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Abstract  

 

The prediction of wheel wear is a significant issue in railway vehicles. It is correlated with safety against 

derailment, economy, ride comfort, and planning of maintenance interventions, and it can result in delay, 

and costs if it is not predicted and controlled in an effective way. However, the prediction of wheel and rail 

wear is still a great challenge for railway systems. Therefore, the main aim of this thesis is to develop a 

method for predicting wheel wear using artificial neural networks.  

Initial tests were carried out using a pin-on-disc machine and this data was used to establish how wear can 

be measured using an Alicona profilometer.  

A new method has been developed for detailed wheel wear and rail wear measurements using ‘Replica’ 

material which was applied to the wheel and rail surfaces of the test rig to make a copy of both surfaces. 

The replica samples were scanned using an optical profilometer and the results were processed to establish 

wheel wear and rail wear. The effect of load, and yaw angle on wheel wear and rail wear were examined. 

The effect of dry, wet, lubricated, and sanded conditions on wheel wear and rail wear were also investigated. 

A Nonlinear Autoregressive model with eXogenous input neural network (NARXNN) was developed to 

predict the wheel and rail wear for the twin disc rig experiments. The NARXNN was used to predict wheel 

wear and rail wear under deferent surface conditions such as dry, wet, lubricated, and sanded conditions.  

The neural network model was developed to predict wheel wear in case of changing parameters such as 

speed and suspension parameters. VAMPIRE vehicle dynamic software was used to produce the vehicle 

performance data to train, validate, and test the neural network. Three types of neural network were 

developed to predict the wheel wear: NARXNN, backpropagation neural network (BPNN), and radial basis 

function neural network (RBFNN). The wheel wear was calculated using an energy dissipation approach 

and contact position on straight track. 

 The work is focused on wheel wear and the neural network prediction of rail wear was only carried out in 

connection with the twin disk wear tests. This thesis examines the effect of neural network parameters such 

as spread, goal, maximum number of neurons, and number of neurons to add between displays on wheel 

wear prediction.  

The neural network simulation results were implemented using the Matlab program. The percentage error 

for wheel and rail wear prediction was calculated. Also, the accuracy of wheel and rail wear prediction 

using the neural network was investigated and assessed in terms of mean absolute percentage error (MAPE). 

The results reveal that the neural network can be used efficiently to predict wheel and rail wear.    

Further work could include rail wear and prediction on a curved track.   
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Symbols 

a, b   Contact ellipse semi-axes 

W1  Vertical wear 

W2   Horizontal wear  

h  Vertical distance  

W3   Wear measured at some angle ⍺ 

X         Longitudinal axis 

Y         Lateral axis  

Z         Vertical axis  

V       Direction of travel  

V   Volume of material removed 

KR   Reye’s wear constant 

W   Work dissipated 

V   Volume of material removed 

Z   Probability of removal of an atom per atomic encounter  

p   Load applied 

pm   Flow pressure  

W       Applied load 

H        Hardness of a softer material 

k        Probability of removing a wear particles  

d        Sliding distance 

Q      Volume of wear material 

w   Wear volume per unit sliding distance  

Pn  Normal load 

a  Contact spot radius 

pm   Yield pressure of a plastically deformed asperity 

𝐕𝐧  Volume  

in          Wear rate  

I∗         Total wear rate 

P         Total normal load on the contact   

I         Volume worn per unit sliding distance (wear rate) 

P         Normal load 

H         Hardness of the softer material 

k         Wear coefficient   

V   Volume of wear  

k   Wear coefficient 
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S   Sliding distance 

H   Hardness of material 

N       Normal load 

L       Sliding distance 

FN        Normal load 

P           Contact pressure 

Vslip       Sliding velocity 

D         Wheel diameter 

T          Creep force    

γ           Creepage 

V    Volume of wear 

S           Sliding distance 

P          Normal force 

KA       Wear coefficient 

Ṡ           Slip velocity 

p          Contact pressure 

A         Contact area 

γ         Slip 

K        Wear coefficient 

WI  Wear index  

K         Constant 

T1      Longitudinal creep force 

T2       Lateral creep force 

γ1      Longitudinal creepage 

γ2       Lateral creepage 

d          Pin wear scar diameter 

r           Pin radius 

h          Height of material removed for pin 

R         Disc wear track radius 

d         Disc wear track width 

g(z)       Sigmoid function 

z        Constant 

y(t)      Output of the network  

u(t)       Input of the network  

t           Time 

n          Input-memory order 
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m          Output-memory order 

W        Weights matrix 

f           Nonlinear function 

x       Input 

y      Actual output 

d     Delay 

wn    Weights 

ŷ      Estimated output 

u(t)    Input 

y(t)      Desired output 

ŷ(t)    Estimated output 

ti       Target output  

yi    Estimated output 

Wij(t)     Old connection weight between node i and node j of the above layer 

Wij(t + 1)  New connection weight between node i and node j of the above layer 

η     Learning rate 

δ       Error term of the node  

O   Actual output of the node.  

X1, X2,X3, Xm    Inputs 

C1, C2, … , Cm    Centres  

∅         Activation function 

W        Weights 

y  Output of RBFNN  

σ             Width of activation function 

Edist          Euclidean distance 

Xi           Inputs 

ci           Centres 

r  Difference between centres and inputs   

n            Vector dimension 

W(t + 1)   Updated weights 

W(t)      Previous weights  

y(t)       Desired output 

ym(t)     Output of the network 

ΦT(t)     Hidden output (Gaussian output) 

μ             Learning factor  

P          Input vectors 
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T          Target vectors 

MN     Maximum number of neurons 

DF       Number of neurons to add between displays 

Ai       Actual wear 

Pi       Predicted wear 

𝑥   actual measurement 

𝑦       estimated measurement 

i        Time period 

N       Number of time periods (number of observed values)   

Tγ     Energy dissipated in the wheel–rail contact 

T   Total creep force 

γ   Creepage 

P00, P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, P34, P41, P42, P43, 𝑎𝑛𝑑 P44 Wheel profiles 
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RCF  Rolling contact fatigue 

EMU  Electric multiple unit   

SEM   Scanning electron microscopy  
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Chapter 1 Introduction  

1.1 Background  

 

Wear is usually defined as the removal of material from contacting surface by mechanical action [1]. Wheel 

wear and rail wear are the loss of material from the contacting surface due to rail/wheel interaction. Rail 

wear is dependant on several parameters  such as axle load, train speed , wheel material type, rail material 

type, curvature, traffic type, lubrication, and environmental conditions [2]. Wheel wear is one of the most 

significant problems affecting the cost and performance of railway transportation systems [1]. Wheel and 

rail wear is a significant issue in railway systems. Accurate prediction of this wear can improve economy, 

ride comfort, prevention of derailment and planning of maintenance interventions. Poor prediction can 

result in failure and consequent delay and increased costs if it is not controlled in an effective way. 

However, prediction of wheel and rail wear is still a great challenge for railway engineers and operators.  

 

Artificial neural network is currently used to solve a wide range of complex engineering problems. It has 

the ability to learn by example, consequently, it is a very useful for simulation of any correlation that is 

difficult to describe with physical models or other mathematical approaches [3]. Though perfect prediction 

is seldom possible, neural networks can be used to make reasonably good predictions in a number of cases. 

In particular, feedforward neural networks have been used frequently in this respect [4].   

 

In this project, artificial neural networks were developed to predict wheel wear and rail wear.   
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1.2 Research motivation  

 

One of the most critical issues in the railway system is the wheel and rail wear, these issue have a significant 

impact on the maintenance costs of the railway networks, where the track maintenance is one of the major 

expenditures for the railways. The wheel and rail wear prediction is therefore a very important issue in 

railway systems.       

 

Railway spending can be divided into three categories: the cost to maintain the railways, the cost to develop 

and improve the railways, and the cost to run the railway [5]; As an examples of the cost maintenance:   

 From 1980 to 2015, America’s freight railroads spent more than $600 billion on maintenance 

expenses  and capital expenditures related to tracks, freight cars , locomotives, bridges, tunnels and 

other equipment and infrastructure [6].  

 In 2014/15, Network Rail Limited in the UK made expenses of £1.5 billion for operating and 

maintaining the network [7]. 

 In 2013/14 the Train Operating Companies (TOCs) paid Network Rail a total of £2.4bn in track 

access charges, of these charges approximately £1bn was used for ongoing maintenance of the 

infrastructure including track damage maintenance [8]. 

 

Wheelsets are one of the most expensive components through the life of a rail vehicle. They require regular 

maintenance activities such as reprofiling on a wheel lathe, inspection for safety-critical damage to wheel 

and axle, and renewal of wheelset. There are several reasons for reprofiling such as tread wear, flange wear, 

and thermal. For example, the tread wear and flange wear are one of the most important reasons for 

reprofiling for the UK train type “commuter EMU” such as shown in Figure 1.1 [9].   

 

 

Figure 1. 1 Dominant reasons for reprofiling for UK train type “commuter EMU” [9]    
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Different types for the UK vehicles are shown in Figure 1.2.  

 

 

 

Figure 1. 2 Different types for the UK vehicles 

 

Rail and wheel damage has been a concern in railway systems for several decades [10]. This thesis focuses 

on the prediction of wheel wear and rail wear using artificial neural networks to help the industry to control 

its maintenance costs. Several tests were carried out to study the wheel wear and rail wear such as the 

investigation of load, yaw angle, speed, and surface conditions on wheel wear and rail wear.  

 

1.3 Research Aims and Objectives  

The main aim of this research is to assess whether a neural network can predict wear at the railway wheel-

rail interface and, if so, to develop a neural network model to predict the wheel wear and rail wear in railway 

vehicle in order to optimise maintenance and increase the operative life of wheels and rails.  

       

The objectives of this project are defined as follows:    

I. Preliminary investigations of the wear process 

1. Carry out pin-on-disc tests and measure pin wear and disc wear using 3D optical methods. 

2. Investigate the effects of load on pin wear and disc wear for pin-on-disc experiments. 

 

II. Investigation of wheel-rail wear using a twin disc rig 

1. Develop a new method for wheel wear and rail wear measurements using replica material, an Alicona 

profilometer, and a twin disc test rig.   

2. Investigate the effects of load, yaw angle, and surface conditions on wheel wear and rail wear using a 

twin disc test rig.       

 

III. Investigate the use of neural network techniques for prediction of wheel-rail wear 

1. Develop a neural network model to predict wheel wear and rail wear for the twin disc rig experiments.   

2. Develop a neural network model to predict wheel wear for a railway vehicle. 

3. Validate the neural network model using the VAMPIRE vehicle dynamics software including tests such 

as change of speed, change of longitudinal bush stiffness, change of lateral bush stiffness, change of vertical 
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bush stiffness, change of longitudinal shear stiffness, change of lateral shear stiffness, and change of vertical 

shear stiffness.  

4. Investigate the effects of neural network parameters on wheel wear prediction.  

  

1.4 Methodology 

A pin-on-disc test was carried out in this work to understand the wear behaviour, and to understand how 

the wear can be measured. Pin wear and disc wear were measured using an Alicona profilometer.  

 

A twin disc tests were carried out to understand wear behaviour for wheel-rail contact. A novel method was 

developed for wheel and rail wear measurements. Replica material plus an Alicona profilometer were used 

for wheel wear and rail wear measurements to a twin disc test rig experiments. The University of 

Huddersfield twin disc test rig was used to establish some realistic conditions for wheel wear and rail wear. 

This test was used to investigate the effect of some parameters such as load, yaw angle, and surface 

conditions on wheel wear and rail wear.   

 

Due to the fact that only three parameters: load, yaw angle, and speed can be controlled using the University 

of Huddersfield twin disc test rig, VAMPIRE vehicle dynamics simulations were used to perform several 

tests to predict the wheel wear using neural networks. Energy dissipated and the contact position between 

wheel and rail were used to update the wheel profile after different running distances. Then, wheel wear 

was calculated using the energy dissipated between wheel and rail.    

Neural networks were developed for wheel wear and rail wear prediction and Matlab was used to implement 

the results. A nonlinear autoregressive model with exogenous input neural network (NARXNN), 

backpropagation neural network (BPNN), and radial basis function neural network (RBFNN) were 

developed to predict wheel/rail wear. Series-parallel NARXNN and parallel NARXNN was used to predict 

he wheel/rail wear for the twin disc rig tests. The inputs of neural network for a twin disc rig tests were 

load, yaw angle, speed, wheel/rail profile, and first/second derivative for wheel/rail profile; while the output 

of the neural network was wheel/rail wear. The inputs of neural network for VAMPIRE simulations were 

speed, running distance, longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, 

longitudinal bush stiffness, lateral bush stiffness, vertical shear stiffness, wheel profile, first derivative of 

wheel profile, and second derivative of wheel profile; while the output of the neural network was railway 

wheel wear. The architecture of BPNN for wheel wear prediction was 5-7-2-1; while the RBFNN was 

designed using newrb command. The effect of neural network parameters on wheel wear prediction was 

investigated.  
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The structure of this thesis is illustrated in Figure 1.3. 

This thesis is organised as follows:   

Chapter 1 presents the background of the topic to be investigated, the motivations which have led to this 

research, the aims and objectives, methodology, structure of the thesis, introduction to wear, introduction 

to railway system, wheel wear and rail wear, wear measurement methods and wear testing methods, and 

multibody dynamics.   

  

Chapter 2 includes a literature review, it reviews the current wear models, the use of computer software in 

wheel wear estimation, and the use of neural networks for wear prediction and prediction purposes in 

general.    

  

Chapter 3 describes the materials and devices which were used for pin-on-disc wear experiments such as 

pin-on-disc machine, and Alicona profilometer, and pin wear and disc wear measurements. The pin-on-disc 

test is reported in this chapter to show how the wear can be measured using a 3D optical profilometer.  

  

Chapter 4 introduces the twin disc test rig, this test was used to study wheel wear and rail wear. A replica 

material, Alicona profilometer, and twin disc test rig were used to investigate the effects of load, yaw angle, 

and surface conditions on wheel wear and rail wear.    

 

Chapter 5 presents an introduction to the neural network, training of the neural network, and the three types 

of neural networks which were used to predict wheel wear and rail wear in this thesis; Also, this chapter 

contains the prediction of wheel wear and rail wear using a Nonlinear Autoregressive model with 

eXogenous input neural network (NARXNN) for the twin disc test experiments.  

     

Chapter 6 contains the prediction of wheel wear using NARXNN for VAMPIRE vehicle dynamic software 

simulations. The VAMPIRE vehicle dynamics software was used to carry out several tests such as a change 

of some parameters such as speed, longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, 

longitudinal bush stiffness, lateral bush stiffness, and vertical shear stiffness; the simulation results were 

then used to train, validate, and test the neural network for wheel wear prediction using the neural network.     

    

Chapter 7 contains the prediction of wheel wear using NARXNN, BPNN, and RBFNN for VAMPIRE 

vehicle dynamic software simulations, this was done to present that the wheel wear can be predicted using 

different types of neural networks. In this chapter the effects of the RBFNN parameters on wheel wear 

prediction were investigated. Also, this chapter includes an investigation of the accuracy of these three 

types of neural networks for wheel wear prediction.    

 

Chapter 8 contains the discussion, conclusions, and future work.       
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The major contribution to knowledge of this work is outlined below: 

1. The development of a neural network model for wheel and rail wear prediction:  

a. Neural network architecture: a nonlinear autoregressive model with exogenous input 

neural network (NARXNN) in series-parallel and parallel architecture were developed to 

predict the wheel and rail wear for a twin disc test rig experiments.  

b. Neural network types: types of neural network such as backpropagation neural network 

(BPNN), and radial basis function neural network (RBFNN) have been shown to be able 

to predict railway wheel wear under dynamic conditions.        

c. Neural network inputs: the inputs to the neural network that are required to provide 

effective prediction of wheel-rail wear have been established. These include load, yaw 

angle, track speed, running distance, longitudinal bush stiffness, lateral bush stiffness, 

vertical bush stiffness, longitudinal bush stiffness, lateral bush stiffness, vertical shear 

stiffness, wheel profile, and first/second derivative of wheel profile.   

d. Neural network parameters: the effect of various key neural network parameters on the 

ability to predict wheel-rail wear have been established. The effect on the accuracy of 

wheel/rail wear prediction of the correct selection of neural network parameters has been 

established.    

 

In this project, a new method was developed for wheel and rail wear measurement using a replica material, 

Alicona profilometer, and a twin disc test rig. The replica samples were scanned using an optical 

profilometer and the wheel and rail wear was studied. The new method has been shown to be effective in 

investigating the effect of load, yaw angle, and surface conditions (dry, wet, lubricated, and sanded 

conditions) on wheel wear and rail wear.      
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Figure 1. 3 Structure of the thesis    
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1.5 Introduction to wear 

The generally accepted definition of wear is the loss of material which happens as a consequence of relative 

motion at the surface [11]. Wear may result whenever there is a rolling, sliding, or impact motion 

between two solid surfaces [12]. The wear rate depends on working conditions such as lubrication, 

loading, and environment [11]. Wear cannot be eliminated totally, but it can be decreased. 

Furthermore, there are several methods to reduce the wear such as the selection of material and 

lubrication [13]. There are many types of wear but the most common types are the abrasive, adhesive, 

fretting, erosion, fatigue, and chemical wear  [11]-[15].  

 

Abrasive wear grows when a solid surface slips on a weaker surface. It involves two possible conditions: 

two body abrasion and three body abrasion. In the two-body abrasion the solid surface is the more solid of 

the two rubbing surfaces. In the three-body abrasion the solid surface is a third body, usually pieces of grit 

trapped between the two other surfaces which are hard enough and able to scratch two surfaces. Abrasive 

wear is shown in Figure 1.4 [12], [16].     

 

 

 

Figure 1. 4 Abrasive wear [16] 
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Adhesive wear arises when there is a reciprocal transfer of particles through a hard surface and a soft 

surface. The process involves the transfer of the particles from one surface to the other. The asperities so 

formed can break in the softer material or in the harder material which leads to a mutual transfer of 

materials in moving contact. Adhesive wear is shown in Figure 1.5 [14], [17].       

 

Figure 1. 5 Adhesive wear [14] 

 

Erosion wear can occur by streams of hard particles, and the effect of a liquid. Cavitation erosion is 

the most common type of erosion wear. The erosion wear phenomenon is shown in Figure 1.6. When the 

solid particle A is impacted with solid surface B, a part of the surface B is removed. Several factors affect 

the erosion process such as effect angle, effect velocity, and particle size [16], [18].      

 

Figure 1. 6 Schematic of erosion wear [16] 

 

Fatigue wear occurs when the surface yields to cyclic loading. At the point where the shear stress is 

maximum  small cracks are initiated, and then, propagate to the surface of material [19], [20]. Fatigue wear 

can be observed in rolling wear, sliding wear, and impacting wear processes as well. Such as shown in 

Figure 1.7, a cracks are initially produced, then these cracks grow and propagate through the surface of the 

material to form cracks under repeated sliding motion. When one surface continues to slide against another 

surface, the material on the contact surface is broken and wear debris is generated [21].     
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Figure 1. 7 Fatigue wear [21] 

 

Chemical or corrosive wear results from the interaction of the environment with sliding surfaces. The 

undesired deterioration of a material through chemical or electrochemical interaction with the environment 

may be defined as the corrosion wear. The sliding motion and chemical reaction are both required for 

corrosive wear [19], [22]. Corrosion wear is a type of chemical wear [11].  

 

Fretting wear arises if there are slight oscillatory movements between two surfaces. Also, when small 

relative slipping motion takes place between two surfaces the result is an amount of fine wear debris which 

is known as fretting wear [11]. 

 

Adhesive wear, abrasive wear, fatigue wear, and corrosive wear can be recognized as the major wear types. 

These four wear types are shown in Figure 1.8 [19].    

 

 

Figure 1. 8 Schematic images of four representative wear modes [19] 
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1.6 Introduction to railway systems    

The railway system is relatively complex. This system consists of several bodies consequently it has many 

degrees of freedom [23]. Vehicle dynamic behaviour can be defined as the dynamic response of the vehicle 

to the track. The railway vehicle can move in the following different directions of motion: longitudinal, 

lateral, vertical, roll, pitch, and yaw. The vehicle/track interface is the combined behaviour of the vehicle 

and track systems, including the influence of wheel rail contact forces on the system. Effective controlling 

of the vehicle track interaction will have positive influence on passenger comfort, operational capability, 

safety, and cost [24].  

1.6.1 Railway bogie 

A railway bogie consists of several main components such as wheel, primary suspension, secondary 

suspension, and bogie frame such as shown in Figure 1.9.    

 

Figure 1. 9 Railway bogie components [25]  

1.6.2 Wheelset 

A wheelset includes two wheels fixed to an axle. The rail vehicles continue centred on the track because of 

the tapered profile ‘conicity’ of the wheel tread, which provides a lateral force on the rail vehicle when it 

is offset from the track centre. Large conicity is useful to curving performance, but it can create larger 

lateral forces. The flange of the wheel works to prevent the tread shifting laterally off the rail [26]. A 

wheelset is shown in Figure 1.10. 

 

Figure 1. 10 Wheelset  
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1.6.3 Rail  

The most commonly used rail profile is a flat-bottom rail and it is divided into three parts such as shown in 

Figure 1.11. The top part is the rail head which contacts with the wheel, the middle part is the rail web 

which supports the rail head, and the bottom part is the rail foot which distributes the load from the web to 

the underlying superstructure components [27].  

The rail is made of straight sections and curves. The increase of the forces acting on train on the curves 

results in an intensive rail wear, while the changing of the worn rails increases railway maintenance 

expenses [28].  

 

Figure 1. 11 Flat bottom rail [27]  

 

1.6.4 Railway track 

A railway track construction consists of rails, sleepers, railpads, fastenings, ballast, subballast, and subgrade 

such as shown in Figure 1.12. The railway track is consisting of parallel lines of rails to provide a road for 

the movements of railway vehicles. The function of the track is to lead the train, it carry train safely along 

the track and through switches to the last stop, and it also carry the weight of the train and distribute the 

weight over the area that is as large as possible. The distance between the inner edges of the heads of rails 

in a track called a gauge of the track [23], [29]. 

   

 

Figure 1. 12 Rail track [23] 
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1.6.5 Rail-Wheel Interaction  

Wheel/rail interaction or interface is the contact between wheel and rail. It can conveniently be categorised 

as either vertical interaction, or lateral/longitudinal interaction. Vertical interaction deals with the vertical 

forces between the wheel and the rail. Lateral/longitudinal interaction includes forces that act in either a 

lateral or longitudinal direction due to wheel/rail creep forces or flange forces [24].  

One of the most important factors which has an influence on the railway vehicles dynamics is the contact 

geometry between wheel and rail. It can be influenced by several parameters such as wheel and rail profiles 

[30]. The wheel/rail contact interface is shown in Figure 1.13.   

 

 

Figure 1. 13 Wheel/rail contact interface  

 

The contact patch between wheel and rail is small, typically about 1cm2 in size. The exact position of 

contact patch between wheel and rail is affected by the wheel and rail profiles and the degree of curvature 

of the track. The rail head and wheel tread will be in contact within a straight track, while in the curved 

track the contact occurs on wheel flange and rail gauge corner. Figure 1.14 shows the contact position and 

contact stress varies for the two wheels on a right-hand curve [1], [31], [32].   

 

Figure 1. 14 The contact position and contact stress on curve [1] 
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On a curve, the yaw angle has an effect on wheel and rail wear, the yaw angle in curves is shown in Figure 

1.15.  

  

 

Figure 1. 15 Yaw angle in curves [33] 

 

The wheel/rail contact occurs in three regions such as shown in Figure 1.16 [1]:  

1. The contact between wheel tread and rail head occur in region A, this region yields the lowest 

contact stresses and lateral forces.     

2. The contact between wheel flange and rail gauge corner occur in region B, in this region, the wear 

and contact stresses are much higher.  

3. The contact between field sides of wheel and rail occur in region C.    

 

Figure 1. 16 Wheel-rail contact zones [1] 
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1.6.6 Wheel/rail forces  

The dynamic behavior of the railway vehicle is affected by the interaction forces between the wheel and 

the rail. Several parameters can significantly affect the railway vehicle dynamics such as creep forces, 

creepage, adhesion, and wear. Hertz’s static theory proved that the contact area is elliptical in shape with 

semiaxes a and b when the two bodies are rolled over each other while being forced against each other. The 

semiaxes a and b are be influenced by the geometry of the two surfaces and the normal force. The creep 

and creep forces are shown in Figure 1.17 [34].   

 

Figure 1. 17 Creep and creep forces [34]   

 

If a wheelset is rolling freely along the track, then there will be no slip between the wheel and rail, so that 

the rotational velocity is equal to the forward velocity divided by the rolling rdius. If there is no slip, there 

will be no tangential wheel/rail force. Generally, wheels do not perform a pure rolling motion on the rail, 

but give rise to creepage (or sliding) and spin in the contact area between rail and wheel. Creepage and spin 

are in turn the causes of creep forces. The sliding motion is divided into three components; in a longitudinal 

direction, lateral direction and rotation about an axis perpendicular to the contact [24], [34].  

 

1.7 Wheel wear and rail wear 

Wear can be defined as the loss or displacement of material from a contacting surface by mechanical action. 

The change of wheel profile and rail profile makes a large contribution to track maintenance cost. The wear 

is the most important factor which can lead to wheel and rail profile change. [23]. An example of form 

change of wheel and rail profile is shown in Figure 1.18.  

 

Figure 1. 18 Form change of wheel and rail [23]. 



16 

 

The cost of changing damaged rails is much greater than that of changing any other damaged part of track 

[33]. There are three different positions that can be used for rail wear measurements which are; W1 is the 

vertical wear, W2 is the horizontal wear at a vertical distance h, and W3 is the wear measured at some 

angle ⍺ such as shown in Figure 1.19 [35].           

 

Figure 1. 19 Rail wear [35] 

 

Wear of wheel profiles is one of the most important problems influencing the cost and performance of 

railway systems. The wheel-rail contact condition is complex, and as a consequence of this complexity, 

two different wear regions often occur on the wheel profile: one on the tread and the other on the flange 

[1]. The shape of the wheel profile may vary significantly depending on a large number of factors such as 

curvature profile, suspension design, and level of traction and braking forces applied. An example of tread 

wear and flange wear is shown in Figure 1.20 [23].  

 

Figure 1. 20 Wheel wear [23]. 

 

The wear can be reduced using several factors such as lubricant. Lubricant is generally excellent at reducing 

wear in severe contact. The benefits of lubrication include the reduction of wheel wear and noise generation 

[36]. However there are also some disadvantages of lubrication such environmental damage from used 

lubricants, and reduction in traction and braking [37].   
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1.8 Wear measurement methods  

Wear measurement approaches can be classified into: linear wear dimension, mass difference, wear area, 

and wear volume. Wear can be expressed by the mass loss “in grams”, or the rate of mass loss per unit of 

usage “grams per mile”, but in this case, no information about the distribution of wear over the surface of 

component is available. Therefore, measuring of wear in term of mass loss can be considered an ineffective 

method. Another approach for wear measurement is based on linear dimensional measurements, such as 

wear scar depth or width. This approach is commonly used, but tiny amount of wear are difficult to measure. 

The same is true of the mass loss method. Material loss can be produces over a restricted area, these area 

can be measured and are proportional to the amount of wear. Furthermore, the volume can be used as a key 

approach for wear measurements [38].      

 

A stylus profilometer can used to measure the wear of sample by measuring the change of the linear 

dimensions of the specimen before and after the test; the wear of sample can also be measured by weighing 

the sample before and after the test [39].    

 

Common techniques which can be used for wear measurements are weight loss, volume loss, wear scar 

depth, and geometric measures. Microscopy techniques such as scanning electron microscopy (SEM) and 

scanning tunnelling microscopy (STM) can be used for wear measurements. A stylus or non-contact optical 

profiler are an easy technique which can be used to measure the wear depth [17]. An example of wear depth 

measurement using a stylus is shown in Figure 1.21. 

 

Figure 1. 21 An example of wear depth measurement obtained using stylus [17] 
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1.9 Wear testing methods  

1.9.1 Introduction  

There are different techniques which can be used for studying the wear which occurs in the surface contact. 

The most common and simplest of these techniques are the pin-on-disc test and the twin disc test rig [1].  

1.9.2 Pin-on-disc test  

The pin-on-disc wear test is one of the most widespread tests which can be used for studying the sliding 

wear behaviour. The pin-on-disc wear test is shown in Figure 1.22. The pin is pressed against the disc, and 

relative motion between pin and disc will cause pin wear and disc wear [40].  

 

Figure 1. 22 Diagram of the configuration of pin-on-disc test [40]  

 

The cross section of the pin shapes is shown in Figure 1.23. 

 

 

Figure 1. 23 The pin shapes [41] 
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Profilometer traces before and after wear can be used to determine the depth of worn pin and disc wear scar 

such as in the Figure 1.24 and Figure 1.25 respectively. After that, the pin wear and disc wear (wear volume) 

can be determined using proper geometrical relationships or numerical methods [41].    

  

 

 

Figure 1. 24 Pin wear depth [41] 

 

 

Figure 1. 25 Disc wear scar depth [41] 

 

The pin wear and disc wear can be reported as a volume loss in cubic millimetres, as a change in dimensions 

of both specimens in millimetres, or as a weight loss in milligram [39].   

 

The pin-on-disc test was used to study the wear by many researchers. An example, the effect of applied 

load and sliding speed on pin wear and disc wear was investigated [42]-[46].   

  

 

 

 

 

 

 

 

 

 

 



20 

 

1.9.3 Twin disc test rig   

The twin disc approach has been used widely to study the wheel wear and rail wear [47]. Twin disc tests 

are frequently used to study wear in railway materials [48]. The twin disc machine is simple and efficient; 

it consists of two cylindrical rollers pressed into contact and rotating with different peripheral speeds. The 

variation of the relative velocity and of the contact pressure allows performing the test under different 

conditions [49]. The twin disc test rig was used by many researches to study the wear at the wheel/rail 

interface  [50], [51]. An example of a twin disc test rig which was used in previous work to study the wheel 

wear is shown in Figure 1.26 [52].        

 

 

 

Figure 1. 26 Twin disc test machine [52] 

 

 

1.10 Multibody dynamics  

Multibody dynamics can be used in many fields of  engineering research such as railway vehicle systems. 

A railway vehicle is a complex system consists of various different components. For dynamic behaviour 

modelling, it is important to simplify this complex system. To design a dynamic model, a multibody 

approach commonly used. The vehicle will be idealised as a collection of masses representing the bogie 

frames, body, and wheelsets linked by several suspension elements. Each body is initially considered as 

having six dynamic degrees of freedom, three translations (lateral, longitudinal and vertical) and three 

rotations about its axis (roll, pitch and yaw). The vehicle model reqiures an associated axis system as shown 

in Figure 1.27. Positions of masses, wheelsets and suspension elements are specified in terms of the 

following positions: The longitudinal axis (X) which is usually fixed at the mid-point of the vehicle; the 

lateral axis (Y) which is relative to track centreline and height above rail; and the vertical axis (Z) which is 

relative to the height above the rail. Where (V) is the direction of travel [24], [26], [53].       
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Figure 1. 27 Vehicle modelling axis system [26] 

 

 

The suspension elements is the main interconnection elements in rail vehicle modelling. The suspension 

elements include stiffness, bumbstop, damper, friction, pinlink, shear spring, airspring, bush and constraint 

elements. Dynamic modelling is a means of reperoducing the dynamic behaviour of railway vehicles in a 

software environment. The use of dynamic simulation tools has many advantages such as the new designs 

can be tested before they are built, and components adjusted in a less costly way. There are many software 

packages used to study the vehicle dynamic behaviour such as Simpack (A European package), Gensys (A 

Swedish package), NUCARS (USA package), VI RAIL (Adams/Rail), and VAMPIRE (UK package). 

Slightly different results are possible depending on which package is used to perform simulations as they 

use different approaches for representing wheel/rail contact. There are a number of inputs to any simulation 

such as vehicle, track, and wheel/rail contact [24], [26].     
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Chapter 2 Review of the literature 

2.1 Wear models 

2.1.1 Introduction  

The function of wear models is to predict the rate of material removal from the surface. Classical wear 

theory begins by considering the rate of material removal as a function of some parameters such as load, 

sliding speed, sliding distance and hardness of material [54]. In sliding wear models there are more than 

100 different variables and constants. These models contains between two to twenty six variables in a single 

equation. Unfortunately, some constants are assigned to represent specific quantitative phenomena which 

are not readily measurable such as surface strength, and fatigue life of an asperity [55].  

Meng and Ludema [55] reported, between 1957 and 1992, that there were 182 wear equations for the several 

types of wear. The most important issue of the 182 equations is that it include on a great number of variables. 

Each author combines a different array of variables, often for the same mechanical system.  

 

2.1.2 Review of wear models  

 

Reye in 1860 considered that the volume of material removed from a body was proportional to the energy 

dissipated into it by the relative motion of the two contacting surfaces such as shown in the following 

equation [54], [56], [57].  

V = KR W                                                                (2.1) 

Where V is the volume of material removed, KR is Reye’s wear constant and W is the work dissipated into 

the material. Reye’s approach was one of the primarily methods to calculate the wear in terms of energy 

dissipated.  

 

Holm in 1946 considered that the process of wear with regard to the relative motion of surface asperities. 

He suggested that the individual atoms on opposite asperities were moving towards each other and 

colliding. His suggestion stated that the wear was a function of the properties of the materials in contact 

and the load applied over the contact such as shown in the following equation [13], [54], [58], [59].  

