
University of Huddersfield Repository

Bellur, Umesh, Patel, Pankesh, Chauhan, Saurabh and Qin, Yongrui

A Semantic-enabled Framework For Future Internet Of Things Applications

Original Citation

Bellur, Umesh, Patel, Pankesh, Chauhan, Saurabh and Qin, Yongrui (2017) A Semantic-enabled
Framework For Future Internet Of Things Applications. In: 2017 IEEE World Congress on Services
(SERVICES). IEEE, pp. 106-113. ISBN 97815386-20021

This version is available at http://eprints.hud.ac.uk/id/eprint/32453/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Semantic-enabled Framework for Future Internet
of Things Applications

(Invited Paper)

Umesh Bellur∗, Pankesh Patel†, Saurabh Chauhan‡, and Yongrui Qin§,
∗Indian Institute of Technology Bombay, India

umesh@cse.iitb.ac.in
†ABB Corporate Research, India

pankesh.patel@in.abb.com
‡Rklick Inc, India

chauhan.saurabh.b@gmail.com
§University of Huddersfield, UK
Yongrui.Qin@hud.ac.uk

Abstract—While the challenge of connecting Internet of Things
(IoT) devices at the lowest layer has been widely studied,
integrating and interoperating huge amounts of sensed data of
heterogeneous IoT devices is becoming increasingly important
because of the possibility of consuming such data in supporting
many potential novel IoT applications. A common approach to
processing and consuming IoT data is a centralized paradigm:
sensor data is sent over the network to a comparatively powerful
central server or a cloud service, where all processing takes
place. However, this approach has some limitations as it requires
devices to interact directly with a cloud which is not cost
effective. First, it has high demands on the device’s storage and
computational capabilities. Second, as devices grow rapidly in
a deployment area, sending all the data to a centralized cloud
server requires high network bandwidth. Moreover, this often
creates data privacy concerns as all raw data will be sent to a
centralized place.

To address the above limitations for building future Internet
of Things applications, we present an early design of a novel
framework that combines Internet of Things, Semantic Web, and
Big Data concepts. We not only present the core components to
build an IoT system, but also list existing alternatives with their
merits. This framework aims to incorporate open standards to
address the potential challenges in building future IoT applica-
tions. Therefore, our discussion revolves around open standards
to build the framework, rather than proprietary standards.

I. INTRODUCTION

The Internet of Things (IoT) connects everyday physical
objects and devices (such as washing machine, car, etc.) to the
Internet [1], [2]. These devices share data about their surround-
ings via sensors and may carry actuators so that they could be
remotely controlled by their users via smartphone applications.
The integration of the large amount of sensed data generated
by IoT devices is becoming increasingly important. This is in
part because of the many different ways in which this data
can be consumed through a number of novel scenarios (such
as smart metering, smart electric car recharge stations, retail
& logistics, and so on) that help people to achieve their goals
and organizations to improve their business processes [3].

However, the true potential of IoT applications is yet to
be realized and currently we see a major gap for building

applications that connect the physical and cyber worlds. It
requires a tremendous amount of manual efforts to inte-
grate heterogeneous information and develop cross-domain
IoT applications [4], [5]. The major requirements for fast
development of IoT applications are -
Heterogeneity. IoT applications operate over an infrastructure
consisting of a wide variety of heterogeneous devices, ranging
from powerful devices (such as server, smart phones, laptop,
raspberry pi1) to small devices (such as Arduino UNO2)
operated by micro-controllers [6]. The powerful devices host
common operating systems, implement common protocols and
frameworks and offer powerful multimodal communication
capabilities while small resource constrained devices exhibit
different characteristics such as lightweight operating system
(e.g., TinyOS3, Contiki4) and operate on weaker communica-
tion protocols (e.g., Bluetooth, ZigBee).

To address heterogeneity issues, a commonly accepted
technique is to design a common service-oriented framework/
middleware [7] and implement application logic using general-
purpose programming languages (such as C, JavaScript, Java,
and so on). This may be supplemented using rapid applica-
tion development tools such as NodeRED5 or Model-driven
Development (MDD) tools such as IoTSuite [8]6. While solu-
tions exist for tackling issues for the powerful devices, these
solutions cannot be directly applied for resource-constrained
small devices [9]. As a result, the integration of such resource
constrained devices into the IoT ecosystem remains difficult.
Interoperability. IoT devices are often not interoperable [10].
They follow different network protocols and exchange data
using proprietary data formats. The second problem is vertical
silos of IoT application development [11] - most of the
available IoT solutions are designed for a single problem

