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Abstract

The computational landscape is dominated by the use of a verynaigher of CPU
resources; this has however provided diminishing returns in recent years, pushing for a paradigm
shift in the choice for computational systems.

The following work was aimed at determining the maturity of heterogeneous computer
systems in ters of computational performance and their possible integration within-High
Performance Computing resources through the use of the OpenCL parallel programming
platform.

An introduction is given in the existing hardware architectures targeted by the OpenCL
platform, existing literature regarding the integration of heterogeneous systems for
computational applications, and the OpenCL platform as a development environment.

A number of applications are developed to benchmark the capabilities of the framework
in multi-architecture environments, the results of which show up to 160 times performance gain
when targeting GPU architectures, as opposed to CPU, for matrix multiplication algorithms.

Based on thisan extensive tesbench is degined targeting the HTCondogsource pool
for a FastFourier Transform applicatiorResultsfrom these machines once again showed a
significant performance increase against CPU systems, while also enabling the expansion of the
HTCondor system and the uncovering of 30 Teraflops of dormant computing power.

The FPGA architecture is also investigghtfor its potential in OpenCL computational
acceleration, with a focus on the platforms ease of use. It is determined that the framework is
mature enough for FPGA application development.



Investigation of Heterogeneous Computing 3

Acknowledgements

| would like to express my thanks far. Violeta Holmes, and the HigRerformance
Computing Research Group for theuisdom support, and friendship. Their input has been
invaluable to me during my time at the University of Huddersfiatdd without them this work

would have not been completed on time.



Investigation of Heterogeneous Computing 4

Table of Contents

(@ gF=T o] (=3 g I [ o1 o Yo [1 T £ o T 8
1.1 Heterogeneous COMPULING . .....uuuuuiiiiie e e e e ceeeiiees s e e e e e e e e eeeeeeesaneesseeeeeeeaaeeeseeeeannnnnnn 11
1.2 The OpenCL heterogeneous frameWOrk. .........cc.uuuviiiiimmmriiiiii e 12
1.3 ReconfigurBle COMPULING.........ouvviiiiiiii s s e e e e e e e e s eeeers e s s e e e e e e e e eeeeeaennnnne 13
1.4 MEENOUOIOGY. ...ttt 17
1.5 RESEAICN QUESHIONS .. . i iiiiiiiiiiieeietieemeeeet e e e e e e et te e e e e saeeneesee st s eesesssaneeessnaneeeeeenen 18
Chapter 2: LIterature REVIEW..........uuiiiiiiiiiii ettt mmme e eeeeanees 20
2.1 ManyCore ArChItECIUIMES...........uviieiiiiie e e s e e e e e e e e e ereere s e e e e e e e e e e e e e e e e eeeeeanens 20
2.2 Graphical ProCessing UNILS..........uuuiiiiiiiiiii et 21
2.3 FieldProgrammable Gate ArTaYS......cccceiieeeeeiiiiieieeeiee e eeeeee et mnne e e e e e e e eeeeanenes 22
2.4 EXIStING APPIGEIONS .....eiiiiiiiiiiiiii e 23
2.4.1 Radar Processing: FPGAS OF GPUS?.........uuuuiiiiiiiiieeeiiiiiiiiieie e 23
2.4.2 A Comparison Study on Implementing Optical Flow and Digital Communications on
FPGAS QN GPUS......uiiiiiii i ceeeie ettt mmme e e e e e e e e eeeeeeeassn s smmme e e e eeannnnnn 24
2.4.3 Performance Comparison of GPU, DSP and FPGA implementations of image
processing and computer vision algorithms in embedded systems................cceeeeee. 25
2.4.4 Accelerating HigtiPerformance Computing With FPGAS..........cccoeeiviiiiiceecinnnns 26
2.4.5 OpenCL: A Parallel Programming Standard for Heterogeneous Computing S3&tems
2.4.6A Comprehensive Performance Comparison of CUDA and OpenCiL.............. 29

P22 T O 0] o od 01 o] o PSP 29

Chapter 3: The OpenCL PlatfOorm.........oooioiiiiiii e 31

3.1 Programming MOBL...........oouummniiiii e eeeei e ————— e 32
3.1.1 ENVIFONMENT SETUP.....etteiiiiieiee e e e e e e eeeee s e e e e e e e e e e e e e e eeeerneeeeeeeeeeeeeeeesesnnnnnnnmmmeees 33
3.1.2 HOSE INILIAlIZALION. ...ttt ee e 34
3. 1.3 KNI SEIUR...cciiiiiieieee e 35
G I B =T ox 1 o R RSRRRPP 36
N R O =T o PSP PPPPPPPP 37

I ® ¢ Yo o] aTo I [an] o1 £0)V/=] 0 0 [=T o] =3 37
3.2.1 Shared Virtual MEMIOLY........ccoviiiiiiiiiiii et e e e e ememrs e e e e e e e eeaaaaees 37
3.2.2 Device Kernel ENQUEUER...........ciuiiiiei e 38
3.2.3 Standard Portable Intermediate Representation {8PIR............cccccoiiiviiieeene, 39

G TR 21 o] o (1] o S 40

Chapter 4: OpenCL MukArchitecture Application Development...........cccccccvvvviiieeenennn 41
4.1 OpenCL System DeteCtion........ccuuuiiiiiiiiiiiiie et e e e e e enen A2
4.2 APPIICAtION DESIGIL. ..ottt ieeeiiiib bt e e e e e e e s eseee e e e e e e e e e e e e e e e e e e e s e s snmmmeeeeeee A3

4. 2.1 HOSE COUB......oiiiiiiieee e 44

4



Investigation of Heterogeneous Computing 5

A =T 1 1] I 0T = SRR 49

4.3 Test BENCh ENVIFONMENT........oooiiiiiiiiieiiicee et e e e e e e e e e 51
4.3.1 System SPECIfICALIONS .........uuuuiiiiiii i e s ceeereisr e e e e e e e e e eeeer s e e e e e e e e e e eeeeeeeeaaanan 52

4.4 APPlICAtION EXEQCULION......cciiiiiiieiie e eeenanees 53
o YY1 (=] o PP 54
A.4.2 SYSTEIM L. e et e et e enen e e e e e 56
4.4.3 SYSIEIM HLL.ceeniii et ernnr e 58

A 4.4 SYSTEIM [V .. et et e et e e e e et e eeeenaaas 61

I @ [ 11153 o] o KPP 61
Chapter 5: OpenCL framework implementation over HTCondor..............cccccceivcmeeeeevnnnnns 63
5.1 Fast Fourier TranSfOorMIS........ooeieieiiiiiicce s errnra e e e e e e e e e e e eeannn s 67
5.2 BENCAMAIK EXECULION. ....ccciiiiiiiiiiie e et rmmne e nnn e 70
5.3 HTCondor Related SCrPLS.......cooiiiiiiiiiieiiicmme e eee e eeeeeeee ] D)
5.3.1 Condor Individual Unit EXECULION.........ccoeviiiiiiiiiiieeee e ] D
5.3.2 Individual Machine Benchmarking.........cccccceeeeeeiiiieeeiiiiiie e eeeeeeeevevvvveeneeeeeeea A ©
5.3.3 Data sorting and ProCeSSING.......ccuuuiiiiieieiiiieareieeeeeeeeeeeeseeeessmees e e s s e sesennnnnnd 1
Chapter 6: OpenCLIEGA ACCEIEIatiON...........uvvieiiiiii it veeer e e e e e e 79
6.1 Hardware DescCription LANQUAGE. ............oovvvvvuuriimmmeeeeee et e s emmmes e 80
6.2 Altera SDK fOr OPENCL. ...ttt eeei bbbt eeeeme e e e e e e e e e e e e e e e e e e e s s 81
6.2.1 Altera Offline COMPIIEE..........oooiiie e e 82
6.2.2 APPlICALION POMIG .. .eeeeiiieiiiiiiiiiee et eeenees 84

6.3 DEL SYStERADNCRID. ...t emerraaaa 85
GG TR I < L1 | o PP 86

6.4 Benchmark APPHCALION.........ooo i e e e e e e e e 90
TSI =T ox U 110 o PP PPPPPRR 92
LI @ 0] o od U1 o] o PSRRI 95
Chapter 7: Further RESEAICH...........iii it 96
Chapter 8: Summary and CONCIUSIONS..........ooiiiiiiieee e ee e 98
Chapter 9: REfEIEIBS. ........ooviiiiiee e eeeeer s e e e e e e e e e e e e e e e enneaeaeeaeeeens 101
Chapter 10: APPENALX .....cooiiiiiiii it eeee bbb eeees bbb e e e e e e et e e e e e e s emamreeeaeeeeeeas 105

I




Investigation of Heterogeneous Computing 6
List of Figures

Figure 1: CPU Frequency EVolution (GHZ)...........ccooiiiiiiiiieeee e 9
Figure 2: Intel CPU Architecture Size Evolution (Intel)..........ccoooeiiiiiiiceeiiiee 10
Figure 3: Host and Various Accelerators (CMSOft).......ccooviiiieiiiiiiieeeii e 12
Figure 4: FPGA Basic Outline (MazsS0la)...........coovviiiiiiiiimmmeeiieeeeeeiiiiii e 14
Figure 5: C to RTL Converter Using HLS (AIdEC)..........ccoeiiiiiiiiiieeee e 16
Figure 6: ManyCore Processor architecture (Embedded.cam)............cooovvvivicenneneeeeennn. 20
Figure 7: CPU GPU COre COUNL........ccceeeiiiiiieeeeieeeee e e e et e e 22
Figure 8: OpenCL Prognaiming FIOW............ouiiiiiiiiiiiiiieeee e 33
Figure 9: Excerpt of Device Detection Application...........cccoeeeeeiiiiieeeiiii e 42
Figure 10: Device Report for Development.PC.........ooooriiiiiiiiic e 43
Figure 11 Memory Buffer AlIOCAtION...............vuuiuiiiii e 44
Figure 12: Function for Matrix Element AlloCation..............ccoeeeeiiiieeeiiiii e 45
Figure 13: Identifying Available Platforms.............ooooiiiiiimme e 45
Figure 14: DeViCe CYCIE LOQP......uuuuiiiiii i eeeeciee ettt eees e e e e e e e e e e e e aee e mmm s 46
Figure 15: CPU/GPU DeCISION POIAL.........ccooiiiiiiiiiiiice et eee e 46
Figure 16: Command Queue INitialization..............ccooeiiiiieeeeiiiiiiicie e eeee e 47
Figure 17: Buding Program Executable..............ooo e 47
Figure 18: Allocating DeVICE MEMOIY........cccciiiiiiieiiiiiieeee e e e e et aa s 47
Figure 19: Kernel Argument PASSING........uuueiiiiiiiiiiiieeneee it rmmme e 48
Figure 20: CommMaNd ENQUELIE.............uuuuiiiii s ieeeeeeitiiee e s e e e e e e e e e e e emeesse s s e e e e aaeaaaeeeeeeeessrnnnas 48
Figure 21 Data Retrieval and Profiling............ooooiiiiiiinniiiieieeecceesiiiiieeeeeeeeeeee . A9
Figure 22: Memory CIEANNG...........ooviieiiiiiiimme ettt er e e e e e e e e e e e e s amaeaaas 49
Figure 23: OpenCL Kernel COUR.... ..o e 50
Figure 24: External Argument Code SNIPPEL........cciiiiiiii e eeeeeeee e 51
Figure 25:CPU MatriX MUItIPHCALION. ........ueiiiiiiiiiiiiiiee e 53
Figure 26: GPU Matrix MUltipliCation.............cooiiiiiiiiiiieeee e 54
Figure 27: Condensed Path of HTCONAOr ACCESS.......cciiiiiiiirriierneeee e eeennees 65
Figure 28: FFT Interlaced DeCOMPOSItION. ........ciiiiiiieeeiiiceeeiccee e eeeeeeeee e 68
Figure 29: FH Butterfly CalCulation.............cooooiiiiiiiiiic e 69
Figure 30: CPU BeNChMAIK .........ciiiiiiii e eeeeeee e 71
Figure 31: GPU FET PerfOrMaNCE ... ...uuuuiiiiiiiiiiiiieeetiiiiiieeeeeeeeeeae e e e e e s smmteeeeeeeaaaaaaaaaaaaaaaans 12
Figure 32: GPU Cluster COMPAIiSODL.........cceeeiiiiiiiiiieeei e e e ee e e e e e ee e immmr e e e e eeesraaa s 73
Figure 33: Shell S@t for EXECULION..........cooiiiiiiiiiiii e 76
Figure 34: Fragment of Windows Batch Flle..............cooiiiiiiiceeiiciiiieeccissceeeeeeeeeen U 1
Figure 35: Python Script for Data SOtING........ccccuuuiiiiiiiiiieeeiiiiiiieie e s eeere e e e e e 78
Figure 36: AOC FIOWCRALL...........coooiiii et aeeee e 83
Figure 37: Custom Memory REDI Targeting ..........uueeeeieiiiiiiiiieeeeeeeeeeee e 85
Figure 38: DE1 SoC Development Board...........cooouuiiiiiiieeeri e 86
Figure 39: MSEL Position for LINUX With CLL........ccoiiiiiiii e 87
Figure 40: Serial Connection Through PUTTY. .....coiiiiiiiii e veeee e 38
Figure 41:Contents of init_0pPencl.Sh SCIPL.........uuiiiiiiiiiiii e 38



Investigation of Heterogeneous Computing 7

Figure 42: FPGA Programming and Vector Addition DemO0............ceevvvviiiieemiiiiiiieeeeeenn. 89
Figure 43: Usage Estimation Report for bloCK.G4..............cooiiiiiiicecccce e, 91
Figure 44: Usage Estimation Report for block.1G............coooiiiiimmn e 91
Figure 45: Reference Computation Executed on the ARM CRU.............vvviiiiicreeevinnnnnns 92
Figure 46: SOC POWEr CONSUMPTIONL. .....vviiiiiiiiiiieeeeeeemre ettt e e e e e e e e e e e e e ammme e e e e e e e 94
List of Tables
Table 1: System SPeCifiCatiONS...........cooviviiiiiiiieee e e e e e e e e e anenas 52
Table 2: CPU EXECULION SYSEM.L......ooiiiiiiiiiiiiii e 54
Table 3: GPU EXECULION SYSIEMLL....uuuiiiiiii it eeer e e 55
Table 4: GPU EXECULION SYSIEMLIL ... i teee e e e e e e 57
Table 5: CPU EXecution SYSteMLIL........cooiiiiiiiiicme e e e 59
Table 6: GPU EXeCUtion SYSIEM IlL......ooviiiiiiiiii e 59
Table 7: GPU Speedp Against BaSeliNe.............ovvuiiiiiiiiieeees e eersr e 60
Table 8: CPU EXeCUtiON SYSEM IV......ooiiiiiiiiiieei e 61
Table 9: GPU LanNUSCAPE.......cuvuuiiiiiiiii e et ettt s e e e e e e e e e e e e e aeeess s s e e e e e e e e e eeeaeeeeasrsannneeaaeeeees 67
Table 10: FPGA EXECULIOMIME .. .uuuuiiiieie e e e eeeee e eeeieeees e e e e e e e e e e e eeeeeeeaeesmmme e e e e eeeeeeessnnnnn e 93



Investigation of Heterogeneous Computing 8

Chapter 1: Introduction

Generally, the world of computing has accessed two methods of manipulating and
interpreting information; firstly, hardoded designms the form of ASICs, where datzaths and
algorithms are fixed in hardware, resulting in high performance applications that cannot be
altered after creation, accomplishing only the task they were designed for. And secondly
progranmable systems, (meaningPUs, and more recentlsPUs), where algorithms are
implemented after production via the use of softwared#ta pathn a programmable system is
also fixed, however it implements primitive generics so that it may be used in multiple
algorithms, resultingn a higher degree of reusability at the cost of performgAdiera, 2007)

Fixed implementations like the ASIC are so complex in terms of design and manufacture
that the user base for such devices is limited to comp#raésan afford the time and resource
investment. Also with technology moving forward so fast, the overall production time of such a
device might end up being longer than the time it takes for new generations of hardware to be
created, making ASICs a venjche market. Because of this, the majority of applications use
programmable systems based on CPU architecture.

