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SNR Signal to noise ratio 

SOC System on chip 

SPI Serial peripheral interface 

SPS Sample per second 

SRAM Static random access memory 

STFT Short time Fourier transform 

SVD Singular value decomposition 

SWI Software interrupt 

TDMA Time division multiple access 

TinyOS Tiny operating system 

TSA Time synchronous average 

USB Universal serial bus 

WLAN Wireless local area network 

WMAN Wireless metropolitan area network 

WPAN Wireless personal area network  

WPT Wavelet packet transform 

WSN Wireless sensor network  

WT Wavelet transform 

WVD Wigner-Ville distribution 

WWAN Wireless wide area network 

μDMA Micro digital memory access 
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ABSTRACT 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	  

This PhD research focuses on developing a wireless vibration condition monitoring 

(CM) node which allows an optimal implementation of advanced signal processing 

algorithms. Obviously, such a node should meet additional yet practical requirements 

including high robustness and low investments in achieving predictive maintenance. 

There are a number of wireless protocols which can be utilised to establish a wireless 

sensor network (WSN). Protocols like WiFi HaLow, Bluetooth low energy (BLE), 

ZigBee and Thread are more suitable for long-term non-critical CM battery powered 

nodes as they provide inherent merits like low cost, self-organising network, and low 

power consumption. WirelessHART and ISA100.11a provide more reliable and robust 

performance but their solutions are usually more expensive, thus they are more suitable 

for strict industrial control applications. 

Distributed computation can utilise the limited bandwidth of wireless network and 

battery life of sensor nodes more wisely. Hence it is becoming increasingly popular in 

wireless CM with the fast development of electronics and wireless technologies in 

recent years. Therefore, distributed computation is the primary focus of this research in 

order to develop an advanced sensor node for realising wireless networks which allow 

high-performance CM at minimal network traffic and economic cost. 

On this basis, a ZigBee-based vibration monitoring node is designed for the evaluation 

of embedding signal processing algorithms. A state-of-the-art Cortex-M4F processor is 

employed as the core processor on the wireless sensor node, which has been optimised 

for implementing complex signal processing algorithms at low power consumption. 

Meanwhile, an envelope analysis is focused on as the main intelligent technique 

embedded on the node due to the envelope analysis being the most effective and general 

method to characterise impulsive and modulating signatures. Such signatures can 

commonly be found on faulty signals generated by key machinery components, such as 

bearings, gears, turbines, and valves. 

Through a preliminary optimisation in implementing envelope analysis based on fast 

Fourier transform (FFT), an envelope spectrum of 2048 points is successfully achieved 

on a processor with a memory usage of 32 kB. Experimental results show that the 



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PhD)  17 

simulated bearing faults can be clearly identified from the calculated envelope 

spectrum. Meanwhile, the data throughput requirement is reduced by more than 95% in 

comparison with the raw data transmission. To optimise the performance of the 

vibration monitoring node, three main techniques have been developed and validated: 

1) A new data processing scheme is developed by combining three subsequent 

processing techniques: down-sampling, data frame overlapping and cascading. On 

this basis, a frequency resolution of 0.61 Hz in the envelope spectrum is achieved on 

the same processor. 

2) The optimal band-pass filter for envelope analysis is selected by a scheme, in which 

the complicated fast kurtogram is implemented on the host computer for selecting 

optimal band-pass filter and real-time envelope analysis on the wireless sensor for 

extracting bearing fault features. Moreover, a frequency band of 16 kHz is analysed, 

which allows features to be extracted in a wide frequency band, covering a wide 

category of industrial applications. 

3) Two new analysis methods: short-time RMS and spectral correlation algorithms are 

proposed for bearing fault diagnosis. They can significantly reduce the CPU usage, 

being over two times less and consequently much lower power consumption. 

 

Keywords: Vibration, Wireless sensor network (WSN), Envelope analysis, Distributed 

computation, Fast kurtogram, Condition monitoring, Fault diagnosis, Short-time RMS, 

Spectral correlation 
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CHAPTER 1  

INTRODUCTION 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

Maintenance has become increasingly important to the industrial automated 

manufacturing process. Meanwhile, the investment on maintenance has grown quickly 

with the increasing complexity of machines. This research intends to conduct condition 

monitoring over the low power consumption wireless sensor network so as to effectively 

reduce the maintenance cost. 

This chapter firstly explains the machinery failure and maintenance strategies. Then, the 

general procedure of the condition-based maintenance process is explained. The benefits 

and challenges of employing wireless techniques in the condition monitoring fields are 

discussed. Due to the limited bandwidth in wireless sensor network, distributed 

computation shows more superior performance in wireless condition monitoring than 

centralised computation. Based on these, the research aims and objectives are presented. 

Finally, the outline of this thesis is briefly explained. 
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1.1 Importance of maintenance 

In today’s industrial factories, the manufacturing process has become highly automated 

which has greatly increased productivity and quality whilst significantly reducing the 

level of human resources required. In the meantime, machines are getting increasingly 

complicated and a modern machine may include hundreds of components. The 

unexpected failure of a single component not only damages itself but may also affect 

the related equipment. Even worse, the plant operation may be interrupted and cause 

significant economic loss. In some critical industrial applications, system failures can 

cause extremely severe consequences, including explosions, personal injury and toxic 

releases, etc. 

In practice, a machine can be classified as out-of-date and will have to be replaced, due 

to economic reasons, where the reality maybe it has the potential for future use. Also, a 

machine may be replaced to minimise its failure rate for safety considerations [1]. It is 

estimated that the cost for replacing equipment still in good condition is more than $1 

trillion each year. The reason for this huge waste is due to the lack of a reliable and 

cost-effective method for predicting the equipment’s remaining useful life [2]. 

Therefore, researchers and manufacturers are trying to find maintenance measures to 

ensure plant performance, minimise operational costs and extend the life of industrial 

machines while ensuring this does not compromise safety. 

1.2 Machinery failures and maintenance strategies 

Machinery failure is defined as ‘the inability of a machine to perform its required 

functions’ [1]. Numerous reasons can cause the failure, such as deficiencies in the 

original design, improper manufacture, inappropriate maintenance, and excessive 

operational demands [1]. The failure can appear very sudden, be catastrophic and 

unpredictable whilst on most occasions the machinery failure is caused by a gradual 

wear on machinery, which is incipient and grows partially and gradually as the machine 

is running. Such failure evolving can take days, weeks or months and thus it is possible 

to provide warning of impending failure at an early stage and arrange maintenance 

operations in time through monitoring the health condition of the machine [3]. 
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1.2.1 Failure bathtub curve 

Based on statistical analysis, the frequency of machinery failures can be typically 

described as “bathtub curve”, as shown in Figure 1.1 [1]. This curve is appropriate for 

an individual machine or a large number of machines of the same type. It can be seen 

that a machine experiences three stages: wear in, normal wear, and wear out. 

 

Figure 1.1 Typical bathtub curve [1] 

Wear in. This stage is the beginning of a machine’s useful life. At this stage, the failure 

rate tends to be relatively high due to design errors, manufacturing defects, assembly 

mistakes, installation problems and commissioning errors [1]. With these failures being 

discovered and corrected, the failure frequency decreases quickly. 

Normal wear. After wear in stage, the machine passes into a relatively stable period, 

named normal wear period. During this period, there is a relatively low failure rate on 

condition the machine is running under its design specifications. This period occupies 

the most of a machine’s life. 

Wear out. As a machine gradually approaches the end of its designed life, it enters the 

wear out stage, during which the failure rate tends to increase. At this period, the 

failures are usually caused by metal fatigue, wear mechanisms between moving parts, 

corrosion, and obsolescence [1]. Note that the slope of the wear out part is different 

from one machine to another and the failure increasing rate is largely determined by the 

design of the machine and its operational history. 

1.2.2 Maintenance strategies 

To keep the machine running in a healthy state, different maintenance strategies have 

been developed. Among them, the most three popular ones are breakdown maintenance 
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(BM), preventative maintenance (PM), and condition-based maintenance (CBM). The 

definition, advantages, and disadvantages of these three strategies are described below. 

A. Breakdown maintenance (BM) 

This strategy is also known as run-to-failure maintenance. By its meaning, it means 

maintenance actions are carried out only when the machine is completely out of service. 

In this situation, the machinery failure should not result in critical damage or the cost of 

a new replacement machine being cheaper than the maintenance costs. Thus no 

attention is paid to the machines efficiency and maintenance. Another reason is that 

little knowledge is known about the types of faults and the time of fault occurrence in 

advance. 

The advantage of BM is that maintenance investment is not necessary and therefore 

costs are especially low. Meanwhile disadvantages are also obvious, for example, an 

emergency outage cannot be predicted, which may lead to plant related damages, or 

even cause fatal accidents, production loss, and loss of control over management. 

Therefore, this method is seldom admirable nowadays. 

B. Preventive maintenance (PM) 

This strategy is also called scheduled maintenance or time-based maintenance, which 

means that maintenance actions are prepared and carried out well before the occurrence 

of the fault, along with the increased knowledge and experience of mechanical principle 

and likely faults. It is carried out according to a predetermined plan which means that 

the maintenance is performed at predetermined intervals or according to some 

prescribed criteria. Because of the limited knowledge of the development of failure rule 

and lack of scientific methods in fault diagnosis, the determination of the intervals or 

criteria is usually based on design specifications, previous experience and statistical 

data. Thereby, it is difficult to prevent accidents caused by stochastic factors and 

maintenance for the frequent repairs is inevitable. 

The benefit of preventive maintenance is that, firstly, maintenance could be planned so 

that it could be carried out at a convenient time; secondly, fewer accidents happen, 

especially disastrous accidents; thirdly, it is a more efficient way of controlling spare 

parts and saving money. However, it is not wise to perform maintenance at a fixed time 

interval. On the one hand, if the interval is shorter than its functional lifespan, the 

implementation of maintenance may cause a significant waste of money and labour. On 

the other hand, longer intervals may be too late to prevent failures or to retain the 
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required function. Additionally, unexpected breakdowns maybe still happen and fatigue 

life assessments and optimisation are not monitored effectively. 

C. Condition-based maintenance (CBM) 

For this strategy, maintenance is conducted based on the knowledge of the conditions of 

the machine instead of the predetermined plan or schedule. The optimal maintenance 

time and contents are determined according to the on-line detection data and fault 

condition of a machine predicted by the diagnostic unit. If well conducted, a CBM 

program can successfully prevent unexpected catastrophic faults, improve the reliability 

and availability of a machine, decrease downtime, and increase operating efficiency. 

Therefore, this maintenance strategy is able to exploit the maximum operating time of a 

machine and minimise maintenance cost. The key of CBM is the knowledge of the 

condition of a machine which can be obtained by employing various monitoring 

techniques. Note that CBM requires additional investment in that instrumentations need 

to be installed to monitor the machine condition and experts may also be required for 

analysing the acquired data and suggesting maintenance operations. 

A comparison of the three types of maintenance strategies is summarised in Table 1.1. 

Apparently, the CBM method is more effective than other two methods especially for the 

maintenance of complicated and critical machines. Thus, it is getting widely applied in 

the industrial world. Besides these three main strategies, there are also several other 

maintenance strategies, such as reliability/risk centred maintenance, automatic 

maintenance, and controlled maintenance. The main objectives of all the maintenance 

actions are to produce required outputs, maximise designed life span, abide by safety 

standards and minimise maintenance costs [4]. 

Table 1.1 Comparison of maintenance strategies 

Strategy Advantage Disadvantage 

BM Low cost May lead to plant related damages 

PM 
Reduce the accidents rates, especially catastrophic 

accidents 

 Difficult to determine the perfect 

maintenance intervals 

 High maintenance cost 

CBM 

 Able to exploit the maximum operating time 

of a machine 

 Maintenance cost can be reduced greatly by 

reducing the number of unnecessary 

scheduled preventive maintenance operations 

 Extra investment on instrumentations 

 Experts needed for data analysis 
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1.3 Introduction of condition-based maintenance 

In a CBM process, maintenance decisions are recommended based on the information 

collected through condition monitoring (CM). Through automated CM, human 

inspection requirements and unnecessary maintenance can be reduced whilst the safety 

and reliability of the machinery can be significantly improved by finding faults at an 

early stage. Ideally, CBM allows the personnel to carry out the correct maintenance, 

minimising spare parts cost, system downtime and time spent on maintenance. 

1.3.1 Process of condition-based maintenance 

As shown in Figure 1.2, a CBM program typically includes three key steps: data 

acquisition, data processing, and maintenance decision-making [1]. In general, the data 

acquisition step collects data related to the system health. The data processing step 

analyses the obtained data to gain a better understanding of the system health and the 

maintenance decision-making step provides efficient maintenance policies. 

 
Figure 1.2 Steps in a CBM program [1] 

Step 1. Data acquisition 

In this step, the useful data or information from the target machines are collected. This 

collected data can be divided into two main types: event data and condition monitoring 

data. The event data is the machine operation and maintenance related information, 

including what happened (e.g., installation, breakdown and overhaul) and what was 

conducted on the target machine (e.g., minor repair, preventive maintenance and oil 

change). This information are commonly recorded by the maintenance personnel 

manually. 

Condition monitoring data is the measurements related to the health condition/state of 

the target machine. Such data is versatile and can be of various types, such as 

temperature, chemical gases, vibration, motor speed, acoustic, acoustic emission and 

electrical methods [3], [5]. Among these monitoring techniques, vibration monitoring 

has been proven to be a sensitive and effective method of detecting faults in rotating 

machinery [3]. 
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Vibration monitoring refers to ‘the use of sensing and analysis of system characteristics 

– in the time, frequency or modal domains – for the purpose of detecting changes, 

which may indicate damage or degradation’ [6]. This kind of non-destructive technique, 

its first usage for detection can be traced back to the 1970s and early 1980s at which 

time it was utilised in the aerospace and offshore oil industries [7]. The reasons for 

vibration based CM being widely employed can be summarised as below: 

 Wide existence. Almost every machine or process in the manufacturing process 

produces vibration in one form or another while in operation. 

 High sensitivity to the fault. The vibration sensors are usually attached to the 

monitored machine directly, which indicates they are close to the physical 

location of the fault and the transmission loss is small. 

 Solid theory study. Vibration mechanisms of most machinery and structures 

have been understood, which makes it possible to diagnose the characteristics of 

vibration responses resulting from these faults. 

 Reliable equipment. Vibration instrumentations with high performance, such as 

wideband transducers and analysis equipment, have become reliable over years 

of utilisation. 

 Ongoing development. The fast development of vibration signal processing 

methods and computing facilities contribute to its wide applications. 

Step 2. Data processing 

This step contains two sub-steps: data cleaning and data analysis. Data cleaning is an 

important step, through which the errors contained in the data especially those entered 

manually can be removed, thereafter increasing the chance of clean (error-free) data 

being employed for further analysis and modelling. Without such a step, it is very likely 

to get into the so-called “garbage in garbage out” situation. 

Data analysis is the process of using various models, algorithms and tools to analyse 

data so as to get better understanding and interpretation of data. The models, algorithms 

and tools used for data analysis depend mainly on the types of data collected, which are 

versatile and could fall into three categories: value type (e.g. temperature, pressure and 

humidity signal), waveform type (e.g. vibration and acoustic signals) and 

multi-dimension type (e.g. visual images and infrared thermograph). 

Usually, the data of value type changes slowly, thus they are usually called static data. 

The required sampling rate of such data is usually low. For instance, a sampling rate of 
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one sample per second (1 SPS) will be sufficient for most temperature signals. The 

waveform data changes much faster and is commonly named dynamic data. In order to 

fully capture their information, a much higher sampling rate is required. For example, 

for a signal that vibrates at 1 kHz (kilo Hertz), in order to reconstruct the signal after 

digitisation, the sampling rate should be higher than 2 kHz according to the Nyquist 

sampling theorem [8], which means 2000 data points per second. Apparently, data 

analysis techniques for these two types are different. 

Data processing for waveform data is also usually named signal processing. There are a 

number of signal processing techniques developed to analyse and interpret waveform so 

as to extract useful information for further diagnosis and prognosis. The procedure of 

extracting useful information from raw signals is the so-called feature extraction. The 

research focus of this thesis is vibration signal, which is a type of waveform data. The 

relevant signal processing techniques will be reviewed in Chapter 4. 

Step 3. Maintenance decision-making 

After data processing, it comes to maintenance decision-making, the last step of a CBM 

program. The maintenance actions made by maintenance personnel crucially relies on 

sufficient and efficient decision support. The techniques for maintenance decision 

support can be usually categorised into two main types: diagnostics and prognostics [9]. 

Diagnostics. Machine fault diagnostics can be considered as “a procedure of mapping 

the information obtained in the measurement space and/or features in the feature space 

to machine faults in the fault space” [9]. This mapping process is also called pattern 

recognition. Previously, pattern recognition has been performed manually by analysing 

the graphical tools like power spectrum graph, cepstrum graph and wavelet scalogram. 

In recently years, techniques like artificial neural networks and machine learning are 

gaining popularity to achieve automatic pattern recognition based on the information 

and features extracted from the signals [1], [9]. 

Prognostics. Machine fault prognostics mainly have two main types. The most 

commonly used prognostics type is remaining useful life (RUL), which intends to 

predict the life time left before a failure occurs given the current machine condition and 

past operation profile [9]. Another type is to predict the chance that a machine operates 

without a fault or a failure up to some future time based on the current machine 

condition and its past operation profile. The later prognostic type is suitable for 

situations when a fault or a failure is catastrophic (e.g., nuclear power plant). 
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1.3.2 Challenges in condition monitoring 

The importance of condition monitoring and fault diagnosis has gained wide acceptance 

in both academic and industrial areas in the past decades. Every year, there are several 

international conferences on such topics and thousands of paper publications, studying 

various topics including monitoring techniques [3], mechanical fault modelling [10], 

[11], fault diagnosis and prognosis [12], [13], etc. However, such effective and 

advanced methods are rarely well utilised by industries. Rather, the industrial 

applications are more likely to employ traditional techniques developed more than 20 or 

30 years ago. As a typical case, using vibration technique for condition monitoring and 

fault diagnosis of rolling element bearing has been well studied in the academic arena 

[14], however, quite a few industrial applications still tend to rely on the simple 

vibration root mean square (RMS) as a warning indicator instead of advanced 

techniques, such as envelope analysis [15], cepstrum [16] and Wavelet [17]. These 

indicate that a gap exists between academic research and industrial applications. The 

main reasons for this gap can be summarised as: 

 High cost. For conducting CBM, a significant investment is required on 

instrumentations, equipment installation and also software development. With 

machines becoming increasingly complex, their relevant maintenance cost has been 

growing quickly as well. It is estimated that approximately half of operating costs in 

most processing and manufacturing operations can be attributed to maintenance [1]. 

 Difficult to interpret fault results. Although the CBM software has tried to make 

the results informative, special training is required for using such software and 

experts may also be needed for interpreting the monitored data and fault diagnosis 

results. 

 Isolated academic research and industrial implementation. The dilemma is that 

the data analysis and fault diagnosis usually involves complicated mathematical 

equations and is usually implemented and validated using scientific computing 

packages, such as Matlab and Mathematica. Were as the software developers are 

good at programming rather than mathematical equations and they tend to use the 

efficient programming languages, such as C/C++ and Java. Furthermore, these 

advanced programs are usually restricted inside small research groups, which are 

not easily available for implementation engineers. 
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This thesis has intended to solve these challenges by employing the latest technologies 

in electronics and wireless communication. The emerging wireless sensor network 

(WSN) and the Internet of Things (IOT) have the potential to significantly reduce cost 

in CM area and the open source based development idea can potentially help narrow 

down the gap between academic research and industrial implementation. For this 

reason, the main embedded development work in this thesis is based on open source 

hardware and software. The relevant hardware circuits are easy to purchase and the 

software implementation and validations are explained in detail for easy duplication. 

1.3.3 Wireless condition monitoring 

Currently, wired online CM systems have been successfully applied in many industrial 

areas. Wired sensors provide detailed and reliable information for machine health 

condition analysis and some wired sensors can even shut down a machine automatically 

if they detect excessive abnormity. However, so far, wired online CM systems have 

been mainly restricted to large and critical industrial machines due to their high cost. 

With the increasing complexity of industrial machines, the associated costs of 

installation, maintenance, troubleshooting and upgrading wiring have escalated [18].  

With the recent fast development in electronics and communication technologies, 

wireless sensor network (WSN) is becoming increasingly popular in CM area. Wireless 

technique brings both benefits and challenges for CM, which are summarised in the 

following two subsections. 

1.3.3.1 Benefits	of	employing	wireless	CM	

Wireless CM systems employ electromagnetic waves as the transmission medium and 

hence avoid the limitations of wired networks and offer a number of attractive 

advantages [18]: 

 Low cost. The installation and maintenance costs take a large part in the overall 

maintenance cost, especially for the installation in harsh environments. As 

estimated, the wiring can cost £40 to £80 per foot including labour. Specialised 

wiring for harsh environments can cost as much as £1500 per foot [18]. By utilising 

the wireless CM system, tens of thousands of feet of wiring can be eliminated from 

the average industrial site. This has been the driving factor for the employment of 

wireless systems in the CM fields. According to a market study, the lower cost has 

been cited as a major reason for adopting wireless technology [18]. 
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 Ease of maintenance. The wires are more prone to crack or fail with age. A lot of 

time and labour can be spent on inspecting, troubleshooting, repairing and replacing 

the aged wires [18]. If the wiring faults result in production stoppages, the costs can 

be significant. Therefore, wireless systems can effectively avoid such costs on time, 

labour and economic. 

 Reduced connector failure. A common failure mode within a network are the 

connectors, hence these can be one of the most common reliability risks for the 

wired systems [18]. Especially for sensors working in harsh environments, the 

cables can be easily damaged by chemicals, vibration, or moving parts. In the 

wireless system, such failures can be eliminated.  

