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On Consideration of Content Preference and
Sharing Willingness in D2D Assisted Offloading

Yijin Pan, Cunhua Pan, Huiling Zhu, Member, IEEE, Qasim Zeeshan Ahmed, Member, IEEE,
Ming Chen, and Jiangzhou Wang, Fellow, IEEE

Abstract— Device-to-device (D2D) assisted offloading heavily
depends on the participation of human users. The content
preference and sharing willingness of human users are two
crucial factors in the D2D assisted offloading. In this paper, with
consideration of these two factors, the optimal content pushing
strategy is investigated by formulating an optimization problem
to maximize the offloading gain measured by the offloaded
traffic. Users are placed into groups according to their content
preferences and share content with intergroup and intragroup
users at different sharing probabilities. Although the optimization
problem is nonconvex, the closed-form optimal solution for a
special case is obtained, when the sharing probabilities for
intergroup and intragroup users are the same. Furthermore,
an alternative group optimization (AGO) algorithm is proposed
to solve the general case of the optimization problem. Finally,
simulation results are provided to demonstrate the offloading
performance achieved by the optimal pushing strategy for the
special case and AGO algorithm. An interesting conclusion drawn
is that the group with the largest number of interested users is
not necessarily given the highest pushing probability. It is more
important to give high pushing probability to users with high
sharing willingness.

Index Terms— Content offloading, device-to-device communi-
cations, sharing willingness, content preference

I. INTRODUCTION

MOBILE communications have been developed
extremely fast [1]–[7]. The explosion in cellular traffic

has instilled a significant strain on the current network
infrastructure [8]. A promising solution is to offload traffic

Manuscript received September 22, 2016; revised January 13, 2017;
accepted January 26, 2017. Date of publication March 9, 2017; date of current
version May 22, 2017. This work was supported in part by the National
Science and Technology Major Project under Grant 2016ZX03001016-003,
in part by the National Nature Science Foundation of China under
Grant 61372106 and Grant 61221002, in part by the China Scholarship
Council and a Marie Curie International Outgoing Fellowship within the
Seventh European Community Framework Programme (CODEC) under
Grant PIOFGA-2013-630058, in part by the U.K. Engineering and Physical
Sciences Research Council (NIRVANA) under Project EP/L026031/1, and
in part by the Framework of EU Horizon 2020 Programme (iCIRRUS)
under Grant 644526. This paper was presented at the IEEE ICC 2017.
(Corresponding author: Cunhua Pan.)

Y. Pan and M. Chen are with the National Mobile Communications
Research Laboratory, Southeast University, Nanjing 211111, China (e-mail:
panyijin@seu.edu.cn; chenming@seu.edu.cn).

C. Pan was with the National Mobile Communications Research
Laboratory, Southeast University, Nanjing 211111, China. He is now with
Queen Mary University, London, U.K. (e-mail: c.pan@qmul.ac.uk).

H. Zhu, Q. Z. Ahmed, and J. Wang are with the School of Engineering
and Digital Arts, University of Kent, Canterbury CT2 7NT, U.K. (e-mail:
h.zhu@kent.ac.uk; q.ahmed@kent.ac.uk; j.z.wang@kent.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2017.2680938

via device-to-device (D2D) communications [9], [10], called
D2D assisted offloading, by exploiting the caching ability of
the user equipment (UE) [11]. It is shown in [12] that the
peak-time traffic can be substantially reduced by proactively
caching the contents in UEs or BS at off-peak time. Moreover,
D2D caching network with spatial reuse was proved to have
great potential of improving the system throughput [13].
Specifically, in case multiple UEs request the same content
from a base station (BS), instead of serving the multiple UEs
individually with the requested content, the BS first pushes
the content to some of these UEs. For other UEs requesting
the content, if the pushed UEs are in the proximity, they can
then get it via D2D communications. Otherwise, the UEs
receive the requested content from the BS. By exploiting
D2D assisted offloading in content dissemination, the cellular
traffic load can be relieved from the cellular network
infrastructure [14], [15].

The D2D assisted content dissemination process is divided
into two stages, content pushing for pushing content from
BS to UEs and content transmission for disseminating contents
from a UE to another UE via D2D communications. It can be
seen that human users are directly involved in D2D assisted
content dissemination, which leads to an inevitable impact of
the human behavior on the quality of service (QoS) [16], [17].
This situation is different from the situation in traditional
network where QoS can be fullly controlled by the BS.
Specifically, content preference and sharing willingness of the
human users are two crucial factors in the two stages of content
dissemination.

The content preference features the different desires of
human users for the same content. In this paper, content
preference is modeled as the probability that a content is
wanted by a UE. In the pushing stage, given UEs’ content
preferences, the BS will initially select some UEs to push
the content. If one of the selected UEs is not interested,
the UE will refuse the pushing request. Several approaches
have been adopted to explain content preference [18]–[21].
A common approach is that a content consists of keywords
and associated weights [20], [21]. The weights help determine
the importance of the keywords in the content. Then UEs’
different preferences on the keywords will lead to different
content preferences.

The sharing willingness of UEs directly affects the success
of establishing D2D links, and it is a key factor in the content
transmission stage. In this paper, the sharing willingness is
represented by the probability that a UE will share the content

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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via D2D communications. In current literature, the sharing
willingness can be either individually based [22]–[24] or group
based [25], [26]. The investigation in [24] showed that sharing
willingness depends on the closeness of the social relationship
between UEs. However, the complexity of tracking its social
relationship with each UE is extremely high. Therefore, in [25]
sharing willingness was estimated in a group manner. Since
intragroup UEs have similar human behavior, [26] considered
that UEs were more willing to share contents with intragroup
UEs as compared to intergroup UEs.

Even though researchers have revealed that content prefer-
ence and sharing willingness both affect the content dissemina-
tion process, their joint impact has not been fully investigated
in the current offloading schemes. Some offloading approaches
even did not consider these two factors, such as [27] and [28],
where assumptions were made that all UEs in cell requested
the same content and shared it altruistically. The content
preference was considered in [20] and [21], where UEs were
assumed unselfish. While in [29], only the sharing behaviors
of UEs were considered for designing offloading approach,
but UEs’ content preferences were not addressed. Similarly,
in [30], although the different content preferences were con-
sidered, the sharing behaviors of UEs were simplified as only
allowing sharing among a group of UEs.

Since content preference and sharing willingness of human
users are all involved in D2D assisted content dissemination,
it is essential to address the two factors in designing the
pushing strategy to maximize the traffic offloaded via D2D
communications. For instance, if the content is pushed to the
interested UEs who are not willing to share, BS still has to
serve the download for other interested UEs via cellular link.
On the contrary, if the content is only pushed to the UEs who
are willing to share but not interested in it, all the pushing
requests will be refused. The interested UEs still need to be
served by the BS via the cellular link. In both cases, there is no
traffic offloaded via D2D communications. Therefore, current
content dissemination strategies developed unilaterally either
only based on content preference or sharing willingness cannot
be directly applied to D2D assisted offloading. Furthermore,
the combination of the two factors further complicates the
pushing strategy design. The formulated optimization problem
can be nonconvex, which cannot be solved by the interior-point
methods in polynomial-time [31].

In this paper, content dissemination for D2D assisted
offloading is designed and evaluated under the consideration
of the impact of human behaviors. Specifically, we investigate
the pushing probabilities for different UEs to maximize the
D2D offloaded traffic with the consideration of their content
preferences and sharing willingness. In this paper, UEs are
classified into groups according to their content preferences,
and each group shares the content with inter- and intragroup
UEs with different sharing probabilities. For the proposed two
stages of content dissemination process, in the pushing stage,
BS pushes the content to some UEs according to a pushing
probability. However, the pushing will only be accepted by the
UEs with interests. In the transmission stage, the probability of
content sharing via D2D transmission is related to the sharing
willingness of the pushed UEs in each group. Based on this

content dissemination process, the pushing probability for UEs
in each group is optimized in order to maximize the traffic
offloaded via D2D communications. The main contributions
of this paper are outlined as follows.

• We define the system offloading gain as the offloaded
traffic in a unit area, which is derived as a function of the
pushing probability in each group. In this paper, the main
aim is to maximize the system offloading gain, which is
formulated as an optimization problem, and an alterna-
tive group optimization (AGO) algorithm is proposed to
solve it. Although the formulated optimization problem is
nonconvex, the proposed AGO algorithm has polynomial
complexity in terms of the UE group number.