As requirements grow, programmable devices need to improve in order to keep up with
the computational demands of users. This is done, gen#radiygh threealifferent trends. The
first of these trends is the frequency scaling of said systems. However, higher frequencies require
higher voltage, making it more difficult to increase frequency without also increasing power
consumption. Thisissue SQRZQ DV WKH 3SRZHU ZDOO" DQG LW UHIHUV

frequency would require so much more power that it becomes impra¢sichaller, 1997)
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It can be observed iRigurel1 that CPU clock frequency has not seen any major improvements

since 2004, and had actually dropped when vendors decided to embraesoneudtichitectures.

4.5

4

35 1N\ /N
3A‘7¢é

2.5

—o— Intel

AMD

15

0.5

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 1. CPU Frequency Evolution (GHz)

A second trend involved reducing the size of transistors in programmable systems, thus
increasing the amount of components fitted on the same amount of space. This trend is governed
E\ ORRUHYV /DZ DQ REVH th¥ hvihbdr @f tvansidtevd iQ Jan WK dbubles
approximately every two years. The observation has stood the test of timd $nt;aowever
the development pace of this trend is also diminishing, with smaller sized transistors taking
increasingly more time to develop. Also, this trend is reaching its physical limits, with current

technologies offering 14nm chips. The expectedédsté RI ORRUHYfV /DZ LV VHW IRU
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Yeal 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
90 nm 45 nm 10 nm
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High-k Metal Gate

Tri-Gate

Figure 2: Intel CPU Architecture Size Evolutid¢intel)

Taken together, the above two are closely related in limiting CPU frequency, since
cooling capabilities are natcaling at a fast enough rate to allow for the maintaining of high
frequencies in more dense systems. This has led to a stagnation, and even decrease, in CPU
frequency during the last decade.

The third trend used to improve performance relied on thel@awent of more complex
hardware, capable of converting the sequential logic of programming into instrlestedn
parallelism. Also, because, in software programming, the memory latency of programs is not
considered, this task falls on hardware once agaeaning that larger chunks of hardware must
be dedicated to managing memory, and extracting parallelism from the code. Over time, the
improvements to hardware in programmable systems have seen diminishing (&chadler,

1997)

One attempt to avoid the issues described above was the emergence efdvkulti

processing which involves utilizing more compute units running at slower clock speeds and

parallelising the process as to exploit multiple nodes at the sameTinwéfer an example, the

10
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Intel Pentium 570J of 2004 offered a max clock speed of 3.8 GHz and a single core, and the
current generation Intel 18700k offers a max clock speed of 4.2 GHz with four cores.

Since the benefits of following the three aforemeargmtrends are diminishing, emphasis
is shifted towards creating parallelism at code level instead of relying on hardware to extract it at
instructiorrlevel. This means that the developer is tasked with defining parallelism and that the

hardware can focusore on the computation and less on interpreta®arland & al., 2008)

1.1 Heterogeneous Computing

Any system that uses more than one processor type to handle computational requirement
is referred to as a heterogeneous system. The addition of specialized coprocessor to accelerate
specific computational tasks as opposed to simply increasing the numpeycessors is the
3GHILQLWLRQ  RI KHW H(Wa&iddd, QasRvéetgkys & Raber\2005)

Heterogeneous systems have found their way into every corner of everyday life, with the
CPU-GPU combination being the mtosommon. These are today found in the mostaited
SVPDUW™ GHYLFHV VXFK DV SKRQHV WDEOHWYV RU ZDWFKHYV
designed with the intent to benefit computing, recent work by theJRlamic project has shown
that embeded and mobile devices can be used to power a fully functional supercomputer, with
the aim of creating a supercomputing environment that is more energy efijBiergz, Bosque,

Stafford, & Beivide, 2016)

11
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1.2 The OpenCL heterog@eous framework

OpenCL is a development framework that is platfencependent and emphasises
parallel computing. This framework is compatible with many platforms, with commercial
suppliers such as Intel, NVidia, and AMD all offering support for OpenCthein hardware.

OpenCL is a programming language derived from ISO C99 that adds API in order to
extract parallelism from an otherwise serial programming language. This allows OpenCL to
expand the number of applications that can run on an FPGA, and gpeaomto a variety of

programmers that had no way of using it bef¢&one, Gohara, & Shi, 2010)

HOST Code:

cs

C++

Visual Basic
Java

DEVICES ¢§

"

CPU Cores

Figure 3: Host and Various écelerators(CMSoft)

The standard use modelr OpenCL is split in two parts:

12
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The Host code; a sequential C code written with OpenCL API required to communicate
with the chosen platform. This code is compiled into an executable that gets ran on the host
CPU, and is responsible for controlling theiensystem, from start to finish.

The Kernels; each function ran on the platform is written as a kernel, using OpenCL
syntax. This then gets compiled using the SDK offered by the manufacturer of the platform,
generating a second executable. The kernetwable is used by the host to programme the

platform during rurtime.

1.3 Reconfigurable Computing

The term reconfigurable computing refers to the act of performing computations via the
use of spatially (field) programmable architectures such as FPG¥#smerges a multitude of
disciplines, including hardware design, digital signal processing, computer aided design, and
sequential and parallel computing. Over the past 25 years, a community dedicated to building
and programming these new systems has @aderand the foundation for large scale
reconfigurable computing is being laid.

The FPGA became an attractive solution in the computing world because dedicated
hardware was always much faster than its software counterpart. However due to the high design
cost and development time of ASIC solutions made it viable only for a select few. Moore's Law
also meant that in some cases a faster microprocessor was created beforedbéduasolution
meant to outperform it was implemented. FPGAs offered similar waaed specific
computational speeds without the development and manufacturing costs or leadoftimes

traditional ASIC solutiong(Tessier, Pocek, & DeHon, 2015)

13
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Figure 4: FPGA Basic Qtline (Mazsola)

While the FPGA, through its massive parallel computation capabilities, flexibility, and
low energy consumption, provides opportunities for computational acceleration, it also comes
with an exponential increase in development time. CPUs and GPUs arenpragtaising high
level languages, C and CUDA as an example, which lowers the development time. In contrast,
FPGA are programmed in HDL, which in software development terms, is similar to the
Assembler language, a lelvel language that makes developmentreantimeconsuming.

FPGA developers also need to take into account hardware design, RTL programming and timing
optimisations. This, in turn, requires domain experience for optimal design and implementation.

In order to alleviate some of the barriers thigvent FPGA based computing to take root
multiple tools have been developed to reduce development time by allowing users to write code
in high-level languages, such as C or Java, and having it converted into HDL.

It has been shown that FPGAs offer simdamputational power to GPUs in regards to
optical flow algorithms, however the development time of such applications is 12 times slower

on the FPGA than it is on a GPU. The difference in development time was attributed to the
14
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complexity of hardware desiy DQG VLPXODWLRQ ZKLFK XVH WKH SURFH\
followed by edit/synthesize/pla@ad URXWH H[HFXWH"™ DV RSSRVHG WR WKH
ZKLFK UHTXLUHVY RQO\ DQ *HGLW FRPSLOH H[HFXWH" SURFHYV
power consumption of the FPGA and its higher affinity to parallelism, it can be assumed that
FPGAs have the ability to perform better than GPUs, however thedfaisledevelopment time
make it a more situational solution. As such, the introduction of Operg®&l@pment could
bring down the development time of such applicati¢Bsdily, Nelson, Wei, Lee, & Chase, A
Comparison Study on Implementing Optical Flow and Digital Communications on FPGAs and
GPUs, 2010)

In recent years, iBtest has changed from using HDL to HLS, standing for Hmgtel
Synthesis, an approach to producing logic circuits that avoids using HDL when possible. This
means that HLS tools convert a software based design to a circuit made up of control logic and
dal path Parallelism in HLS is achieved through scheduling; multiple instructions are
performed during the same clock cycle. This, however, is not the best approach when using
FPGAs. These devices benefit a lot from their ability to manage pipelined dippkcdowever
current programming languages, like C, are unable to express pipelining and as such, the full
potential of the FPGA is not unlocked. Also, HLS is not traditionally used to create an entire
system, only small parts of it; this means thatribed for a competent HDL developer is not

bypassed.

15
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SystemC ANSI-C
Source Code Debugger
Behavioral Synthesizer
Property Checker Behavioral Simulator
4 Library Characterizer —p Cycle Level Simulator
C-RTL
Bivalonce Fraver QoR Analyzer Testbench Generator
Formal Verification High-Level Synthesis Simulation
RTL
ASIC FPGA

Figure5: C to RTL Converter king HLS(Aldec)

OpenCL addresses most of the issues posed by HLS by using a host connected to
multiple kernels. Edt kernel runs independently of the other and the host manages
communications. The host part of the system sets up the data to be processed and runs threads
RQ D NHUQHO 7KUHDGV DUH H[HFXWHG E\ 3«UHDGLQJ DUJXP
processQJ LW DQG VWRULQJ WKH UHVXOWY LQ JOREDO PHPRU\
through the host file, the designer is able to avoid going into hardware design, removing the need
for experience in that domain and allowing for faster developmegastim

A recent work by Altera Corporation showed that OpenCL based implementations
provided comparable if not better results than the Hbded alternatives, with much lower
development times. This suggests that OpenCL could allow for the developmert-gtihldgy

computational solutions based on FPGAs much faster than traditional méfitets, 2011)

16
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1.4 Methodology

To determine the efficiency of heterogeneous computing, using an OpenCL based
programming model, several tdstncheswill be designed. Theseill be based on algorithms or
computeheavy tasks thatan benefit from the increased native parallelism avadabi
heterogeneous systenfSystems, such as these, would allfmw the breakdown of operations
between resources in order to maximise performance, for example, assigning serial tasks to
CPUs and parallel tasks to GPUs.

These implementationsill then becompared with computing solutions offered on the
existing systemswhich utilise CPU based computatjom order to determine whether
heterogeneous computing provides a spgedactor worthy of consideration. Comparison will
not be made solely on runtimpeedup but alscon development time, development complexity
and poweiusage.

An attempt will be made to improve the performance of the High Throughput Computing
environment at the University of Huddersfield by taking advantage of the readily available
GeneralPurpose GPUs in the HTCondor pool. This diverse ecosystem spans multiple computer
architectures, various operating systems, and a significant variation of compute units, varying
from low end CPUs to higeknd GPGPUSs. Currently, the university expldits idle CPU time of
available machines by assigning them computational tasks, however the GPU resources in these
systems are unused. No configuration exists to allow for the allocation of tasks to the GPU
component of available computers, and as sucin tagpabilities are wasted during their idle

periods.

17
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With OpenCL being a platform independent tool, a single implementation is developed to
exploit the entire heterogeneous system pool, and HTCondor offers a means to access it. While
performance is nonherently sought after in HTC, the ability to accelerate computing without
requiring hardware changes, or physical intervention, is still desirable and increases the CPU
hours generated by the system. It also enables researchers to use more complérrEppiaa
are would normally be too timeonsuming when ran on CPUs alone.

A third study will investigate the use of OpenCL for developing FPGA applications
aimed at computational applications. The aim is to determine the efficiency of OpenCL design as
opposed to traditional HDL design in terms of development time, difficulty of porting
applications from CPU to FPGA, and the speedobtained when using reconfigurable

computing.

1.5 Research Questions:

X Does heterogeneous computing provide enough benefitartant a change from
traditional systems?

X Is the OpenCL heterogeneous platform mature enough to encourage a shift in
development environment used for HiBerformance Computing?

X Can FPGAs be used to accelerate computing using the OpenCL platform?

18
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The emainder of this thesis is structured as follo@kapter lloffers insight into the
different architectures types that can be exploited for computing purposes, and a review of
existing work done in this are@hapter lllintroduces the OpenCL platformith a focus on the
programming model and usage. Chapter IV covers the implementatiarOpiesnCL benchmark
for use across CPUs and GPUs, with a detailed design process and resulting performance.
Chapter V covers the implementation of a different Opeb€hchmark, over a HPC resource
composed of hundreds of machines. Chapter VI presents the FPGA related benchmark design
and execution, while also discussing the SDK offered by the manufacturer. Chapter VII
discusses further research topics in this subjesa. &Chapter VIII represents the conclusion of

this thesis.
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Chapter 2: Literature Review

As introduced above, heterogeneous computing refers to the use of multiple types of
processors to accelerate the execution of computations within a system. The followingippages

detail some of the existing accelerators used in conjunction with CPUs to improve performance.