 Ease of replacement and upgrading. Without the constraint of wires, the 

replacement or upgrading of the wireless CM systems become much easier. It does 

not need to mark or distinguish different communication wires. By placing the 

wireless sensors in the right position and after simple configuration, the 

measurement systems will be functional. Furthermore, the wireless technology also 

enables the remote monitoring of equipment located in hard to reach or dangerous 

locations, such as the electrical substation and wind power stations. 

 Security. Security is a big concern in industrial applications. The continuous 

development of data encryption and wireless data transmission hiding techniques 

promises the security of wireless transmission at a level similar or surpasses that of 

wired systems [18]. 

1.3.3.2 Challenges	in	wireless	CM	

Currently, the successful application of wireless CM can be found in various 

commercial areas, such as environmental monitoring [19], structure health monitoring 

[20], temperature monitoring in product distribution [21]. However, it faces a number of 

challenges for being applied in the industrial field, which has unique characteristics and 

requires more strict demands, as summarised below [22], [23]: 

 Processing heterogeneous sensor signals: The industrial monitoring system 

usually needs to measure various types of signals, including static types like 

temperature, pressure and dynamic ones like vibration and acoustic. The processing 

methods for different signals can be different. 
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 Higher sampling rate. The sampling rate of condition monitoring signals can be 

much higher than that for environmental or structural applications due to the need to 

perform accurate and comprehensive monitoring based on dynamic signals such as 

mechanical vibration and electrical terminal data from electrical machines. These 

signals generally require a bandwidth of dozens of kHz [3].  

 Faster data transmission rates. The higher sampling rate of dynamic signals 

produces large amounts of data hence the needs for fast rate transmission. The 

high-speed data collection and transmission can often be obstructed by the limited 

wireless bandwidth [23]. 

 Energy efficiency. The battery is usually used as the power source for wireless 

sensor nodes to achieve real wireless connection. In this case, the life of a sensor 

node mostly depends on the life of the power resources of the nodes. Restricted by 

their limited physical size, sensor nodes commonly have limited battery energy 

supply [22]. Thus, battery life is a big concern for the wireless systems because 

battery replacement is an additional maintenance activity that can offset the savings 

provided by wireless sensors. 

 Higher reliability in data transmission: The industrial machinery applications are 

usually more intolerant to data loss problems, thus requiring a more reliable 

communication. 

 Cost effective. A sensor network is typically made up of many sensor nodes and the 

cost of a single node determines the cost of the complete network. If the expenditure 

in implementing sensor network is higher than that for traditional sensors, the sensor 

network is not applicable. Hence, the cost of each sensor node should be kept low in 

order to optimise the overall cost of the sensor network. 

 Resource constraints. For cost and convenience of installation, the sensor nodes 

are usually designed to be compact in physical size. Hence, battery size (energy) of 

a sensor node is usually limited. In addition, a sensor node typically has restricted 

computational capability and limited memory. 

 Higher security requirement. Industrial applications typically require higher 

security communication mechanisms than those of the commercial ones due to high 

confidentiality and criticality of industrial applications. 
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Due to limitations in current wireless technology, it is not practical to completely 

replace the existing wired communications in the industrial applications with WSNs. A 

reasonable approach is to form a system that includes both wireless and wired 

techniques. For the noncritical tasks like condition monitoring and energy efficiency 

monitoring, wireless technologies can be employed to reduce the overall cost while for 

the critical tasks like motor controlling, the wired system can be utilised for reliability 

and timing considerations [24]. 

1.3.4 Embedded processing on distributed wireless sensor nodes 

The potential benefits and challenges of wireless CM have attracted a number of 

interests from researchers [22], [24], [25], semiconductor companies [26] and industrial 

products suppliers [27]–[29]. Different energy harvesting techniques are emerging to 

prolong the lifespan of sensor nodes by harvesting energy from ambient resources like 

wasted heat [30], [31], solar [32], [33] and vibration [34], [35]. A number of wireless 

technologies have been developed or improved to satisfy requirements in industrial 

applications. For example, WirelessHART and ISA100.11a are proposed to achieve 

high reliability and security in wireless communication [36]. Intelligent data processing 

is embedded in the distributed wireless sensor node in order to reduce the transmission 

data size for signals with high sampling rate [25] and maintain effective 

communications with a minimum amount of power [18]. 

According to computing allocation schemes, CM systems can be categorised into two 

main types: centralised and distributed computation. The advantages and disadvantages 

of centralised and distributed computation are summarised in Table 1.2. Centralised 

computation based CM, by its name, performs both data analysis and fault diagnosis in 

a data processing centre. This architecture has by far been the most widely used scheme 

in wired CM systems. It allows the operator to view comprehensive monitoring 

information at a single location; however it can significantly consume the valuable 

bandwidth in the WSN for data with the high sampling rate, and also cause reliability 

and transmission efficiency problems. 

Table 1.2 Advantages and disadvantages of centralised and distributed computation 

 Advantages Disadvantages 

Centralised 

CM 

 Gathers comprehensive monitoring 

information at a single location 

 Simple function sensor nodes 

 High data transmission load 

 Intensive computing in the central unit 

for analysing big data sets 

 Less reliability and transmission 
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efficiency with adding of sensor nodes 

with high sampling rate data 

Distributed 

CM 

 Relaxed bandwidth requirement 

 Off-load computation requirement in 

the central unit 

 Able to establish large scale network 

 Utilise big data process resources  

 High challenges in implementing signal 

processing algorithms on sensor nodes 

with constraint resources. 

 

Unlike centralised computation, distributed computation based CM allows data 

processing and even fault diagnosis on sensor nodes, which reduces unnecessary data 

transmission in the network and thus allows a large number of sensor nodes to coexist in 

one network. In addition, distributed CM system off-loads the intensive computing in 

the central unit, allowing complicated CM data analysis and decision making to be 

realised in a medium specification computer, which is much more cost effective 

compared with centralised CM which often needs a computation intensive computer at a 

high cost. 

With the fast development in electronics technology, more powerful sensor nodes are 

being developed with higher computation capability but lower power consumption. This 

has reduced the challenges in embedding intelligent signal processing on sensor nodes. 

For this reason, distributed computation is becoming increasingly popular in wireless 

CM in recent years. In [37], Sreenuch et al. proposed an approach for distributed 

condition monitoring systems that offers a reusable software architecture for a number 

of CM applications. Tan et al. [38] proposed a distributed fault detection method for 

monitoring computer numeric control machines based on cutting force, vibration and 

sound information. Yin and Zhong [39] monitored rotating auxiliaries at power plants 

based on a distributed wireless vibration CM system, in which they employ a data-level 

fusion for comparing the similarity of adjacent data and a task-level fusion for providing 

the strategy of sending data and the way to judge nodes’ survival. L. Hou et al. [25] 

proposed a scheme for induction motor condition monitoring and fault diagnosis based 

on motor stator current and the vibrational signature. In this system, feature extraction 

and classification by the neural network classifier are implemented on the node and 

decision level fusion is executed at the centre. 

Another benefit of distributed computation is that it has the potential to reduce power 

consumption of sensor nodes. According to [22], much more energy is usually required 

for data communication in comparison to sensing and data processing. Hence, 

distributed computation is becoming the trend in wireless condition monitoring and 
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different kinds of technologies have been explored by researchers, such as embedding 

dedicated signal processing algorithms [25], [40], compression [20], [41] and 

compressive sensing [42], [43]. 

L. Hou and N. W. Bergmann performed fast Fourier transform (FFT) of 512 points on 

the vibration signal and extracted 12 most frequently occurring frequency components 

in the frequency domain as the fault feature for data transmission in a wireless system 

[25]. With the help of further data fusion methods, the payload transmission data was 

reduced from 1024 bytes to 8 bytes, achieving a data reduction of more than 99%. In 

[20], Lynch employed a WSN to monitor the bridge health condition. By embedding 

computational efficiency FFT and transmitting modal frequencies instead of the 

time-history record (raw data), a major energy saving of over 98% was achieved. Also, 

the AR coefficients were calculated, which required longer execution times and an 

energy saving of about 50% was experienced. In [41], Nachman et al evaluated data 

processing on a wireless sensor node, named IMote2. By using downsampling and FFT 

on the sensor node, the transmitted data size and energy consumption is reduced as 

much as 250x and 48x, respectively, in comparison to not performing any data 

processing. 

In terms of compression, it can be lossless or loss types. In [20], Lynch employs lossless 

Huffman coding method for processing structural response data and a compression ratio 

ranging from 0.6 to 0.8 are attained on the wireless sensing unit. For audio signal, 

typical compression ratios can be 4:1 to 3:1 for lossless type and 10:1 to 20:1 for loss 

type [41]. Note that the loss type compression usually is more complicated than the 

lossless one. 

Recently, one emerging signal processing method, named compressive sensing, is 

becoming popular in the wireless sensor network [44], [45]. It is a technique originated 

from image processing for efficiently acquiring and reconstructing a signal, by finding 

solutions to underdetermined linear systems. Its idea is to sense information instead of 

the signal by using a sampling rate much lower than Nyquist sampling frequency [46]. 

Some research works have utilised this technique for condition monitoring. Bouzid [47], 

[48] adopted low sampling rate to collect acoustic emission signals for the institute 

health monitoring of wind turbine blade using the acoustic wireless sensor networks. 

Bao et al. [42] used compressive sensing for structural vibration data loss recovery and 
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Zhang et al. [43] explored the usage of compressive sensing for bearing signal 

processing. 

Besides the above techniques, there are also some other effective processing methods, 

such as frequency band energy extraction [40]. In Chapter 4, more signal processing 

algorithms will be explored and their suitability for being embedded on the wireless 

sensor nodes will be discussed. 

Considering the benefits of distributed computation, it is more suitable for vibration 

based wireless condition monitoring. Thus, embedding signal processing algorithms on 

distributed sensor nodes are considered as the study focus in this thesis. 

1.4 Research aims and objectives 

This PhD research aims to develop a wireless vibration condition monitoring node 

which allows an optimal implementation of advanced signal processing algorithms. 

Distributed computation can utilize the limited bandwidth of the wireless network and 

battery life of sensor nodes more wisely; making it more suitable for vibration based 

wireless condition monitoring. Therefore, embedding signal processing algorithms on 

distributed sensor nodes is considered as the study focus in this thesis. 

As a typical vibration response, an impulsive and modulating signal can be found in 

many key machinery components, such as bearings [15], [49], gears [50], turbines [51] 

and valves [52]. It is characterised by the presence of a periodic repetition of sharp 

peaks modulated by high-frequency resonance components [53]. The thesis focuses on 

this type of vibration signal and develops embedded signal processing techniques that 

are widely applicable. 

To achieve the above research aim, the key objectives are prioritised as follows: 

1) Review popular wireless techniques and compare their advantages and 

disadvantages for being applied for industrial CM applications. Investigate research 

works performed and current industrial solutions for wireless condition monitoring. 

On this basis, select one wireless protocol to prototype a wireless CM system for 

evaluation. 

2) Prototype a wireless CM system with a focus on the design of the vibration based 

wireless sensor node for implementing and evaluating signal processing algorithms 
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that are commonly used in condition monitoring field. Consideration of its power 

consumption should be made in order to maintain a service span as long as possible 

when it is powered by batteries. 

3) Study the fault generation mechanism and fault features of rolling element bearings 

and then investigate popular signal processing algorithms for their fault detection 

and diagnosis. Discuss the requirements for an algorithm to be implemented on 

processors with restricted computational capability and limited memory size. On 

this basis, select one signal processing algorithm for being embedded on the sensor 

node for bearing fault feature extraction. 

4) Implement the chosen envelope analysis algorithm on the proposed wireless sensor 

nodes for extracting the fault features of rolling bearings. Optimise and validate 

each implementation step including data acquisition, data processing, and data 

transmission. Utilise the implemented algorithm for bearing fault feature extraction 

and evaluate its performance in terms of computation speed, memory consumption 

and data reduction in comparison with the raw data transmission. 

5) Discuss the necessity and possibility for improving the spectrum resolution in the 

envelope spectrum. Note that this improvement should be accomplished on the same 

processor with the idea of frame data processing and down-sampling. Explain the 

implementation procedure and validate the correctness of the implementation. 

Compare the performance of the improved method on bearing fault feature 

extraction with that in the initial implementation. 

6) Investigate the methods for selecting an optimal band-pass filter for envelope 

analysis. On this basis, utilise one algorithm in the prototype wireless CM system to 

achieve automatic band-pass filter selection and parameters updating. Explain and 

optimise the implementation procedure. Evaluate the implemented scheme on 

different bearing fault signals to confirm its effectiveness. 

7) Investigate and compare common envelope detection methods, including the simple 

squared rectifier and the precise Hilbert transform based method. On this basis, find 

the possibility to optimise and speed up the implementation process of envelope 

detection. Implement, validate and evaluate the proposed methods for processing 

bearing fault signals. 
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1.5 Outline of thesis 

 

Figure 1.3 Thesis structure 

Based on the sequence of techniques development, the main structure of the thesis is 

outlined in Figure 1.3. In general, various wireless communication technologies are 

explored in Chapter 2 to select appreciate protocols for establishing vibration based 

wireless condition monitoring system. Then, a vibration based wireless sensor is 

prototyped in Chapter 3 for the validation of embedded algorithms. In Chapter 4, a host 

of signal processing algorithms are investigated to select suitable algorithms for 

processing impulsive and modulating type signals on the prototyped sensor node. On 

this basis, envelope analysis is selected for implementation on the proposed sensor node 

in Chapter 5. Then, the implementation of envelope analysis is improved in terms of 

computation accuracy, robustness, and speed in Chapter 6, Chapter 7 and Chapter 8, 

respectively. Finally, the conclusions are drawn and future works are suggested in 

Chapter 9. 
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CHAPTER 2  

INVESTIGATION ON WIRELESS SENSOR 

NETWORKS AND THEIR APPLICATIONS FOR 

CONDITION MONITORING 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

Wireless network technology has gained enormous advancements in the past few years 

and a variety of wireless standards, such as cellular network, Wi-Fi, Bluetooth and 

ZigBee, are developed for different kinds of application. These kinds of technologies 

bring great benefits to our routine work and daily lives, as well as the industrial fields. 

Condition-based maintenance is one of such benefited areas. 

This chapter firstly introduces the wireless sensor network. Then, the current popular 

wireless protocols for WSN are investigated and their advantages, drawbacks, and 

suitability for condition monitoring are discussed. In addition, recent research works in 

the wireless condition monitoring field are also reviewed and the latest products for 

industrial wireless condition monitoring are summarised. Finally, the up-to-date wireless 

sensor platforms are investigated as a reference for evaluation system set up in Chapter 

3. 
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2.1 Introduction to wireless sensor network 

According to application area and signal range, wireless network techniques can usually 

be categorised into four groups [54]: wireless personal area network (WPAN), wireless 

local area network (WLAN), wireless metropolitan area network (WMAN), and 

wireless wide area network (WWAN), as is shown in Figure 2.1. In general, the power 

consumption and cost increases with its signal range and bandwidth. 

 

Figure 2.1 Wireless networks division 

When talking about wireless network, the cellular network is the most familiar and 

widely used one, which is a kind of WWAN. It has gained tremendous development 

over the past decades with its successful applications in the commercial products. The 

cellular network can cover a large area and its transmission speed varies a lot depending 

on the standard and network coverage, ranging from 20 kbps in the second generation 

cellular network to several hundred Mbps in the latest fourth generation (4G) ones. 

However, it should be noted that the usage of cellular network will bring significant 

network traffic costs, which is not negligible for the applications that need to transmit a 

large volume of data. A reasonable application area for the cellular network is to use it 

for sending alerting information to personnel via Email/short message service [55]. 

In practice, the industrial machines are usually concentrated in a factory, which can be 

easily covered by a network like WLAN or WPAN. Such a network is usually called 

wireless sensor network (WSN), which includes sensor nodes, sink node, a connection 

to the Internet or satellite and a task manager node, as illustrated in Figure 2.2 [56]. 

Initially, monitoring data are collected by sensor nodes and routed by nearby nodes 

through wireless communication to the sink node. The sensor node manages operation 

of the wireless network and uploads the acquired data within the WSN to the task 
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management node through Internet or satellite, allowing the end user to analyse the 

monitored data remotely. 

Due to its great advantages like low cost, ease of maintenance and reduced connector 

failure, etc. discussed in Section 1.3.3.1, WSN has gained a wide range of applications 

in various areas, such as environment monitoring, healthcare, military and industrial 

condition monitoring and control applications. It plays an important role in the 

emerging Internet of Things (IOT) [57]. 

Internet
Satellite

Sensor node

Sink node

Task manager

 
Figure 2.2 Structure of a typical wireless sensor network [56] 

2.2 Wireless protocols for WSN 

Due to various application area requirements, a host of wireless communication 

protocols have been developed and employed in the WSN, such as WiFi, Bluetooth, 

ZigBee and 6LoWPAN. Furthermore, there are also protocols developed specially for 

for satisfying special industrial requirements like WirelessHART and ISA100.11a. 

These protocols will be studied in the following sub sections. 

2.2.1 WiFi and WiFi HaLow 

WiFi is defined by WiFi Alliance as any "wireless local area network (WLAN) products 

that are based on the IEEE802.11 standards" [58]. In the real world, WiFi is much more 

often used in comparison with WLAN. WiFi has been created for the connection of two 

computers together and typically have a restricted signal range within the scope of one 

building and one room (indoor range is approximately 40 metres). 

WiFi operates on the 2.4/5 GHz frequency band, one of the industrial, scientific and 

medical (ISM) license-free frequency bands. This means it does not produce additional 

traffic fees. In terms of data transmission speed, the theoretical data rate ranges from 
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several Mbps in IEEE802.11b to 600 Mbps in IEEE 80.2.11n. Note that this data rate 

can be affected significantly by the signal strength and number of users coexist the 

network. 

Fast data transmission speed is an advantage of Wi-Fi and it has been explored for 

remote monitoring systems [59]. But issues like significant power consumption and 

long latency have made Wi-Fi not a good candidate for battery powered wireless sensor 

node applications. Furthermore, due to the wide availability of Wi-Fi in the commercial 

area, its security is also a big concern when applying it for industrial applications. 

In recent years, a new low power Wi-Fi solution, namely Wi-Fi HaLow, is introduced 

by the Wi-Fi Alliance® based on IEEE 802.11ah specification to satisfy the 

requirement in the scenario of Internet of Things (IOT) applications [60]. Wi-Fi HaLow 

operates in 900 MHz frequency band, offering longer range, lower power connectivity. 

The transmission range of Wi-Fi HaLow’s is expected to be twice of today’s Wi-Fi 

[61]. In addition, it is expected to provide a more robust connection in challenging 

environments due to that it has better penetration capability to walls or other barriers. 

In terms of transmission speed, the lowest rates of Wi-Fi HaLow is only 150 kbps, 

achieved by using a 1 MHz channel, and can be up to 18 Mbps by employing a 4 

MHz-wide channel. Due to the wide availability of the existing Wi-Fi, Wi-Fi HaLow is 

expected to gain wide application quickly and can be a good candidate for wireless 

condition monitoring systems. 

2.2.2 Bluetooth classic and Bluetooth low energy 

Bluetooth is an open wireless technology standard for exchanging data over short 

distances based on IEEE802.15.1 standard. It is designed for continuous, streaming data 

applications and has gained wide usage in computer centred peripheral applications. 

The network of Bluetooth devices is known as a piconet, which can contain one master 

and 7 slaves Bluetooth devices. The connection of two or more piconets forms a 

scatternet in which certain devices simultaneously play the master role in one piconet 

and the slave role in another. Bluetooth works in 2.4 GHz frequency band and can 

achieve a maximum data rate of 3 Mbit/s for version 2.0 + enhanced data rate (EDR).  
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The power consumption of Bluetooth is lower than Wi-Fi, making it more suitable for 

battery powered wireless applications. A commercial off-the-shelf product, called Intel 

Mote [62], was designed based on the top of a point-to-point Bluetooth baseband in 

order to be used in industrial monitoring using vibration sensors. The Intel Mote is 

high-performance sensor node platform integrated 12 MHz CPU, 64 kB SRAM, and 

512 kB Flash. However, it is reported that the Bluetooth-based WSN applications has 

decreased due to the high complexity and inadequate power characteristics of Bluetooth 

[63]. 

On the other hand, a new specification, namely Bluetooth low energy (BLE), is 

becoming popular in recent years with the emerging of smartphones, wearable devices 

and IOT. BLE is an ultralow-power technology addressing devices with very low 

battery capacity. It allows for a maximum data rate of up to 1 Mbps over distances of 

about 50 m in the 2.4 GHz band. Although BLE is similar to Bluetooth, it has made 

some important improvement to satisfy IOT applications. For example, BLE has a 

variable-length packet structure, compared to Bluetooth’s fixed length. 

BLE is suitable for applications that require the episodic or periodic transmission of 

small amounts of data. The maximum power consumption of BLE is about 15 mA but 

the average power consumption can be only about 1 uA. This is achieved by making the 

actual connection time of only a few mili-seconds. Although the theoretical data rate is 

up to 1 Mbps, the actual throughput is much less due to packet overhead, 

implementation constraints, and processing delays. For consultancy, one measurement 

of maximum application layer throughput is about 58.48 kbps in [64]. 

In addition, the network capacity for BLE is enhanced compared to Bluetooth classic, 

making it more suitable for IOT applications that usually include many sensor nodes. 

According to [64], the number of simultaneous slaves per master can be up to more than 

5000. Moreover, BLE might support mesh network in the future version [65]. 

2.2.3 Protocols based on IEEE802.15.4 

IEEE 802.15.4 is a technique designed to provide simple wireless communications with 

relatively short range, limited power, relaxed data throughput, low production cost and 

small size. It originates from the low-rate wireless personal area networks (LR-WPAN) 

standard, which was inspired by the requirement to enable inexpensive WSNs for 
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remote monitoring and control of noncritical functions in the residential, commercial, 

and industrial applications. 