V = Z 
p

pm
                                                                  (2.2) 

In the above equation V is the volume of material removed per unit sliding distance, Z is the probability of 

removal of an atom per atomic encounter and would depend on the properties of the materials in contact, p 

is the load applied, and pm is the flow pressure of a worn surface “hardness of material”.  

 

Burwell and Strang suggested that the volume of wear material can be calculated using the following 

equation [58]: 

Q = k 
W d

H
                                                                 (2.3) 



23 

 

Where k is the probability of removing wear particles, W is the load, d is the sliding distance, and H is the 

hardness of material. Thus the wear volume per unit sliding distance w is [58]:  

w = k 
W

H
                                                                    (2.4) 

 

Archard in 1953 studied the wear process and suggested that there were a number of key considerations 

that must be included in a wear model. Archard has referenced Holm in his publications and his work could 

be thought of as an extension or furthering of Holm’s wear equation. Archard assumed that two rough 

surfaces are in discrete contact “The contact consists of individual spots”. The area of each spot expands 

from zero to maximum π a2, and then shrinks back to zero such as shown in Figure 2.1. Normal load can 

determined by the following equation [54], [60]-[62]:     

               pn  =  π a2 pm                                                         (2.5)  

Where : pm is the yield pressure of a plastically deformed asperity, and a is the contact spot radius.  

 

Figure 2. 1 Archard wear model [60], [62] 

 

Assume that this volume consists of a half-sphere of radius a, the volume is given by: 

  Vn =  
2

3
 𝜋 𝑎3                                                          (2.6) 

 
 

Wear rate (per unit distance of sliding) is given by:   

                                                                                    in =  
Vn

2 a
                                                                  (2.7)   

Then:                                      

                                                                                    in =  
π a2 

3 
                                                               (2.8) 

 

Therefore:                                           

                                                                                    in =  
Pn

3  Pm
                                                              (2.9) 

The total wear rate would be equal to the total contribution from all contact spots:  

                        I∗  =  ∑ in =
P

3  Pm
                                                (2.10)       

Where the total normal load on the contact is:      



24 

 

                                                                                     P =  ∑ Pn                                                           (2.11) 

Archard assumed that the wear can be calculated using the following equation:  

                                                       I = k I∗                                                                (2.12) 

Where k is constant.   

It is written as:                        

                                                                                     I =
k P

3 Pm
                                                               (2.13) 

It is convenient to designate K =
k

3
 and assume that Pm = H.   

Then the equation of wear develops in the form: 

  I =
K P

H
  (mm3/mm)                                           (2.14)  

Where: I is the volume worn per unit sliding distance (wear rate), P is the normal load, H is the hardness of 

the softer material, and K is the wear coefficient.   

 

Then Archard expressed the wear equation such as shown in the following form: [54], [58], [13].  

  V = k 
N S

H
  (mm3)                                             (2.15) 

Where: V is the volume of wear (mm3), k is the wear coefficient (-), N is the normal load (N), S is the 

sliding distance (mm), and H is the hardness of material (N/mm2). 

 

The wear coefficient (k) can calculated using the following equation [1], [63], [64]:     

  k =  
V H

L FN
                                                            (2.16) 

Where: k is the non-dimensional wear coefficient, V is the volume of wear (mm3), H is the hardness of 

material (N/ mm2), FN is the normal load (N) and L is the sliding distance (mm). The wear coefficient k is 

dimensionless and always less than 1 [60], [65].   
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The values of wear coefficient k for various materials against steel under dry conditions using pin-on-disc 

tests are illustrated such as shown in Table 2.1.  

 

Table 2. 1 Wear coefficient values [65] 

 

Wear coefficient k for unlubricated surfaces is shown in Table 2.2.  

 

Table 2. 2 Wear coefficient unlubricated surfaces  [66] 

 

 

The wear coefficient depends on several parameters such as a contact pressure, sliding velocity, and 

temperature and the degree of lubrication in the contact area, therefore, it is a very complex parameter to 

determine. A wear map can used to describe the wear coefficient as a function of contact pressure and 

sliding velocity. Each wear map corresponds to a certain rail and wheel material (The rail and wheel are 

assumed to have similar material properties). Figure 2.2 shows a wear map which is describes four 

approximate regions, in this chart, the contact pressure limit at 0.8H corresponds to 80% of the hardness, 

and the wear coefficient depends on the sliding velocity [67].  
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Figure 2. 2 Wear chart for the wear coefficient [67]  

 

Montgomery et al., [54] stated that “there are a number of problems with the assumption that the wear rate 

is directly proportional to the load, as stated by Archard. The surface characteristics of the materials in 

contact will be changing as a result of material being removed, they will generally become rougher and 

therefore a change in the friction coefficient by a factor of two or three could result in a change of the rate 

of wear by one or more orders of magnitude”.  

The weakness of using the Archard model for wear modelling is that it depends on the proper calculation 

of wear coefficient k, where the wear coefficient k is a very complex parameter to determine, if k is not 

calculated correctly, it will lead to inaccurate results of wear modelling.   

 

The Royal Institute of Technology Stockholm (KTH) developed the following wear model based on the 

Archard model. The volume of worn material is written as:  

                                   𝑉 = KA 
 P  S

H
                                                                        (2.17) 

Where: V is the volume of wear in (mm3), S is the sliding distance in (mm), P is the normal force in (N), 

H is the hardness of the softer material in (N/mm2), and KA is wear coefficient. The values of wear 

coefficient KA which shown in Table 2.3 were obtained using a pin-on-disc test, and a twin disc test rig 

using different materials. Where p is the contact pressure and Ṡ is the slip velocity [48], [68].     
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Table 2. 3 Wear coefficient (KTH) [48], [68] 

 

The University of Sheffield (USFD) developed the following wear model. The wear function developed by 

the USFD relates to the wear rate, which expresses the weight of lost material (μg) per distance rolled (m) 

per contact area A(mm2), to the wear index Tγ as follow [68]:     

                    Wear rate = K 
Tγ

A
                                                                (2.18) 

Where:  K is wear coefficient, and T is the creep force, γ is the slip, and A is the contact area.   

The wear equations presented by the USFD are shown in Table 2.4. This formulation was developed using 

twin disc rig experiments. The USFD wear function was developed for wheel (R8T) and rail (UIC60 900A) 

materials.  

 

Table 2. 4 The USFD wear function [68] 

 

The Royal Institute of Technology Stockholm model and the University of Sheffield model can be used 

for wear modelling, but this is also dependent on the correct calculation of the wear coefficient k.   

 

British Rail Research (BRR) developed equations to describe wear behaviour as shown in Table 2.5. Wear 

is calculated as material loss expressed in mm2 of lost area from any radial section through the profile per 

km rolled. Where:  T is the creep force (N), γ is the creepage [-], and D is the wheel diameter in (mm) [48], 

[69].  These equations were obtained from twin disc tests on R8T (wheel) and BS11 (rail) steels.  
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Table 2. 5 Equations of the BRR wear function [69]  

 

The British Rail Research model can be used for wear modelling, but the main limitation of the BRR wear 

model lies in the fact that the equations given in Table 2.5 are only valid for the specific materials 

considered.  

R. Lewis and U. Olofsson [1] presented an approach which can be used for wheel wear modelling (expected 

wear proportional to wear index WI) as provided bellow:  

    WI = K(T1 γ1 +  T2 γ2)                                                            (2.19) 

Where K is the constant, T1, T2 are the longitudinal and lateral creep forces respectively, and γ1, γ2 are the 

longitudinal and lateral creepages respectively. This relationship between the energy dissipation and 

material removal can be used to predict wheel/rail wear. This model is one of the most common models 

which have been used in recent works for wear modelling; accordingly, it has the same drawbacks as most 

of the classical wear models, which are dependent on the value of certain constants.     

 

The American Society for Testing and Material (ASTM) developed a wear model which can be used to 

model the pin wear and disc wear for pin-on-disc experiments as shown in the following equations [39], 

[70], [71]:  

                Pin volume loss =  
π h 

6
 [

3 d2

4
+  h2] (mm3)                                                   (2.20) 

The height of material removed for pin (h) is given by:    

                  h = r − [ r2 −  
d2

4
 ]0.5 (mm)                                                                     (2.21) 

  Where:  d is the pin wear scar diameter, and r is the pin radius.       

Disc volume loss = 2 π R [ r2 sin−1  (
d

2r
) − (

d

4
) (4 r2 −  d2)0.5] (mm3)                  (2.22) 

Where:R is the disc wear track radius, r is the pin radius, and d is the disc wear track width.  

The accuracy of pin/disc wear modelling using the ASTM model is dependent on the proper measurements 

of the pin wear scar dimensions and disc wear scar dimensions, this requires an accurate instrument. The 

ASTM model has a limitation however, it can only be used to model the pin/disc wear, but it cannot be 

used for wheel and rail wear modelling.      

In the survey of the wear modelling equations, many equations were found for wear modelling; for example, 

[55] presented 28 equations for erosion wear modelling, and a couple of equations for sliding wear 

modelling; the problem with these models is that they depend on different variables and constants.  
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2.2 Computer simulation packages for wear prediction  

The modelling of wear can be carried out with mathematical models and computer simulations [13]. The 

railway wheel wear prediction is a very significant problem in railway systems. In the past, the reprofiling 

intervals of railway wheels have been planned according to designer’s experience. Today, computer 

simulation tools can be used to predict the wheel wear [72]. 

This section presents a review of using the computer simulations for wheel/rail wear prediction.      

Pearce and Sherratt [73] presented a model which is shown in Figure 2.3 to predict the wheel wear. 

VAMPIRE software was used to simulate the dynamics of the railway vehicles. The wear algorithm is 

shown in Table 2.6, the material lost is proportional to the energy dissipated in the contact zone. For wheel 

wear prediction, two track inputs were selected from VAMPIRE input files, it is a straight track and a 

curved track. The P8 wheel profile and P11 wheel profile were used in this study. The position of the contact 

on the wheel, creepage, and creep forces are correlated and summed to calculate the material loss 

distribution across the wheel profile. The contact patch data were recomputed before each journey and then 

this step was repeated until a desired mileage was achieved.  

 

Figure 2. 3 Wheel wear prediction model [73]  

 

 

Table 2. 6 Wear algorithm [73] 

Where T is the creep force (N), and γ is the creepage [-], and D is the wheel diameter in (mm).  
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Shu et al., [74] used a NUCARS vehicle/track multibody simulation program to estimate the rail wear. The 

advantage of NUCARS is that the rail profile can be modified online based on wear index (Tγ) and the rail 

profile is automatically updated for the next run. The rail wear model is shown in Figure 2.4. A wheel 

database, consisting of new wheel profiles, little worn wheel profiles, and heavy worn wheel profiles. This 

to reflect the effects of wheel shape on wear. The rail wear predicted using NUCARS model was validated 

using rail wear test results. The simulation predictions were very close to the test results.  

 
 

Figure 2. 4 Rail wear simulation procedures in NUCARS [74] 
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Ward et al.,  [75] presented a model to predict the wheel wear as shown in Figure 2.5 and Table 2.7. To 

generate the wear coefficients (k) for the model, a twin disc test was carried out. The approach for wheel 

wear prediction in this model is based on a wear index. The wear rate was calculated using the following 

equation: 

Wear rate = k 
Tγ

A
                                                            (2.23) 

Where A is the contact area, T is tractive force, and γ is slip at the wheel/rail interface.  

 

Multi-body dynamics simulations of a railway wheelset were carried out using ADAMS/Rail software. The 

wheel profile was discretised into strips and the wear was determined for each strip. The worn wheel profile 

is then fed back to the ADAMS/RAIL to update the wheel profile to predict the wheel wear.           

 

 

Figure 2. 5 Railway wheel wear modelling scheme [75] 

 

 
 

 

Table 2. 7 Wear regime  
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Enblom [76] presented a model for wheel wear prediction as shown in Figure 2.6. A commercial Multibody 

Software (MBS) was used to simulate the dynamics of the railway vehicles. The wheel wear was calculated 

using the Archard wear model. The wear coefficient was determined using a wear chart, where the value 

of wear coefficient is a function of contact pressure and sliding velocity. Laboratory tests (twin disc test rig 

and pin-on-disc rig) were used to determine the wear coefficient. In this paper, the wheel wear was predicted 

using MBS simulation tool. The wheel wear predicted has been validated by comparing it to wheel wear 

measured (Stockholm commuter network).     

 

 

Figure 2. 6 Wheel wear prediction model [76] 
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Pombo et al., [72] presented a model to predict the wheel wear as shown in Figure 2.7. A commercial 

Multibody Software (MBS) software was used to simulate the dynamics of the railway vehicles. The MBS 

tool was applied in this paper in order to assess the effect of primary suspension stiffness, rail cant, 

traction/braking forces, and vehicle velocity on wheel wear. The wear was calculated using the energy 

dissipated in the wheel-rail contact.  

 

Pombo et al., [77] presented a model to predict the wheel wear as shown in Figure 2.7. The MBS was used 

to simulate the dynamics of the railway vehicles. The MBS was applied in this paper in order to show the 

capabilities of MBS computational tool for wear prediction by evaluating the effect of trainset design, track 

layout, friction conditions, and wheel flange lubrication on wear. The wheel wear was calculated using the 

energy dissipated in the wheel-rail contact.  

   

 

 

Figure 2. 7 Schematic representation of wear prediction [72], [77] 
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Bevan et al., [78] provided a model to predict wheel wear. The methodology of wheel wear prediction is 

shown in Figure 2.8. VAMPIRE vehicle dynamics software was used to simulate the dynamics of the 

railway vehicles. The VAMPIRE software generated the wheel-rail contact data and forces, these forces 

and wheel/rail contact data were used as inputs to the model to predict wear. This procedure is used to 

update the wheel profile, and the volume of material removed was determined using the Archard wear 

model and energy model. The wear coefficient (k) was determined from a map of wear for wheel/rail steels.    

 

 

Figure 2. 8 Methodology of wheel wear prediction [78] 
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Arandojo [79] presented a model for wear prediction as shown in Figure 2.9. The GENSYS software was 

used in this paper to predict railway wheel wear. The track type, running distance, and type of rail and 

wheel profiles were loaded to the model as inputs. The vehicle-track interaction is performed in GENSYS 

software. The wear was calculated based on the Archard law. The GENSYS software is a three-dimensional 

general multi-body-dynamics program. Several simulations were carried out to predict the railway wheel 

wear of the first wheelset. A passenger vehicle was used in simulations, it consists of a single carbody with 

two bogies, four wheelsets and eight wheels.     

 

 

 

Figure 2. 9 Wheel wear prediction model [79] 
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Tanifuji [80] used SIMPACK software for wheel wear prediction. The lateral movement of the wheel/rail 

contact patch and the energy dissipated (Tγ) between wheel and rail were used to estimate the wheel wear 

as shown in Figure 2.10. Simulation tests were carried out on a straight track and on a curved track to 

predict the wheel wear. The running distance was 268000 km. Comparisons between wear predicted using 

SIMPACK software and wear measured were carried out to validate the wheel wear on flange and on tread. 

The results showed that the wear predicted using SIMPACK software was very close to the wear measured.  

 

    

 

Figure 2. 10 Flow chart for wear prediction [80] 

 

 

The computer simulation packages such as VAMPIRE, ADAMS/Rail, GENSYS, Multibody Software 

(MBS), SIMPACK, and NUCARS together with the models which were shown in this review are very 

useful tools to study railway wheel/rail wear. 

 

The software packages have some advantages, for example, the ADAMS has the advantage of a strong 

Graphical User Interface (GUI). This means the users can see exactly what they are constructing on the 

screen in a 3-dimensional form, which can be manipulated around a variety of axis and all the necessary 

functions can be accessed from the menu system [53].    

 

With respect to this review, it can be noticed that the wear was calculated using either Archard’s model or 

the energy dissipated model. The computer modelling of railway vehicle dynamics can be performed using 

a number of different commercial software packages.    
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2.3 Review of use of artificial neural network for prediction   

 

Ramesh and Kumar [81] presented “Many classical wear models can be found in the literature to predict 

wear but there is no general wear model which can be adopted for all wear problems due to the complex 

and dynamic nature of the wear phenomenon” [81].  

 

An artificial neural network can be used to solve a wide range of complex engineering problems. This 

computational tool is very useful to study the systems which are difficult to describe with physical models, 

the neural network is useful because it has ability to learn by examples [3].  

 

The artificial neural network has been used by many researchers for prediction in different areas. In this 

review, special attention was given to nonlinear autoregressive network with exogenous inputs 

(NARXNN), backpropagation neural network (BPNN), and radial basis function neural network (RBFNN)  

because it were used in this thesis for wheel wear and rail wear prediction.   

 

The following sections present some previous work in which neural networks were used for prediction 

purposes.      

   

Pit [33], used a neural network for rail wear prediciton. He studied experimentally the wear behaviour of 

carbide-free bainitic rails. Neural network modelling was carried out on the data received from the British 

Steel Swinden Technology Center in an attempt to produce a useful empirical model for rail wear 

prediction. The inputs to the neural network were rail hardness, rail microstructure, wheel hardness, wheel 

microstructure, Charpy fracture energy, and contact stress. The output of the neural network was the rail 

wear rate. British Steel Swinden Technology Center provided rail/wheel wear rate, hardness and Charpy 

fracture energy. A microstructure parameter was used as an input to indicate whether each roller was 

pearlitic or bainitic; a pearlitic given value of zero and a bainitic given value of one. The author concluded 

that it is difficult to develop a model for rail wear prediction, the neural network was not successful as there 

was not enough data for a reliable model to be generated, but a small amount of data showed promising 

results.    

 

Singh et al., [82] used a back propagation neural network (BPNN) to predict drill wear. The inputs to the 

neural network were thrust force, torque, feedrate, drill diameter and spindle speed, while the output of the 

neural network was the flank wear. From the 49 datasets obtained in the experiment, 34 were selected at 

random for training the network, and the remaining 15 were used for testing the network. The simulation 

results show that the neural network is able effectively to predict the drill wear.    

 

 



38 

 

Huang  et al., [83] used a nonlinear autoregressive network with exogenous inputs (NARXNN) based on 

load prediction to improve scheduling decisions in grid environments. In this paper, the configuration of 

NARXNN was as follows: input-memory order n=3 and output-memory order m=3, initial weight of each 

component of W is randomly generated in the scope of (0, 1), while the sigmoid function was used as an 

activation function. The data set used to train the NARXNN was collected using a number of entities of a 

grid including resources, users, brokers, information service, network components. The simulation results 

show that the NARXNN predictor provides good load prediction.      

 

Kumar and Singh [84] used a backpropagation neural network (BPNN) in the prediction of wear loss 

quantities of A390 aluminium alloy. A pin-on-disc apparatus was used to perform dry sliding wear tests. 

The inputs to the neural network were the load, sliding speed and time; while the output of the neural 

network was mass loss. 45 examples were used to train the neural network. The simulation results show 

that the neural network results was close to experimental results. They concluded that neural network can 

be used efficiently for wear prediction.     

 

Khudhair and Talib [3] used a backpropagation neural network (BPNN) to predict wear. A pin-on-ring 

machine was used to study the 13%Cr steel. The inputs of the neural network model were the sliding speed, 

load, and test time, and the output of the neural network was the wear rate. The simulation results show that 

the neural network wear was close to actual wear with correlation coefficient of 0.99. The neural network 

model predictions in this work exhibited good results. They concluded that the neural network can be 

considered as an excellent tool for wear prediction. 

 

Al Shamisi et al., [85], used a backpropagation neural network (BPNN) and a radial basis function 

(RBFNN) for predicting global solar radiation (GSR) in Al Ain City. The data between 1995 and 2004 were 

used for training the BPNN and RBFNN, while the data between 2005 and 2007 were used for testing the 

models. The obtained results confirmed that the BPNN and RBFNN provided a very good prediction of 

monthly GSR behavior in Al-Ain city, but the RBFNN was more accurate than BPNN in most of tests. This 

work was presented in this review because they used the same technique to design the RBFNN which was 

used in this project, it is “newrb” matlab command, also because they made comparison between the 

RBFNN and PBNN in prediction, in this thesis a comparison between RBFNN and PBNN in railway wheel 

wear prediction was carried out as well.       
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Fathy and Megahed [86] used a backpropagation neural network (BPNN) to predict abrasive wear rate of 

Cu–Al2O3 nanocomposite. A pin-on-disc machine was used to obtain the wear rate. The inputs to the neural 

network were the sliding speed, load, and alumina volume fraction; while the output of the neural network 

was the wear rate. The wear tests were carried out under loads of 2N, 4N, 6N and 8N, at four different 

alumina volume fractions 0%, 5%, 10%, and 15%, and at four different sliding speeds 0.91m/s, 1.07m/s, 

1.21m/s and 1.62m/s. The results obtained show that the backpropagation neural network exhibits a good 

prediction for wear rate.     

 

Zhang and Li [87] used a radial basis function neural network (RBFNN) to predict the future tourist quantity 

of Hainan in China. The inputs data set used to train the neural network was related to many factors, for 

example, geography, environment, culture, government policy, etc. The output of the neural network was 

the number of tourists after every five years. The “Newrbe” Matlab command was used to design the 

RBFNN. Matlab results show that the RBFNN can accurately predict the future tourist quantity of Hainan 

area. This paper was presents in this review because the “Newrbe” Matlab command was used in this project 

to design the RBFNN for wheel wear prediction.       

 

Nagaraj et al., [88] used a backpropagation neural network (BPNN) to predict wear of Aluminium-silicon 

alloy. The wear test was performed using a pin-on-disc machine under dry condition. The inputs to the 

neural network were the load, sliding velocity, time duration, speed, and sliding distance; while the output 

of the neural network was the wear loss. The wear predicted using neural network was compared with actual 

wear. The simulation results show that the wear predicted using BPNN was close to actual wear. They 

concluded that the neural technique can be used for wear prediction.    

 

Kumar et al., [89] used a backpropagation neural network (BPNN) to predict the wear of aluminium–fly 

ash composites. Wear tests were conducted using a pin-on-disc wear test at different loads and sliding 

speed. The data obtained from experiments were used for training and testing the neural network model. 

Neural Network Toolbox of Matlab was used to design the BPNN. The BPNN was trained automatically 

with the Matlab function ‘train’. The data set was divided randomly into training and test data set. Data sets 

of 98 were used as a training set, while 10 data sets were used for testing the network. Levenberg–Marquard 

algorithm was used to train the network. The training was terminated when the mean square error (MSE) 

is equal to 0.001. The major conclusion of the present work is that the neural network predicted the wear 

rate within an error range of 5%; therefore, the accuracy of neural network was 95%.  
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Khamis and Abdullah [21] used a nonlinear autoregressive network with exogenous inputs neural network 

(NARXNN) and backpropagation neural network (BPNN) for wheat price prediction. Past data for the 

wheat price from 1978 until 2012 was used to train the neural network. 409 samples were used to train, 

validate, and test the neural networks. 70% of dataset was used for training, 15% for validation and 15% 

for testing of neural network. A comparison between the NARXNN and BPNN for wheat price prediction 

was carried out. Matlab neural network toolbox was used to perform the prediction of wheat price. They 

concluded that the NARXNN is better than BPNN in wheat price prediction. Therefore, the NARXNN 

model is the suitable model to predict the wheat price. This work was presented in this review because a 

comparison between railway wheel wear prediction using NARXNN and BPNN was carried out in this 

project, and the Matlab neural network toolbox was used in this project to perform the prediction of wheel 

and rail wear prediction.               

  

Cătălina-Lucia and Hakob [90] used a nonlinear autoregressive network with exogenous inputs (NARXNN) 

to predict the stock market. Backpropagation algorithm was used to train the NARXNN. The samples which 

were used to train and test the network consisted of historical weekly observations of a set of variables such 

as the opening, closing, highest and lowest price respectively from Bucharest Stock Exchange between 

3/1/2009 and 11/30/2014. 200 sample datasets were used to train the NARXNN, while 100 samples were 

used to test the NARXNN. The results obtained using the NARXNN model showed good prediction from 

the point of view of mean square error. Matlab was used to convert the series-parallel NARXNN to the 

parallel NARXNN in order to perform a multi-step-ahead prediction task (prediction of stock market in the 

case of a new samples). This work was presented in this review because the NARXNN which was used in 

this paper to predict the stock market was used in this thesis to predict wheel wear and rail wear.   
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2.4 Chapter conclusion  

 

Regarding the literature review, two basic types of wear models have been used for wear modelling: sliding 

models such as Archard wear model, and energy transfer models.   

 

The Archard wear model is the most frequently used for wear modelling in practical engineering 

applications; once the wear coefficient is obtained, the amount of wear can be simulated. 

 

The American Society for Testing and Material (ASTM) developed a model which can be used for pin wear 

and disc wear modelling for a pin-on-disc test.  

 

Computer simulations such as VAMPIRE, ADAMS/Rail, GENSYS, SIMPACK, Multibody Software 

(MBS), and NUCARS software have been used in many previous works to update the wheel profile, then 

the wheel wear was calculated using either a sliding model (Archard wear model) or energy dissipated 

model. Therefore, the wheel and rail wear are usually estimated using either Archard wear model or energy 

dissipated model. The Archard wear model is widely used for modelling wear due to rolling and sliding 

contact. The energy dissipated and contact position between wheel and rail can be used for wheel wear 

estimation.       

  

Neural networks were used by many researchers to predict the pin wear and disc wear, the results showed 

that the neural networks can be used for wear prediction. One of the previous works (Pit) tried to predict 

rail wear using a neural network; the author concluded that the neural network did not predicted the rail 

wear very well because there was not enough data to train the network; but the author said “a small amount 

of data showed promising results”.      

  

The next chapter introduces a pin-on-disc test. This test was carried out in this project to present how the 

wear can be measured using a 3D optical profilometer.         
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Chapter 3 Laboratory test (Pin-on-disc test)  

(The pin-on-disc chapter has been reduced and the sections on pin and disc wear modelling using ASTM, 

measurements using microscope and Talysurf have been removed).  

3.1 Pin-on-disc test philosophy  

The pin-on-disc test has been used extensively to study wear [41]. It is one of the most widespread tests 

which can be used to study the sliding wear behaviour [40]. This test was carried out in this thesis to present 

how the wear can be measured using a 3D optical profilometer.   

3.2 Pin-on-disc test  

 

A pin-on-disc machine (AEROTECH UNIDEX 11) was used in this project is shown in Figure 3.1.  

 

 

 

Figure 3. 1 Pin-on-disc machine (AEROTECH UNIDEX 11) - University of Huddersfield 

   

Pin-on-disc experiments were conducted at loads of 6N, 10N, 16N, and 22N, with a test time of one hour 

for each test, sliding speed of 500mm/min, and sliding distance of 5mm in forward and backward direction.   

The specimens which were used in this test were as follows: The pin was made of mild carbon steel EN8, 

while the disc was made of aluminium 6082. The hardness of the pin is 255(HB), while the hardness of the 

disc is 95(HB). The pin dimensions were 49.49mm height and 11.98mm diameter; and the disc dimensions 

were 25.73mm in diameter and 9.08mm in thickness.    

The pin/disc were put under an Alicona profilometer before and after test, and take image for both 

surfaces and save it as reference 1 (before test) and reference 2 (after test). The ‘Differences’ option for 

Alicona software was selected to calculate the pin wear and disc wear in terms of volume loss per unit 

area (mm3/mm2).   
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3.3 3D an Alicona profilometer for pin wear and disc wear measurements  

The Alicona profilometer (INFINTE FOCUS G4) which is shown in Figure 3.2 was used in this work for 

pin wear and disc wear measurements.  

 

Figure 3. 2 Alicona (INFINTE FOCUS G4) - University of Huddersfield 

 

An Alicona microscope has a motorized stage that moves in the xy direction, while the microscope 

objectives move in the z direction. It is non-contact microscope. The objectives has range from 2.5x - 100x 

magnification and has a vertical resolution of up to 10 nm at 100x magnification [91].       

 

Table 3.1 shows the technical specifications of the Alicona profilometer which was used in this project for 

wear measurement.   

 Measurement principle Non-contact, optical. 

Travel range X/Y/Z 100 mm x100 mm x100mm 

Maximum measurable area 10000mm2 

Maximum measurable profile length 100mm 

Min. repeatability 0.001μm - 0.12μm 

Vertical resolution 1μm 

Maximum measurable slope angle Up to 870 

  

Table 3. 1 Technical specifications of Alicona profilometer [92], [93] 
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3.3.1 Focus variation instrument  

Figure 3.3 shows the schematic diagram of a typical focus variation instrument. White light produced by 

light emitting diode (LED) is transmitted to the sample through the beam splitter (mirror) and the objective 

lens. The light is reflected in different directions due to variations in the topography and the reflectivity of 

the sample. The objective was used to collect the reflected light and projected to charge coupled device 

(CCD) sensor. The degree of focus changes from low to high and back to low again by moving the sample 

in the vertical direction in relation to the objective lens. A topographic 3D data model of the surface is 

produced using continuous vertical scanning. Also, a 3D depth of surface can be obtained using focus 

variation technique [93]-[95].        

 

Figure 3. 3 Focus variation instrument [93] 

 

 

3.4 Pin wear and disc wear measurements using an Alicona profilometer   

Table 3.2 shows the pin wear and disc wear measured using the Alicona profilometer after applied loads of 

6N, 10N, 16N, and 22N respectively.     

   Test No Load (N) Pin wear (mm3/mm2) Disc wear (mm3/mm2) 

1 6 2.5224 . 10−3 0.0786 

2 10 2.6041 . 10−3 0.0798 

3 16 2.9062 . 10−3 0.1226 

4 22 3.1965 . 10−3 0.2301 

    

Table 3. 2 Pin wear and disc wear measured using Alicona profilometer 
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Table 3.2 shows the pin wear and disc wear after applied loads of 6N, 10N, 16N, and 22N. The test results 

show that the pin wear and disc wear was effected by increases in load. The pin wear and disc wear 

increased with the increase of load; this is due to the fact that, as the load increases a frictional heat is 

generated at the contact surface and hence the strength of the material decreases, consequently the pin/disc 

wear was increased. On the other hand, when the applied load increased, the actual area of contact was 

increased, resulting in increased frictional force and real surface area in contact causing higher wear. 

Therefore, the pin wear and disc wear is proportional to the load. Test results show also that the disc wear 

was bigger than pin wear; that because the disc was made of Aluminium and the pin was made of steel; 

where the hardness of steel is 255HB, while the hardness of Aluminium is 95HB.    

    

Additional measurements were achieved using the Alicona profilometer for pin-on-disc tests; so as to 

discover more information about wear behaviour. Pin/disc surfaces before and after applied loads of 6N, 

10N, 16N, and 22N are shown in Figure 3.4 and Figure 3.5 respectively. The colour bar tells how big the 

deviation between database 1 (pin/disc surface before test) and database 2 (pin/disc surface after test).  

 

Figure 3. 4 Pin surface before and after tests 
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Figure 3. 5 Disc surface before and after tests 
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3.5 Chapter discussion 

Pin wear and disc wear were measured using an Alicona profilometer after applied loads of 6N, 10N, 16N, 

and 22N respectively. Tests results were shown in Table 3.2. Tests results show that the pin wear and disc 

wear was effected by increase of load. The pin wear and disc wear increases with the increase of load. Test 

results show that the disc wear was bigger than pin wear that because the disc was made of Aluminium 

(95HB) and the pin was made of steel (255HB).      

  

Figure 3.4 and Figure 3.5 show the pin surface and disc surface before and after applied loads of 6N, 10N, 

16N, and 22N respectively. It can be seen that the pin surface and disc surface before tests were smooth, 

and after applied load of 6N both surfaces became worn, then by increase of applied load to 10N, 16N, and 

22N the pin/disc surfaces became more worn, consequently the pin/disc wear was increased.    

 

 

3.6 Chapter conclusion 

The main findings of this chapter are summarised in the following points: 

 Pin wear and disc wear were increased with increase of applied load.  

 The Alicona profilometer can be used for pin wear and disc wear measurements. 

 

The pin-on-disc test was carried out in this project for measuring the pin wear and disc wear using Alicona 

profilometer. The next chapter presents a twin disc test rig, it was used to reflect some real conditions for a 

railway vehicle dynamic behaviour. This thesis focuses on studying and predicting the wheel wear and rail 

wear for twin disc rig experiments under different conditions. The University of Huddersfield twin disc test 

rig was used to achieve several experiments to study the wheel wear and rail wear.     
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Chapter 4 Laboratory test (Twin disc test rig)   

4.1 Twin disc test rig philosophy   

The twin-disc system consists of the use of two rollers pressed into contact, the variation of the relative 

velocity and of the contact pressure allows performing of the test under different conditions [49]. Twin disc 

test rig is used widely for wheel and rail wear investigations [96].  

 

A twin disc test rig was carried out in this work to reflect some real conditions of the railway vehicle 

dynamics. In this project the following tests were carried out using the University of Huddersfield twin disc 

rig: effect of load on wheel and rail wear test, and effect of yaw angle on wheel wear and rail wear test. 

The effect of surface conditions such as dry, wet, lubricated, and sanded conditions on wheel wear and rail 

were also investigated using the twin disc test rig.    

 

4.2 Introduction to the University of Huddersfield twin disc test rig 

The University of Huddersfield twin disc rig consists of an upper steel wheel of 310mm diameter, and a 

lower steel wheel with a diameter of 290mm. The rollers and shafts are made of EN24T steel. Vertical force 

of up to 4kN can be applied on the two wheels using a jacking mechanism. The rig consists of a rotary table 

to allow a relative yaw angle between the wheels. A three phase motor is used to rotate the wheel roller at 

varying speeds, using a corresponding three phase inverter [97].    