2.1 Many-Core Architectures

Due to the recent improvements in CPU architectures, the distinct line separating GPUs
from CPUs is becoming increasingly blurreld.is due to the emergence of Ma@pre
architectures that previous boundaries need to fvakiated. MamCore architectures are
systems which contain multiple CPU cores within a singular unit, allowing for heavier
parallelism at CPU level. This is @fent from simply connecting multiple CPUs together since
it offers much faster memory transfer speeds, and more complex optimisations for parallel
execution, at the expense of individual thread performance, and it is in this aspect that Many

Core architetures are similar to GPUs.
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A Many-Core Processor

Figure 6: Many-Core Processor architectui@&mbedded.com)
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One such system is the Intel Xeon Phi, a coprocessor unit comprised of up to 72
specialized CPU cores that caa bonnected to a computer via a FCbus. The Xeon Phi
functions, from a programming perspective, as a CPU. It is fully compatible with existing CPU
applications that exploit parallelism. The goal of these sorts of architectures is to offer GPU level
pardlel performance without the inherent drawbacks of GPU based computational design and
programming, or the bottlenecks generated bycbip data transfers. 23 of the top 500
supercomputers are based on the Xeon Phi architecture, including the former mumaber
supercomputer Tiank2, the current fastesupercomputerSunway TaihuLight also uses many

core processors with 260 cores per Uiiiap500, 2016)

2.2 Graphical Processing Units

The Graphical Processing Unit (GPi$)a specialized IC designed for rapid manipulation

of data, primarily used in computer graphics and image processing. The GPU, as architecture,
contains large amounts of parallel processors, which, while unable to match the frequency of a
CPU processohave demonstrated superiority in tasks that involve parallelism, be it data or task
parallelism. However, among the major drawbacks of using GPU accelerators are, the difficulty
of programming parallel based applications with fundamentally different ag@edo solving,
and, on a hardware level, the bottleneck resulting from the need to communicate with a host
CPU, tat results in abysmal perforn@whenthere is limited data to be computé@wens,
2008)

A GPU processor ispecialized in the sense that it is designed with the following

considerations in mind:
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1. Computational requirements are extensive;
2. Operations are massively parallel;

3. Latency is not as important as throughput;

CPU (Multiple Cores) GPU (Hundreds of Cores)
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Figure 7: CPU - GPU Core Count

&RQVWDQW DGYDQFHV LQ KDUGZDUH DQG SURJUDPPLQ.
explosion of GPU based computations, with 66 of the top 500 supercomputers being fitted with

GPU acceleratorgTop500, 2016)

2.3 Field-Program mable Gate Arrays

These devices present a combination of the hardware efficiency found Heduked
designs and the +eonfigurability of programmable systems. Initially developed for replacing
multiple transistottransistor logic devices with a single vitee, the FPGA was used in

connecting a micra@ontroller to peripherals, interfacing devices, or managing memory banks. It
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was designed as a legost prototyping solution, and as such was not considered for
computational acceleration. Following the fall transistor costs, and with it the increase in
FPGA power, these devices gained ground in the field of verification, rapid prototyping and also
low-volume production where ASIC solutions were deemed impractical.

The evergrowing costs of designing and rkagy ASICs have led to a higher demand for
FPGA solutions, increasing, in turn the interest in developing faster and stronger FPGAs.

(Altera, 2007)

2.4 Existing Applications

2.4.1 Radar Processing: FPGAs or GPUs?

A white paper by the ALERA Corporation that discusses the efficiency of FPGA usage
in floating-point operations with regards to their usage in radar systems. The reasoning behind
this investigation is that CPUs are unable to keep up the pace with current generation processing
requirements, and as such are the significant bottleneck in such sy#tkena, 2013)

The idea of peak FLOP (FloatiRpint Operations per Second) as a measure of
performance is discussed and dismissed since it represerniglieation of the theoretical
maximum capability of the device rather than the actual performance iwaddl applications.

The article then moves on to show that FPGAs are capable of outperforming GPUs when
working with small sized algorithms. One givexample is the Fast Fourier Transform (FFT),
which in radar systems oscillates in length between 512 and 8,192, in general. In this case GPU
solutions are ineffective due to overhead and power usage, with FPGAs offering similar

computational speeds. Tlpaper stats that GPUs become efficient solutions for FFTs that are
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3>«@ VHYHUDO KXQGUHG WKRXVDQG SRLQWV >«@  LQ OHQ
benchmarking solutions based on typical applications.

Following several algorithm based benchmarkss toncluded that FPGAs can provide
lower latency and higher performance thmncessorshowever the advantage of using FPGAs

is expected to increase dramatically with the introduction of Hdpt@nized FPGAs.

2.4.2 A Comparison Study on Implementing Optical Flow and Digital

Communications on FPGAs and GPUs

A study made in (2010) set out to determine the performance of both FPGAs and GPUs
in signal, and image processing applications. The article studies raw performance as well as
design and development effdidr both platforms.(Bodily, Nelson, Wei, Lee, & Chase, A
comparison study on implementing optical flow and digital communications on FPGAs and
GPUs, 2010)

Implementation of the FPGA system was done using a number of readilgble IP
cores, which limited the system clock rate, and resulted in raw performance approximately 4
times slower than the GPU solution while also having a much higher development effort. The
paper also introduces design enhancements for the FPGAwthddl, in theory, bring the
computational performance to values similar to those generated by the GPU.

The study found that while the GPU solution consumed arouné@0%/ of power, the
FPGA consumption bordered on 10W. This allows for FPGAs to be ingpliexd in embedded

systems applications where power constraints exist. In terms of speed, the GPU outperformed the
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FPGA, however it required large data block sizes to do so, this in term generated large latency
LVVXHV WKDW DUHQfW HQéne@gdHUHG LQ WKH )3*$ LPS
The development time was approximated to by 12 times higher for the FPGA than the

GPU, due to the difficult nature of lbkegging HDL based applications.

2.4.3 Performance Comparison of GPU, DSP and FPGA implementations
of image processing and comput er vision algorithms in embedded
systems

$ PDVWHUTV WKHVLV IURP VWXGLHG WKH LPSOHPHQ\
FPGAs and GPUs for use in embedded -tiea systems(Fykse, 2013)

Template matching is a procedisat requires multiple scans of the same image, for
different sizes and orientations of the sought object. For this reason the only viable solutions for
reattime applications are GPUs and FPGASs, due to their inherent parallelism.

The author chose to infgment the solution from scratch on the FPGA and by using an
opensource model for the GPU. Details are given on all steps of the design process, and FPGA
testing is done in software, through the use of-llesiching, with accuracy determined via
comparise with a MATHLAB implementation. For the GPU implementation the OpenCV
library is used, allowing for fast and straightforward implementation of the desired system.

When compared, from a development effort stand point, the author debates that even with
the use of Intellectual Property and HLS, the FPGA development is a lot more complicated than
the GPU one. There is mention of OpenCL as a means of facilitating GPU implementations

KRZHYHU GXH WR WKH 3DJH" RI WKH SDSHU pléh&ht&®ié&n). LV QRW
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In regards to power consumption, the FPGA far outclasses the GPU, however the FPGA
consumption is based on software approximation as hardware testing was not done. Finally, as a
pure performance comparison, the GPU performs slightly bétter the FPGA at all but the
smallest of implementations. The thesis concludes that when faced withorglprojects the

higher performance of the GPU must be weighed against the lower power consumption of the

FPGA.

2.4.4 Accelerating High -Performance Computing With FPGAs

Published in 2007, this white paper by Altera presents the improvements offered by
FPGAs as coprocessors in multiple Higarformance Computing applications. The introduction
shows that HPC requirements are increasing at a much fastethan processors, creating a
WHFKQRORJ\ JDS :LWK ORRUHYTV /DZ EHLQJ RXWSDFHG E\
specialized coprocessors was introdu¢éttera, 2007)

From a business perspective, higher performance niegher profits (from lower time
WR PDUNHW IRU H[DPSOH DQG DV VXFK WKH QHHG IRU SH
understandable. As processor performance increase is slowing down, and development becomes
cost and energy inefficient, applicatispecific processors are introduced. Ethernet controllers,
Graphical processing units and Digital Signal Processors are a few ofstiieSens;however
they are not the answer to the technology gap introduced above, since they only address a single

aspect b6the problem.
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7KH LGHDO FRSURFHVVRU LV SURSRVHG DV SURYLGLQJ
SURFHVVHV ZLWKLQ WKH DSSOLFDWLRQ®™ EHLQJ VFDODEOH |
having highbandwidth, lowlatency interfacing to the maingressor and system memory.

$SDUW IURP WKHVH WKH SDSHU LQWURGXFHV ZKDW LW F
SHUIRUPDQFH SURGXFWLYLW\ SRZHU DQG SULFH ~ ,Q VKRU
the whole system, productivity refers the ease of configuring the system to run existing
software, power refers to the consumption of such systems, which is generally linked to either
utilized space or dissipated heat; and finally price, which requires no explanation.

As HPC is shifting awayrom Massively Parallel Processing toward cluster computing,
WKH FRSURFHVVRU GHVLJQ QHHGV WR EH HDVLO\ LQWHJUDW|
D FRVW VLPLODU WR DGGLQJ DQRWKHU QRGH LQ WKH FOXVWI

The FPGA is introduced as a solution theeDWLVILHYVY DOO 3IRXU 3V~ RI
Examples are given of FPGA performance increase of standard CPU architectures ranging from
10x to 360x. From a productivity perspective, compilers that convert C to HDL are introduced,
thus removing the need for aaugo have prior experience with FPGAs in order to use them. For
power, the inherent parallelism of FPGAs allow them to greatly reduce operating time compared
to sequential systems, resulting in higher performance at slower clocks, in turn resultiagrin lo
SRZHU FRQVXPSWLRQ 7KH ILQDO 33" SULFH LV DOVR FRY!

comparable to a CPU of similar specifications.
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2.4.5 OpenCL: A Parallel Programming Standard for Heterogeneous
Computing Systems

Published in 2010 this work is a very thagh introduction to the OpenCL framework,
covering the reasoning behind its development, its predecessors and describing the functionality
of the platform(Stone, Gohara, & Shi, 2010)

The shift toward heterogeneous compgticreated a need for software development
frameworks in the form of parallel programming languages and libraries. Several toolkits were
developed targeting multiore processors and GPUs, namely, OpenMP, CUDA, and others.
OpenCL is described as an indusstandard for parallel computing targeting heterogeneous
systems that, unlike its predecessors, targets a vast majority of hardware devices, and offers a
unified environment for development.

The paper describes the OpenCL programming model, device nmagigelevelopment
facilitating features of the framework, and memory related aspects of programming. OpenCL is
described as targeting architectures that have, up to this point, been poorly supported by vendors
in terms of programming tools or libraries. Anmg the targeted architectures of OpenCL, this
work enumerates and expands on mettie CPUs, GPUs and the IBM Cell processor.

The work offers an wulepth description into the implementation of an application used in
bio-molecular science, presentingethtifferent speedp capabilities of the aforementioned

architectures.
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2.4.6 A Comprehensive Performance Comparison of CUDA and OpenCL

This 2011 conference paper investigates the performance of both CUDA and OpenCL
programming platforms for GPU execution laghly parallel algorithms. This work sets out to
determine if using OpenCL sacrifices performance for portability, and if so, identify the trade
offs of using OpenCL as opposed to CURang, Varbanescu, & Sips, 2011)

The work focuses on investigating the performance of CUDA and OpenCL applications
for 16 different applications from three different benchmark suites. The tests run initially in this
work reveal that CUDA outperforms OpenCL in almost all applications by a mafgip to
30%. However, this is due to the lack of optimizations in the OpenCL applications and the much
more mature complier in CUDA.

It is further shown that when developing an application in OpenCL rather than porting it
from CUDA, equivalent perforance is achieved. OpenCL portability is also investigated with
the use of an AMD GPU, an Intel CPU and a Cell/BE accelerator. This revealed that GPU
performance remains equivalent when porting but CPUs are limited by the small number of
available compute ares and accelerators are not mature enough to support most memory
requirements.

The paper proposes the creation of an automated application for optimizing OpenCL

applications to different hardware devices and platforms.

2.5 Conclusion

It is inferred, base@n investigated literature, that no single device, or architecture, is

able to outperform the rest in every single aspect of computatiatthere is nosingle fastest
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device or fastgt architecture. These two titles are highly dependent on the thakatAs such,

it is proposed, that rather than being based on a single device, or architecture, a system able to
claim the title of fastest computational engine would be comprised of multiple devices and
architecture types. It is for this reason that QRlenwhich promises a platform independent
framework, for developing applications targeting heterogeneous systems, was selected as the

development environment for this work.
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Chapter 3: The OpenCL Platform

The Open Computing Language framework is a standard thatso#i common
environment for developing and executing programs on heterogeneous systems, composed of
diverse computational devices, such as CPUs, GPUs, FPGAs, and DSPs. OpenCL was initially
developed by Apple, together with other large companies like AlBBI, NVIDIA, and Intel,
which together formed the Khronos Group. The first public release of the OpenCL standard was
in 2009 with OpenCL 1(Stone, Gohara, & Shi, 2010)

OpenCL provides a set of abstractions and programming ABsigned to allow a
developer to easily access multiple hardware architectures and devices. The framework defines
both a core set of features available to all compliant devices, such as memory management,
target device identification, data transfersemecution queuing, and a more complex extension
mechanism that allows device vendors to expose features unique to individual devices, add
additional interfaces, or provide device specific optimizations. In doing this, OpenCL allows
users to efficiently parapplications between different architectures, without losses in features or
accuracy.

The framework can be used to exploit heterogeneous systems by allowing a user to match
execution segments to the computational hardware architecture most suited to carry them out. It
is up to the developer to decide how to divide the application betweewatious available

compute architectures in order to maximize performance.
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3.1 Programming Model

Since OpenCL is a platforimdependent programming environment, OpenCL based
applications will run on compliant system regardless of available hardware. BiQutes up the
developer to provision the application in such a way that it will execute on multiple device
architectures. For example, an application targeting GPU execution will fail to start unless a
GPU device is found within the system. As such,uber is expected to design the application
with regards to the system it will be executed on. However, this is not the only solution, as the
user is also able to design the application with features that allow for device selection, or that
prioritize exeation on available accelerato(Stone, Gohara, & Shi, 2010)

In terms of design, the user is expected to define the targeted computational devices,
memory allocations, data management and others within the control segmentapptication,
namely the host file. The flow of operations during both design and execution can be divided

into 5 distinct sections, as evidenced below.
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OpenCL Programming Flow

[ Environment Setup

[ o {re )

[ Host Initialization

[ Kernel Setup

[ Execution

Figure 8: OpenCL Programming Flow

3.1.1 Environment Setup

1 Identifying aplatform;
A platform is composed of a single host and one or more OpenCL compliant devices. A
single computer may have multiple platforms, generally sharing the same host (unless multiple

CPUs are available), with each platform being linked to a difféd@enCL implementation.
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1 Select device;

The device is the component that will run computation; multiple types can be called
(CPUs, GPUs, FPGAs, or other accelerators). With the inherent heterogeneity of OpenCL, a
variety of devices may be available at ron#i The application can be designed with a specific
architecture in mind, or setup in a way that allows the host to pick which of the available

architectures is the fastest.

3.1.2 Host Initialization

1 Create Context;

The OpenCL context, created based on seleptatform and devices, manages the
objects and resources available to the environment, where objects are allocations that enable
communication between the host and the compute devices, and allow for management of
memory, command queues, objects and exacuf context may contain one or more devices of
the same platform.
¥ Create command queue;

The command queue is the means through which the host sends commands to the device,
with each device requiring its own command queue. Commands include device memory
dlocations, data transfers, kernel executions, and profiling. Commands are queued in the order
that they are coded in the program but can be executedf-ouder by flagging them for

asynchronous execution.
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¥ Create memory objects;

Memory objects are btks of OpenCL data that can be transferred between host and
device. A kernel executing on a device is only able to access data stored within the memory of
said device, for this reason the device needs to allocate memory to an object where this data can
be stored. Memory allocations can only be created and managed by the host. A memory object,

thus, allows the host to access a chuck of memory on the device.