• We consider the optimization problem for a special case
where UEs share contents with intergroup and intragroup
UEs at the same probability. Although this problem is
still non-convex, we have successfully derived the closed-
form solution based on Karush-Kuhn-Tucker (K.K.T)
conditions. In this case, the optimal pushing strategy
indicates that groups with high sharing probabilities
always need to offload the large portion of traffic. The
group with largest request density is not necessarily
given the highest pushing probability, and its pushing
probability is affected by the sharing behavior of other
groups.

• Simulation results are provided to show the offloading
performance achieved by the optimal pushing strategy in
the special case, where the impacts of content preference
and sharing willingness are investigated. The proposed
AGO algorithm is also simulated and the converged result
is shown to be near the global optimum.

The rest of this paper is organized as follows. The system
model is described in Section II, and the optimization problem
is formulated in Section III. A closed-form optimal solution
for a special case is theoretically derived in Section IV and
the algorithm for the general case is introduced in Section V.
Finally, we present the simulation results in Section VI, and
conclude our work in Section VII.

II. SYSTEM MODEL

In our system, the proposed content offloading scheme
focuses on how to disseminate a certain piece of content
(hereafter referred to as the reference content) through the
cellular network, where UEs can share the cached contents via
D2D communications. As shown in Fig. 1, the D2D trans-
mission range is represented by radius r . For content dis-
semination, BS first pushes the reference content to a subset
of UEs denoted by the shaded circles and triangles. Then
the pushed UEs could transmit the downloaded content to
other interested UEs within r via D2D links. The D2D links
conducted by the pushed UEs are assumed to be all scheduled
by BS. Since all UEs receive the same content from the
pushed UEs, it is assumed no co-channel interference in D2D
transmissions [32].1

1The transmission for the pushed UEs can be modeled as a practical
multicast distributed antenna system in [32]. Since there is one common
content for transmission, the signals from all the pushed UEs are regarded as
useful signals.
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Fig. 1. An example of D2D assisted offloading with M = 2, where UE4
and UE3 provide D2D link to UE 1 with intergroup sharing probability ρo

1
and intragroup sharing probability ρi

2, respectively.

We assume that UEs are classified into M disjoint groups
according to their content preferences. The set of group index
is M = {1, 2, · · · , M}. The group m is denoted by Gm . For
the given reference content, we define wm as the request
probability that a UE in group Gm requests the content, where
0 ≤ wm ≤ 1(m ∈ M ). In another word, wm represents the
content preference of UEs in group Gm for the reference con-
tent. The value of wm for each group can be determined either
by the keywords feature extraction method in [20] and [21] or
by the machine learning method in [33] and [34] according to
the UEs’ download history. In this paper, request probability
and content preference will be used alternatively.

Another key factor is the sharing willingness of UEs to
share their cached content via D2D communications, which is
represented by the sharing probability. It is observed that UEs
who share common preferences are more likely to have similar
personality and character [35]. Therefore, we logically assume
that the UEs in the same group also have the homogeneous
sharing probability. Here, two types of sharing probabilities are
considered. We define ρi

m as the intragroup sharing probability
in group Gm , under which a UE in group Gm will exchange
content with another UE in the same group. ρo

m denotes the
intergroup sharing probability under which a UE in Gm can
exchange its content with another UE in another group.
Normally, it holds that ρi

m ≥ ρo
m , due to the fact that UEs

prefer to share content with those having similar preferences
and social behaviors [26].

The location of the UEs in each group is modeled as a
Poisson Point Process (P.P.P) [36] and is independent from the
other group. In P.P.P, the number of UEs in a bounded area is a
Poisson random variable with a constant density. The density
reflects the average number of UEs in a unit area. The UEs’
density in group Gm is denoted by λm , m ∈ M . Under this
assumption, for a UE, it is possible to have UEs from other
group in proximity.

As illustrated in Fig. 1, according to different content
preferences, UEs are divided into two groups, i.e., G1 and G2,
which are represented by triangles and circles. Some UEs are
able to get content from the pushed UEs of same or different
groups in the proximity. For example, UE 1 gets the content

TABLE I

UE TYPES IN CONTENT PUSHING STAGE

from UE 3 with intragroup probability ρi
2, and from UE 4

with intergroup probability ρo
1 via D2D communications. All

the nearby UEs of UE 2 do not have the content, so the
BS will assist in downloading. In order to clearly describe
the dissemination process we have divided it into two stages;
namely, content pushing and transmission. Details of each
stage are given as follows:

1) Content Pushing: In this stage, the BS pushes the ref-
erence content to some UEs which are selected from all the
M groups. The probability of UEs in each group that will
be selected for pushing will be optimized in this work. It is
assumed that the selection of UEs is done randomly by the
BS for the sake of fairness. For example, the shaded circles in
Fig. 1 are randomly chosen from all the circles. In previous
work [20]–[22], [27]–[30], it was assumed that UEs who have
received a pushing request will always accept it. However,
UEs will accept the pushing only when they are interested in
the pushed content. Otherwise, they will simply ignore it and
refuse the pushing. Therefore, there will be four kinds of UEs
at this stage as shown in Table I.

In Table I, when UEs have received the content pushing
request, those who accept the request and download the
content from BS are referred to as UE-As, while those who
refuse the pushing request are called as UE-Rs. For the other
UEs who do not receive pushing request, if they are interested
in the reference content, such as UE 1 in Fig. 1, they will ask
for content transmission. These UEs are named as the UE-Ts.
Finally, UEs who are not involved in the content dissemination
process are represented as UE-Ns.

Let cm be the pushing probability for UEs in group Gm .
cm also represents the probability that a UE in group Gm will
receive the pushing from the BS. To be a UE-A, this UE should
satisfy two conditions. One is that the UE wants this content,
and the other is that a pushing has been received. Given the
UEs density λm and content request probability wm , under the
P.P.P model, we can calculate the density of UE-As in group
Gm denoted by lm as

lm = λmwmcm . (1)

Similarly, the density of UE-Ts in group Gm denoted as nm

is obtained as

nm = λmwm(1 − cm). (2)

The density of UE-Rs and UE-Ns can also be calculated in
the same way, which are ignored for brevity since they are not
involved in the upcoming analysis.

2) Content Transmission: Since the UE-Ts did not get the
reference content in the content pushing stage, they will make
transmission requests to download it from the BS or the
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nearby UE-As. Let Pm denote the probability that a UE-T
in Gm can download the content via D2D links, which means
there is at least a nearby UE-A will share it via D2D
transmission. Pm is also called as the D2D success probability
and will be derived in the rest of this section.

For the P.P.P distribution, the number of UEs is a Poisson
random variable with density λ. Therefore, the probability that
there are n UEs in area A is calculated as

P(n, A) = (λA)n

n! exp(−λA). (3)

To obtain the density of the UEs that are willing to share the
content, we need to consider two types of UEs: intragroup
UE-As and intergroup UE-As. These two types of UEs are
classified due to the different social sharing willingness. For
a UE-T in Gm , let Lm denote the density of intragroup
UE-As willing to share the content via D2D transmissions.
It is obtained as

Lm = ρi
mlm = λmwmρi

mcm . (4)

The density of intergroup UE-As from other groups with the
willingness to share the content via D2D transmissions is
denoted by Om , which is given by

Om =
∑

k �=m

ρo
k lk =

∑

k �=m

λkwkρ
o
k ck . (5)

Based on (3)-(5), the probability that no UE within D2D
transmission distance r will transmit this content to a UE-T
in Gm is calculated as

P(0, πr2) = exp(−πr2(Lm + Om)), (6)

and the success probability Pm that a UE-T in Gm can
download the content by D2D offloading is obtained as

Pm = 1 − P(0, πr2) = 1 − exp(−πr2(Lm + Om)). (7)

III. PROBLEM FORMULATION

Based on the system model in Section II, we will now
characterize the quality of content service for UEs. Given the
UE-T density nm and the D2D success probability Pm for
UE-Ts, the offloading gain Gm of group Gm is defined as

Gm = nmPm . (8)

Gm can be regarded as the expected offloaded traffic of group
Gm in a unit area, which is similar to the measure of offloading
gain used in [37].

The system offloading gain G is the performance measure
for a D2D assisted offloading network. G is defined as the
sum of offloading gain over all the groups.