Three frequency bands are supported by the IEEE 802.15.4 standard, as given in Table 

2.1, including two low bands at 868/915 MHz and a high band at 2.4 GHz. The data 

transmission rates vary from 20 kbps to 250 kbps depending on the operating band. The 

most commonly used band is 2.4 GHz one, which is the same as the Wi-Fi and 

Bluetooth. 

One major benefit of 802.15.4 is that they can form a mesh network, where each sensor 

does not only transmit its own data but also serve as a relay for other sensors. Due to its 

attractive characteristics and the emerging IOT applications, a number of techniques 

have been developed to operate on top of 802.15.4 standard, such as ZigBee, 

WirelessHART, 6LoWPAN and the recently Thread from Google Nest. 

Table 2.1 IEEE 802.15.4 standard details 

Frequency band (MHz) Coverage 
Maximum theoretical 

data rate (kbps) 
Channels 

868.0-868.6 Europe 20 1 

902-928 Americas 40 10 

2400-2483.5 Worldwide 250 16 

2.2.3.1 ZigBee	

ZigBee is a mesh-networking standard targeted at industrial control and monitoring, 

building, and home automation, embedded sensing, and energy system automation. The 

advantages of ZigBee include extremely low energy consumption and support for 

several different topologies, making it a good candidate for wireless sensor network 

applications [63]. According to a comparison in [66], it is found that ZigBee is easier to 

implement than Wi-Fi and Bluetooth, which makes it more suitable for sensor 

networking applications due to their limited memory and computational capacity. 

Furthermore, ZigBee provides better efficiency for data size smaller than 102 bytes [66] 

and better performance in low SNR environment than Wi-Fi and Bluetooth [67]. 

As an early starter in the WSN area, ZigBee has been supported by many semiconductor 

companies, such as TI, NXP and Silicon Labs. Its successful application can be found in 

motor broken bar monitoring [68], energy monitoring [24] and fault diagnosis based on 
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motor stator current and vibration signals [25]. However, it is reported that ZigBee 

cannot satisfy strict industrial-grade reliability and robustness [30, 45]. 

2.2.3.2 WirelessHART	

WirelessHART is a protocol especially for industrial wireless network applications 

approved in June 2007. It is an extension of the highway addressable remote transducer 

(HART) protocol. In 2010, WirelessHART was approved by the International 

Electrotechnical Commission (IEC), making it first wireless international standard as 

IEC 62591[70]. 

WirelessHART operates on the 2.4 GHz frequency band and utilises a time 

synchronised, self-organizing, and self-healing mesh architecture. Due to special 

considerations for the industrial requirement, it has been reported more superior for 

industrial applications than ZigBee in terms of robustness, co-existence, power 

consumption and security [69]. However, the commercially available wireless modules 

for WirelessHART are still rare when the author starts prototyping the wireless CM 

system. 

2.2.3.3 ISA100.11a	

ISA100.11a is another wireless system standard for industrial automation, which is also 

based on IEEE802.15.4. A hybrid medium access control (MAC) layer is adopted in 

ISA100.11a by combining time division multiple access (TDMA) and carrier sense 

multiple access with collision avoidance (CSMA/CA) [71]. The flexible time slots with 

configurable length can satisfy different system requirements and frequency hopping 

and channel blacklisting techniques can promise robust wireless communications. 

Moreover, ISA100.11a can be mixed with existing wired networks, including Modbus, 

Profibus, and HART, using tunnelling techniques [72]. 

Similar as WirelessHART, ISA100.11a outperforms ZigBee for industrial applications. 

However, the commercially available wireless modules for ISA100.11a are still rare. In 

addition, it is reported that it is quite technically challenging to implement the full 

ISA100.11a stack on low-cost hardware [73]. 

2.2.3.4 6LoWPAN	and	Thread	

6LoWPAN is built with the aim of standard Internet protocol (IP) version 6 (IPv6) 

communication over low power wireless IEEE 802.15.4 networks [74]. Its advantages 
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lie in its capability to communicate directly with other IP devices locally or via the 

existing and well-defined IP network (e.g., Ethernet). Thereafter, it can utilise the 

existing architecture and security, application level data model and services, network 

management tools etc. In order to send and receive IPv6 packets over the bandwidth 

limited IEEE 802.15.4 based networks, 6LoWPAN has employed encapsulation and 

header compression mechanisms to reduce packet size. 

Another competitive protocol named Thread is launched in 2015 [75]. It is a 

royalty-free protocol and runs over 6LoWPAN specialised for home automation. Due to 

good commercial support from companies like Google’s Nest, Thread is expected to 

provide better security and connectivity support than the basic 6LoWPAN. 

2.2.4 Comparison of wireless protocols 

In the above sections, several popular wireless protocols commonly employed in WSN 

are investigated. They have their own advantages for satisfying some specific 

requirements but maybe not so suitable for other scenarios. For the condition 

monitoring application that requires a large volume of data and high data rates, Wi-Fi 

can be a good option supposing the AC/DC power supply can be easily accessed.  

Meanwhile, the low-power wireless protocols bring another kind of condition 

monitoring scenarios, in which the wireless sensor node can be powered by a battery for 

a long time, e.g. several months or several years, or can harvest energy directly from its 

ambient, such as exhausted heat [18, 19] and mechanical vibration [3, 4]. Such wireless 

CM can greatly ease the installation, maintenance and possible redeployment process. 

In factory automation systems, most industrial monitoring and control are generally not 

large and does not need frequent updating, making low-power wireless protocols a 

suitable solution for such scenarios. 

The popular low-power wireless communication protocols are summarised in Table 2.2 

in terms of operating frequency band, data rate, range, network capacity and support 

level. Basically, the lower operating frequency enables a longer range for the same 

transmission power condition and higher data rate causes higher power consumption. 

WirelessHART and ISA.100.11a have already provided industrial level support, which 

makes them more suitable for applications that have strict reliability requirements. 

Meanwhile, it is quite challenging to implement these two robust protocols on resource 
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constraint microcontrollers [36], making their solutions costly. Note that these two 

protocols are not ideal for industrial applications and further improvements are required 

with more experience being gained in practical applications. For example, to solve the 

drawbacks in the centralised management scheme, Zand et al presented a distributed 

network for real-time monitoring and process control applications in wireless industrial 

automation [76]. 

Table 2.2 Comparison of investigated wireless communication protocols 

Protocol Operating Band (Hz) Data rate (bps) Range Support level 

BLE 2.4G 1 M Short Commercial 

Wi-Fi HaLow 900M 150 k - 18 M Long Commercial 

ZigBee 
2.4G 

915M 

868M 

20 k – 250 k Medium to long 

Commercial 

WirelessHART Industrial 

ISA100.11a Industrial 

Thread Commercial 

Other protocols like ZigBee, BLE, Wi-Fi HaLow and Thread have gained good 

commercial support and thus their relevant solutions can be provided at a low price. 

They can be employed in the situations where reliability requirements are not so strict. 

However, it is difficult to tell which protocol will win out in the future. Possibly they 

will co-exist and find their own application areas in the future. In this thesis, ZigBee is 

employed to build the wireless sensor network due to the solutions and supports for 

ZigBee have been mature whilst other solutions are still under development when the 

author starts the work. 

2.3 Review of WSN for condition monitoring 

Attracted by the potential benefits and opportunities of WSN, many research works 

have been carried out for condition monitoring purposes and some industrial products 

have become available on the market. This section will review work and products in the 

condition monitoring field with a focus on vibration based techniques. 

2.3.1 Review of researcher’s works 

In 2007, F. Salvadori and M. De Campos, et al [77], proposed a monitoring system with 

both wired and wireless communication approaches for energy usage evaluation in 

industrial electric systems. The system provided two kinds of intelligent nodes: one 
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battery powered intelligent sensors module and one high-performance remote data 

acquisition unit. The first type is designed to acquire static signals and the second type 

is employed for acquiring data with high sampling rate. Through packet losses 

experiments, it shows the first type module is able to capture up to 11 samples per cycle 

while the second one can achieve 68 samples per cycle, which allowed analysing up to 

the 34th harmonics. Based on the above system, they added the dynamic power 

management with scheduled switching mode (DPM-SSM) protocol for the sensor nodes 

to extend the network lifetime [78]. By switching the node to a sleep state after a data 

packet transmission, the method takes advantage of the battery capacity recovery effect. 

The experimental results show that even for very short sleep times (i.e., 1 ms), the 

sensor node is able to transmit about one-third more packets compared with a sensor 

node without DPM-SSM. The sensor lifetime could be further extended by applying 

longer sleep periods. 

In 2007, Xin Xue [79] proposed a CM system for three-phase induction motors, 

especially small motors, using a WSN to measure the temperature and the vibration 

signals. The sensor node was from Crossbow Inc., which hosted an Atmel 128L CPU 

running the Tiny Operating System (TinyOS). In the experiment, the sensors were 

placed on the rotor and wirelessly transmitted to a base station located 6 feet away. The 

results showed that the wireless sensor data was not as reliable as wired sensors. 

However, it provided an important way to collect data when wired sensors cannot reach 

the place. The magnetic field caused less than 10% packet loss to the wireless 

communication between the sensor nodes and the base station. Note that the sampling 

rate of the temperature sensor and acceleration sensors were set at 10 Hz and 100 Hz 

respectively. 

In 2005, B. Lu et al. [80] proposed an industrial plant energy management system with 

a WSN architecture, which achieved the evaluation of the industrial motor energy usage 

using only motor terminal quantities through WSN and nameplate information without 

interfering with the motor’s normal operation. Later, they upgraded the energy 

management scheme to a closed-loop one and discussed the scheme and the design of 

the sensor in [81] and [82] separately. The applicability of the proposed scheme is 

analysed in terms of data throughput and communication latency, power consumption, 

energy evaluation and condition monitoring accuracy. A simplified demo system has 
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been constructed and details of the design and implementation of the wireless sensor 

device are given in [83]. 

In 2009, B. Lu et al. [24] improved the system and gave a more mature and 

comprehensive solution, which identified the synergies between wireless sensor 

networks (WSNs) and nonintrusive electrical-signal-based motor signature analysis and 

proposed a scheme of applying WSNs in online and remote energy monitoring and fault 

diagnostics for industrial motor systems. The paper also provided detailed analysis to 

address the real-world challenges in designing and deploying WSNs in practice, 

including wireless-link-quality dynamics, noise and interference and environmental 

impact on communication range and reliability. The overall system feasibility is 

investigated through a series of laboratory experiments and field tests. 

In 2007, P. S. Sausen et al. [84] presented a dynamic power management (DPM) 

technique derived from a more realistic analysis of the battery capacity recovery effect 

and the switching energy. The results showed the potential for improving the battery 

lifetime by taking advantage of the battery recovery effect when a node transitions to a 

sleeping state, and mostly when transitions are scheduled after packet transmissions. 

The proposed technique provided several DPM modes which would be triggered 

depending on the battery remaining capacity. Simulations results showed this technique 

could provide real battery power recovery without compromising the timeliness of the 

applications running on the wireless sensor network. 

In 2010, J. Pedro Amaro et al. [85] developed a low-cost radio frequency 

communication system to monitor the operation conditions of three-phase squirrel cage 

induction motors. The system was based on a low-cost electronic device that can 

acquire and pre-process current, voltages and temperatures and transmit processed key 

information related to the motor operation conditions. Additionally, it protected the 

motor from abnormal operation conditions and managed its stator winding connection 

mode. Hardware platforms for WSN were briefly described and compared. A Nordic 

nRF9E5 device was selected for this system and was tested in terms of power 

consumption and radio distance. 

In 2010, Yuan Hong-fang [86] presented a ZigBee WSN for vibration signal acquisition 

of pump. Two vibration sensors ADXL105 and ADXL78 with the range of ±5g and 

±35g separately were used to ensure the scope of measure and improve the measure 
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precision of the signal. Normally, only three symptom parameters in the frequency 

domain will be sent for fault recognition; therefore, the transmission load of WSN could 

be decreased. If an abnormal state was detected, original data could be sent to a fielder 

server for further analysis and diagnosis. The ZigBee module in this system is 

developed with ZigBee processor CC2480, RF front end CC2591, and microcontroller 

ATmega128L. 

In 2012, L. Hou and N. W. Bergmann performed FFT of 512 points on the vibration 

signal and extracted 12 most frequently occurring frequency components in the 

frequency domain as the fault feature for data transmission in a wireless system [25]. 

After data fusion methods were added, the payload transmission data was reduced from 

1024 bytes to 8 bytes, which is a high rate compression with a data reduction of more 

than 99%. However, the sampling rate for the vibration signal was only at 3.1 kHz, 

which would be a bit low for some applications to accurately detect results obtained. 

These above investigations have shown a trend of processing the data with a high 

sampling rate on the distributed wireless sensor nodes instead of transmitting the raw 

data directly, in which case, the wireless bandwidth requirements would be greatly 

decreased and the power consumption of the sensor nodes can be significantly reduced. 

2.3.2 Investigation of available wireless CM products 

Some leading industrial instrumentation companies, such as GE, ABB, Emerson, 

Siemens, and Honeywell, have released their wireless condition monitoring products. 

These products are briefly described below. 

 

Figure 2.3 (a) Essential Insight mesh wireless condition monitoring platform, (b) WiMon 100 and (c) CSI 

9420 wireless vibration transmitter 
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GE Measurement & Control. The Essential Insight mesh wireless condition monitoring 

platform (shown in Figure 2.3(a)) of GE Measurement & Control [29] is based on 

ISA100.11a protocol. It is capable of collecting acceleration and temperature signal 

with the resolution at 16 bit and 24 bit respectively. For static data, the update rate can 

be set from 1 minute to once per day and for the dynamic data, it can be updated from 

once per day to once per every 30 days. Also, both the static and dynamic data can be 

updated on the user’s demand. It is worth mentioning that the sampling rate can be set 

as high as 51.2 kHz. 

ABB. The WiMon 100 (shown in Figure 2.3(b)) from ABB is based on WirelessHART 

[27]. It includes a vibration sensor, a temperature sensor, a long life battery and a 

WirelessHART radio. It can provide a conversion resolution at 16 bit with sampling rate 

at 5,859 kSPS. 

Emerson. The CSI 9420 wireless vibration transmitter (Figure 2.3(c)) from Emerson 

[28] is based on WirelessHART protocol. It can acquire 4096 points of the raw 

waveform on demand with sampling rate as high as 51.2 kHz. The upload interval can 

be set from 1 minute to 60 minutes in standard mode and up to 24 hours at power save 

mode. In addition, this device provides three kinds of data compression techniques to 

extract useful information whilst facilitating easier transmission over the network. Such 

techniques are expected to accelerate responsiveness of the system whilst reducing 

power consumption. 

The first compression technique is FFT analysis, which reduces the data size by over 

60%. The second technique is named thumbnail spectrum which contains the same 

frequency and amplitude information as the high-resolution spectrum, while the data set 

is compressed by an additional 98%. Figure 2.4 (a) and (b) illustrates an example of the 

FFT analysis and thumbnail spectrum. 

 

Figure 2.4 Spectrum results of CSI 9420: (a) high-resolution spectrum and (b) thumbnail spectrum [28] 
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The third technique is energy bands, which divides the spectrum into three 

predetermined energy bands (as shown Table 2.3) and then calculates the vibration 

energy within each band. By dividing the spectrum into energy bands, the user can 

isolate frequencies associated with different categories of faults. 

Table 2.3 Energy bands with frequency ranges 

Band Fault types Range 

1 Rotor vibration: imbalance, misalignment (also defects on belt drives) 2-65Hz 

2 Rotor harmonics: looseness, electrical faults, blade and vane pass 65-300Hz 

3 High frequency: bearing and gear defects, lubrication and cavitation 300-1000Hz 

GST. The A306 and A302 (shown in Figure 2.5) from Global Sensor Technology 

(GST) [87] is based on IEEE802.15.4 protocol. A306 is capable of acquiring three 

channels of vibration and temperature signals with a sampling rate of up to 10 kHz and 

16-bit resolution. In order to solve the bandwidth limitations of IEEE802.15.4, a large 

memory of 1 gigabytes (GB) is provided for temporarily storing the large dataset 

acquired with the high sampling rate. Unlike A306, A302 includes a tri-axil MEMS 

accelerometer and is self-powered while the maximum sampling rate is about 4 kHz and 

its resolution is 12 bit. 

 
Figure 2.5 Wireless sensor nodes from GST: (a) A306 model (b) A302 model 

MicroStrain. A wireless IEPE sensor node (Figure 2.8(b)) is provided from MicroStrain 

[88]. The node provides 24-bit resolution and up to 104 kHz sampling rates, operating 

at IEEE802.15.4 radio. Besides, it integrates a low-pass Butterworth filter with 

programmable anti-aliasing filter ranging from 26 Hz to 33 kHz. 
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Figure 2.6 Wireless IEPE sensor node from MicroStrain 

Siemens and Honeywell. There are also wireless solutions from other companies, like 

Siemens [89] and Honeywell [90]. Differently, Siemens adopts the WirelessHART 

protocol while Honeywell employs the ISA100.11a. The wireless transmitters from 

Siemens and Honeywell are shown in Figure 2.7 (a) and (b), respectively. Only 

products for collecting temperature and pressure signals have been found. 

 

Figure 2.7 (a) Wireless transmitters from Siemens and (b) wireless transmitters from Honeywell 

Apart from the above products that are based on IEEE802.15.4, there are also some 

devices based on the sub-GHz frequency band, which can provide a longer transmission 

range than those wireless techniques working on 2.4 GHz. 

ADI. The wireless vibration sensor ADIS16229 [26] (Figure 2.8(a)) from Analog 

Devices Inc. (ADI) operates at 902.5 MHz to 928 MHz frequency band. It includes 

dual-axis digital micro-electro-mechanical systems (MEMS) with resonant frequency 

up to 5.5 kHz and sample rate up to 20 kSPS. In addition, it features a programmable 

decimation filter and selectable windowing function in time domain signal processing 

and a 512-point, real-valued FFT; FFT magnitude averaging; and programmable 
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spectral alarms in frequency domain processing. 

PCB Piezotronics. Echo® Wireless Vibration Sensor Model 670A01 (as shown in 

Figure 2.8(b) from PCB Piezotronics [91], is based on 900MHz ISM band. The sensor 

is designed to wake up at preprogrammed intervals, measures a series of the overall 

vibration signal, transmit them to a receiver for processing and goes back to sleep to 

conserve battery power. In detail, it can sample the vibration with 16-bit resolution, 

calculate the RMS acceleration at the frequency range from 2.2 to 15 kHz and transmit 

the data using the 900MHz ISM band with a data rate at 20 bps. 

 

Figure 2.8 (a) ADIS16229 from ADI and (b) Echo® wireless vibration sensor model 670A01 

These above products are the latest developments and most of them have been 

introduced within the last five years. Some of them have provided high specifications 

and even integrated intelligent signal processing algorithms, like the thumbnail 

spectrum on CSI9420 and FFT on ADIS16229. However, the majority of them don’t 

allow users to embed customised signal processing algorithms. 

2.4 Investigation on wireless sensor platforms 

Attracted by the great potential applications of WSN, many leading semiconductor 

manufacturers have provided some system on chip (SOC) wireless modules, which 

include both the microcontroller and the RF components, e.g., CC2530 from TI [92] and 

JN5148 from NXP [93]. These modules enable users to implement WSNs with 

minimum time to market and low development cost. 
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A number of SOC for WSN (built on IEEE802.15.4) is summarised in Table 2.4, 

including the sensitivity and power consumption features. It can be observed the 

sensitivity and power consumption of the chips vary a little. It is reported that SOC 

solutions significantly reduced the amount of power consumption in the sleep mode, but 

not so much in transmission and receiving modes [24]. 

Table 2.4 Commercially available SOC for WSN 

Corp. RF Module 
Sensitivity 

(dBm) 

Power Consumption(A) 

Rx Tx Standby 

TI 
CC2530 -97 20.5m 29m(1dBm) 0.4u 

CC2538 -97 20m 24m(0dBm) 0.4u 

Freescale 

KW20 -102 15m 15m(0dBm) 0.6u 

MC13226V -100 21m 29m(0dBm) 0.85u 

MC13237 -94 26.6m 22.3m(0dBm) <1u 

Silicon Labs EM357 -102 26m 28.5m(0dBm) 0.4u 

ST STM32W108CC -99 27m 31m(3dBm) 0.4u 

NXP 
JN5148 -95 17.5m 15.0m 0.1u 

JN5168 -95 17m 15.3m 0.1u 

Atmel ATmega256RFR2 -100 12.5m 14.5m <0.7u 

Radio Pulse MG2470 -99 -- -- 1u 

As we intend to embed intelligent signal processing algorithms on the sensor node, the 

processor specifications of the above SOC are given in Table 2.5. The CPU architecture 

of the processor is a key factor influencing the computing capabilities and power 

consumptions of the sensor node. Various CPU structures have been adopted by 

different chips, from the earliest 8 bit 8051 core to the latest Cortex-M3 and Cortex-M4 

architecture. For high computing capability and low power consumption considerations, 

it is advised to choose the chip that employs latest Cortex-M3 or even Cortex-M4 core. 