3.1.3 Kernel Setup

1t Read kernel file;

The code executed on the computational device is containedegmate entity, written
in a manner that exploits parallelism, using OpenCL specific functions. The host executes this
kernel and as such must first read it into memory, and where needed, compile the kernel for
device execution. There are multiple wayp#ss a kernel file to the host, such as reading it in
from an external file or reading in a precompiled binary.

T Create program object;

The program object contains the source or binary for the kernels, a built executable, along
with the information requik to compile the executable at run time, and the list of devices
compatible with the program. Program objects may be created with precompiled kernel binaries
or with source codes. Precompiled kernels allow for much faster runtime setup however it limits

crossdevice compatibility.
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t Compile kernel;

This optional step creates a binary file for the program object from the source code at
runtime, where the precompiled binaries have not been provided within the application, while
reducing setup time for exeaon, this allows an application to target multiple devices without
impacting program size or development time.

T Create kernel object;
Based on the program object, a kernel object is instantiated, each containing a kernel

function and the argument values dise said function.

3.1.4 Execution

T Set kernel arguments;

As the name suggests, this step handles the arguments passed to the kernels, for examples
this could be memory size limits, and pointers to the values used in the function. This is done
since the host musandle all calls, queues, and executions.

T Execute kernel (Enqueue task);

In order to execute a kernel on the compute device, it needs to be queued in the command
gueue, and as mentioned before, this can be done either synchronously, in which case €ommand
are executed in order or asynchronously, where commands are executed independently of one

another.
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¥ Read memory object;
After execution, data from the device memory object must be read back into the host.
This can be synchronous (kernel execution ap@ed during data transfer) or asynchronous

(device keeps computing while data is being transferred).

3.1.5 Clean-up

1 Free objects;
After all kernels are executed, the host must free the memory objects it has created, or

risk crashing the application once devimemory has been filled.

3.2 On-going Improvements

OpenCL 2.0 has recently introduced major improvements to the standard. As the
environment matures, more and more features are added to the APIs. In newer releases of the
OpenCL standard, a couple of featuséand out due to the improvements they bring to not only

the capabilies of the application, but also the reduction of design complexity.

3.2.1 Shared Virtual Memory

The first of two major improvements brought forth in OpenCL 2.0 is the addition of
shared virtal memory. Before its existence, the user had to manage host memory, device
memory and communication between the two; this took up a lot of time in design and space in

programming(AMD, 2014)
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With the introduction of shared wral memory, this management is no longer required,
there is no need to track buffers and copy information from one point to the other. Shared
pointers have been introduced to fix this exact issue.

OpenCL 2.0 introduces two different types of shared men@ogrsegrain SVM and Fingrain
SVM.

These two types are differentiated by the synchronization points used in updating the
buffers, with coarsgrain being updated when the buffers are called, when the kernel is
launched, and when it finishes its opeyatiand finegrain including the same synchronization
points but also at atomic operations. Atomic operations are those operations that are completed
in a single time step, relative to other operations, meaning that no other thread can observe an
atomic ogrations execution. The operation is thus indivisible and irreducible, so it can appear to
the system as if happening instantaneously.

Coarsegrain only offers a small benefit to programming as it removes the need for
individual calls to buffers, but theeal improvement can be seen in the (not yet hardware
supported) finggrain SVM, because using this system, buffer mapping/unmapping is no longer
required and since buffers update more often, the system can be altered to use data prior to a

kernel finishng its main operation.

3.2.2 Device Kernel Enqueue

With OpenCL 2.0 the device is now able to enqueue kernels, without having to
communicate with the host programme. Together with the pipe system, which allows for kernels

to exchange data between them, the systdhbe able to run at much faster speeds, effectively
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removing the current bottlenecks constituted by dekim& communication speedAMD,
2014)

With kernels given to ability to create new kernels without the use of tils& ho
programme, new possibilities arise, where an algorithm can adapt itself without having to
transfer data back and forth with the host, limiting device to host communication, one of the
main bottlenecks in such a system, to a minimum. One such exanfpledsin networking,
where GPUs and FPGAs can be used for much faster network encryption/decryption. The

accelerator is able to manage data inputs and outputs, without relying on the host CPU.

3.2.3 Standard Portable Intermediate Representation (SPIR -V)

SPIRYV is a standard developed by Khronos, the developers of OpenCL, to facilitate
application portability and performance. It is a programming language environment, situated
between higHevel and lowlevel languages, which allows for the development of staliwkd
applications for OpenCL drivers. This removes the need to integratelevigihlanguage
compilers into device drivers, reducing driver complexity, and improves portability across
multiple hardware implementation&hronos Group, 2016)

SPIRYV is an attempt to remove the need to precompile binaries for each individual

hardware device, leading to a much faster runtime compilation and a smaller development effort.
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3.3 Conclusion

The use of familiar programming languages and mha&ssive amount of targeted
platforms of the OpenCL framework make it a promising solution for developing heterogeneous
applications, with a much shorted development cycle and an increased resilience to aging. The
ability to easily alter an application gbat it targets a different architecture, the ability to
LQFUHDVH SHUIRWWKIRREH ¥ @PGWMHQGRU VSHFLILF RSWLPL]DW
expose features unique to individual devices offer any application developed with the OpenCL
framework a mah longer lifespan. This also allows for a much faster adoption of newer
hardware architectures, without the need to shift to a different development framework, learn a

new programming language, and redevelop the application.
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Chapter 4: OpenCL Multi -Architecture Application Development

This chapter introduces the utilized tbsinch applications developed for testing the
efficiency of the OpenCL platform on various workstations containing CPUs and GPUs. The
goal was to utilize applications which could operatedibferent device platforms with minimal
changes, and without device specific optimizations, in order to reveal baseline performance, or
rather, the worst expected performance of the given systems.

These applications were developed on a Windows basedimaagsing Visual Studio
2013 and the AMD APP SDK version 2.9, chosen based on the specifications of the
development machine, although, the choice of development environment did not affect the
design of the applications since no device specific optimizatiwere desired. Applications
targeted both the CPU and GPU architecture either in the same package or as separate
instantiations of the same application.

In order to test the usability, efficiency and heterogeneity of the OpenCL framework, a
benchmarkingystem was designed based on applications that could exploit the use of massively
parallel hardware architectures offered by specialized architectures.

CPU execution was aimed at providing a comparison baseline for all further testing. GPU
execution, aned at both AMD and NVIDIA devices was chosen because the GPU is the most
widely available accelerator available. The FPGA was chosen as the second targeted accelerator
architecture for OpenCL execution in order to assess both the effectiveness of F&8A ba
computing for engineering applications and the duration and complexity of OpenCL based

designs targeting the FPGéchitecturehowever this icovered in a separate chapter.
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4.1 OpenCL System Detection

An application was designed to poll the system for compliant OpenCL devices and list
their respective features, including core count, clock speed, and maximum memory allocation
size. This application lacks OpenCL device specific functionality and thusepart if a system
has OpenCL drivers installed or nor and following that what OpenCL devices are identified.

By using this setup it can easily be determined if a system is able to run OpenCL
applications or not, and if not, whether the issue is reladeavailable hardware or missing

software drivers.

// get all platforms
clgetPlatformIDs(@, NULL, &platformCount);
platforms = (cl_platform_id*)malloc(sizeof(cl platform_id) * platformCount);
cloetPlatformIDs({platformCount, platforms, NULL);
for (i = @; 1 < platformCount; i++) {
// get all devices
clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, @, NULL, &deviceCount);
devices = (cl_device_id*)malloc(sizeof(cl_device id) * deviceCount);
cloetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, deviceCount, devices, NULL);
printf(",");
// for each device print critical attributes
for (j = @; j < deviceCount; j++) {

Figure 9: Excerpt of Device Detection Application

As see inFigure 9 the application eads all OpenCL platforms, and for each, queries
every available device for information. Memory sizes for buffers holding output data are
calculated right before data acquisition. This is because the number of platforms and devices is
unknown at the desigstage and as such pa#ocating memory becomes difficult. The
CL_DEVICE_TYPE_ALL parameter ensures that all OpenCL compliant devices are called, and

can be altered so that the application only reports CPU, or GPU, or accelerator devices.
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Figure 10: Device Report for Bvelopment PC

The application was designed in two variations, regular and basic output. The regular
output reported the most important features of the scanned devices, information that is helpful in
determinng the performance of the device and certain design parameters, such as maximum
workgroup size or memory allocations.

The basic output variation of the application simply returns the device name and compiler
version, and is designed to be executed inuwuaion with the other applications, to identify the

targeted device.

4.2 Application Design

This application used a basic, roptimized matrix multiplication operation using two
samesized matrixes populated with random data at runtime, and reportedierdaoue using
OpenCL profiling tools by measuring duration between start of computation until end of data

transfer from compute device to host. This is done to account for the communication overhead
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generated by different workgroup sizes, and delaysaimster caused by slower bus speeds for
GPU to CPU communication.

Multiple matrix sizes were employed, ranging from 278 up to 2712, on multiple
workgroup sizes, namely 64, 256, and, where available 1024. The automated allocation of a
workgroup size at rurmie by the compiler was also utilized, by passing the argument O to the

workgroup size, allowing the application to determine the best size allocation.

4.2.1 Host Code

The development process began with allocating the memory buffers that will hold the
compute e#ments and resulting data. This is done by determining the size of the matrixes based
on the number of elements, as seeRigurell. Because the application is desegl with square
matrixes in mind, number of elements is determined by squaring the number of rows/columns.
With the matrix elements being of type float, the necessary memory can easily be determined

XVLQJ WKH 3VL]IHRI® IXQFWLRQ

JiMatrix A memory buffer

unsigned int size A = pow(matrixsize, 2};
unsigned int mem_size A = sizeof(fleat) * size A;
float® h_ A = (fleat®)malloc({mem _size A);

//Matrix B memory buffer

unsigned int size B = pow(matrixsize, 2);
unsigned int mem_size B = sizeof(flcat) * size B;
float* h_B = (float*)malloc(mem_size B);

Figure 11: Memory Buffer Allocation

The memory buffers are filled with randomly generated numbers based on a predefined
VHHG PDNLQJ XVH RI &fwe L2OIQPSBateéX Qd- MatidRfOnction employed in

element allocation.
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S/ Allocates a matrix with random float entries.
—void randomMemInit(fleocat* data, int size)

1
int i;
for (1 = 8; 1 € size; ++1)
data[i] = rand(} / (Tleoat)RAND MAX;
h

Figure 12: Function for Matrix BEementAllocation

The first step in the aforementioned OpenCL flisvthe allocation of a compute
platform. In this case, the application allows the user to determine which platform to use for the
computation;this is done as a target system may have multiple OpenCL implementations or

different compute devices.

cl_uint dev_cnt = @;// initiate platform count
clgetPlatformIDs(@, @, &dev_cnt);//count platforms

platforms = (cl_platform _id*)malloc(sizeof(cl platform_id) * dewv_cnt};//allocate memory for platform ids
claetPlatformIDs(dev_cnt, platforms, NULL);//get platform ids

i = 8;//initiate while loop platform count

while (1) {

Figure 13: Identifying Available Ratforms.

As such, the application must first determine how many platforms are available, allocate
memory for them, and finally store platform information in memory, as se€igure 13. A
while loop is created past this that enables a user to pick a targeted platform based on the
compute devices existing within the platforigure14. The user is then asked to pick between
targeting a CPU device on the platform or a GPU de¥iggire15.
Note: The application is not optimized to work with platforms that contain multiple devices of

the same type and will always pick the first one detected.
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// for each device print device name

for (j = 8; j < deviceCount; j++) {
clGetDeviceInfo(devices[j], CL_DEVICE_MAME, @, NULL, SvalueSize);
value = (char*)malloc(valueSize);
clGetDeviceInfo(devices[j], CL_DEVICE_MAME, wvalueSize, walue, NULL);
printf(“Device name is ¥s “n'n", wvalue);
free(value);

}
printf("Do you want to use this platform ? (y/n)\n");// ask for platform

Figure 14: Device Cycle bop

J

printf("Do you want to use a GPU 2 (y/n)’n");// ask for platform
cond = "";

cond = getchar()};

while (getchar() !'= "\n'});

if (cond == "y'")

// Connect to a compute device
err = cl@etDeviceIDs(platforms[i], CL_DEVICE_TYPE_GPU, 1, &device id, NULL);
if (err != CL_SUCCESS)

{

printf("Error: Failed to create a device group!hn™);
return EXIT_FAILURE;

else

err = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_CPU, 1, &device id, NULL);
if {err != CL_SUCCESS)

!

printf("Error: Failed to create a device group!i\n™);
return EXIT_FAILURE;

Figure 15. CPU/GPU Decision Bint

Once user input has been finished the application creates the OpenCL context based on
WKH FKRVHQ GHYLFHYV FigureWb tikabe@chEdicaed WitH @rrdr @Qhecking in

place.
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The command queue is initiated, with OpenCL profiling enabled, in order to determine

total execution time of kernelBjgure16.

// Create a command commands
commands = clCreateCommandQueue(context, device_id, CL_QUEUE_PROFILING_ENABLE, &err);

if (!commands)

{

printf("Error: Failed to create a command commands!\n"};
return EXIT_FAILURE;

Figure 16: Command Qeuelnitialization

The OpenCL kernel is loaded from a separate file that is read into memory during

runtime and then compiled into an exeb@lgabased on the chosen architecture. This allows for

device portability however it does not affect profiling timeigure17.

program = clCreateProgramWithScurce(context, 1, (const char **)& KernelSource, NULL, &err);
if (!program)
{

printf("Error: Failed to create compute program!\n™);
return EXIT_FAILURE;

}

// Build the program executable
err = clBuildProgram{program, @, MULL, MULL, NULL, MNULL);
if (err != CL_SUCCESS)Y

{
Figure 17: Building Program Eecutable

Once the compute kernel is creates, memory must be allocated on the device to contain
all three matrixes, the first two are copied from the host, and the first is merely instantiated, as it

will contain the resulof the matrix multiplicationFigure18.