1https://www.raspberrypi.org/
2https://www.arduino.cc/en/main/arduinoBoardUno
3https://en.wikipedia.org/wiki/TinyOS
4http://www.contiki-os.org/
5https://nodered.org/
6https://github.com/pankeshlinux/IoTSuite

https://www.raspberrypi.org/
https://www.arduino.cc/en/main/arduinoBoardUno
https://en.wikipedia.org/wiki/TinyOS
http://www.contiki-os.org/
https://nodered.org/
https://github.com/pankeshlinux/IoTSuite

domain, resulting into vertical application development for
targeted applications and lacking interoperability, re-usability
and resource sharing among IoT applications [4].

To address the interoperability challenges, in recent years
there has been the use of semantic web technologies for
IoT devices [12]. Semantic Web [13] extends the Web with
machine interpretable representations, thus making data inte-
gration simple and establishing interoperability among differ-
ent IoT devices. The semantic Web concept uses semantic
technologies such as Resource Description Framework (RDF)
to annotate sensor data, and uses RDF schema (RDFS) and
ontologies that provide domain knowledge and vocabulary
for modeling and describing RDF data [14]. Applying such
semantic technologies can automate information retrieval and
decision making, thus facilitate the development of various
advanced and cross-domain applications. However, very few
IoT applications currently utilize semantic technologies.
Scalability. It is expected that billions of smart devices will be
generating data, much of which may need to be processed in
real-time. This poses unprecedented challenges in dealing with
huge amounts of streaming, uncertain, incomplete and redun-
dant data in IoT [15]. Therefore, scalability in data processing
and consumption will be of paramount importance to exploit
the full potential of IoT data that may come from millions of
data sources. To handle this scalability issue, challenges must
be addressed in many aspects and at different levels (e.g., data
cleaning, transforming, compression, stream processing, multi-
streams processing, scalable storage and indexing, reasoning,
and so on) [16].
Actionability. Actionable knowledge is expected to be gener-
ated from the results of scalable IoT data processing [17].
For example, instant reactions to emergencies or disasters
will rely on actionability of IoT systems. In such contexts,
actionability will require a real-time understanding about IoT
data, in terms of underlying knowledge and implications from
IoT data, which will be critical to plan real-world actions for
handling any emergencies or disasters.
Cloud-based IoT approaches. There has been a recent pro-
liferation of the use of cloud-based IoT approaches (such as
AWS IoT7, IBM Bluemix8, Azure IoT Suite9). A common
approach is to use a centralized paradigm: sensor data is sent
over the network to a powerful central server, where all the
processing takes place and appropriate decisions are taken to
control actuators (e.g., controlling temperature using a heater).
This approach delegates application development efforts and
reduces the maintenance costs. However, the centralized ap-
proach has the following limitations [18], [19]:

• The centralized cloud approach has been proven to work
well for scenarios where sensing devices have a reason-
able amount of processing power and reliable network
connections. However, it does not always hold in reality
when a system is deployed in an environment such as fire

7https://aws.amazon.com/iot/
8https://www.ibm.com/cloud-computing/bluemix/interet-of-things
9https://www.microsoft.com/en-in/internet-of-things/azure-iot-suite

monitoring or wildlife monitoring in forest. Moreover,
requiring all devices to interact directly with cloud service
is not cost effective solution because it requires resource
intensive processing and complex protocols.

• As devices grow in the system, the overhead required by
the centralized system can be very high. Sending all the
data to a centralized cloud server requires prohibitively
high network bandwidth. This is compounded by data
privacy concerns and regulatory frameworks that prohibit
the sensor data from crossing certain geographic bound-
aries.

It is critical to address the above requirements in building
future Internet of Things applications. To this end, we present
an early design of a novel semantic-enabled framework for
building future IoT applications. This framework incorporates
three layers: Physical Layer, Cloud Layer and Application
Layer. In each layer, we present the core components and
list existing alternatives with their merits. This framework
aims to incorporate open standards to realize the potentials
of future IoT applications and to avoid developing using
proprietary solutions. Therefore, our discussion centers around
open standards in each layer, rather than proprietary standards.
Outline. The remainder of this paper is organized as follows:
Section II describes a conceptual design of a framework.
We present relevant design issues and research questions to
implement such a framework in Section III and conclude in
Section IV.