The twin disc rig for the University of Huddersfield is shown in Figure 4.1.  

The drawing for the two rollers (wheel profile and rail profile) for the University of Huddersfield twin disc 

rig are shown in appendix 1.     

 

Figure 4. 1 The University of Huddersfield twin disc test rig 
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Schematic of the University of Huddersfield twin disc rig is shown in Figure 4.2.      

 

 

Figure 4. 2  Schematic of the University of Huddersfield twin disc rig [97] 

 

 

Table 4.1 shows the technical details of the wheel and rail roller for the University of Huddersfield twin 

disc rig.   

 

Parameters Wheel roller Rail roller 

Profile Standard UK wheel profile P8 BS 113A rail profile 

Scale 1/3 1/3 

Diameter 310 mm 290 mm 

Thickness 50mm 25mm 

Material EN24T steel EN24T steel 

 

Table 4. 1 Technical details of the wheel and rail roller - University of Huddersfield 
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4.3 Load calibration using an Instron tensile testing machine and strain indicator    

The calibration of the load (four-point bending mechanism) was carried out using the Instron 3369 tensile 

testing machine which is shown in Figure 4.3, and strain indicator P-3500 which is shown in Figure 4.4.  

 

Figure 4. 3 Instron 3369 tensile testing machine 

 

 

Figure 4. 4 Strain indicator P-3500 

 

The strain gauge was used to measure the strain exerted on the roller of the twin disc rig using the instron 

tensile testing machine. Strain gauges are generally comprised of resistive foils arranged in a grid pattern, 

attached to the test specimen; therefore, the strain on the test specimen is directly transferred to the strain 

gauge of which the electrical resistance of the foil is proportional to the amount of deformation on a body. 

The electrical resistance of a conductor varies with change in length; this can be used to extract accurate 

strain measurements. Figure 4.5 shows the strain gauges which were connected on the test specimen as a 

bridge connection, it was used for load calibration using instron tensile testing machine.           
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Figure 4. 5 Instron tensile testing machine, strain indictor, and strain gauges for load calibration 

 

The experimental setup described above in conjunction with a strain indicator enables the measurement of 

the bending strain exerted on the test specimen. The technical details for strain gauges are a resistance of 

120Ω and a gauge factor of 2.10.  
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The instron machine and strain indicator were used to perform load calibration test for the twin disc rig. 

The load was applied using the instron machine in steps, and the corresponding strain exerted on test 

specimen is recorded using strain indicator.  

During the load calibration, the load was applied gradually through the instron machine; and the 

corresponding strain values were recorded from the strain indicator P-3500. The load calibration was shown 

in Figure 4.6. The result shows that the bending force (applied load) is proportional to the bending strain.  

     

 

 

Figure 4. 6 Load calibration curve 
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4.4 Development of a new method for wheel wear and rail wear measurements  

The twin disc rig was used in this project to reflect some conditions of the real wheel/rail interface. Replica 

material together with an Alicona profilometer were used for wheel and rail wear measurements.  

4.4.1 Introduction to replica material   

The replica material consists of a compound of two materials (polymer and the curing agent), which were 

mixed in a nozzle such as shown in Figure 4.7. Replica process: the nozzle of the gun should have pointed 

close to the surface as possible in order to avoid trapping air in the replica and to force the material into the 

surface. Then, the replica material was left drying for the drying time suggested by the manufacturer. At 

the end the replica was removed carefully [98].  

 

 

 

Figure 4. 7 Dispensing gun and cartridge of replica material [98] 

 

Replica material (AccuTrans Casting Silicone) was used for producing accurate impressions on smooth or 

rough surfaces such as shown in Figure 4.8 [98].  

 

 

Figure 4. 8 AccuTrans Casting Silicone [98] 
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4.4.2 Use of replica material for wheel and rail wear measurements 

In this project the replica material was used for wear measurements of the twin disc test rig rollers, where 

the replica material was used to make a copy of the surfaces of two rollers before test and after each test, 

and then the Alicona profilometer was used to measure the rollers wear. The AccuTrans replica material 

which was used in this project for wheel and rail wear measurements is shown in Figure 4.9. The Alicona 

profilometer was shown in Figure 3.2 in chapter 3.     

 

Figure 4. 9 Replica material (AccuTrans) 

 

Tests were carried out in this project using the twin disc test rig to investigate the effect of load, yaw angle, 

and speed on the wheel and rail wear under dry conditions. The effect of dry, wet, lubricated, and sanded 

conditions on wheel and rail wear were also investigated. The twin disc rig was used in this project to reflect 

some conditions of the real wheel/rail interface. Replica material together with an Alicona profilometer 

were used for wheel and rail wear measurements using the twin disc rig. Figure 4.10 shows a sample of 

replica material for the wheel and rail surfaces; and after it had been removed.     

 

Figure 4. 10 Sample of replica material on the wheel and rail surfaces; and after removed 
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Figure 4.11 shows a sample of replica surface for twin disc roller under the lens of the Alicona profilometer. 

The wheel sample dimensions were 5mm width and 35mm length, and the rail sample dimensions were 

5mm width and 20mm length.     

 

 

Figure 4. 11 Sample of replica for wheel under Alicona lens 

 

In this project, the wheel and rail wear were measured using the Alicona profilometer using the 

DifferenceMeasurments Module. The wear was measured by taking a digital image of the wheel and rail 

surfaces before the test and saving it as a reference 1, and taking another image of the wheel and rail surfaces 

after the test and saving it as a reference 2; then, the DifferenceMeasurments Module in Alicona software 

was used to compute the wheel and rail wear in term of volume loss per unit area (mm3/mm2). The steps 

of wheel and rail wear measurements using an Alicona profilometer are shown in appendix 2 [99].       
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4.5 Twin disc test rig for wheel wear and rail wear measurement 

The twin disc machine, replica material, and Alicona profilometer were used in this project to investigate 

the effect of several parameters, such as load, and yaw angle on wheel and rail wear as shown in the 

following sections. Replica material and an Alicona profilometer were used for wheel/rail wear 

measurements during these tests. The wheel sample dimensions were 5mm in width and 35mm in length, 

while the rail sample dimensions were 5mm in width and 20mm in length.     

4.5.1 Effect of load on wheel wear and rail wear 

The effect of load on wheel wear and rail wear (volume removed) under dry conditions was investigated. 

The speed of the rig rollers was 960rpm, the test time for each run was 60 min, the yaw angle was 0.4°, the 

distance was 112176m, and the load was varied from 1000N to 3400N in 6 steps such, as outlined in Table 

4.2.    

Test No Load(N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0067        0.0071 

2 1400 0.0121 0.0132 

3 1800 0.0207 0.0236 

4 2200 0.0250 0.0348 

5 2600 0.0334 0.0487 

6 3000 0.0378 0.0538 

7 3400 0.0453 0.0659 

 

Table 4. 2 Effect of load on wheel wear and rail wear 

 

Figure 4.12 shows the variation of wheel/rail wear with different values of load.   

 

Figure 4. 12 Variation of wheel/rail wear with different values of load 
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Figure 4.12 and Table 4.2 show the effect of load on wheel wear and rail wear under dry conditions. The 

test results show that the wheel wear increased approximately linearly from 0.0067mm3/mm2 at a load of 

1000N to 0.0453mm3/mm2 at load of 3400N. The rail wear increased approximately linearly from 

0.0071mm3/mm2 at a load of 1000N to 0.0659mm3/mm2 at a load of 3400N. The test results highlight 

that the applied load has a direct effect on wheel wear and rail wear, where the wheel wear and rail wear 

were increased by increases of applied load. The test results also show that the relationship between 

wheel/rail wear and load is approximately linear.     

 

4.5.2 Effect of yaw angle on wheel wear and rail wear 

The effect of yaw angle on wheel wear and rail wear (volume removed) under dry condition was 

investigated. The speed of the rig rollers was 960rpm, the test time for each run was 60 min, the load was 

2200N, the distance was 112176m, and the yaw angle was varied from 0.1° to 0.7o in 6 steps, as presented 

in Table 4.3.    

Test No Yaw angle(degree) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 0.1o 0.0070 0.0117 

2 0.2o 0.0095 0.0162 

3 0.3o 0.0121 0.0206 

4 0.4o 0.0198 0.0325 

5 0.5o 0.0332 0.0499 

6 0.6o 0.0422 0.0721 

7 0.7o 0.0530 0.0877 

  

Table 4. 3 Effect of yaw angle on wheel wear and rail wear 

 

Figure 4.13 shows the variation of wheel/rail wear with different values of yaw angle.  

 

Figure 4. 13 Variation of wheel/rail wear with different values of yaw angle 
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Figure 4.13 and Table 4.3 show the effect of yaw angle on the wheel wear and rail wear under dry 

conditions. The test results demonstrate that the wheel wear increased from 0.0070mm3/mm2 at a yaw 

angle of 0.1o to 0.0530mm3/mm2 at yaw angle of 0.7o. The rail wear increased from 0.0117mm3/mm2 

at a yaw angle of 0.1o to 0.0877mm3/mm2 at yaw angle of 0.7o.  

 

The results show that the wheel wear and rail wear were increased by increasing the yaw angle. The test 

results show that the wheel/rail wear has approximately the same trend at low value of yaw angle (0.1o to 

0.3o); then when the yaw angle increased between 0.4o and 0.7o, the wheel/rail wear was increased rapidly; 

when the results were plotted such as shown in Figure 4.13 it can be seen that the relationship between 

wheel/rail wear and yaw angle is non-linear. The increasing of the yaw angle led to increase of lateral 

creepage and lateral creep force which led at a certain yaw angle (0.4o) to wear transation from mild to 

severe wear as shown in Figure 4.13.  

 

The values of yaw angle to be used during these tests were determined by consideration of the lateral 

creepage and (and consequent lateral creep force) as discussed below. The longitudinal creepage is virtually 

zero when no longitudinal traction occurs between wheel and rail (γ1 = 0). The lateral creepage can 

determined using the following equation [97]:  

 

γ2 = tan ψ                                                                    (4.1) 

Where ψ is the yaw angle between wheel and rail. 

 

In Kalker’s linear theory, the lateral creep force can be written as [97]: 

F2 = − f22 ψ                                                                  (4.2) 

 

Where f22 is the Kalker’s linear creep coefficient (N) [97]: 

f22 =  (a. b). G. C22                                                        (4.3) 

Where, a and b are the contact ellipse semi-axes (m), G the Shear modulus (N/𝑚2), and C22 the tabulated 

creep coefficient.    

The ‘point’ contact between the rollers results in a contact patch size, assuming it to be elliptical and 

Hertzian with a normal load of 2.2 kN, of 1.19mm by 0.97mm, and C22 = 1.55. The resultant contact stress 

is approximately the same as the full-size case [97].  

The value of G for structural steel is 75GN/𝑚2.  Equations 4.1, 4.2, and 4.3 were used to calculate the lateral 

creep force and lateral creepage as shown in Table 4.4.         
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Yaw angle 

(degree) 

Lateral creep force 

(N) 

 

lateral creepage [-] 

0.1 234.65 0.0017 

0.2 469.31 0.0034 

0.3 703.96 0.0052 

0.4 938.63 0.0069 

0.5 1173.30 0.0087 

0.6 1408.00 0.0104 

0.7 1642.70 0.0122 

 
Table 4. 4 Yaw angle, lateral creepage, and lateral creep force 

  

 

The results shown in Table 4.4 show the lateral creep force and lateral creepage with changing of yaw 

angle, results show how the lateral creep force was increased with increase of yaw angle, which led to 

increase of wheel and rail wear as shown in Figure 4.13.    

 

During the tests, the range of yaw angle was between 0.1o to 0.7o, and the range of load was between 1000N 

to 3400N. These values were selected as representative of values seen in operation of typical railway 

vehicles [100], [101], [102], [103], [104]. In operation of the tests it was found that with yaw angles of 

greater than 0.7o very heavy flange contact occurred. 
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4.5.3 Section discussion  

 

In this chapter a new method was developed to study the wheel and rail wear using replica material and an 

optical profilometer. Copies of the wheel and rail surface were taken, then the samples were put under an 

Alicona profilometer to investigate the effect of key parameters on wheel wear and rail wear.   

 

This section examines the effect of load, and yaw angle on wheel wear and rail wear using laboratory twin 

disc tests under dry conditions; the test results can summarized as follows:    

 

The effect of load on wheel wear and rail wear for the twin disc rig experiments was investigated; in this 

study seven loads were applied (1000N to 3400N in six steps). For this purpose, the replica material and 

Alicona profilometer were used for wheel wear and rail wear measurements. The twin disc test results show 

that with increase of applied load the wheel wear and rail wear were increased as follows: When the load 

was 1000N, the wheel wear measured was 0.0067mm3/mm2; and when the load was 3400N, the wheel 

wear increased to 0.0453mm3/mm2. When the load was 1000N, the rail wear measured was 

0.0071mm3/mm2; and when the load was 3400N, the rail wear increased to 0.0659mm3/mm2. The load 

has observable effect on wheel wear and rail wear.     

 

The effect of yaw angle on wheel wear and rail wear for the twin disc rig experiments was investigated; in 

this study seven yaw angles were applied (0.1degree 0.7degree in six steps). For this purpose, the replica 

material and Alicona profilometer were used for wheel wear and rail wear measurements. Wear take place 

at every wheel and rail interaction but with curves the wear is much higher because of slip. The twin disc 

test results show that with the increase of yaw angle, a lateral slip was increased which led to increase of 

lateral creep force, which led to increases of material removed from wheel and rail surfaces. The test results 

show that the wheel/rail wear were increased with increase of yaw angle. When the yaw angle was 0.1o, 

the wheel wear measured was 0.0070mm3/mm2; and when the yaw angle was 0.7o, the wheel wear 

increased to 0.0530mm3/mm2. When the yaw angle was 0.1o, the rail wear measured was 

0.0117mm3/mm2; and when the yaw angle was 0.7o, the rail wear increased to 0.0877mm3/mm2. The 

yaw angle has a significant effect on wheel wear and rail wear. However, some scratches were formed 

during the process of changing the position of contact which led to increases of wheel/rail wear.  

 

The results have demonstrated that applied load, and yaw angle increase the wheel wear and rail wear. 

Therefore, it can be concluded that the applied load, and yaw angle all impact on the wheel wear and rail 

wear. The relationship between wheel/rail wear and load is approximately linear. The relationship between 

wheel/rail wear and yaw angle is nonlinear.       
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4.6 Effect of load on wheel wear and rail wear with different sequence of load  

The effect of load on wheel wear and rail wear with different sequence was investigated in the following 

section. This test was carried out to investigate whether the wear was the same when the load was applied 

in a different sequence.            

Test1: Wheel/rail wear with sequence of load (1000N, 1400N, 1800N, and 2200N). Table 4.5 shows the 

effect of load on wheel wear and rail wear under dry condition; speed =960rpm, test time = 60 min, the 

distance was 112176m, and yaw angle = 0.4°.       

Test No Load (N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0067 0.0071 

2 1400 0.0121 0.0132 

3 1800 0.0207 0.0236 

4 2200 0.0250 0.0348 

 

Table 4. 5 Wheel/rail wear with sequence of load 

 

Test2: Wheel/rail wear with different sequence of load (1400N, 1000N, 2200N, and 1800N). Table 4.6 

shows the effect of load on the wheel wear and rail wear under dry condition; speed =960rpm, test time = 

60 min, the distance was 112176m, and yaw angle = 0.4°. The percentage error between the wheel/rail 

wear for the two tests was calculated using equation 4.4.       

Test No Load (N) Wheel wear 

(mm3/mm2) 

Error% Rail wear 

(mm3/mm2) 

Error% 

1 1400 0.0135 -10.37 0.0148 -12.12% 

2 1000 0.0059 13.55 0.0081 -14.08% 

3 2200 0.0237 5.48 0.0356 -2.29% 

4 1800 0.0213 -2.81 0.0218 7.62% 

 

Table 4. 6 Wheel/rail wear with different sequence of load, and the error 

 

The percentage error between two measurements can be calculated using the following equation [105]:  

   𝐸𝑟𝑟𝑜𝑟 =
𝑥−𝑦

𝑦
∗ 100 %                                                          (4.4)  

Where 𝑥 is the actual measurement and 𝑦 is estimated measurement.    

 

The effect of load on wheel wear and rail wear with different sequences of load was carried out. The error   

between the wheel/rail wear for the two tests was calculated as shown in Table 4.6. The test results show 

that the wheel/rail wear with sequence of load was close to the wheel/rail wear with a different sequence of 

load. The percentage error was between 2.29% to 14.08%; this error is due to a change of wheel and rail 

surfaces; the wheel/rail surfaces became more worn during the tests.            
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4.7 Effect of dry, wet, lubricated, and sanded conditions on wheel wear and rail wear 

The twin disc test rig was used to investigate the effect of several surface conditions on wheel wear and rail 

wear such as dry, wet, lubricated, and sanded conditions. Replica material and the Alicona profilometer 

were used for wheel/rail wear measurements during these tests. The wheel sample dimensions were 5mm 

in width and 35mm in length, while the rail sample dimensions were 5mm in width and 20mm in length. 

The speed of the rail wheel was 960rpm, the test time was 10 min, the yaw angle was 0.5°, the distance was 

18696m, and the load varied from 1000N to 2200N in 6 steps.          

4.7.1 Effect of dry conditions on wheel wear and rail wear 

The variation of wheel wear and rail wear under dry conditions after a distance of 18696m is shown in 

Table 4.7.      

Test No Load (N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0023 0.0031 

2 1200 0.0030 0.0045 

3 1400 0.0072 0.0097 

4 1600 0.0098 0.0126 

5 1800 0.0140 0.0168 

6 2000 0.0178 0.0245 

7 2200 0.0258 0.0333 

 

Table 4. 7 Wheel wear and rail wear under dry conditions 

 

Figure 4.14 shows the variation of wheel wear and rail wear with different values of load under dry 

conditions.  

 

Figure 4. 14 Variation of wheel wear and rail wear under dry conditions 
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Figure 4.14 shows the variation of wheel wear and rail wear under dry conditions with different loads. The 

wheel wear increased approximately linearly from 0.0023mm3/mm2 at load of 1000N to 0.0258mm3/

mm2 at load of 2200N. The rail wear increased approximately linearly from 0.0031mm3/mm2 at load of 

1000N to 0.0333mm3/mm2 at load of 2200N. The test results show that the wheel wear and rail wear were 

increased by increasing load under dry conditions. The test results show also that the wheel and rail wear 

increased approximately linearly under dry conditions.    

4.7.2 Effect of wet conditions on wheel wear and rail wear 

Water was used in this test to investigate the effect of wet conditions on wheel wear and rail wear. The 

variation of wheel and rail wear under wet conditions after a distance of 18696m is shown in Table 4.8. 

The twin disc rig provided with a small water tank fixed on the top of the rig, this tank connected to a tube 

to provide the water into the wheel-rail contact, the amount of water dropped on the contact during the wet 

conditions tests was controlled using nozzle and valve.  

Test No Load (N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0017 0.0025 

2 1200 0.0024 0.0038 

3 1400 0.0054 0.0084 

4 1600 0.0078 0.0102 

5 1800 0.0100 0.0142 

6 2000 0.0144 0.0204 

7 2200 0.0165 0.0257 

 

Table 4. 8 Wheel wear and rail wear under wet conditions 

 

Figure 4.15 shows the effect of wet conditions on wheel wear and rail wear with different values of load.  

 

Figure 4. 15 Variation of wheel wear andrail wear under wet conditions 
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Figure 4.15 shows the variation of wheel wear and rail wear under wet conditions with different loads. The 

wheel wear increased approximately linearly from 0.0017mm3/mm2 at load of 1000N to 0.0165mm3/

mm2 at load of 2200N. The rail wear increased approximately linearly from 0.0025mm3/mm2 at load of 

1000N to 0.0257mm3/mm2 at load of 2200N. The test results show that the wheel wear and rail wear were 

increased by an increase of load under wet conditions. The test results show also that the wheel and rail 

wear increased approximately linearly under wet conditions. Furthermore, the test results show that the 

wheel and rail wear decreased under wet conditions in comparison to dry conditions. The results have 

demonstrated that the water reduced the wheel and rail wear.      

          

4.7.3 Effect of lubricated conditions on wheel wear and rail wear 

Millmax 46 oil was used in this test to examine the effect of lubricated conditions on wheel wear and rail 

wear. The variation of wheel wear and rail wear under lubricated conditions after a distance of 18696m is 

shown in Table 4.9. For lubricated conditions tests, some drops of oil were put on the wheel and rail surfaces 

before each test, where the oil was covered all the wheel-rail contact area. 

Test No Load (N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0012 0.0017 

2 1200 0.0018 0.0026 

3 1400 0.0041 0.0062 

4 1600 0.0057 0.0093 

5 1800 0.0071 0.0115 

6 2000 0.0093 0.0144 

7 2200 0.0130 0.0185 

 

Table 4. 9 Wheel wear and rail wear under lubricated conditions 

 

Figure 4.16 shows the variation of wheel/rail wear with different values of load under lubricated conditions.  

 

Figure 4. 16 Variation of wheel wear and rail wear under lubricated conditions 
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Figure 4.16 shows the variation of wheel wear and rail wear under lubricated conditions with different 

loads. The wheel wear increased approximately linearly from 0.0012mm3/mm2 at load of 1000N to 

0.0130mm3/mm2 at load of 2200N. The rail wear increased approximately linearly from 0.0017mm3/

mm2 at load of 1000N to 0.0185mm3/mm2 at load of 2200N. The test results show that the wheel wear 

and rail wear were increased by increase of load under lubricated conditions. The test results also show that 

the wheel wear and rail wear increased approximately linear under lubricated conditions with different 

loads. Furthermore, the test results show that the wheel wear and rail wear decreased under lubricated 

conditions compared to dry conditions; and the wheel wear and rail wear under lubricant conditions was 

less than in cases of wet conditions. The results have demonstrated that the oil reduced the wheel wear and 

rail wear.     

 

4.7.4 Effect of sanded conditions on wheel wear and rail wear 

Sand was used in this test to investigate the effect of sanded conditions on wheel wear and rail wear. The 

variation of wheel wear and rail wear under sanded conditions after a distance of 18696m is shown in in 

Table 4.10. For sanded conditions, a tube was fixed to the rig, and then some sand was provided inside this 

tube, then the sand was spread on the wheel-rail contact during the sanded conditions tests. 

 Test No Load (N) Wheel wear(mm3/mm2) Rail wear(mm3/mm2) 

1 1000 0.0032 0.0052 

2 1200 0.0041 0.0073 

3 1400 0.0088 0.0141 

4 1600 0.0112 0.0175 

5 1800 0.0169 0.0269 

6 2000 0.0236 0.0377 

7 2200 0.0341 0.0584 

 

Table 4. 10 Wheel wear and rail wear under sanded conditions 

 

Figure 4.17 shows the variation of wheel wear and rail wear with different values of load under sanded 

conditions.  

 

Figure 4. 17 Variation of wheel wear and rail wear under sanded conditions 
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Figure 4.17 shows the variation of wheel wear and rail wear under sanded conditions with different loads. 

The wheel wear increased approximately linearly from 0.0032mm3/mm2 at load of 1000N to 

0.0341mm3/mm2 at load of 2200N. The rail wear increased approximately linearly from 0.0052mm3/

mm2 at load of 1000N to 0.0584mm3/mm2 at load of 2200N. The test results show that the wheel wear 

and rail wear were increased by increases of load under sanded conditions. The test results also show that 

the wheel wear and rail wear increased approximately linear under sanded conditions with different loads. 

Furthermore, the test results show that the wheel wear and rail wear increased under sanded conditions in 

comparison to dry conditions. Scratches and other damage were seen on the wheel and rail surfaces after 

the addition of sand and consequently both wheel wear and rail wear damage rates increased under these 

conditions.  

4.7.5 Comparison between wheel wear and rail wear under dry, wet, lubricated, and 

sanded conditions 

Figure 4.18 shows a comparison between wheel wear and rail wear under dry, wet, lubricated, and sanded 

conditions.  

 

Figure 4. 18 Wheel/rail wear under dry, wet, lubricated, and sanded conditions 
 

Figure 4.18 presented the results of investigating the effect of wheel/rail surface conditions on wheel/rail 

wear for the twin disc rig experiments. The results shown in Figure 4.18 show that the wheel and rail wear 

was influenced by wet, lubricated, and sanded conditions. The results have demonstrated that the both water 

and oil reduce wheel and rail wear, while the sand increased wheel and rail wear.  

The results have demonstrated that the wheel wear and rail wear increased under dry, wet, lubricated, and 

sanded conditions. The relationship between wheel/rail wear and load under dry, wet, lubricated, and 

sanded conditions is nonlinear; probably due to the wear rate mechanism changing as the other parameters 

change such as load, and the profile surface after each test. Some relationships between wheel/rail wear and 

surface conditions are established in the next section.    
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4.7.6 Section discussion  

 

The effect of surface conditions on wheel wear and rail wear was investigated as follows: Figure 4.14 and 

Table 4.7 show the test results of wheel wear and rail wear under dry conditions; Figure 4.15 and Table 4.8 

show the test results of wheel wear and rail wear under wet conditions; Figure 4.16 and Table 4.9 show the 

test results of effect of lubricated conditions on the wheel and rail wear; and Figure 4.17 and Table 4.10 

show the test results of wheel wear and rail wear under sanded conditions. All these test results were 

summarized such as shown in Table 4.11 to present the effect of surface conditions on wheel wear and rail 

wear.     

 

Test 

No 

Load 

(N) 

Wheel 

wear 

(mm3

/mm2) 

Dry 

Rail 

wear 

(mm3

/mm2) 

Dry 

Wheel 

wear 

(mm3

/mm2) 

Wet 

Rail 

wear 

(mm3

/mm2) 

Wet 

Wheel 

wear 

(mm3

/mm2) 

Lubricated 

Rail  

wear 

(mm3

/mm2) 

Lubricated 

Wheel 

wear 

(mm3

/mm2) 

Sanded 

Rail 

wear 

(mm3

/mm2) 

Sanded 

1 1000 0.0023 0.0031 0.0017 0.0025 0.0012 0.0017 0.0032 0.0052 

2 1200 0.0030 0.0045 0.0024 0.0038 0.0018 0.0026 0.0041 0.0073 

3 1400 0.0072 0.0097 0.0054 0.0084 0.0041 0.0062 0.0088 0.0141 

4 1600 0.0098 0.0126 0.0078 0.0102 0.0057 0.0093 0.0112 0.0175 

5 1800 0.0140 0.0168 0.0100 0.0142 0.0071 0.0115 0.0169 0.0269 

6 2000 0.0178 0.0245 0.0144 0.0204 0.0093 0.0144 0.0236 0.0377 

7 2200 0.0258 0.0333 0.0165 0.0257 0.0130 0.0185 0.0341 0.0584 

 

Table 4. 11 Effect of surface conditions on wheel/rail wear 

 

The test results shown in Table 4.11 were used to find the results which are shown in Table 4.12. Table 

4.12 shows the effect of wet, lubricated, and sanded conditions on wheel wear and rail wear. As an example: 

after an applied load of 1000N, the wheel wear decreased by a factor of 1.3 and the rail wear decreased by 

a factor of 1.2 under wet conditions; the wheel wear decreased by a factor of 1.9 and the rail wear decreased 

by a factor of 1.8 under lubricated conditions; and the wheel wear increased by a factor of 1.3 and the rail 

wear increased by a factor of 1.6 under sanded conditions.   
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Test 

No 

Load 

(N) 

Wheel  

wear 

(−) 
Wet 

Rail  

wear 

(−) 
Wet 

Wheel  

wear 

(−) 
Lubricated 

Rail  

wear 

(−) 
Lubricated 

Wheel wear 

(−) 

Sanded 

Rail  

wear 

(−) 
Sanded 

1 1000 1.3 1.2 1.9 1.8 1.3 1.6 

2 1200 1.2 1.1 1.6 1.7 1.3 1.6 

3 1400 1.3 1.1 1.7 1.5 1.2 1.4 

4 1600 1.2 1.2 1.7 1.4 1.1 1.3 

5 1800 1.4 1.1 1.9 1.4 1.2 1.6 

6 2000 1.2 1.2 1.9 1.7 1.3 1.5 

7 2200 1.5 1.2 1.9 1.8 1.3 1.7 

Aver

age 

-- 1.3 1.1 1.8 1.6 1.2 1.5 

  

Table 4. 12 Effect of surface conditions on wheel/rail wear 

 

Figure 4.18 shows the comparison between the effects of the four surface conditions on wheel wear and 

rail wear. For example, after an applied load of 2200N, the wheel wear was 0.0258mm3/mm2 under dry 

conditions, and it decreased 0.0165mm3/mm2 under wet conditions, and decreased to 0.0130mm3/mm2 

under lubricated conditions, while it was increased to 0.0341mm3/mm2 under sanded conditions. The rail 

wear was 0.0333mm3/mm2 under dry conditions, and it decreased to 0.0257mm3/mm2 under wet 

conditions, and decreased to 0.0185mm3/mm2, while it was increased to 0.0584mm3/mm2 under sanded 

conditions. The wet conditions decreased the wheel wear by a factor of 1.5, the lubricated conditions 

decreased the wheel wear by a factor of 1.9, while the sanded conditions increased the wheel wear by a 

factor of 1.3. The wet conditions decreased the rail wear by a factor of 1.2, the lubricated conditions 

decreased the rail wear by a factor of 1.8, while the sanded conditions increased the rail wear by a factor of 

1.7.  
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4.8 Chapter Conclusion   

 

The findings of the investigation of this chapter can be summarised as follows: 

 

The effect of load, yaw angle and wheel/rail surface conditions on wheel wear and rail wear were 

investigated. Results of analysis of wear tests indicates that there is relationship between increase of load, 

yaw angle and wheel/rail wear. Tests results show that the applied load, and yaw angle all impact on the 

wheel/rail wear. The relationship between wheel/rail wear and load is approximately linear. The 

relationship between wheel/rail wear and yaw angle is nonlinear.        

  

The test results show that the wheel wear and rail were influenced by wet, lubricated, and sanded conditions.  

The key findings are: The wet conditions decreased the wheel wear by a factor of 1.3, the lubricated 

conditions decreased the wheel wear by a factor of 1.8, while the sanded conditions increased the wheel 

wear by a factor of 1.2. The wet conditions decreased the rail wear by a factor of 1.1, the lubricated 

conditions decreased the rail wear by a factor of 1.6, while the sanded conditions increased the rail wear by 

a factor of 1.5. The test results show also show that the wheel and rail wear increased nonlinearly under 

dry, wet, lubricated, and sanded conditions with different loads.   

 

The replica material and Alicona profilometer can be used to study the effect of some parameters such as 

load, yaw angle, and surface conditions on wheel wear and rail wear. This work introduced the replica 

material and an optical instrument as effective tools to study the wheel wear and rail wear. Another 

advantage of the use of the replica material is that it is a permanent record of the wheel and rail surface, 

while an advantage of the Alicona profilometer is that it can measure the wheel wear and rail wear at high 

resolution.  
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Chapter 5 Prediction of wheel wear and rail wear using artificial 

neural networks for a twin disc rig tests  

(Chapter 3 in exam draft has been included in chapter 6 (now chapter 5)).    

5.1 Introduction to Neural Networks 

In 1943 McCulloch and Pitts [106] presented an introduction to simplified neurons, they introduced these 

neurons to achieve the computational tasks. In 1969 Minsky and Papert [107] published a neural networks 

book titled of perceptrons. Backpropagation neural network was presented in 1986 by Rumelhart, Hinton 

and Williams [108], they presented the delta rule to train multi-layered networks.  

Currently most institutes and universities have a neural networks group within their departments. An 

artificial neural network can be categorised as a computational model which has the ability to learn [109].  

A neural network  consists of input unit, weights, an activation function, and output unit [110]. The most 

common activation function is a sigmoid function which is shown in Figure 5.1. 

 

Figure 5. 1 Sigmoid Activation Function [111] 

 

The logistic function is the most common sigmoid activation function that plots within the range of 0 to 1. 

The sigmoid function is expressed in the following general form [111]:   

g(z) =  
1

1+𝑒−𝑍                                                               (5.1) 

Where z is constant that determines how steep the function is. 

 

5.2 Multilayer Perceptron Neural Network (MLP) 

The most important class of neural networks is the multilayer perceptron neural network (MLP). Multilayer 

perceptron neural network consists of an input layer, one or more hidden layers, and an output layer. The 

architecture of the multilayer perceptron neural network is shown in Figure 5.2 [112], [113].     

 

Figure 5. 2 The architecture of the multilayer perceptron neural network [113] 
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5.3 Training of neural network 

The most common training algorithms in neural networks are the supervised training algorithm and the 

unsupervised training algorithm.  

Supervised training method uses a teacher to train the network. In supervised training method, the response 

is compared with the desired output; if there are difference between the response and the desired output, 

then, the error is used to make adjustments to the weights until the response matches the desired output. In 

unsupervised training method no teacher is uses in the training, while the adaption rule generates the error 

signal which are used to adapt the weights of neural network. The supervised training method, and the 

unsupervised training method are shown in Figure 5.3 and Figure 5.4 respectively [114].    