// Create the input and output arrays in device memory for our calculation

d A = clCreateBuffer(context, CL MEM READ WRITE | CL_MEM COPY _HOST PTR, mem_size A, h_A, &err);
d_B = clCreateBuffer(context, CL_MEM_READ WRITE | CL_MEM_COPY_HOST_PTR, mem_size B, h_B, &err);
d_C = clCreateBuffer(context, CL_MEM_READ WRITE, mem_size A, NULL, &err);

Figure 18: Allocating Device Mmory
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The kernel arguments are theassedthey contain the memory buffers and matrix sizes,

Figure19

err = clSetiernelarg(kernel, 8, sizeof(cl_mem), (void *)&d _C);
err |= clSetkernelirg(kernel, 1, sizeof{cl _mem), (wvoid *)&d_AY;
err |= clSetkernelirg(kernel, 2, sizeof{cl _mem), (wvoid *)&d_B);
err |= clSetkernelirg(kernel, 3, sizeof{int), (void *)&matrixsize);
err |= clSetkernelirg(kernel, 4, sizeof{int), (void *)&matrixsize);
if (err != CL_SUCCESS

1

T

printf("Error: Failed to set kernel arguments! ¥d\n", err);
exit(1l);
h

Figure 19: Kernel Argument Bssing

At this stage, Worlgroup and Worktem sizes are set and the kernel is queued in the

command queue for execution, and the application waits for the kernel cu Fiigiste 20.

localWorkSize[@] = worgroupsize;

localkWorkSize[1] = worgroupsize;

globalWorksize[@] = size_m;

globalWorksize[1l] = size m;

err = clEnqueueNDRangekernel(commands, kernel, 2, NULL, globalworkSize, localWerkSize, @, NULL, Zevent);
if (err != CL_SUCCESS)

{

printf("Error: Failed to execute kernel! Zd\n", err);
exit(1);

h

clWaitForEvents(l, &event);

Figure 20. Command Bqueue

Finally, the contents of the calculated matrix memory buffer are read back into the host
and profiling data is called in order to determine execution duration. This duration is calculated
using builtin profiling tools offered by the OpenCL framework, and take into account the
duration between the first and last command executed by the kernel on the compute device,

Figure2l.
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err = clEnqueueReadBuffer({commands, d C, CL_TRUE, @, mem_size C, h C, 8, NULL, NULL);
if (err != CL_SUCCESS)

1

printf("Error: Failed to read output array! Ed\n", err);
exit(1);

b

cleetEventProfilingInfo{event, CL_PROFILING COMMAND START, sizeof(time start), &time start, NULL);
cloetEventProfilingInfo({event, CL_PROFILING_COMMAND END, sizeof(time_end), &time_end, NULL);
total_time = time_end - time_start;

printf("\nExecution time in milliseconds = #8.3f ms\n", (total time / 1008660.8));

printf("Matrix multiplication completed...\n");

Figure 21: Data Retrieval and Rfiling

Last but not least, all memory allocations are cleared and the application terminates,

Figure22.

//Memory clearing
free(h_A);

free(h_B);

free(h_C);
clReleaseMemDbject(d_A);
clReleaseMemDbject(d_C);
clReleaseMemObject(d_B);
clReleaseProgram({program);
clReleasekernel(kernel);
clReleaseCommandQueue ( commands) ;
clReleaseContext(context);

Figure 22 Memory Clearing

4.2.2 Kernel Code

The kernel code is fairly straightforward, it takes in the global buffers containing the two
populated matrixes, the buffeontaining the output matrix and the number of rows and columns
of the matrixes. It defines the two working dimensions using a -“tenk ID call,
S JHWBJOREDOBLG™ DQG EDVHG RQ WKLV LQIRUPDWLRQ FDOF;

the resuling matrix,Figure23.
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~ksrnsl veid

matrixMul( global fleocat* C,
__global fleat* A,

__global fleat* B,

int wA, int wB)

{

get _glcbal id(e);
get _global id(l);

int tx
int ty

Tloat value = 8;
for (int k = @; k < wa; ++k)

{

float elementd = A[ty * wa + k];
float elementB = B[k * wB + tx];
value += elementd * elementB;

h

C[ty * wa + tx] = value;

Figure 23. OpenCL Kernel Gde

Later versions of the application used external arguments as opposed to user input in
order to facilitate batch execution. The information passed externally was, platform number,

device type, matrix size and workgroup sizgure24.
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)

—Jint main(int argc, char** ar

{

g

unsigned int matrixsize = size m;
unsigned int Wasize = worgroupsize;
unsigned int arctype = 1;
unsigned int plat = @;
// External Arguments
if (argc == 5)
{
plat = atoi(argv[1l])};
arctype = atoifargv[2]);
matrixsize = atoi(argv[3]);
Wasize = atoi(argv[4]);

else

printf("\n\nError: Insuficient Arguments Passed ‘n");
printf("Please provide:\n");

printf("1l. Platform Number( Start at @)\n™);

printf("2. Architecture Type (1 for GPU, @ for CPU}\n");
printf("3. Matrix Size\n™);

printf("4. Workgroup Sizeln™);

printf("Example run application.exe @ 1 1824 16%n\n"};

Figure 24: External Argument Codentppet

4.3 Test Bench Environment

This section will cover the execution of the developed tbshch applications for
OpenCL on available compute systems in the form of workstations. The main focus is to
deermine a performance baseline for execution based on standard CPU execution time and

compare that against a GPU unit.
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4.3.1 System Specifications

Tablel: System Specifications
Specifications System | System |l System Il System IV
CPU Intel i5-2320 Intel i5-2310 Intel i5-3470 Intel i7-3770
Frequency 3.00 GHz 2.90 GHz 3.20 GHz 3.40 GHz
Compute Units | 4 threads 4 threads 4 threads 8 threads
Workgroup Size | 1024 1024 1024 1024
GPU AMD HD 6570 | AMD HD 6570 NVIDIA 750 TI AMD HD 6450
Frequency 650 MHz 650 MHz 1.02 GHz 625 MHz
Compute Units | 6 SM 6 SM 5 SM 2 SM
Workgroup Size | 256 256 1024 256

The number of compute units refers to the amount of processors available to any device,
in CPUs this is equal to the number of threads howaveGPUs it refers to the Stream
Multiprocessors. Stream Multiprocessors consist of multiple stream processors, the specialized
processing computational resources used in graphical processing. In the case of AMD GPUs

each SM accesses 80 processing elemevitde for the NVIDIA each SM contains 128

processing elementéAsano, Maruyama, & Yamaguchi, 2009)

A workgroup is a collection of computations all executed on a single compute unit. Since each

computation unit hands a wegkoup, increasing the size of these wgroups allows for the

exploitation of inherent parallelism at device level and reduces communication overhead at the

expense of device memory.
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System lwas the development computer and had the development kitadsta

System |l was chosen as an almost identical system to theoWever without any
specific software installed, to determine if efficiency can be affected by the presence or lack of
OpenCL development software.

System Ill was chosen in order to test functionality over a different GPU hardware
provider in the form of an NVIDIA GPU.

Systems IVwas chosen in order to determine the CPU performance increase for a CPU

with twice as many cores as System | which was consideedokiseline.

4.4 Application Execution

The first tests using OpenCL applications were based on the Matrix Multiplication
application described in the previous section. The used application was not optimized for any
architecture and featured OpenCL profilifigr kernel execution duration reporting. The
application was compiled on a Windows machine using Visual Studio 2013 and the AMD APP
SDK.

Execution was done using the windows command line interface and later on batch scripts
which queued all executions ardgged results to a file. This minimized any effect user

interaction might have on overall execution time.

Int ore(TM) 15-2320 CPU & 3.00GHz
) and B (1024

xecution time in milliseconds = 2118
rix multiplication completed...

Figure 25: CPU Matrix Multiplication
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ternal=matrix_mult.exe 0 1 1024 &

dx1024)

Execution time i 80.010 ms

iwltiplicatio

Figure 26: GPU Matrix Multiplication

Each matrix size/workgroup combination was iterated 5 times, the results logged and
averaged below iTable 2, the best performing workgroup size was highlighted in green. The
duration was reported in milliseconds, however, due to the large execution Tabs2 also

shows the duration in minutes for the larger sized matrixes.

4.4.1 System |

System | represents the development machine, on which all applications were designed or
modified, it includes a suite of development software kits that allow for debugging and

monitoring ofapplications and as such contains 4 different OpenCL platform environments.

Table2: CPU Execution System |

Execution Time ms Workgroup

Matrix Size 0 64 256 1024
512 72.45 62.78 61.75 63.54
1024 2,320.77 2,204.63 2,183.47 2,218.83
2048 33,519.61 28,889.39 28,484.52 35,120.07
4096 (5 m)347,118.99 (4 m)277,252.29 (4 m)263,592.12 (5 m)328,294.72
8192 (47 m)2,766,358.04| (38 m)2,336,417.39| (38 m)2,333,558.53| (45 m)2,729,901.38
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Although the GPU in System | operates at a much lower frequency than the CPU, its
compute units have access to 80 Stream Processing Units each, for a total of 480 SPUs to be
used in algorithmic acceleration. It is worth mentioning that porting this apphdaom CPU to
GPU involved the alteration of one argument in the host code. Also, for the GPU
implementation, a workgroup size of 1024 could not be allocated as the maximum permitted by

local memory is 256.

Table3: GPU Execution System |

Execution Time ms Workgroup

Matrix Size 0 64 256
512 42.01 25.35
1024 212.89 278.06

2048 1,711.68 2,209.27

4096 13,732.36 17,709.84

8192 (1.5 m) 106,116.71 (2 m) 142,785.23

It can be easily noted ihable3 that the GPU outperforms the CPU even at the smallest
execution sizesised;however, the speegp becomes more apparent as it goemfx2 to x32
depending on the number of computed elements. This is both because of the increased number of
parallel executions and the reduced impact of data transfers.

This data shows that an entgvel GPU is able to achieve a spaguof up to 30 tires
that of its CPU counterpart, where spegxdis proportional to the size of the calculated matrix.

Development effort for application porting and performance increase is minimal, however with
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GPU specific optimizations for memory usage and transfershigipeeeup values could be
obtained.

Automatic workgroup allocation at runtime by the OpenCL compiler leads to the slowest
execution onCPU; however this is not the case for GPU implementations. This leads to the
conclusion that while automatic allocations is not a good design practice for applications, it can
be used in highly heterogeneous systems where applications would otherwise have to b
designed with the specifications of the weakest system in mind.

Full CPU benchmarking, with 5 iterations, resulted in around 16 hours of compute time,
for the GPU execution using the same parameters the compute time was reduced to around 30
minutes. Havever, for a more fair comparison, the 1024 workgroup execution would need to be

excluded from compute time, leading thus to a duration of approximately 12 hours.

4.4.2 System I

This computer system is one of the workstations available in the University of
Huddersfield computer labs. Specification wise it is almost identical to the development unit,
however it lacks any form of development kit for OpenCL or similar drivers. However, OpenCL
drivers required for execution are available within the basic Intel @GRrs, and as such
benchmarking should not be affected. Also, it is expected that GPU execution will also be
guaranteed by Intel drivers.

CPU execution results remained mostly consistent to those from the previous system,

with performance being at masd% slower on System Il compared to System |.
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GPU execution however failed passed matrix sizes of 1024, leading to the inability of
running the full benchmark. When executing the application with any matrix size over 1024, the
GPU driver crashed and weestarted by Windows. This reset the GPU while the kernel was still
execution, leading to a seemingly unending execution fiiaiele4.

This issue was traced to the timer watchdog within Windows, its purpose is to monitor
GPU execution and stop any application that appears to be stuck. This is done to ensure that the
userdoes not lose access to the computer if an application gets stuck in an endless loop. Since
OpenCL uses the entire GPU during execution, when the GPU used also drives the display, the
latter freezes, preventing the user from issuing further commandsthetprogram finishes.
According to Microsoft specifications, the default wait time for this watchdog sec®nds;
however this was not the case for the development machine since it had no issues completing the

execution(Microsoft)

Table4: GPU Execution System Il

Execution Time ms Workgroup

Matrix Size 0 64 256
512 19.22 36.61

1024 175.25 271.39

2048 1,454.87 2,153.37

4096 13,457.71 17,444.19

8192 103,994.37 141,357.37
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Further investigation revealed that System | had a timeout of 180 seconds, while System
Il did not have a defined register key for the timeout function, thus reverting to the default 2
second value. It is assumed that this registry is created and maryatiped®PU drivers on the
system, based on specifications offered by the GPU vendor. Since System Il did not have any
proprietary drivers installed and was running off of the base windows drivers, the register entry
increasing the GPU timeout did not exist.

Based on this evidence it becomes obvious that certain alterations are needed in the
application design that would ensure hdsvice communication within the allocated timeout

period, as to avoid triggering the timer watchdog.

4.4.3 System Il

Following unsuccessful execution on a driverless system, and in order to investigate
performance on a different GPU architecture, a NVIDIA based system was chosen as a third
target. On this machine, OpenCL fails to identify the GPU device as part chskeplatform
since NVIDIA does not share compilers with other manufactures, as such, in order to execute
OpenCL applications that target NVIDIA GPUs the proprietary GPU drivers need to be installed.
Since previous work has shown lack of proprietary drivemsvents complete benchmark

execution, they were installed on this system prior to benchmark execution.
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Table5: CPU Execution System Il

Execution Time ms Workgroup

Matrix Size 0 64 256 1024
512 - 74.40 78.35 72.63
1024 2,486.66 2,964.48 2,547.38

2048 26,245.34 27,082.33 25,748.42

4096 253,705.94| 247,687.54| 244,500.25

8192 2,021,904.59(2,087,273.88|2,164,539.81

59

For the CPU implementation, speed compared to the initial test system is once again

unnoticeable for all except the highest matrix values. At matrix values of 4096 and 8192 the

CPU in System lll, which is one generation newer than the previous onksysliagperformance

increase of up to 20%. This increase is likely due to improvements in data transfer protocols and

bus speeds becoming relevant only at large data sizes.

Table6: GPU Execution System IlI

Execution Time ms Workgroup

Matrix Size 0 64 256 1024
512 3.15 5.39 3.68

1024 27.41 44.75 30.20

2048 331.65 349.38 254.96

4096 3,072.67 2,836.21 2,195.49
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8192 25,304.24 23,421.24 17,857.63 13,260.44

The GPU benchmark on System Il displayed a performance increase over the GPUs in
the previoussystems;this performance increase is attributed to the much newer architecture
inside the NVIDIA GPU, increased frequency and number of processing units.

The GPU timeout error identified earlier was still present initially on the system, however
it could be easily altered within the NVIDIA Nsight control panel, ultimately this issue would be

resolved at software level instead of relying on warkads.

