University of Huddersfield Repository

Li, Xuan, Yap, Y. F., Goharzadeh, A., Chai, John and Zhang, M.

Modeling of Two-Phase Flow with Deposition in Vertical Pipes

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/30979/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Modeling of Two-Phase Flow with Deposition in Vertical Pipes

X. Li, Y.F. Yap*, A. Goharzadeh
Department of Mechanical Engineering
The Petroleum Institute
Abu Dhabi, UAE
*email: yfatt@pi.ac.ae

J.C. Chai
Department of Engineering and Technology
University of Huddersfield
Huddersfield, UK

M. Zhang
School of Energy and Power Engineering
Nanjing University of Science and Technology
Nanjing, P.R. China

Abstract—Deposition is found in many engineering processes, such as the asphaltene deposition in oil pipelines/wellbores, and biological and chemical foulings in pipes or heat exchangers. These deposition processes usually occur in a two-phase flow environment. This study develops a model for two-phase flow with deposition in vertical pipes. The model consists of three modules: Fluid Transport, Particle Transport, and Particle Deposition. The Fluid Transport module predicts the fluids’ velocities and pressure. The Particle Transport module calculates the particle distribution. The Particle Deposition module models the actual attachment of particles onto the wall. The model is verified against a few limiting cases with analytical solutions. Then, it is validated against experimental data for two-phase flow without deposition. Demonstration of the model for bubbly flow with deposition is performed.

Keywords—deposition; two-phase flow; model

I. INTRODUCTION

Deposition is a common phenomenon found in many industrial processes. For instance, asphaltene, wax or hydrate deposits in oil pipelines or wellbores, biological and chemical foulings in pipes or heat exchangers, etc. These deposition processes are very complex since they usually occur in a two-phase flow environment, e.g. asphaltene deposition in oil-water or oil-gas flow and foulings in phase change liquid-vapor flow in the heat exchanger. For deposition to be enhanced, prevented or controlled, a good understanding of the deposition processes is required. Modeling work plays an important role in understanding and predicting these processes. Nevertheless, modeling is challenging because of the presence of moving interfaces between the two fluids and between the fluids and the deposit. The fully coupled nature of deposition process in two-phase flow has not been explored sufficiently in the existing modeling work [1].

In these deposition processes, the domain of interest contains three phases, i.e. two fluids and particles. Generally, the modeling framework consists of three modules: (1) Fluid Transport module, (2) Particle Transport module, and (3) Particle Deposition module. Fluid Transport module describes fluids flow, i.e. velocities and pressure. It is usually modeled as homogeneous [2-5] or separated [6-15]. Particle Transport module predicts the particle distribution in the pipe. It can be modeled by Lagrangian approach [16] and Eulerian approach [17-19]. Particle Deposition module models the actual attachment of the particles onto the fluid-deposit interface (as shown in Fig. 1). There are mainly three approaches by employing: (1) a critical length [20, 21], (2) a sticking probability theory [22-24] and (3) an m-th order deposition reaction [25, 26]. In the existing literature, modeling works on two-phase flow with deposition is not actively pursued. There are very few published studies in this area [27-30].

This article presents a model for two-phase flow with deposition. The model intends to integrate the above mentioned three modules together in a fully coupled manner.

II. PROBLEM DESCRIPTION

Fig. 1. Deposition in a two-phase flow in a vertical pipe.

Fig. 1 shows two immiscible fluids (i.e. fluid 1 and fluid 2) flowing up in a vertical pipe. Fluid 1 carries solid particles. These particles gradually deposit onto the fluid-deposit interface to form a deposit layer. As a result of deposition, the fluid-deposit interface evolves and the deposit layer grows reducing the flow area. The velocities and pressure change correspondingly. Since the particles are consumed during the deposition process, the particle concentration decreases.
III. MATHEMATICAL FORMULATION

A. Assumptions

(a) One-dimensional flow.
(b) The two fluids are immiscible.
(c) The two fluids share the same pressure.
(d) Only fluid 1 carries particles.
(e) Particles do not interact with each other.
(f) Deposit is rigid and immobile.
(g) Diffusive transport along the pipe is small compared to convection and therefore neglected.