 

 

Figure 5. 3 Block diagram of supervised training method [114] 

 

 

Figure 5. 4 Block diagram of unsupervised training method [114] 

 

The training of neural network uses modified weights to produces more desirable results. There are several 

algorithms which can be used to train neural networks such as the Hobbs rule, and the delta rule. Hobbs 

rule is used for unsupervised training, while the delta rule used for supervised training. The delta means 

reduces the difference between the actual output and desired output. The delta rule is the common neural 

network learning algorithm. In this rule, the weights are updated to minimize the mean squared error of the 

network. The delta rule is sometimes referred to as least mean square (LMS) rule or backpropagation rule 

[115]-[118].     
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5.4 Neural networks types   

The neural networks are divided in terms of their structure into two types: feedforward network and 

recurrent network [119]. In feedforward neural networks the information flows in one direction without 

feedback (loops). The information travelled from the inputs to the outputs, and without feedback between 

output layer and input layer. The feedforward neural network can consists of more than one hidden layer  

[115], [120]. In recurrent neural network the information can a flow in forward direction and a backward 

direction (it contain feedback connections), the outputs of neurons can fedback to the same neurons or to 

neurons in previous layers [121].      

 

Three types of neural network were used in this thesis for prediction of wheel wear and rail wear. The first 

network is a Nonlinear Autoregressive model with eXogenous input neural network (NARXNN). This is a 

type of recurrent neural network and the advantages of the NARXNN are that it has fast training and the 

output of NARXNN is fedback to the input of the feedforward neural network so that the network output 

is available during the training of the NARXNN and more efficient inputs can be used for training of neural 

network.  

 

The second network is a backpropagation neural network (BPNN) which is a type of feedforward neural 

network, the advantage of using this neural network is that the Levenberg-Marquardt algorithm is used to 

adjust the weights to reduce the error between the actual output and the network output.  

 

The third network is a radial basis function neural network (RBFNN) which is a type of feedforward neural 

network. The advantage of the RBFNN is that the training is divided into two stages: the first stage is to 

select the centres of hidden layers, and select the widths of the Gaussian functions; while the second stage 

is to adapt the weights using least mean squares algorithm; this can lead to more accurate results.  

 

The performance of the RBFNN depends on the proper selection of these three parameters, centres, widths 

and the weights. The BPNN and the RBFNN were used the supervised training algorithm for training, 

where the target acts as a ‘teacher’ to reduce the error, while the output of the network is used to adjust the 

weights.  
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5.4.1 Nonlinear Autoregressive model with eXogenous input neural network (NARXNN)  

A Nonlinear Autoregressive model with eXogenous input neural network (NARXNN) was used in this 

project for wheel wear and rail wear prediction. The NARXNN can be implemented using a feedforward 

neural network [122].  Figure 5.5 shows the structure of the NARXNN which are called NARX recurrent 

neural networks. This network simply uses a TDL-type network (Tapped delay line) with a feedback 

connection from the output of the network to the input [83]. The function of the delay line (TDL) or taps is 

to feed the neural network with the past values of inputs.       

 

 

Figure 5. 5 The structure of NARXNN [83], [122] 

 

The output of the NARXNN is represented using the following equation:  

y(t) = f(u(t − 1), u(t − 2), … , u(t − n), y(t − 1), y(t − 2), … , y(t − m), W)                                      (5.2) 

Where u(t) is the input and y(t) is the output of the network at time t, n and m are the input-memory and 

output-memory order, W is a weights matrix, and f is a nonlinear function. The output at time t depends on  

both its past m values and the past n values of the input as well.  

 

The nonlinear autoregressive network with exogenous inputs neural network (NARXNN) is a recurrent 

dynamic network, with feedback connections. The scheme of NARXNN is depicted in Figure 5.6. Where 

x is the input, y is the desired output, d is the delay, wh is the weights, and ŷ is the estimated output.  The 

NARXNN can be used in several applications such as a predictor [90], [123].    
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Figure 5. 6 Structure of the NARXNN: series-parallel (up); parallel (down) [124] 
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Figure 5.7 implements the parallel architecture NARXNN and series-parallel architecture NARXNN. The 

output of NARXNN is fedback to the input of the feedforward neural network as part of the NARXNN in 

parallel architecture. This has some advantages such as the input to the feedforward network is more 

accurate. Where u(t) is the input, y(t) is the desired output, and ŷ(t) is the estimated output.    

 

Figure 5. 7 Parallel and series-parallel architecture of NARXNN [123] 

 

A toolbox function (closloop) in Matlab can used to convert the NARXNN from the series-parallel structure 

(open loop) to the parallel structure (closed loop) which is useful for multi-step-ahead prediction. The 

training of neural networks can achieve with the open loop which called the series-parallel architecture 

including the validation and testing. After that, the parallel architecture take place to execute the multistep-

ahead prediction [125], [126].    

 

An example of a NARXNN (series-parallel architecture) with 24 hidden layers and 2 delay times designed 

using Matlab is shown in Figure 5.8. 

 

 

 

Figure 5. 8 Series-parallel architecture of NARXNN [90] 
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Matlab can be used to convert the series-parallel NARXNN into the parallel NARXNN, in order to achieve 

a multi-step-ahead prediction. The parallel NARXNN is shown in Figure 5.9 [90], [123], [125].  

 

 

 

Figure 5. 9 Parallel architecture of NARXNN [90] 

 

NARXNN can be trained using a backpropagation algorithm. The typical performance function used in 

training (to reduce the error between actual output and estimated output) is the mean square error (MSE).  

 

The MSE is shown in the following equation [90], [122]. 

MSE =  
1

N
  ∑ (ei)

2N
i=1 =   

1

N
  ∑ (ti − yi)

2N
i=1                                                 (5.3) 

Where ti the target output and 𝑦𝑖 is the estimated output.   

The activation functions of the neurons in hidden layers can be defined using the logistic function which 

was presented in equation 5.1 [90].      

The Lavenberg-marquardt backpropagation algorithm is usually used to train the NARXNN. The training 

of NARXNN automatically stops when the validation error (MSE) begins to increase [21].         
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The “Performance” option in Matlab windows which is shown in Figure 5.10 can be used to plot the 

performance training record to check for possible overfitting. Also, the “Regression” option can be used to 

check the regression coefficient.  

     

 

 

Figure 5. 10 Neural network training windows 
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Mathworks [127] presented the performance function for training, validation and test error for certain 

simulations such as shown in Figure 5.11. It shows that better validation performance was at epoch 38. 

After 44 epochs the training stopped because the validation error increased. These results show a good 

network performance because the test error and the validation error have similar characteristics, and there 

is no any significance over fitting has happened.    

 

Figure 5. 11 Performance of neural network [127] 
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The regression plot is used to validate the performance of the network as it shows a regression between 

network output and network target for each of the data subsets. The R values give some sense of the 

networks ability to generalise. The R value is an indication of the relationship between the outputs and 

targets. When R is equal to 1 it is indicative of an exact linear relationship between output and target. If R 

is tends to zero, then there is no linear relationship between output and target [128].     

 

Khamis and Abdullah [21] presented the regression for the training, validation, and testing of NARXNN 

for certain simulations such as shown in Figure 5.12; the R value for training, validation, and test results 

were greater than 0.9; this indicates that there is linear relationship between output and target.    

      

 

 

Figure 5. 12 Example of Matlab regression plot [21] 
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5.4.2 Backpropagation Neural Network (BPNN) 

This section describes one of the most common types of artificial neural network. Multilayer feedforward 

(MLFF) neural network with backpropagation (BP) learning (multilayer perceptron). A general multilayer 

feedforward (MLFF) network is illustrated in Figure 5.13. The MLFF consists of three layers: Input layer, 

hidden layers, and output layer. The hidden layer is sometimes called the internal layer because it only 

receives internal inputs then produces internal outputs. It consists of one or more hidden layers [129].       

 

 

Figure 5. 13 MLFF Backpropagation Neural Network (BPNN) [129] 

 

 

The backpropagation training process requires an activation function. One of the most common activation 

functions is the sigmoid function which is shown in equation 5.1 [129]. 

 

The most common training algorithm which is used for training of BPNN is a Levenberg-Marquardt 

algorithm which adjusts the weights to reduce the error. The backpropagation training algorithm is designed 

to minimize the mean square error (MSE). The MSE is the function which is commonly used to optimize 

network performance. The mean squared error (MSE) is shown in equation 3.3.    

 

The weights can updated using the following equation [86]: 

Wij
m(t + 1) = Wij

m(t) +  η δj
m Oi

m−1                                        (5.4) 

 

Where Wij(t) is the old weight;   Wij(t + 1) is the new weight; η is the learning rate (η = 0 … 1); δ is the 

error term; and m indicates the layers except the input layer; and O is the actual output of the node.  

 

For training MLFF, the Levenberg-Marquardt algorithm is the fastest training function. The Matlab 

command ‘trainlm’ is a network training function that updates weight and bias values according to 

Levenberg-Marquardt optimization  [130].    
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Table 5.1 shows the Matlab commands and it is description which can be used to terminate the training of 

multilayer neural networks. The setting shown in Table (5.1) can be changed, but the result will affects.  

 

net.trainParam.epochs 1000 Maximum Number of Training Epochs 

(Iterations) 

net.trainParam.min_grad 1e-6 Minimum Gradient Magnitude 

net.trainParam.max_fail 6 Maximum Number of Validation Increases 

 

Table 5. 1 The Matlab commands to terminate the training of multilayer neural networks  [130] 

 

The most common problem facing researchers is the number of hidden layer selection. Until now there is 

no an accurate method to determine the number of hidden layer of neural network. The number of hidden 

layer is very important for the training of the neural network. The trial and error method is the most common 

algorithm which can be used to select the number of hidden layers [131]. 

 

When the training and testing of BPNN is complete; the network training windows, performance plot, and 

regression plot can be obtained as shown in Figure 5.10, 5.11, and 5.12 respectively. “Performance” option 

can be used to check the overfitting. Also, the “Regression” option can be used to check the regression 

coefficient.  
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5.4.3 Radial basis function neural network (RBFNN)     

The radial basis function neural network (RBFNN) has an input, hidden, and output layer as shown in 

Figure 5.14. The hidden layer consists of RBF activation function [86]. The training of RBFNN can be 

carried out as: select the centres of hidden layers, select the widths of the Gaussian functions, and adapt the 

weights [132].   

 

The centres of the RBFNN can be selected using different strategies, but the common approaches are fixed 

centres selected randomly, and K-Means clustering algorithm [133]. The simple algorithm for selecting the 

centres (Ci) of radial basis function is to set the centres equal to a random subset of the input vectors from 

the training set, this algorithm is called centre selection using a subset of data points [134].    

 

Figure 5. 14 Radial Basis Function Network (RBFNN) Architecture [135]-[137] 

 

 

Where  X1, X2,X3 … , Xm are the inputs, and C1, C2, … , Cm are the centres. Here, the dimension of each centre 

for m input network is (m ×1) [136], [137].     

The output of RBFNN can represented such as shown in the following equation [117], [135], [136]:  

y =  ∑ Wj ∅j
m
j=1                                                              (5.5) 

Where ∅ is the activation function, and W is the weights.    

The common activation function of RBFNN is the Gaussian function (∅) [135]-[138]:    

                    ∅(x) =  exp (
− r2

2 σ2)                                                            (5.6) 

                    r = ∣∣ x − c ∣∣                                                                 (5.7) 

Where  C are the centres, x are the inputs, and σ is the width of activation function.       
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Euclidean distance method is the most common method which can used to calculate the width of activation 

function for RBFNN such as shown in the following equation [114], [138], [139]:   

                                                              Edist =  √∑

  
(Xi − ci)

2

   

n
i=1      , i = 1,2,3, . . . , n                          (5.8)     

Where: Xi are the inputs, ci are the centres, and n is the vector dimension.  

 

The least mean square algorithm (LMS) is the most common algorithm which can used for adapting the 

weights of the output layer for the RBFNN such as shown in the following equation [114], [138]-[140]:    

                                                  W(t + 1) = W(t) +  μ (y(t) − ym(t))ΦT(t)                                     (5.9) 

Where W(t + 1) is the updated weights, W(t) is the previous weights originally set to zero, y(t) is the 

desired output, ym(t) is the output of the network, ΦT(t) is the hidden layer output (Gaussian output), and 

μ is the learning factor of the RBFNN. The learning factor is a positive gain factor term that controls the 

adaptation rate of the algorithm (0 < μ ≤ 1).   

 

The mean square error (MSE) is used for measuring the performance of the RBFNN, it shown equation 3.3 

[141].  

 

The RBFNN can be designed using the following Matlab command (newrb) [142]-[144]:  

net =  newrb(P, T, goal, spread, MN, DF)                                         (5.10) 

Where: P is the input vectors, T is the target vectors, goal is the mean squared error (MSE), spread is the 

spread of RBF, MN is the maximum number of neurons, and DF is the number of neurons to add between 

displays.  

 

In matlab, the newrb command can be used to design and train the RBFNN; one neuron created, and then, 

the neurons are added until stopping criteria such as goal or MN was achieved. The training of the RBFNN 

will be stopped when the sum-squared error falls less than error goal or a maximum number of neurons has 

been reached [145].   

 

One of the main functions used to design RBF neural network is the newrb, in this case the Gaussian 

function used as activation function, and the centres were set equal to a random subset of the input vectors 

from the training set, while the width of Gaussian function is explicitly set by the user [146].   

 

The RBFNN is faster in training compared to other type of neural network such as backpropagation neural 

network (PBNN) [147]-[149].     
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5.5 Section conclusion   

 

An introduction to artificial neural networks was presented in this section. Three types of neural networks 

were introduced: The nonlinear autoregressive network with exogenous inputs neural network (NARXNN), 

the backpropagation neural network (BPNN), and the radial basis function neural network (RBFNN).  

These three types of neural network were introduced in this chapter because they were developed in this 

project for wheel/rail wear prediction. Neural networks are usually trained using a supervisor training 

algorithm, where the target (teacher) is used as a supervisor to achieve the training. The supervised training 

algorithm was used to train the neural networks in this work to predict the wheel and rail wear.  

 

The NARXNN can be designed in parallel structure and series-parallel structure. NARXNN and BPNN 

usually trained using Levenberg-Marquardt algorithm which is adjusts the weights to reduce the error. The 

backpropagation training algorithm designed to minimize the mean square error to optimize network 

performance.  

 

The radial basis network can be designed using the newrb Matlab command. The training of the radial basis 

function neural network will be stopped when the sum-squared error falls less than error goal or a maximum 

number of neurons has been reached.      
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5.6 Neural network model for wheel wear and rail wear prediction    

In this project, the neural network model was developed to predict the wheel wear and rail wear as shown 

in Figure 5.15.   

 

Figure 5. 15 Neural network model for the wheel/rail wear prediction 
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The series-parallel NARXNN and parallel NARXNN were used to predict the wheel/rail wear for the twin 

disc rig experiments under dry, wet, lubricated, and sanded conditions as follows:  

 

1. Wheel/rail wear prediction using series-parallel NARXNN: In this test, the following twin disc tests 

were used to train, validate, and test the NARXNN. The load was 1200N, 1400N, and 1600N; the 

yaw angle was 0.2 degree, 0.3 degree, and 0.4 degree; and the speed was 420rpm, 540rpm, and 

660rpm. 261 samples were used for wheel/rail wear prediction using series-parallel NARXNN. The 

dataset was divided into 70% for training, 15% for validation, and 15% for testing of NARXNN.    

2. Wheel/rail wear prediction using parallel NARXNN: The parallel NARXXNN used to predict 

wheel/rail wear of the new samples without retraining the network. This in order to perform the 

multi- step-ahead prediction task (wheel/rail wear prediction in case of new samples). In this test, 

the following twin disc test was used to test the NARXNN, the load was 1800N, the yaw angle was 

0.5 degree, and the speed was 780rpm. 87 samples were used for wheel/rail wear prediction using 

parallel NARXNN. 

 

The neural network model shown in Figure 5.15 was used for both networks with same architecture (series-

parallel NARXNN and parallel NARXNN). In the parallel NARXNN, the output of network is fed back to 

the input (closed loop); while in the series-parallel NARXNN, there is no connection between output and 

input (open loop) such as shown in Figure 5.16 and Figure 5.17.          
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5.7 Wheel wear and rail wear prediction using neural network for the twin disc rig experiments 

After the twin disc rig experiments were carried out, a neural network model was developed to predict the 

wheel wear and rail wear as shown in this chapter. A nonlinear autoregressive network with exogenous 

inputs neural network (NARXNN) was developed to predict the wheel wear and rail wear for the twin disc 

rig experiments under several conditions.     

 

The advantages of the NARXNN are that it has fast training, and it can be used as a predictor for nonlinear 

systems. Modelling using neural networks has emerged as a powerful tool in finding relationships in 

complex problems and has been used successfully in many fields where the relationship between input and 

output in a system is very hard to describe. NARXNN has been widely used in the field of system modelling 

due to its approximation and generalization ability for nonlinear system. 

   

NARXNN was used in railway system modelling, for example, it was used to predict vehicle vibration. The 

simulation results show that the established NARXNN prediction model can predict the vehicle-body 

vertical vibration acceleration more accurately [150].     

 

A NARXNN was used in this work for wheel wear and rail wear prediction because the NARXNN has fast 

coverage, the output of NARXNN is fed back to the input of the feedforward neural network as part of the 

NARXNN architecture which usually leads to more accurate training, and the NARXNN can be used to 

predict wear in case of new samples without retraining the network.        

 

The neural network model shown in Figure 5.15 was used for wheel wear and rail wear prediction. The 

University of Huddersfield twin disc test rig was used to perform several tests such as effect of load, yaw 

angle, speed and surface conditions such as dry, wet, lubricated, and sanded conditions on wheel and rail 

wear. The test time for wheel/rail wear measurements was 10min for each test. During these tests, the 

replica material and Alicona profilometer were used to measure the wheel and rail wear. Then the data 

collected from the test results were used to train, validate, and test the NARXNN during wheel/rail wear 

prediction.  

The load, the yaw angle, the speed, and the wheel/rail profile were chosen as inputs to the neural network 

model because they had an effect on wheel and rail wear during tests. The first derivative of wheel/rail 

profile, and the second derivative of wheel/rail profile presents the rate of change of wheel/rail profile, it 

was chosen as inputs to the neural network model because it can assist to train the neural network. Useful 

information about wheel/rail profile can obtained by computing the first derivative of wheel/rail profile and 

second derivative of wheel/rail profile which were assisted to train the neural network model. Matlab used 

to calculate the first derivative of wheel/rail profile and second derivative of wheel/rail profile. The output 

of the neural network was wheel/rail wear.      
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Series-parallel NARXNN and parallel NARXNN were used to predict the wheel wear and rail wear as 

shown in the following sections: Wheel/rail wear prediction using series-parallel NARXNN, in this test, 

the following twin disc tests were used to train, validate, and test the NARXNN. The load was 1200N, 

1400N, and 1600N; the yaw angle was 0.2 degree, 0.3 degree, and 0.4 degree; and the speed was 420rpm, 

540rpm, and 660rpm. 261 samples were used for wheel wear and rail wear prediction using NARXNN. 

The dataset was divided into 70% for training, 15% for validation, and 15% for testing of NARXNN.  The 

series-parallel NARXNN was designed with input delays of 1:2, feedback delays of 1:2, 1 hidden layer 

with 10 neurons were used, and the NARXNN architecture was 6-10-1 as shown in Figure 5.16.  

 

Figure 5. 16 Series-parallel network (NARXNN) [125, 127] 

The logistic function was used as an activation function of the neurons in the hidden layers as shown in 

equation 5.1[90]. The performance function which was used in the training of NARXNN is the mean square 

error (MSE), it was used to reduce the error between actual output and estimated output such as shown in 

equation 5.3 [122]. The Levenberg-Marquardt algorithm was used as a network training function that 

updates the weight and bias values. The Levenberg-Marquardt algorithm has the fastest convergence. This 

advantage is especially noticeable if very accurate training is required. Levenberg-Marquardt was used to 

train the NARXNN using the Matlab. The training continues until validation error failed to decrease for six 

iterations (validation stop). The Levenberg-Marquardt algorithm usually assumes that the performance 

function is a mean squared errors (mse) [122]. Mean absolute percentage error (MPAE) was used to 

calculate the NARXNN model accuracy for wheel wear and rail wear prediction. The MPAE was shown 

in equation 5.11 [151], [152], [154], [155]. The percentage error was calculated using equation 5.12 [105], 

this equation was used to calculate the percentage error between wheel/rail wear measured and predicted 

using NARXNN.   

Wheel/rail wear prediction using parallel NARXNN: this additional test was performed to present the 

ability of NARXXNN to predict wheel/rail wear for the case of new samples without retraining the network. 

Series-parallel network architecture which was shown in Figure 5.16 was converted into a parallel 

configuration in order to perform the multi- step-ahead prediction task (wheel/rail wear prediction in case 

of new samples) [125]-[127]. An example of parallel NARXNN architecture was presented in Figure 5.17.          
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Figure 5. 17 Parallel network (NARXNN) 

 

The function “CLOSELOOP” in the Matlab replaces the feedback input with a direct connection from the 

output layer, with the feedback loop closed, it can be used to perform multi-step-ahead predictions [127]. 

In this test, the following twin disc test was used to test the NARXNN, the load was 1800N, the yaw angle 

was 0.5 degree, and the speed was 780rpm. 87 samples were used for wheel wear and rail wear prediction 

using NARXNN. The mean absolute percentage error (MPAE) was used to calculate the NARXNN model 

accuracy, it was calculated using equation 5.11. The percentage error was calculated using equation 5.12.   

The following equation was used to calculate the  mean absolute percentage error (MAPE) [151], [152]:    

MAPE =  
1

N
 ∑  

∣Ai− Pi ∣

Ai
 X 100N

i=1                                                         (5.11) 

Where Ai is the actual wear, Pi is the predicted wear, i is time period, and N is the number of time periods 

(number of observed values).   

 

The following equation was used to calculate the percentage error [105]:  

Perecntage error =  
|  wear predicted −actual wear|

actual wear
 X 100                                         (5.12) 

 

MATLAB has been recognised as an effective neural network modelling tool and is subsequently used in 

this project to implement the neural network model for wheel/rail wear prediction. The Matlab code was 

used to implement the results of wheel wear and rail wear prediction using series-parallel NARXNN and 

parallel NARXNN was shown in appendix 3 [127]. The Matlab code was used to calculate the mean 

absolute percentage error (MAPE), and the percentage error such as shown in appendix 4. Appendix 5 

presents how the data is used to train, validate, and test the neural network model during prediction of wheel 

and rail wear using neural network.  

 

The following sections present the wheel wear and rail wear prediction using the series-parallel NARXNN 

and parallel NARXNN under dry, wet, lubricated, and sanded conditions (All results for unseen data). 
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5.7.1 Wheel wear and rail wear prediction under dry conditions  

The actual wheel wear, and the wheel wear predicted using series-parallel NARXNN are shown in Figure 

5.18. Since the tests were performed under loads of 1200N, 1400N, and 1600N; three profiles were 

obtained; each profile contains 87 sample; therefore, the three profiles together contain 261 samples, these 

261 samples were used to train, validate, and test the network. The 261 samples were divided into 70% for 

training, 15% for validation, and 15% for testing of series-parallel NARXNN. The training data set and 

validation dataset was not presented in this work, just the test dataset was presented (wear predicted) such 

as shown in Figure 5.18. The testing dataset shown in Figure 5.18 were 39 samples (15% of 261 samples), 

it is chosen randomly (no sequence) by the Matlab neural network toolbox.       

 

Figure 5. 18 Actual wheel wear and predicted using series-parallel NARXNN under dry conditions 

 

 

The actual wheel wear and the wheel wear predicted using parallel NARXNN are shown in Figure 5.19.  

Since the test was performed under load of 1800N was used to test the parallel NARXNN; therefore, a one 

profile obtained; this profile contains 87 sample; all of these 87 samples were used to test the parallel 

NARXNN (wear predicted) such as shown in Figure 5.19, it can be notice that the samples were sequences 

because it implements the full profile.   

 

Figure 5. 19 Actual wheel wear and predicted using parallel NARXNN under dry conditions 
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The actual rail wear and the rail wear predicted using series-parallel NARXNN are shown in Figure 5.20.   

 

Figure 5. 20 Actual rail wear and predicted using series-parallel NARXNN under dry conditions 

 

The actual rail wear and the rail wear predicted using parallel NARXNN are shown in Figure 5.21.  

 

Figure 5. 21 Actual rail wear and predicted using parallel NARXNN under dry conditions 

 

 

In the following sections, the left graphs show the actual and predicted wheel/rail wear using series-parallel 

NARXNN; while the right grahps show the actual and predicted wheel/rail wear using parallel NARXNN.  
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5.7.2 Wheel wear and rail wear under wet conditions  

The actual wheel wear and wheel wear predicted using series-parallel and parallel NARXNN are presented 

in Figure 5.22. The simulation results show that the predicted wheel wear was close to the actual wheel 

wear.  

  

Figure 5. 22 Actual wheel wear and predicated using NARXNN under wet conditions 

 

The actual rail wear and rail wear predicted using series-parallel and parallel NARXNN are presented in 

Figure 5.23. The simulation results show that the predicted rail wear was close to the actual rail wear.  

  

Figure 5. 23 Actual rail wear and predicated using NARXNN under wet conditions 
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5.7.3 Wheel wear and rail wear under lubricated conditions  

The actual wheel wear and wheel wear predicted using series-parallel and parallel NARXNN are presented 

in Figure 5.24. The simulation results show that the predicted wheel wear was close to the actual wheel 

wear.   

 

Figure 5. 24 Actual wheel wear and predicated using NARXNN under lubricated conditions 

 

The actual rail wear and rail wear predicted using series-parallel and parallel NARXNN are presented in 

Figure 5.25. The simulation show that the predicted rail wear was close to the actual rail wear.    

 

Figure 5. 25 Actual rail wear and predicated using NARXNN under lubricated conditions 
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5.7.4 Wheel wear and rail wear under sanded conditions  

The actual wheel wear and wheel wear predicted using series-parallel and parallel NARXNN are presented 

in Figure 5.26. The simulation results show that the predicted wheel wear was close to the actual wheel 

wear. 

   

Figure 5. 26 Actual wheel wear and predicated using NARXNN under sanded conditions 

 

The actual rail wear and rail wear predicted using series-parallel and parallel NARXNN are presented in 

Figure 5.27. The simulation results show that the predicted rail wear was close to the actual rail wear.   

 

  
Figure 5. 27 Actual rail wear and predicated using NARXNN under sanded conditions 

 

 

The actual and predicted wheel/rail wear, percentage error, and mean absolute percentage error under dry, 

wet, lubricated, and sanded conditions were shown in Tables in appendix 6.            
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5.7.5 Section discussion 

Series-parallel and parallel NARXNN were developed to predict the wheel wear and rail wear for the twin 

disc test rig under dry, wet, lubricated, and sanded conditons. The accuracy of the wheel wear and rail wear 

prediction using neural network model under wet, lubricated, and sanded conditions are illustrated in Table 

5.2 and Table 5.3 respectively. The accuracy of neural network model was calculated in terms of mean 

absolute percentage error (MAPE). 

 Dry Wet Lubricated Sanded 

MAPE% for series-parallel 

NARXNN 

8.58% 8.54% 8.94% 6.63% 

MAPE% for parallel 

NARXNN 

16.93% 14.46% 18.63% 17.49% 

 
Table 5. 2 MAPE for wheel wear prediction using series-parallel and parallel NARXNN 

 

 Dry Wet Lubricated Sanded 

MAPE% for series-parallel 

NARXNN 

7.17% 11.37% 7.54% 9.54% 

MAPE% for parallel 

NARXNN 

16.01% 15.31% 15.87% 15.95% 

 
Table 5. 3 MAPE for rail wear prediction using series-parallel and parallel NARXNN 

 

The percentage error for wheel/rail wear prediction was calculated, and the results show good prediction of 

wheel and rail wear in term of percentage error, where the wheel wear and rail wear predicted using 

NARXNN was close to actual wheel wear and rail wear.   

 

The MAPE was between 6.63% and 11.37% for series-parallel NARXNN; then, the accuracy of NARXNN 

model was between 88.63% and 93.37%. The MAPE was between 14.46% and 18.63% for parallel 

NARXNN; then, the accuracy of NARXNN model was between 81.37% and 85.54%. Therefore, the 

accuracy of the NARXNN model was between 81.37% and 93.37%. 

 

 The results shown in Table 5.2 and Table 5.3 show that the wheel/rail wear predicted using the 

neural network model was close to the measured wheel/rail wear, where the MAPE was between 

6.63% and 18.63%.    

 The series-parallel NARXNN was more accurate than the parallel NARXNN for wheel/rail wear 

prediction.  

 The difference in the values of MAPE shown in Table 5.2 and Table 5.3 is due to the values of the 

input parameters used to train the neural network.     
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5.7.6 Wheel wear and rail wear prediction under dry conditions (with different 

architecture of neural network)  

In this section additional simulations carried out with different neural network architecture are reported on.   

 

The three architectures of NARXNN were:  

 

6-7-1 (6 inputs, 7 hidden layer, and 1 output layer). 

6-10-1 (6 inputs, 10 hidden layer, and 1 output layer). 

6-13-1 (6 inputs, 13 hidden layer, and 1 output layer). 

 

The range of yaw angle used with the series-parallel NARXNN was 0.2 degree, 0.3 degree, and 0.4 degree, 

while 0.5 degree was used with parallel NARXNN.   

  

The wheel/rail wear predicted using the three NARXNN architecture were copmared with the actual 

wheel/rail wear such as shown in the following sections:  

 

The actual wheel wear, and the wheel wear predicted using series-parallel NARXNN are shown in Figure 

5.28.  

 

Figure 5. 28 Actual wheel wear and predicted using series-parallel NARXNN under dry conditions 
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The actual wheel wear and the wheel wear predicted using parallel NARXNN are shown in Figure 5.29.  

 

Figure 5. 29 Actual wheel wear and predicted using parallel NARXNN under dry conditions 

 

 

 

The actual rail wear and the rail wear predicted using series-parallel NARXNN are shown in Figure 5.30.   

 

Figure 5. 30 Actual rail wear and predicted using series-parallel NARXNN under dry conditions 
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The actual rail wear and the rail wear predicted using parallel NARXNN are shown in Figure 5.31.  

 

 

Figure 5. 31 Actual rail wear and predicted using parallel NARXNN under dry conditions 

 

    

5.8 Section discussion    

Series-parallel and parallel NARXNN were developed to predcit the wheel wear and rail wear for the twin 

disc test rig under dry conditions with different architectures of the neural networks. The accuracy of the 

wheel wear and rail wear prediction using the neural network models is shown in Table 5.4 and Table 5.5. 

The accuracy of neural network model was calculated in terms of mean absolute percentage error (MAPE).  

 

Architecture: 6-7-1 6-10-1 6-13-1 

MAPE% for series-parallel 

NARXNN 

35.8% 8.58% 72.07% 

MAPE% for parallel NARXNN 36.44% 16.93% 55.67% 

 
Table 5. 4 MAPE for wheel wear prediction using series-parallel and parallel NARXNN 

 

 

Architecture: 6-7-1 6-10-1 6-13-1 

MAPE% for series-parallel 

NARXNN 

22.03% 7.17% 69.44% 

MAPE% for parallel NARXNN 21.81% 16.01% 34.85% 

 
Table 5. 5 MAPE for rail wear prediction using series-parallel and parallel NARXNN 
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 For wheel wear the MAPE was 35.8% for series-parallel NARXNN (6-7-1), 8.58% for series-

parallel NARXNN (6-10-1), and 72.07% for series-parallel NARXNN (6-13-1).  

 For wheel wear the MAPE was 36.44% for parallel NARXNN (6-7-1), 16.93% for parallel 

NARXNN (6-10-1), and 55.67% for parallel NARXNN (6-13-1).  

 For rail wear the MAPE was 22.03% for series-parallel NARXNN (6-7-1), 7.17% for series-parallel 

NARXNN (6-10-1), and 69.44% for series-parallel NARXNN (6-13-1).  

 For rail wear the MAPE was 21.81% for parallel NARXNN (6-7-1), 16.01% for parallel NARXNN 

(6-10-1), and 34.85% for parallel NARXNN (6-13-1).    

 

 The accuracy of wheel/rail wear prediction using NARXNN was investigated and assessed in term 

of MAPE such as: 

 The MAPE for series-parallel NARXNN (6-10-1) was 8.58%, it was smaller than the MAPE for 

the series-parallel NARXNN (6-7-1) and series-parallel NARXNN (6-13-1). Therefore, the series-

parallel NARXNN (6-10-1) was more accurate than the series-parallel NARXNN (6-7-1) and 

series-parallel NARXNN (6-13-1) for wheel wear prediction. 

 The MAPE for parallel NARXNN (6-10-1) was 7.17%, it was smaller than the MAPE for the 

parallel NARXNN (6-7-1) and parallel NARXNN (6-13-1). Therefore, the parallel NARXNN      

(6-10-1) was more accurate than the parallel NARXNN (6-7-1) and parallel NARXNN (6-13-1) 

for rail wear prediction. 
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5.9 Chapter conclusion   

The twin disc rig was used in this project to investigate wheel wear and rail wear under dry, wet, lubricated 

and sanded conditions. Then, a neural network model was developed to predict the wheel wear and rail 

wear for the twin disc test rig experiments. The inputs of this model were the load, the yaw angle, the speed, 

the wheel/rail profile, the first derivative of wheel/rail profile, and the second derivative of wheel/rail 

profile; while the output of neural network model was the wheel/rail wear.   

The test data was then collected and used to examine the ability of neural network to predict wheel wear 

and rail wear. This study has verified the ability of series-parallel NARXNN to make closely accurate 

predictions. Parallel NARXNN developed to predict the wheel wear and rail wear for the case of new 

samples.  

The simulation results show that the wheel wear and rail wear predicted using NARXNN was close to 

actual wear for unseen data under dry, wet, lubricated, and sanded conditions. The optimal results during 

training and testing of the NARXNN obtained with input delays were 1:2, feedback delay 1:2, and 1 hidden 

layer with 10 neurons.  