Among these chips, KW20 from Freescale is the most high-performance one, which 

adopts the latest Cortex-M4 core running at a maximum speed up to 50 MHz. Most 

importantly, the DSP core inside the chip could greatly improve the computing 

capabilities. The data memory is another important factor influencing the computing 

capabilities of the node. From Table 2.5, it can be seen that JN5148, MC13226, 

LTC5800 and KW20 outstand themselves in this respect. 
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Table 2.5 Wireless sensor network chips (processor) 

Corporation RF Module 
Processor 

Architecture Flash (kB) SRAM (kB) Speed (MHz) 

TI 
CC2530 8 bit, 8051 core 256 8 32 

CC2538 32 bit, Cortex-M3 512 32 32 

Freescale 

KW20 32 bit, Cortex-M4 512 64 50 

MC13226 32 bit, ARM7 128 96 26 

MC13237 8 bit, HCS08 128 8 32 

Silicon Labs EM357 32 bit, Cortex-M3 192 12 24 

ST STM32W108CC 32 bit, Cortex-M3 192 16 24 

NXP 
JN5148 32 bit, RISC 128 128 32 

JN5168 32 bit, RISC 256 32 32 

Atmel ATmega256RFR2 8 bit, AVR 256 32 16 

Radio Pulse MG2470 8 bit, AVR 64 6 16 

In general, IEEE802.15.4 provides a maximum data rate of 250 kbps, however, some 

chips have broken through this limitation. For example, the JN5148 can provide high 

data rate modes at 500 and 667 kbps; MG2470 can provide a maximum data rate of 1 

Mbps, and the radio transceiver of ATmega2564RFR2 can provide high data rates up to 

2 Mbps. However, it should be noted that higher data transmission rate usually 

consumes larger power. 

Usually, the above chips only provide solutions for ZigBee or 6LoWPAN and the 

solutions for WirelssHart or ISA100.11a are still rare. Linear Technology’s Dust 

Networks has a series of products named SmartMesh that can support WirelessHART. 

The SmartMesh family consists of several products to simplify system development: 

LTC5800 (SOC) and LTP5900 (module). The LTC5800 integrates all radio circuitry 

components, including an onboard power amplifier and a Cortex-M3 microprocessor 

with 512 kB Flash and 72 kB SRAM, requiring only power, ground and an antenna for 

robust wireless connectivity. 

Besides the above SOC solutions, there are also some advanced wireless sensor nodes 

developed by some universities of institutes using a commercially available 

microcontroller, RF transceiver and other electronic components, such as MICA series 

from UCB [94] and XYZ from Yale [95]. Table 2.6 lists the microcontroller (MCU) 

chips and RF modules for different WSN nodes, from which, it can be observed that 

new generation WSN nodes have been developed with both a high-performance 
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processor like ARM and an advanced RF module that contains 802.15.4/ZigBee chips. 

Specifically, the CC2420 chip from TI is widely employed due to its low power and 

high-performance design. The newer version, named CC2530 shown in Table 2.4, 

provides even lower power consumption and higher performance. 

Table 2.6 Wireless sensor network nodes 

Platform 

Microcontroller Memory Size (kBytes) RF chip 

Model Architecture 
Frequency  

(MHz) 
Program Data Model 

MICA2 Atmel128L 8 bit AVR 8 128 4 TR1000 

MICAZ Atmel128L 8 bit AVR 8 128 4 CC2420 

Telos MSP430F149 16 bit RISC 8 60 2 CC2420 

WMNMCS-5 ADuC832/834 8 bit 8052 1.3 62 6 nRF905 

Preon 32 -- 32 bit Cortex M3 72 256 64 AT86RF231 

BTNode Atmel128L 8 bit AVR 8 128 180 CC1000 

SUN Spot ARM 920T 32 bit ARM9 180 4000 512 802.15.4 

Imote2.0 PXA271 32 bit RISC 11-400 32000 32000 CC2420 

XYZ ML67 32 bit RISC 60 256 32 CC2420 

Considering the complexity of the WSN, several specialised companies have provided 

integrated wireless module solutions to ease the development process and shorten the 

time to market. The benefits for employing an integrated wireless module specially for 

handling wireless network task include: 

 Save memory consumption. A robust wireless network stack typically consumes 

large Flash and RAM memory. For instance, the implementation of a full ZigBee 

stack for a coordinator on a CC2530 SOC consumes approximately 120 kB of Flash 

and 8 kB of RAM [96], which is a significant usage even for the advanced processor 

TM4C1233H6PM employed in this thesis. 

 Reduce interference to signal processing. The wireless stack operation involves 

several kinds of operations; including sending data, receiving data, 

acknowledgement and retransmission etc. Such operations may interrupt the signal 

processing and reduce their computation efficiency. 

 Avoid software related faults. It is never an easy job to achieve a robust network 

stack. Software related faults may result in a long development period. 

The Xbee wireless RF module is an outstanding example and is employed future in 

Chapter 3. The Xbee modules provide a variety of wireless solutions, such as ZigBee, 
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IEEE802.15.4, Wi-Fi and sub 1GHz RF communication. After a proper configuration 

through the X-CTU tool provided by the company, the modules can set up a network 

automatically. Moreover, these modules are pin-to-pin compatible with one another, 

which means the wireless protocol could be easily updated by utilising a different kind 

of Xbee module. 

2.5 Summary 

Through the investigation in this chapter, it has been found that a variety of wireless 

protocols are available for satisfying different application requirements. Especially, the 

low power consumption wireless protocols are gaining fast development in recent years 

with the emerging IOT. For industrial applications that have strict reliability 

requirement, WirlessHart and ISA100.11a are good choices, which have been designed 

to address the critical needs of industry for reliable, robust and secure wireless 

communication. For other protocols, such as WiFi HaLow, BLE, ZigBee, and Thread, 

have good commercial support, resulting in their relevant solutions to be provided at 

low cost. They can be utilised for the condition monitoring area that requires less strict 

reliability but is more sensitive to costs. 

The conflict between high data throughput and limited bandwidth in the WSN can be 

mitigated by embedding intelligent signal processing algorithms on the wireless sensor 

node and just transmitting the extracted features that have much smaller size than the 

raw data. For evaluating the signal processing algorithms, a wireless CM system will be 

prototyped in Chapter 3. Previous studies have shown satisfactory results for such 

schemes and more signal processing algorithms will be explored in Chapter 4. 
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CHAPTER 3  

HARDWARE DESIGN FOR A WIRELESS 

CONDITION MONITORING SYSTEM 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

This chapter presents the hardware design of a prototype wireless CM system, which will 

be employed for the evaluation of embedding signal processing algorithms in later 

chapters. The overall structure of the proposed wireless condition monitoring system and 

its working mechanism is firstly explained. Then, the design of the wireless sensor node is 

explained as the emphasis. A state-of-the-art Cortex-M4F MCU is employed as the core 

processor. The hardware is developed with the idea of stackable boards with different 

functions, in which way, each part can be upgraded easily. 
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3.1 Overall structure of the wireless CM system 

A prototype wireless CM system based on ZigBee is presented in Figure 3.1. It consists 

of one sink node and several sensor nodes. Vibration signals are collected and locally 

processed at the sensor node and the processed results are transmitted over the ZigBee 

network to the sink node. Then, the host computer reads data from the sink node and the 

analysed envelope spectrum of different sensor nodes are visualised. 

The sink node is the heart of the ZigBee network. It is composed of an XBee Pro 

module for wireless connectivity and an FT232 board for communicating with the host 

computer through a USB port. All the data from the sensor nodes are transmitted to the 

host computer through the sink node and the commands from the host computer are 

routed to the sensor nodes through the sink node as well. 

 

Figure 3.1 Structure of the wireless CM system 

The sensor node is the key design of this thesis and will be explained in detail in the 

following sections. As wireless sensors are required to be deployed in large networks 

and need to be low cost and have low power consumption, they are usually designed 

with limited memory size and restricted computational capabilities [22]. For instance, 

the popular wireless module XBee ®ZB has only 2 kilobytes (kB) RAM and an 8-bit 

processor running at 50.33 MHz [97]. The system-on-chip (SOC) solution CC2530 has 
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8 kB RAM and an 8-bit processor running at 32 MHz [92]. These wireless modules are 

usually not powerful enough for signal processing methods like real-time FFT analysis. 

Therefore, an additional external processor, which has much better performance yet still 

has low power consumption, is needed to fulfil the complex signal processing 

algorithms. 

For rapid prototyping, a Launchpad development board is selected as the main base 

board and several booster pack boards are stacked on this board to extend different 

kinds of functions. Figure 3.2 gives the picture for the assembled wireless sensor nodes, 

which consists of four boards: main baseboard, vibration sensor conditioning, wireless 

extension and battery booster pack, which will be explained separately in the following 

sections. The dimensions of assembled sensor node are measured as about 66 mm × 51 

mm × 50 mm (length × width × height). 

 

Figure 3.2 Assembled wireless sensor node 

3.2 Main baseboard 

The earlier real-time DSP applications are accomplished using dedicated DSP 

processors, such as TMS320C6x and TMS320C5x from Texas Instruments [98], [99], 

Blackfin and SHARC from ADI [100]. These processors are usually optimised for DSP 

processing, including dedicated structure or hardware units, such as pipeline, multiply 

accumulate unit, floating point unit (FPU) and FFT co-processors. Such optimisations 

have made them especially efficient and capable of real-time signal processing but have 
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also made them complicated and expensive too. Furthermore, one needs special 

knowledge of the hardware structure and requires programming skills to achieve high 

computation performance. 

With the fast development of processors and requirement for ubiquitous computing, 

more and more microcontrollers have become capable of performing signal processing 

with the integration of DSP unit or even FPU unit. This has made an additional DSP 

processor redundant and hence reduced the system cost [101]. Nowadays, the ARM 

cortex-M based processors have been extensively adopted by leading semiconductor 

vendors, such as Texas instrument, STM, NXP. According to a report in 2014, the 

shipment of Cortex-M units have reached 8 billion in about 10 years and this number is 

increasing quickly [102]. 

The Cortex-M family has several subfamilies: Cortex-M0, Cortex-M1, Cortex-M3 and 

Cortex-M4, etc. which are designed for satisfying various application requirements. The 

Cortex-M4 family is specially optimised for realising signal processing algorithms. 

Compared to its former Cortex-M3 family, the Cortex-M4 can achieve twice as fast for 

fixed-point algorithms and ten times faster for floating-point algorithms [101]. Such 

performance enhancement has enabled faster implementation of signal processing 

algorithms on low power consumption MCU, making the strategy of embedding signal 

processing on distributed wireless sensor node even more attractive. 

One great benefit of Cortex-M processors is the Cortex microcontroller software 

interface standard (CMSIS) library, which is free of charge on all ARM processor-based 

MCU systems and has the potential of becoming an industry standard [101]. 

Furthermore, CMSIS-DSP library makes it even more attractive for embedded signal 

processing applications, which includes more than 60 common DSP algorithms, such as 

filter functions, Fourier transforms and vector operations. Thereafter, a state-of-the-art 

Cortex-M4 processor is employed as the core processor on the wireless sensor node. 

3.2.1 Launchpad introduction 

A TIVA LaunchPad board [103] (as shown in Figure 3.3) from TI is employed as the 

main baseboard for embedding signal processing algorithms. This board integrates a 

new generation 32-bit ARM Cortex-M4F microcontroller TM4C1233H6PM, which has 
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the feature of both high performance and low power consumption while the price is just 

less than £3. The key features of the processor are listed below [104]: 

 ARM Cortex-M4 with floating point with capabilities for digital signal control 

applications 

 256 kB Flash, 32 kB SRAM 

 32-channel configurable μDMA controller, providing a way to offload data 

transfer tasks from the Cortex™-M4 processor, allowing for more efficient use 

of the processor and the available bus bandwidth 

 12-bit ADC accuracy is achievable at the full 1-MSPS rating with no hardware 

averaging 

 Generous communication options available: 8 UARTs, 6 I2C, 4 SPI / SSI 

 

Figure 3.3 TIVA C LaunchPad development board 

Another reason for choosing LaunchPad board is its excellent extensibility. Different 

function boards can be chosen and stacked on the LaunchPad board, or users can design 

their own booster pack boards. The booster pack boards available currently include 

colourful LCD display, Wi-Fi connection and Li battery, etc. [105] Besides, the onboard 

in-circuit debug interface (ICDI) makes the development process much more cost 

effective and the abundant software resources and libraries can greatly simplify and 

speed up the development process. 

The main function of the core processor includes an analogue to digital conversion, 

implementing local signal processing algorithms and sending analysis results to the 
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wireless module. Here, the on-chip 12 bit ADC is used to convert the vibration signals 

for low power and cost considerations. Although the resolution is a bit lower for 

vibration signals, it is competent enough for a demonstration. The reference voltage for 

the on-chip is the power supply of the processor (3.3V) and it can only accept positive 

voltage input. If the voltage input to the analogue pins is higher than the power supply 

or lower than 0V, the relevant pins might be damaged permanently. Therefore, the 

analogue signal should be properly biased before connecting to the ADC. 

The floating point unit inside the processor is especially useful for implementing the 

signal processing algorithms efficiently. The μDMA controller can act as a co-processor 

to move data between registers and memories, in which way, the CPU unit could 

perform the algorithm much efficiently. 

3.2.2 Power supply considerations 

In the development process, the board can get its power supply simply from the USB 

port in the ICDI section or through its own USB port. The typical power consumption 

of the core processor is 370 µA/MHz. This means that it consumes about 30 mA when 

running at the maximum system frequency (80 MHz). This value varies depending on 

the resources used. 

After the development process, the board is expected to be powered by a battery and the 

ICDI unit is not anticipated to work because its power consumption can significantly 

reduce the lifespan of the battery. To achieve this, the jumper on H24 and H25, as 

shown in Figure 3.3 should be removed and the 3.3V external power supply should 

connect to H24. 

3.3 Vibration sensor conditioning booster pack 

Vibration signals are usually collected through accelerometers, which can be either 

piezoelectric (PE) type or integrated electronics piezoelectric (IEPE). The PE type 

accelerometer outputs an electric charge signal proportional to vibration acceleration 

and needs no external power supply but an external charge amplifier is normally 

required to convert its high impedance output to a low impedance one. In this way, the 

signal can be effectively measured by an ADC. In comparison, the IEPE type 

accelerometer integrates a preamplifier for impedance conversion, which enables the 
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output signal to be directly collected by the ADC or transmitted over long distances. 

However, the price is that it needs an excitation power from a constant-current source 

(4-20mA) [106]. 

Apart from the traditional PE and IEPE accelerometers, the micro-electro-mechanical 

systems (MEMS) type accelerometer is getting popular due to its low cost and low 

power consumption characteristics. The MEMS accelerometers have integrated 

conditioning circuit in a compact package or can output digitised acceleration directly. 

Currently, they have gained wide application for motion, shock or falling detections in 

the area of the automobile, smartphones and wearable devices, which does not require a 

very high sampling frequency. Also, they have been explored for condition monitoring. 

According to the investigation in [71], [107], the MEMS accelerometers under tests 

have similar frequency peaks content in comparison with the conventional 

accelerometer for the impact excitation but they also have substantial noise and shift in 

phase, meaning there still needs to be significant improvements before applying them in 

practice. Furthermore, the MEMS accelerometers usually have limited frequency 

response within 2 kHz. Meanwhile, the fault frequencies of mechanical systems are 

often modulated in several kHz ranges [14], which is out of the range of most MEMS 

accelerometers. 

From the power consumption point of view, the PE type sensor consumes less power 

than the IEPE sensor and this is an especially important factor for a battery powered 

WSN node. Therefore, a PE type sensor is employed for vibration measurement. 

3.3.1 Conditioning circuit 

The schematic of a charge amplifier is presented in Figure 3.4. The output voltage ௢ܸ௨௧ 

is determined by the input charge ݍ and the feedback capacitor ܥ௙: 

It can be noticed that that the smaller the capacitor is, the larger the gain of the charge 

amplifier. The resistor ܴଶ, ܴସ and ܴହ compose a T-type resister network, which is 

equivalent to a large feedback resister ௙ܴ: 

 
௢ܸ௨௧ ൌ

ݍ
௙ܥ

 (3.1) 

 
௙ܴ ൌ ܴଶ ൅ ܴହ ൅

ܴଶܴହ
ܴସ

 
(3.2) 
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The feedback resistor ௙ܴ is employed to create proper bias for the amplifier. The 

feedback resister ௙ܴ and capacitor ܥ௙ creates a high-pass filter [108], whose cut-off 

frequency ு݂௉ can be given as: 

It can be observed from (3.1) and (3.3) that the capacitance ܥ௙ needs to be lowered so 

as to increase the gain while the resistance ௙ܴ needs to be increased to keep the cut-off 

frequency low. However, very large resister yields poor SNR and is not easy to 

implement in practice [108]. This is the reason why a T-type resister network is used to 

produce the equivalent feedback resister in Figure 3.4. Because the impedance of the 

feedback resistor is so high, even a small bias current at the input of the amplifier might 

create a large output offset therefore an amplifier with low bias current is preferred 

[109]. In this design, a low bias current (only 1 pA at 25 ºC) rail-to-rail input/output 

amplifier LTC6078 [110] is chosen to build the charge amplifier. The parameters of the 

charge amplifier are computed and shown in Table 3.1. 

 
Figure 3.4 Schematic of charge amplifier and voltage amplifier 

Table 3.1 Parameters of the charge amplifier 

Parameter Value 

Gain 0.303mV/pC 

Equivalent feedback resistor 135.5 MΩ 

Cut-off frequency 0.356Hz 

After the charge amplifier, the signal is amplified by 10 times and then filtered using a 

Sallen-key type filter shown in Figure 3.5 to suppress the high-frequency noises. The 

 
ு݂௉ ൌ

1
ߨ2 ௙ܴܥ௙

 
(3.3) 
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circuit is constructed using a low-power dual operational amplifier LTC2051 [111] and 

the desired parameters of the filter are given in Table 3.2. The frequency response of the 

designed circuit is given in Figure 3.6, which shows its -3dB gain is located at 

approximately 12 kHz. 

 

Figure 3.5 Schematic of 12 kHz Butterworth Sallen-Key low-pass filter 

Table 3.2 Parameters of the 12 kHz low-pass filter 

Parameter Value 

Order 4 

Gain 0dB(1V/V) 

Allowable passband ripple 1dB 

Passband frequency 12 kHz 

Corner frequency attenuation -3dB 
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Figure 3.6 Frequency response of the designed low-pass filter 
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3.3.2 Power supply and reference voltage 

As the wireless sensor node is powered by a battery, the power consumption always 

matters. In order to obtain a longer battery life, a simple solution is to shut off 

applications when they are not being used. The mechanism used to shut off the 

application is referred to load switch since the current drawn by each application is 

considered a load on the battery. 

Typically, load switches are implemented using two metal–oxide–semiconductor 

field-effect transistor (MOSFET) [112], as shown in Figure 3.7. Here, a small 

N-channel MOSFET (Q1) is employed to control the state of the P-channel MOSFET 

(Q2) that has a low resistance in on state. When the logic input signal ௢ܸ௡/௢௙௙ is high, 

both the N-channel MOSFET (Q1) and P-channel MOSFET (Q2) are turned on, 

allowing current to flow from port ௜ܸ to ைܸ. Otherwise, the current flow between ௜ܸ 

and ைܸ is blocked. This mechanism is quite effective in multiplexing battery power to 

the areas where it is needed and powering off when idle [112]. 

 

Figure 3.7 Basic load switch schematic [112] 

With the quick development of portable devices, a host of integrated load switch chips 

become available. Not only have they saved the board space but they have also been 

optimised to obtain lower quiescent current, voltage drop, power dissipation, rising time 

and protection mechanism (current/temperature limits), etc. In this design, an integrated 

load switch TPS22929D [113] is employed, which allows a maximum current of 1.8 A. 

The schematic for load switch is shown in Figure 3.8(a). A logic high signal on PE_ON 

will enable the +5 V power output while it can be simply shut down by a low logic 
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signal. By default, the +5 V power output is disabled by pulling the PE_ON pin down to 

the ground using a resistor. 

 

Figure 3.8 (a) Schematic of 5V power load switch and (b) schematic of 2.5 V reference voltage 

As shown in Figure 3.4 and Figure 3.5, single power supply operational amplifier is 

employed for power consumption considerations and a +2.5 V reference voltage signal 

is needed to bias the operational amplifier properly. Here, a low noise precision voltage 

reference REF5025 [114] is adopted to provide the reference voltage. The schematic of 

2.5 V reference voltage is shown in Figure 3.8(b). 

3.3.3 External ADC and MicroSD card 

By default, the vibration signal is collected by the on-chip 12 bit ADC of the core 

processor. In some cases, the signal can be very weak and the resolution of the ADC 

may be not sufficient, therefore, an external 16 bit ADC is also added on the 

conditioning booster pack as a backup solution and has not been used in this thesis. 

The external ADC employed is LTC1864 [115], which is from Linear Technology. Its 

maximum sampling frequency can be as high as 250 KSPS and it can connect to the 

LaunchPad board through a serial peripheral interface (SPI) interface, as shown in 

Figure 3.9(a). The vibration signal can be connected to its input by placing a jumper on 

J1. 
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Figure 3.9 (a) Schematic of external ADC and (b) schematic of MicroSD card connection 

In situations where the wireless signal is not stable, the data from the WSN node maybe 

not able to be uploaded in time, therefore, a MicroSD card is added for storing the data. 

The schematic for the MicroSD card connection is shown in Figure 3.9(b). Its 
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connection to the LaunchPad is also through the SPI interface, which is the same as the 

external ADC but different chip selection signal is used to distinguish their data. 

3.3.4 Port occupation analysis 

Although the LaunchPad has provided good extensibility, careful attentions should be 

taken to avoid port usage conflicts. The port usage of the conditioning booster pack is 

shown in Table 3.3. As it shows, the analogue input is occupied on J3_9 and the SPI 

ports are occupied as well with one selection pin for external ADC (CS_AD) and one for 

MicroSD card (CS_SD). 