G =
∑

m∈M

Gm =
∑

m∈M

nmPm . (9)

It can be seen from (9) that G represents the successfully
offloaded content copies from all the M groups, therefore,
reflecting the offloading ability of the system. Substituting nm

Fig. 2. The considered scenarios and the corresponding solutions.

and Pm in (9) with (2) and (7), we have the following
equivalent expression,

G =
∑

m∈M

tm(1 − cm)(1 − exp(−Btmρi
mcm − B

∑

k �=m

tkρ
o
k ck)),

(10)

where tm = λmwm is the requested density and represents the
average number of UEs from group Gm in unit area requesting
this content. B is the D2D cooperation area, i.e., B = πr2.

Given the request density, intergroup and intragroup sharing
probability of each group, G is then determined by the pushing
probability cm in all the M groups. In order to show the
relationship between G and cm , we consider two extreme
cases; namely, all pushing case and all request case. In all
pushing case, cm = 1 for all m (m ∈ M ). Then nm = 0 for all
the M groups. While, in all request case, cm = 0 for all m.
Then Pm = 0 for all m. In both cases, G = 0. Therefore, we
aim to find out the optimal value of pushing probability cm

for each group Gm to maximize G.
As our objective is to maximize the offloading gain, the

optimization problem is formulated as

P1 : max
c

G(c) =
∑

m∈M

nmPm , (11a)

s.t. 0 ≤ cm ≤ 1, for all m ∈ M . (11b)

In problem P1, vector c in (11a) is described by c =
[c1, c2, · · · , cM ], and represents the pushing strategy of the
system. The constraint (11b) ensures that cm,∀m ∈ M is a
valid probability. For the groups with zero request probabili-
ties, the optimal pushing probabilities are zeros, since all the
pushing requests will be refused. Therefore, in the following
solution we assume that all the M groups have positive request
probabilities, i.e., wm > 0 for all m.

As shown in Fig. 2, the solutions of P1 are presented for
different cases in the following section IV and V. First of all,
it is easily verified that problem P1 is nonconvex. Therefore,
AGO algorithm with polynomial complexity is proposed in
Section V to solve it. However, the optimal closed-form
solution can be obtained for a special case, when intragroup
sharing probability equals intergroup sharing probability, i.e.,
ρi

m = ρo
m = ρm for any m. We refer to this case as group

independent sharing case. Moreover, based on the sharing
probability distribution, group independent sharing case is
divided into a non-uniform sharing scenario and a partial-
uniform sharing scenario. In non-uniform sharing scenario,
the sharing probabilities are different for different groups, i.e.,
ρk �= ρm , if m �= k. In partial-uniform sharing scenario, a part
of groups have the same sharing probability, i.e., there exists
ρm = ρn, n �= m. The uniform scenario where every group
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has the same sharing probability is a special case of partial-
uniform sharing scenario, and thus it is not listed separately.
The reason for this classification is that the optimal pushing
strategy for partial-uniform sharing scenario is not unique.
However, a special case of the alternative optimal solutions
will be investigated in Algorithm 1 of Section IV B.

IV. SOLUTION ANALYSIS FOR GROUP

INDEPENDENT SHARING SCENARIO

In group independent sharing case, the objective func-
tion (11a) is simplified as

G f (c) =
∑

m∈M

tm(1 − cm)(1 − exp(−B
∑

k∈M

tkρkck)). (12)

Consequently, the formulated problem P1 is

P2 : max
c

G f (c),

s.t. 0 ≤ cm ≤ 1, m ∈ M . (13a)

A. Non-Uniform Sharing

In this section, we discuss the solution for non-uniform
sharing scenario. Although Problem P2 is simplified, it is
still nonconvex. However, by the following proof line, we
can obtain the optimal pushing strategy in a closed form.
First, a special structure of the optimal solution is revealed
by Lemma 1. Second, this special structure is shown to be
associated with the order of sharing probabilities in Lemma 2.
Then, by applying the special structure of the optimal pushing
strategy in K.K.T conditions, one case of the optimal solu-
tions is given in Theorem 5. Finally, the general closed-form
expression of the optimal pushing strategy is summarized in
Theorem 8.

Lemma 1: In the optimal pushing strategy c∗ =
[c∗

1, c∗
2, · · · , c∗

M ], at most one group has the optimal pushing
probability lying in the range 0 < c∗

i < 1, and for all the other
groups, i.e., j �= i , c∗

j = 0 or c∗
j = 1.

Proof : Refer to the Appendix A for the detailed
proof. �

To find the optimal solution, we invoke Lemma 1 and
investigate the relationship between the pushing probability,
cm , and sharing probability, ρm , in the following lemma.

Lemma 2: If the optimal pushing probability for group Gm

is between 0 and 1, i.e., 0 < c∗
m < 1, then for any group Gi

with ρi < ρm , the optimal pushing probability is c∗
i = 0,

and for any group G j with ρ j > ρm , the optimal pushing
probability is c∗

j = 1.

Proof : Refer to the Appendix B for the detailed
proof. �

According to Lemma 2, when the groups are sorted in the
ascending order of sharing probabilities, i.e., ρ1 < ρ2 < · · ·
< ρM , there exists a special group Gm called “watershed”
with respect to the all pushing groups (c∗

j = 1) and
non-pushing groups (c∗

i = 0). If “watershed” group Gm

is determined, the optimal pushing strategy for this D2D
offloading system is obtained, which can be written as
c∗ = [0, · · · , 0︸ ︷︷ ︸

m−1

, c∗
m , 1, · · · , 1︸ ︷︷ ︸

M−m

], where (m − 1) zeros represents

the non-pushing group while (M −m) ones are the all pushing
groups.

Furthermore, proof of Lemma 2 leads to the following two
corollaries.

Corollary 3: If c∗
m = 0, for group Gm , c∗

i = 0 for group
Gi where ρi < ρm . If c∗

m = 1, c∗
j = 1 for group G j where

ρ j > ρm .
Similar as Lemma 2, Corollary 3 can also be proved by
K.K.T conditions. Details are omitted for brevity.

The optimal pushing probability for “watershed” group is
determined according to the following Corollary 4.

Corollary 4: Assuming that M groups are sorted in the
ascending order of sharing probabilities, i.e., ρ1 < ρ2 <
· · · < ρM . For group Gm , if the optimal pushing probability
0 < c∗

m < 1, then

c∗
m = 1

Bρmtm

⎛

⎝Bρm

m∑

i=1

ti + 1

−W (exp(B
M∑

j=m+1

ρ j t j + Bρm

m∑

i=1

ti + 1))

⎞

⎠,

(14)

where W is the Lambert-W function [38].
Proof : Refer to the Appendix C for the detailed proof. �

However, the following key problem is to find “watershed”
group. To solve this problem, Theorem 5 is introduced to show
the necessary and sufficient conditions of “watershed” group.

Theorem 5: Assuming that M groups are sorted in the
increasing order of ρm , i.e., ρ1 < ρ2 < · · · < ρM , the optimal
solution of problem P2 is c∗ = [0, · · · , 0︸ ︷︷ ︸

m−1

, c∗
m , 1, · · · , 1︸ ︷︷ ︸

M−m

],

where c∗
m is given by (14), if and only if the following two

inequalities
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + Bρm

m∑

i=1

ti > exp(B
M∑

j=1+m

t jρ j ), (15)

1 + Bρm

m−1∑

i=1

ti < exp(B
M∑

j=m

t jρ j ), (16)

hold at the same time.
Proof : Refer to the Appendix D for the detailed proof. �

Theorem 5 shows how request density and sharing probabil-
ity jointly impact the optimal pushing strategy. Furthermore,
it is worth noting that the conditions in Theorem 5 guarantee
that (14) is always feasible. Finally, the uniqueness proved
by Lemma 15 is consistent with Lemma 1, which shows that
the pushing strategy given by Theorem 5 is exclusive. For
simplicity, we define two functions as follows,

f 1
m(tm , ρm) = 1 + Bρm

m∑

i=1

ti − exp

⎛

⎝B
M∑

j=1+m

t jρ j

⎞

⎠ , (17)

f 0
m(tm , ρm) = exp

⎛

⎝B
M∑

j=m

t jρ j

⎞

⎠ − Bρm

m−1∑

i=1

ti − 1. (18)

From Theorem 5, we can infer the following two corollaries.
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Corollary 6: For group Gm , if f 1
m(tm , ρm) ≤ 0, then

c∗
m = 0;

Corollary 7: For group Gm , if f 0
m(tm , ρm) ≤ 0, then

c∗
m = 1.