The findings obtained using the proposed neural approach yielded better results from the perspective of the 

mean absolute percentage error (MAPE) measure. The accuracy of the NARXNN model was between 

81.37% and 93.37%. Therefore, it can be concluded that an artificial neural network can be used efficiently 

as a predictor of wheel wear and rail wear for a twin disc rig experiments.   

The accuracy of wheel/rail wear prediction using neural network was influenced by the architecture of 

neural network.  
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Chapter 6 Prediction of railway wheel wear using an artificial neural 

network for a railway vehicle  

In this work, an artificial neural network was developed to predict railway wheel wear in case of changing 

parameters such as speed, longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, 

longitudinal bush stiffness, lateral bush stiffness, and vertical shear stiffness.  

In order to provide the data to train, validate, and test the neural network during wheel wear prediction the 

VAMPIRE vehicle dynamics software tool was used. Passenger vehicle model, UK wheel profile type of 

P8, UK rail profile type of BS113a-20, and straight track was set up using VAMPIRE (Appendix 7). The 

following suspension parameters were used in this work to predict wheel wear using neural networks: 

primary bush (longitudinal stiffness), and primary spring (longitudinal stiffness).      

6.1 Introduction to VAMPIRE vehicle dynamics software  

VAMPIRE uses a multi-body modelling method that enables the user to assemble a mathematical model 

of almost any rail vehicle configuration. The VAMPIRE pro. 6.30 was used in this work to perform the 

simulations. The VAMPIRE GUI is shown in Figure 6.1. For wheel wear prediction, the transient analysis 

programme is run and the energy expended per unit distance travelled calculated for each wheel/rail contact. 

This is the product of creep force and creepage (Tγ), is one of the output types available in the transient 

programme. Experimental work has demonstrated that the amount of metal removed through wheel is 

proportional to the energy dissipated in the wheel–rail contact. Therefore, the expected wear of wheel can 

be studied and predicted by calculating the energy dissipated between wheel and rail (Tγ) [156], [157].      

 

 

Figure 6. 1 VAMPIRE vehicle dynamics software platform [156], [157] 
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VAMPIRE Pro contains all the pre-processing and post-processing options required to perform the railway 

studies and investigations such as vehicle design, track damage, and accident investigation. The pre-

processors include tools for wheel rail contact data, and track plotting. The post-processors include 

extensive plotting facilities for simulation data, statistical analysis, and data filtering. Analysis programs 

include non-linear transient response analysis, linear eigenvalue analysis, curving analysis, and static 

analysis [157]. 

Table 6.1 shows the types of straight track provided by VAMPIRE vehicle dynamics software, it shows the 

line speed, track length, and standard deviation of lateral and vertical irregularities. All the sections of track 

are straight but include measured cant and curvature irregularities.  

 

Table 6. 1 Track types used by VAMPIRE vehicle dynamics software [156], [157] 

 

 

The neural network approach in this thesis focussed on straight track to demonstrate the potential of the 

methods used. Further work would be required to evaluate the applicability on the more complex case with 

curved track. 
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6.2 The methodology of wheel wear prediction using VAMPIRE software  

The methodology of wheel wear prediction using VAMPIRE is shown in Figure 6.2. The VAMPIRE 

multibody software was used to carry out vehicle-track simulations to simulate the energy dissipated (Tγ) 

and the contact position between wheel and rail at each wheel/rail contact .          

 

 

 

Figure 6. 2 Methodology of wheel wear prediction using VAMPIRE software [76], [77] 
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In this project, wheel wear was predicted using energy dissipated (Tγ) and contact position between wheel 

and rail, such as shown in the following steps:   

1. An initial new wheel profile (called P00), track with irregularities (track110), rail profile, speed, and 

running distance were provided to the VAMPIRE software. 

2. Tγ at the wheel tread and rail at the location of the contact were defined as outputs in VAMPIRE software.  

3. The VAMPIRE dynamic simulation was run.  

4. Tγ and the position of wheel on rail were used to calculate the wear index (wheel tread wear) as shown 

in Figure 6.3; to obtain the worn wheel profile (called P11); the wheel wear at w1 to w18 was estimated 

using Matlab program as shown in appendix 8 (Wheel wear estimated after different running distances 

50000km, 100000km, 150000km, and 200000km).     

5. The worn wheel profile P11 was used as input to the VAMPIRE software.    

6. The steps 2 to 5 were repeated until the wheel profiles P12, P13, and P14 were obtained at speed of 5m/s.  

 

Figure 6. 3 Wheel tread wear estimation using 𝐓𝛄 and contact position 
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The wear of wheel can be described as a loss in cross-sectional area as a function of energy dissipated 

between wheel and rail. The wear can be described as a loss in cross-sectional area due to the passage of a 

known number of vehicle axles (mm2/1000 axles) [158]. The wear can be defined as in the following 

equations [156], [157]: 

1. For mild wear if Tγ < 160𝑁: 

                Wear = Tγ ∗ 0.005 (mm2/1000 axles).                                                                               (6.1) 

2. For severe wear if Tγ ≥ 160N: 

                Wear = Tγ ∗ 0.025 − 3.2 (mm2/1000 axles).                                                                     (6.2) 

The Tγ in all tests in this project was less than 160N; then the wear was calculated using the following 

equation:   

Wear = Tγ ∗ 0.005 ∗ 10−4                                                                                                     (6.3) 

In the Vampire program, the Wheel Rail Wear program was used for wheel wear prediction. 

The following section outlines how the wheel wear was established after different running distances 

(50000km, 100000km, 150000km, and 200000km) such as shown in Figure 6.2 and Figure 6.3.  

The new wheel profile P00 was uploaded to Vampire, then the Vampire program was run, after that, the 

contact position and energy dissipated (Tγ) were obtained.  

For the distance of 50000km, and at speed of 5m/s, the wear calculated using the equation 6.3. 

Since the track distance was 5000m, and the simulation step in the Vampire was 5, then, 1000 values of the 

energy dissipated (Tγ) were obtained , then 1000 values  of wear calculated.  

After the 1000 values of wear were calculated, each values of wear occurring at same location on the profile 

were summed together, therefore, 18 summed values of wear were obtained (w1 to w18); The Matlab 

program shown in appendix 8 was used to calculate the w1 to w18 values.     

The wear (w1 to w18) subtracted from the new wheel profile to obtain the worn wheel profile after running 

distance of 50000km.   

Then, the worn wheel profile P11 (after running distance of 50000km) uploaded to vampire, the vampire 

program run; and calculate the worn wheel profile P12 and the wear after running distance of 100000km 

using same above steps.   

The previous steps are repeated to estimate the worn wheel profile P13 and the wear after running distance 

of 150000km; after that, the previous steps repeated to estimate the worn wheel profile P14 and the wear 

after running distance of 150000km.   

Change the speed to 10m/s and estimate the P21, P22, P23, and P24. 

Change the speed to 20m/s and estimate the P31, P32, P33, and P34. 

Change the speed to 30m/s and estimate the P41, P42, P43, and P44. 
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Figure 6.4 shows the energy dissipated (TGamma: Tγ) and the contact position at left wheel with track110, 

which is generated using the VAMPIRE software.  

 

 

Figure 6. 4 𝐓𝛄 [N] and contact position [mm] for left/right wheel tread on a straight track 

 

Figure 6.5 illustrates the contact point position on a straight track, which is calculated using the VAMPIRE 

software, the wheel/rail contact position for zero lateral shift of wheelset relative to the rail was in range of 

-777mm to -722mm lateral shift.       

 

Figure 6. 5 Wheel/rail contact position for zero lateral shift of wheelset on a straight track 

 

The transient response analysis was used in this project for wheel wear prediction. To create a transient 

analysis run file use the Run File Editor program. The calculation includes all the non–linear features of 

VAMPIRE vehicle models, and can use the full non–linear wheel/rail contact equations [156], [157].   

mk:@MSITStore:C:/PROGRA~2/DELTAR~1/VAMPIR~1.30/Command/VAMPIR~1.CHM::/html_run_file_editor.htm
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6.3 Neural network model for the wheel wear prediction  

The neural network model was developed to predict wheel wear is illustrated in Figure 6.6. Wheel profile 

before and after simulations were estimated using VAMPIRE software.  A nonlinear autoregressive model 

with exogenous input neural network (NARXNN) was used in this chapter for wheel wear prediction.  

 

 

Figure 6. 6  Neural network model for wheel wear prediction 
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The speed, running distance, longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, 

longitudinal bush stiffness, lateral bush stiffness, vertical shear stiffness, and wheel profile were selected 

as inputs to the neural network model because they are the parameters which had an effect on railway wheel 

wear during the simulations; and the first derivative of wheel profile and second derivative of wheel profile 

were selected as inputs to the neural network model because it presents the rate of change of wheel profile, 

these derivatives were assisted to train the neural networks. Matlab was used to calculate the first derivative 

of wheel profile and second derivative of wheel profile. The output of the neural network was the railway 

wheel wear.    

 

 For wheel wear prediction using series-parallel NARXNN: The data which were obtained using 

VAMPIRE simulations were divided into three groups: 70% for training, 15% for validation, and 

15% for testing of neural network. 216 samples were used to train, validate, and test the network.  

 

 For wheel wear prediction using parallel NARXNN: The data which were obtained using 

VAMPIRE simulations were used to test the neural network. 18 samples were used to test the 

network.  

 

The Matlab code which is shown in appendix 3 is to use the NARXNN for wheel wear prediction. The 

Matlab code which is shown in appendix 4 was used to calculate the mean absolute percentage error 

(MAPE), and the percentage error. The MAPE was calculated using equation 5.11, while the percentage 

error was calculated using equation 5.12. The railway wheel wear predicted using VAMPIRE, railway 

wheel wear predicted using NARXNN, percentage error, and mean absolute percentage error (MAPE) were 

shown in Tables in appendix 9. All results shown in this chapter are for unseen data.    
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6.3.1 Change of speed  

The wheel profile with speed of 5m/s, 10m/s, 20m/s and 30m/s; running distance of  50000km, 100000km, 

150000km, and 200000km are shown in Figure 6.7 respectively.       

 

Figure 6. 7 Wheel profile evolution at different speeds 

 

The wheel wear at different speeds are shown in provided in Figure 6.8.  

 

 

Figure 6. 8 Wheel wear at different speeds 
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1. Wheel wear prediction using the series-parallel NARXNN: The inputs to the neural network were: 

speed of 5m/s, 10m/s, and 20m/s; running distance of 50000km, 100000km, and 150000km; wheel 

profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; first derivative of wheel profiles; 

and second derivative of wheel profiles; while the output of the neural network was wheel wear. 

The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 6.9.  

 

Figure 6. 9 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 4.32%. Maximum predicted wear 

using VAMPIRE was 2.34mm.   

 

  

2. Wheel wear prediction using parallel NARXNN. The inputs to the neural network were: speed of 

30m/s; running distance of 200000km; wheel profile P44; first derivative of wheel profile; and 

second derivative of wheel profile; while the output of the neural network was wheel wear. The 

wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 6.10.  

 

Figure 6. 10 The wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel using neural network wear was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 7.14 %. Maximum predicted wear 

using VAMPIRE was 3.18mm.        
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6.3.2 Change of longitudinal bush stiffness  

The wheel profile for longitudinal bush stiffness of 30MN/m, 50MN/m, 70MN/m and 80MN/m;  running 

distance of  50000km, 100000km, 150000km, and 200000km such as is shown in Figure 6.11 respectively.   

 

Figure 6. 11 Wheel profile evolution at different longitudinal bush stiffness 

 

The wheel wear at different longitudinal bush stiffness are shown in Figure 6.12 respectively.  

 

 

Figure 6. 12 Wheel wear at different longitudinal bush stiffness 
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1. Wheel wear prediction using the series-parallel NARXNN: The inputs to neural network are: 

longitudinal bush stiffness of 30MN/m, 50MN/m, and 70MN/m; running distance of 50000km, 

100000km, and 150000km, wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; 

first derivative of wheel profile; and second derivative of wheel profile;  while the output of the 

neural network was wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN 

are given in Figure 6.13.  

 

Figure 6. 13 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the wheel wear predicted using neural netwrok was close to wheel wear 

predicted using VAMPIRE. The Mean absolute percentage error was 4.19%. Maximum predicted wear 

using VAMPIRE was 2.43mm.  

 

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the 

longitudinal bush stiffness of 80MN/m, running distance of 200000km, wheel profile P444, first 

derivative of wheel profile, and second derivative of wheel profile; while the output of the neural 

network as wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown 

in Figure 6.14.  

 

Figure 6. 14 Wheel wear predicted using VAMPIRE and parallel NARXNN (Unseen data) 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 7.46%. Maximum predicted wear 

using VAMPIRE was 2.67mm. 



113 

 

6.3.3 Change of lateral bush stiffness  

The wheel profile with lateral bush stiffness of 2MN/m, 3MN/m, 4MN/m and 5MN/m; running distance 

of  50000km, 100000km, 150000km, and 200000km is shown in Figure 6.15 respectively.   

 

Figure 6. 15 Wheel profile evolution at different lateral bush stiffness 

 

The wheel wear at different lateral bush stiffness are shown in Figure 6.16 respectively.  

   

 

Figure 6. 16 Wheel wear at different lateral bush stiffness 
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1. Wheel wear prediction using series-parallel NARXNN: The inputs to the neural network are: lateral 

bush stiffness of 2MN/m, 3MN/m, and 4MN/m; running distance of 50000km, 100000km, and 

150000km; wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; first derivative 

of wheel profile; and second derivative of wheel profile; while the output of the neural network 

was wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown in 

Figure 6.17.  

 

Figure 6. 17 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 5.57%. Maximum predicted wear 

using VAMPIRE was 2.74mm.    

  

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the lateral 

bush stiffness of 5MN/m, running distance of 200000km, wheel profile P44, first derivative of 

wheel profile, and second derivative of wheel profile; while the output of the neural network was 

wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 

6.18.  

 

Figure 6. 18 Wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 8.37%. Maximum predicted wear 

using VAMPIRE was 2.86mm.    
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6.3.4 Change of vertical bush stiffness  

The wheel profile with vertical bush stiffness of 28MN/m, 30MN/m, 32MN/m and 34MN/m; running 

distance of  50000km, 100000km, 150000km, and 200000km is shown in Figure 6.19 respectively .   

 

Figure 6. 19 Wheel profile evolution at different vertical bush stiffness 

 

The wheel wear at different vertical bush stiffness are shown in Figure 6.20 respectively.   

   

 

 

Figure 6. 20 Wheel wear at different vertical bush stiffness 
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1. Wheel wear prediction using series-parallel NARXNN: The inputs to the neural network are: 

vertical bush stiffness of 28MN/m, 30MN/m, and 32MN/m; running distance of 50000km, 

100000km, and 150000km; wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; 

first derivative of wheel profile; and second derivative of wheel profile; while the output of the 

neural network was wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN 

are shown in Figure 6.21.  

 

Figure 6. 21 Actual wheel wear and predicted using series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 5.83%. Maximum predicted wear 

using VAMPIRE was 2.35mm.   

 

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the vertical 

bush stiffness of 34MN/m), running distance of 200000km, wheel profile P44, first derivative of 

wheel profile, and second derivative of wheel profile; while the output of to the neural network was 

wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 

6.22.   

 

Figure 6. 22 Wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 10.02%. Maximum predicted wear 

using VAMPIRE was 2.67mm.  
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6.3.5 Change of longitudinal shear stiffness  

The wheel profile with longitudinal shear stiffness of 0.1MN/m, 0.3MN/m, 0.6MN/m and 0.8MN/m;  

running distance of  50000km, 100000km, 150000km, and 200000km is shown in Figre 6.23 respectively.   

 

Figure 6. 23 Wheel profile evolution at different longitudinal shear stiffness 

 

The wheel wear at different longitudinal shear stiffness are shown in Figure 6.24 respectively.  

 

Figure 6. 24  Wheel wear at different longitudinal shear stiffness 
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1. Wheel wear prediction using series-parallel NARXNN: The inputs to the neural network: longitudinal 

shear stiffness of 0.1MN/m, 0.3MN/m, 0.6MN/m; running distance of 50000km, 100000km, and 

150000km; wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; first derivative of 

wheel profile;  and second derivative of wheel profile; while the output of to the neural network was 

wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 6.25.  

 

Figure 6. 25 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 5.15%. Maximum predicted wear 

using VAMPIRE was 2.40mm.  

 

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the longitudinal 

shear stiffness of 0.8MN/m, running distance of 200000km, wheel profile P44, first derivative of wheel 

profile, and second derivative of wheel profile; while the output of the neural network was wheel wear. 

The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 6.26.  

 

Figure 6. 26 Wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 8.34%. Maximum predicted wear 

using VAMPIRE was 2.83mm. 
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6.3.6 Change of lateral shear stiffness  

The wheel profile with lateral shear stiffness of 0.1MN/m, 0.3MN/m, 0.6MN/m and 0.8MN/m; running 

distance of  50000km, 100000km, 150000km, and 200000km is shown in Figure 6.27 respectively.   

 

Figure 6. 27  Wheel profile evolution at different lateral shear stiffness 

 

The wheel wear at at different lateral shear stiffness are shown in Figure 6.28 respectively.  

 

Figure 6. 28 Wheel wear at different lateral shear stiffness 
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1. Wheel wear prediction using series-parallel NARXNN: The inputs to the neural network are: lateral 

shear stiffness of 0.1MN/m, 0.3MN/m, and 0.6MN/m; running distance of 50000km, 100000km, 

and 150000km; wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; first 

derivative of wheel profile; and second derivative of wheel profile; while the output of to the neural 

network was wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown 

in Figure 6.29.  

 

Figure 6. 29 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 4.58 %. Maximum predicted wear 

using VAMPIRE was 2.46mm.  

 

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the lateral 

shear stiffness of 0.8MN/m, running distance of 200000km, wheel profile P44, first derivative of 

wheel profile; and second derivative of wheel profile; while the output of to the neural network 

was wheel wear.  The wheel wear predicted using VAMPIRE and the NARXNN are shown in 

Figure 6.30.  

 

Figure 6. 30 Wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 8.30%. Maximum predicted wear 

using VAMPIRE was 2.90mm.  
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6.3.7 Change of vertical shear stiffness  

The wheel profile with vertical shear stiffness of 0.5MN/m, 0.6MN/m, 0.7MN/m and 0.8MN/m; running 

distance of  50000km, 100000km, 150000km, and 200000km is shown in Figure 6.31 respectively .   

 

Figure 6. 31 Wheel profile evolution at different vertical shear stiffness 

 

The wheel wear at at different vertical shear are shown in Figure 6.32 respectively.   

   

 

Figure 6. 32 Wheel wear at different vertical shear stiffness 
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1. Wheel wear prediction using series-parallel NARXNN: The inputs to the neural network are: 

vertical shear stiffness of 0.5MN/m, 0.6MN/m, and 0.7MN/m; running distance of 50000km, 

100000km, and 150000km; wheel profiles P11, P12, P13, P14, P21, P22, P23, P24, P31, P32, P33, and P34; 

first derivative of wheel profile; and second derivative of wheel profile; while the output of to the 

neural network was wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN 

are shown in Figure 6.33.  

 

Figure 6. 33 Wheel wear predicted using VAMPIRE and series-parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was was 3.60 %. Maximum predicted wear 

using VAMPIRE was 2.44mm.    

 

2. Wheel wear prediction using parallel NARXNN: The inputs to the neural network were the vertical 

shear stiffness of 0.8MN/m, running distance of 200000km, wheel profile P44, first derivative of 

wheel profile, and second derivative of wheel profile; while the output of to the neural network was 

wheel wear. The wheel wear predicted using VAMPIRE and the NARXNN are shown in Figure 

6.34.  

 

Figure 6. 34 Wheel wear predicted using VAMPIRE and parallel NARXNN 

 

The simulation results show that the predicted wheel wear using neural network was close to wheel wear 

predicted using VAMPIRE. The mean absolute percentage error was 5.71%. Maximum predicted wear 

using VAMPIRE was 2.63mm.   



123 

 

6.3.8 Validation of wheel wear prediction   

To additionally validate the wheel wear predicted using the neural network model, the results were 

compared with published results in some previous works [159]-[165], as shown in the following section 

and summarised in Table 6.2. In this section, seven previous works where the wheel tread wear was 

estimated were chosen. In the previous work different parameters were assessed for their effect on wear 

such as curvature, vehicle type, and route conditions. The range of wheel tread wear was between 1.5mm 

to 3mm after running distances of 200,000km as shown in Table 6.2. The wheel wear predicted using the 

neural network model after running distance of 200,000km was 2.5mm on average which is within of the 

previous published work. Several reasons such as the type of vehicle, and the type of simulation package 

which were used to estimate the wear can affect the wear predictions; in this project, Vampire software was 

used to generate the data which were used to train, validate, and test the neural network model and to predict 

the wheel wear.     

 

After a running distance 200,000 km, the wheel wear was as shown in Figure 6.35.   

 

  

Figure 6. 35 Wheel wear comparison KTH wear [159] 

 

After a running distance of 178000 mile, the wheel wear was as shown in Figure 6.36.  

 

Figure 6. 36 Wheel wear [160] 
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After a running distance of 54,210km, the wheel wear was as shown in Figure 6.37.  

 

 

 

Figure 6. 37 Wheel tread wear [161] 

 

The wheel tread profiles under 4 operation mileages 40000 km, 90000 km, 150000 km and 200000 km 

have been measured respectively as shown in Figure 6.38.  

 

 

 

Figure 6. 38 Wheel wear [162] 
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After a running distance of 200,000km, the wheel wear was as shown in Figure 6.39.  

 

Figure 6. 39 Wheel wear [163], [164] 

 

 

After a running distance of 200,000km, the wheel wear was as shown in Figure 6.40.  

 

 

 

Figure 6. 40 Wheel wear of a vehicle type EV [165] 
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The wheel tread wear after a running distance of 200,000km was summarized as in Table 6.2. 

 

Reference Wheel wear after 200,000 km 

[159] 1.9mm 

[160] 1.5mm 

[161] 1.84mm 

[162] 1.2mm 

[163], [164] 2mm 

[165] 3mm 

 

Table 6. 2 Wheel wear 

 

 

Table 6.2 summarized the wheel wear after a running distance of 200,000 km which presented in different 

previous works was 1.9mm, 1.5mm, 1.2mm, 2mm, and 3mm. In this work, the wheel wear predicted using 

neural network after a running distance of 200,000 km was 2.5mm in average.    
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6.4 Chapter discussion   

 

A nonlinear autoregressive model with exogenous input neural network (NARXNN) was developed to 

predict wheel wear for the case of changing parameters such as speed, longitudinal bush stiffness, lateral 

bush stiffness, vertical bush stiffness, longitudinal shear stiffness, lateral shear stiffness, and vertical shear 

stiffness.  

The main findings are presented in the following sections are summarized in Table 6.3 and Table 6.4 

respectively. Table 6.3 shows the mean absolute percentage error (MAPE) for railway wheel wear 

prediction using series-parallel NARXNN; while Table 6.4 shows the mean absolute percentage error 

(MAPE) railway wheel wear prediction using parallel NARXNN.     

 Speed 

test 

Change of 

longitudinal 

bush 

stiffness test 

Change of 

lateral bush 

stiffness test 

Change of 

vertical bush 

stiffness test 

Change of 

longitudinal 

shear 

stiffness test 

Change of 

lateral shear 

stiffness test 

Change of 

vertical 

shear 

stiffness test 

MAPE 4.32% 4.19% 5.57% 5.83% 5.15% 4.58% 3.60% 

 

Table 6. 3 MAPE for wheel wear prediction using series-parallel NARXNN 

 

 Speed 

test 

Change of 

longitudinal 

bush 

stiffness test 

Change of 

lateral bush 

stiffness test 

Change of 

vertical bush 

stiffness test 

Change of 

longitudinal 

shear 

stiffness test 

Change of 

lateral shear 

stiffness test 

Change of 

vertical shear 

stiffness test 

MAPE 7.14% 7.46% 8.37% 10.02% 8.34% 8.30% 5.71% 

 

Table 6. 4 MAPE for wheel wear prediction using parallel NARXNN 

  

 The MAPE was between 3.60% and 5.83% for series-parallel NARXNN, meaning that the accuracy 

of NARXNN model was between 94.17% and 96.40%. The MAPE was between 5.71% and 

10.02% for parallel NARXNN, meaning that the accuracy of NARXNN model was between 

89.98% and 94.29%. Therefore, the accuracy of the NARXNN model was between 89.98% and 

96.40%.  

 The simulation results shown in Table 6.3 and Table 6.4 show that the wheel wear predicted using 

the neural network model was close to the wheel wear predicted using VAMPIRE, where the 

MAPE was less than 11%.   

 The series-parallel NARXNN was more accurate than the parallel NARXNN for wheel wear 

prediction. 

 The difference in the values of MAPE shown in Table 6.3 and Table 6.4 is due to the values of the 

input parameters used to train the neural network.         
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6.5 Chapter conclusion    

Series-parallel NARXNN and parallel NARXNN were developed to predict the railway wheel where 

certain parameters have been changed such as speed, longitudinal bush stiffness, lateral bush stiffness, 

vertical bush stiffness, longitudinal shear stiffness, lateral shear stiffness, and vertical shear stiffness.  

 

The optimal results during training and testing of the NARXNN obtained with input delays were 1:2, 

feedback delay 1:2, and 1 hidden layer with 10 neurons. 

 

The inputs of the neural network model were: speed, running distance, longitudinal bush stiffness, lateral 

bush stiffness, vertical bush stiffness, longitudinal shear stiffness, lateral shear stiffness, vertical shear 

stiffness, wheel profile, first derivative of wheel profile, and second derivative of wheel profile. The output 

of the neural network was railway wheel wear.   

The inputs and outputs which were used to train, validate, and test the neural network during wheel wear 

prediction were produced using VAMPIRE vehicle dynamics software simulations. These simulations were 

carried out using a passenger vehicle model, UK wheel profile type of P8, UK rail profile type of BS113a-

20, and straight track with irregularities.    

The main findings of this chapter are:  

 The VAMPIRE vehicle dynamics software was used for vehicle-track simulations to generate the 

energy dissipated, and the contact position between wheel and rail. The energy dissipated and the 

contact position were used in this project to predict the railway wheel wear using neural network.  

 The percentage error between wheel wear predicted using VAMPIRE and wheel wear predicted 

using neural network was calculated, the simulation results show that the predicted wheel wear 

using a neural network model was close to wheel wear predicted using VAMPIRE software. 

 In view of mean absolute percentage error (MAPE), the simulation results reveal that the neural 

network model is able to predict the railway wheel wear efficiently.  The results obtained using the 

proposed neural network approach show in overall, the MAPE was less than 11%; the neural 

network model achieved wheel prediction with accuracy up to 96.40%; this represents the accuracy 

of the neural network model for wheel wear prediction.  

 Additionally, the wheel wear predicted using neural network model was validated with published 

results in some previous works after a running distance of 200,000 km. The results show that the 

predicted wheel wear using a neural network model was close to wheel wear predicted in the 

previous works. The wheel wear predicted using neural network after a running distance of 

200,000 km was 2.5mm in average.      
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Chapter 7 Prediction of railway wheel wear using backpropagation 

and radial basis function neural networks for a railway vehicle  

7.1 Introduction  

In this chapter, a backpropagation neural network (BPNN) and a radial basis function neural network 

(RBFNN) were developed to predict the railway wheel wear. The aim of this chapter is to present how the 

wheel wear can be predicted using different types of neural networks. VAMPIRE vehicle dynamics 

software was used to collect data to train, validate, and test the neural network model.     

 

The methodology of wheel wear prediction which was shown in Figure 6.2, and the neural network model 

which was shown in Figure 6.6 were used to predict wheel wear using BPNN and RBFNN.  The inputs of 

the neural network model were: speed, running distance, longitudinal bush stiffness, lateral bush stiffness, 

vertical bush stiffness, longitudinal shear stiffness, lateral shear stiffness, vertical shear stiffness, wheel 

profile, first derivative of wheel profile, and second derivative for wheel profile; while the output of the 

neural network was railway wheel wear. The Matlab code which is shown in appendix 4 calculates the 

mean absolute percentage error (MAPE) and percentage error. The MAPE was calculated using equation 

5.11, while the percentage error was calculated using equation 5.12.  

 

The speed simulation which was shown in section 6.3.1, longitudinal bush stiffness simulation which was 

shown in section 6.3.2, and longitudinal shear stiffness simulation which was shown in section 6.3.5 were 

used for wheel prediction using BPNN and RBFNN. The simulation results were compared with wheel 

wear prediction using the nonlinear autoregressive model with exogenous input neural network (Parallel 

NARXNN), this to present that the railway wheel wear can be predicted using different types of neural 

network, and to investigate which type of these neural networks has a higher accuracy for wheel wear 

prediction.  

 

The data obtained using VAMPIRE vehicle dynamics software after a running distance of 50000km, 

100000km, and 150000km were used to train neural networks; while the data obtained after a running 

distance of 200000km were used to test the neural networks.    
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The Matlab code shown in appendix 10 was used to predict the wheel wear using BPNN [158]. The 

Levenberg-Marquardt algorithm to train the BPNN. An example of the BPNN architecture with architecture 

of 5-7-2-1 is shown in Figure 7.1.    

 

Figure 7. 1 BPNN architecture 

 

 

The Matlab code shown in appendix 11 was used to predict the wheel wear using RBFNN.  An example of 

the RBFNN architecture is shown in Figure 7.2. When the Matlab command “newrb” is used to design the 

RBFNN, there is no separation between the creation and training phases, therefore, once newrb created it, 

it trains itself, depending on the input parameters, the newrb automatically trains itself without the 

train/validate/test data division [166].  

 

 

Figure 7. 2 RBFNN architecture 

 

When the newrb command is used to create and train the RBFNN, the design of RBFNN takes six 

arguments: input vector, target vector, mean square error goal, spread, maximum number of neurons, and 

the number of neurons to add between displays. These parameters are explicitly set by the user using trial 

and error. In this work the parameters of newrb were set as: goal = 0.01, spread = 30, mn =500, and df =50 

for wheel wear prediction using RBFNN. All results shown in this chapter are for unseen data.  
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7.2 Wheel wear prediction using neural networks with varying speed    

The change of speed simulation which was shown in section 7.3.1was used to predict wheel wear using 

NARXNN, BPNN, and RBFNN. Wheel wear predicted using VAMPIRE and wheel wear predicted using 

NARXNN, BPNN, and RBFNN are shown in Figure 7.3.   

 

Figure 7. 3 Wheel wear predicted using VAMPIRE and predicted using neural networks 

 

Wheel wear predictd using VAMPIRE and predicted using NARXNN, BPNN, and RBFNN; and the 

percentage error are shown in Table 7.1. The mean absolute percentage error was 7.14% for NARXNN, 

8.63% for RBFN, and 10.70% for BPNN.      

 Sample 

Number 

Wheel 

wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted using 

NARXNN 

 

Error% Wheel wear 

predicted 

using BPNN 

 

Error% 

 

 

 

Wheel wear 

predicted using 

RBFNN 

 

Error% 

1 0.49 0.59 16.94 0.77 36.46 1.24 60.57 

2 1.27 1.26 0.79 1.37 7.36 1.52 16.88 

3 2.02 2.16 6.48 1.932 4.52 2.10 3.84 

4 2.55 2.40 6.25 2.25 13.02 2.57 0.98 

5 2.83 2.82 0.35 2.39 17.93 2.79 1.08 

6 2.82 2.38 18.48 2.46 14.21 2.85 1.17 

7 2.74 2.69 1.85 2.46 11.11 2.84 3.65 

8 2.65 2.51 5.57 2.37 11.64 2.75 3.77 

9 2.67 2.52 5.95 2.58 3.25 2.78 4.18 

10 2.87 2.63 9.12 2.69 6.64 2.98 3.94 

11 2.66 2.45 8.57 2.33 13.78 2.69 1.19 

12 2.69 2.48 8.46 2.36 13.50 2.55 5.09 

13 3.18 2.85 11.57 3.05 4.11 3.04 4.52 

14 3.16 3.15 0.31 3.27 3.47 3.05 3.41 

15 2.69 2.54 5.90 2.99 10.07 2.93 8.47 

16 2.34 2.17 7.83 2.50 6.53 2.28 2.62 

17 1.37 1.38 0.72 1.50 9.08 1.20 13.86 

18 0.76 0.67 13.43 0.80 5.90 0.65 16.05 

 

Table 7. 1 Wheel wear predicted using VAMPIRE and predicted using neural networks; and error% 
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7.3 Wheel wear prediction using neural networks with varying longitudinal bush stiffness   

The change of longitudinal bush stiffness simulation which was shown in section 6.3.2 was used to predict 

wheel wear using NARXNN, BPNN, and RBFNN. Wheel wear predicted using VAMPIRE and wheel wear 

predicted using NARXNN, BPNN, and RBFNN are shown in Figure 7.4.   

 

Figure 7. 4 Wheel wear predicted usingVAMPIRE and predicted using neural networks 

 

Wheel wear predictd using VAMPIRE and predicted using NARXNN, BPNN, and RBFNN; and the 

percentage error are shown in Table 7.2. The mean absolute percentage error was 7.46% for NARXNN, 

9.22% for RBFN, and 10.14% for BPNN.    

