel('Feature 4 '); 
ylabel('Feature 6'); 
legend('Healthy','ICL',... 
       'Location','NW') 
 
%to classify the groups: 
N = size(X,1);  %120 (24 measurements on each of 5 classes) 
  
%Linear discriminant analysis using harmonics 4 and 6 
ldaClass = classify([X(:,4) X(:,6)],[X(:,4) X(:,6)],label5); 
 
bad = ~strcmp(ldaClass,label5); 
ldaResubErr = sum(bad) / N; 
[ldaResubCM,grpOrder] = confusionmat(label5,ldaClass) 
hold on; 
plot(X(bad,1), X(bad,2), 'kx'); 
hold off; 
[x,y] = meshgrid(4:.1:8,2:.1:4.5); 
x = x(:); 
y = y(:); 
j = classify([x y],[X(:,4) X(:,6)],label5); 
gscatter(x,y,j,'grb','sod') 
qdaClass = classify([X(:,4) X(:,6)],[X(:,4) X(:,6)],label5,'quadratic'); 
bad = ~strcmp(qdaClass,label5); 
qdaResubErr = sum(bad) / N 
s = RandStream('mt19937ar','seed',0); 
RandStream.setDefaultStream(s); 
cp = cvpartition(label5,'k',10) 
ldaClassFun= @(xtrain,ytrain,xtest)(classify(xtest,xtrain,ytrain)); 
ldaCVErr  = crossval('mcr',[X(:,4) X(:,6)],label5,'predfun', ...    
ldaCVErr  = crossval('mcr',[X(:,4) X(:,6)],label5,'predfun', ...   %'label' 
in nb code change my label to label 5 
             ldaClassFun,'partition',cp) 
         qdaClassFun = 
@(xtrain,ytrain,xtest)(classify(xtest,xtrain,ytrain,... 
              'quadratic')); 
qdaCVErr = crossval('mcr',[X(:,4) X(:,6)],label5,'predfun',... 
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           qdaClassFun,'partition',cp) 
 

 
[X,Y] = meshgrid(linspace(0,5),linspace(0,5)); 
X = X(:); Y = Y(:); 
[C,err,P,logp,coeff] = classify([X Y],[X2Gp(:,4) X2Gp(:,6)],...     
                               Gps2 ,'quadratic'); 
  
%To Visualize the classification: 
hold on; 
gscatter(X,Y,C,'rb','.',1,'off'); 
K = coeff(1,2).const; 
L = coeff(1,2).linear;  
Q = coeff(1,2).quadratic; 
% Plot the curve K + [x,y]*L + [x,y]*Q*[x,y]' = 0: 
f = @(x,y) K + L(1)*x + L(2)*y + Q(1,1)*x.^2 + ... 
    (Q(1,2)+Q(2,1))*x.*y + Q(2,2)*y.^2 
h2 = ezplot(f,[0 5 0 4]); 
set(h2,'Color','m','LineWidth',2) 
axis([0 5 0 5]) 
xlabel('Feature 4') 
ylabel('Feature 6') 
title('{\bf Classification with Healthy and ICL Training Data}') 
 

A2.3 MATLAB Code for Naïve Bayes Classification  
%Naive Bayes Classification investigations 30th Jan 2015 
%Initial investigations assuming a multivariate normal 
%distribution 
 
N = size(X,1);  %120 (24 measurements on each of 5 classes) 
  