II. ARCHITECTURE

We believe that a system that enables good decision making
and actions needs to be layered and towards that end we
present an architecture in Figure 1 that is divided into three
layers:

A. The Physical Layer

This layer consists of devices ranging from resource con-
strained devices to more powerful devices. These devices are
responsible for sensing, collecting sensed data, and communi-
cating data to the outside world. The sensed data is generally in
a raw format and does not provide any explicit information pri-
marily because there may not be enough processing capability
and background knowledge. However, in order to address data
interoperability problem, it is essential to annotate data before
being sent. The data annotation task can be delegated to more
powerful devices nearby that can be named as a gateway.
Data representation. A popular data representation format
in the semantic web, such as RDF, can be used as a data
exchange format for IoT devices. However, IoT systems may
involve small devices with a limited computing capability, and
memory and communication constraints, the semantic web
approaches often introduce challenges for the small devices
that may not be present in the common scenarios of Semantic
Web [20]. The work [20] emphasizes adding semantic web
technologies for IoT devices and evaluates a number of differ-
ent semantic representations for representing sensor measure-
ments and device parameters in terms of energy efficiency for

https://aws.amazon.com/iot/
https://www.ibm.com/cloud-computing/bluemix/interet-of-things
https://www.microsoft.com/en-in/internet-of-things/azure-iot-suite

data communication and processing. The authors evaluation
finds JSON for Linked Data10 (JSON-LD) and Entity Notation
(EN) [21] is a compact and lightweight representation of RDF.
Many non-RDF lightweight emerging standards are available
for representing sensor measurements and device parameters.
However, to enable intelligent functions such as reasoning and
querying over sensor data, RDFizer must be implemented at
the Gateway that can transform these non-RDF standards to
the standardized data format such as RDF.

RDFizer. This component transforms varying formats to the
standardized RDF format, enabling reasoning over sensor
data in a uniform way. The work [22] presents an approach
that transforms Sensor Markup Language (SenML)11 formats
to RDF. SenML is an industry-driven lightweight solution
for representing sensor measurements and device parameters
and it is being accepted by many vendors. SenML supports
compact formats such as JSON12 and Efficient XML Inter-
change (EXI)13 for resource constrained devices [23].

RDF storage and processing. Once the data is converted into
RDF standard, it needs to be stored for further processing.
There are two possible approaches to store and process RDF
data: the first approach is that RDF data can be transmitted
through standard protocols to the cloud-layer for further pro-
cessing, as proposed in work [12]; the second approach could
be storing and processing data locally on device. There are
many advantages of the latter approach [24] such as (i) scala-
bility can be achieved at the device-layer because it distributes
the computation among the large number of devices, (ii) the
data transmission cost from devices to the cloud layer can be
reduced because a device has to send only final results to the
cloud-layer, and (iii) the local processing of data contributes
to privacy as only processed data is sent rather than sending
raw data points. In general, the storage of RDF on resource-
constrained devices such as micro-controllers is not possible
due to the textual representation of RDF (such as plain-text
XML). Binary XML format is developed to overcome this
problem for the constrained devices. EXI format is a promising
compact and binary representation of the XML, proposed by
the W3C. RDF on the Go [24] one of the first approaches that
offers a full-fledged RDF storage for Android mobile device.
RDF data is stored in the B-Trees provided by the lightweight
version of Berkeley DB for mobile device. Apart from this
work, other efforts are microJena14 and MobileRDF15 that
store and query RDF data locally.

Reasoning. As a key enabling step for on-device processing,
it is essential to push reasoning (it is a way to acquire new
knowledge from RDF data) towards the edge of system, where
various gateway devices are deployed for data collection and
data aggregation. However, it is not clear whether existing

10http://json-ld.org/
11https://tools.ietf.org/html/draft-jennings-senml-10
12http://www.json.org/
13https://www.w3.org/TR/exi/
14http://poseidon.ws.dei.polimi.it/ca/?page id=59
15http://www.hedenus.de/rdf/

reasoning engines (e.g., Jena16, Pellet17, RacerPro18, Fact++19)
could be used for devices, and how they would perform in
resource-constrained devices [19]. The study in work [25]
shows that reasoning engines take several hundred of Kilo-
bytes of memory to reason each RDF triple. Thus, technically
while it is possible to port a reasoner on devices with some
code-level modifications, a reasoner can still consume vast
resources of gateway devices [19].

B. The Cloud Layer

This layer hosts powerful servers and receives data streams
from Physical layer through standard TCP/IP and provides
suggestions that can be used by application layer.