Sample 

Number 

Wheel 

wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted 

using 

NARXNN 

Error% Wheel wear 

predicted 

using BPNN 

 

Error% Wheel wear 

predicted 

using 

RBFNN  

Error% 

1 0.66 0.60 10.00 0.82 20.03 0.77 14.73 

2 1.37 1.20 14.16 1.19 14.56 1.24 10.15 

3 2.01 1.74 15.51 1.81 10.49 1.74 15.51 

4 2.54 2.24 13.39 2.17 17.01 2.35 7.83 

5 2.37 1.99 19.09 2.15 10.16 2.20 7.63 

6 2.42 2.27 6.60 2.21 9.44 2.34 3.39 

7 2.31 2.29 0.87 2.17 6.26 2.18 5.68 

8 2.36 2.29 3.05 2.28 3.40 2.30 2.41 

9 2.40 2.30 4.34 2.27 5.64 2.44 1.54 

10 2.15 2.02 6.43 2.14 0.14 1.97 9.03 

11 2.61 2.66 1.87 2.37 10.00 2.59 0.51 

12 2.67 2.46 8.53 2.24 19.10 2.07 28.96 

13 2.67 2.59 3.08 2.43 9.79 2.82 5.03 

14 2.57 2.37 8.43 2.05 25.33 1.90 35.07 

15 2.53 2.42 4.54 2.52 0.18 2.47 2.55 

16 2.21 2.34 5.55 2.36 6.42 2.21 0.19 

17 1.55 1.63 4.90 1.76 12.24 1.42 9.35 

18 0.53 0.51 3.92 0.54 2.29 0.50 6.46 

 

Table 7. 2 Wheel wear predicted using VAMPIRE and predicted using neural networks; and error% 
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7.4 Wheel wear prediction using neural networks with varying longitudinal shear stiffness    

The change of longitudinal shear stiffness simulation which was shown in section 6.3.5 was used to predict 

wheel wear using NARXNN, BPNN, and RBFNN. Wheel wear predicted using VAMPIRE and wheel wear 

predicted using NARXNN, BPNN, and RBFNN are shown in Figure 7.5.    

 

Figure 7. 5 Wheel wear predicted using VAMPIRE and predicted using neural networks 

 

Wheel wear predictd using VAMPIRE, wheel wear predicted using NARXNN, BPNN, and RBFNN; and 

the percentage error is shown in Table 7.3. The mean absolute percentage error was 8.34% for NARXNN, 

9.77% for RBFN, and 10.08% for BPNN.    

Sample 

Number 

Wheel 

wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted 

using 

NARXNN 

Error

% 

Wheel wear 

predicted 

using BPNN  

 

Error

% 

Wheel wear 

predicted 

using RBFNN 

 

Error

% 

1 0.43 0.73 41.09 0.75 42.66 0.67 35.82 

2 1.49 1.47 1.36 1.59 6.28 1.28 16.40 

3 2.16 2.08 3.84 2.12 1.88 1.93 11.91 

4 2.46 2.22 10.81 2.38 3.36 2.60 5.38 

5 2.28 2.23 2.24 2.27 0.44 2.25 1.33 

6 2.41 2.46 2.03 2.34 2.99 2.53 4.74 

7 2.37 2.36 0.42 2.40 1.25 2.58 8.13 

8 2.24 2.45 8.57 2.27 1.32 2.26 0.88 

9 2.41 2.37 1.68 2.42 0.41 2.52 4.36 

10 2.29 2.54 9.84 2.20 4.09 2.16 6.01 

11 2.59 2.78 6.83 2.44 6.14 2.66 2.63 

12 2.32 2.57 9.72 2.36 1.69 2.34 0.85 

13 2.21 1.93 14.50 2.28 3.07 2.00 10.50 

14 2.13 1.88 13.29 1.51 41.05 1.71 24.56 

15 2.83 2.68 5.59 2.36 19.91 2.73 3.66 

16 2.61 2.54 2.75 2.57 1.55 2.30 13.47 

17 1.46 1.67 12.57 1.96 25.51 1.31 11.45 

18 0.66 0.68 2.94 0.56 17.85 0.58 13.79 

 

Table 7. 3 Wheel wear predicted using VAMPIRE and predicted using neural networks; and error% 
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7.5 Effects of RBFNN parameters (spread, mn, goal, and df) on wheel wear prediction  

In this section the effects of the RBFNN parameters on wheel wear prediction were investigated. The 

Matlab code shown in appendix 11 was used to predict the wheel wear using RBFNN.      

7.5.1 Effects of the spread parameter of RBFNN on wheel wear prediction 

The vertical bush stiffness simulation which was shown in section 6.3.4 was used to investigate the effects 

of the  spread parameter of RBFNN on wheel wear prediction. Wheel wear predicted using VAMPIRE, and 

wheel wear predicted using RBFNN with different values of  spread are shown in Figure 7.6.  

 

Figure 7. 6 Wheel wear predicted using VAMPIRE and predicted using RBFNN 

 

Wheel wear predicted using VAMPIRE, wheel wear predicted using RBFNN, and the percentage error are 

shown in Table 7.4. The mean absolute percentage error (MAPE) was 10.98% at spread of 30, was 14.70% 

at spread of 10, and was 32.36% at spread of 5.  

Sample 

Number 

Wheel wear 

predicted using 

VAMPIRE 

Wheel wear 

predicted using 

RBFNN 

spread = 30 

Error 

% 

Wheel wear 

predicted using 

RBFNN 

spread = 10 

Error 

% 

Wheel wear 

predicted using 

RBFNN 

spread = 5 

Error 

% 

1 0.50 0.62 19.35 0.53 5.13 0.53 5.45 

2 1.39 1.25 11.20 1.11 25.23 1.05 31.72 

3 2.10 1.94   8.24 1.91 9.96 1.61 30.56 

4 2.42 2.34   3.41 2.10 15.54 1.76 37.50 

5 2.25 2.17   3.68 1.98 13.80 1.69 33.27 

6 2.38 2.20   8.18 2.21 7.79 1.82 31.07 

7 2.41 2.12 13.67 2.18 10.78 1.81 33.27 

8 2.24 2.32   3.44 2.14 4.63 1.78 26.03 

9 2.44 2.39   2.09 2.18 11.54 1.80 35.09 

10 2.57 2.32 10.77 2.15 19.19 1.76 45.74 

11 2.61 2.31 12.98 2.39 9.32 1.95 33.65 

12 2.67 2.31 15.58 2.10 27.40 1.78 49.74 

13 2.62 2.09 25.35 1.99 31.51 1.64 59.86 

14 2.57 2.23 15.24 1.98 29.88 1.62 58.24 

15 2.26 2.16   4.62 2.27 0.52 1.91 17.99 

16 2.15 1.89 13.75 1.92 11.85 1.65 30.79 

17 1.46 1.34  8.95 1.34 8.84 1.19 21.96 

18 0.48 0.41 17.07 0.40 21.71 0.49 0.63 
 

Table 7. 4 Wheel wear predicted using VAMPIRE and predicted using RBFNN; and error% 
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7.5.2 Effects of the mn parameter of RBFNN on wheel wear prediction 

The lateral bush stiffness simulation which was shown in section 6.3.3 was used to investigate the effects 

of the mn parameter of RBFNN on wheel wear prediction. Wheel wear predicted using VAMPIRE, and 

wheel wear predicted using RBFNN with different values of mn are shown in Figure 7.7. Where the mn is 

the maximum number of neurons of RBFNN.   

 

Figure 7. 7 Wheel wear predicted using VAMPIRE and predicted using RBFNN 

 

Wheel wear predicted using VAMPIRE, and wheel wear predicted using RBFNN, and the percentage error 

are shown in Table 7.5. The mean absolute percentage error was 9.11% when mn was 500, was 36.39 % 

when mn was 300, and was 49.31% when mn was 20.       

Sample 

Number 

Wheel wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted 

using RBFNN 

mn =500 

Error% Wheel wear 

predicted 

using RBFNN 

mn =300 

Error% Wheel wear 

predicted 

using RBFNN 

mn =20 

Error% 

1 0.45 0.42 7.14 0.53 14.39 0.38 17.87 

2 1.28 1.16  10.34 1.05 21.46 0.92 38.48 

3 2.08 2.21   5.88 1.61 29.21 1.47 40.78 

4 2.43 2.34    3.84 1.76 37.96 1.63 49.26 

5 2.82 2.54  11.02 1.69 66.94 1.55 81.24 

6 2.56 2.41   6.22 1.82 40.98 1.67 52.93 

7 2.30 1.92  19.79 1.81 26.92 1.68 37.08 

8 2.62 2.53    3.55 1.78 46.89 1.64 59.41 

9 2.44 2.27    7.48 1.80 35.17 1.67 45.48 

10 2.27 2.00  13.50 1.76 29.11 1.62 40.23 

11 2.32 2.62  11.45 1.95 18.97 1.81 28.17 

12 2.52 2.66   5.26 1.78 41.32 1.65 52.79 

13 2.68 2.45    9.38 1.64 63.68 1.52 76.35 

14 2.59 2.71    4.42 1.62 59.69 1.49 73.33 

15 2.86 2.82    1.41 1.91 49.31 1.76 61.89 

16 2.31 2.52    8.33 1.65 40.43 1.51 52.74 

17 1.57 1.98  20.70 1.19 31.60 1.08 45.94 

18 0.48 0.42  14.28 0.49 0.95 0.36 33.63 
 

Table 7. 5 Wheel wear predicted using VAMPIRE and predicted using RBFNN; and error% 
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7.5.3 Effects of the goal parameter of RBFNN on wheel wear prediction 

The lateral shear stiffness simulation which was shown in section 6.3.6 was used to investigate the effects 

of the goal parameter of RBFNN on wheel wear prediction. Wheel wear predicted using VAMPIRE, and 

wheel wear predicted using RBFNN with different values of goal are shown in Figure 7.8. Where the goal 

is denotes the mean squared error goal.  

 

Figure 7. 8 Wheel wear predicted using VAMPIRE and predicted using RBFNN 

 

Wheel wear predicted using VAMPIRE, and wheel wear predicted using RBFNN, and the percentage error 

are shown in Table 7.6. The mean absolute percentage error was 9.01% when goal was 0.01, was 9.45% 

when goal was 0.015, and was 14.55% when goal 0.1.     

Sample 

Number 

Wheel 

wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted using 

RBFNN 

Goal =0.01 

Error 

% 

Wheel wear 

predicted using 

RBFNN 

Goal = 0.015 

Error

% 

Wheel wear 

predicted using 

RBFNN 

Goal = 0.1 

Error 

% 

1 0.70 0.85 7.64 0.87 7.45 1.73 59.26 

2 1.49 1.60 6.87 1.61 24.45 1.97 24.46 

3 2.29 2.02 13.36 1.84 14.85 2.20 4.01 

4 2.32 2.18 6.42 2.02 0.74 2.23 4.33 

5 2.68 2.39 12.13 2.70 4.72 2.41 11.30 

6 2.62 2.74 4.37 2.75 4.40 2.40 9.09 

7 2.39 2.49 4.01 2.50 4.78 2.31 3.55 

8 2.39 2.60 8.07 2.51 4.98 2.30 3.90 

9 2.48 2.60 4.61 2.61 4.26 2.33 6.52 

10 2.47 2.57 3.89 2.58 2.41 2.30 7.22 

11 2.42 2.47 2.02 2.48 15.96 2.25 7.76 

12 2.47 2.25 9.77 2.13 14.02 2.23 10.69 

13 2.52 2.30 9.56 2.21 7.20 2.14 17.43 

14 2.53 2.48 2.01 2.36 5.45 2.21 13.99 

15 2.90 2.65 9.43 2.75 2.57 2.49 16.45 

16 2.27 2.33 2.57 2.33 14.36 2.31 1.44 

17 1.55 1.62 4.32 1.81 17.91 2.01 23.02 

18 0.79 0.56 41.07 0.67 7.45 1.27 37.45 
 

Table 7. 6 Wheel wear predicted using VAMPIRE and predicted using RBFNN; and error% 
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7.5.4 Effects of the df parameter of RBFNN on wheel wear prediction 

The vertical shear stiffness simulation which was shown in section 6.3.7 was used to investigate the effects 

of the df parameter of RBFNN on wheel wear prediction. Wheel wear predicted using VAMPIRE, and 

wheel wear predicted using RBFNN with different values of df are shown in Figure 7.9. Where df represents 

the number of neurons to add between displays. 

 

Figure 7. 9 Wheel wear predicted using VAMPIRE and predicted using RBFNN 

 

Wheel wear predicted using VAMPIRE, wheel wear predicted using RBFNN, and the percentage error are 

shown in Table 7.7. The mean absolute percentage error was 6.65% when df was 50, was 6.65% when df 

was 20, and was 6.65% when df was 10. The simulation results show that the changing of df parameter had 

no effect on the accuracy of wheel wear prediciton.      

Sample 

Number 

Wheel wear 

predicted 

using 

VAMPIRE 

Wheel wear 

predicted 

using RBFNN 

df = 50 

Error 

% 

Wheel wear 

predicted 

using RBFNN 

df = 20 

Error 

% 

Wheel wear 

predicted 

using RBFNN 

df = 10 

Error 

% 

1 0.73 0.72 1.07 0.72 1.07 0.72 1.07 

2 1.56 1.47 5.88 1.47 5.88 1.47 5.88 

3 2.21 2.16 2.14 2.16 2.14 2.16 2.14 

4 2.40 2.38 1.15 2.38 1.15 2.38 1.15 

5 2.36 2.41 1.93 2.41 1.93 2.41 1.93 

6 2.35 2.45 4.05 2.45 4.05 2.45 4.05 

7 2.32 2.32 0.29 2.32 0.29 2.32 0.29 

8 2.29 2.42 5.49 2.42 5.49 2.42 5.49 

9 2.54 2.53 0.24 2.53 0.24 2.53 0.24 

10 2.31 2.41 3.87 2.41 3.87 2.41 3.87 

11 2.48 2.53 2.07 2.53 2.07 2.53 2.07 

12 2.34 2.38 1.85 2.38 1.85 2.38 1.85 

13 2.26 2.10 7.65 2.10 7.65 2.10 7.65 

14 2.25 2.19 2.80 2.19 2.80 2.19 2.80 

15 2.63 2.50 5.05 2.50 5.05 2.50 5.05 

16 2.28 2.136 6.76 2.13 6.76 2.13 6.76 

17 1.55 1.55 0.01 1.55 0.01 1.55 0.01 

18 0.77 0.46 67.40 0.46 67.40 0.46 67.40 

 

Table 7. 7 Wheel wear predicted using VAMPIRE and predicted using RBFNN; and error% 
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The following section presents the training process of RBFNN during wheel wear prediction for the vertical 

shear stiffness simulation which was shown in section 6.3.7. The radial basis function neural network 

(RBFNN) was designed using newrb command such as shown in the following section: net = newrb (inputs, 

targets, goal, spread, mn, df); goal = 0.001, spread = 30, mn =50, and df =5. In this example, the mean 

squared error (MSE) is shown in Figure 7.10.   

 

Figure 7. 10 The mean squared error (MSE) for RBFNN 

 

Figure 7.10 shows the training process of RBFNN at wheel wear prediction in case of vertical shear stifness 

simulation, it shows that when the goal was 0.001, spread was 30, mn was 50, and df was 5; the MSE was 

0.0049 and the training stopped at 50 epochs.        

 

7.6 NARXNN and BPNN performance   

To check the network performance of NARXNN and BPNN and determine if any changes need to be made 

to the training process; the performance function for training, validation and test subsets for all tests which 

were carried out in this thesis for wheel/rail wear prediction were checked. The result shows a good network 

performance because the test set error and the validation set error have very similar characteristics, and it 

does not appear that any significant over fitting has occurred. Moreover, the correlation coefficient (R) 

between the predicted and experimental/simulation values was checked as well. The value of R was close 

to 1 for all tests which were carried out in this thesis for wheel/rail wear prediction. It was greater than 0.9. 

It is a good sign for the neural network model to be accurate. It indicates a good matching between the 

experimental/simulation data and prediction of the neural network model.   

An example of the performance plot and regression plot were illustrated in appendix 12 and appendix 13 

respectively, it is for used the NARXNN and BPNN to predict railway wheel wear for vehicle dynamics 

simulations (for speed test).         
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7.7 Chapter discussion   

 

The backpropagation neural network (BPNN), and the radial basis function neural network (RBFNN) were 

developed to predict wheel wear. The simulation results were compared with the wheel wear predicted 

using the Nonlinear Autoregressive model with eXogenous input neural network (NARXNN).    

 

The simulation results show that the three types of neural networks achieved good wheel wear prediction. 

The percentage error was calculated, the results show that the wheel wear predicted using VAMPIRE was 

close to wheel wear predicted using the neural network model. The accuracy of the neural network model 

was assessed by mean absolute percentage error (MAPE), the accuracy of NARXNN was the best, followed 

respectively by the RBFNN and BPNN such as:    

 In the change of speed test. MAPE was 7.14% for NARXNN, 8.63% for RBFN, and 10.70% for 

BPNN.   

 In the change of longitudinal bush stiffness test. MAPE was 7.46% for NARXNN, 9.22% for 

RBFN, and 10.14% for BPNN.  

 In the change of longitudinal shear stiffness test. MAPE was 8.34% for NARXNN, 9.77% for 

RBFN, and 10.08% for BPNN.   

The simulation results show that the accuracy of a three type of neural network for wheel wear 

prediction was greater than 89.30%, it reached to 92.86%.  

 

 

This chapter also investigated the effect of RBFNN parameters on wheel wear prediction; four parameters 

were examined: spread, mn, goal, and df; tests results were illustrated as:      

 In the effects of spread parameter test: The MAPE was 10.98% when spread was 30, it was 14.70% 

when spread was 10, and it was 32.36% when spread was 5.  

 In the effects of mn parameter test: The MAPE was 9.11% when mn was 500, it was 36.39 % when 

mn was 300, and it was 49.31% when mn was 20. 

 In the effects of goal parameter test: The MAPE was 9.01% when goal was 0.01, it was 9.45% 

when goal was 0.015, and it was 14.55% when goal was 0.1.  

 In the effects of df parameter test: The MAPE was 6.65% when df was 50, it was 6.65% when df 

was 20, and it was 6.65% when df was 10.   

The simulation results show that the accuracy of neural network model for wheel wear prediction was 

affected by changing of spread, mn, and goal parameters.   
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7.8 Chapter conclusion  

 

A nonlinear autoregressive model with exogenous input neural network (NARXNN), backpropagation 

neural network (BPNN), and the radial basis function neural network (RBFNN) were developed to predict 

railway wheel wear.    

 

The inputs of the neural network model were: speed, running distance, longitudinal bush stiffness, lateral 

bush stiffness, vertical bush stiffness, longitudinal shear stiffness, lateral shear stiffness, vertical shear 

stiffness, wheel profile, first derivative of wheel profile, and second derivative for wheel profile; while the 

output of the neural network was railway wheel wear.   

 

The simulation results show that the three types of neural network: NARXNN, BPNN, and RBFNN 

achieved good wear prediction in view of percentage error, where the wheel predicted using VAMPIRE 

software was close to the wheel wear predicted using the neural network model.   

 

The accuracy of the three types of neural network for wheel wear prediction was calculated. The accuracy 

of neural network model was between 89.30% and 92.86%. It can therefore be concluded that the 

NARXNN, BPNN, and RBFNN are accurate models for wheel wear prediction.              

  

The effects of the RBFNN parameters such as spread, goal, maximum number of neurons, and number of 

neurons to add between displays on wheel wear prediction was investigated. The simulation results show 

that the accuracy of wheel wear prediction was influenced by change of spread, mn, and goal; while the 

change of df parameter has no effect on the wheel wear prediction using RBFNN. Therfore, it can be 

concluded that the railway wheel wear prediction using neural network is dependent on the correct selection 

of the neural network parameters.          

 

Finally, the VAMPIRE vehicle dynamic software can assist in using the neural network in railway wheel 

wear prediction; where several simulations were carried out in this work using VAMPIRE software to 

produce the data to train, validate, and test the neural network model.    
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Chapter 8 Discussion, conclusions, and future work    

The discussion, and conclusions from the experimental and simulation results are presented in this chapter. 

Also, suggested future work is presented.    

8.1 Discussion 

Pin-on-disc experiments have been carried out to show how wear can be measured. Also, the effect of load 

on pin wear and disc wear under dry and sliding conditions was investigated. The experiments were 

conducted under loads of 6N, 10N, 16N, and 22N respectively, with a test time of one hour for each load, 

and sliding distance of 5mm in a forward and backward direction.  

 

The pin wear and disc wear was measured using a 3D optical profilometer. Pin wear and disc wear were 

found to increase with an increase of applied load; a result of repeatedly sliding under applied load during 

time caused the temperature of pin and disc contact surface to rise and then the strength of pin and disc 

material was decreased, which led to an increase of pin wear and disc wear.  

 

Test results show that the disc wear was greater than the pin wear, this was due to the pin being made of 

strong material (mild carbon steel EN8), while the disc was made of Aluminium 6082.  

 

A new method was developed for measuring wheel wear and rail wear for a twin disc test rig. A replica 

material was used to make a copy of the surfaces of the two rollers before and after each test, then an 

Alicona profilometer was used to measure the wheel wear and rail wear. The wheel wear and rail wear were 

measured in term of volume loss per unit area (mm3/mm2).  

 

The twin disc test rig experiments were carried out to investigate the effect of key parameters such as load, 

and yaw angle on wheel wear and rail wear for the twin disc test rig. The tests were conducted for a range 

of loads and the results show that the wheel/rail wear was increased by an increase of load, or yaw angle. 

Tests results also show that the load has an approximately linear relationship with wheel/rail wear; while 

the yaw angle has a nonlinear relationship with wheel/rail wear.    

  

In addition, this project also investigated the effect of surface conditions such as wet, lubricated, and sanded 

conditions on wheel wear and rail wear for the twin disc test rig. As an example, with an applied load of 

2200N, wet conditions decreased the wheel wear by a factor of 1.5, lubricated conditions decreased the 

wheel wear by a factor of 1.9, while sanded conditions increased the wheel wear by a factor of 1.3. Wet 

conditions decreased the rail wear by a factor of 1.2, lubricated conditions decreased the rail wear by a 

factor of 1.8, while sanded conditions increased the rail wear by a factor of 1.7.  

On average; the wheel wear was decreased under wet conditions by a factor of 1.3, it was decreased under 

lubricated conditions by a factor of 1.8, while it increased by a factor of 1.2 under sanded conditions; the 
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rail wear was decreased under wet conditions by a factor of 1.1, it was decreased under lubricated conditions 

by a factor of 1.6, while it increased by a factor of 1.5 under sanded conditions. The test results show that 

the wheel wear and rail wear increased nonlinearly under dry, wet, lubricated, and sanded conditions with 

different loads.   

 

For a twin disc test rig: The Nonlinear Autoregressive model with eXogenous input neural network 

(NARXNN) was developed in this project to predict the wheel and rail wear for the twin disc rig 

experiments. The inputs of the NARXNN were load, yaw angle, speed, wheel/rail profile, first derivative 

and second derivative of the wheel/rail profile; while the output of the NARXNN was the wheel/rail wear. 

A series-parallel NARXNN and a parallel NARXNN were developed to predict wheel/rail wear. The 

accuracy of the NARXNN model was evaluated using mean absolute percentage error (MAPE). The MAPE 

was between 6.63% and 11.37% for wear prediction using series-parallel NARXNN. The MAPE was 

between 14.46% and 18.63% for wear prediction using parallel NARXNN. The percentage error for wheel 

wear prediction was calculated; the simulation results exhibits good prediction of wheel and rail wear in 

view of percentage error; where the wheel wear and rail wear predicted using NARXNN wear was close to 

wheel/rail wear measured using Alicona profilometer for the twin disc rig experiemtns.  

 

The accuracy of wheel/rail wear prediction using NARXNN was investigated and assessed in term of 

MAPE such as: 

 The MAPE for series-parallel NARXNN (6-10-1) was 8.58%, it was smaller than the MAPE for 

the series-parallel NARXNN (6-7-1) and series-parallel NARXNN (6-13-1). Therefore, the series-

parallel NARXNN (6-10-1) was more accurate than the series-parallel NARXNN (6-7-1) and 

series-parallel NARXNN (6-13-1) for wheel wear prediction. 

 The MAPE for parallel NARXNN (6-10-1) was 7.17%, it was smaller than the MAPE for the 

parallel NARXNN (6-7-1) and parallel NARXNN (6-13-1). Therefore, the parallel NARXNN (6-

10-1) was more accurate than the parallel NARXNN (6-7-1) and parallel NARXNN (6-13-1) for 

rail wear prediction. 

Simulation results show that the wheel/rail wear depth after applied yaw angle of 0.5degree was greater 

than the wheel/rail wear depth after applied yaw angle of 0.2degree,0.3degree, and 0.4degree. Therefore, 

the wheel/rail wear depth increased with increase of yaw angle.   

 

For vehicle dynamics simulations: The NARXNN was developed to predict the railway wheel wear in case 

of changing parameters such as speed, longitudinal bush stiffness, lateral bush stiffness, vertical bush 

stiffness, longitudinal shear stiffness, lateral shear stiffness, and vertical shear stiffness. The inputs of the 

NARXNN were running distance, speed, longitudinal bush stiffness, lateral bush stiffness, vertical bush 

stiffness, longitudinal shear stiffness, lateral shear stiffness, and vertical shear stiffness, wheel profile, first 

derivative and second derivative of the wheel profile; while the output of the NARXNN was the railway 
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wheel wear. VAMPIRE vehicle dynamic software was used to produce the data which were used to train, 

validate, and test the network. Results show that the NARXNN predicts the wheel wear within 89.98% to 

96.40% accuracy.  

 

A backpropagation neural network (BPNN), and a radial basis function neural network (RBFNN) were 

developed to predict railway wheel wear for vehicle dynamics simulations. The results were compared with 

wheel wear predicted using the NARXNN. The simulation results show that the three types of neural 

networks achieved good wheel wear prediction as can be seen bellow:  

 The MAPE was 7.14% for NARXNN, 8.63% for RBFN, and 10.70% for BPNN during the change 

of speed parameter simulation.   

 The MAPE was 7.46% for NARXNN, 9.22% for RBFN, and 10.14% for BPNN during the change 

of longitudinal bush stiffness simulation 

 The MAPE was 8.34% for NARXNN, 9.77% for RBFN, and 10.08% for BPNN during the change 

of longitudinal shear stiffness simulation.  

The NARXNN, the BPNN, and the RBFNN were developed to predict railway wheel wear. Results show 

that the wheel wear predicted using neural networks was close to wear predicted using simulation tests for 

unseen data. The findings obtained using the proposed neural approach yielded better results from the 

perspective of the mean absolute percentage error (MAPE) measure. Therefore, it can be concluded that an 

artificial neural network can be used efficiently as a predictor of railway wheel wear. 

  

This project investigated the effect of RBFNN parameters on wheel wear. The effect of spread, mn, goal, 

and df parameters on wheel wear prediction were examined. The mean absolute percentage error (MAPE) 

was calculated as:    

 The MAPE was 10.98% when spread was 30, it was 14.70% when spread was 10, and it was 

32.36% when spread was 5 during the change of spread parameter test.  

 The MAPE was 9.11% when mn was 500, it was 36.39 % when mn was 300, and it was 49.31% 

when mn was 20 during the change of mn parameter test. 

 The MAPE was 9.01% when goal was 0.01, it was 9.45% when goal was 0.015, and it was 14.55% 

when goal was 0.1 during the change of goal parameter test.  

 The MAPE was 6.65% when df was 50, it was 6.65% when df was 20, and it was 6.65% when df 

was 10 during the change of df parameter test.  

The effect of neural network parameters selection such as spread, goal, maximum number of neurons, and 

number of neurons to add between displays on wheel wear prediction. Simulation results show that the 

accuracy of wheel wear prediction using neural network is dependent on the correct selection of neural 

network parameters. 

 

   



144 

 

8.2 Conclusions 

The prediction of wheel and rail wear has previously been based on a classical models such as the Archard 

wear model or energy dissipated models. The work undertaken in this thesis attempts to build a neural 

network model to predict wheel wear and rail wear.    

 

The conclusions from the experimental and simulation tests are presented in this section. 

 The primary contribution of this project was the development of a neural network model to predict 

the wheel and rail wear for the twin disc rig experiments. The inputs of the neural network model 

for wheel and rail wear prediction for the twin disc rig experiments were load, yaw angle, speed, 

wheel/rail profile, and first and second derivative of wheel/rail profile. The output of the neural 

network model was wheel and rail wear.    

 The second contribution of this work was the development three types of neural networks to predict 

railway wheel wear for vehicle dynamics simulations. The inputs of the neural network model for 

wheel and rail wear prediction for vehicle dynamics simulations were speed, running distance, 

longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, longitudinal bush stiffness, 

lateral bush stiffness, vertical shear stiffness, wheel/rail profile, and first and second derivative of 

wheel profile. The output of the neural network model was railway wheel wear.    

  A new method for wheel wear and rail wear measurements was applied during this work using 

replica material and an Alicona profilometer. This has been used in other fields but in this work it 

has been shown to be effective for measuring wheel and rail wear.  

 

The conclusions are summarized as follows:    

The test results for pin-on-disc experiments show that the pin wear and disc wear increased with increase 

of the load. The disc wear is bigger than the pin wear, because the disc is made of aluminium and the pin 

is made of steel.  

 

The major finding in the pin-on-disc test is that the Alicona profilometer can be used for pin wear and disc 

wear measurements.    

  

The University of Huddersfield twin disc test rig together with a replica technique and an Alicona 

profilometer were used for wheel wear and rail wear measurements. The replica material and Alicona 

profilometer are effective tools for the wheel wear and rail wear measurements. An advantage of using the 

replica method is that it is a permanent record of wheel and rail surface.   

 

The effect of load, and yaw angle on wheel wear and rail wear were investigated. The test results show that 

the applied load, and yaw angle all influence the wheel/rail wear. Tests results show that the load has an 

approximately linear relationship with wheel/rail wear; while the yaw angle has a nonlinear relationship 

with wheel/rail wear.    
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This work investigated the effect of surface conditions such as wet, lubricated, and sanded conditions on 

wheel wear and rail wear for the twin disc rig experiments. The wet conditions decreased the wheel wear 

by an average factor of 1.3, the lubricated conditions decreased the wheel wear by a factor of 1.8, while the 

sanded conditions increased the wheel wear by a factor of 1.2. The wet conditions decreased the rail wear 

by a factor of 1.1, the lubricated conditions decreased the rail wear by a factor of 1.6, while the sanded 

conditions increased the rail wear by a factor of 1.5. The test results show that both water and oil reduced 

the wheel and rail wear; while the wheel and rail wear increased under sanded conditions. Test results show 

that the wheel/rail wear has nonlinear relationship with load under dry, wet, lubricated, and sanded 

conditions. 

 

The Nonlinear Autoregressive model with eXogenous input neural network (NARXNN) was developed to 

predict the wheel and rail wear for the twin disc rig experiments under dry, wet, lubricated, and sanded 

conditions. NARXNN was predicted the wheel and rail wear successfully, and the accuracy of the model 

was calculated in view of mean absolute percentage error (MAPE). The accuracy of model was between 

81.37% and 93.37%. The accuracy of the wheel/rail wear prediction using a neural network was influenced 

by the architecture of neural network. The wheel/rail wear depth was influenced by the yaw angle.  

    

The NARXNN was developed to predict railway wheel wear in case of changing parameters such as speed, 

longitudinal bush stiffness, lateral bush stiffness, vertical bush stiffness, longitudinal bush stiffness, lateral 

bush stiffness, and vertical shear stiffness on wheel wear. VAMPIRE vehicle dynamics software was used 

to produce data to train, validate, and test the network. The mean absolute percentage error (MAPE) was 

calculated for unseen data and was between 3.60% and 10.02%; this reflects the degree of accuracy for the 

NARXNN for railway wheel wear prediction. The simulation results show that the NARXNN predicted the 

railway wheel wear within an accuracy of 89.98% to 96.40%. This indicates that the NARXNN is an 

accurate model for wheel wear prediction.    

 

The backpropagation neural network (BPNN), and the radial basis function neural network (RBFNN) were 

developed to predict railway wheel wear, then, the results were compared with railway wheel wear 

prediction using the NARXNN. The simulation results show that the three types of neural network achieved 

good wear prediction in view of MAPE. The NARXNN was the best, followed by the RBFNN and BPNN 

respectively. Therefore, the three types of neural network are an effective tool for wheel wear prediction.     

Additional investigations were carried out in this project to study the effects of change of the radial basis 

function neural network (RBFNN) parameters such as spread, mn, goal, and df on railway wheel wear 

prediction using neural network. The MAPE was calculated, results show that the MAPE was changed with 

change of neural network parameters. The simulation results show that the accuracy of railway wheel wear 

prediction using neural network was influenced by the changing of the neural netwrok parameters. 

Therefore, the accuracy of wheel wear prediction using neural network is dependent on the proper selection 
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of the neural network parameters. The accuracy of wheel wear and rail wear prediction using the neural 

network was investigated and assessed in term of mean absolute percentage error (MAPE). The MAPE was 

less than 11% using neural network for a twin disc rig tests; while the neural network model achieved wheel 

wear prediction with accuracy up to 96.40% for railway vehicle simulations. This represents the accuracy 

of the neural network model for wheel wear prediction. The results reveal that the neural network can be 

used efficiently to predict wheel wear and rail wear.  This work introduced the replica material and Alicona 

profilometer which can assist to predict the wheel wear and rail wear. This work also demonstrated the 

neural network as a powerful tool for wheel wear and rail wear prediction.   

The major conclusion in this thesis is that a properly designed neural network together with appropriately 

chosen inputs can predict wheel wear and rail wear successfully.    