%Linear discriminant analysis using harmonics 4 and 6 
ldaClass = classify([X(:,4) X(:,6)],[X(:,4) X(:,6)],label5); 
%Classification using naive Bayes with assumption variables are multivariate 
%normal dist (mnd) 
bad = ~strcmp(ldaClass,label5); 
ldaResubErr = sum(bad) / N; 
[ldaResubCM,grpOrder] = confusionmat(label5,ldaClass) 
hold on; 
plot(X(bad,1), X(bad,2), 'kx'); 
hold off; 
[x,y] = meshgrid(4:.1:8,2:.1:4.5); 
x = x(:); 
y = y(:); 
j = classify([x y],[X(:,4) X(:,6)],label5); 
gscatter(x,y,j,'grb','sod') 
qdaClass = classify([X(:,4) X(:,6)],[X(:,4) X(:,6)],label5,'quadratic'); 
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bad = ~strcmp(qdaClass,label5); 
qdaResubErr = sum(bad) / N 
s = RandStream('mt19937ar','seed',0); 
RandStream.setDefaultStream(s); 
cp = cvpartition(label5,'k',10) 
ldaClassFun= @(xtrain,ytrain,xtest)(classify(xtest,xtrain,ytrain)); 
ldaCVErr  = crossval('mcr',[X(:,4) X(:,6)],label5,'predfun', ...   %'label' 
in nb code change my label to label 5 
             ldaClassFun,'partition',cp) 
         qdaClassFun = 
@(xtrain,ytrain,xtest)(classify(xtest,xtrain,ytrain,... 
              'quadratic')); 
qdaCVErr = crossval('mcr',[X(:,4) X(:,6)],label5,'predfun',... 
           qdaClassFun,'partition',cp) 
  
  
nbGau= NaiveBayes.fit([X(:,4) X(:,6)], label5); 
nbGauClass= nbGau.predict([X(:,4) X(:,6)]); 
bad = ~strcmp(nbGauClass,label5); 
nbGauResubErr = sum(bad) / N    %N=120 declared above 
nbGauClassFun = @(xtrain,ytrain,xtest)... 
               (predict(NaiveBayes.fit(xtrain,ytrain), xtest)); 
nbGauCVErr  = crossval('mcr',[X(:,4) X(:,6)],label5,... 
              'predfun', nbGauClassFun,'partition',cp) 
           
 %Alternative approach (not assuming mnd) using non-parametric kernel density 
estimation          
           
nbKD= NaiveBayes.fit([X(:,4) X(:,6)], label5,'dist','kernel'); 
nbKDClass= nbKD.predict([X(:,4) X(:,6)]); 
bad = ~strcmp(nbKDClass,label5); 
nbKDResubErr = sum(bad) / N 
nbKDClassFun = @(xtrain,ytrain,xtest)... 
            (predict(NaiveBayes.fit(xtrain,ytrain,'dist','kernel'),xtest)); 
nbKDCVErr = crossval('mcr',[X(:,4) X(:,6)],label5,... 
            'predfun', nbKDClassFun,'partition',cp)           
         
% Note: kernel error identical to Gaussian 0.0417 
  
%Decision Trees offer useful visual and direct classification of further 
%data 
  
t = classregtree([X(:,4) X(:,6)], label5,'names',{'f4' 'f6' }); 
[grpname,node] = t.eval([x y]); 
gscatter(x,y,grpname,'grb','sod') 
view(t); 
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%Compute the resubstitution error and the cross-validation error for decision 
tree. 
dtclass = t.eval([X(:,4) X(:,6)]); 
bad = ~strcmp(dtclass,label5); 
dtResubErr = sum(bad) / N 
  
dtClassFun = 
@(xtrain,ytrain,xtest)(eval(classregtree(xtrain,ytrain),xtest)); 
dtCVErr  = crossval('mcr',[X(:,4) X(:,6)],label5, ... 
          'predfun', dtClassFun,'partition',cp) 
  
         
%% Naive Bayes classification matrix (confusion matrix) and visual output as 
3-d bar chart.      
%myfNo=[1:32]; 
myfNo= [2 3 4 6 7 8 9 10 11 14 15]%input parameter set 
%[2 3 4 5 6 7 8 9 10 11 12 13 14 15 16];% %[4 6]%[2 7 9 12 17]%      
O1 = NaiveBayes.fit(X(:,myfNo),label5); 
C1 = O1.predict(X(:,myfNo)); 
cMat1 = confusionmat(label5,C1) % 
figure(5),clf       
bar3(cMat1/24*100)       
set(gca,'xticklabel',CaseStr)    
set(gca,'yticklabel',CaseStr)   
zlabel('Classfication Rate(%)') 
 

A2.4 MATLAB Code for PCA 
 
figure(1),clf 
     plot3(pk',sigma',kur','*') 
xlabel('Peak'),ylabel('rms'),zlabel('kurtosis'); 
grid on 
legend(CaseStr) 
title('Plot of variables by case'); 
  