Table7: GPU Speedup Against Baseline

GPU speed-up GPU

Matrix Size System | System I System Il
512 2.4 3.5 19.7
1024 15.5 15.8 72.3
2048 25.7 26.2 140.3
4096 29.6 30.3 161.7
8192 32.7 33 176

Table 7 shows the speedp obtained by targeting GPU devices instead of CPUs,
compared to the CPU baseline on System I, and displays an increase of up to 30 times on a GPU
architecture that is parf the same generation as the CPU and upwards of 170 times for a much

newer and faster GPU architecture.
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4.4.4 System IV

CPU execution on System IV was aimed at determining the performance increase on the

CPU when the number of alable compute units wadoubkd; GPU execution was excluded

since the device was found to dnet-dated

Table8: CPU Execution System IV

Execution Time ms Workgroup

Matrix Size 0 64 256 1024
512 59.45 62.76 58.22

1024 1,779.39 1,853.35 1,794.15

2048 16,716.48 17,343.45 16,108.97

4096 193,401.82 194,583.96 187,702.54

8192 (20 m)1,192,011.20| (24 m)1,467,616.96| (25 m)1,490,003.31

Table8 shows a number of differences comparedidble2, a direct comparison shows a

performance increase between 20% and 120%, however running a comparison based on the best

performing workgroup size of each CPU shows that performance actually varies between 15%

on lower matrix sizes, and 80% at higher masizes.

4.5 Conclusions

CPU performance in parallel heavy applications is influenced more heavily by number of

available threads than it is by the speed of individual u@®RU performance was shown to
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increase with computational size due to the decreasgohct of overhead in data
communication, and the ability to better parallelize execution across more elements.

The OpenCL environment is fragmented, with device vendors implementing platforms
that only function on a certaitlevicesand that are based earious versions of OpenCL. This
hinders the development of fully heterogeneous systems and suggests that the system is not yet
fully mature.

Development effort for architecture porting is minimal for the CPU and GPU architecture
for applications that donot feature device specific optimizationdutomated workgroup
allocations at runtime are not viable unless the targeting multiple types of device simultaneously.

In order to ensure kernel execution without the interference of the GPU watchdog timer
on Windows machines certain modifications must be maidiein the application to ensure that
hostdevice communication takes place at regular intervals regardless of kernel execution
duration. On slower systems, where the kernel execution might take oveedwmuds, the lack
of such a system leads to kernel failure and prevents execution. While this could also be solved
by decreasing the complexity of kernels and increasing their numbers, it would also affect the
performance on faster systems.

Drawing from tle findings of the above work a mudrder tesbench was envisioned.

One that would span hundreds of systems simultaneously, and if successfully implemented,
would alsoexpand the computational capabilities of the Universitidaddersfield. A different
application was desired for this tds¢énch, one that featured better optimizations for GPU
computing, and could tackle the watchdog issues described.allusenew tesbench, and the

application selected for its described in the following chapter.
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Chapter 5: OpenCL framework implementation over HTCondor

Based on promising results from initial testing, together with the existence of unused
GPU resources within the compute infrastructure of the University, a project was proposed to
exploit idle general purpose GREssources for compute applications. A prime candidate for this
was identified in the field of Higirhroughput Computing.

In High Throughput Computing emphasis shifts from job execution rate to discrete job
parallelism, meaning that the speediradividual compute resources is not as relevant as their
number, availability and overall throughput. Prioritising throughput over frequency allows HTC
to exploit opportunistic environments, where the number of available resources is constantly
changing. @e such environment is a University campus, where workstations can be used for
computational purposes when otherwise idle, a process referred to astegtiley. (Livny,

Basney, Raman, & Tannenbaum, 1997)

A tool created specifically for this purpose is HTCondor, a workload management system
for heterogeneous, opportunistic environments. In HTCondor tasks are distributed among
availableresourcesywherethe termresources refsrWR ZRUNV W D W L Bh€en3didfor W KD W K
set period of time. The system incorporates job execution queues, scheduling, prioritization,
resource discovery, and of course, resource management. Another important feature, and one
closely tied to the cyclstealing mechanism, is a dkg@oint system that prevents total work loss
in the event of a workstation being removed from the resource pool, be it due to hardware

failures or idle state being broken by used activity. For example, if a user returns to his
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workstation during job exedon, the job is then migrated to a different workstation. With
applications that support chepbinting, the data loss can be kept at a minimum.

Submitted jobs are matched to resources by using the ClassAd mechanism, a framework
that allows both jobs anthachines to specify requirements and or preferences in regards to
resource allocation. The system actively scans for resource changes, and removes workstations
that have been taken offline, or have not been available for long periods of time.

The Univesity of Huddersfield implements an HTCondor pool, with an approximate
2300 workstations on campus, the resource pool totals at around 7000 CPU cores. However, due
to the opportunistic nature of this system, peak availability is never achieved, withegaitysr
averaging between 700 and 3000 available nodes at any given time. The system is part of the
Queens Gate Grid, the supercomputing resource created to support the research community at the

University of Huddersfield(Gubb, 2013)
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Figure 27: Condensed Path of HTCondor Access

The goal of this research was the integration of the existing GPU resources within the
HTCondor pool, supplementing the existing CPU based implementation without introdnging a
changes that would affect existing emsers. The resulting GPU resources would be used to
supplement the dedicated GPU cluster. Another goal of this was astodye of the
effectiveness, flexibility and easd-use of the OpenCL framework across a hhig
heterogeneous resource pool. The chosen benchmarking application was baseeronrieast
Transforms.

While a significant number of Universities across the UK deploy HTCondor pools within
their campuses, there is limited research output indicating iRipute integration within these

pools.(Gubb, 2013)
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GPU detection within an HTCondor system is facilitated by two -miltletection
softwareapplicationsThese are:
1. CUDA based detection;
- Software detects CUDA complia@PUs, returns device name, memory limits and
core count;
2. OpenCL based detection;

- Software detects OpenCL compliant GPUSs, returns device family and memory.

Relying on a CUDA based approach limits the-aase to only NVIDIA GPUs, and the
built-in OpenCL afjorithm does no return enough relevant information about the existing
resources. For this reason, a different OpenCL program was designed, to poll a target computer
for all available OpenCL devices (be it CPU or GPU) and record information. As OpenCL is
compatible with CUDA devices, there is fragmentation when using it, thus trading platform
specific optimizations for increased flexibility.

Device detection was executed over the live environment, where normally, the
opportunistic environment works agaimsnchmarking or individual node execution. This was
overcome via the use of script based generation for ClassAds, targeting individual machines.
1000 units were randomly selected from the pool to partake in the benchmarking. GPU

discovery is evidenced ihable9.

66



Investigation of Heterogeneous Computing 67

Table9: GPU Landscape

GPU Nr
AMD 5600 g
NVIDIA Quadro Kel0 42
NVIDIA GTX 610 40
NVIDIA GTX 670 75
NVIDIA GTX 750 Ti 77
NVIDIA GTX 970 133
AMD 6500 137
AMD 6400 189
Not detected 209
Total 101}

As can be seen, although the system is very diverse, around 30% of polled machines
failed to execute the GPtktection software. Following a brief investigation it was determined
that a number of machines did not have video drivers installed for the dedicated GPU cards, thus
preventing OpenCL execution. Vendor distribution is even, at around 50% each, notiagcoun
the failed reads. Agewise, the devices are fairly old in terms of GPU architectures, being
released B generations ago. The performance gap between GPU generations is made evident by

the performance graphs showing in this work.

5.1 Fast Fourier Transf orms

It was decided that the previously designed application, for matrix multiplication, was not
optimal for this new testase, and a real world engineering application was needed to more
accurately portrait the performance to be expected within sugdtens

One such application, presented in investigated literatufeegaently used in digital

signal processm is the FasFourier Transform, an algorithm for converting signals for
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representing timelomain signals in frequency domain. The FFT operation can be broken down
into three major stepgBrigham, 1974)

First, a multipoint timedomain signal is decomposed into multiple tidw@mains signals
containing a single point. For example a 16 point signal is decomposed into 16 signals with one
point each. The decompositiggrocess, in this case, takes 4 stagesdmplete, each stage
doubling the number of signals while halving the number of points per signal, thus resulting in 2,
then 4, then 8 and finally 16 signals. Also, the decomposition process is interlaced, meaning that
the signal is split into odd and evenmbered samplesis observed ifrigure 28. Note; this is
generally done via bit reversal sorting, by flipping the binary value of the signal number. The

number of siges needed to complete the operation is equal to the

012345678910111213 1415
02468101214 13579111315

m m
1 1 1 1 1 1
pEOH EHEH OBEH DEHOH

Figure 28. FFT Interlaced Decomposition
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The second step lies in calculating the frequency spectrum for each resulthuptiram
signal.This is the easiest task, as the frequency spectrum of a 1 point signal is equal to itself.

The final, and most complex step, involved combining the frequency spectra generated
into a single spectrum. This is done in the reverse order of the origirahpesition, which in
the example case would be again 4 stages, yielding a 16 point frequency spectrum. The

computational elements required to create these s@getkaown adutterfly calculations

Figure 29: FFT Butterfly Caculation

An application for OpenCL based FFT computatioptimized for GPU execution,
primarily on the AMD architecture, that also support CPU execution for heterogeneous
computing was discovered in the form of the cIFFT librdilyis library offers a geof functions
that can be used to create applications aimed at FFT execution on GPU déii2s2016)

The cIFFT library also offers a benchmark application, called clFFT client, which allows
for the rapid assessment of device performance across multiple environitnisnésthoroughly
designed application that includes device specific optimizations ftn &&U and GPU
architectures. As such it was chosen as the benchmark application, as opposed to designing a

similar application that would serve the same purpose.
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The applicatiorwas compiled from sourc® both allow for the understanding of the
library functionality and to allow further development of FFT applications based on the clFFT

library.

5.2 Benchmark Execution

GPU benchmarking was accomplished over the same live environment as the previous
set, namely over the 700 machines detected as having @@@gonents during. The chosen
application for GPU benchmarking was FBsurier Transform, a computation that is both
widely used in the field of engineering and makes use of the massively parallel GPU
architecture. Each of the 700 units executed sidgteensional FFTs over 17 sizes, with 1000
iterations per size, to ensure benchmark precision. This resulted in approximately 12 million
FFTs, and roughly 28,000 CPU hours. It would take a single computer, fitted with a regular 4
core CPU, more than 3 yeart apnstant work to accomplish this tagkafinoiu, Higgins, &
Holmes, Accelerating Higithroughput Computing through OpenCL, 2016)

When operating in a heterogeneous environment as HTCondor, knowing what devices
are available por to execution is challenging, thus an application aimed at such a system should
incorporate means of dynamically optimizing resource allocation duringmen This however
is being the scope of this work, and as such, the lowest common denominsitosetgawhen
optimizing the application performance.

CPU performance was established for comparison purposes,tandarsl Intel i5 CPU,

as seen irFigure 30. The metric used to measure the performance of the system was the Giga
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FLOP. The formula used to derive the GFLOPs is shown inHA€ondor Related Scripts

section.

1D FFT on CPU
2.5

1.5

GFLOPS

0.5

Intel I5
2n8 271 2014 277 2720 2723

FFT Size

Figure 30: CPU Benchmark

Executed in a controlled environment, the benchmark takes between 60 and 75 minutes
on an average system to complete. On the live environment however, execution duration was
greatly affected by resourceage during the day. This resulted in full benchmarking taking
around 48 hours, with most of the systems being able to complete their work at night. This is due

to having fixed allocations for targeted computers, which is only the case during benchmarking.
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Figure 31: GPU FFT Performance

Detailed performance is showcased in the above chart, with a more detailed breakdown
given below.

The chart shows extremely varied performance across the system, with results ranging
between 7and 180 GFPLOPS of performance. One can observe that with each generation of
GPUs, as evidenced by the release year referendedune 31, performance is increaseg a
significant amount. This becomes more evident as one inspects thesplds and compute
units available in each GPU generation, factors which influence the overall performance of
parallel based computations.

Performanceavise, the newest GPU cartthe NVIDIA GTX 970, is the best performing
GPU, while also being thé®anost used GPU in the pool. Due to university policies, computer

systems are upgraded every few years, leading to a reduction in underperforming GPUs within
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the HTCondor pool. For eraple, the worst performing GPU in the system, the AMD 5600, is
on average 15 times slower than the maximum, but it also only exists in 8 of the 700 computers,
as it is slowly replaced by newer hardware.

However, the University employs a dedicatedPUGcluster for massively parallel
applications like thé=FT, and as such, any new contender needs to be compared against it, in
order to determine its effectiveness. This cluster is comprised of two NVIDIA C2050 computing
processors, these GPUs are purgmsk with parallel computation in mind, incorporating error
correction codes, high memory, and asynchronous,-$pgled, memory transfer. Released in
2010, these GPUs advertise 448 cores operating at 1.15 GHz. In perspective, the GTX 970 cards
advertise 168 cores operating at 1.05 GHRafinoiu, Higgins, & Holmes, Accelerating High

Throughput Computing through OpenCL, 2016)

Figure 322 GPU Cluster Comparison
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As can be seen JRigure 32 HTCondor average performance closely matches that of a

single dedicated GPU card. This however is on anpde basis, meaning that there are hundreds
of more nodes available ddTCondor that on the dedicated cluster, capable of handling GPU
computation.

It can also be noticed that the average performance of NVIDIA GPUs, or better said,
cards newer than 2010, greatly outperforms@265Q A noteworthy mention is that the GTX
970 has twice the compute units of the C2050 while also operating at almost twice the clock
speed.

This benchmark revealed an untapped resource of approximately 30 Teraflops
computational power on just the 700 nodes, extrapolating the results to the 2R{¥st+am
campus, the peak performance of the HTCondor system reaches 90 Teraflops.

OpenCL integration within the HTCondor resource pool has revealed a number of GPU
resources that can be exploited in order to increase system performance for parallelizable
applications. OpenCL has proven to be a highly versatile framework easily adaptable to a highly
heterogeneous environment.

This work has shown that newer generation general purpose GPUs are able to match the
performance of older dedicated GPU resourcksriog a much better price/performance ratio.
However, maximizing performance over a heterogeneous system, such as HTCondor is
extremely difficult, and requires changes to both the application and the system itself. The
OpenCL framework, through its fléility and easeof-use, is a valid candidate for developing
heterogeneous applications over swistems. Aconference paper based on this work was

published with the Emerging Technologies Conference in June 2016, where it received positive
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feedback fromreviewers and peerg(Dafinoiu, Higgins, & Holmes, Accelerating High

Throughput Computing through OpenCL, 2016)

5.3 HTCondor Related Scripts

The HTCondor heterogeneous resource pool was not designed to allow for benchmarking
of individual units inside the pool. As such, picking a set number of units and executing a given
application over each individual unit is not supported by the system, and accomplishing this task
required the use of automation scripts. Also, the computatidiY &-FT executions over 700
computergesults in a large amount of generated files that need interpreting. The 1000 iterations
are managed inside the application, and as such do not count towards the number of generated
files.