Data ingestion. It is an entry point of getting data into cloud
layer. It has two major roles: (1) scale to meet the demand
of data producers (e.g., IoT devices and gateways) and (2)
move data as fast as possible to the next component for further
processing. It collects sensor data in various formats (e.g.,
JSON, EXI). Typically, the data collection is accomplished
by querying sensors or receiving data streams from devices.
Regardless of protocols used by IoT devices to send data to the
data ingestion component, a few number of interaction patterns
exist such as request/response [13], publish/subscribe [26],
and stream [27]. To scale the ingestion service, frameworks
such as Apache Kafka20 and Amazon Kinesis21 use a load
balancer that can route a request from IoT devices to a
running instance of the ingestion service. After collection,
data are transported to other components through various
message queuing protocols (e.g., ActiveMQ22, RabbitMQ23,
and Apache Kafka) for further use.

Data preprocessing and enriching. Once data is ingested
into the system, it is expected that data from Physical layer
requires preprocessing before it becomes valuable for further
analysis. Hence, the preprocessing must be done before the
actual analytics takes place [28]. Secondly, data from Physical
layer lacks background information, thus enriching data with
background and additional domain-specific knowledge are
important tasks [29].

Storage. It receives data from ingestion service and stores it
for further use. Different types of storage architectures are
possible based on a purpose and data format. For instance,
RDF data from physical layer could be stored in triple
store24. Moreover, to facilitate semantic reasoning further, the
triple storage stores various ontologies, datasets, and rules.
In a second scenario, it may be possible that data could be
stored in traditional DBMS system such as RDBMS, HBase25,

16https://jena.apache.org/documentation/inference/
17https://www.w3.org/2001/sw/wiki/Pellet
18https://www.w3.org/2001/sw/wiki/RacerPro
19http://owl.man.ac.uk/factplusplus/
20https://kafka.apache.org/
21https://aws.amazon.com/kinesis/streams/
22http://activemq.apache.org/
23https://www.rabbitmq.com/
24https://www.w3.org/wiki/LargeTripleStores
25https://hbase.apache.org/

http://json-ld.org/
https://tools.ietf.org/html/draft-jennings-senml-10
http://www.json.org/
https://www.w3.org/TR/exi/
http://poseidon.ws.dei.polimi.it/ca/?page_id=59
http://www.hedenus.de/rdf/
https://jena.apache.org/documentation/inference/
https://www.w3.org/2001/sw/wiki/Pellet
https://www.w3.org/2001/sw/wiki/RacerPro
http://owl.man.ac.uk/factplusplus/
https://kafka.apache.org/
https://aws.amazon.com/kinesis/streams/
http://activemq.apache.org/
https://www.rabbitmq.com/
https://www.w3.org/wiki/LargeTripleStores
https://hbase.apache.org/

Semantic
 IoT data

Ontologies

DataSets

Storage

RulesIngestion Service

Rule-based
Reasoning Engine

SPARQL
Queries

A
pp

lication
 Interface

Query Engine

Inferred
KnowledgeData Pre-processing

& Enrichment

Streaming layer

Cloud Layer

Infrastructure
Service Cloud storage Cloud networking Virtual machine

DashBoards

Mobile
Applications

Application
Layer

IoT
Gateway

IoT Gateway

Smart homes

IoT device

IoT device

IoT
device

Physical Layer

Fig. 1. Semantic-enabled Architecture for the Internet of Things

Hadoop26, Cassandra27, and so on. In such DBMS systems,
data are at rest and when a user from application layer submits
a query, the system returns results.

Reasoner. It is about deriving new knowledge and facts that
do not exist in storage. A reasoning engine (i.e., reasoner)
uses pre-defined rules stored in storage to make conclusions.
Current reasoners can handle RDFS, OWL vocabularies, and
RDF data formats. Some of common reasoning engines are
Jena, Pellet, RacerPro, and Fact++. They use different rules
languages to specify rules. Some reasoner support some of the
popular rule languages such as SWRL28 and RIF29, whereas
some have implemented their own rule syntaxes. Sensor-based
Linked Open Rules (SLOR) [30], based on Jena rules syntax,
is used for sharing and reusing rules for IoT applications.

Query engine. It executes queries from user and provides
suggestions. The query engine can be implemented using
ARQ30, a SPARQL31 processor of Jena. It loads ontologies,
datasets stored in the storage, knowledge deduced from the
reasoning engine, and executes SPARQL queries in order to
provide suggestions.

Application interface. It interacts with users at application
layers as well as cloud layer. It lets users to query cloud layer
through APIs and presents data as results. The user queries
through APIs are transformed into a SPARQL query and this
query is submitted to query engine for results.