B. Fluid Transport

The mass conservation equations for the particles, fluid 1 and fluid 2 are respectively

\[\frac{\partial}{\partial t} (\alpha_i \rho_i) = \dot{M}_i \alpha_i \] (1)

\[\frac{\partial}{\partial t} (\alpha_i \rho_i) + \frac{\partial}{\partial x} (\alpha_i \rho_i u_i) = -\dot{M}_i \alpha_i \] (2)

\[\frac{\partial}{\partial t} (\alpha_i \rho_i) + \frac{\partial}{\partial x} (\alpha_i \rho_i u_i) = 0 \] (3)

where \(\alpha_i \), \(\rho_i \), and \(u_i \) are the volume fraction, density, and velocity respectively. \(\dot{M}_i \) is the deposition rate. The subscripts '1', '2', and 'd' represent fluid 1, fluid 2, and deposit, respectively. Note that \(\alpha_1 + \alpha_2 + \alpha_d = 1 \) (4)

The momentum conservation equations for fluid 1 and fluid 2 are respectively

\[\frac{\partial}{\partial t} (\alpha_i \rho_i u_i) + \frac{\partial}{\partial x} (\alpha_i \rho_i u_i u_i) = -\alpha_i \frac{\partial p}{\partial x} - F_{w1} + F_{d1} - \alpha_i \rho_i g - \alpha_i \dot{M}_i u_i \] (5)

\[\frac{\partial}{\partial t} (\alpha_i \rho_i u_i) + \frac{\partial}{\partial x} (\alpha_i \rho_i u_i u_i) = -\alpha_i \frac{\partial p}{\partial x} - F_{w2} - F_{d2} - \alpha_i \rho_i g \] (6)

where \(p \) and \(g \) are respectively the pressure and gravitational acceleration. \(F_{w1} \), \(F_{d1} \), \(F_{w2} \), and \(F_{d2} \) are the interfacial forces between the wall and fluid 1, the wall and fluid 2, and between two fluids, respectively. These are flow patterns specific [31].

C. Particle Transport

The species conservation equation is

\[\frac{\partial}{\partial t} (\alpha_i C) + \frac{\partial}{\partial x} (\alpha_i u_i C) = -\dot{M}_i \alpha_i \] (7)

where \(C \) is the particle concentration.

D. Particle Deposition

The deposition process is modeled as an \(m \)-th order deposition reaction [32] with the deposition rate expressed as

\[\dot{M}_d = k C^m \] (8)

where \(k \) is the deposition rate constant and \(m \) is the deposition reaction order. In this article, \(m \) is set to 1.

IV. NUMERICAL METHOD

Equations (1), (2), (3), (5), (6) and (7) can be written in the form of a general transient convection equation as

\[\frac{\partial}{\partial t} (\rho \phi) + \nabla \cdot (\rho \vec{u} \phi) = S_\phi \] (9)

where \(\rho \) is the appropriate 'density', \(\phi \) is the variable of interest, \(\vec{u} \) is the velocity vector and \(S_\phi \) is the source term. This equation is solved using a finite volume method on mesh shown in Fig. 2 (the pipe is drawn horizontally for presentation). The velocity-pressure coupling is solved via a two-phase SIMPLER algorithm [33] with modification to account for the growing deposit layer.

D. Solution Algorithm

(1) Specify the initial and inlet boundary conditions.
(2) Advance the time step to \(t + \Delta t \).
(3) Calculate \(p \), \(u_1 \), and \(u_2 \) (two-phase SIMPLER [33]).
(4) Calculate \(\alpha_0 \) (Eq. 1).
(5) Calculate \(\alpha_1 \) (Eq. 2).
(6) Calculate \(\alpha_2 \) (Eq. 4).
(7) Calculate \(C \) (Eq. 7).
(8) Repeat steps (4) to (7) until the solution converges.
(9) Repeat steps (2) to (8) for all subsequent time steps.

V. RESULTS AND DISCUSSIONS

A. Verifications

1) Single-phase "bubbly" flow with deposition

Fig. 3 shows the schematic of a bubbly flow with particles in a circular pipe. The properties of the two fluids are identical (TABLE I). The two fluids have the same inlet velocities of 0.2 m/s. The fluid 1 and fluid 2 inlet volume fractions are 0.8 and 0.2 respectively. In this hypothetical "bubbly" flow, there is no interfacial force between the two fluids, i.e. \(F_{d2} = 0 \). The deposition rate \(\dot{M}_d \) is prescribed in this hypothetical case as

\[\dot{M}_d = 100 x / L \] (10)

With these, this special "bubbly" flow can be treated as a single-phase flow with deposition. The following initial and boundary conditions apply.