Table 3.3 Port occupation of conditioning booster pack 

 

3.4 Wireless extension booster pack 

3.4.1 Wireless module introduction 

According to the investigation in Chapter 2, ZigBee is chosen to establish the prototype 

wireless condition monitoring mainly due to its low cost, extremely low power 

consumption and potential to create large-scale networks [23]. For fast prototyping, the 

off-the-shelf XBee ®ZB wireless module from Digi international [97] is employed in 

this design. This popular commercial module is effective, reliable and practical to 

establish the wireless network [116].  

One advantage of XBee module is its pin-to-pin compatibility. It can be easily migrated 

to another kind of wireless protocol, such as WIFI and sub-GHz, without changing the 

hardware design. For the ZigBee network alone, there are also several options. Table 

3.4 lists the specifications of Xbee ZB and Xbee-PRO ZB. In comparison with the 

Function GPIO J1 J3 GPIO Function 

 1 1  

 PB5 2 2 GND 

 PB0 3 3 PD0 SCLK 

 PB1 4 4 PD1  

 PE4 5 5 PD2 MISO 

 PE5 6 6 PD3 MOSI 

 PB4 7 7 PE1  

 PA5 8 8 PE2  

 PA6 9 9 PE3 AIN1 

 PA7 10 10 PF1  

Function GPIO J4 J2 GPIO Function 

 PF2 1 1 GND 

 PF3 2 2 PB2 CS_SD 

CS_AD PB3 3 3 PE0  

 PC4 4 4 PF0  

 PC5 5 5  

PE_ON PC6 6 6 PB7  

 PC7 7 7 PB6  

 PD6 8 8 PA4  

 PD7 9 9 PA3  

 PF4 10 10 PA2  
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XBee ZB, XBee-Pro ZB has wider transmission range and higher power consumption. 

They can be chosen according to the application’s range requirements. 

Table 3.4 XBee ZB and XBee-PRO ZB specifications [117] 

Platform XBee® ZB XBee-PRO® ZB 

Performance 

RF Data Rate 250 kbps 

Indoor /Outdoor Range 40 m / 120m 90 m / 3200m 

Transmit Power 2 mW (+3 dBm) boost 

mode 

63 mW (+18 dBm) 

Receiver Sensitivity (1% 

PER) 

-96 dBm in boost mode -102 dBm 

Features 

Frequency Band 2.4 GHz 

Interference Immunity DSSS (Direct Sequence Spread Spectrum) 

Serial Data Rate 1200 bps - 1 Mbps 

ADC Inputs (4) 10-bit ADC inputs 

Operating Temperature 

& Humidity 

-40° C to +85° C, 0-95% humidity non-condensing 

Power Requirements 

Supply Voltage 2.1 - 3.6VDC 2.7 - 3.6VDC 

Transmit Current 40 mA (@3.3 V) 205 mA 

Receive Current 38 mA / 40 mA boost 

mode @ 3.3VDC 

47 mA 

Power-Down Current <1 uA @ 25º C 3.5 uA @ 25º C 

In addition, there are several options for the antennas, as shown in Figure 3.10. The 

Xbee modules with wire or printed circuit board (PCB) antennas are ready to use 

because the antenna is already on the board while an external antenna is needed for the 

Xbee modules with U.FL or RPSMA types since only the external connectors are 

provided on the board. However, the U.FL and RPSMA types provide more flexibility 

and are suitable for applications that want the antenna to be outside the box. 

 
Figure 3.10 XBee Pro ZB module with different kinds of antennas: (a) wire antenna, (b) U.FL antenna, (c) 

RPSMA antenna and (d) PCB antenna 
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The WSN node is intended to be installed in a box, maybe a metal box for blocking 

potential large noises in the environment. Thus, the module with U.FL antenna is 

preferred. A U.FL female to RPSMA female connector is used for the connection with 

the 2.4GHz male SMA antenna, which is given in Figure 3.11(b) and (c), respectively. 

 

Figure 3.11 (a) XBee-PRO module with U.FL connector, (b) U.FL female to RP-SMA female connector 

and (c) 2.4GHz male SMA antenna 

3.4.2 Connections with Launchpad board 

Similar to the design in the power supply in Section 3.3.2, a load switch is added for the 

wireless module, which is also implemented using the load switch TPS22929D [113] as 

shown in Figure 3.12 (a). A logic high signal on XBEE_ON enables the +3.3V power 

output and it can be turned off by a low logic signal. By default, the +3.3V power 

output is enabled by pulling the XBEE_ON up using a resistor. 
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Figure 3.12 (a) Schematic for 3.3V power load switch and (b) schematic for Xbee module connections 

The schematic for the Xbee module connections is shown in Figure 3.12 (b). Several 

signals are routed out for future usage. The SLEEP_RQ signal is used to request the 

wireless module to enter sleep mode and the ܱܰ/ܵܲܧܧܮതതതതതതതതത signal is the indication for 

the working status of the module with low voltage output in sleep mode and high 

voltage in working state. The RESET signal is used to reset the processor on the 

Launchpad, which may be useful when the processor does not function correctly. The 

UPDATE signal is reserved for the GPIO check for the remote program updating. 
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In this application, because data throughput of the serial port is relatively high, clear to 

send (CTS) and request to send (RTS) flow control methods are employed to avoid 

overflowing the serial buffer on the wireless module and prevent the loss of data 

packets. RTS and CTS flow control signals are connected to the U1RTS and U1CTS on 

the Launchpad board and can be enabled by the D6 and D7 attention (AT) commands, 

separately [117]. 

3.4.3 Wireless module configuration 

The wireless module can be configured using the XCTU software through the UART 

port. An XBee USB adapter is employed for carrying out the configuration, as shown in 

Figure 3.13(a) [118]. Once it is powered on, the board can be found in the device 

manager, as shown in Figure 3.13(b) and the port number (COM14 in this case) will be 

used in the XCTU software for recognising this board. By default, the Xbee modules 

are configured working at 9600/8-N-1 (9600bps, 8 data bits, no parity and 1 stop bit), 

which is used for the first time configuration of the modules. 

 

Figure 3.13 (a) XBee USB adapter and (b) view the port of the Xbee USB adapter 

The Xbee module can be configured as three kinds of nodes: coordinator, router and end 

device and for each kind of node, there are two operating modes: attention (AT) and 

application programming interface (API). AT mode is simple and suitable for networks 

with just a few nodes while API provides the user more flexibility and specifies how 

commands, command responses, and module status messages are sent and received 

from the module [117]. In this application, the sink node is configured as a coordinator 

at API mode and the sensor nodes can be configured as router or end device at AT 

mode. The altered settings of this application are listed in Table 3.5. As it shows, the 
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RTS flow control is enabled manually and the CTS flow control is already enabled by 

default. 

Table 3.5 Configurations of XBee module 

Parameter Value 

ID – PAN ID 121 

SC – Scan Channels 2000 

NO- Node Discovery Options 2 

BD – Baud Rate 115200 [7] 

D6 – DIO6 Configuration RTS flow control [1] 

AO – API Output Mode Explicit [1] 

Apart from being configured via an adapter, the Xbee modules can also be configured 

through over the air programming (OAP). After the sink node is set as a coordinator, the 

other modules will join the ZigBee network automatically once they are powered on and 

can be found using the X-CTU tool for configuration. This programming mode has 

avoided the procedure of using the adapter to configure the Xbee modules and can be 

quite helpful when there are plenty sensor nodes. 

3.4.4 Port occupation analysis 

The port usage of the wireless extension booster pack is shown in Table 3.6. The 

UART1 port is occupied and cannot be used for other applications. The functions of 

XBEE_ON, SLEEP_RQ, RESET and UPDATE signals have been explained in Section 

3.4.2. The AIN1 and AIN2 are just routed out from the relevant pins for future usages. 

Table 3.6 Port occupation of wireless extension booster pack 

 

Function GPIO J1 J3 GPIO Function 

3.3V 1 1 5.0V 

 PB5 2 2 GND 

U1Rx PB0 3 3 PD0  

U1Tx PB1 4 4 PD1  

 PE4 5 5 PD2  

SLEEP_RQ PE5 6 6 PD3  

 PB4 7 7 PE1 XBEE_ON 

 PA5 8 8 PE2 AIN2 

 PA6 9 9 PE3 AIN1 

 PA7 10 10 PF1  

Function GPIO J4 J2 GPIO Function 

 PF2 1 1 GND 

 PF3 2 2 PB2  

 PB3 3 3 PE0  

U1RTS PC4 4 4 PF0  

U1CTS PC5 5 5 RESET 

 PC6 6 6 PB7  

UPDATE PC7 7 7 PB6  

 PD6 8 8 PA4  

 PD7 9 9 PA3  

 PF4 10 10 PA2  
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3.5 Battery booster pack 

3.5.1 Fuel tank booster pack introduction 

An off-the-shelf battery booster pack for the Launchpad board is available from 

Element14, named as fuel tank booster pack [119]. As shown in Figure 3.14, the pack 

includes one board and a 3.7V, 1200 mAH Lithium-ion polymer battery. On the board, 

it includes a battery charger and a gas gauge with the capability of providing critical 

parameters of the battery, including temperature, charging state and capacity, etc. This 

information can be accessed through the inter-integrated circuit (I2C) communication 

port. The pack can be charged through the USB connector or through the connector near 

the USB socket. 

As mentioned in Section 3.2.2, the ICDI unit is not expected to be powered by the 

battery unit. Hence, the two jumpers for 3.3V and 5V output near the USB connector in 

Figure 3.14 should be removed and these two outputs will connect to the vibration 

sensor conditioning booster pack directly. 

Note that the two regulators on the battery booster pack work in the normal mode and 

consume about 14 mA even with no loads. It can be changed to work in the power save 

mode by moving the resistor on R18 and R20 to R17 and R19, separately. After this 

modification, the power consumption reduces to only 120	ܣߤ. 

 
Figure 3.14 Picture of the battery booster pack 
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3.5.2 Port occupation analysis 

The port usage of the battery booster pack is shown in Table 3.7. The I2C port is 

implemented using software simulation and is connected to two ordinary GPIO pins. 

CHARGE, ܰܧതതതത and PG are three signals of the charge unit BQ24210. The CHARGE 

signal indicates the charge status with low voltage for charging and high impedance for 

other cases. The ܰܧതതതത signal controls the chip with low voltage to enable the charger and 

high voltage to enter suspend mode. The PG signal indicates the power presentation 

with low voltage for normal range and high impedance for other cases. 

Table 3.7 Port occupied by battery booster pack 

 

3.6 Summary 

In this chapter, a wireless condition monitoring structure is proposed for the evaluation 

of distributed wireless CM based on vibration. A wireless sensor node is prototyped for 

the evaluation of embedding signal processing algorithms. A state-of-the-art Cortex-M4 

microcontroller with good computing capability and low power consumption 

performance is employed as the core processor and an off-the-shelf wireless module is 

utilised to establish the ZigBee wireless network. The wireless sensor node is designed 

with a stackable structure with one main base board for data processing and three 

booster packs for vibration signal condition, wireless extension and battery 

management. In the design, low power consumption and future upgrading are also 

considered. 

 

Function GPIO J1 J3 GPIO Function 

3.3V 1 1 5.0V 

CHARGE PB5 2 2 GND 

 PB0 3 3 PD0  

 PB1 4 4 PD1  

ENതതതത PE4 5 5 PD2  

 PE5 6 6 PD3  

PG PB4 7 7 PE1  

 PA5 8 8 PE2  

 PA6 9 9 PE3  

 PA7 10 10 PF1  

Function GPIO J4 J2 GPIO Function 

 PF2 1 1 GND 

 PF3 2 2 PB2  

 PB3 3 3 PE0  

 PC4 4 4 PF0  

 PC5 5 5  

 PC6 6 6 PB7 SDA(SW) 

 PC7 7 7 PB6 SCL(SW) 

 PD6 8 8 PA4  

 PD7 9 9 PA3  

 PF4 10 10 PA2  
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CHAPTER 4  

INVESTIGATION OF SIGNAL PROCESSING 

TECHNIQUES FOR ROLLING BEARING CONDITION 

MONITORING 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

As discussed in Section 1.3.4, embedding signal processing algorithms on distributed 

wireless sensor nodes can effectively reduce data throughput over the bandwidth 

limited wireless network and also has the potential to decrease the power 

consumption of sensor nodes. Meanwhile, the low cost and low power consumption 

feature of the wireless sensor node does not allow complicated and 

memory-consuming signal processing algorithms to be implemented on it. Thus, a 

careful selection of suitable signal processing algorithms is required. 

As a typical impulsive and modulating type signature, fault signal from rolling 

element bearing is selected for processing. This chapter starts with the introduction 

of rolling element bearing to study its fault generation mechanism and thus get an 

understanding of its fault features. Then, the current signal processing methods for 

vibration signal analysis in the CM area are discussed in three categories: 

time-domain, frequency-domain and time-frequency. In the corresponding section, 

the relevant signal processing algorithms are explained from the aspect of theory and 

applications for bearing signal processing. Furthermore, their advantages and 

disadvantages are also discussed with special attention to the feasibility for being 

implemented on a microcontroller with limited memory and computing capability. 
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4.1 Introduction to rolling element bearing 

Rolling element bearings are one of the most widely used components in industrial 

rotating machines [14], [120]. Their applications can be widely found in various areas, 

such as automobiles, aeroplanes, computers and machine tools. Bearings play an 

important role in the linking and guiding of various rotating parts in industrial machines. 

These precision-made mechanical components are usually subjected to harsh running 

conditions, such as high speed, remarkable load and possibly severe vibrations. 

Although bearings are designed to be durable for a long lifespan, defects often develops 

under such severe operating conditions [121]. Actually, the failure of bearings is 

responsible for the most frequent reasons of machine breakdown [14]. According to a 

survey of faults on induction motors conducted in 1995, bearing failure accounts for the 

majority of the failures, as much as 51% [122]. 

4.1.1 Bearing faults and its vibration characteristics 

A rolling element bearing generally consists of four parts (as shown in Figure 4.1): an 

inner race, an outer race, rolling elements and a cage which holds the rolling elements in 

certain relative positions. Some bearings have additional components, for example, 

spherical roller bearings have guide race and seals. 

Typically, the inner race rotates with the shaft and the outer race is mounted onto a 

stationary bearing house. The rolling elements can be a ball or roller type. In 

comparison, the load in the ball type bearing is transferred to a very small surface on the 

raceways while that in the roller type one is through a line contact. This indicates that 

roller type bearing can carry a larger load than the ball type bearing of similar 

dimensions. The rolling elements are separated by the cage to prevent their contacts 

during operation. Furthermore, the cage also helps to prevent poor lubrication 

conditions and hold the bearing together during handling [15]. 
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Figure 4.1 Bearing components 

In general, defects of bearings can be categorised as distributed or localised. Distributed 

defects include surface roughness, waviness, misaligned races and off-size rolling 

elements and are usually caused by manufacturing error, improper installation or 

abrasive wear defects [123]. Localised defects include cracks, pit and spall on the 

rolling surfaces. The major failure mode of rolling element bearings is spalling of the 

races or the rolling elements. This is typically caused by an initial fatigue crack below 

the surface of the metal, which then propagates towards the surface until a piece of 

metal breaks away to leave a small pit or spall [123].  

Consider an example where the outer race of the bearing has a spall. Each time the spall 

is rolled over; a pulse of very short duration is incurred that causes the bearing to 

vibrate at its resonance frequency. As illustrated in Figure 4.2 (T denotes the time 

interval between impacts), the response decays quickly due to damping [15]. 
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Figure 4.2 Idealised vibration signature due to fault in outer race 
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When the bearing is rotating at a steady speed, a periodical vibrating response can be 

captured by an accelerometer mounted on the bearing house. The frequency of this 

periodical response is named as the fault characteristic frequency, which is determined 

by the faulty component, geometric dimensions, and the rotational speed. The fault 

frequencies are specific for defects existing on different components including the outer 

race, inner race, balls, or cage. It is the fault characteristic frequency that is of interest in 

the detection of bearing faults, rather than the large amplitude responses at the 

high-frequency resonance frequency of the bearing rings induced by the short duration 

impacts. For a bearing with its outer race fixed, its theoretical characteristic fault 

frequencies can be calculated using Eq. (4.1) - (4.4), and a derivation of these equations 

is given in [15]. 

Table 4.1 Equation for local bearing fault characteristic frequencies 

Bearing	fault	frequencies	 Definition No.	

Ball pass frequency, outer race (BPFO)	 BPFO ൌ
ܰ ௥݂

2
ሺ1 െ

݀
ܦ
cos߶ሻ	 (4.1) 

Ball pass frequency, inner race (BPFI) BPFI ൌ
ܰ ௥݂

2
ሺ1 ൅

݀
ܦ
cos߶ሻ (4.2) 

Ball (roller) spin frequency (BSF) BSF ൌ
ܦ ௥݂

2݀
ሺ1 െ

݀ଶ

ଶܦ cos
ଶ߶ሻ (4.3)	

Fundamental train frequency (FTF)	 FTF ൌ ௥݂

2
ሺ1 െ

݀
ܦ
cos߶ሻ (4.4) 

where ݀ is the ball diameter; ܦ is the pitch diameter; ܰ is the number of balls; ߶ is 

the contact angle and ௥݂ is the shaft rotation rate in Hertz (Hz). These equations are 

theoretical and discrepancies arise when bearings carry significant thrust loads or if 

there is any slippage. Typically, the slip causes change in bearing frequencies in the 

order of 1-2%, both as a deviation from the calculated value and also as a random 

variation around the mean frequency [14]. 

4.1.2 Bearing test rig description 

To evaluate the performance of the wireless condition monitoring system, a bearing test 

rig was set up. As shown in Figure 4.3 (a), the rig is composed of five main parts: an 

electrical induction motor, shaft couplings, a DC generator, bearings and motion shaft. 

The bearing in the test rig is N406 cylindrical roller type. During the test, the shaft ran 

at a full speed of 1460 rpm, i.e. 24.3 Hz. The four localised fault frequencies for the 
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bearing are calculated according to Eq. (4.1) - (4.4) and listed in Table 4.2. Among the 

four fault frequencies, the highest one is the inner race fault frequency at 135.5 Hz, 

whose 3rd harmonic frequency (406.5 Hz) is within 500 Hz. This means fault 

frequencies of interests are all within 500 Hz, which is a significant basis for conducting 

the down-sampling process in the algorithm proposed in Chapter 6. 

 

Figure 4.3 Bearing test rig and bearings for experiments: (a) bearing test rig, (b) healthy bearing, (c) bearing 

with outer race defect, (d) bearing with inner race defect and (e) bearing with roller defect 

Table 4.2 Bearing fault characteristic frequencies 

Defect location Fault frequency (Hz) 

Inner race (BPFI) 135.5 

Outer race (BPFO) 83.5 

Ball (BSF) 48.4 

Cage (FTF) 9.3 

Four bearing conditions as shown in Figure 4.3 (b-d) were tested on the rig. The healthy 

bearing was employed for producing the baseline signal and the other three bearings 

were seeded with outer race fault, inner race fault and roller fault. A piezoelectic (PE) 

type accelerometer was mounted on the bearing house horizontally to collect the 

vibration signal. A group of vibration signals from four bearing conditions were 

acquired and these signals were employed as the study target to help understand the 

various signal processing techniques in the following sections. 
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One segment of the vibration signals is presented in Figure 4.4, where it includes 8192 

points of data sampled at 32 kHz. It can be seen that signals from a defective bearing 

show obvious dissimilar features from the healthy one. The vibration levels from the 

faulty bearing are higher than those from the healthy one and periodical impacts can be 

clearly observed in the waveform of faulty bearings. 
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Figure 4.4 Typical vibration signal from different bearing condition: (a) healthy, (b) outer race fault (c) 

inner race fault and (d) roller fault 

4.2 Time-domain analysis 

One simple and straightforward approach for bearing fault detection and diagnosis is to 

analyse the measured vibration signal in the time domain. The method can be as simple 

as visually observing the vibration signal or further processing can be used to extract 

features. A number of statistical parameters have been developed to characterise various 

signal characteristics, such as RMS, peak, crest factor, skewness, and kurtosis. A new 

processing method, named morphological filter, has recently been applied for extracting 

envelope from bearing vibration signals [124] and shows a promising potential for local 

processing on a microcontroller due to its simple and efficient computing capability. 
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4.2.1 Statistical parameters 

The statistical parameters are helpful for characterising specific signal characteristics 

and have been used widely for expressing bearing fault features. For one discrete signal 

 :௧௛ order moment can be written asݎ ሺ݊ሻ, itsݔ

௥ܯ ൌ
1
ܰ
෍ሺݔ௡ െ ሻ௥ݔ̅
ே

௡ୀଵ

 (4.5) 

where ܰ is the number of data points and ݎ is the order of the moment. The other 

common statistical parameters for the discrete signal ݔ௡ are defined in Table 4.3.  

Table 4.3 Definition of common statistical parameters 

Statistical	parameters	 Definition No.	

RMS	 ܵܯܴ ൌ ඩ
1
ܰ
෍ݔ௡ଶ
ே

௡ୀଵ

	 (4.6) 

Peak ݇ܽ݁݌ ൌ
1
2
ሾmaxሺݔ௡ሻ െ minሺݔ௡ሻሿ (4.7) 

Stand deviation ߪ ൌ ඩ
1
ܰ
෍ሺݔ௡ െ ሻଶݔ̅
ே

௡ୀଵ

 (4.8)	

Skewness	 ݓ݁݇ݏ ൌ
ଷܯ

ଷߪ
 (4.9) 

Crest factor ݂ܿ ൌ
݇ܽ݁݌
ܵܯܴ

 (4.10) 

Kurtosis ݇ݐݎݑ ൌ
ସܯ

ସߪ
 (4.11) 

Among these statistical parameters, root mean square (RMS), crest factor, skewness, and 

kurtosis are most commonly employed for bearing signal analysis [120]. Therefore, these 

three parameters of are calculated for 39 segments of bearing signals shown in Figure 4.4 

and presented in Figure 4.5. The statistical parameters can be calculated in two 

approaches: one is to compute the statistical parameters for the whole frequency range of 

the signal and the second one is to break the signal into discrete frequency bands and 

compute the parameters for each band [120]. Here, the first method is employed for 

calculation.  