26http://hadoop.apache.org/
27http://cassandra.apache.org/
28https://www.w3.org/Submission/SWRL/
29https://www.w3.org/2001/sw/wiki/RIF
30https://jena.apache.org/documentation/query/
31https://www.w3.org/TR/rdf-sparql-query/

Infrastructure service. It provides required hardwares for
computation, storage and networking, which are essentials to
deploy and run above mentioned components. Amazon Web
Services (AWS)32 and Microsoft Azure33 are some of the
popular vendors that host cloud services.

C. The Application Layer
The Application layer offers support to build meaning-

ful IoT applications on top of cloud layer. The cloud-layer
exposes services through APIs. Application developers cre-
ate applications on top of these services. To develop IoT
applications, several approaches have been proposed in the
closely related fields of Sensor Network, Pervasive Computing,
Internet of Things, and Software Engineering in general. These
approaches are summarized in Table I.
General-purpose Programming Languages (GPLs). Devel-
opers create IoT applications using programming languages
(e.g., C, C++, JavaScript, Java) by targeting particular APIs
provided by the cloud layer. The key advantage of such ap-
proach is that it allows the development of extremely efficient
systems based on the complete control over code. However,
this approach may not be easy to use for those (such as domain
experts – doctors, civil engineers, etc.), who may have limited
programming expertise.
Macro-programming. To address the limitations of the GPL
approach, an alternative is macro-programming. It provides
abstractions to specify high-level collaborative behaviors while
hiding low-level details such as message passing or state
maintenance from developers. Developers use high-level pro-
gramming constructs (such as visual programming constructs

32https://aws.amazon.com/
33https://azure.microsoft.com

http://hadoop.apache.org/
http://cassandra.apache.org/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/2001/sw/wiki/RIF
https://jena.apache.org/documentation/query/
https://www.w3.org/TR/rdf-sparql-query/
https://aws.amazon.com/
https://azure.microsoft.com

that can be dragged and dropped) around APIs provided by
the cloud layer to develop various applications. However, one
of the limitations of this approach is that platform-dependent
design prevents its portability and re-usability across different
platforms.
Model-driven development (MDD). To address development
effort and platform-dependent design issues, MDD approach
has been proposed. It applies the basic separation of con-
cerns [31] principle both vertically and horizontally. Verti-
cal separation principle reduces the application development
complexity by separating the specification (Platform Inde-
pendent Model–PIM) of the system functionality from its
platform (Platform-Specific Model–PSM) such as program-
ming languages and run-time systems. Horizontal separation
principle reduces the development complexity by describing
a system using different system views, where each view
describes a certain facet of the system.

By following the MDD guidelines, many benefits can be
achieved. For instance, by separating different concerns of
a system at a certain level of abstractions and by providing
transformation engines to convert these abstractions to tar-
get platforms, platform-independent design can be achieved,
thereby improving productivity (e.g., re-usability, extensibility)
in the application development process.

III. OPEN QUESTIONS AND RESEARCH CHALLENGES

This section summarizes the important (open) research chal-
lenges and issues found in designing a platform for building
and deploying future Internet of Things applications. Like
any emerging area, these challenges and design issues are
not completely new, instead, they are evolved versions of
many challenges and questions found in closely related fields,
such as Service-oriented computing, Edge computing, Cloud
Computing, Pervasive computing etc.
Maintaining Quality of Services across layers. As we have
observed, the architecture (described in Figure 1) helps in
tasks such as transferring data from authorized sensors to the
interested destinations, where they are encrypted, compressed,
filtered, processed, analyzed and/or stored. These subtasks
are performed by different providers among different Cloud-
centric IoT layers (Edge Device, Network, Cloud). IoT ap-
plications consumer has a certain level of expectations about
the level of quality at which the application will perform.
For example, consumers expect low latency and real-time
analysis from systems built for health monitoring, environment
monitoring or even listing trending topics in social media. In
such systems, data freshness plays a significant role on resulted
decisions where any delay might result in a late decision in
monitoring systems or out of date trending topics that do not
match the real-time data anymore. That means, even if the
system functions correctly, its output might not match the main
purpose of the system. Therefore, there is a need to ensure that
systems/applications can function correctly with the required
level of quality.
Security. Devices and software components in the cloud layer
are installed in much protected environments and they can

afford to implement very sophisticated security mechanisms.
Meanwhile, devices and software in the physical layer and
application layer need to operate very close to customers
(e.g., a gateway device is collecting plants data in a smart
factory). Moreover, these devices may not have resources
and may not implement security mechanisms as cloud layer
does, due to cost and performance issues. This makes the
gateway devices more vulnerable to security attacks. Dividing
the functionality among gateway devices and cloud layer while
maintaining resource constraints and performance intact could
be an interesting question to investigate.