Initial conditions,

\[\alpha_1 = 0.8, \alpha_2 = 0.2, \alpha_d = 0, u_1 = u_2 = 0.2 \text{ m/s,} \]

\[p = 0 \text{ for } 0 \leq x \leq L \]

Boundary conditions,
\[\alpha_1 = 0.8, \alpha_2 = 0.2, \alpha_3 = 0, u_1 = u_2 = 0.2 \text{ m/s}, \]
\[p = 0 \text{ for } x = 0 \]

The analytical solutions of \(\alpha, u \) and \(p \) are given respectively by
\[
\alpha(x, t) = 1 - \frac{1}{82} xt \\
u(x, t) = \frac{1}{5\alpha} \\
p(x, t) = \frac{16.4x(x^2 + 316xt - 164t - 25912)}{(xt - 82)^2}
\]

For the purpose of comparison, a total fluid volume fraction and a mean fluid velocity are respectively are defined.
\[
\alpha = \alpha_1 + \alpha_2 \\
u = \frac{\alpha_1 u_1 + \alpha_2 u_2}{\alpha_1 + \alpha_2}
\]

By setting \(C = 0 \), the current model can be used to predict this limiting case. Fig. 4 shows the predicted solutions obtained by the current model at five different \(t \). The predicted solutions agree well with the analytical solutions. This partially verifies the developed model.

TABLE I. PARAMETERS USED FOR SINGLE-PHASE FLOW WITH DEPOSITION IN A PIPE

<table>
<thead>
<tr>
<th>Fluid Density ((\rho, \text{ kg/m}^3))</th>
<th>Deposit Density ((\rho_d, \text{ kg/m}^3))</th>
<th>Fluid Dynamic Viscosity ((\mu, \text{ mPa}\cdot\text{s}))</th>
<th>Inlet Velocity ((u_n, \text{ m/s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>820</td>
<td>820</td>
<td>3.95</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 4. Distribution of \(\alpha, u \) and \(p \) for single-phase flow with deposition.

B. Validations

1) **Two-Phase Water-Kerosene Bubbly Flow**

This section validates the capability of the model against the experimental results for two-phase water-kerosene flow of Suguimoto and Mazza [34]. Only the data for bubbly flow (kerosene dispersed in water) and elongated drops flow (water dispersed in kerosene) are extracted and compared with the prediction of the current model. Properties for water and kerosene are tabulated in **TABLE II**.

TABLE II. FLUIDS’ PROPERTIES FOR WATER AND KEROSENE

<table>
<thead>
<tr>
<th>Water Density ((\rho_w, \text{ kg/m}^3))</th>
<th>Kerosene Density ((\rho_k, \text{ kg/m}^3))</th>
<th>Water Dynamic Viscosity ((\mu_w, \text{ mPa}\cdot\text{s}))</th>
<th>Kerosene Dynamic Viscosity ((\mu_k, \text{ mPa}\cdot\text{s}))</th>
<th>Surface Tension ((\sigma, \text{ mN/m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>998</td>
<td>793</td>
<td>1.0</td>
<td>1.1</td>
<td>48.0</td>
</tr>
</tbody>
</table>

By setting \(C = 0 \) and \(\dot{M}_d = 0 \) (no deposition), the model reduces to a limiting case of two-phase flow without deposition. It predicts the frictional pressure drop for the cases considered in the experiment. The mesh-independent frictional pressure drop is presented in Fig. 5 as a function of the water-kerosene input ratio (\(J_w/J_k \)) together with the experimental data. The predicted frictional pressure drop agrees well with the experimental data. This validates the two-phase flow modeling capability of the model.

2) **Two-Phase Crude Oil-Water Annular Flow**

This section validates the developed model against experimental data of a crude oil-water annular flow [35]. The properties for crude-oil and water are listed in **TABLE III**. Again, by setting \(C = 0 \) and \(\dot{M}_d = 0 \) , the current model reduces to a limiting case of two-phase flow without deposition. The mesh-independent frictional pressure drop obtained from the model is compared against the experimental data in Fig. 6.