From Figure 4.5, it can be observed that all these three parameters can well separate the 
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signal from faulty bearings with that from the healthy one. In addition, the statistical 

parameters for different signal segments are very close, which can be explained by the 

smooth running condition of the bearing test rig. 

 
Figure 4.5 Statistical parameters for different signal segments: (a) RMS, (b) crest factor and (c) kurtosis 

 RMS 

Root mean square (RMS) is the simplest and most common approach for measuring 

defects. It provides a measure of power contents of the vibration signal. This feature is 

helpful for tracking the overall energy level, but it provides no useful information on 

which component is failing [125]. Besides, it may not show appreciable changes in the 

early stages of bearing damage [125]. 

 Crest factor 

The crest factor is a good measure for detecting early stages of damage. It is defined as 

the ratio of the peak over the RMS level. This means that for two signals with the same 

RMS value, the one with larger peaks will have a higher crest factor value. According to 

[125], the crest factor normally lies between 2 and 6 and a crest value higher than 6 may 

indicate an abnormal machinery condition. This feature is effective for detecting 
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changes in an impulsive type vibration source such as a localised fault on a gear or a 

bearing. 

 Kurtosis 

Kurtosis is the fourth moment of the distribution. It can characterise the pulse character 

of a signal by reflecting the relative peakness of a distribution over a normal 

distribution. One benefit of Kurtosis is that its value is determined not by the signal 

amplitude but by its shape factor. Table 4.4 shows kurtosis values for four types of 

typical signals [126]. In practice, Kurtosis is often calculated after the signal is filtered. 

Its value can be higher than 100, especially when it is computed inside the band of the 

structure resonance [127]. 

Table 4.4 Kurtosis value for typical signals 

Signal type Kurtosis value 

Sine signal      1.5 

Square signal   1 

Gaussian signal  
3 

Pulse signal     >3 

Besides, some other statistics are also used for characterising bearing signals, such as 

clearance factor, impulse factor, shape factor and beta monuments based upon the beta 

distribution. According to [120], the overall performance of beta function parameters to 

identify and classify bearing defects is almost identical to that of crest factor and 

kurtosis. 

Although statistical parameters are easy to calculate and can indicate bearing 

conditions, most of these monitoring parameters are sensitive to noise and operating 

conditions [128]. Their limitations are summarised as follows: 

 Incipient damage could not be detected in some cases 

 Damage could not be detected in early stages 

 Value of parameters reduces to normal levels when fault develops 

 Difficulty in the diagnosis of localised fault types 
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Furthermore, by calculating statistical features in a short-time, the resultant signal can 

give the envelope related information from the bearing vibration signal and its 

effectiveness has been studied and verified by Kilundu and Behzad [129], [130]. This 

will be further studied in Chapter 8. 

4.2.2 Morphological filter 

The morphological filter is firstly developed to analyse binary image data, later 

extended to grey-level images and has become a common image processing method 

[131]. In 1987, Maragos and Schafer first presented the definition of morphological 

filter for one-dimensional time series data [132]. Now, it has been applied in several 

areas, such as surface profiling [133], medical electrocardiogram (ECG) signal 

processing [134] and also vibration signal processing [124]. The application of a 

morphological filter for impulsive signal processing is mainly to suppress the noise and 

extract the envelope in the measured signal. Nikolaou and Antoniadis [124] applied it 

on a bearing fault signal and extracted its envelope which offers a better visual 

inspection of the impulsive signal. Through a corresponding power spectra analysis, it 

shows the extracted envelope contains sufficient information about the repetition period 

and the intensity of the impacts. 

Suppose there is a structural element ݃ሺ݉ሻ  of length ܯ  and ݃ሺ݉ሻ  is an even 

function, i.e. ݃ሺ݉ሻ ൌ ݃ሺെ݉ሻ, for a discrete signal ݔሺ݊ሻ of length ܰ, the four basic 

operations of morphological filter are defined in Table 4.5 [124]. 

Table 4.5 Definition of four basic operations of morphological filter 

Operator	 Definition No.	

Erosion	 ሺ݂ ⊝ ݃ሻሺ݊ሻ ൌ ݉݅݊ሼ݂ሺ݊ ൅ ݉ሻ െ ݃ሺ݉ሻሽ	ሺ݊ ൌ 0, 1,⋅⋅⋅, ܰ െܯ െ 1ሻ	 (4.12) 

Dilation ሺ݂ ⊕ ݃ሻሺ݊ሻ ൌ ሼ݂ሺ݊ݔܽ݉ െ݉ሻ ൅ ݃ሺ݉ሻሽ ሺ݊ ൌ 0, 1,⋅⋅⋅, ܰ ൅ܯ െ 2ሻ (4.13) 

Opening ሺ݂ ∘ ݃ሻሺݐሻ ൌ ሾሺ݂ ⊝ ݃ሻ⊕ ݃ሿሺݐሻ	 (4.14)	

Closing	 ሺ݂ • ݃ሻሺ݊ሻ ൌ ሾሺ݂ ⊕ ݃ሻ⊝ ݃ሿሺݐሻ	 (4.15) 

Basically, the erosion operation reduces the peaks and enlarges the minima of ݂ሺ݊ሻ, 

while the dilation operation increases the valleys and enlarges the maxima of 	݂ሺ݊ሻ. 

The closing operation can detect the upper envelope of ݂ሺ݊ሻ while opening operation 

can detect its lower envelope. By combining the opening and closing operator properly, 

an averaged bi-directional envelope can also be obtained [135]. 
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The structure element acts as an important role in the morphological filter and a small 

change in it can cause a very different detection result. The basic principle to design 

structural elements is to select the structural element which is similar to the geometric 

characteristic of the target signal [136]. The choice of structural elements includes the 

shape and size. In [124], Nikolaou and Antoniadis recommended the length of a 

structure element to be 0.6–0.7 times of the pulse repetition period, which can minimise 

the noise effects. 

Take the same data set in Figure 4.4 for example; the upper envelope of the vibration 

signals are calculated using closing operator and presented in Figure 4.6. In order to 

keep a periodical pulse of period ܶ, the length of the structure element should be less 

than ܶ. Thus, to keep all these three bearing fault signals, the structure element should 

be smaller than the period of the maximum interested fault frequency. In this case, the 

maximum fault frequency is the inner race fault with 135 Hz, corresponding to a period 

of 7.4 ms. Thereafter, a flat structure element of length 95, corresponding to 3 ms, is 

applied on the four signals. As shown in Figure 4.6, the envelope of the signals is well 

tracked and the extracted envelope provides a clearer visual display than the raw data 

form. 
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Figure 4.6 Closing envelope detection result for vibration signal from different bearing condition: (a) 

healthy, (b) outer race fault (c) inner race fault and (d) roller fault 
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The main advantage of the morphological filter is that its computation only involves 

addition and subtraction, which makes it very fast and thus especially suitable for a 

processor with restricted computation capability and memory size. In addition, 

morphological can be combined together with other signal processing algorithms to 

obtain better processing results. For example, Sui and Zhang combined wavelet 

transform and morphological filters to extract features of defects in bearings [137]. 

The detected envelope by the morphological filter can usually be down-sampled to 

produce a small data for transmission. A better way is to use it as part of the envelope 

analysis and get a more meaningful result. However, the disadvantage is that there are 

no available libraries found for its implementation on embedded processors. Meanwhile, 

the Hilbert transform based envelope analysis can well utilize the finite impulse 

response (FIR) or fast Fourier transform (FFT) library functions optimized for 

embedded processors. 

4.2.3 Other time-domain techniques 

One way to express the amplitude characteristics of a vibration signal is using the 

probability density distribution [120], which can be estimated by determining the time 

duration for which a signal remains in a set of amplitude windows. For a typical 

window at amplitude ݔ and of width ∆ݔ, the probability ܲሺݔሻ is defined as: 

ܲሺݔ ൑ ሻݐሺݔ ൑ ݔ ൅ ሻݔ∆ ൌ෍
௜ݐ∆
ܶ

ே

௜ୀଵ

 (4.16) 

To illustrate the typical changes which can occur, Figure 4.7 shows the normalised 

probability density function for the vibration signals in Figure 4.4. Note that the raw 

signal is filtered with a 100 Hz high-pass filter to eliminate the 50 Hz power interfaces. 

Large differences can be clearly observed in the probability density function from the 

defect bearings. Firstly, the probability density functions from healthy bearings are 

much sharper than that from defect ones. Secondly, the signals from defect bearings 

have a greater span of higher amplitude as shown by the increase in the tails of the 

probability function.  

The probability density function is easy to implement and can result in a smaller data set 

than that of the original raw data. It can be employed for abnormality detection but has 

no function for distinguishing the fault components. 
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Figure 4.7 Normalised probability density function vibration signal from different bearing conditions 

Time synchronous average (TSA) is another promising signal analysis technique in the 

time domain [138]. Its idea is to “use the ensemble average of the raw signal over a 

number of revolutions in an attempt to remove or reduce noise and effects from other 

sources, so as to enhance the signal components of interest” [139]. Since the rotating 

process of the bearing can be considered as cyclostationary, this method is especially 

helpful for removing random noises. The TSA ̅ݔሺݐሻ  for a signal ݔሺݐሻ  can be 

expressed by: 

ሻݐሺݔ̅ ൌ
1
ܰ
෍ ݐሺݔ ൅ ݊ܶሻ

ேିଵ

௡ୀ଴

, 0 ൑ ݐ ൏ ܶ (4.17) 

where ܶ is the averaging period and ܰ is the number of samples for averaging. 

For the implementation of TSA, it needs a synchronisation signal usually obtained from 

an optical encoder to precisely align the signal of different periods. Because the 

machine running speed is not absolutely stable, the data points for each period might be 

not exactly the same, which also needs to be taken into consideration during 

implementation. 
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4.3 Frequency-domain analysis 

The frequency-domain analysis, by its name, analyses spectral information of the signal 

by transforming a signal to the frequency domain. Its advantage over time-domain 

analysis is that it can easily identify and isolate certain frequency components of interest 

[140]. A complicated signal in the time-domain might become simple in the 

frequency-domain. As vibration signal from rotating components like bearing can be 

considered cyclostationary [14], this makes frequency-domain analysis a fundamental 

approach for bearing fault detection. The frequency-domain analysis includes common 

spectral analysis [141], envelope analysis [14] and cepstrum [142], etc. 

4.3.1 Spectral analysis 

The idea of spectral analysis is to either observe the whole spectrum or only certain 

frequency components of interest to extract fault features from the signal [143], [144]. 

The spectral information ܺሺ݉ሻ  of a discrete time series data ݔሺ݊ሻ  is usually 

computed through a discrete Fourier transform (DFT): 

ܺሺ݉ሻ ൌ ෍ ሺ݊ሻ݁ି௝ଶగ௡௠/ேݔ

ேିଵ

௡ୀ଴

 (4.18) 

where ݁ is the base of natural logarithm and ݆ ൌ √െ1. 

The most commonly used tool in spectral analysis is power spectrum and can be 

estimated by: 

ܲ ൌ ሾܺሺ݉ሻܧ ∗ ܺ∗ሺmሻሿ (4.19) 

where ܺ∗ሺ݉ሻ represents the complex conjugate of ܺሺ݉ሻ and ܧ denotes expectation. 

Although DFT is the most straightforward mathematical procedure for determining the 

frequency contents of a time-domain sequence, its poor efficiency has prevented its 

wide application for a long time until the fast Fourier transform (FFT) is developed, 

which provides a much faster approach for computing DFT and reduces its 

computational complexity from the order of ܰଶ  to only ݈ܰ݃݋ଶܰ. Thereafter, the 

spectral analysis has achieved wide application for processing various signals. With the 
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fast development of electronics technology, FFT can easily be implemented efficiently 

on a microcontroller, like the microcontroller TM4C1233H6PM employed in this thesis. 

The spectra of the vibration signals in Figure 4.8 are computed and illustrated in Figure 

4.8. It can be seen that the vibration signals from healthy bearing contain small 

high-frequency components while several high-frequency haystacks can be clearly 

viewed on the spectrum of defect bearings. The resonances mainly appear around three 

frequencies: 4.5 kHz, 8 kHz, and 10 kHz. The frequency band from 4 kHz to 5 kHz are 

magnified and illustrated as an inset. From the magnified frequency band, periodical 

frequency peaks can be observed. These are the harmonics of fault characteristic 

frequency situated by the resonances. However, it is not easy to identify the fault 

frequencies from the magnified spectra due to both random fluctuations [49] and noise 

interferences. 
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Figure 4.8 Spectra for vibration signal from different bearing conditions with magnified 4 kHz-5 kHz 

band shown as an inset: (a) healthy, (b) outer race fault (c) inner race fault and (d) roller fault 

Comparing current spectrum with the baseline one can help check the fault severities. In 

[141], it is suggested that an increase of 6-8 dB can be seen as significant and a change 

over 20 dB is considered as severe. One difficulty with the spectral comparison is that 

the rotating speeds are not absolutely stable and usually have small fluctuations, which 
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can affect the results of spectral analysis. This problem can be overcome by changing 

the linear frequency axis to a logarithmic one with constant percentage bandwidth 

[120]. 

One purpose of computing spectrum of vibration data is to trend the interested 

frequency components changes and some spectral parameters has been defined for 

trending, for example the matched filter root mean square (Mfrms) [120], defined as: 

ݏ݉ݎ݂ܯ ൌ ݃݋10݈ ൝
1
ܰ
෍൬

௜ܣ
ሻ݂݁ݎ௜ሺܣ

൰
ଶே

௜ୀଵ

ൡ (4.20) 

where ܣ௜ሺ݂݁ݎሻ is the amplitude of the ݅௧௛ spectral line in the reference spectrum and 

 .௜ is the amplitude of the ݅௧௛ spectral line in the current spectrumܣ

Another useful avenue of frequency domain analysis for bearing fault detection and 

diagnosis is to employ the so-called waterfall of spectra. By observing the frequency 

components changes along time, abnormal frequency components can be observed in 

both the low-frequency range and high-frequency range. 

Spectral analysis is a fundamental method for bearing fault diagnosis. Because of the 

cyclostationary feature of bearing signals, the periodical characteristics due to rotating 

process can be easily observed in the spectrum while it might be not so obvious in the 

time-domain. However, it surely has several limitations as listed below: 

 It only provides the global energy-frequency distributions and fails to reflect the 

details of a signal, making it hard to analyse a signal when the fault signal is weaker 

than the background noises [137]. On the occasion that bearing vibration signals are 

buried in noises or vibrations from other sources, it becomes more difficult to 

extract useful information from the spectrum. 

 It is difficult to identify inner race and roller defects from spectrum because of the 

presence of additional transfer segments. 

 Small random slip often exists in rolling bearing and causes a fundamental change 

in the character of the signal. According to [14], it is often difficult to extract 

diagnostic information in the raw spectrum because the higher harmonics smear 

over one another with even a small amount of slip (0.75%). The spectrum may vary 
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a lot for bearings located on different machines. So the analysis result is highly 

dependent on the experience of the end user. 

4.3.2 Envelope analysis 

Envelope analysis is the FFT frequency spectrum of the envelope of a signal. It is 

suitable for diagnostics of machinery where faults have periodic excitation or amplitude 

modulating (AM) effect of the structural resonance [15]. Over many years, it has been 

recognised as the benchmark method for bearing diagnostics [14], [120]. 

The procedures of envelope analysis are shown in Figure 4.9, which is composed of 

three steps, a band-pass filter with the pass band at the fault impulses are amplified by 

structural resonances, envelope detection and power spectrum calculation. The 

band-pass filter is applied to reject the low-frequency with high-amplitude signals 

caused by imbalance or misalignment and to eliminate random noises outside the 

pass-band for the enhancement of the signal to noise ratio (SNR) [15]. The envelope 

detection extracts the modulating fault signal and transfers the high-frequency problem 

to a low-frequency one. Several envelope detections are available, like the square 

rectifier [49], morphological filter [124], short-time statistical features [129], and the 

most priciest Hilbert transform [145]. 

 

Figure 4.9 Procedures of envelope analysis 

The envelope and envelope spectra for the vibration signals in Figure 4.4 are calculated 

according to the steps in Figure 4.9 and presented in Figure 4.10. Here, a filter with the 

pass band between 4 kHz and 6 kHz is applied to the raw signal and then the envelope 

is calculated using the Hilbert transform method which will be explained in Section 5.2. 

In the envelope signal, the impulses are extracted out from the high-frequency 

resonances. By calculating its spectrum, the harmonics of the fault frequencies can be 

clearly observed, which verify the existence of the defect on the corresponding 

bearings. In addition, it can be observed that the meaningful envelope spectrum that 

represents bearing fault features only occupy a very small portion of the entire spectrum, 

which indicates the resultant fault feature set can be very small. 
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Figure 4.10 Envelope and envelope spectra for vibration signal from different bearing conditions: 

(a) healthy, (b) outer race fault (c) inner race fault and (d) roller fault 

The advantages of envelope analysis are listed below: 

 Clear representation of localised bearing faults 

 Capability to represent fault features in a small data set 

 Robust result even with a small random slip. Proof of this can be found in the 

literature [14], which compares the performance of spectral analysis and 

envelope analysis for processing a bearing signal with small random slips. 

In terms of computation, the envelope analysis contains a band-pass filter, Hilbert 

transform, and complex amplitude calculation, which are acceptable for an embedded 

processor. In fact, the functions for realising envelope analysis, like FIR filter, FFT, and 

complex amplitude calculation, are already available in the CMSIS DSP library 

introduced in Section 3.2. 
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4.3.3 Cepstrum analysis 

A cepstrum is the inverse Fourier transformation of the logarithm of a spectrum and can 

extract periodicity information in the spectrum [146]. It has been found useful in many 

areas, such as characterising the seismic echoes resulting from earthquakes and bomb 

explosions, pitch determination of human speech [147] and fault detection in rotating 

machines [142]. A special investigation for mechanical problems is detailed in [148]. 

For a discrete time signal ݔሺ݊ሻ, its cepstrum ܿሺ݊ሻ is defined as: 

ܿሺ݊ሻ ൌ ࣠ିଵሼ݈݃݋|࣠ሺݔሺ݊ሻሻ|ሽ (4.21) 

where ࣠ and ࣠ିଵ are the forward and inverse Fourier transform and |•| represents 

the modulus of a complex signal. The name of cepstrum was derived by reversing the 

first four letters in "spectrum" [149]. Similarly, the terms in the cepstrum are named 

from the corresponding spectrum terms, as listed in Table 4.6 . 

Table 4.6 Term naming in spectrum and cepstrum [142] 

Name in spectrum Name in cepstrum 

Spectrum cepstrum 

Frequency quefrency 

Harmonics rahmonics 

Period repiod 

Low-pass filter short-pass lifter 

High-pass filter long-pass lifter 

The advantages of cepstrum analysis are summarized as below: 

 Good extraction of periodicities, or repeated patterns. In the cepstrum, any 

periodicities, or repeated patterns is sensed as one or two specific components. It 

can also separate the overlapped sidebands or harmonic series in a spectrum, 

making it especially good candidates for cepstrum analysis [148]. 

 Bypass unknown transfer path and reveal local fault directly. According to [142], 

the localised faults are expressed at long quefrencies while the unknown transfer 

path is wrapped up at short quefrencies. This indicates cepstrum is insensitive to 

either the structure changes or the accelerometer mounting positions. 

By calculating the cepstrum of the data set in Figure 4.4, the results are shown in Figure 

4.11. A series of rahmonic components can be observed in the cepstrum of defect 

bearings and the peak of the first rahmonic components correspond to their fault 
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frequencies listed in Table 4.3, which can be the evidence for the existence of relevant 

local bearing faults. 
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Figure 4.11 Cepstrum analysis result for vibration signal from different bearing conditions: 

(a) healthy, (b) outer race fault (c) inner race fault and (d) roller fault 

Although cepstrum analysis can be employed for bearing fault diagnosis, its processing 

results are not straightforward to translate and the signal to noise ratio of the result looks 

low as the processing example shows. However, an improved version of cepstrum, 

named minimum variance cepstrum, outperforms a complex envelope and continuous 

wavelet for detecting an inner race fault in noisy environments [150]. 

In terms of computation, cepstrum analysis requires two FFT calculations a nonlinear 

logarithm calculation, making its implementation rather time-consuming. 

4.4 Time-frequency analysis 

The frequency-domain analysis provides an overall frequency distribution for the entire 

signal with a constant frequency resolution but with no time location information. For 

solving the decency in the frequency-domain analysis, a number of time-frequency 

domain techniques have been developed. Such techniques are expected to diagnose 

faults from a complex signal that has low SNR and contains a large number of 
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frequency components [120]. The popular time-frequency analysis techniques include 

the short time Fourier transform (STFT), Wavelet transform (WT) and Hilbert-Huang 

transform (HHT), etc. 