Also, the formula used tderive the GLFOP performance of each individuatem, used
by the cIFFT client is

).125L :>=MPOEVAWU@EIAJAEKUMHK@ EIAJQAEKVAKCE;;;;
srrrrrrUS=HHPEIA

Where 5 is a catant for real FFTs calculations, and walltime is the duration of the

execution(AMD, 2016)

5.3.1 Condor Individual Unit Execution

In order to ensure that applications execute on each of the 700 targeted units only once,
no matterhow many are available or how many times the job is restarted, the only solution

identified was by demanding from HTCondor a specific machine for each job.
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As such a script was written, this scripted created diljelio be submitted to HTCondor
based a each line within a predefined file. This file contained the hostname of each of the 700

computers on a separate line. This script was written for the Linux shell environment used on

HTCondor|Figure33

Figure 33: Shell Script for Execution

The above script contains all the standard job parametesis HTCondor job (minus
architecture requirements, for simplicity) and as can be seen creates and queues a job iteration
for each machine, asking that the output file resulting from the said job be named after the

executing machine. This generated oufpatcontained the 17 executed FFT outputs.

5.3.2 Individual Machine Benchmarking

It can be noted iffrigure 33|that the executable passed to HTCondor is not the elFFT

client application, but rather a batch script written for windows. This script executes 17 different
instances of the application each with different parameters. The arguments passed were related to
the size of the computed FFT, the number of iterationsthenchosen device architecture, and

the secalled batch size, which reflected the size of the used arrays, similar to the workgroup size
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used in the Matrix Multiplication benchmark.is worth mentioning that maximum batch size

was determined by a mix afsed FFT size and device memory, leading in lower batch sizes

being used for larger FFTs. Not#ie batch script also executed the application with an argument

that returned the name of the targeted device, in order to determine what type of GPU executed

the application.

Figure 34: Fragment of Windows Batch File

5.3.3 Data sorting and processing

The resulting data was processed and sorted on the development machine, using a batch

script and a python script. The batch script moved all files relevant to an FFT size into an

intermediate folderand therexecuted the python script for that folder,dogy the output into a

separate fileand thenmoving the files from the intermediate folder to a separate location for

storage. This was iterated for each FFT size, and resulted in 17 files containing only the relevant

timing information needed for benttarking

Figure35

The remaining files the ones containing

the device name. They were moved to a separate file.

Performance sorted by GPU device used was retrievehux, using the GPU names to

GHWHUPLQH ZKLFK ILOHV WR WDUJHW WKHQ WKH 3JUHS  FRIF

GFLOPS.
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Figure 35: Python Script for Data Sorting
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Chapter 6: OpenCL FPGA Acceleration

The FPGA, introducedn a previous chapter, is a type of integrated circuit designed
specifically to be altered after manufacturing. The FPGA is based on configurable logic blocks
FRQQHFWHG YLD SURJUDPPDEOH LQWHUFRQQHRWYD PP IOHEDH "I
elemant of the FPGA, altering the design after manufacturing.

Over the past years FPGAs have found their way into many different markets, from
image processing to networking, from audio applications to aerospace applications, the
versatility of the FPGA and ¢hmuch lower development costs associated with its usage have
allowed it to flourish.

FPGAs come in many different shapes and sizes, depending on their intended purpose.
Those relevant to networking industries come in #&dunted chasings with network
connectivity and increased RAM. Those dedicated to image processing may come wkEa PCI
format, and could lack network connectivity entirely. And while all these FPGAs are different,
in terms of I/O connections, memory, and size, they are all programntieel $ame way. This is
because the lovevel allocations on the actual chip are handled by the compiler. The user is able
to make lowlevel allocations to further tune and optimize the device, however it is not
mandatory. From a programming perspective, BPGA is like a blackboard; the user draws
upon it the schematic of the desired design, making sure not to exceed the size of the board.
Alterations to the design are possible, and as easy as wiping chalk off the board. However, unlike

the blackboard, wish can only be used to prototype a design, the FPGA allows for the full
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implementation of the system, and further functional testing and red€Bighnoiu, FPGA
Based Implementation of Offset PPM, 2015)

The FPGA takes a patal approach to instruction execution, limited by the amount of
logic blocks and interconnects available. Whereas a CPU is only able to execute one instruction
at a time, or a small number of them on a medtie CPU, the FPGA is able to spawn as many
proasses as it can fit within its size for the desired task.

One of the main drawbacks of using FPGAs, especially for computational purposes, has
been the steep learning curve of the HDL environment, as well as the need for a parallel
approach to computing-his is why this chapter aims to investigate the usability of the OpenCL

framework for FPGA design.

6.1 Hardware Description Language

VHSIC HDL, or VHDL for short, is a hardware description language used to describe
digital or mixedsignal systems in electrimn design. Unlike more familiar programming
languages which run instructions sequentially, VHDL runs operations in parallel, making it a
dataflow language. Parallel execution is done via the use of processes that are able to run
independently of onanothe, being executed when a predefined criteria is met. VHDL allows
for the text description of a logic circuit which is then synthetized, simulated and placed onto a
chip to create a working design. Being an IEEE industry standard for FPGA programming,
VHDL is easily ported between different FPGA devices, given viable hardware configurations.

(Pellerin, 1997)
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One of the main disadvantages of using VHDL is the design complexity of projects, since
VHDL is not as higHevel alanguage as C/C++. There are also many different software
development kits offered by FPGA manufactures, each utilizing a completely different set of
tools, and features, that further encumber the design process. Also, because the FPGA targets a
more nichemarket than conventional programming languages, there is a lack of available
instructions on the use and optimization of FPGA designs, with many designs being offered as

ready to use Intellectual Properties.

6.2 Altera SDK for OpenCL

Because of the way an BA is designed, the approach to using OpenCL to program it is
not as straightforward as the ones for GPU or CPU. This is because prior to being designed with
a task in mind the FPGA is a blank slate, as such unable to be exploited for computational needs.
In order to program, or flash, the FPGA to be used as an OpenCL accelerator, a compiler is
needed to turn OpenCL kernel code into the binary coded used to flash the (AR&A, 2011)

Altera, being one of the leading FPGAved®pers, as well as one of the founding
members of the Khronos group, developing OpenCL, offers a SDK for OpenCL, known as
AOCL, to allow for the creation of FPGA based OpenCL applications. In essence, the SDK is
easy to use; it simply takes an OpenClLnledicode and converts it into a file that can be used to
flash the FPGA so that it can be used as an accelerator.

The OpenCL SDK uses its own OpenCL calls in the host and kernel code, since the
FPGA operates differently from previously discussed systems. Also, FPGA design greatly

benefits from properly optimized algorithms due to its much higher compute unit cotera Al
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OpenCL designs are based on the Alggacific " XWLOV K~ OLEUDU\ UDWKHU WKD
The utils library is not a staralone implementation of OpenCL, but rather a set of functions
specifically created for FPGA use that sit on top of tper@@L library.(Altera, 2011)

The Altera OpenCL SDK, unlike CPU or GPU OpenCL SDKs is not free, following the
trend in FPGA development environments, which are not inherently available to the general
public, making FPGA OpenCdevelopment more of a niche market than the FPGA one. The
SDK is however offered for free as part of the Altera University programangewas acquired
towards the end of the projecHence, data gathered for the FPGA development and
benchmarking sections limited; a more detailed and-depth research will be conducted as part

of future work.

6.2.1 Altera Offline Compiler

The AOC is used to compile .cl kernel codes into hardware configuration file, containing
the FPGA image to be used in a binary formatsTikiused by the host, at runtime, to execute

the kernel applications. The AOC generates the files needed to program the FPGA and execute

the kernel application during runtinfgigure 36| (Altera, 2016)
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Figure 36: AOC Flowchart

The AOC employs two types of compilation; a estep compilation for simple kernels
that feature minimal compiler optimizations. It is semple procedure involving a single
command that generates an .aoco file containing intermediate information and used in generating
the next file, the .aocx. This second file contains the binary for the hardware configuration of the
FPGA and is used by theost during runtime to create and execute the kernels on the device. A
subfolder is generated along with the two files contains a number of intermediary files used to
create the final hardware binary. A log file is also created containing the estimsbedces

usage within the FPGA.
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The multistep compilation is used in more complex kernels, which can greatly benefit
from optimizations. The first step assumes the form of an intermediate compilation, which
checks for syntax errors, then creates the .&tecwithout generating the hardware binary for it.
This step also generates the log file showing estimated resource usage.

Second, the functionality of the OpenCL kernel can be emulated on one or multiple
emulation devices to locate any existing fundliloerrors. Third, the resource usage of the
OpenCL kernel on the FPGA can be reviewed to uncover possible optimizations to hardware
resource usage.

Profiling, allows the introduction of performance counters into the .aocx file. These
functions measure peermance during runtime and can be interpreted using the Altera Profiler to
further optimize the application.

Once all desired steps are achieved, the final application can be compiled from the .aoco

file to generate the desire .aocx.

6.2.2 Application porting

In order to function with the AOCL, any OpenCL design targeting Altera FPGAs benefits
from using the libraries released by Altera for this purpose reason; which add number of features
to the base OpenCL library.

For example, the opencl.cpp file shipped Aljera together with an OpenCL example
design contains both functions that are relevant to application design, such as error checking,

profiling, or waittimers, but also a number of Altera specific functions for memory allocations,

.aocx interpretationand memory cleanp. In|Figure 37| memory buffers are created for two
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input matrixes, these are allocated into the FPGA memory on two separate banks, which

increases @mory bandwidth during data transfers.

Figure 37: Custom Memory Region Targeting

These libraries ensure faster development of FPGA based OpenCL applications at the
cost of encumbering crogdatform design. It was shown in a pr@vs chapter that with minimal
changes an OpenCL application could be changed between targeting CPUs and GPUs; however
the FPGA implementation requires a much more complex redesign. Despite this, the FPGA
segment could be implemented alongside the fornagr, tin order to create a unified,

heterogeneous application.

6.3 DE1 Systemon-Chip

The FPGA platform chosen for the development and benchmarking of OpenCL based
applications was a development kit aimed at university use known as the DE1 -Sg<tinip.
This small development board features an ARM CPU paired with an ALTERA FPGA designed

for embedded application@lerasic, 2016)
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Figure 38 DE1 SoC Development Board

The device includes multiple featunesended for user input during rdime, embedded
system operation as a standalone computer, and expansion slots, however these features are

beyond the scope of this work and as such are not explored further.

6.3.1 Setup

Before software development began, the SoC wasumseor OpenCL execution,
connected to a PC for commapdssing, and tested for functionality.

Given that the FPGA is controlled by the embedded ARM CPU, an operating system
must is required to control lahctions on the board. Prior to initial stap of the device, the

FPGA configuration mode must be defined using théaard via the MSEL pins.
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There are three modes in which the FPGA can be configured; first, the FPGA is
programmed using the dsoardflash memory. This is used when programming the FPGA from
a host computer using the Altera Programmer. Second, the FPGA is programmed using-the built

in processor, referred to as a Hard Processor System, or HPS running a Linux OS with a

command line intéace,|Figure 39| The third and final configuration mode is similar to the

second, in the sense that the FPGA is once again programmed via the HPS; however this mode is
set when using much larger Linux OS images that feature desktop environments as opposed to

the CLI.(Terasic, 2016)

Figure 39: MSEL Position for Linux with CLI

For this experiment, the second dgofation mode was chosen, using the BEIC
Linux Console image that was burned onto an external flash memory card.
Connection to the board was established using a USB port through a serial connection

managed by the PUTTY softwjﬂéigure40 Once powered on, the system boots the Linux OS

and can be controlled via the serial connection.
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Figure 40: Serial nnectionThrough PUTTY

The Linux image of the DE$oC comes with two demo applications preinstalled. While
not in any way compute intensive, these two applications serve as a straightforward method to
test the functionality of the OpenCL environment.

Prior to exection, the user must initiate the OpenCL environment, loading the OpenCL

driver and the environment variables pointing to the OpenCLtinum library on the system.

Thisisdoneviaaprée QVWDOOHG VFULSW |Fgu@OdHG SLQLWBRSHQFO VK~

Figure 41. Contents of init_opencl.stcipt
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Before executing the OpenCL application of choice, the FPGA must be programmed with
the binary file generated by the AOC for said application. The AOCL is invoked for this purpose
XVLQJ WKH FRPPDQG DRFO SURJUDP GHY P RQetdd 5BGALFDWLF

and the .aocx file is the used binary. Following this step, the targeted host executable can be run

for OpenCL executioffrigure4?2| (Terasic, 2016)

Figure 42 FPGA Programming and Vector Addition Demo

Having determined that the device functions as expected, the next step is installing the
relevant development hardware on the PC.

The AOCL isbundled together with the Quartus software, in this case version 14.1,
which is recommended for the DESDC. Installation of the software is straightforward and will
not be detailed in this work. Once the software has been installed, the user has ® set th
environmental variables for the AOCL. These variables point to the AOCL installation and the
board support package for the targeted FPGA.

Applications are designed in the same manner as CPU and GPU ones, using, in this case,
the Visual Studio environmgrhowever compilation of the two required files, host and kernel, is

significantly different.

89



Investigation of Heterogeneous Computing 90

The AOC is used to turn the kernel code into a hardware configuration file, through the
commanedine interface. The practice is straightforward however the ptlation process is
resource demanding and time consuming. The compilation process will be detailed in the
following section.

The hostcode needs to be compiled for the ARM processor, as a Linux executable.
Fortunately, the Altera software comes with ambedded Linux environment through which a

Linux executable can be cressmpiled on Windows by using the MAKE software.

6.4 Benchmark Application

The chosen benchmarking application for the SoC board was once again based on Matrix
Multiplication. However, rther than modifying the existing CPU/GPU application, this
implementation was based on a similar design offered by Altera used in benchmarking much
larger FPGA devicegAltera, 2015)

Because of this, the design had to be redua size and complexity in order to fit onto
the FPGA. This design change was similar to the batch method used in the FFT implementation;
however, since it affects the kernel code as well as the host, it cannot be alteretina¢ asit
is used in geerating the hardware configuration binary. As such, two variations of the
application were created, one based on block sizes of 16 and 8. The initial version of the

application, with a block size of 64, reported an estimated resource usage that exceieded de

capabilities, seen JRigure43
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Figure 43: Usage Estimation Report for block 64

Figure 44. Usage EstimatiofReportfor block 16

The application included accuracy testing, where the application was executed on the

CPU after FPGA execution and results were compgraglyre 45 This feature was used in

initial execution of the application, on small matrix numbers however it was removed from the
benchmark version because the embedded CPU was struggling to complete the larger matrix size

executions.
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Figure 45. Reference Computation Executed on the ARM CPU

Application complexity was further reduced by removing the buitiptions feature and
replacing it with a single external parameter which determined matrix size, in tone with the
previous Matrix Multiplication application.

The application was initially created to target multiple FPGA devices at the same time,
WKURXJK WKH LQWURGXFWLRQ RI 3IRU" ORRSV LQ WKH KR

maintained, to be used in futun®rk.