The proofs of Corollary 6 and Corollary 7 are also carried
out by contradiction, which is similar to “if ” proof part
in Theorem 5. Details are omitted for brevity. Based on
the foregoing analysis, at non-uniform sharing scenario, a
closed-form optimal solution of the nonconvex problem P2
is summarized in the following theorem.

Theorem 8: Assuming that M groups are sorted in the order
ρ1 < ρ2 < · · · < ρM , the optimal solution of problem P2 is
given as

c∗ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[0, · · · , 0︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
M−m

], ∀m

{
f 1
m(tm, ρm) ≤ 0,

f 0
m+1(tm+1, ρm+1)≤0.

[0, · · · , 0︸ ︷︷ ︸
m−1

, cm , 1, · · · , 1︸ ︷︷ ︸
M−m

], ∃m

{
f 1
m(tm, ρm) > 0,

f 0
m(tm, ρm) > 0,

(19)

where cm is given by (14).
Proof : The first case is readily obtained by Corollary 6

and Corollary 7, and the second case is obtained by Theorem 5.
Thus, Theorem 8 is proved. �

Algorithm 1 A Special Case of Optimal Pushing Strategy for
Partial-Uniform Sharing Scenario

Step 1: Sort the M groups in the ascending order of ρm , i.e.,
ρ1 < · · · < ρk1 = · · · = ρkn < · · · < ρM .

Step 2: Define group 0 as t0 =
kn∑

k=k1

tk, c0 = 1
t0

kn∑
k=k1

tkck .

Substitute group 0 for the n groups, i.e., Gk1 , · · · Gkn .
Step 3: Calculate the optimal pushing strategy c∗ =
[c∗

1, · · · , c∗
0, · · · , c∗

M ] for the M − n + 1 groups according
to Theorem 8.
Step 4: Set the pushing probabilities of the replaced n groups
to be the same as c∗

0.

B. Partial-Uniform Sharing

In partial-uniform sharing scenario, we will prove that the
optimal pushing strategy is not unique, and a special case of
the alternative optimal pushing strategies will be given in this
section.

Theorem 9: If n groups have the same sharing probability,
where 2 ≤ n ≤ M , the optimal pushing probabilities of these
n groups are not unique.

Proof : Refer to the Appendix F for the detailed proof. �
Based on the proof of Theorem 9, we propose an algorithm

to find a special case of the alternative optimal pushing strate-
gies for partial-uniform sharing scenario, which is described
in Algorithm 1. It is worth pointing that the pushing strategy
obtained in Algorithm 1 is the optimal solution, and the
obtained offloading gain achieves the maximum value. It is
shown in the proof of Theorem 9 that the variable substitution
(group 0) in Step 2 transforms partial-uniform sharing scenario

Fig. 3. An example of the optimal pushing strategy, where the shaded ratio
of each group represents its pushing probability. The blue blocks represent the
above groups, red blocks represent the watershed groups and the yellow ones
represent the below groups. Compared with case (a), case (b) has a larger t1,
and it leads to a higher “dividing line”. While case (c) has a larger t3, and it
leads to a lower “dividing line”.

into an equivalent non-uniform sharing scenario. In addition,
according to Theorem 8, the pushing strategy for the equivalent
non-uniform sharing scenario in Step 3 is the global optimal.
Therefore, the solution in Step 4 is an optimal solution,
although it is not unique.

C. Impact of System Parameters

In this section, a brief discussion is conducted to show
the insights given by the optimal pushing strategy. Accord-
ing to the above solution analysis, the optimal solution of
partial-uniform sharing scenario is obtained by transforming
it to the equivalent non-uniform sharing scenario. Therefore,
the following discussion is based on the analytical solution
obtained in non-uniform sharing scenario.

An example of the pushing strategy is shown in Fig. 3,
where 3 groups are sorted in the order ρ1 < ρ2 < ρ3. The
length of each group is their request density, and the shaded
proportion in each group represents its pushing probability. For
example, in the case (a) of Fig. 3, group 3 is all in shadow
as it has the 100% pushing probability. Group 2 is partial
shaded due to that the pushing probability is between 0 and 1.
There is no shadow part in group 1 resulting from no pushing.
Therefore, there is a “dividing line” which is responsible to
define three types of groups in the optimal pushing strategy;
“watershed” group with “dividing line”, “below” groups with
100% pushing and “above” groups with 0% pushing. These
three types of groups play different roles in determining the
“dividing line”, which are explained in details separately.

1) Group Gm is a “Watershed” Group:
Proposition 10: When the request density tm ∈ (0,∞)

increases, the “dividing line” goes down, but it is still located
in group Gm .

Proof : By taking derivatives of f 1
m(tm, ρm) with respect

to (w.r.t) tm and f 0
m(tm, ρm) w.r.t tm respectively, it is easy to

infer that

∂ f 1
m(tm , ρm)

∂ tm
> 0,

∂ f 0
m(tm, ρm)

∂ tm
> 0. (20)
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Therefore, the conditions that f 1
m(tm, ρm)>0, f 0

m (tm, ρm) > 0
are always satisfied for group Gm when tm increases. In addi-
tion, we define function

g(c∗
m, tm) =

(
Bρm

(
m∑

i=1

ti − tmc∗
m

)
+ 1

)
exp(−Btmρmc∗

m).

(21)

From (C.1) in Appendix C, the following equation is obtained.

g(c∗
m, tm) = exp

⎛

⎝
M∑

j=m+1

Bt jρ j

⎞

⎠ . (22)

Given the request density and the sharing probability in each
group, the RHS of (22) is a positive fixed value. By taking
the derivatives of g(c∗

m, tm) w.r.t c∗
m and tm , we have

∂g(c∗
m)

∂c∗
m

< 0,
∂g(c∗

m)

∂ tm
< 0. (23)

Regarding to the results in (23), c∗
m decreases when tm

increases. However, group Gm is still “watershed” group. �
To explain it further, as illustrated in the case (a) of Fig. 3,

increase of t2 makes the shaded ratio of group 2 decrease,
but this will not formulate another group to be “watershed”
group. Unfortunately, the impact of sharing willingness ρm on
the pushing strategy is more complex, which will be explained
in the simulation results.

2) Group Gm is an “Above” Group:
Proposition 11: When the request density tm ∈ (0,∞)

increases, the “dividing line” goes up.
Proof : We assume that group Gk is “watershed” group.

The following derivatives are obtained.

∂ f 1
k (tk, ρk)

∂ tm
= Bρm,

∂ f 0
k (tk, ρk)

∂ tm
= −Bρm . (24)

Therefore, with the increase of tm , f 1
k (tk, ρk) > 0 always holds

for Gk . Nevertheless, f 0
m(tm , ρm) decreases with tm .

If condition f 0
k (tk, ρk) > 0 is not satisfied, Gk is not

“watershed” group and c∗
k = 1. In this case, since f 0

k (tk, ρk)
is a decreasing function of k, only the group Gi ,∀i < k has
the possibility to be the next “watershed” group.

If condition f 0
k (tk, ρk) > 0 is satisfied, for “watershed”

group Gk , (21) is rewritten as

g(c∗
k , tm) =

⎛

⎝Bρk

⎛

⎝
k∑

i=1,i �=m

ti + tm − tkc∗
k

⎞

⎠ + 1

⎞

⎠

×exp(−Btkρkc∗
k ). (25)

The derivative of g(c∗
k , tm) w.r.t tm is obtained as

∂g(c∗
k , tm)

∂ tm
= Bρkexp(−Btkρkc∗

k ). (26)

Furthermore, from (C.1) in Appendix C, the following equa-
tion holds for g(c∗

k , tm).

g(c∗
k , tm) = exp

⎛

⎝
M∑

j=k+1

Bt jρ j

⎞

⎠ . (27)

Since g(c∗
k , tm) is a decreasing function of c∗

k , we can claim
that c∗

k increases with tm . �
Overall, the “dividing line” goes up when the request

density of an “above” group increases. For example, in Fig. 3,
group 1 in case (b) has a larger request density t1 compared
with case (a). This leads to the condition that f 0

2 (t2, ρ2) > 0
is no longer satisfied for group 2. The “dividing line” goes up
to group 1, and it becomes the new “watershed” group.

Proposition 12: The optimal solution c∗ keeps the same
with the change of ρm ∈ (0, ρk), as long as the constraint
ρm < ρk holds, and ρk is the sharing probability of
“watershed” group.