This work can be used to promote the use of predictive maintenance strategies by railway operators. It can 

for example help in understanding remaining life of wheels or rails and in planning of maintenance 

interventions.      

 

8.3 Future work 

The research work presented in this thesis points to several directions for future work. In this project, there 

are still a number of issues which have not been studied as follows:   

 The use of replica material to measure the wheel wear and rail wear in real railway system.  

 The use the replica material to study other characteristics of the wheel and rail surface, for example 

to investigate the relationship between wheel/rail wear and wheel/rail surface roughness.   

 The development of a new technique to select the optimum number of hidden layers and neurons 

of neural networks to obtain the optimum wheel/rail wear prediction.       

 This work studies the wheel wear and rail wear in terms of material removal; in future, wheel wear 

and rail wear could be investigated in terms of wear type such as abrasive, adhesive, and chemical 

wear.   

 This work investigates the wheel wear on straight track. Wheel wear prediction using the neural 

network on the curved track could be investigated but the inputs of the neural network model will 

change and additional parameters included such as the track curve radii, and cant efficiency. It may 

be appropriate to consider different Neural Network architectures including possible variation 

between left and right wheels/rails in a curve. The methodology of wheel wear prediction using 

Vampire software shown in Figure 6.2 should be developed to predict forces and wear on the curved 

track.  

 Investigate the effect of scaling method on wheel/rail wear, and compare the lab measurements of 

wheel/rail wear with the real system measurements.   
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Appendices 

 

Appendix 1 Wheel/rail profiles of the University of Huddersfield twin disc rig  

 

Wheel of the University of Huddersfield twin disc rig 

 

 

Rail of University of the Huddersfield twin disc rig 
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Wheel profile of the Huddersfield University twin disc rig 

 

Appendix 2 Wheel/rail wear measurements using an Alicona profilometer 

The following steps illustrates the process of wheel/rail wear measurements using an Alicona profilometer:  

1. Alicona software was switched on. 

2. A new project was opened.  

3. The magnification setting was selected in Alicona-If-LaboratoryMeasurmentModule, it was 5X in this 

work.  

4. A replica sample was put under an Alicona lens (new sample).   

5. The lens was moved up/down/left/right until a clear image of the replica surface was appeared on the 

screen. 

6. To ensure the image surface was clear, the histogram drawing was put in the middle of its window. 

7. The exposure (Brightness) setting and the contrast setting between the min and max settings were 

changed until a suitable colour was obtained for the replica surface.  

8. A sensor setting was selected: Gain equal 1, light source equal one and ring light equal zero. 

9. A measurement range was selected: start position for x, y, and z; and end position for x, y, and z.  

For example for wheel sample:  

Start position:  𝑥 = 0𝜇𝑚, 𝑦 = 0𝜇𝑚, 𝑎𝑛𝑑 𝑧 = 200𝜇𝑚. 

End position:   𝑥 = 35000𝜇𝑚, 𝑦 = −5000𝜇𝑚, 𝑎𝑛𝑑  𝑧 = −3000𝜇𝑚.   

10. Polarize was Deactivated, and Imagefield was General Imagefield.  

11. The start measurement switch was pressed. 
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12. Alicona lens started flushing, and scanned the selected replica surface area.    

13. After the scanning finished, the image was saved (sample before wear). 

14. Set all to zero button was pressed.  

15. The replica sample (worn sample) was changed. 

16. A steps 5 to 13 were repeated. 

17. The image was saved (sample after wear). 

18. Final wear measurement steps: 

 Alicona-If-MeasurmentSuite was selected. 

 Database was selected. 

 Sample before wear image was selected. 

 DefferenceMeausrement was pressed. 

 Sample after wear image was selected. 

 Alignment-sample alignment-apply-automatic alignment setting-apply was selected. 

 The Difference button was pressed.  

 The volume loss was measured (wheel/rail wear).  

Figure below shows the software window of an Alicona profilometer, which was used to select the setting 

for wear measurements.  

 

 

Wheel/rail Wear measuring using Alicona profilometer 
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Appendix 3 NARXNN for wheel/rail wear prediction  
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Appendix 4 Error percentage and mean absolute percentage error (MAPE)  
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Appendix 5 How the data is used to train, validate, and test the neural network model during prediction of wheel and rail wear using neural 

network (an example).  
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Appendix 6 Wheel/rail wear prediction under wet, lubricated, and sanded conditions   

1. Wheel/rail wear prediction using NARXNN under dry conditions  

 

i. The actual wheel wear, the wheel wear predicted using series-parallel NARXNN, and percentage error.  

 

 Sample No Actual wheel wear 

(μm) 

Wheel wear predicted 

using NARXNN (μm) 

Error % 

1 -0.28 -0.25 -10.71 

2 -0.48 -0.53 -10.41 

3 -0.42 -0.37 -11.90 

4 -0.39 -0.38 -2.56 

5 -1.95 -1.35 -30.76 

6 -2.56 -2.11 -17.57 

7 -2.67 -2.45 -8.23 

8 -2.20 -1.83 -16.81 

9 -2.41 -2.37 -1.65 

10 -2.58 -2.13 -17.44 

11 -1.28 -1.24 -3.12 

12 -0.42 -0.43 -2.38 

13 -0.15 -0.16 -6.66 

14 -0.22 -0.24 -9.09 

15 -0.27 -0.21 -22.22 

16 -1.27 -1.21 -4.72 

17 -0.49 -0.45 -8.16 

18 -5.49 -5.90 -7.46 

19 -4.96 -5.55 -11.89 

20 -4.50 -5.52 -22.66 

21 -6.17 -6.30 -2.10 

22 -5.81 -6.33 -8.95 

23 -6.53 -6.47 -0.91 

24 -6.54 -6.73 -2.90 

25 -6.70 -6.12 -8.65 

26 -5.94 -5.57 -6.22 

27 -1.06 -1.04 -1.88 

28 -1.29 -1.28 -0.77 

29 -1.11 -1.11 0.00 

30 -0.12 -0.12 0.00 

31 -0.03 -0.03 0.00 

32 -7.89 -7.07 -10.39 

33 -9.95 -9.47 -4.82 

34 -8.15 -8.75 -7.36 

35 -7.75 -8.32 -7.35 

36 -6.27 -4.92 -21.53 

37 -1.00 -1.01 -1.00 

38 -1.06 -0.83 -21.69 

39 -0.60 -0.61 -1.66 
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ii.The actual wheel wear, the wheel wear predicted using parallel NARXNN, and percentage error.  

Sample 

No 

Actual 

wheel 

wear  

(μm) 

 

Wheel wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

wheel 

wear  

(μm) 

 

Wheel 

wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -5.43 -5.41 -0.36 

2 -0.24 -0.17 -41.17  46 -6.50 -4.51 -44.12 

3 -0.23 -0.21 -9.52  47 -6.51 -4.96 -31.25 

4 -0.28 -0.25 -12.00  48 -7.61 -6.62 -14.95 

5 -0.63 -0.94 -32.97  49 -8.76 -7.17 -22.17 

6 -0.79 -0.69 -14.49  50 -9.81 -8.12 -20.81 

7 -0.52 -0.51 -1.96  51 -10.77 -9.14 -17.83 

8 -1.76 -1.18 -49.15  52 -10.83 -9.83 -10.17 

9 -2.11 -2.05 -2.92  53 -10.76 -10.31 -4.36 

10 -2.62 -2.78 -5.75  54 -10.72 -9.54 -12.36 

11 -4.08 -3.78 -7.93  55 -10.60 -10.69 -0.84 

12 -3.97 -3.75 -5.86  56 -8.58 -8.59 -0.11 

13 -5.15 -4.10 -25.60  57 -9.52 -8.05 -18.26 

14 -4.19 -3.81 -9.97  58 -7.56 -6.39 -18.30 

15 -3.20 -3.73 -14.20  59 -8.43 -7.68 -9.76 

16 -3.40 -3.57 -4.76  60 -8.30 -7.16 -15.92 

17 -3.15 -3.93 -19.84  61 -7.48 -5.64 -32.62 

18 -2.80 -1.90 -47.36  62 -6.36 -5.40 -17.77 

19 -1.99 -1.52 -30.92  63 -6.26 -5.48 -14.23 

20 -4.28 -3.80 -12.63  64 -5.11 -5.10 -0.19 

21 -5.47 -4.69 -16.63  65 -4.04 -4.01 -0.74 

22 -6.68 -5.30 -26.03  66 -3.93 -3.42 -14.91 

23 -5.75 -4.55 -26.37  67 -3.80 -3.37 -12.75 

24 -5.74 -4.44 -29.27  68 -2.73 -2.67 -2.24 

25 -5.86 -4.95 -18.38  69 -3.59 -2.53 -41.89 

26 -4.74 -3.93 -20.61  70 -3.62 -3.31 -9.36 

27 -5.91 -4.29 -37.76  71 -4.43 -4.78 -7.32 

28 -8.13 -8.02 -1.37  72 -3.33 -2.88 -15.62 

29 -7.16 -6.46 -10.83  73 -3.12 -3.10 -0.64 

30 -6.04 -5.23 -15.48  74 -2.96 -2.67 -10.86 

31 -6.11 -5.48 -11.49  75 -2.70 -2.94 -8.16 

32 -5.29 -5.23 -1.14  76 -2.61 -2.46 -6.09 

33 -5.27 -4.18 -26.07  77 -1.54 -1.91 -19.37 

34 -6.17 -6.01 -2.66  78 -2.31 -2.63 -12.16 

35 -6.15 -5.17 -98.81  79 -2.06 -2.07 -0.48 

36 -6.11 -4.74 -28.90  80 -1.06 -1.16 -8.62 

37 -6.25 -4.25 -47.05  81 -0.99 -0.88 -12.50 

38 -4.29 -4.12 -4.12  82 -1.10 -0.99 -11.11 

39 -6.20 -5.45 -13.76  83 -0.09 -0.06 -50.00 

40 -6.22 -6.16 -0.97  84 -0.61 -0.97 -37.11 

41 -5.24 -5.09 -2.94  85 -1.13 -1.69 -33.13 

42 -5.21 -3.55 -46.76  86 -0.68 -0.74 -8.10 

43 -5.33 -5.24 -1.71  87 -0.01 -0.01 0.00 

44 -4.39 -4.18 -5.02      
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iii. The actual rail wear, the rail wear predicted using series-parallel NARXNN, and 

percentage error.  

 

    Sample No Actual rail wear 

(μm) 

Rail wear predicted 

using NARXNN (μm) 

Error % 

1 -0.15 -0.15 0.00 

2 -1.40 -1.32 -6.06 

3 -1.65 -1.57 -5.09 

4 -3.91 -3.06 -27.77 

5 -1.83 -2.11 -13.27 

6 -2.52 -1.93 -30.56 

7 -2.62 -2.73 -4.02 

8 -1.99 -2.67 -25.46 

9 -1.86 -1.61 -15.52 

10 -1.53 -1.52 -0.65 

11 -1.70 -1.75 -2.85 

12 -1.47 -1.67 -11.97 

13 -0.25 -0.26 -3.84 

14 -0.18 -0.17 -5.88 

15 -0.11 -0.11 0.00 

16 -3.69 -3.80 -2.89 

17 -3.78 -3.58 -5.58 

18 -6.13 -5.86 -4.60 

19 -5.87 -5.22 -12.45 

20 -5.64 -5.47 -3.10 

21 -5.55 -5.45 -1.83 

22 -4.09 -4.08 -0.24 

23 -6.27 -5.72 -9.61 

24 -2.40 -2.46 -2.43 

25 -4.12 -3.97 -3.77 

26 -2.29 -2.64 -13.25 

27 -1.66 -1.82 -8.79 

28 -0.67 -0.56 -19.64 

29 -1.40 -1.31 -6.87 

30 -0.19 -0.18 -5.55 

31 -0.01 -0.01 0.00 

32 -8.11 -8.03 -0.99 

33 -7.21 -7.24 -0.41 

34 -7.31 -7.33 -0.27 

35 -6.09 -6.02 -1.16 

36 -7.11 -6.88 -3.34 

37 -4.66 -4.92 -5.28 

38 -4.40 -4.31 -2.08 

39 -0.09 -0.08 -12.50 
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iv. The actual rail wear, the rail wear predicted using parallel NARXNN, and percentage error.  

 Sample 

No 

Actual rail 

wear  

(μm) 

 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

rail wear  

(μm) 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -6.91 -6.48 -6.63 

2 -0.30 -0.20 -50.00  46 -7.31 -6.83 -7.02 

3 -1.05 -1.57 -33.12  47 -7.32 -7.78 -5.91 

4 -1.72 -2.69 -36.05  48 -3.49 -3.72 -6.18 

5 -2.87 -1.74 -64.94  49 -4.15 -4.32 -3.93 

6 -3.08 -2.02 -52.47  50 -4.80 -4.29 -11.88 

7 -2.95 -2.58 -14.34  51 -4.50 -3.83 -17.49 

8 -4.19 -3.30 -26.96  52 -3.83 -4.22 -9.24 

9 -3.99 -3.49 -14.32  53 -3.54 -3.75 -5.60 

10 -3.79 -2.37 -59.91  54 -3.75 -3.59 -4.45 

11 -3.90 -3.55 -9.85  55 -3.09 -2.56 -20.70 

12 -8.93 -7.21 -23.85  56 -3.05 -3.03 -0.66 

13 -8.75 -7.16 -22.20  57 -3.65 -2.56 -42.57 

14 -10.37 -9.79 -5.92  58 -2.47 -1.83 -34.97 

15 -9.09 -8.51 -6.81  59 -2.73 -2.06 -32.52 

16 -7.80 -6.12 -27.45  60 -3.33 -2.71 -22.87 

17 -8.42 -7.39 -13.93  61 -2.67 -2.54 -5.11 

18 -7.75 -6.46 -19.96  62 -2.80 -1.87 -49.73 

19 -7.37 -6.63 -11.16  63 -2.24 -4.22 -46.91 

20 -7.04 -6.34 -11.04  64 -1.94 -1.78 -8.98 

21 -7.95 -7.34 -8.310  65 -1.90 -1.45 -31.03 

22 -7.57 -6.11 -23.89  66 -1.19 -1.30 -8.46 

23 -8.11 -7.82 -3.70  67 -0.99 -0.94 -5.31 

24 -8.80 -7.07 -24.46  68 -0.99 -0.89 -11.23 

25 -10.10 -9.69 -4.23  69 -0.98 -0.95 -3.15 

26 -10.68 -9.82 -8.75  70 -0.99 -0.97 -2.06 

27 -10.69 -10.36 -3.18  71 -0.98 -0.80 -22.50 

28 -10.66 -10.16 -4.92  72 -1.36 -1.12 -21.42 

29 -10.57 -9.01 -17.31  73 -1.33 -1.73 -23.12 

30 -10.34 -10.62 -2.63  74 -1.33 -1.38 -3.62 

31 -9.88 -9.54 -3.56  75 -1.33 -1.49 -10.73 

32 -9.15 -9.33 -1.92  76 -1.32 -1.05 -25.71 

33 -8.14 -7.97 -2.13  77 -1.30 -1.27 -2.36 

34 -7.20 -6.62 -8.76  78 -0.28 -0.25 -12.00 

35 -7.15 -6.89 -3.77  79 -1.22 -1.19 -2.52 

36 -6.70 -6.85 -2.18  80 -1.16 -1.12 -3.57 

37 -7.30 -7.44 -1.88  81 -0.10 -0.12 -16.66 

38 -7.05 -7.57 -6.86  82 -0.02 -0.02 0.00 

39 -6.54 -6.15 -6.34  83 -0.11 -0.12 -8.33 

40 -6.33 -5.87 -7.83  84 -0.11 -0.07 -57.14 

41 -6.49 -6.01 -7.98  85 -0.05 -0.08 -37.50 

42 -7.39 -6.24 -18.31  86 -0.09 -0.12 -25.00 

43 -7.20 -7.53 -4.49  87 -0.09 -0.07 -28.57 

44 -7.33 -7.78 -5.83      
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2. Wheel/rail wear prediction using NARXNN under wet conditions    

 

i. The actual wheel wear, the wheel wear predicted using series-parallel NARXNN, and percentage error.   

 

      Sample No Actual wheel wear 

(μm) 

Wheel wear predicted 

using NARXNN (μm) 

Error % 

1 -0.05 -0.05 0.00 

2 -0.11 -0.11 0.00 

3 -2.06 -1.82 -13.18 

4 -2.62 -2.08 -25.96 

5 -0.75 -0.85 -11.76 

6 -1.41 -1.42 -0.70 

7 -1.75 -1.66 -5.42 

8 -2.19 -2.29 -4.36 

9 -2.10 -2.19 -4.10 

10 -2.38 -2.33 -2.14 

11 -0.72 -0.58 -24.13 

12 -1.13 -0.92 -22.82 

13 -1.08 -1.03 -4.85 

14 -0.39 -0.38 -2.63 

15 -0.21 -0.21 0.00 

16 -0.27 -0.34 -20.58 

17 -0.22 -0.32 -31.25 

18 -3.79 -3.79 0.00 

19 -5.08 -4.07 -24.81 

20 -3.45 -3.76 -8.24 

21 -3.06 -2.70 -13.33 

22 -1.15 -1.09 -5.50 

23 -0.28 -0.24 -16.66 

24 -0.09 -0.09 0.00 

25 -0.02 -0.02 0.00 

26 -0.60 -0.60 0.00 

27 -0.41 -0.42 -2.38 

28 -1.51 -1.64 -7.92 

29 -1.24 -1.35 -8.14 

30 -3.53 -3.86 -8.54 

31 -2.12 -2.11 -0.47 

32 -1.43 -1.55 -7.74 

33 -3.03 -2.87 -5.57 

34 -4.43 -4.74 -6.54 

35 -4.32 -3.99 -8.27 

36 -2.27 -2.62 -13.35 

37 -0.26 -0.25 -4.00 

38 -1.82 -1.81 -0.55 

39 -0.68 -0.82 -17.07 
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ii. The actual wheel wear, the wheel wear predicted using parallel NARXNN, and percentage error.   

  Sample 

No 

Actual 

wheel 

wear  

(μm) 

Wheel wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

wheel 

wear  

(μm) 

Wheel wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -3.07 -3.01 -1.99 

2 -0.16 -0.18 -11.11  46 -3.63 -3.31 -9.66 

3 -0.34 -0.44 -22.72  47 -4.43 -6.14 -27.85 

4 -0.10 -0.11 -9.09  48 -4.66 -5.79 -19.51 

5 -0.38 -0.27 -40.74  49 -5.13 -6.01 -14.64 

6 -0.57 -0.54 -5.55  50 -5.46 -5.77 -5.37 

7 -1.06 -1.22 -13.11  51 -4.20 -5.17 -18.76 

8 -2.09 -2.01 -3.98  52 -5.37 -5.38 -0.18 

9 -2.58 -2.42 -6.61  53 -6.57 -6.21 -5.79 

10 -4.03 -3.43 -17.49  54 -5.24 -5.34 -1.87 

11 -3.19 -3.78 -15.60  55 -4.48 -4.63 -3.23 

12 -3.51 -3.14 -11.78  56 -3.83 -4.93 -22.31 

13 -4.90 -4.24 -15.56  57 -3.39 -5.17 -34.42 

14 -5.40 -4.80 -12.50  58 -3.33 -4.95 -32.72 

15 -6.54 -5.67 -15.34  59 -3.75 -4.90 -23.46 

16 -6.47 -5.75 -12.52  60 -3.47 -3.70 -6.21 

17 -5.80 -4.72 -22.88  61 -2.89 -3.00 -3.66 

18 -4.77 -5.92 -19.42  62 -2.77 -2.88 -3.81 

19 -5.78 -4.48 -29.01  63 -3.26 -3.03 -7.59 

20 -4.85 -4.41 -9.97  64 -3.29 -3.88 -15.20 

21 -5.19 -4.46 -16.36  65 -2.54 -3.74 -32.08 

22 -4.84 -3.97 -21.91  66 -2.38 -2.48 -4.03 

23 -5.21 -3.96 -31.56  67 -2.40 -2.23 -7.62 

24 -5.77 -4.65 -24.08  68 -2.26 -2.26 0.00 

25 -5.95 -5.85 -1.70  69 -1.74 -1.64 -6.09 

26 -5.49 -5.68 -3.34  70 -3.54 -3.55 -0.28 

27 -5.87 -6.23 -5.77  71 -3.56 -4.51 -21.06 

28 -6.20 -6.28 -1.27  72 -4.86 -5.22 -6.89 

29 -6.86 -6.38 -7.52  73 -5.25 -3.94 -33.24 

30 -5.54 -5.58 -0.71  74 -5.93 -4.49 -32.07 

31 -6.10 -6.13 -0.48  75 -4.04 -4.64 -12.931 

32 -5.32 -5.73 -7.15  76 -3.18 -3.13 -1.59 

33 -5.34 -5.57 -4.12  77 -2.52 -2.48 -1.61 

34 -4.86 -5.78 -15.91  78 -2.96 -2.54 -16.53 

35 -3.91 -5.67 -31.04  79 -3.42 -3.16 -8.22 

36 -4.57 -5.79 -21.07  80 -1.62 -1.79 -9.49 

37 -3.38 -3.62 -6.62  81 -3.27 -2.05 -59.51 

38 -3.13 -3.85 -18.70  82 -0.53 -0.63 -15.87 

39 -3.30 -3.81 -13.38  83 -0.71 -0.80 -11.25 

40 -4.57 -4.03 -13.39  84 -0.54 -0.41 -31.70 

41 -4.49 -4.91 -8.55  85 -0.48 -0.41 -17.07 

42 -3.84 -2.44 -57.37  86 -0.21 -0.25 -16.00 

43 -3.05 -2.86 -6.64  87 -0.23 -0.35 -34.28 

44 -3.10 -2.91 -6.52      

 



164 

  

 

 

 

 

 

iii. The actual rail wear, the rail wear predicted using series-parallel NARXNN, and percentage error.  

 

    Sample No Actual rail wear 

(μm) 

Rail wear predicted 

using NARXNN (μm) 

Error % 

1 -0.30 -0.41 -26.82 

2 -0.34 -0.38 -10.52 

3 -1.08 -0.92 -17.39 

4 -1.39 -1.57 -11.46 

5 -1.70 -1.55 -9.67 

6 -2.61 -2.55 -2.35 

7 -1.01 -1.07 -5.60 

8 -1.52 -1.59 -4.40 

9 -0.01 -0.01 0.00 

10 -0.07 -0.08 -12.50 

11 -0.01 -0.01 0.00 

12 -0.03 -0.04 -25.00 

13 -0.01 -0.01 0.00 

14 -0.08 -0.06 -33.33 

15 -0.10 -0.11 -9.09 

16 -3.41 -3.42 -0.29 

17 -2.66 -2.79 -4.65 

18 -1.99 -2.00 -0.50 

19 -3.27 -2.34 -39.74 

20 -2.92 -3.34 -12.57 

21 -1.29 -1.69 -23.66 

22 -1.37 -1.40 -2.14 

23 -1.72 -1.34 -28.35 

24 -1.43 -1.45 -1.37 

25 -1.14 -1.48 -22.97 

26 -0.99 -0.91 -8.79 

27 -0.95 -0.88 -7.95 

28 -0.81 -0.71 -14.08 

29 -0.48 -0.54 -11.11 

30 -0.42 -0.43 -2.32 

31 -0.58 -0.55 -5.45 

32 -3.76 -3.55 -5.91 

33 -2.98 -2.53 -17.78 

34 -2.99 -3.49 -14.32 

35 -1.85 -2.14 -13.55 

36 -0.40 -0.40 0.00 

37 -0.55 -0.50 -10.00 

38 -0.42 -0.37 -13.51 

39 -0.08 -0.07 -14.28 
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iv. The actual rail wear, the rail wear predicted using parallel NARXNN, and percentage error.     

 Sample 

No 

Actual 

rail wear  

(μm) 

 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

rail 

wear  

(μm) 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -8.76 -8.23 -6.43 

2 -0.13 -0.14 -7.14  46 -8.93 -9.35 -4.49 

3 -0.06 -0.05 -20.00  47 -5.43 -8.38 -35.20 

4 -0.05 -0.08 -37.50  48 -4.23 -4.28 -1.16 

5 -0.08 -0.07 -14.28  49 -4.70 -7.57 -37.91 

6 -0.13 -0.11 -18.18  50 -6.09 -7.99 -23.77 

7 -0.05 -0.08 -37.50  51 -8.21 -9.07 -9.48 

8 -0.17 -0.15 -13.33  52 -8.60 -9.61 -10.50 

9 -0.62 -0.44 -40.90  53 -7.08 -7.40 -4.32 

10 -0.87 -0.77 -12.98  54 -7.86 -7.56 -3.96 

11 -0.96 -1.09 -11.92  55 -7.10 -8.44 -15.87 

12 -1.13 -1.21 -6.61  56 -6.85 -7.02 -2.42 

13 -1.07 -0.80 -33.75  57 -5.57 -5.85 -4.78 

14 -0.59 -0.55 -7.27  58 -5.65 -5.91 -4.39 

15 -1.99 -2.12 -6.13  59 -5.00 -5.38 -7.06 

16 -1.81 -2.28 -20.61  60 -4.34 -5.45 -20.36 

17 -1.58 -2.04 -22.54  61 -4.61 -3.78 -21.95 

18 -1.96 -2.37 -17.29  62 -4.67 -4.67 0.00 

19 -3.52 -4.00 -12.00  63 -4.22 -3.59 -17.54 

20 -3.34 -4.36 -23.39  64 -4.13 -4.13 0.00 

21 -3.31 -3.73 -11.26  65 -4.49 -5.10 -11.96 

22 -4.03 -4.79 -15.86  66 -3.02 -4.06 -25.61 

23 -4.43 -5.15 -13.98  67 -4.71 -5.06 -6.91 

24 -4.28 -5.78 -25.95  68 -3.85 -4.01 -3.99 

25 -7.56 -7.80 -3.07  69 -1.16 -1.10 -5.45 

26 -5.69 -6.11 -6.87  70 -1.72 -2.14 -19.62 

27 -5.36 -6.09 -11.98  71 -2.44 -2.13 -14.55 

28 -6.75 -7.97 -15.30  72 -1.63 -2.11 -22.74 

29 -7.13 -8.26 -13.68  73 -2.74 -2.06 -33.00 

30 -5.16 -6.18 -16.50  74 -1.50 -1.14 -31.57 

31 -4.55 -5.04 -9.72  75 -2.55 -2.00 -27.50 

32 -2.66 -2.90 -8.27  76 -1.80 -1.71 -5.26 

33 -2.76 -2.50 -10.40  77 -1.47 -1.14 -28.94 

34 -5.75 -6.10 -5.73  78 -1.50 -1.19 -26.05 

35 -5.14 -5.17 -0.58  79 -1.55 -1.14 -35.96 

36 -5.71 -5.36 -6.52  80 -0.55 -0.71 -22.53 

37 -4.16 -5.36 -22.38  81 -0.45 -0.45 0.00 

38 -3.79 -3.45 -9.85  82 -0.47 -0.46 -2.17 

39 -4.75 -4.85 -2.06  83 -0.49 -0.47 -4.25 

40 -5.87 -5.64 -4.07  84 -0.12 -0.15 -20.00 

41 -5.57 -7.44 -25.13  85 -0.07 -0.05 -40.00 

42 -5.44 -7.19 -24.33  86 -0.03 -0.02 -50.00 

43 -5.47 -7.90 -30.75  87 -0.03 -0.03 0.00 

44 -7.73 -8.15 -5.15      
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3. Wheel/rail wear prediction using NARXNN under lubricated conditions   

 

i. The actual wheel wear, the wheel wear predicted using series-parallel NARXNN, and percentage error.   

 

       Sample No Actual wheel wear 

(μm) 

Wheel wear predicted 

using NARXNN (μm) 

Error % 

1 -0.21 -0.19 -10.52 

2 -1.16 -1.26 -7.93 

3 -0.91 -1.07 -14.95 

4 -1.50 -1.31 -14.50 

5 -0.94 -0.92 -2.17 

6 -1.06 -1.22 -13.11 

7 -0.91 -1.05 -13.33 

8 -1.17 -1.11 -5.40 

9 -2.13 -2.11 -0.94 

10 -1.91 -2.34 -18.37 

11 -1.19 -1.33 -10.52 

12 -0.97 -0.88 -10.22 

13 -0.64 -0.63 -1.58 

14 -0.24 -0.28 -14.28 

15 -0.30 -0.31 -3.22 

16 -0.04 -0.04 0.00 

17 -0.01 -0.01 0.00 

18 -0.11 -0.11 0.00 

19 -1.91 -1.76 -8.52 

20 -1.42 -1.93 -26.42 

21 -2.15 -1.98 -8.58 

22 -0.71 -0.73 -2.73 

23 -0.83 -0.95 -12.63 

24 -0.80 -0.88 -9.09 

25 -0.07 -0.063 -11.11 

26 -0.11 -0.09 -22.22 

27 -0.11 -0.14 -21.42 

28 -1.27 -1.19 -6.72 

29 -1.23 -1.01 -21.78 

30 -2.53 -2.32 -9.05 

31 -2.55 -2.46 -3.65 

32 -2.31 -2.51 -7.96 

33 -3.11 -3.10 -0.32 

34 -2.18 -2.02 -7.92 

35 -2.45 -2.37 -3.37 

36 -1.11 -1.01 -9.90 

37 -0.42 -0.43 -2.32 

38 -0.48 -0.44 -9.09 

39 -0.34 -0.33 -3.03 
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ii. The actual wheel wear, the wheel wear predicted using parallel NARXNN, and percentage error.    

  

Sample 

No 

Actual 

wheel 

wear  

(μm) 

 

Wheel wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

wheel 

wear  

(μm) 

 

Wheel wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -4.36 -2.64 -65.15 

2 -0.09 -0.08 -12.50  46 -4.37 -4.32 -1.15 

3 -0.08 -0.08 0.00  47 -4.42 -4.23 -4.49 

4 -0.20 -0.21 -4.76  48 -4.71 -2.73 -72.52 

5 -0.25 -0.36 -30.55  49 -2.90 -2.89 -0.34 

6 -0.35 -0.50 -30.00  50 -2.26 -2.83 -20.14 

7 -0.37 -0.46 -19.56  51 -2.88 -2.60 -10.76 

8 -0.13 -0.24 -45.83  52 -3.59 -2.54 -41.33 

9 -0.28 -0.39 -28.20  53 -2.62 -1.54 -70.12 

10 -0.19 -0.16 -18.75  54 -1.78 -1.54 -15.58 

11 -0.38 -0.20 -90.00  55 -0.80 -0.75 -6.66 

12 -1.28 -1.48 -13.51  56 -1.76 -2.55 -30.98 

13 -1.31 -1.22 -7.37  57 -2.57 -1.85 -38.91 

14 -1.76 -1.59 -10.69  58 -2.21 -2.19 -0.91 

15 -1.82 -1.74 -4.59  59 -1.48 -1.43 -3.49 

16 -1.69 -1.58 -6.96  60 -1.12 -1.89 -40.74 

17 -1.74 -1.70 -2.35  61 -1.64 -2.20 -25.45 

18 -1.40 -1.90 -26.31  62 -1.29 -1.42 -9.15 

19 -1.30 -1.82 -28.57  63 -0.91 -0.86 -5.81 

20 -1.53 -1.97 -22.33  64 -0.86 -0.70 -22.85 

21 -1.42 -2.18 -34.86  65 -0.69 -0.53 -30.18 

22 -1.59 -2.46 -35.36  66 -0.66 -0.51 -29.41 

23 -0.92 -0.89 -3.37  67 -0.76 -0.69 -10.14 

24 -1.80 -1.73 -4.04  68 -0.93 -0.80 -16.25 

25 -1.72 -1.61 -6.83  69 -1.20 -1.14 -5.26 

26 -1.82 -1.64 -10.97  70 -1.12 -1.25 -10.40 

27 -1.76 -1.41 -24.82  71 -0.94 -0.72 -30.55 

28 -2.20 -2.55 -13.72  72 -0.84 -0.72 -16.66 

29 -2.33 -2.43 -4.11  73 -0.87 -0.81 -7.40 

30 -2.26 -2.62 -13.74  74 -0.91 -0.90 -1.11 

31 -2.11 -2.67 -20.97  75 -0.91 -0.80 -13.75 

32 -2.57 -2.80 -8.21  76 -0.98 -1.15 -14.78 

33 -2.61 -2.66 -1.87  77 -0.67 -0.50 -34.00 

34 -2.88 -2.62 -9.92  78 -0.44 -0.34 -29.41 

35 -2.51 -2.55 -1.56  79 -0.20 -0.23 -13.04 

36 -3.01 -2.51 -19.92  80 -0.45 -0.31 -45.16 

37 -2.71 -2.41 -12.44  81 -0.29 -0.39 -25.64 

38 -2.49 -2.25 -10.66  82 -0.37 -0.31 -19.35 

39 -2.35 -2.68 -12.31  83 -0.30 -0.28 -7.14 

40 -2.47 -2.74 -9.85  84 -0.14 -0.10 -40.00 

41 -2.40 -2.83 -15.19  85 -0.19 -0.18 -5.55 

42 -2.49 -2.84 -12.32  86 -0.22 -0.18 -22.22 

43 -2.97 -2.97 0.00  87 -0.23 -0.22 -4.54 

44 -3.31 -2.93 -12.96      
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iii. The actual rail wear, the rail wear predicted using series-parallel NARXNN, and percentage error.  