6.5 Execution

The fully compiled application, composed of two files, thimux executable and
hardware configuration binary were transferred onto the SoC board via flash storage.
Programming the FPGA with the Matrix Multiplication hardware binary was done first, as it
would remain unchanged until the device was powered down, offfexredt binary was
programmed in its place. The Linux executable was ran through a script calling it with different
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external parameters for matrix sizes multiple time, with the resulting output being written to a

separate file for interpreting. Executiasults are shown |ifable10

Table10: FPGA Execution Time

Execution Time ms Workgroup Partition

Block Size 16 Block Size 8 Block Size 8
Matrix Size Workgroup 8 Workgroup 4 Workgroup 2
512 32.38 30.73 58.51
1024 265.91 245.671 466.84
2048 2,083.45 3,830.81 4,041.5
4096 16,608.05 57,556.30 45,898.44
5600 41,888.51 49,716.25 76,312.36

It can be observed that overall, higher block sifd to increased performance.
However for very small values the much smaller block size proves to be faster due to less
overhead communication. For the above ienpéntations, block size 16 exploited the FPGA
resources to the fullest of their potential.eTéther two implementations used around 50%, and
30% of available logic.7KH SHUIRUPDQFH GRHVQYW KRZHYHU VHHP WL
used, leading to the assumption that there is still optimization work to be done to the compiler.

The execution the noted in redppears to represent a bug tbaty affects the 4096
valueon block size 8, workgroup size Bor unknown reas@nperformance on that matrix size
is heavily impacted. The values immediately above and below it (4088/4104) both execute in 2
of the time showmabove Debugging of the implementation in order to determine the actual

cause of the impacted pemfisance was not executed due to time constraints
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Unfortunately there is not enough memory on the FPGA device to execute matrix sizes of
8192x8192. The execution duration of the FPGA execution is up to 20 times faster than the CPU
execution, however it does not match GPU performance. However, this device was not intended
for computational performance, but rather functional testing and expatation. It is also worth
mentioning that as a SoC solution, the power consumption is greatly reduced, most likely leading
to equivalent or better performance than the two other architectures when compared in terms of
computational power per watt.

A preliminary measurement of the SoC power consumption was exleduting the
block 16 executions, in order to provide a stepstame for further work in this area. These

measurements are showcased below.

Figure 46. SoC PowerConsumption

94



Investigation of Heterogeneous Computing 95

6.6 Conclusion

It is shown in this chapter that FPGA based development of OpenCL applications is not
only possible, but also a viable solution for achieving computational sgeéal applications
that can benefit from heavy parallelisatiofihe application development when using the
OpenCL framework was shown to be both straightforward, and highly similar to applications
WDUJHWLQJ RWKHU DUFKLWHFWXUHV LQ 2SHQ&/ %DVHG RQ !
using the OpenCL framework foedeloping FPGA applications is much less ticomsuming,
while also enabling for rapid and straightforward improvements to the developed application at
any point after development. The OpenCL framework also opens up the FPGA architecture to a

much larger pol of developers since it does not involve a tedious learning process for HDLs.
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Chapter 7: Further Research

A continuation of this work could seek to include the newest introduced architecture in
high-performance computing, that of the matgre systems, like thentel XeorPhi. Systems
such as this ondhat include a high number of compute units could greatly befmefit the
OpenCL framework.

During this work, a number of applications were created for system benchmark across
multiple architecturesand although these applications were based on similar algorithms, they
existed as separate entities. While this allowed for a better understanding of how each
architecture functions, creating a single application, containing functionality for each ymity t
either individually or together, should be the next goal within this topic. Work toward this goal
could alsodetermine the best approach to heterogeneous programming, creating a single kernel
code to be compiled at rithme or multiple binary files, e for each architecture type or sub
type.

All applications used in this work were based on the OpenCL 1.2 version; however the
latest version is 2.2. It is expected that utilizing these newer stEndeould increase
performance while decreasing comptgxand development time. However, due to the slow
adoption of these standards by manufacturers, OpenCL is fragmented across devices, similar to
the fragmentation of the Android OS platform. As such developing applications based on
standards that are nottysupported by all targeted architectures seems counterintuitive. Future
research could determine whether the benefits of using newer OpenCL standards outweigh the

cons.
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The University of Huddersfield, like many other institutions like it, makes use of a
number of Digital Signal Processor devices as teaching tools. Since DSPs are advertised as
specialized accelerators that OpenCL can target, attempts could be made at determining the
computational benefits of integrating them as part of more robust hetemgesystems.

The power measurements presented within this work are very limited in both scale and
complexity; however more idepth research is needed to determine the actual-speaidusing
FPGA devices as computational accelerators alongside CRU&RUs. To this end, a much
more comprehensive test environment needs to be used, one that can accurately measure the
power usage of both the accelerator device and the complete system required to operate it.

This work has shown that FPGA devices are ablenatch and surpass CPU devices,
while requiring a fraction of the power and storage space. Based on the findings of this work,
and the inital power measurements, a future study was planned, to determine the feasibility of
implementing FPGA devices asanp of the HighPerformance Computing environment. This
could be either as extensions to current hardware, by integrating E€Vices, or as separate

standalone resources in the form of a SoC FPGA resource pool.
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Chapter 8: Summary and Conclusions

This work focised on investigating the efficiency of the OpenCL development
framework and environment in conjunction with heterogeneous systems, mainly, exploiting the
massively prallel architectures of GPU$PGAS or High-Throughput SystemsThe work
covered the devepment of OpenCL applications aimed at benchmarking the performance of
accelerators within heterogeneous systems, portability across different devices and platforms,
and design methodologiek. was shown through several different implementations and test
benches that through the OpenCL framework a large number of specialised resources can be
exploited to increase computational performance without significant development time trade
offs.

Another outcome of the project has bdlea integration of OpenCL baséahctionality
within the HighThroughput Computing environment at the University of Huddersfield,
exploiting already existing hardware for General Purpose GPU computing. Exposing the
dormant resources alable in the HTCodor pool offerednot only increasg system
performance but alstacilitated theexpansion othe user and application base by allowing for
the introduction of much more complex applications within the HTCondor pRedulting
evidence from this work has ®hn that the OpenCL platform offers a reliable solution for
targeting large, heterogeneous systems, such as ithd$€Condor. Platform portability was
demonstrated through the seamless execution of the applications across the varied architectures
present in the resource pool.Platform specific optimisations are not omitted; their

implementation however is left to the judgement of the user/develdper.results of this
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investigation lead t@ peeireviewed publication athe Emerging Techrnogies conferene in
Barcelona. One of the main discussion points during the conferenceofti@are sustainability,
where interest was shown in both the OpenCL framework, for its platform portability, and the
HTCondor for its use as a pool managertfeterogeneous dedited resources.

The investigation also focused on the FPGA based OpenCL SDK in order to determine
the effectiveness of OpenCL programming in reconfigurable computing, the portability of
OpenCL applications from CPU/GPU to FPGA, and the development effaived in setting
up FPGA based OpenCL applicatiomslthough limited in size and scope, results have
nonetheless shown that the OpenCL framework has reached the level of maturity needed to allow
for the implementation of applications targeting FPGRssulting output shows the potential of
FPGAs; however more idepth research is required to determine the performance gain of the
system, not just from a speeg perspective but also by investigating the power consumption,
acquirement cost, and sustaindiil

Three research questions were posed in the introduction chapter; the aim of this work has
been to offer answers, both through literature research and experimental findings.

The first of these questions was related to the maturity of heterogeneterassjsr use
in computational tasks. It is concluded, based on reviewed literature of current work done in the
field and demonstrated performance increase in specialised accelerators, that heterogeneous
computing has reached a sufficient maturity as teero# promising environment for the
computational environment, and warrant a change traditional CPU based computing.

The second questions regarded the feasibility of integrating heterogeneous systems in

HPC resources through the OpenCL framework. Baseti@successful implementation of the
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HTCondor upgrade, the obtained benchmarking data, and the resulting publication, it is inferred
that the OpenCL framework is a viable solution for the integration of heterogeneous computing
resources in HPC clusters.

The third research questiomnd topic, sought to determine the usability of the OpenCL
framework in conjunction with FPGA architectures for the development of computing
applicationslt is evidenced, through both research into the functionality of theaA@penCL
SDK, and the benchmarking implementation on the {3BC device that the OpenCL
heterogeneous platform can be successfully used to implement FPGA specific computational
applications. The FPGA device used in this work is shown to be faster thangbtgated CPU
units, however not on par with the GPU devices. It is assumed that once power efficiency is
introduced as a component of the system benchmark, the performance gain associated with
FPGA usage will become more pertinent.

Based on theesearch, results, findings, and outcomes of the above work, it is concluded
that all original aims and objectives have been achjesed that a solid groundwork for future
research and development, especially on the topic of FPGA based computatiolesibtace

has been established.

100



Investigation of Heterogeneous Computing 101

Chapter 9: References

Aldec. (n.d.). High-Level Synthesis and VerificationRetrieved 06 2016, from
https://www.aldec.com/images/content/products/cyberworkbench_hires _1660.jpg

Altera. (2007)Accelerating HighPerformance Computing With FPGANtera.

Altera. (2011)Implementing FPGA design with the OpenCL standAlidra.

Altera. (2013)Radar Processing: FPGAs or GPUSRera.

Altera. (2015). Matrix Multiplication Design Example. Retrieved 05 2016, from
https://www.altera.com/support/suppoeisources/desigaxampes/design
software/opencl/matrixnultiplication.html

Altera. (2016). Altera SDK for OpenCL programming guideRetrieved 2016, from
https://www.altera.com/en_US/pdfs/literature/hb/opencl
sdk/aocl_programming_guide.pdf

AMD. (2014). OpenCL 2.0 Device Enqueue Retrieved 06 2016, from
http://developer.amd.com/community/blog/2014/11/17/op@r@deviceenqueue/

AMD. (2014). OpenCL 2.0 Shared Virtual MemoryRetrieved 06 2016, from
http://developer.amd.com/community/blog/2014/10/24/op@rsthareavirtual-memory/

AMD. (2016). CIFFT. Retrieved 02 2016, from github.com:
https://github.com/cIMathLibraries/clIFFT

Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU
and CPU in image processingternational conference on field programntalogic and

applications, (pp. 126131).

101



Investigation of Heterogeneous Computing 102

Bodily, J., Nelson, B., Wei, Z., Lee, D., & Chase, J. (2010). A comparison study on
implementing optical flow and digital communications on FPGAs and GRQM
Transactions on Reconfigurable Technology and SygfERETS) 1-22.

Bodily, J., Nelson, B., Wei, Z., Lee, D., & Chase, J. (2010). A Comparison Study on
Implementing Optical Flow and Digital Communications on FPGAs and GRUM
Transactions on Reconfigurable Technology and Systems (TREXS)

Brigham, E.O. (1974).The fast Fourier transform (Vol. 7Englewood Cliffs: Prenticélall.

CMSoft. (n.d.). Retrieved 06 05, 2016, from
http://www.cmsoft.com.br/tutorialOpenCL/schemehostdevices.png

Dafinoiu, A. (2015) FPGA Based Implementation of Offset PRMiversity of Huddersfield.

Dafinoiu, A., Higgins, J., & Holmes, V. (2016). Accelerating Hibhroughput Computing
through OpenCLEmerging Technologies Conferen@ep. 4649). Barcelona.

Embedded.com. (n.d.Retargeting embedded software stacks for ntamg systemsRetrieved
06 2016, from
http://m.eet.com/media/1176760/rti%20man%20ycore%20fig%203%20500.jpg

Fang, J., Varbanescu, A. L., & Sips, H. (2011). A comprehensive performance comparison of
CUDA and OpenCL2011 International Conference on Parallel Preseng, (pp. 216
225).

Fykse, E. (2013)Performance Comparison of GPU, DSP and FPGA implementations of image
processing and computer vision algorithms in embedded systestsnheim: NTNU.

Garland, M., & al., e. (2008). Parallel Computing Experiences GiiDA. IEEE Micro, 13-27.

102



Investigation of Heterogeneous Computing 103

Gubb, D. (2013)Implementation of a condor pool at the university of huddersfiélod.ersity
of Huddersfield.

Intel. (n.d.). Retrieved 06 2016, from http://cdn.wccftech.com/wp
content/uploads/2015/02/intel_10nm_par€lpy.png

Kalinov, A., Lastovetsky, A., & Robert, Y. (2005). Heterogeneous computirigarallel
Computing 649652.

Khronos Group. (2016)he first open standard intermediate language for parallel compute and
graphics Retrieved 06 2016, from https://www.khrorarg)/spir

Livny, M., Basney, J., Raman, R., & Tannenbaum, T. (1997). Mechanisms for high throughput
computing. SPEEDUP journgl|36-40.

Mazsola. (n.d.).Field Programmable Gate Arrays (FPGARetrieved 06 2016, from
http://mazsola.iit.unmiskolc.hu/cae/qgi#igl_6.qif

Microsoft. (n.d.). Timeout Detection and Recovery (TDRRRetrieved 06 2016, from
https://msdn.microsoft.com/ams/library/windows/hardware/ff570087(v=vs.85).aspx

Owens, J. D. (2008). GPU ComputifRyoceeding of the IEEEB793899.

Pellerin, D.T. (1997).VHDL made easyUpper Saddle River: N.J: Prentice Hall.

Perez, B., Bosque, J., Stafford, E., & Beivide, R. (2016). Energy Efficiency Evaluation in
Heterogeneou€merging Technologies Conferen@ep. 5053).

Schaller, R. R. (1997Moore's law: past, present and futuEeEE spectrum5259.

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for

heterogeneous computing syste@emputing in science & engineeringg-73.

103



Investigation of Heterogeneous Computing 104

Terasic. (2016, 08). DE1-SoC Uer Manual. Retrieved 08 2016, from
http://www.terasic.com.tw/cgi
bin/page/archive_download.pl?Language=English&No=836&FID=3a3708b0790bb9c72
1f94909c5ac96d6

Tessier, R., Pocek, K., & DeHon, A. (2015). Reconfigurable computing architectures.
Proceedings of #n IEEE 332354.

Top500. (2016, 06). June 2016. Retrieved 06 2016, from Top500.o0rg:

https://www.top500.org/lists/2016/06/

104



Investigation of Heterogeneous Computing 105

Chapter 10: Appendix

List of files included on portable medium

1.

2.

8.

9.

OpenCL Device Detection C Cdtxecutabléimproved version);

Matrix Multiplication Host CodéExecutabld using external parameters);

. Matrix Multiplication Host Codéexecutabld using user prompted commands);
. Matrix Multiplication Kernel Code;

. FFT Client Source, as retrieved frq@gMD, 2016);

. FFT Client Compiled(with batch spt);

. FPGA Matrix Multiplication Host Code(with modifications);

FPGA Matrix Multiplication Kernel CodéAltera, 2015)

FPGA Matrix Multiplication Compiledriles

N.B: The Matrix Multiplicationkernel code (%is also present wh the exectable in(2 & 3).
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