% organise pca data matrix 
  
pk=pk';sigma=sigma';kur=kur'; skew=skew'; 
pcadata=[pk(:) sigma(:) kur(:) skew(:)]; 
  
  
[pc,score,latent,tsquare] = princomp(pcadata); 
  
cumsum(latent)./sum(latent) 
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xmarker={'ob','^m','dr','pk','*g','*c','*m','*r'}; 
figure(2),clf 
hold on 
for icase=1:numfaults 
 plot(score((icase-1)*numLoad+1:icase*numLoad,1),score((icase-
1)*numLoad+1:icase*numLoad,2),xmarker{icase}) 
end 
  
legend(CaseStr) 
Title('Principal Component Analysis based on standard deviation, kurtosis, 
peak value and skewness.'); 
  
xlabel('pc1'); 
ylabel('pc2'); 
  
figure  
pcclusters = clusterdata(score(:,1:2),2); 
gscatter(score(:,1),score(:,2),pcclusters) 
xlabel('First Principal Component'); 
ylabel('Second Principal Component'); 
title('Principal Component Scatter Plot with 2 Coloured Clusters'); 
  
%Biplot--axis rotation:  
biplot(pc(:,1:2),'Scores',score(:,1:2),'VarLabels',... 
 % {'X1' 'X2' 'X3' 'X4'}) 
  
 %Factor analysis: note pca matrix is pcadata=[pk, sigma, kur] 
 % maximum likelihood estimate, lambda, of the factor loadings matrix, in a 
 % common factor analysis model with m common factors. X is an n-by-d matrix 
where each row is an observation of d variables. 
lambda = factoran(pcadata,1)   
% gives one factor with loadings lambda =    0.4477    0.9975   -0.5152 
 

A2.5 MATLAB Code for SVM 
Classify data using support vector machine 17/08/15 
% Syntax 
% SVMStruct = svmtrain(X, Group) 
% Group = svmclassify(SVMStruct, X)  
% Group = svmclassify(SVMStruct, X, 'Showplot', ShowplotValue) 
%  
% Description 
% Group = svmclassify(SVMStruct, Sample) classifies each row of the data in 
% Sample using the information in a support vector machine classifier 
structure SVMStruct,  
%created using the svmtrain function. Sample must have the same number of 
columns as the data used to train  
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%the classifier in svmtrain. Group indicates the group to which each row of 
Sample has been assigned. 
% Group = svmclassify(SVMStruct, Sample, 'Showplot', ShowplotValue)  
%controls the plotting of the sample data in the figure created using the 
Showplot property with the svmtrain function.  
% Examples 
%  
%  
data=[X(:,4), X(:,7)];  %Using harmonics 4 and 7  
  
% From the label vector, [label5] create a new column vector, groups, to 
classify data into two groups:  
%Classify 'healthy' and 'faulty' 
groups = ismember(label5,'Healthy');  %'Group' here may need replacing with 
'CaseStr' ??? 
  
SVMStruct = svmtrain(X, groups) 
Group = svmclassify(SVMStruct, X)  
%Group = svmclassify(SVMStruct, X, 'Showplot', ShowplotValue) 
%?ShowplotValue ? 
  
% Randomly select training and test sets. 
 
[train, test] = crossvalind('holdOut',groups); 
cp = classperf(groups); 
%  
% Use the svmtrain function to train an SVM classifier using a linear kernel 
function and plot the grouped data. 
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); 
  
  
% Add a title to the plot, using the KernelFunction field from the svmStruct 
structure as the title. 
title(sprintf('Kernel Function: %s',... 
              func2str(svmStruct.KernelFunction)),... 
              'interpreter','none'); 
  
% Classify the test set using a support vector machine. 
 
classes = svmclassify(svmStruct,data(test,:),'showplot',true); 
  
% Evaluate the performance of the classifier. 
 
classperf(cp,classes,test); 
cp.CorrectRate  
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% Use a one-norm, hard margin support vector machine classifier by changing 
the boxconstraint property.  
figure 
svmStruct = svmtrain(data(train,:),groups(train),... 
                     'showplot',true,'boxconstraint',1e6); 
  
classes = svmclassify(svmStruct,data(test,:),'showplot',true); 
  