4.4.1 Short time Fourier transform 

Short-time Fourier transform (STFT) is one of the earliest and also the most widely 

used time-frequency techniques [120]. It is obtained by sliding a window function over 

the original time signal and then performing Fourier transform over the windowed 

signals. The STFT for a discrete time signal ݔሺ݊ሻ over a time window ݓሺ݉ሻ, is given 

by: 

ܺሺ݉, ݇ሻ ൌ ෍ ሾ݊ݓሾ݊ሿݔ െ ݉ሿ݁ି௝ଶగ௞௡/ே
ஶ

௡ୀିஶ

 (4.22) 

Take the data set in Figure 4.4 for example, the STFT calculation results are presented 

as spectrogram shown in Figure 4.12, where a sliding Hanning window of length 256 

points was applied over the 4096 points of the signal with a step size of 6 points. By 

comparison, obvious high-frequency components can be seen in the spectrogram of all 

three fault bearing vibration signals. The impact mainly triggers the bearing structure to 

vibrate around three resonances: 4.5 kHz, 8 kHz, and 10 kHz. 
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Figure 4.12 Spectrogram with FFT size of 256 and a step size of 6 points for vibration signal from 

different bearing conditions: (a) healthy, (b) outer race fault (c) inner race fault and (d) roller fault 
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It can be seen that not only the bearing resonances can be observed but also the impact 

happening time is extracted as well. Clear periodical impacts can be clearly observed in 

the spectrogram from bearing with outer race fault and inner race fault while they are 

not so obvious in the spectrogram from bearing with roller defect. The time period 

between resonance excitation can be employed for diagnostic purposes by relating it to 

the various characteristic bearing frequencies; however, it is not easy to identify the 

local bearing faults as effectively as envelope analysis. 

In comparison with the spectrum analysis which only gives an overall frequency 

distribution of the signal under analysis, STFT provides both frequency and time 

information. This makes STFT capable of analysing non-stationary signals and 

uncovers the feature change with time. 

One deficiency of STFT is its conflicting relationship between time and frequency 

resolution [120]. In other words, an STFT with finer frequency resolution usually has a 

loose time resolution and vice-versa. This means it cannot express a signal feature 

whose time interval is longer than the window width. In practice, it may need several 

trials to get a good balance between frequency and time resolution, making its practical 

usage quite tricky. 

In terms of computation, the STFT calculation involves intensive computation and 

produces a much larger dataset than the raw data. Therefore, it is not a good option for 

embedded processing method on the wireless sensor node. A practical approach for the 

application of STFT might be using it to help find the resonances then build a band-pass 

filter for enhancing the SNR in the envelope analysis. Actually, the spectral kurtosis 

employs the frequency domain STFT method in combination with kurtosis to select an 

optimal band-pass filter for envelope analysis [151]. 

4.4.2 Wavelet 

Wavelet transform (WT) is an effective method for processing non-stationary or 

transient signals. Since the 1990s, WT has been rapidly developed and its successful 

application can be found in various fields, such as image coding, compressing and edge 

detection [152], biomedical signal processing [153] and also mechanical fault diagnosis 

[17], [154], [155]. 
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According to signal decomposition paradigms, the WT can be performed by the 

continuous WT (CWT) [156], discrete WT (DWT) [157], [158], Wavelet packet 

transform (WPT) [159], and extended WT with post-processing [160]. In general, CWT 

provides a thorough exploration on the signal and contains highly redundant 

information, resulting in it requiring a significant amount of computation time and 

resources. The WPD and DWT just include a subset of the exploration of the CWT but 

contain sufficient information both for analysis and synthesis of the original signal, with 

a significant reduction in the computation time. 

4.4.2.1 Continuous	Wavelet	transform	

A continuous Wavelet transform for a time series signal 	ݔሺݐሻ is defined as [9]: 

ܹሺܽ, ܾሻ ൌ
1

√ܽ
න ሻ߰∗ሺݐሺݔ

ݐ െ ܾ
ܽ

ሻ
ஶ

ିஶ
 (4.23) ݐ݀

where ܽ is the scale parameter, ܾ is the time parameter and ߰ሺ∙ሻ is a wavelet, which 

is a zero average oscillatory function centred around with a finite energy, and “*” 

denotes complex conjugate. A number of wavelets has been developed for processing 

signals with different features, such as Morlet, Mexican hat, Haar and Daubechies. 

A good explanation of CWT is that it “expresses the signal in a series of oscillatory 

functions with different frequencies at a different time by dilations via the scale 

parameter ܽ  and translations via the time parameter ܾ ” [9]. Similar to Fourier 

transform, CWT has a discrete version by discretizing ܽ, ܾ, and ݔሺݐሻ and also a fast 

wavelet transform calculation is available for discrete wavelet transform calculation 

similar to FFT. Like the power spectrum in Fourier analysis, CWT uses a scalogram 

defined as |ܹሺܽ, ܾሻ|ଶ to interpret the signal. 

Take the data set in Figure 4.4 for example; the scalogram results are given in Figure 

4.12, where the scales have been translated to their corresponding frequencies for 

convenient understanding. Similar to the spectrogram results in Figure 4.12, the 

resonances and periodical impacts can be clearly observed in the scalogram of the 

vibration signal from defect bearings. 

CWT is similar to STFT in that it provides a time-frequency map of the signal being 

analysed. The main difference and advantage of WT are its capability to provide 

multi-resolutions, which indicates it can easily adjust its time and frequency resolution 
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as required. By employing WT, a high-frequency resolution can be produced at low 

frequencies and a high time resolution can be achieved at high frequencies for signals 

with long duration low frequencies and short duration high frequencies [9]. 
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Figure 4.13 Scalogram with scale converted in corresponding frequency for vibration signal from 

different bearing conditions: (a) healthy, (b) outer race fault (c) inner race fault and (d) roller fault 

4.4.2.2 Discrete	Wavelet	transform	

In practice, DWT can provide sufficient resolution for signal analysis and has been 

more widely employed than CWT because of its much faster computing speed in 

comparison with CWT. In the area of mechanical fault diagnosis, DWT has mainly been 

employed for two purposes: de-noising [161], [162] and envelope extraction [17], [163], 

[163]. 

Lin and Qu developed a de-noising method based on Morlet wavelet analysis and 

applied it for rolling bearing signal, the result of which shows much clearer periodic 

impulses than the raw signal [161]. A de-noising method based on Morlet wavelet filter 

is developed to obtain optimal time-frequency resolution by applying minimal Shannon 

entropy criterion for determining shape factor and singular value decomposition (SVD) 

for determining scale. The experimental results verify its effectiveness for extracting 

weak periodic impulse signatures [162]. He and Jiang et al combined optimal wavelet 
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filtering and sparse code shrinkage de-noising method to effectively extract the 

impulsive features hidden in the signals of low SNR [164]. 

Chen and Li applied one-dimensional DWT on the bearing signal using a db4 wavelet 

and then calculated the envelope spectrum on the d1 level. The experimental results 

show the frequency of failure location matches well with the theoretical one using this 

method [163]. Sheen and Hung proposed a wavelet-based envelope function derived 

from Morlet wavelet to extract envelope for vibration signal [165]. Yiakopoulos and 

Antoniadis used a squared rectifier in combination with Wavelet decomposition to get 

the approximation on the second or third levels as the envelope [17]. 

The DWT of a discrete time series signal ݔሺ݊ሻ is calculated by passing it through a 

series of filters, including a low pass filter with impulse response ݃ሺ݊ሻ and a high pass 

filter with impulse response ݄ሺ݊ሻ, which are related to each other and known as 

quadrature mirror filters. The outputs of the two filters give the detail coefficients (from 

݄ሺ݊ሻ) and approximation coefficients (from ݃ሺ݊ሻ). After passing through the filters, the 

outputs can be down sampled by a factor of 2 according to Nyquist sampling theory. 

This finishes one level of decomposition, as shown in Figure 4.14. 

 
Figure 4.14 One level of decomposition 

Both DWT and WPT decomposition are performed by a series of such filters, but a 

small difference exists between them. As illustrated in Figure 4.15, in the DWT, only 

approximation coefficients in each level are decomposed while the WPD has a fully 

explored binary tree with both the detail and approximation coefficients being 

decomposed. 
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Figure 4.15 WPT and DWT decomposition over 3 levels with ݃ሾ݊ሿ being the low-pass approximation 

coefficients and ݄ሾ݊ሿ is the high-pass detail coefficients 

In terms of computation, DWT only involves a series of convolution and downsampling 

process and the computation results have the same memory occupation as the original 

input data. This makes DWT a good candidate for embedded processing on the wireless 

sensor node. 

4.4.3 Hilbert-Huang transform 

Hilbert-Huang transform (HHT), is a method developed by Huang et al [166]. As an 

adaptive data analysis method, it is designed specifically for analysing data from 

nonlinear and non-stationary processes and has been successfully applied in various 

areas, such as biomedical signal [167], seismic signal [168] and mechanical fault 

diagnosis [169]–[171].  

HHT are mainly composed of two procedures: empirical mode decomposition (EMD) 

and Hilbert spectral analysis (HSA). An input dataset is firstly decomposed by EMD 

method into a finite number of components, named intrinsic mode functions (IMFs). 

Then, Hilbert transform is employed to the instantaneous frequencies of these IMFs as 

functions of time. The final presentation of the results is an energy-frequency-time 

distribution, designated as Hilbert spectrum [172]. 

Because HHT provides good computation efficiency and does not involve the concept 

of frequency resolution and time resolution, it has been considered as a powerful 

method for bearing fault detection and diagnosis [169]. In the past few years, HHT has 

been explored by several researchers for bearing fault diagnosis. Rai and Mohanty 
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compared the time domain and frequency domain of IMFs and found that the frequency 

domain approach in HHT is more effective and efficient for bearing fault diagnosis 

[170]. Li and Zhang used the marginal spectrum obtained from the IMFs to detect the 

localised fault in a roller bearing and the results show that this method can increased the 

spectral resolution [173]. Peng et al improved the HHT by pre-processing the signal 

using wavelet packet and a better resolution is achieved both in the time domain and in 

the frequency domain than the scalogram [169]. 

By using the data set in Figure 4.4, the Hilbert spectrum results are presented in Figure 

4.16, where the colour represents the strength of the instantaneous frequency. Similar to 

the spectrogram results in Figure 4.12 or the scalogram results in Figure 4.13, the 

Hilbert spectrum also clearly shows the resonances and periodical impacts for the signal 

from defect bearings. 

Although HHT can provide very sharp time and frequency resolution, its computation 

involves the generating of a series of IMFs components, which would occupy a large 

memory, making it not a good candidate for the implementation on a processor with 

limited memory. It can be employed in the data processing centre for more detailed and 

precise analysis. 
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Figure 4.16 Hilbert spectrum for vibration signal from different bearing conditions: (a) healthy, (b) outer 

race fault (c) inner race fault and (d) roller fault 
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4.4.4 Other time-frequency analysis 

Besides the above discussed three time-frequency methods, Wigner-Ville distribution 

(WVD) is another common time-frequency analysis method. WVD can provide a 

sharper time localisation when compared to STFT as the WVD at each time point is 

relatively independent of the window size [120]. However, WVD contains some cross 

terms and wavelet analysis can usually provide better processing results [174]. 

Furthermore, the computation of WVD is rather time-consuming and produces large 

output data similar to that of the STFT; therefore, it is also not a suitable method for 

embedded computing. 

4.5 Selection of signal processing algorithms 

In the above three sections, a number of signal processing algorithms are investigated 

and discussed for extracting bearing fault features. The advantages and disadvantages of 

these investigated signal processing algorithms are summarized and shown in Table 4.7. 

These signal processing methods have their unique advantages in extracting some 

specific features. Some methods may need to be further processed to get a clearer 

feature. For example, TSA is more often employed as a de-noising method and it may 

need an additional spectral analysis or envelope analysis to make fault features easy to 

interpret. 

After the above investigation on the signal processing algorithms, a proper signal 

processing method for being embedded on sensor nodes should satisfy the following 

criteria: 

 Detect abnormal conditions. The embedded algorithm should be able to extract a 

feature that can indicate the abnormalities of the monitored component. Apparently, 

all these investigated methods can extract such a feature. 

 Detect faulty components. The bearing has four types of commonly localised faults. 

It would be desirable if the method can extract a feature to represent the type of 

faults, which can be trended for severity monitoring. The statistical parameters and 

probability density function have no such capability and thus are rejected. 
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 Suppress noises. The vibration signals very likely contain interference noises from 

nearby components. From Figure 4.8 and Figure 4.11, it can be seen that it is not 

easy to interpret the fault types from the noisy results of spectral analysis and 

cepstrum, thus their reliability and robustness are doubted. 

 Smaller results data set. One main purpose of employing embedded processing on 

distributed wireless sensor nodes is to extract a small feature set for transmission 

instead of sending the large raw data set. Otherwise, there would be much less 

meaningful value for such an operation. Although the time-frequency analysis 

techniques like STFT, CWT and HHT extracted much information from the signal, 

they are very computation intensive and produce a much larger data set than the 

original one, making them not suitable candidates for embedded processing. These 

techniques can be employed in the data processing centre for more detailed analysis. 

The above selections are illustrated in Figure 4.8. After selection by the above 

algorithms, the proper candidates for embedded processing include the morphological 

filter, TSA, envelope analysis, and DWT. The main purpose of the morphological filter 

is to extract envelope detection and can be employed as part of envelope analysis. The 

TSA method is rejected due to it requiring an additional synchronisation signal which 

both increases the sensor node complexity and cost. DWT is much more flexible and 

capable of processing signals for de-noising and envelope analysis. The envelope 

analysis is more like a combination of several methods: filtering, envelope detection and 

spectral calculation. 

Apart from the above considerations, the efforts for implementing the algorithms should 

also be taken into consideration. There is usually no library for morphological filter and 

DWT on embedded processor meanwhile the envelope analysis can utilise the library 

functions like FIR filter, FFT etc. which are usually available and optimised for 

embedded processors. 

For the above reasons, the envelope analysis is selected as the algorithm for the 

embedded processing on the distributed wireless sensor nodes for feature extraction. In 

the following chapter, it will be implemented and evaluated for bearing fault feature 

extraction. The methods like the morphological filter, DWT, TSA, and cepstrum are not 

suitable for embedded processing in the current stage. With performance being 
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improved or being combined with proper processing, they could be employed on the 

distributed wireless sensor nodes for extracting proper features in the future. 
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Table 4.7 Advantages and disadvantages of investigated signal processing algorithms 

Algorithm Advantage Disadvantage 

Statistical 

parameters 

 Computation efficient 

 Small result in data size 

 Cannot detect small defects at early stages 

 Difficulty in the diagnosis of localised fault types 

Morphological 

filter 

 Good extraction of envelope 

 Computation efficient 

 Requires further processing  

 No available library on embedded processor 

Probability 

density function 

 Computation efficient 

 Small result in data size 

 Cannot detect small defects at early stages 

 Difficulty in the diagnosis of localised fault types 

TSA  Helpful for removing random noises 
 Requires additional synchronisation signal 

 No available library on embedded processor 

Spectral analysis 
 Available library on embedded processor 

 Acceptable computation efficiency 

 Not easy to observe fault information 

 Sensitive to small random slip 

 Difficult to identify inner race and roller defects 

Envelope analysis 

 Clear representation of localised bearing faults 

 Capability to represent fault features in a small data set 

 Robust result even with a small random slip. 

 Acceptable computation complexity 

 Small result in data size 

 Requires adjustment to enhance SNR  

 No available library on embedded processor 

Cepstrum 
 Good extraction of periodicities, or repeated patterns. 

 Bypass unknown transfer path and reveal local fault directly 

 Not easy to interpret result 

 Low SNR 

 Computation time-consuming 
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Table 4.7 Advantages and disadvantages of investigated signal processing algorithms (continued) 

Algorithm Advantage Disadvantage 

STFT  Contains both time and frequency information 

 Very computation time-consuming 

 Memory consuming 

 Conflicted time and frequency resolution 

CWT 
 Contains both time and frequency information 

 Provide multi-resolution 

 Very computation time-consuming 

 Memory consuming 

DWT 

 Contains both time and frequency information 

 Provide multi-resolution 

 Acceptable computation time 

 Good for de-noising and envelope extraction 

 No available library on embedded processor 

 Requires adjustment to enhance SNR 

 Requires further processing 

HHT 
 No concept of frequency resolution and time resolution 

 Good for nonlinear and non-stationary processing 

 Memory consuming 

 No available library on embedded processor 
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Table 4.8 Selection of signal processing algorithms for embedded processing 

Algorithm 
Detect abnormal 

conditions 

Detect faulty 

components 
Suppress noises 

Smaller results 

data set 
Suitability 

Statistical parameters √ x √ √ x 

Morphological filter - - √ √ √ 

Probability density 

function 
√ x √ √ x 

TSA - - √ √ √ 

Spectral analysis √ √ x √ x 

Envelope analysis √ √ √ √ √ 

Cepstrum √ √ x √ x 

STFT √ √ √ x x 

CWT √ √ √ x x 

DWT √ √ √ √ √ 

HHT √ √ √ x x 

Notes: √ means the corresponding criteria can be satisfied. 

x means the corresponding criteria cannot be satisfied. 
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4.6 Summary 

As a typical example of modulating and impulsive signal, the characteristics of bearing 

vibration signal are studied in this chapter. On this basis, a number of popular signal 

processing algorithms for bearing fault diagnosis are investigated and evaluated for 

processing a group of experimental data from a bearing test rig. From the investigations, 

the envelope analysis is deemed as the most suitable algorithm for being embedded on 

the wireless sensor node to extract bearing fault features. A detailed implementation of 

envelope analysis on the proposed vibration sensor node will be explained in Chapter 5. 
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CHAPTER 5  

ENVELOPE ANALYSIS IMPLEMENTATION ON THE 

WIRELESS SENSOR NODE 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

In this chapter, the classical and widely accepted envelope analysis method is 

implemented on the proposed wireless sensor node. The implementation is introduced in 

three successive procedures: data acquisition, data processing, and data transmission. 

The program is written with a purpose to optimise the signal processing efficiency and 

thus reduce the computation time. In this way, the microcontroller can stay in the low 

power mode longer; thereafter the power consumption can be significantly reduced. For 

each step, the implementation is validated by processing a typical signal. In the end, its 

performance for extracting bearing fault features is validated by processing a real 

bearing signal and its effectiveness on data reduction is analysed. 
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5.1 Data acquisition 

To process the vibration signal on a microcontroller, the analogue signal needs to be 

firstly digitised. In this design, this procedure is realised by the on-chip analogue to 

digital converter (ADC) that has 12-bit resolution and a maximum conversion rate of 1 

MSPS, which is much higher than our sampling rate requirements. Therefore, the ADC 

needs to be started periodically to perform the data conversion. 

5.1.1 Data acquisition structure 

To promise equal sampling interval, a timer event is used to trigger the ADC starting 

and the converted results are moved to the on-chip RAM through a direct memory 

access (DMA) channel. By using DMA to move the ADC conversion results instead of 

the timer interrupt plus CPU moving data way, the required interrupt times can be 

significantly reduced. In this way, the CPU is released from the trivial data acquisition 

process and thus can more focus on the intensive signal processing or enter into the low 

power mode to save power. 

The schematic of the data acquisition process by combing DMA and timer is illustrated 

in Figure 5.1. Here, a double buffer method, usually named Ping-Pong structure, is 

utilised to enable the data acquisition and data processing to operate in parallel. Its 

mechanism works like this: when DMA moves ADC conversion results to Ping buffer, 

the CPU can process data in Pong buffer and vice versa. As long as the time for CPU 

data processing is shorter than that of DMA moving data, the signal processing can be 

continuous without losing data points. It can be seen that this structure makes the signal 

processing much efficient [175]. 

 

Figure 5.1 Schematic of the double buffer DMA data acquisition 

Furthermore, this mechanism enables a long signal to be divided into small segments 

for real-time processing, which is suitable for a microcontroller with limited memory 
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storage. The benefits of this mechanism can be seen again in Chapter 6, where the 

signal is processed by segment and concatenated together later.  

Another benefit of using Ping-Pong structure is that it can be used to build a buffer 

larger than the maximum movement data size of the DMA unit without losing data 

points. For the TIVA-C processor, the maximum moving data point is limited to 1024 

but can be extended to much longer one with the Ping-Pong structure. 

5.1.2 Data acquisition implementation 

The construction of this data acquisition structure involves three peripheral modules, 

which is a bit complicated. A brief program flow chart for building this structure is 

shown in Figure 5.2, which has been divided into three main stages: initialisation, start 

and interrupt. 

 
Figure 5.2 Flow charts for data acquisition process 

In the initialisation stage, the timer works in 32-bit periodical mode and its load value 

determines the sampling interval. The ADC works at a high conversion rate and is 

configured to start conversion by the timer trigger event. For the DMA, both the 

primary and alternate control structure is configured and its initialisation parameters 

include source address, destination address, data type and data length, etc. Of note, the 

first step for configuring all these three peripherals is to enable their corresponding 

clock. This indicates the power of each peripheral is controllable and the one not in use 
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can be powered off to save power. This is a powerful feature that makes the Cortex-M 

processor very power efficient. 

For the start stage, the ADC interrupt needs to be enabled and then the three peripherals 

are started. Although the ADC interrupt is enabled, when the ADC conversion finishes, 

it actually triggers the DMA to move the conversion results to the specified data buffer 

and only when the specified size of data has been moved, it will notify the CPU to enter 

the interrupt service routine (ISR). 

Inside the ISR, it reloads the parameters for the stopped primary or the alternate control 

structure and stores the data from Ping or Pong buffer to a larger buffer. Due to the 

working mechanism of the DMA unit on this microcontroller, it cannot reload the initial 

value automatically and thus needs to be reloaded by the program. Of note, when CPU 

enters the ISR to reload one control structure, the DMA is actually working using the 

other control structure, so no data will be lost when CPU is inside the ISR. 

It can be seen that the programming involves quite a few detailed register levels of 

operation. Although this can be finished by configuring the relevant registers one by 

one by consulting the datasheet, it is both time-consuming and error-prone. Fortunately, 

there is already a convenient library named TivaWare available [176], which includes 

the driver libraries and example codes for the peripherals and typical applications. With 

its help, the development period can be significantly shortened. 

5.1.3 Validation of data acquisition process 

To validate the correctness of the established data acquisition structure, an analogue 

modulating signal is connected to the ADC input and the Ping-Pong structure is 

employed to acquire 1024 points of data with the Ping and Pong buffer size of 256 

points and sampling frequency of 32 kHz. 