The current model predicts well the general trend of the pressure drop, in particular, those of high oil superficial
velocity. Note that the uncertainties of the pressure drop measurement in the experiment are approximately ±25% for the lowest oil superficial velocities and ±6% for the highest oil superficial velocities [35]. This again validates the capability of the developed model in predicting two-phase flow.

\[
\rho w = \frac{3}{\alpha_1} (\rho_c \alpha_3) \mu_w \mu_c S \sigma
\]

Table III. Fluids’ Properties for Crude Oil and Water

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Density (ρ_s, kg/m³)</th>
<th>Dynamic Viscosity (μ_s, mPa·s)</th>
<th>Dynamic Viscosity (μ_c, mPa·s)</th>
<th>Surface Tension (σ, mN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>997</td>
<td>0.89</td>
<td>500</td>
<td>26.3</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>925</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. The experimental and predicted frictional pressure drop.

C. Case Study for Bubbly Flow with Deposition

The model can be used for bubbly, transitional and annular two-phase flow with deposition. Here, bubbly flow with deposition is presented. Studies on other flow patterns with deposition can be found in [31].

Fig. 7 shows the schematic of a two-phase bubbly flow of water (fluid 1) and kerosene (fluid 2) in a vertical pipe (drawn horizontally for presentation purpose). The pipe has an inner diameter of 25.4mm and a length of 2.5m. Water and kerosene flow with inlet velocities of 0.2m/s and 0.25m/s respectively. The water and kerosene inlet volume fractions are respectively 0.85 and 0.15. Water carries particles. The particles deposit on the wall and form a deposit layer. Assumed the pipe is treated with an anti-deposition coating for \(x \leq 0.5 \) m, i.e. particles do not deposit in this section. With these, the particle deposition rate constant \(k \) (Eq. 8) used is set to

\[
k = \begin{cases}
0 & \text{for } x \leq 0.5 \text{ m} \\
0.1 \text{s}^{-1} & \text{for } x > 0.5 \text{ m}
\end{cases}
\]

The following initial and boundary conditions are enforced.

Initial conditions,
\[\alpha_i = 0.85, \alpha_c = 0.15, \alpha_j = 0, u_i = 0.2 \text{ m/s}, \]
\[u_j = 0.25 \text{ m/s}, C = 50 \text{ kg/m}^3, p = 0 \text{ for } 0 \leq x \leq L \]

Boundary conditions,
\[\alpha_i = 0.85, \alpha_c = 0.15, \alpha_j = 0, u_i = 0.2 \text{ m/s}, \]
\[u_j = 0.25 \text{ m/s}, C = 50 \text{ kg/m}^3, p = 0 \text{ for } x = 0 \]

Fig. 8 shows the simulation results at different times. There is not deposit form for \(x \leq 0.5 \) m (Fig. 8a). From \(x = 0.5 \) m onwards, the particles start to stick onto the wall to form a deposit layer. As the particles are continuously consumed in the deposition process, the amount of particles flowing downstream decreases. As the particle concentration decreases along the pipe (Fig. 8b), the particle deposition rate \(\dot{M}_C = kC \) also decreases along the pipe. The deposit layer becomes thinner along the pipe. Besides, the deposit layer becomes thicker over time.

With the formation of the deposit for \(x > 0.5 \) m, the available flow area suddenly decreases. Thus, there is a sharp increase in the water and kerosene velocities, i.e. \(u_j \) and \(u_2 \) (Fig. 8e and 8f). Then, \(u_j \) and \(u_2 \) decrease gradually downstream for the deposit layer becomes gradually thinner. Near the inlet where there is not deposit (\(x < 0.5 \) m), \(u_j \) decreases quickly whereas \(u_2 \) increases. This is because water is denser than kerosene, therefore experiencing a larger gravitational effect in an
upward flow. As a result, there is more water (higher volume fraction α_w, Fig. 8c) and less kerosene (lower volume fraction α_k, Fig. 8d) in this region.

Note that the deposit layer surprisingly does not affect the pressure much as the flow is dominantly determined by the gravitational force. In a short period of the time ($t \leq 8s$), the particle concentration (C) decreases because of deposition. Over time however, particles in the pipe are replenished by those from the inlet.

VI. CONCLUSIONS

This study presents a model for two-phase flow with deposition. The model consists of three modules: Fluid Transport, Particle Transport and Particle Deposition. The model is partially verified against existing analytical solutions and validated against experimental data. It is then demonstrated for bubbly flow with deposition.

REFERENCES