Proof : As shown in (14) (17) and (18), when ρm < ρk ,
ρm is not involved in the expressions of f 1

k (tk, ρk), f 0
k (tk, ρk)

and c∗. Therefore, the proposition is proved. �
Proposition 12 implies that the D2D transmission for UEs

in “above” group are offered by the groups with high sharing
probability. This leads to the result that the pushing strategy
does not change when the sharing probabilities of “above”
groups increase.

3) Group Gm is a “Below” Group:
Proposition 13: When tm ∈ (0,∞) and ρm ∈ (ρm−1, 1]

increases, the “dividing line” declines.
Proof : The proof is similar with proposition 11. Details

are omitted for brevity. �
For example, in Fig. 3, group 3 in case (c) has a larger t3

compared with case (a). In case (c), the condition f 1
2 (t2, ρ2) >

0 is no longer satisfied for group 2, and group 3 becomes
“watershed” group.

V. SOLUTION ANALYSIS FOR PROBLEM P1

When the intragroup sharing probabilities are different with
the intergroup sharing probabilities, i.e., ρi

m �= ρo
m , the optimal

pushing strategy to Group Independent Case is feasible but not
an optimal solution for problem P1. To solve problem P1, we
propose an alternative group optimization algorithm (AGO) in
this section.

For problem P1, it is hard to find the closed-form optimal
solution due to its nonconvexity. However, this problem has a
nice property to be explored as follows. For each group Gm ,
if the pushing probabilities of other groups {G j | j �= m}
are given, the optimal pushing probability of Gm can be
achieved. For group Gm , the pushing probabilities of other
groups {G j | j �= m} are denoted by a vector c−m =
[c1, · · · , cm−1, cm+1, · · · , cM ]. If c−m is given, the offloading
gain is dependent on cm , i.e G(cm |c−m). In this case, the
objective function (11a) in problem P1 is reduced to

G−m(cm) = tm(1 − cm)
(

1 − exp(−Btmρi
mcm − ϕm

)

+
M∑

k �=m

Qk
(
1 − exp(−Btmρo

mcm − �k)
)
.

where ϕm = ∑M
k �=m Btkρo

k ck, Qk = tk(1 − ck),�k =∑M
q �=m,k Btqρo

q cq + Btkρi
kck .

Therefore, we have the following problem formulated.

P3 : max
cm

G−m(cm), (28a)

s.t. 0 ≤ cm ≤ 1. (28b)
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The second derivative of the objective function (28a) is
derived as

∂2G−m(cm)

∂c2
m

= −Bt2
mρmexp(−Btmρi

mcm − ϕm)(2 + Btmρi
m(1 − cm))

− (Btmρo
m)2

M∑

k �=m

Qkexp(−Btmρo
mcm − �k) (29)

Thus, we can claim that the objective function (28a) is a
concave function, and problem P3 is convex. Thanks to the
convexity of P3, the optimal pushing probability is derived in
the following proposition.

Proposition 14: The optimal pushing probability for group
Gm in problem P3 is c∗

m = [�m]1
0, where �m is the unique

solution of equation gm(x) = 0.

gm(x) = (1 + Btmρi
m(1 − x))exp(−Btmρi

m x − ϕm)

+ B Imρo
mexp(−Btmρo

m x) − 1 (30)

where Im = ∑M
k �=m Qkexp(−�k). x = [a]1

0 means that if
a > 1, x = 1, if a < 0, x = 0; and if 0 ≤ a ≤ 1, x = a.

Proof : Refer to the Appendix G for the detailed proof. �

Algorithm 2 Alternative Group Optimization Algorithm for
Solving Problem P1
Input: UE densities λm ; popularities wm ; D2D cooperation
area B;maximum iterations Imax

intra- and intergroup sharing probabilities ρin =
[ρi

1, · · · , ρi
M ], ρout = [ρo

1 , · · · , ρo
M ];

Step 1: Initialize c0 = [0, · · · , 0]; iteration number i = 0;
Step 2: Repeat for iteration i = 1, 2, · · · , Imax

Step 3: Repeat for group m = 1, 2, · · · , M
Step 4: Update ci−m = [ci

1, · · · , ci
m−1, ci−1

m+1, · · · , ci−1
M ]

Step 5: Update ci
m according to proposition 14.

Step 6: Update ci,m = [ci
1, · · · , ci

m , ci−1
m+1, · · · , ci−1

M ].
Step 7: Update Gi,m (ci,m) according to equation(11a);

If m = M , go to step 8. Otherwise, go to step 3.
Step 8: Let i = i + 1, and go to step 2 until i = Imax

Output: Gi,M (ci ), ci,M ;

Based on this, we adopt AGO algorithm to solve the original
problem P1. The details of the proposed iterative algorithm are
given in Algorithm 2. In AGO algorithm, the D2D offloading
gain increases after optimizing each cm as shown in step 7,
and the convergence of AGO algorithm is guaranteed. The
computation in each iteration is dominated by step 5, where
solution of transcendental equation gm(x) = 0 is achieved by
root-finding algorithm. For simplicity, we adopt the bisection
method [39] to find the root, and the maximum iteration
number of bisection search is denoted by Kb. Therefore, the
total computation complexity is O(Imax M Kb).

The convergence of AGO algorithm is proved as follows.
Let ci

m be the optimal pushing probability for group Gm in i th
iteration. Then the offloading gain is obtained as Gi,m (ci

m |ci−m)
in step 7. According to step 4 and step 6, Gi,m (ci

m |ci−m) can

Fig. 4. Offloading gain performance versus w1 with M=2.

be rewritten as

Gi,m (ci
m |ci−m) = Gi,m (ci

1, · · · , ci
m, ci−1

m+1, · · · , ci−1
M )

= Gi,m+1(ci−1
m+1|ci

−(m+1)) (31)

After updating the pushing probability ci
m+1 for group Gm+1,

the offloading gain is denoted by Gi,m+1(ci
m+1|ci

−(m+1)).
Therefore, we have the following inequality.

Gi,m+1(ci
m+1|ci

−(m+1)) ≥ Gi,m+1(ci−1
m+1|ci

−(m+1)) (32)

The reason is that ci
m+1 is obtained by proposition 14, which

is the optimal pushing probability for group Gm+1 given
ci
−(m+1) in i th iteration. However, the ci−1

m+1 is obtained as
the optimal solution for group Gm+1 in i − 1 th iteration,
which is not necessarily optimal in current iteration. Hence, in
each iteration of AGO algorithm, the offloading gain is non-
decreasing after each group updates its pushing probability at
step 5. Furthermore, the objective function of problem P1 is
upper-bounded by

G(c) ≤
∑

m∈M

tm(1 − cm) ≤
∑

m∈M

tm (33)

Thus, AGO algorithm is convergent.

VI. SIMULATION RESULTS

In this section, we carry out simulations to evaluate
the offloading performance achieved by the optimal push-
ing strategy in Group Independent Case and the proposed
AGO algorithm. We consider a single cell scenario where UEs
density λm of each group is set to be 0.05 UE per m2. The
D2D communication range is r = 5m.

A. Offloading Performance in Group Independent Case

In this part, we study the offloading performance achieved
by the optimal pushing strategy in Group Independent Case,
and the impacts of sharing probability and content request
probability on the optimal pushing strategy.

1) Offloading Performance: Fig. 4 shows the system
offloading gain G versus the content request probability in
group 1, where three cases with different system configura-
tions are considered. ρ1 represents the sharing probability in
group 1, and ρ2 and w2 represent the sharing probability and
the request probability in group 2, respectively. In general,
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Fig. 5. Offloading gain performance versus ρ1 with M=2.

when there is an increasing number of UEs requesting the
content, the offloading gain grows in all considered cases,
which benefits from the increased UE-Ts’ density and D2D
transmission success probability. Therefore, more UEs can
get this content via D2D transmission. Compared with other
cases, Case A has the lowest offloading gain, which results
from the small sharing probabilities. When w1 = 0, only
group 2 has the interested UEs. At this point, Case B has
a larger offloading gain compared with Case A and Case C,
which is due to the higher sharing probability (0.7) of group 2.
However, after w1 reaches 0.3, the offloading gain in Case B is
less than that of Case C. This is because most of UEs having
interests are from group 1 in this interval. In Case B, most
of the interested UEs are from a low sharing group, while the
majority of requests are from a high sharing group in Case C.
In Case B, more pushing efforts are made towards the low
sharing group. Therefore, the offloading gain in Case C is
better, since there are more content holders from a high sharing
group.