Dynamism. As we have seen, the architecture (described in
Figure 1) typically consists of edge devices, network compo-
nents, gateways in the Physical layer and a number of compo-
nents in the Cloud layer. One of the significant characteristics
of devices in the physical layer is that they are evolving due to
several reasons. For instance, devices suffer from software and
hardware aging and software upgrades, which result in change
of device properties. Runtime parameters (such as low-battery
power) may degrade the data transmission rate. Similarly, in
the Cloud layer, application performance may be affected by
short-lived behaviors such as spikes in resource consumptions.
These factors residing in both the cloud and physical layers
can lead to a requirement of intelligent and automatic re-
configuration of assigned software and hardware resources to
achieve objectives.

IV. CONCLUSION

In this paper, we have presented design requirements for a
comprehensive IoT framework such as heterogeneity, interop-
erability, scalability, and actionability. We list typical short-
comings of recent proliferation of cloud-based approaches.
To address these existing issues, we have presented an early
design of a semantic-enabled framework that leverages con-
cepts from Semantic Web, Internet of Things, and Big Data
analytics, and leverages application development techniques
such as macro-programming and model-driven development
approaches. We do not only present necessary components
to build a framework, but we also list existing technology
alternatives with its merits.

Our early efforts to realized the proposed framework. We
have been implementing the aforementioned framework. The
early efforts towards realizing the proposed framework are
mentioned below:

1) We have developed IoTSuite34, A Toolkit for Prototyp-
ing Internet of Things Applications35.It aims to reduce
application development efforts in IoT. The current ver-
sion of this project has been tested on several IoT tech-
nologies such as Android, Raspberry PI, Arduino, and
JavaSE-enabled devices. It runs on different messaging
protocols such as MQTT, CoAP, WebSocket, and applies

34Open source version is available at URL:https://github.com/pankeshlinux/
IoTSuite/wiki

35Demo is available at URL: https://www.youtube.com/watch?v=nS
Je7IzPvM

https://github.com/pankeshlinux/IoTSuite/wiki
https://github.com/pankeshlinux/IoTSuite/wiki
https://www.youtube.com/watch?v=nS_Je7IzPvM
https://www.youtube.com/watch?v=nS_Je7IzPvM

Approach Description Examples Benefits Limitations

General Pur-
pose Lang.

Developers use programming languages around APIs to pro-
gram applications provided by cloud layer.

Node.js,
C, Python

Developers can write efficient sys-
tems based on complete control
over application code.

Higher development effort and it re-
quires a significant programming exper-
tise.

Macro-
programming

They provide high-level (e.g., drag-and-drop) programming
constructs around APIs to program applications provided by
cloud layer

Node-RED,
FRED[32] ,
MIT App In-
ventor [33]

Reduce development efforts com-
pared to GPLs.

Platform-dependent design that prevents
its portability and reusability across dif-
ferent platforms.

Model-driven
Dev.

It separates different concerns of a system at a certain level of
abstractions and provides transformation engines to convert
them to target platforms.

DiaSuite[34] ,
IoTSuite[35]

Re-usable, Platform-independent,
Extensible design.

Long development time to build a MDD
system.

TABLE I
SUMMARY: EXISTING APPROACHES AVAILABLE FOR PROGRAMMING IOT APPLICATIONS.

server technologies such as Node.js. It covers database
such as MySQL, MongoDB, and Microsoft Azure Cloud
services.

2) We have been designing and developing a toolkit that
assists developers to create interoperable cross-domain
IoT applications. We have developing SWoTSuite: a
Toolkit for Prototyping Cross-domain Semantic Web
of Things Applications. An early version of this work
is presented at ISWC 201636 and the demo video is
available at URL37. We presented this toolkit in our
tutorial on “Semantic Web meets Internet of Things and
Web of Things [2nd Edition]” 38 and demonstrated with
a smart city use case [4] at 26th International World
Wide Web (WWW) Conference, 201739.

REFERENCES

[1] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with IP:
The next internet. San Francisco, CA, USA: Morgan Kaufmann, 2010.

