University of Huddersfield Repository

leung, Isaac Pak Hung and Fleming, Leigh

In-vitro replication, measurement and characterisation of fretting wear for development of total hip replacement prostheses

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/31945/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Aim
The study aims to replicate and measure the common wearing mechanism on prosthetic femoral stems, fretting wear. The particles from fretting wear transferred to articulating surfaces and jeopardise the lifespan and stability of total hip arthroplasty (THA).

Objectives
- To determine the loading force in POP
- To conduct a pin-on-plate experiment (POP)
- To determine the changes in surface conditions of the plates

Background
- Total hip arthroplasty (THA) is usually the last and only resort for completely curing and improving patients' quality of life who suffer from osteoarthritis, rheumatoid arthritis and etc.
- Various ways to perform a THA including different types of prostheses including modular/mono blocks joint and matte/highly polished surface (Figure 1). Hence, different wear phenomena occur.

Methodology and Experimental Details
- Designs of the Pins and Plates
 - Relative movement between plates and pins is 60 μm [5]
 - Equivalent force of 0.201 BW is applied on each pin
 - Movement frequency is 3Hz [5]
 - 3 Millions cycles are conducted
 - Pins and plates are immersed in Rings’ Solution

<table>
<thead>
<tr>
<th>3. Measurement and Results of Pins & Plates</th>
<th>Values</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq (μm)</td>
<td>0.0209</td>
<td>Sds (1/mm²)</td>
<td>44199</td>
</tr>
<tr>
<td>Ssk</td>
<td>-0.5357</td>
<td>Vmp(μm²/mm²)</td>
<td>782.649</td>
</tr>
<tr>
<td>Sku</td>
<td>311.240</td>
<td>Vmc(μm²/mm²)</td>
<td>18435.1</td>
</tr>
<tr>
<td>Sp (μm)</td>
<td>0.5843</td>
<td>Vvc(μm²/mm²)</td>
<td>23318.8</td>
</tr>
<tr>
<td>Sv (μm)</td>
<td>0.6563</td>
<td>VVv(μm²/mm²)</td>
<td>2473.2813</td>
</tr>
<tr>
<td>Sz (μm)</td>
<td>1.2406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3D surface characterisation parameters adopted in this study were with reference to the Green Book, the output from project “Surfstand” lead by Prof. L Blunt in “SurfStand” project in 2001.

Out of all the parameters, Skewness (Ssk) is the most important in one in the current study. This parameters shows the features dominating at the surfaces. Positive and negative values of Skewness represent peak and valleys dominant respectively.

5. Discussion & Conclusion

1. Fretting wear occurred on all plates
2. Deep fretting valleys were created during the POP supported by numerical data and visual evidences
3. Surface become more dominated by valleys or pits as demonstrated by a shift in skewness to negative values.
4. Areal surface characterisation techniques quantify and qualify the severity of fretting wear with high standard