Fig. 5 shows the system offloading gain G versus the sharing
probability in group 1. In Fig. 5, when ρ1 is less than ρ2, the
system offloading gain stays the same in all the considered
cases. The reason is that the pushing effort is made to the
UEs in group 2, and no pushing is made to the group 1 in
this interval. The D2D communications are supplied by the
content holders in group 2, since they are more willing to
share. Only when the sharing probability of group 1 is larger
than group 2, the UEs in group 1 will receive pushing from BS.
This indicates that the emphasis of pushing is always placed
in the group with higher sharing probability. After ρ1 is larger
than ρ2, the system offloading gain increases with ρ1. This
is because most of the pushing effort is made to group 1 in
this interval. Thus, the growth of ρ1 makes the UE-Ts easier to
find D2D helpers, so that the system offloading gain increases.
The offloading gain in Case B is less than that of Case A,
which results from the smaller request probability in group 2.
Similarly, since the request probability of group 2 in Case C
is largest, the offloading gain in Case C is the largest. It is
interesting to see that the offloading gain increases no matter
whether the increased requests belong to a high sharing group.
This implies that the proposed pushing strategy is attractive for
distributing the “popular” contents.

Fig. 6. Optimal pushing strategy versus w1 with ρ1 = 0.2, ρ2 = 0.4,
w2 = 0.2.

Fig. 7. Optimal pushing strategy versus ρ1 with w1 = 0.4, w2 = 0.6,
ρ2 = 0.25.

2) Optimal Pushing Strategy: Fig. 6 shows the optimal
pushing probability in each group and the associate D2D suc-
cess probability versus the content request density in group 1.
In Group Independent Case, the D2D success probability is
the same for each group. Thus, the subscript of Pm is ignored
and it is rewritten as P. In Fig. 6, when w1 increases, the
pushing probability in group 2 increases to 1 due to the higher
sharing probability. When w1 is larger than 0.4, the number
of UE-As in group 2 is not large enough to cope with the
requests from increased number of UE-Ts in group1. This
leads to the increase of pushing probability of group 1. For the
D2D success probability P, it increases due to more pushing
efforts are made. The increasing rate of P becomes slow when
w1 > 0.2, because most of the interested UEs in the high
sharing group have already got the pushing, and the increased
pushing efforts are made to UEs in low sharing group.

Fig. 7 shows the optimal pushing strategy versus the sharing
probability in group 1. When ρ1 < ρ2, the pushing effort is
made in group 2 due to a higher sharing probability. Only
when ρ1 > ρ2, the pushing effort is changed to group 1.
However, it is interesting to see that the pushing probability
decreases with the growth of ρ1. This is because the content
holders are more willing to offer D2D transmission, and the
pushing effort can be saved. For the D2D success probabil-
ity P, it stays the same when ρ1 < ρ2 because the pushing
probability is not changed. Since the sharing probability in
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Fig. 8. Convergence property of AGO algorithm.

Fig. 9. Convergence behavior in the first iteration of AGO algorithm.

group 1 increases, P keeps to go up, though the pushing
probability decreases.

B. AGO Algorithm Performance

In this part, we will study the proposed AGO algorithm
performance in terms of convergence property and the impact
of initializations due to the nonconvexity of the original
problem P1. For each system configuration, content request
probability wm is randomly drawn from uniform distribution
in interval [0,1]. Given the constraint that ρo

m ≤ ρi
m , the

intergroup sharing probability ρo
m and intragroup sharing prob-

ability ρi
m are randomly drawn from uniform distribution in

interval [0,0.3] and [0.7,1], respectively.
1) Convergence Property: Fig. 8 shows the total offloading

gain versus the number of iterations for AGO algorithm
with different number of groups. As shown in Fig. 8, the
total offloading gain increases with iterations. The algorithm
converges rapidly to the optimum value within 2 iterations
for all considered cases, which makes this method attractive
for implementation. Therefore, we set the maximum iteration
number to be 2 in the following simulations.

Fig. 9 illustrates the convergence behavior at the first
iteration of AGO algorithm. As expected, we can see that the
offloading gain increases after each group updates its pushing
probability in step 5. This result also verifies the theoretical
results given in proposition 14.

2) Impact of Initialization: Although the convergence of
AGO algorithm is guaranteed, different initializations may

Fig. 10. Impact of initialization on AGO algorithm.

Fig. 11. Performance comparison of AGO algorithm and exhaustive search.

result in different local maximum due to the nonconvexity
of problem P1. To test the impact of different initializations,
four methods are investigated for M = 3. In Fig. 10, cout

represents the optimal pushing strategy achieved in Group
Independent Case where only intergroup sharing probabilities
are considered, i.e., ρm = ρo

m . Similarly, cin represents the
optimal pushing strategy achieved in Group Independent Case
where ρm = ρi

m . In zero initialization, the pushing probability
of each group is set to be zero. In random initialization,
the pushing probability of each group is randomly generated.
In Fig. 10, AGO algorithm converges to the same optimum for
all considered cases within 2 iterations, which shows that AGO
algorithm is not sensitive to the initialization value. In addition,
Fig. 10 shows that cout initialization is closer to the potential
optimum compared with other methods.

Fig. 11 compares the performance of AGO algorithm and
exhaustive search method in 30 randomly generated system
realizations. The pushing strategy in AGO algorithm is initial-
ized by cout , and the iteration number is set to be 2. The search
step size for pushing probability of each group in exhaustive
search is 0.001, and its total complexity is (1001)M . It can be
seen that the converged optimum is almost the same as that
of exhaustive search, which can be approximately viewed as
the globally optimum.

VII. CONCLUSION

In this paper, with the consideration of content preference
and sharing willingness of the human users, we investigated
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the optimal pushing strategy to maximize the system offload-
ing gain. UEs are classified into groups according to their
content preferences, and shared content with intergroup and
intragroup UEs at different sharing probabilities. In the con-
tent dissemination process, only the UEs having interests
will accept the content pushing. The D2D transmissions are
affected by the different sharing probabilities between groups.
By optimizing the pushing probability in each group, the
system offloading gain in terms of offloaded traffic was
maximized. Although the optimization problem is nonconvex,
the closed-form optimal pushing strategy was achieved when
intergroup sharing probability is same with the intragroup
sharing probability. In addition, an alternative group optimiza-
tion algorithm, AGO, was proposed to solve the general case
of the optimization problem. Finally, the simulation results
showed that the converged result of AGO algorithm is near
the global optimum. The impacts of the content preference and
sharing willingness on the optimal pushing strategy were also
uncovered. Specifically, the following insights are observed.

• The sharing willingness of human users is crucial to
offloading performance. Therefore, the pushing effort
should be focused on people who are more willing
to share for them to carry out D2D assisted content
offloading.

• When the majority of the interested people have low
sharing willingness, the offloading gain achieved is less
as compared to the opposite case, where majority of
interested users are willing to share the content, even
though more pushing effort is made.

When the proposed offloading algorithm is applied to the
multiple contents scenario, a coupling effect will be considered
due to the limited energy budget of UEs. Moreover, the
frequency resource allocation and interference management
could be integrated into the proposed scheme, which will be
investigated in our future work.

APPENDIX A
PROOF OF LEMMA 1

Assuming that there exist two different groups Gi and G j ,
such that their optimal pushing probabilities c∗

i and c∗
j are

between zero to one. Since the objective function G f (c) of
problem P2 has the maximum value at point c∗, c∗ is the
solution of the following equation set:

∂G f (c)

∂ci
= 0,

∂G f (c)

∂c j
= 0. (A.1)

To make it more clear, the equation set is rewritten as

1 + Bρi

∑

k∈M

tk(1 − ck) = exp

(
B

∑

k∈M

tkρkck

)
, (A.2)

1 + Bρ j

∑

k∈M

tk(1 − ck) = exp

(
B

∑

k∈M

tkρkck

)
. (A.3)

In non-uniform sharing scenario, we have ρi �= ρ j , so that the
equation set has no feasible solution. Hence, there is at most
one group Gi with the optimal c∗

i between 0 and 1. �

APPENDIX B
PROOF OF LEMMA 2

For problem P2, it is not hard to verify that the linear
independence constraint qualification (LICQ) [40] holds for all
feasible pushing strategies. Therefore, the qualification applies
at the global optimum. This implies that the Karush-Kuhn-
Tucker (K.K.T) conditions are necessary conditions for the
global optimum. The Lagrangian associated with problem P2
is

L(α,β, c) =
∑

m∈M

tm(1 − cm)

(
1 − exp(−B

∑

k∈M

tkρkck)

)

+
∑

m∈M

αmcm −
∑

m∈M

βm(cm − 1) (B.1)

where α = [α1, α2, · · · , αM ], β = [β1, β2, · · · , βM ]. αm and
βm are the non-negative dual variables associated with the
constraints cm ≥ 0 and cm − 1 ≤ 0, respectively.