[2] P. Patel, A. Kattepur, D. Cassou, and G. Bouloukakis, “Evaluating the
Ease of Application Development for the Internet of Things,” Technical
Report, Feb. 2013. [Online]. Available: https://hal.inria.fr/hal-00788366

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer Networks, vol. 54, no. 15, pp. 2787 – 2805,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128610001568

[4] P. Patel, A. Gyrard, S. K. Datta, and M. I. Ali, “Swotsuite: A
toolkit for prototyping end-to-end semantic web of things applications,”
in Proceedings of the 26th International Conference on World
Wide Web Companion, ser. WWW ’17 Companion. Republic and
Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2017, pp. 263–267. [Online].
Available: https://doi.org/10.1145/3041021.3054736

[5] S. Chauhan, P. Patel, F. C. Delicato, and S. Chaudhary, “A
development framework for programming cyber-physical systems,”
in Proceedings of the 2Nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems, ser. SEsCPS ’16.
New York, NY, USA: ACM, 2016, pp. 47–53. [Online]. Available:
http://doi.acm.org/10.1145/2897035.2897039

[6] P. Patel, B. Morin, and S. Chaudhary, “A model-driven development
framework for developing sense-compute-control applications,” in
Proceedings of the 1st International Workshop on Modern Software
Engineering Methods for Industrial Automation, ser. MoSEMInA 2014.
New York, NY, USA: ACM, 2014, pp. 52–61. [Online]. Available:
http://doi.acm.org/10.1145/2593783.2593784

36https://arxiv.org/abs/1609.09014
37https://www.youtube.com/watch?v=BMP8CXtXzGo
38http://semantic-web-of-things.appspot.com/?p=WWW2017Tutorial
39http://www2017.com.au/

[7] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet, Revisiting
Service-Oriented Architecture for the IoT: A Middleware Perspective.
Cham: Springer International Publishing, 2016, pp. 3–17. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-46295-0 1

[8] S. Chauhan, P. Patel, A. Sureka, F. C. Delicato, and S. Chaudhary,
“Demonstration abstract: Iotsuite - a framework to design, implement,
and deploy iot applications,” in 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), April
2016, pp. 1–2.

[9] F. Fleurey, B. Morin, A. Solberg, and O. Barais, MDE to Manage
Communications with and between Resource-Constrained Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 349–363.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-24485-8 25

[10] M. Sheng, Y. Qin, B. Benatallah, and L. Yao, Managing the
Web of Things: Linking the Real World to the Web. Elsevier
Science & Technology Books, 2017. [Online]. Available: https:
//books.google.co.in/books?id=9NtbvgAACAAJ

[11] P. Patel, A. Gyrard, D. Thakker, A. P. Sheth, and M. Serrano,
“Swotsuite: A development framework for prototyping cross-domain
semantic web of things applications,” CoRR, vol. abs/1609.09014,
2016. [Online]. Available: http://arxiv.org/abs/1609.09014

[12] A. Gyrard, “Designing cross-domain semantic Web of things
applications,” Theses, Télécom ParisTech, Apr. 2015. [Online].
Available: https://pastel.archives-ouvertes.fr/tel-01217561

[13] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[14] G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press,
2004.

[15] G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, and W. Fan, “Iot
big data stream mining,” in Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’16. New York, NY, USA: ACM, 2016, pp. 2119–2120.
[Online]. Available: http://doi.acm.org/10.1145/2939672.2945385

[16] W. Fan and A. Bifet, “Mining big data: Current status, and forecast
to the future,” SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 1–5, Apr.
2013. [Online]. Available: http://doi.acm.org/10.1145/2481244.2481246

[17] A. Sheth, P. Anantharam, and K. Thirunarayan, “Applications of mul-
timodal physical (iot), cyber and social data for reliable and actionable
insights,” in 10th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing, Oct 2014, pp.
489–494.

[18] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec 2016.

[19] W. Tai, J. Keeney, and D. O’Sullivan, “Resource-constrained reasoning
using a reasoner composition approach,” Semantic Web, vol. 6, no. 1,
pp. 35–59, 2015.

[20] X. Su, J. Riekki, J. K. Nurminen, J. Nieminen, and M. Koskimies,
“Adding semantics to internet of things,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 8, pp. 1844–1860, 2015.