% Evaluate the performance of the classifier. 
 
classperf(cp,classes,test); 
cp.CorrectRate 
 

A2.6 MATLAB Code for MSPCA 
%Multiscale PCA.  
%first set the wavelet parameters 
level = 5; 
wname = 'sym4'; 
npc = 'kais';  %Use Kaiser's rule: retains PCs with eigenvalues > mean evalue 
  
[x_sim, qual, npc] = wmspca(X ,level, wname, npc);  % multiscale PCA: 
  
%Display the original and simplified signals: 
 figure(5),clf 
kp = 0; 
for i = 1:4 
    subplot(4,2,kp+1), plot(X (:,i)); axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2; 
end 
  
% Are results from a compression perspective good?  
%The percentages reflecting the quality of column reconstructions  
%given by the relative mean square errors are close to 100%. 
qual 
  
%The output argument npc is the number of retained principal components 
selected by Kaiser's rule: 
npc 
  
%To suppress the details at levels 1 to 3, update the npc argument as follows: 
% npc(1:3) = zeros(1,3); 
% npc 
% npc =      0     0     0     1     1     2     2 
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%Supress details at levels 1 to 3: 
npc = [0 0 0 2 2 1 3]; 
%npc 
  
%Repeat the multiscale PCA using reduced PC set: 
[x_sim, qual, npc] = wmspca(X, level, wname, npc); 
  
%Display the Original and Final Simplified Signals 
figure(6),clf 
kp = 0; 
for i = 1:4 
    subplot(4,2,kp+1), plot(X (:,i)); axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2; 
end 
  
% 16/2/16 The simplified signals are in matrix x.  
%The parameters of multiscale PCA are available in PCA_Params:  
%PCA_Params 
  
%1x7 struct array with fields: 
    pc 
    variances  
    npc 
  
%PCA_Params is a structure array of length d+2 (here, the maximum 
decomposition level d=5)  
%such that PCA_Params(d).pc is the matrix of principal components.  
%The columns are stored in descending order of the variances.  
%PCA_Params(d).variances is the principal component variances vector, and  
%PCA_Params(d).npc is the vector of selected numbers of retained principal 
components 
  
%Display original and simplified signals for harmonics 4 6 7 9 
%Display the original and simplified signals: 
figure(7),clf 
kp = 0; 
for i = [4, 6, 7, 9] 
    subplot(4,2,kp+1), plot(X (:,i)); axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2; 
end 
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%Supress details at levels 1 to 3: 
npc = [0 0 0 2 2 1 3]; 
%npc 
  
%Repeat the multiscale PCA using reduced PC set: 
[x_sim, qual, npc] = wmspca(X, level, wname, npc); 
  
%Display the Original and Final Simplified Signals 
figure(8),clf 
kp = 0; 
for i = [4, 6, 7, 9] 
    subplot(4,2,kp+1), plot(X (:,i)); axis tight; 
    title(['Original signal ',num2str(i)]) 
    subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight; 
    title(['Simplified signal ',num2str(i)]) 
    kp = kp + 2; 
end 
  
%% Andrews plot of simplified signal profiles by group, figure 12 
 figure(12), clf 
%subplot (2,1,1) 
andrewsplot((x_sim(:,i)),'group',label)%,co{icase})   
title ('Andrews Plot by case'); 
xlabel('t'); 
ylabel('f(t)'); 
  
%Andrews plot of original signal profiles by group, figure 13 
 figure(13), clf 
%subplot (2,1,1) 
andrewsplot((X (:,i)),'group',label)%,co{icase})   
title ('Andrews Plot by case'); 
xlabel('t'); 
ylabel('f(t)'); 
  
 harmonic=1:32; 
[Loadings1,specVar1,T,stats] = factoran(X,2); 
scatter(Loadings1(:,1),Loadings1(:,2), harmonic)% how to label data points 
1 to 32 
xlabel('Factor 1') 
ylabel('Factor 2') 
harmonic=1:32; 

 

A2.7 MATLAB Code for Andrews plots  
andrewsplot((X (:,i)),'group',label)%,co{icase})   
title ('Andrews Plot by case'); 
xlabel('t'); 
ylabel('f(t)'); 
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