Thus, we have the following K.K.T conditions.

∂L(α,β, c)
∂cm

= 0, ∀m ∈ M , (B.2)

αmcm = 0, ∀m ∈ M , (B.3)

βm(cm − 1) = 0, ∀m ∈ M , (B.4)

αm ≥ 0, βm ≥ 0, ∀m ∈ M , (B.5)

0 ≤ cm ≤ 1, ∀m ∈ M . (B.6)

From (B.2), we can obtained that

exp(−B
∑

k∈M

tkρkck)

(
Bρm

∑

k∈M

tk(1 − ck) + 1

)
− 1

= 1

tm
(βm − αm),∀m ∈ M (B.7)

At the global optimal pushing strategy, if 0 < c∗
m < 1, then

αm = 0, and βm = 0. Therefore, following equation holds,

Bρm

∑

k∈M

tk(1 − ck) + 1 = exp(B
∑

k∈M

tkρkck). (B.8)

For the group Gi , from its associated K.K.T condition
∂L
∂ci

= 0, the following equation holds in the global optimal
pushing strategy,

exp(−B
∑

k∈M

tkρkck)

(
Bρi

∑

k∈M

tk(1 − ck) + 1

)
− 1

= 1

ti
(βi − αi ) (B.9)

If ρi < ρm , combing (B.9) with (B.8), it can be derived that

βi − αi < 0. (B.10)

Given the fact that the dual variables are non-negative, thus
αi > 0 and c∗

i = 0. Similarly, for group G j , if ρ j > ρm , from
its associated K.K.T condition that ∂L

∂c j
= 0, we can obtain

that

β j − α j > 0. (B.11)

Therefore, it can be inferred that β j > 0 and c∗
j = 1. �
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APPENDIX C
PROOF OF COROLLARY 4

According to Theorem 2, for each group Gi with 1 ≤ i ≤
m − 1, the optimal pushing probability is c∗

i = 0. For each
group G j with m+1 ≤ j ≤ M , the optimal pushing probability
is c∗

j = 0, so that (B.8) is simplified to

Bρm(

m∑

i=1

ti − tmc∗
m) + 1 = exp

⎛

⎝
M∑

j=m+1

Bt jρ j + Btmρmc∗
m

⎞

⎠ .

(C.1)

By employing the following equation that

eax+b = cx + d → x = −d

c
− 1

a
W (−a

c
eb− ad

c ), (C.2)

where W is the Lambert-W function, the equation (14) is
obtained. �

APPENDIX D
PROOF OF THEOREM 5

Lemma 15: Assuming that M groups are sorted in the order
ρ1 < ρ2 < · · · < ρM , then there is at most one group that
satisfies the conditions (15) and (16) at the same time.
Lemma 15 is introduced to facilitate the proof, where its proof
is provided in Appendix E.

The proof of Theorem 5 goes by contradiction for both “if ”
part and “only if ” part.

First consider the proof of “if ” part. If the conditions
in (15) and (16) hold for group Gm simultaneously, we
suppose that group Gm is not “watershed” group. According
to Lemma 1, the optimal pushing probability of group Gm is
either c∗

m = 1 or c∗
m = 0. In the following part, we will show

that the assumption c∗
m = 1 contradicts condition (16) and

c∗
m = 0 contradicts condition (15).

If c∗
m = 1, according to Corollary 3, it is inferred that c∗

j = 1
for all groups G j with m +1 ≤ j ≤ M . Therefore, the optimal
pushing strategy is c∗ = [c∗

1, · · · , c∗
m−1, 1, · · · , 1︸ ︷︷ ︸

M−m+1

], and the

K.K.T condition (B.7) is reduced to

exp(−B
m−1∑

i=1

tiρi c
∗
i − B

M∑

j=m

t jρ j )

×
(

Bρm

m−1∑

i=1

ti (1 − c∗
i ) + 1

)
− 1

= 1

tm
(βm − αm) (D.1)

In addition, since c∗
m = 1, then αm = 0 and βm ≥ 0. The

following inequality is inferred from (D.1).

Bρm

m−1∑

i=1

ti (1 − c∗
i ) + 1 ≥ exp

⎛

⎝B
m−1∑

i=1

tiρi c
∗
i + B

M∑

j=m

t jρ j

⎞

⎠.

(D.2)

Due to the fact that 0 ≤ ci ≤ 1, from the RHS of (D.2), we
obtain that

exp

⎛

⎝B
m−1∑

i=1

tiρi c
∗
i + B

M∑

j=m

t jρ j

⎞

⎠ ≥ exp(B
M∑

j=m

t jρ j ).

(D.3)

From the LHS of (D.2), the following inequality is obtained.

Bρm

m−1∑

i=1

ti + 1 ≥ Bρm

m−1∑

i=1

ti (1 − c∗
i ) + 1. (D.4)

Substituting (D.4) and (D.3) in (D.2), the following inequal-
ity is obtained, which contradicts condition (16).

Bρm

m−1∑

i=1

ti + 1 ≥ exp(B
M∑

j=m

t j ρ j ). (D.5)

If c∗
m = 0, according to Corollary 3, we infer that c∗

i = 0
for all groups Gi with 1 ≤ i ≤ m − 1. Therefore, the
optimal pushing strategy is c∗ = [0, · · · , 0︸ ︷︷ ︸

m

, c∗
m+1, · · · , c∗

M ].
The K.K.T condition in (B.7) is reduced to

exp(−B
M∑

j=m+1

t jρ j c
∗
j )

×
⎛

⎝Bρm

M∑

j=m+1

t j (1 − c∗
j ) + Bρm

m∑

i=1

ti + 1

⎞

⎠ − 1

= 1

tm
(βm − αm) (D.6)

In addition, since c∗
m = 0, then αm ≥ 0 and βm = 0, the

following inequality is inferred from (D.6).

Bρm

M∑

j=m+1

t j (1 − c∗
j )+Bρm

m∑

i=1

ti +1 ≤ exp

⎛

⎝B
M∑

j=m

t jρ j c
∗
j

⎞

⎠.

(D.7)

Due to the fact that 0 ≤ c j ≤ 1, the following inequalities are
obtained from the RHS and the LHS of (D.7), respectively.

exp

⎛

⎝B
M∑

j=m

t j ρ j c
∗
j

⎞

⎠ ≤ exp

⎛

⎝B
M∑

j=m

t jρ j

⎞

⎠,

(D.8)

Bρm

M∑

j=m+1

t j (1 − c∗
j ) + Bρm

m∑

i=1

ti + 1 ≥ Bρm

m∑

i=1

ti + 1.

(D.9)

Combine (D.8) (D.9) with (D.7), the following inequality is
readily obtained.

Bρm

m∑

i=1

ti + 1 ≤ exp

⎛

⎝B
M∑

j=m

t jρ j

⎞

⎠ . (D.10)

Obviously, (D.10) contradicts the condition (15).
Overall, if the conditions in (15) and (16) hold for group Gm

at the same time, the optimal solution of group Gm is larger
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than 0 and less than 1. Therefore, the optimal solution of P2 is
obtained as c∗ = [0, · · · , 0︸ ︷︷ ︸

m−1

, c∗
m , 1, · · · , 1︸ ︷︷ ︸

M−m

], where c∗
m is given

by (14).
Next, consider “only if ” part. Suppose that c∗ =

[0, · · · , 0︸ ︷︷ ︸
m−1

, c∗
m, 1, · · · , 1︸ ︷︷ ︸

M−m

] is the optimal pushing strategy, mean-

while condition (15) or condition (16) is not satisfied. Never-
theless, the following proof proves that there exists a different
pushing strategy which achieves a larger offloading gain
than c∗. The offloading gain achieved by c∗ is

G f (c∗) =
(

m∑

i=1

ti − tmc∗
m

)

×
⎛

⎝1 − exp

⎛

⎝−B
M∑

j=m+1

t j ρ j − Btmρmc∗
m

⎞

⎠

⎞

⎠.

(D.11)

According to the proof of Corollary 4, the following equa-
tion holds for c∗

m .

Bρm

(
m∑

i=1

ti − tmc∗
m

)
+1= exp

⎛

⎝
M∑

j=m+1

Bt jρ j + Btmρmc∗
m

⎞

⎠.