[21] X. Su, J. Riekki, and J. Haverinen, “Entity notation: enabling
knowledge representations for resource-constrained sensors,” Personal
and Ubiquitous Computing, vol. 16, no. 7, pp. 819–834, 2012. [Online].
Available: http://dx.doi.org/10.1007/s00779-011-0453-6

[22] X. Su, H. Zhang, J. Riekki, A. Kernen, J. K. Nurminen, and L. Du,
“Connecting iot sensors to knowledge-based systems by transforming

https://hal.inria.fr/hal-00788366
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568
https://doi.org/10.1145/3041021.3054736
http://doi.acm.org/10.1145/2897035.2897039
http://doi.acm.org/10.1145/2593783.2593784
https://arxiv.org/abs/1609.09014
https://www.youtube.com/watch?v=BMP8CXtXzGo
http://semantic-web-of-things.appspot.com/?p=WWW2017Tutorial
http://www2017.com.au/
http://dx.doi.org/10.1007/978-3-319-46295-0_1
http://dx.doi.org/10.1007/978-3-642-24485-8_25
https://books.google.co.in/books?id=9NtbvgAACAAJ
https://books.google.co.in/books?id=9NtbvgAACAAJ
http://arxiv.org/abs/1609.09014
https://pastel.archives-ouvertes.fr/tel-01217561
http://doi.acm.org/10.1145/2939672.2945385
http://doi.acm.org/10.1145/2481244.2481246
http://dx.doi.org/10.1007/s00779-011-0453-6

senml to rdf,” Procedia Computer Science, vol. 32, pp. 215 – 222,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877050914006176

[23] J. Heuer, D. Peintner, S. Käbisch, J. Hund, and D. Anicic, “Web of
things technologies for embedded applications.”

[24] D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth, “Rdf on
the go: An rdf storage and query processor for mobile devices,” in
Proceedings of the 2010 International Conference on Posters &
Demonstrations Track - Volume 658, ser. ISWC-PD’10. Aachen,
Germany, Germany: CEUR-WS.org, 2010, pp. 149–152. [Online].
Available: http://dl.acm.org/citation.cfm?id=2878399.2878437

[25] M. d’Aquin, A. Nikolov, and E. Motta, How Much Semantic Data
on Small Devices? Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 565–575. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-16438-5 46

[26] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2,
pp. 114–131, 2003.

[27] C. C. Aggarwal, Data Streams: Models and Algorithms (Advances in
Database Systems). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[28] S. Garcı́a, S. Ramı́rez-Gallego, J. Luengo, J. M. Benı́tez, and F. Herrera,
“Big data preprocessing: methods and prospects,” Big Data Analytics,
vol. 1, no. 1, p. 9, 2016.

[29] N. Sawant and H. Shah, Big Data Application Architecture Q&A: A
Problem - Solution Approach, 1st ed. Berkely, CA, USA: Apress,
2013.

[30] A. Gyrard, M. Serranoy, J. Bosco Jaresy, S. K. Datta, and M. Intizar
Ali, “Sensor-based linked open rules (S-LOR): An automated rule
discovery approach for IoT applications and its use in smart cities,”
in AW4city 2017, 3rd International ACM Smart City Workshop, In
conjunction with WWW 2017, 26th World Wide Web International
Conference, April 3, 2017, Perth, Australia, Perth, AUSTRALIA, 04
2017. [Online]. Available: http://www.eurecom.fr/publication/5144

[31] V. Kulkarni and S. Reddy, “Separation of Concerns in Model-Driven
Development,” IEEE Software, vol. 20, no. 5, pp. 64–69, 2003.
[Online]. Available: http://dx.doi.org/10.1109/ms.2003.1231154

[32] “Fred: a cloud based visual programming tool for the iot.” [Online].
Available: http://sensetecnic.com/iot-platform/

[33] “Google app inventor.” [Online]. Available: http://appinventor.mit.edu/
explore/

[34] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a tool-based
development methodology for pervasive computing applications,” IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1445–1463,
2012.

[35] P. Patel and D. Cassou, “Enabling high-level application development
for the internet of things,” Journal of Systems and Software, vol. 103,
pp. 62 – 84, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121215000187

http://www.sciencedirect.com/science/article/pii/S1877050914006176
http://www.sciencedirect.com/science/article/pii/S1877050914006176
http://dl.acm.org/citation.cfm?id=2878399.2878437
http://dx.doi.org/10.1007/978-3-642-16438-5_46
http://dx.doi.org/10.1007/978-3-642-16438-5_46
http://www.eurecom.fr/publication/5144
http://dx.doi.org/10.1109/ms.2003.1231154
http://sensetecnic.com/iot-platform/
http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/
http://www.sciencedirect.com/science/article/pii/S0164121215000187
http://www.sciencedirect.com/science/article/pii/S0164121215000187

	Introduction
	Architecture
	The Physical Layer
	The Cloud Layer
	The Application Layer

	Open questions and research challenges
	Conclusion
	References