 

    Sample No Actual rail wear 

(μm) 

Rail wear predicted 

using NARXNN (μm) 

Error % 

1 -0.03 -0.03 0.00 

2 -0.16 -0.15 -6.66 

3 -0.76 -0.76 0.00 

4 -1.75 -1.62 -8.02 

5 -1.99 -1.97 -1.01 

6 -2.03 -2.05 -0.97 

7 -0.52 -0.53 -1.88 

8 -0.46 -0.43 -6.97 

9 -1.67 -1.64 -1.82 

10 -1.23 -1.21 -1.65 

11 -0.84 -0.76 -10.52 

12 -0.27 -0.25 -8.00 

13 -0.23 -0.27 -14.81 

14 -0.27 -0.27 0.00 

15 -1.37 -1.53 -10.45 

16 -1.42 -1.70 -16.47 

17 -1.03 -1.07 -3.73 

18 -2.22 -2.50 -11.20 

19 -2.38 -2.23 -6.72 

20 -1.06 -1.29 -17.82 

21 -1.03 -1.02 -0.98 

22 -1.38 -1.07 -28.97 

23 -0.10 -0.10 0.00 

24 -0.14 -0.13 -7.69 

25 -0.09 -0.09 0.00 

26 -0.10 -0.12 -16.66 

27 -0.52 -0.49 -6.12 

28 -1.09 -0.97 -12.37 

29 -0.96 -0.91 -5.49 

30 -1.05 -0.97 -8.24 

31 -1.09 -1.20 -9.16 

32 -1.61 -1.43 -12.58 

33 -3.01 -3.00 -0.33 

34 -1.91 -1.73 -10.40 

35 -2.09 -1.7176 -21.68 

36 -0.91 -0.90 -1.11 

37 -0.89 -0.88 -1.13 

38 -0.55 -0.68 -19.11 

39 -0.28 -0.29 -3.44 
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iv. The actual rail wear, the rail wear predicted using parallel NARXNN, and percentage error. 

 Sample 

No 

Actual 

rail wear  

(μm) 

 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

rail wear  

(μm) 

 

Rail wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -2.54 -2.33 -9.01 

2 -0.03 -0.04 -25.00  46 -2.56 -2.32 -10.34 

3 -0.03 -0.04 -25.00  47 -2.55 -2.60 -1.92 

4 -0.12 -0.12 0.00  48 -1.54 -1.32 -16.66 

5 -0.21 -0.21 0.00  49 -2.47 -3.60 -31.38 

6 -0.10 -0.10 0.00  50 -2.30 -2.46 -6.50 

7 -0.26 -0.35 -25.71  51 -2.30 -2.37 -2.95 

8 -0.11 -0.12 -8.33  52 -2.50 -2.37 -5.48 

9 -0.13 -0.11 -18.18  53 -2.50 -2.58 -3.10 

10 -0.77 -0.76 -1.31  54 -2.59 -2.58 -0.38 

11 -0.66 -0.90 -26.66  55 -2.10 -2.21 -4.97 

12 -1.00 -1.06 -5.66  56 -2.33 -2.44 -4.50 

13 -0.92 -1.13 -18.58  57 -2.32 -3.50 -33.71 

14 -0.43 -0.33 -30.30  58 -2.68 -2.31 -16.01 

15 -0.66 -0.76 -13.15  59 -3.58 -3.41 -4.98 

16 -1.33 -1.35 -1.48  60 -3.73 -4.42 -15.61 

17 -0.73 -0.75 -2.66  61 -4.36 -4.24 -2.83 

18 -0.97 -0.91 -6.59  62 -4.44 -4.30 -3.25 

19 -0.69 -0.51 -35.29  63 -3.75 -5.70 -34.21 

20 -0.25 -0.24 -4.16  64 -4.69 -4.06 -15.51 

21 -0.62 -0.46 -34.78  65 -3.27 -3.54 -7.62 

22 -1.66 -1.51 -9.93  66 -2.27 -3.91 -41.94 

23 -1.09 -0.92 -18.47  67 -0.87 -0.87 0.00 

24 -0.60 -0.95 -36.84  68 -1.21 -1.99 -39.19 

25 -1.11 -1.00 -11.00  69 -0.74 -1.07 -30.84 

26 -1.18 -1.20 -1.66  70 -0.48 -0.46 -4.34 

27 -1.01 -1.17 -13.67  71 -1.13 -0.98 -15.30 

28 -0.73 -0.62 -17.74  72 -1.16 -0.88 -31.81 

29 -0.61 -0.57 -7.01  73 -0.72 -0.72 0.00 

30 -0.61 -0.53 -15.09  74 -0.95 -0.86 -10.46 

31 -0.63 -0.55 -14.54  75 -1.33 -1.13 -17.69 

32 -0.72 -0.63 -14.28  76 -0.86 -0.49 -75.51 

33 -0.75 -0.56 -33.92  77 -1.73 -1.41 -22.69 

34 -1.88 -1.64 -14.63  78 -2.18 -2.06 -5.82 

35 -2.03 -2.74 -25.91  79 -2.24 -2.21 -1.35 

36 -1.90 -1.87 -1.60  80 -1.79 -1.47 -21.76 

37 -2.02 -2.83 -28.62  81 -0.96 -0.59 -62.71 

38 -2.20 -1.84 -19.56  82 -0.87 -0.61 -42.62 

39 -2.12 -2.27 -6.60  83 -0.83 -0.65 -27.69 

40 -2.11 -2.00 -5.50  84 -0.92 -0.73 -26.02 

41 -2.14 -2.8 -23.57  85 -0.94 -0.73 -28.76 

42 -2.26 -2.12 -6.60  86 -0.62 -0.64 -3.12 

43 -2.50 -2.91 -14.08  87 -0.55 -0.55 0.00 

44 -2.70 -2.32 -16.37      
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4. Wheel/rail wear prediction using NARXNN under sanded conditions  

 

i. The actual wheel wear, the wheel wear predicted using series-parallel NARXNN, and percentage error.    

 

       Sample No Actual wheel wear 

(μm) 

Wheel wear predicted 

using NARXNN (μm) 

Error % 

1 -0.19 -0.19 0.00 

2 -0.07 -0.07 0.00 

3 -2.80 -2.72 -2.94 

4 -2.96 -2.72 -8.82 

5 -3.42 -3.65 -6.30 

6 -6.84 -7.46 -8.31 

7 -5.93 -5.99 -1.00 

8 -6.40 -6.30 -1.58 

9 -4.96 -4.82 -2.90 

10 -4.45 -4.69 -5.11 

11 -0.17 -0.17 0.00 

12 -0.13 -0.13 0.00 

13 -0.01 -0.01 0.00 

14 -0.14 -0.14 0.00 

15 -0.07 -0.07 0.00 

16 -2.76 -2.50 -10.40 

17 -1.57 -1.45 -8.27 

18 -4.13 -3.20 -29.06 

19 -7.31 -8.00 -8.62 

20 -6.42 -7.13 -9.95 

21 -4.63 -5.45 -15.04 

22 -4.11 -4.84 -15.08 

23 -4.17 -4.49 -7.12 

24 -5.57 -5.52 -0.90 

25 -5.38 -5.33 -0.93 

26 -3.88 -3.79 -2.37 

27 -2.23 -3.07 -27.36 

28 -0.59 -0.57 -3.50 

29 -1.14 -1.14 0.00 

30 -0.74 -0.70 -5.71 

31 -1.03 -1.02 -0.98 

32 -6.82 -6.71 -1.63 

33 -6.88 -8.44 -18.48 

34 -6.16 -7.17 -14.08 

35 -6.30 -7.18 -12.25 

36 -3.32 -2.93 -13.31 

37 -1.17 -1.14 -2.63 

38 -1.03 -1.02 -0.98 

39 -0.26 -0.23 -13.04 

 

 

 



171 

  

 

 

 

 

 

ii. The actual wheel wear, the wheel wear predicted using parallel NARXNN, and percentage error. 

  

Sample 

No 

Actual 

wheel wear  

(μm) 

 

 

Wheel 

wear 

predicted 

using 

NARXNN 

(μm) 

Error %  Sample 

No 

Actual 

wheel 

wear  

(μm) 

 

Wheel 

wear 

predicted 

using 

NARXNN 

(μm) 

Error % 

1 -0.01 -0.01 0.00  45 -10.03 -9.98 -0.50 

2 -0.15 -0.25 -40.00  46 -10.93 -9.33 -17.14 

3 -0.18 -0.15 -20.00  47 -11.46 -10.29 -11.37 

4 -0.70 -0.95 -26.31  48 -14.79 -13.32 -11.03 

5 -1.05 -1.19 -11.76  49 -15.30 -13.05 -17.24 

6 -2.41 -2.35 -2.55  50 -11.99 -10.29 -16.52 

7 -3.12 -2.86 -9.09  51 -11.88 -10.54 -12.71 

8 -3.00 -2.44 -22.95  52 -12.95 -11.64 -11.25 

9 -4.06 -3.98 -2.01  53 -12.04 -12.15 -0.90 

10 -4.15 -2.44 -70.08  54 -12.12 -13.57 -10.68 

11 -4.07 -3.36 -21.13  55 -12.14 -12.66 -4.10 

12 -4.03 -3.89 -3.59  56 -12.15 -10.96 -10.85 

13 -4.46 -3.27 -36.39  57 -11.19 -10.63 -5.26 

14 -6.85 -5.99 -14.35  58 -10.21 -9.81 -4.07 

15 -7.84 -6.31 -24.24  59 -10.17 -9.39 -8.30 

16 -6.03 -5.95 -1.34  60 -9.28 -8.48 -9.43 

17 -6.43 -4.42 -45.47  61 -10.37 -9.65 -7.46 

18 -7.06 -6.62 -6.64  62 -8.34 -7.53 -10.75 

19 -9.21 -8.31 -10.83  63 -7.98 -6.41 -24.49 

20 -6.57 -5.91 -11.16  64 -8.71 -7.33 -18.82 

21 -7.39 -6.68 -10.62  65 -6.73 -5.28 -27.46 

22 -4.78 -5.59 -14.49  66 -5.12 -5.35 -4.29 

23 -5.34 -4.45 -20.00  67 -5.36 -4.67 -14.77 

24 -4.03 -4.49 -10.24  68 -6.19 -5.99 -3.33 

25 -2.76 -2.98 -7.38  69 -4.92 -5.84 -15.75 

26 -6.38 -5.07 -25.83  70 -3.45 -5.44 -36.58 

27 -6.76 -5.90 -14.57  71 -4.50 -5.28 -14.77 

28 -7.09 -7.04 -0.71  72 -3.73 -5.28 -29.35 

29 -6.96 -5.27 -32.06  73 -2.81 -4.73 -40.59 

30 -6.93 -5.04 -37.50  74 -1.72 -2.15 -20.00 

31 -6.89 -5.63 -22.38  75 -2.15 -3.54 -39.26 

32 -6.81 -5.39 -26.34  76 -5.16 -5.95 -13.27 

33 -6.81 -4.67 -45.82  77 -3.19 -2.73 -16.84 

34 -7.00 -7.49 -6.54  78 -4.24 -5.68 -25.35 

35 -7.26 -7.42 -2.15  79 -2.17 -2.57 -15.56 

36 -7.44 -6.45 -15.34  80 -1.03 -1.42 -27.46 

37 -7.35 -6.02 -22.09  81 -1.03 -1.59 -35.22 

38 -7.28 -6.94 -4.89  82 -1.03 -1.25 -17.60 

39 -7.28 -6.63 -9.80  83 -1.02 -1.55 -34.19 

40 -5.39 -7.01 -23.10  84 -0.74 -0.47 -57.44 

41 -5.29 -5.93 -10.79  85 -0.18 -0.14 -28.57 

42 -5.21 -5.01 -3.99  86 -0.02 -0.02 0.00 

43 -6.26 -5.46 -14.65  87 -0.13 -0.15 -13.33 

44 -7.79 -6.66 -16.96      
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iii. The actual rail wear, the rail wear predicted using series-parallel NARXNN, and percentage error. 

 

    Sample No Actual rail wear 

(μm) 

Rail wear predicted 

using NARXNN (μm) 

Error % 

1 -0.06 -0.06 0.00 

2 -0.23 -0.21 -9.52 

3 -1.26 -1.44 -12.50 

4 -1.26 -1.01 -24.75 

5 -0.62 -0.63 -1.58 

6 -4.28 -4.51 -5.09 

7 -0.36 -0.36 0.00 

8 -1.86 -1.88 -1.06 

9 -1.43 -1.21 -18.18 

10 -1.04 -1.04 0.00 

11 -0.21 -0.28 -25.00 

12 -0.36 -0.36 0.00 

13 -0.04 -0.04 0.00 

14 -0.21 -0.20 -5.00 

15 -0.29 -0.29 0.00 

16 -1.31 -1.37 -4.37 

17 -0.29 -0.28 -3.57 

18 -4.55 -4.55 0.00 

19 -3.36 -3.89 -13.62 

20 -3.05 -3.45 -11.59 

21 -5.72 -4.57 -25.16 

22 -9.82 -8.29 -18.45 

23 -7.51 -9.39 -20.02 

24 -4.95 -4.59 -7.84 

25 -3.12 -2.90 -7.58 

26 -1.09 -1.06 -2.83 

27 -1.42 -1.52 -6.57 

28 -1.13 -0.99 -14.14 

29 -0.56 -0.56 0.00 

30 -0.45 -0.34 -32.35 

31 -0.33 -0.33 0.00 

32 -2.47 -2.24 -10.26 

33 -9.75 -8.65 -12.71 

34 -8.26 -8.32 -0.72 

35 -11.00 -10.65 -3.28 

36 -1.61 -1.20 -34.16 

37 -0.22 -0.22 0.00 

38 -0.74 -0.58 -27.58 

39 -0.09 -0.08 -12.50 
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iv. The actual rail wear, the rail wear predicted using parallel NARXNN, and percentage error. 

 Sample 

No 

Actual 

rail wear  

(μm) 

 

 

Rail wear 

predicted 

using 

NARXN

N 

(μm) 

Error %  Sample 

No 

Actual 

rail wear  

(μm) 

 

Rail wear 

predicted 

using 

NARXN

N (μm) 

Error % 

1 -0.01 -0.01 0.00  45 -6.93 -6.44 -7.60 

2 -0.03 -0.03 0.00  46 -7.19 -6.56 -9.60 

3 -0.32 -0.31 -3.22  47 -6.85 -7.32 -6.42 

4 -0.78 -0.69 -13.04  48 -7.51 -6.80 -10.44 

5 -0.71 -0.65 -9.23  49 -7.07 -5.45 -29.72 

6 -0.76 -0.68 -11.76  50 -7.79 -7.32 -6.42 

7 -0.51 -0.48 -6.25  51 -8.96 -5.98 -49.83 

8 -0.38 -0.32 -18.75  52 -8.64 -6.47 -33.53 

9 -0.30 -0.47 -36.17  53 -7.91 -7.82 -1.15 

10 -0.26 -0.37 -29.72  54 -7.74 -7.32 -5.73 

11 -0.34 -0.35 -2.85  55 -7.37 -6.44 -14.44 

12 -0.15 -0.28 -46.42  56 -8.40 -9.19 -8.59 

13 -1.13 -1.70 -33.52  57 -8.63 -7.32 -17.89 

14 -2.22 -2.67 -16.85  58 -8.91 -9.16 -2.72 

15 -2.15 -2.08 -3.36  59 -7.19 -6.44 -11.64 

16 -3.20 -2.61 -22.60  60 -10.13 -9.57 -5.85 

17 -2.23 -3.85 -42.07  61 -8.97 -9.16 -2.07 

18 -4.24 -5.70 -25.61  62 -10.69 -10.47 -2.10 

19 -4.37 -5.04 -13.29  63 -12.44 -11.60 -7.24 

20 -5.35 -6.58 -18.69  64 -12.41 -11.57 -7.26 

21 -5.34 -6.58 -18.84  65 -10.61 -9.68 -9.60 

22 -5.44 -6.58 -17.32  66 -11.31 -9.72 -16.35 

23 -8.47 -7.55 -12.18  67 -11.62 -9.68 -20.04 

24 -7.57 -6.21 -21.90  68 -12.88 -10.21 -26.15 

25 -11.14 -10.22 -9.00  69 -14.24 -13.57 -4.93 

26 -8.25 -7.85 -5.09  70 -14.50 -12.55 -15.53 

27 -7.87 -6.98 -12.75  71 -13.73 -12.55 -9.40 

28 -7.85 -7.56 -3.83  72 -11.81 -10.70 -10.37 

29 -6.15 -4.39 -40.09  73 -9.72 -7.70 -26.23 

30 -4.00 -3.85 -3.89  74 -7.15 -6.70 -6.71 

31 -5.08 -4.67 -8.77  75 -5.16 -6.55 -21.22 

32 -5.49 -5.72 -4.02  76 -3.19 -3.85 -17.14 

33 -7.15 -6.23 -14.76  77 -4.24 -6.04 -29.80 

34 -5.14 -6.33 -18.79  78 -3.17 -4.73 -32.98 

35 -5.70 -7.32 -22.13  79 -2.07 -2.70 -23.33 

36 -6.66 -5.45 -22.20  80 -0.46 -0.57 -19.29 

37 -6.71 -7.57 -11.36  81 -1.06 -1.70 -37.64 

38 -6.04 -7.32 -17.48  82 -1.02 -1.32 -22.72 

39 -8.62 -7.57 -13.87  83 -0.56 -0.66 -15.15 

40 -8.57 -6.30 -36.03  84 -0.43 -0.42 -2.38 

41 -8.83 -7.21 -22.46  85 -0.31 -0.23 -34.78 

42 -7.42 -6.45 -15.03  86 -0.33 -0.32 -3.12 

43 -8.05 -7.21 -11.65  87 -0.14 -0.13 -7.69 

44 -6.43 -5.45 -17.98      
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Appendix 7 Passenger vehicle model using VAMPIRE software  
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Appendix 8 Estimate wheel wear using energy dissipated and contact position  

% This program to calculate the wheel wear after differnt running distances (50000km, 

100000km, 150000km, and 200000km). 

Position = [upload the data of position]; % the data is the position of contact point which 

are calculated using vampire. 

TG = [upload the data of TG (TGamma)]; % the data is the TGamma on the wheel which are 

calculated using vampire. 

% For distance of 50000km. 

WI = 0.005 * TG * 10^-4; % WI is the wear index 

Data = [position, WI] 

sortrows(Data,1); % to rearrange the data of contact position from minus to plus; Where the 

first column of data is contact position and the second column is the wear index(w) 

............................................................................................ 

w= [upload the data of wear index, wear index is the second column resulting from 

“sortrows(data,1), “just upload the first 990 values”] 

............................................................................................ 

% This program to calculate the wear on the wheel tread (w1 to w18) 

n1=1 

n2=((length(w)/18)) 

 for i = n1 : n2 : 990 

      a(i)=sum(w(n1:n2)); 

      n1=n2+1 

n2=n2+((length(w)/18)) 

if n1 > length(w) 

    break 

end 

 end 

a(a==0) = []; % to delete zero components in vector a. 

ee=a'; % ee is the wheel tread wear 

............................................................................................. 

 

% To calculate the wear after 50000km 

b = ee(end:-1:1) 

Wi = b * 10000 % to get the w1 to w18 wheel wear tread after 50000km. 

.............................................................................................

........................................ 

%Note: To obtain the worn wheel profile, subtract the w1 to w18 from the wheel profile values 

which are lies from -777 to -722. 

............................................................................................. 

% After calculate the wear after running distance of 50000km, and worn profile obtained. 

% Upload the worn wheel profile to vampire, and run program, and calculate the wear after 

running distance of 100000km. 

............................................................................................. 

 % Repeat the previous steps to calculate the wear after running distance of 150000km and 

200000km. 

............................................................................................. 
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Appendix 9 Wheel wear predicted using VAMPIRE and neural network  

 

1. Change of speed  

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.   

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.49 0.53 7.54 

2 0.54 0.59 8.47 

3 0.55 0.54 1.85 

4 1.07 1.12 4.46 

5 1.05 1.07 1.86 

6 1.02 1.10 7.27 

7 1.48 1.54 3.89 

8 1.64 1.62 1.23 

9 0.56 0.60 6.66 

10 2.11 2.16 2.31 

11 2.19 2.18 0.45 

12 2.23 2.11 5.68 

13 0.58 0.57 1.75 

14 0.68 0.66 3.03 

15 1.14 1.12 1.78 

16 1.19 1.25 4.80 

17 1.30 1.29 0.77 

18 1.15 1.19 3.36 

19 1.67 1.77 5.64 

20 1.75 1.81 3.31 

21 2.05 1.97 4.06 

22 0.41 0.40 2.50 

23 2.34 2.33 0.42 

24 0.44 0.43 2.32 

25 0.58 0.56 3.57 

26 0.56 0.54 3.70 

27 0.70 0.67 4.47 

28 1.26 1.62 22.22 

29 2.19 2.21 0.90 

30 0.93 0.85 9.41 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error.  

 

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.49 0.59 16.94 

2 1.27 1.26 0.79 

3 2.02 2.16 6.48 

4 2.55 2.40 6.25 

5 2.83 2.82 0.35 

6 2.82 2.38 18.48 

7 2.74 2.69 1.85 

8 2.65 2.51 5.57 

9 2.67 2.52 5.95 

10 2.87 2.63 9.12 

11 2.66 2.45 8.57 

12 2.69 2.48 8.46 

13 3.18 2.85 11.57 

14 3.16 3.15 0.31 

15 2.69 2.54 5.90 

16 2.34 2.17 7.83 

17 1.37 1.38 0.72 

18 0.76 0.67 13.43 
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2. Change of longitudinal bush stiffness  

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.    

 

Sample Number Wheel wear predicted using 

VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.53 0.52 1.92 

2 0.36 0.38 5.26 

3 1.04 1.13 7.96 

4 1.79 1.70 5.29 

5 1.73 1.69 2.36 

6 0.33 0.36 8.33 

7 0.41 0.40 2.50 

8 2.23 2.29 2.62 

9 1.44 1.34 7.46 

10 0.56 0.59 5.08 

11 0.58 0.62 6.45 

12 0.29 0.28 3.57 

13 0.43 0.46 6.52 

14 1.77 1.66 6.62 

15 1.90 1.93 1.55 

16 2.43 2.32 4.74 

17 2.26 2.23 1.34 

18 1.41 1.43 1.39 

19 0.53 0.54 1.85 

20 0.54 0.53 1.88 

21 0.54 0.61 11.47 

22 0.63 0.67 5.97 

23 1.07 1.13 5.30 

24 1.17 1.24 5.64 

25 1.18 1.22 3.27 

26 1.36 1.31 3.81 

27 1.63 1.62 0.61 

28 1.75 1.73 1.15 

29 2.00 1.94 3.09 

30 2.36 2.38 0.84 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error.   

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.66 0.60 10.00 

2 1.37 1.20 14.16 

3 2.01 1.74 15.51 

4 2.54 2.24 13.39 

5 2.37 1.99 19.09 

6 2.42 2.27 6.60 

7 2.31 2.29 0.87 

8 2.36 2.29 3.05 

9 2.40 2.30 4.34 

10 2.15 2.02 6.43 

11 2.61 2.66 1.87 

12 2.67 2.46 8.53 

13 2.67 2.59 3.08 

14 2.57 2.37 8.43 

15 2.53 2.42 4.54 

16 2.21 2.34 5.55 

17 1.55 1.63 4.90 

18 0.53 0.51 3.92 
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3. Change of lateral bush stiffness  

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.   

 

   Sample Number Wheel wear predicted 

using VAMPIRE (mm) 

Wheel wear predicted using 

NARXNN (mm) 

Error % 

1 0.47 0.45 4.44 

2 0.99 1.04 4.80 

3 0.95 1.08 12.03 

4 1.43 1.64 12.80 

5 1.69 1.76 3.97 

6 0.47 0.46 2.17 

7 0.56 0.51 9.80 

8 0.60 0.56 7.14 

9 0.65 0.64 1.56 

10 0.55 0.58 5.17 

11 0.68 0.64 6.25 

12 0.41 0.40 2.50 

13 0.20 0.17 17.64 

14 1.17 1.15 1.73 

15 1.15 1.13 1.76 

16 1.68 1.56 7.69 

17 2.61 2.36 10.59 

18 2.74 2.60 5.38 

19 0.44 0.43 2.32 

20 0.17 0.16 6.25 

21 0.67 0.66 1.51 

22 0.73 0.69 5.79 

23 0.71 0.75 5.33 

24 1.34 1.22 9.83 

25 1.26 1.28 1.56 

26 1.46 1.41 3.54 

27 2.31 2.26 2.21 

28 2.62 2.69 2.60 

29 2.52 2.45 2.85 

30 2.54 2.70 5.92 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error.   

 

Sample Number Wheel wear predicted 

using VAMPIRE (mm) 

Wheel wear predicted using 

NARXNN  (mm) 

Error % 

1 0.45 0.42 7.14 

2 1.28 1.16 10.34 

3 2.08 2.11 1.42 

4 2.43 2.34 3.84 

5 2.82 2.54 11.02 

6 2.56 2.41 6.22 

7 2.30 1.92 19.79 

8 2.62 2.53 3.55 

9 2.44 2.37 2.95 

10 2.27 2.00 13.50 

11 2.32 2.62 11.45 

12 2.52 2.66 5.26 

13 2.68 2.55 5.09 

14 2.59 2.71 4.42 

15 2.86 2.82 1.41 

16 2.31 2.52 8.33 

17 1.57 1.98 20.70 

18 0.48 0.42 14.28 
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4. Change of vertical bush stiffness  

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.  

 

 Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.63 0.59 6.77 

2 0.56 0.54 3.70 

3 0.57 0.56 1.78 

4 1.06 1.13 6.19 

5 1.19 1.16 2.58 

6 1.27 1.28 0.78 

7 1.88 1.90 1.05 

8 1.69 1.72 1.74 

9 0.56 0.55 1.81 

10 2.25 2.37 5.06 

11 2.30 2.27 1.32 

12 0.58 0.52 11.53 

13 0.63 0.59 6.77 

14 1.17 1.10 6.36 

15 1.16 1.15 0.86 

16 1.29 1.16 11.20 

17 1.18 1.27 7.08 

18 1.70 1.67 1.79 

19 1.76 1.69 4.14 

20 1.90 1.76 7.95 

21 0.58 0.50 16.00 

22 2.35 2.39 1.67 

23 0.50 0.55 9.09 

24 0.53 0.45 17.77 

25 0.57 0.73 21.91 

26 0.57 0.62 8.06 

27 1.22 1.29 5.42 

28 1.94 1.93 0.51 

29 0.97 0.94 3.19 

30 2.35 2.37 0.84 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error. 

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.50 0.58 13.79 

2 1.39 1.28 8.59 

3 2.10 1.95 7.69 

4 2.42 2.18 11.00 

5 2.25 2.12 6.13 

6 2.38 2.02 17.82 

7 2.41 2.29 5.24 

8 2.24 2.06 8.73 

9 2.44 1.99 22.61 

10 2.57 2.34 9.82 

11 2.61 2.50 4.40 

12 2.67 2.33 14.59 

13 2.62 2.43 7.81 

14 2.57 2.38 7.98 

15 2.26 2.02 11.88 

16 2.15 2.03 5.91 

17 1.46 1.33 9.77 

18 0.48 0.45 6.66 
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5. Change of longitudinal shear stiffness  

 

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.  

 

    Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.53 0.61 13.11 

2 0.36 0.38 5.26 

3 1.04 1.07 2.80 

4 1.79 1.75 2.28 

5 1.74 1.67 4.19 

6 0.36 0.30 20.00 

7 0.41 0.47 12.76 

8 2.22 2.27 2.20 

9 1.44 1.49 3.35 

10 0.56 0.58 3.44 

11 0.54 0.56 3.57 

12 0.20 0.21 4.76 

13 0.31 0.32 3.12 

14 1.74 1.66 4.81 

15 2.00 2.05 2.43 

16 2.37 2.29 3.49 

17 2.24 2.29 2.18 

18 1.44 1.50 4.00 

19 0.59 0.68 13.23 

20 0.58 0.59 1.69 

21 0.57 0.56 1.78 

22 0.68 0.61 11.47 

23 1.18 1.12 5.35 

24 1.14 1.23 7.31 

25 1.20 1.21 0.82 

26 1.10 1.16 5.17 

27 1.73 1.71 1.16 

28 1.54 1.64 6.09 

29 2.08 2.07 0.48 

30 2.40 2.35 2.12 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error.  

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.43 0.73 41.33 

2 1.49 1.47 0.93 

3 2.16 2.08 3.35 

4 2.46 2.22 10.46 

5 2.28 2.23 2.05 

6 2.41 2.46 2.05 

7 2.37 2.36 0.20 

8 2.24 2.45 8.80 

9 2.41 2.37 1.63 

10 2.29 2.54 10.12 

11 2.59 2.78 7.09 

12 2.32 2.57 9.94 

13 2.21 1.93 14.38 

14 2.13 1.88 13.01 

15 2.83 3.28 13.78 

16 2.61 2.54 2.36 

17 1.46 1.67 12.77 

18 0.66 0.68 3.71 
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6. Change of lateral shear stiffness  

 

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.    

 

  Sample Number Wheel wear predicted 

using VAMPIRE (mm) 

Wheel wear predicted using 

NARXNN  (mm) 

Error % 

1 0.57 0.56 1.78 

2 
0.31 0.34 

8.82 

3 1.00 1.11 9.90 

4 1.63 1.62 0.61 

5 1.66 1.64 1.21 

6 0.31 0.33 6.06 

7 0.66 0.62 6.45 

8 2.39 2.38 0.42 

9 1.25 1.21 3.30 

10 0.55 0.62 11.29 

11 0.56 0.60 6.66 

12 0.36 0.30 20.00 

13 0.54 0.55 1.81 

14 1.64 1.61 1.86 

15 1.98 2.03 2.46 

16 2.46 2.54 3.14 

17 2.21 2.23 0.89 

18 1.45 1.42 2.11 

19 0.59 0.64 7.81 

20 0.56 0.60 6.66 

21 0.62 0.59 5.08 

22 0.76 0.73 4.10 

23 1.18 1.14 3.50 

24 1.30 1.27 2.36 

25 1.14 1.18 3.38 

26 1.32 1.31 0.76 

27 1.87 1.85 1.08 

28 1.55 1.42 9.15 

29 2.13 2.07 2.89 

30 2.29 2.33 1.71 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error. 

  

Sample Number Wheel wear predicted 

using VAMPIRE (mm) 

Wheel wear predicted using 

NARXNN (mm) 

Error % 

1 0.70 0.72 2.77 

2 1.49 1.42 4.92 

3 2.29 2.10 9.04 

4 2.32 2.41 3.73 

5 2.68 2.90 7.58 

6 2.62 2.83 7.42 

7 2.39 2.63 9.12 

8 2.39 2.11 13.27 

9 2.48 2.15 15.34 

10 2.47 2.11 17.06 

11 2.42 2.04 18.62 

12 2.47 2.19 12.78 

13 2.52 2.34 7.69 

14 2.53 2.41 4.97 

15 2.90 2.84 2.11 

16 2.27 2.17 4.60 

17 1.55 1.48 4.72 

18 0.79 0.82 3.65 
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7. Change of vertical shear stiffness  

 

The wheel wear predicted using VAMPIRE and series-parallel NARXNN, and percentage error.  

 

 

     Sample Number Wheel wear predicted 

using VAMPIRE  

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.53 0.54 1.85 

2 0.34 0.35 2.85 

3 1.06 1.09 2.75 

4 1.81 1.83 1.09 

5 1.65 1.63 1.22 

6 0.41 0.40 2.50 

7 0.50 0.47 6.38 

8 2.25 2.27 0.88 

9 1.36 1.37 0.72 

10 0.54 0.61 11.47 

11 0.59 0.56 5.35 

12 0.23 0.28 17.85 

13 0.35 0.33 6.06 

14 1.73 1.71 1.16 

15 1.86 1.88 1.06 

16 2.39 2.28 4.82 

17 2.16 2.17 0.46 

18 1.55 1.57 1.27 

19 0.60 0.58 3.44 

20 0.57 0.59 3.38 

21 0.59 0.60 1.66 

22 0.63 0.59 6.77 

23 1.21 1.20 0.83 

24 1.17 1.18 0.84 

25 1.22 1.25 2.40 

26 1.15 1.17 1.70 

27 1.77 1.75 1.14 

28 1.64 1.66 1.20 

29 2.15 1.88 14.36 

30 2.44 2.45 0.40 
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The wheel wear predicted using VAMPIRE and parallel NARXNN, and percentage error.  

 

Sample Number Wheel wear predicted 

using VAMPIRE 

(mm) 

Wheel wear predicted using 

NARXNN 

 (mm) 

Error % 

1 0.73 0.60 21.66 

2 1.56 1.42 9.85 

3 2.21 2.33 5.15 

4 2.40 2.55 5.88 

5 2.36 2.42 2.47 

6 2.35 2.32 1.29 

7 2.32 2.23 4.03 

8 2.29 2.17 5.53 

9 2.54 2.43 4.52 

10 2.31 2.19 5.47 

11 2.48 2.35 5.53 

12 2.34 2.24 4.46 

13 2.26 2.23 1.34 

14 2.25 2.26 0.44 

15 2.63 2.57 2.33 

16 2.28 2.22 2.70 

17 1.55 1.52 1.97 

18 0.77 0.94 18.08 
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Appendix 10 BPNN for wheel wear prediction  
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Appendix 11 RBFNN for wheel wear prediction  
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Appendix 12 Performance plot, and regression plot respectively (NARXNN) 
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Appendix 13 Performance plot, and regression plot respectively (BPNN) 

 
 

 

 

 