(D.12)

Substituting the LHS of equation (D.12) into (D.11), we have

G f (c∗) = Bρm L2
m

Bρm Lm + 1
. (D.13)

where Lm =
m∑

i=1
ti −tmc∗

m and Rm =
M∑

j=m+1
Bt jρ j +Btmρmc∗

m .

If the condition (15) is not satisfied, the following inequality
holds.

1 + Bρm

m∑

i=1

ti ≤ exp

⎛

⎝B
M∑

j=1+m

t jρ j

⎞

⎠ . (D.14)

We define a feasible pushing strategy as c0 =
[0, · · · , 0︸ ︷︷ ︸

m

, 1, · · · , 1︸ ︷︷ ︸
M−m

]. It is easy to verify that the objective

value of P2 achieved by c0 is

G f (c0) =
m∑

i=1

ti

⎛

⎝1 − exp

⎛

⎝−B
M∑

j=m+1

t j ρ j

⎞

⎠

⎞

⎠ . (D.15)

Then, according to equation (D.14), it can be inferred that

G f (c0) ≥
Bρm

(
m∑

i=1
ti

)2

Bρm

m∑
i=1

ti + 1
. (D.16)

Denote function u(x) = ax2

ax+1 . We have u′(x) = ax2+2ax
(ax+1)2 >

0, ∀x > 0. Therefore, function u(x) is a strictly increasing

function. Since
m∑

i=1
ti > Lm , it can be obtained that G f (c0) >

G f (c∗). Therefore, this contradicts with the presumption that
c∗ is the optimal pushing strategy.

If the condition (16) is not satisfied, we can find another
feasible solution denoted by c1 = [0, · · · , 0︸ ︷︷ ︸

m−1

, 1, · · · , 1︸ ︷︷ ︸
M−m+1

]. It is

easy to verify that G f (c1) > G f (c∗), which also contradicts
that c∗ is global optimum. The proof is similar with the
procedure from (D.14) to (D.16), and it is omitted for brevity.
Therefore, the c∗ = [0, · · · , 0︸ ︷︷ ︸

m−1

, c∗
m , 1, · · · , 1︸ ︷︷ ︸

M−m

] is the optimal

solution of problem P2, where c∗
m is given by (14), only if

the two conditions (15) and (16) hold at the same time.
By combining the proofs of “if ” part and “only if ” part,

Theorem 5 is proved. �

APPENDIX E
PROOF OF LEMMA 15

We prove the uniqueness by contradiction. It is assumed that
two different groups Gm and Gk both satisfy the two conditions
(16) and (15). Without loss of generality, it is assumed that
ρk > ρm . In this case, since M groups are sorted in the order
ρ1 < ρ2 < · · · < ρM , then k − 1 ≥ m. For group Gk , the
condition (16) is written as

1 + Bρk

k−1∑

i=1

ti < exp

⎛

⎝B
M∑

j=k

t jρ j

⎞

⎠ . (E.1)

However, for the left hand side (LHS) of (E.1), we have the
following inequality

1 + Bρm

m∑

i=1

ti < 1 + Bρk

k−1∑

i=1

ti . (E.2)

For the right hand side (RHS) of (E.1), we have

exp

⎛

⎝B
M∑

j=k

t jρ j

⎞

⎠ ≤ exp

⎛

⎝B
M∑

j=m+1

t jρ j

⎞

⎠ . (E.3)

Substituting (E.2) and (E.3) into (E.1), the following inequality
is obtained.

1 + Bρm

m∑

i=1

ti < exp(B
M∑

j=m+1

t jρ j ). (E.4)

However, according to the above assumption, condition (15)
also holds for group Gm , which is contradictory to (E.4). When
ρk < ρm , similar proof will follow. Therefore, when the
sharing probabilities are different by different groups, there
is at most one group that satisfies (15) and (16) at the same
time. �

APPENDIX F
PROOF OF THEOREM 9

Sort the M groups in the ascending order of ρm , i.e., ρ1 <
· · · < ρk1 = · · · = ρkn < · · · < ρM . Let K = {k1, · · · , kn}
denotes the set of groups with the same sharing probabil-
ity. We define a new group 0 with sharing probability that
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ρ0 = ρk1 = · · · = ρkn , and the request density of this group 0
is denoted as t0, which is given by

t0 =
kn∑

k=k1

tk, c0 = 1

t0

kn∑

k=k1

tkck . (F.1)

where c0 is the pushing probability of group 0.
By substituting group 0 for the groups in K , the objective

function G f is caculated as

G f =
(

∑

m∈M ′
tm(1 − cm) + t0(1 − c0)

)

×
(

1 − e
−B

∑

m∈M ′
tmρm cm−Bt0ρ0c0

)
(F.2)

Problem P2 is reduced to

P2.1 : max
cm ,c0

G f (F.3a)

s.t. 0 ≤ cm ≤ 1, m ∈ M ′ (F.3b)

0 ≤ c0 ≤ 1 (F.3c)

where M ′ is set of the left M − n groups, i.e., M ′ =
M − K . Obviously, problem P2.1 is the same as non-uniform
sharing scenario, except that total group number is changed to
M − n + 1, and the optimal solution can be obtained directly
from Theorem 8.

We denote the optimal pushing strategy of group 0 as c∗
0.

It is easy to verify that for a given c∗
0, there exists multiple

(c∗
k1

, · · · , c∗
kn

) that satisfy the following condition.

t0c∗
0 =

kn∑

k=k1

tkc∗
k . (F.4)

For example, a special case is c∗
k1

= · · · = c∗
kn

= c∗
0. �

APPENDIX G
PROOF OF PROPOSITION 14

Since P3 is a convex problem and satisfies the Slater’s
condition, we can solve P3 by solving its dual problem due to
the zero gap between them [31]. The Lagrangian associated
with this problem is written as

Lm(cm, γm, ηm) = G−m(cm) + γmcm − ηm(cm − 1). (G.1)

where γm and ηm denote the dual variables associated with
constraint cm ≥ 0 and cm ≤ 1, respectively. The dual problem
of P3 is given by

min
γm ,ηm

sup
cm

Lm(cm, γm , ηm). (G.2)

Accordingly, the K.K.T conditions are given by

∂Lm(cm, γm, ηm)

∂cm
= 0, (G.3)

γmcm = 0, (G.4)

ηm(cm − 1) = 0, (G.5)

γm ≥ 0, ηm ≥ 0, (G.6)

cm ≥ 0, 1 − cm ≥ 0. (G.7)

For simplicity, we define function

gm(x) = (1 + Btmρm(1 − x))exp(−Btmρm x − ϕm)

+ B Imρo
mexp(−Btmρo

m x) − 1 (G.8)

where Im = ∑M
k �=m Qkexp(−�k).

It is easy to verify that g′
m(x) < 0, so that gm(x) is a

monotonically decreasing function w.r.t x for all m ∈ M . First,
it follows that lim

x→−∞ gm(x) → +∞ > 0, and lim
x→+∞ gm(x) =

−1 < 0. This implies that function gm(x) = 0 has a unique
solution for each m ∈ M . The unique solution for a given m
is denoted by �m , which can be calculated by the root-finding
algorithms, e.g., the bisection method.

By taking the deritivative of the Lagrangian w.r.t cm , (G.3)
is given by

gm(cm) + 1

tm
(γm − ηm) = 0. (G.9)

Then we discuss the optimal solution satisfying K.K.T condi-
tions in the three possible regions of �m , i.e., (−∞, 0), [0, 1],
and (1,+∞), respectively.

• When �m ∈ (−∞, 0), we have gm(cm) < 0 for any cm ∈
[0, 1]. Therefore, from (G.9), we can infer that γm −ηm >
0. Since dual variables are non-negative, we can claim
that γm > 0 and the optimal pushing probability c∗

m = 0.
• When �m ∈ [0, 1], due to the complementary slackness

conditions in (G.4) and (G.5), it follows that γm = ηm =
0. Thus, the optimal pushing probability c∗

m = �m .
• When �m ∈ (1,+∞), gm(cm) > 0 for cm ∈ [0, 1].

Therefore, we have ηm > 0 and c∗
m = 1.

Overall, we can conclude that the optimal pushing proba-
bility for group Gm in problem P3 is [�m ]1

0, where a = [x]1
0

means that if x > 1, a = 1; if x < 0, a = 0, and if 0 ≤ x ≤ 1,
a = x . Thus, the Proposition 14 is proved. �
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