The execution graph for this working mode is illustrated in Figure 5.3, which is 

acquired in the development environment Code Composer Studio (CCS). The program 

is written on the real-time operating system (RTOS), named TI-RTOS [177]. The 

execution graph contains abundant RTOS operation information and will be not 

explained in detail. Here, it is just employed to help understand the working mechanism 

of the Ping-Pong structure. 
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During the entire data acquisition process, only four ADC interrupts can be observed in 

Figure 5.3. This means the working buffer for DMA changes four times to finish this 

long data acquisition process. Besides the ADC interrupt, a series of system tick 

interrupts can be clearly noticed in the execution graph, which is the fundamental clock 

for the RTOS and ticks every 1 ms. It can act as the time consultancy for the ADC 

interrupt. It can count that the interval between two successive ADC interrupt contains 

about eight system ticks, which means the ADC interrupt interval is about 8 ms. This is 

in accordance with the time for sampling 256 points of data, i.e. 256x(1/32000)=0.008s. 

Besides, a software interrupt (SWI) can be seen for each ADC interrupt, which is 

employed especially for moving data in Ping or Pong buffer to the large buffer. The 

benefits for posting a special SWI to finish the time-consuming data moving instead of 

directly moving data inside the hardware interrupt are that it reduces the time occupied 

by the hardware interrupt and thus reduces the conflict between hardware interrupts. 

 

Figure 5.3 Execution graph of data acquisition process: (a) full view, (b) magnified view of process task 

start point, (c) magnified view of first DMA interrupt and (d) magnified view of last DMA interrupt for the 

data collection 

In the debug mode, by placing a breakpoint in the position where 1024 points of data 

collection finishes, the microcontroller can be halted. With the help of the graph tool in 

CCS, the waveform of the collected signal is visualised in Figure 5.4. The waveform is 

quite smooth, which validates the continuous of the data acquisition process. About 20.5 
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periods of high-frequency sine wave signal is captured in this frame of data, therefore, 

its frequency can be calculated as 20.5/(1024/32000) = 640.625 Hz, which is quite close 

to the carrier frequency of 640 Hz. This confirms the correctness of the defined 

sampling frequency in the program. 

 
Figure 5.4 Visualised data in CCS of a modulating signal using Ping-Pong structure 

5.2 Data processing 

The data processing is the most time and memory consuming part for this application. 

As discussed in Chapter 3, the envelope analysis is an algorithm well-recognised by the 

industrial area and can produce a smaller result dataset compared to the raw data. Recall 

the procedure of envelope analysis in Figure 3.10, the implementation of envelope 

analysis is accomplished in three successive steps and explained in the following three 

subsections. 

5.2.1 Band-pass filter 

The band-pass filter is employed to keep the structure resonance signal and suppress the 

noises outside the pass band, in which way the SNR of the amplitude modulated 

resonance signal can be enhanced. 

5.2.1.1 Design	

In digital signal processing, FIR or IIR type filters are usually employed to achieve 

digital filtering. In this application, the FIR type filter is employed due to its simple 

structure, linear phase response and guaranteed stable performance. 
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The FIR filter is typically designed offline to get a group of coefficients, which are then 

stored in the embedded processor for computation during runtime. The design methods 

for the FIR filter include impulse response truncation method, windowing design 

method or and Parks-McClellan optimal filter design method [178]. In practice, it can 

be conveniently designed using well-recognised computing packages, like Matlab from 

MathWorks. 

Apparently, the band-pass filter should keep the modulated characteristic frequencies 

and their harmonics information. In bearing diagnostics, it is often desirable to be able 

to detect up to the third harmonic of the bearing defect frequency in the envelope 

spectrum [49]. Recall the characteristic frequencies of bearing faults in Section 3.1, the 

maximum one is from the inner race fault at 135.5 Hz, whose third harmonics are inside 

500 Hz. Therefore, a bandwidth with 1 kHz can enclosure the first three harmonics of 

all fault characteristic frequencies. 

The fdesign.band-pass function in Matlab is employed to design the band-pass filter. An 

81-tap FIR type filter with a passband between 1 kHz and 2 kHz is designed using this 

function. Its impulse response, 512-point magnitude and phase response are presented in 

Figure 5.5. It can be seen that the band-pass filter has a flat magnitude and linear phase 

response in the expected pass band (1 kHz to 2 kHz) and the frequency components 

outside the pass band are attenuated by more than 40 dB. 
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Figure 5.5 Feature of the designed band-pass filter: (a) impulse response, (b) amplitude response and 

(c) phase response 



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PhD)  119 

5.2.1.2 Implementation	

The calculated coefficients are stored as a constant table in the Flash type memory on 

the MCU to save the valuable RAM type memory. For accuracy considerations, the 

coefficients are stored as single floating point format and complex type filter function is 

employed. As the MCU has an integrated FPU unit, the floating point calculations can 

be accomplished efficiently. In addition, this has avoided the overflow problem which is 

quite common and annoying for fixed-point computations.  

For the signal processing, CMSIS-DSP library [179] is employed for implementation. 

By using this optimised DSP library, the program development can be significantly 

simplified while it still has good computational efficiency. For using this library on 

TIVA C microcontroller, there needs a migration and guide can be found in [180]. 

Two functions are used for the FIR filter implementation with arm_fir_init_f32 for 

structure initialization and arm_fir_f32 for data filtering. As shown in Figure 5.6, a 

computing buffer is required for the FIR filter calculation and its length is determined 

by the length of the coefficients and input data buffer. To balance between computing 

memory and efficiency, the large input data set is divided into small datasets with the 

size of M passing through the FIR filter. In the program, M is set as 64 and data size 

number K=2048/64=32. 

 
Figure 5.6 Illustration of buffer usage for FIR filter 

Of note, the FIR filter produces a constant group delay. For an FIR filter with ܰ tap, its 

group delay ܦ can be calculated by: 

ܦ  ൌ
ܰ െ 1
2

 (5-1) 

For the FIR filter in this design, there exist (81-1)/2=40 samples delay for the output 

data compared with the input data. Moreover, the beginning of 40 samples output of 

FIR filter is invalid. 
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Supposing the CPU runs at 80 MHz, the average time consumption for processing one 

data point for FIR filter length ranging from 15 to 250 is shown in Figure 5.7. 

  
Figure 5.7 Average time consumption for filtering one data point using an FIR filter 

5.2.1.3 Verification	

To verify the implementation of the band-pass filter, a simulated signal is filtered on the 

microcontroller and exported in the debug mode for visualisation. From the raw signal 

and its spectrum in Figure 5.8(a) and (b), the raw signal contains a mixture of frequency 

components of 500 Hz, 1.5 kHz, and 2.5 kHz. After passing through the band-pass 

filter, as shown in Figure 5.8(c) and (d), the frequency components of 500 Hz and 2.5 

kHz have been significantly attenuated while the amplitude of 1.5 kHz is kept almost 

the same as the raw signal. It can also be noticed that the beginning of the filtered signal 

is useless, which is caused by the group delay and will be ignored in the processing of 

next step. 

To verify the preciseness of the calculation on the microcontroller, the raw signal is 

filtered using the same band-pass filter coefficients by Matlab and is deemed as the 

baseline signal. The MCU computed results and baseline results are compared in Figure 

5.9(a), which shows a slight difference in beginning parts and the two signals start to 

show good similarity after 60 sample points. It can be seen one point delay exists for the 

baseline and MCU results, which may be caused by the filter implementation method 

and does not affect further processing. After compensating the delay point, a scatter plot 

between baseline and MCU results for the sample points from 80 samples to 150 

samples are presented in Figure 5.9(b). It can be seen that the MCU results fit quite 

precisely with the baseline results. 
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Figure 5.8 Band-pass filter implementation verification: (a) raw signal in time domain, (b) spectrum of raw 

signal, (c) filtered signal in time domain and (d) spectrum of filtered signal 
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Figure 5.9 (a) MCU filter results in comparison with baseline results and (b) scatter plot between baseline 

and MCU results with solid line being 1:1 line of baseline results 

5.2.2 Envelope detection 

After band-pass filter, the signal needs to be demodulated to get its envelope. As a 

precise detection method [145], Hilbert transform is employed for the envelope 

detection. 
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5.2.2.1 Implementation	of	Hilbert	transform	

Basically, Hilbert transform produces an analytic signal, whose real part being the 

original signal and the imaginary part being its Hilbert transform [181]. Then, the 

envelope of the original signal can be obtained by calculating the modulus of the 

analytic signal. 

Hilbert transform can be computed either in the time domain or in the frequency 

domain. Here the frequency domain method is employed because it is more 

straightforward to understand and a comparative study of the time domain and 

frequency domain method will be presented in Chapter 8. As shown in Figure 5.10, the 

analytic signal ݔ௔ is obtained by a forward FFT, zero those coefficients in the negative 

frequency band and double those coefficients in the positive frequency band, and then 

the inverse FFT yields the analytic signal. A more accurate result is obtained by 

weighting the coefficients via a windowing function shown in Eq. (5.2) [182], [183]. 

 

Figure 5.10 Schematic of the Hilbert transform based envelope detection in the frequency domain 
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Thereafter, the envelope ݔ௘௡௩ of a signal ݔ௜௡ can be calculated using: 
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௔ݔ ൌ  ሺܺ௔ሻ (5.5)ݐ݂݂݅

௘௡௩ݔ ൌ ඥݔ௔.∗ ∗௔ݔ  (5.6) 
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where ௜ܺ௡ is the FFT of ݔ௜௡, ܺ௔ is the FFT of the analytic signal ݔ௔ and ݔ௔∗  is the 

conjugate of ݔ௔. 

It can be seen that Hilbert transform involves one forward and one inverse FFT 

calculation, making it the most time-consuming part of the implementation of entire 

envelope analysis. Thus, it is worth optimising its calculation. In the CMSIS DSP 

library, four computation methods are available for the FFT calculation, as shown in 

Table 5.1. In specific, arm_cfft_f32 and arm_cfft_radix2_f32 can operate on complex 

type data while arm_rfft_f32 and arm_rfft_fast_f32 can operate on real-valued type 

data. In practice, the measured signal only contains the real-valued part and thus all 

these four methods can be used for FFT calculation. 

Table 5.1 FFT calculation functions in CMSIS DSP library 

Function name Description 

arm_cfft_radix2_f32 
This FFT function operates on floating complex type data and the radix2 

algorithm is employed for calculation. 

arm_cfft_f32 
This FFT function operates on floating complex type data and a mixed-radix 

algorithm is employed for fast calculation. 

arm_rfft_f32 This FFT function can only operate on floating real-valued type data. 

arm_rfft_fast_f32 
This FFT function can only operate on floating real-valued type data. This 

function is expected to be faster than arm_rfft_f32. 

For memory usage, the real-valued data consumes half of that for complex-typed data. 

Based on the test, it is found that the two complex type FFT functions can reuse the 

calculation buffer whilst the two real-valued FFT functions must employ different input 

and output buffers. Thus, the complex and real-valued type FFT calculation consume 

the same size of computation buffer. This also indicates the buffer for FFT calculation is 

at least twice of that in the input data. 

Recall that the computations are achieved in single floating point format, which 

indicates each data point requires a four-byte memory to store. Therefore, the 

computation buffer for an FFT calculation with ܰ points should be larger than 4ܰ ൈ

2 ൌ 8ܰ bytes. Remember in Chapter 3 that the SRAM of the employed MCU is 32 kB. 

The maximum FFT size ܰ can be calculated as 32k/8=4k. Note that MCU also 

requires SRAM memory for the other operations, the maximum FFT size becomes 2048 

points. 
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According to their descriptions, arm_rfft_fast_f32 should be the fastest one and 

arm_cfft_radix2_f32 the slowest one. To get a more convincible conclusion, the 

methods are benchmarked in CCS by using the timestamp function provided in 

TI-RTOS and the results are presented in Figure 5.11. It can be seen that the fastest 

arm_rfft_fast_f32 function is more than two times faster than the slowest 

arm_cfft_radix2_f32 method for the 2048 points calculation. It needs to be mentioned 

that the computation speed improvement is achieved with the price of storing large 

constant tables in the flash memory. 

  
Figure 5.11 FFT computation speed comparison for arm_cfft_f32 (CFFT), arm_cfft_radix2_f32 (Radix2) 

and arm_rfft_fast_f32 (RFFT) 

For Hilbert transform, it involves one forward and one inverse FFT calculation. For the 

real-valued FFT calculation, its spectrum is symmetric and the function 

arm_rfft_fast_f32 is designed for this structure. However, the analytic signal does not 

have this property anymore, which means the real-valued FFT calculation is not suitable 

for the inverse FFT calculation in Hilbert transform. Thus, the Hilbert transform 

calculation employed a combined version with forward FFT using arm_rfft_fast_f32 

and inverse FFT using arm_cfft_f32. 

A computation speed comparison between a pure CFFT and a combined version of 

RFFT + CFFT is presented in Figure 5.12. An obvious speed improvement can be 

noticed in the combined version, especially when the FFT calculation size is large. It 

shows the combined version has a time reduction of approximately 20 % in comparison 

with that of the pure CFFT version. 
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After the inverse FFT operation, the analytic signal is obtained and the envelope can be 

acquired by computing the magnitude of the analytic signal. Such a calculation can be 

finished by the function arm_cmplx_mag_f32. For this function, the input and output 

buffer can be reused. Finally, the total time consumption for calculating the envelope 

using RFFT + CFFT method is presented in Figure 5.13. 

  

Figure 5.12 Hilbert transform computation speed comparison between pure CFFT and a combined version 

of RFFT + CFFT 

  

Figure 5.13 Total time consumption for computing envelope using RFFT + CFFT 
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5.2.2.2 Verification	

To verify the implementation of envelope detection, a modulating signal is stored in the 

memory, processed on the MCU and exported in the debug mode for visualisation. The 

calculation of Hilbert transform and envelope are verified separately. 

The modulating signal and its calculated Hilbert transform on the MCU are compared in 

Figure 5.14. In the time domain, the Hilbert transform signal shows a fixed delay 

compared to the raw carrier signal. In the frequency domain, they show the same 

amplitude while there has a fixed 90° phase difference for the majority of frequency 

components. This is just the feature of Hilbert transform should look like. 

To verify the preciseness of the calculation on the MCU, the Hilbert transform of the 

same modulating signal is calculated in Matlab and considered as the baseline signal. 

The comparison between MCU computed results and baseline are shown Figure 5.15(a), 

which shows a perfect match. This can also be verified by the scatter plot in Figure 

5.15(b), where the MCU results fit quite well with the 1:1 line of baseline. 

  

Figure 5.14 Raw signal and MCU calculated Hilbert transform results in comparison: (a) time domain (b) 

spectrum and (c) phase 
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Figure 5.15 (a) Baseline and MCU calculated Hilbert transform results and (b) scatter plot between baseline 

and MCU results with solid line being 1:1 line of baseline results 

The calculated envelope of the modulating signal is shown in Figure 5.16. Through 

visual observation, the calculated envelope fits well with peaks of the modulating 

signal. Similar as the preceding verification of Hilbert transform calculation, the 

envelope computed in Matlab is considered as the baseline signal. A comparison plot 

between the MCU calculated envelope and the baseline is presented in Figure 5.17(a) 

and a scatter plot in Figure 5.15(b). Both comparison results show a good match 

between the MCU result and the baseline one. This verifies the envelope calculation 

implementation on the MCU. 

  

Figure 5.16 Raw signal and MCU calculated envelope 
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Figure 5.17 (a) Baseline and MCU calculated envelope and (b) scatter plot between baseline and MCU 

calculated envelope with solid line being 1:1 line of baseline results 

5.2.3 Spectrum calculation 

5.2.3.1 Implementation	and	spectrum	leakage	consideration	

The spectrum calculation involves one forward real-valued FFT and one magnitude 

calculation. By consulting the discussion in Section 5.2.2, the real-valued FFT function 

arm_rfft_fast_f32 is used for FFT calculation. For the amplitude calculation, the 
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Special attention needs to be paid for the spectrum calculation is the spectrum leakage, 
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maximum FFT computation frame, i.e. 2048 points, is given in Table 5.2. It can be 

observed that less than two periods of the FTF signal is enclosed in one frame, in which 

case the spectrum calculation result would be untrustworthy. For the other three signals, 
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Table 5.2 Periods contain in one frame 

Fault type Fault characteristic frequency (Hz) Periods in one frame (2048 points) 

BPFI 135.5 27.7 

BPFO 83.5 17.1 

BSF 48.4 9.9 

FTF 9.3 1.9 

Moreover, the obtained envelope signal contains a direct current (DC) offset and should 

be removed before FFT calculation. Otherwise, the large DC frequency components 

will also leak to the nearby low-frequency components, making their amplitudes 

incorrect.  

The time consumption for spectrum calculation for different frame sizes is presented in 

Figure 5.18. 

  
Figure 5.18 Time consumption for spectrum calculation 
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perfect match. The scatter plot in Figure 5.20(b) also verifies the preciseness of the 

MCU calculated spectrum. 

  
Figure 5.19 (a) Raw signal and (b) MCU calculated spectrum with magnified portion shown as an inset 

  

Figure 5.20 (a) Comparison between baseline and MCU calculated spectrum and (b) scatter plot between 

baseline and MCU calculated spectrum with solid line being 1:1 line of baseline results 
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method is called TSA as introduced in Section 4.2.3. This operation typically requires 

an additional synchronisation signal from an encoder, which increases both the system 

complexity and cost. For the frequency domain average, it just needs the vibration 

signal itself. Therefore, the frequency domain average method is employed for 

improving the SNR of the spectrum. 

For a series of FFT results ௠ܻ, their averaged results തܻ can be obtained by: 

 തܻሺ݊ሻ ൌ
1
ܯ
ൈ ෍ ௠ܻሺ݊ሻ

ெ

௠ୀଵ

, ݊ ൌ 0, 1, 2, … 	ܰ െ 1 (5-7) 

where ܰ is the size of FFT and M is the number of FFT calculations. 

For an FFT average operation with ܯ frames, the output noise variance is reduced to 

 of that in a single FFT result [178], resulting a higher sensitivity in the averaged ܯ/1

FFT results. In addition, the averaging process not only brings the benefits of better 

SNR of the envelope spectrum but also reduces the redundancy in the transmission data 

set and thus saves the occupation of the valuable bandwidth. 

5.3 Data transmission 

After data processing, the obtained envelope spectrum needs to be transmitted to the 

host data processing centre for further analysis. Note that there is no need to send the 

entire envelope spectrum data via the wireless sensor network. Only the band that 

contains the first three harmonics of the fault characteristic frequencies is useful for 

diagnosis. Recall the discussion in Section 5.2.1, the first three harmonics of 

characteristic frequencies for the three common faults are well within 500 Hz. 

Thereafter, only the spectrum below 500 Hz needs to be transmitted over the network, 

i.e. 103 data points with the sampling frequency at 10 kHz. In addition, this frequency 

bandwidth can meet the needs for a wide range of machines driving with popular 4 

pole-induction motors. 

To help the host extract the effective data in the streaming data, the transmitted data 

need to be structured properly, as shown in Figure 5.21. The header can help the host 

identify the starting of the streaming data and the data type can be a raw signal, filtered 

signal, spectrum, envelope or the envelope spectrum, etc. During debugging stage, these 

middle processing results can also be transmitted to the host side for verification. As the 
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ZigBee network has included robust checksum and retransmission mechanism, here we 

just use the data length as a simple method for checking the integrity of current frame of 

data. 

To reduce bandwidth occupation, the computed envelope spectrum data are converted 

back to 16-bit unsigned integer format. For easier coding and decoding, the data are 

currently coded in American standard code for information interchange (ASCII) during 

wireless transmission but can be transmitted as raw data or lossless compression like 

Huffman to further save bandwidth. 

 

Figure 5.21 Structure of the transmission data 

5.4 Performance analysis 

5.4.1 Processing of a bearing fault signal 

To validate the performance of the implemented envelope analysis for extracting 

bearing fault features, a typical vibration signal from a bearing with outer race fault is 

measured and processed on the proposed wireless sensor node. The middle processing 

results on the MCU are observed in the debug mode by setting breakpoints at the proper 

position and viewed using the graph tool and FFT magnitude graph tool provided in 

CCS environment [185]. The appearance of the visualisation tool is not neat but very 

helpful in the debugging process.  

The processing results of the roller bearing on the sensor node are illustrated in Figure 

5.22, which includes the raw signal, filtered signal and analysed envelope. Due to 

function limitations of the graph tool in CCS, the unit of x axis is given in samples, 

which is the index of the corresponding signal array. As the sampling rate of the ADC is 

at 10 kHz and the size of the FFT frame is 2048 points, the resolution of the frequency 

spectrum is about 4.9 Hz per bin. 

As shown in Figure 5.22 (a), a direct current (DC) offset exists in the raw vibration 

signal, and periodical spikes are observable which are caused by the defect on the outer 
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race. From its spectrum, it can be seen that the signal spans a wide frequency range and 

has many discrete components, making it difficult to identify the fault types. Hence, the 

DC offset is removed from the raw signal in order to highlight the alternating current 

(AC) spectrum. A large frequency component appears around 1500 Hz, which should 

be one of the resonance signals of the bearing. Therefore, an 80-tap FIR type band-pass 

filter is applied on the raw signal to extract frequency components between 1 kHz and 2 

kHz. 

The filtered signal and its spectrum are shown in Figure 5.22 (b). The signal becomes 

much smoother in the time domain in comparison with the raw signal and only the band 

between 1 kHz and 2 kHz are kept in the frequency domain. The analysed envelope and 

its spectrum are presented in Figure 5.22 (c). The envelope roughly matches the outline 

of the filtered signal. The three low frequency components can be clearly observed as 

distinctive peaks in the spectrum, also any frequency components above 500 Hz are 

significantly attenuated. 

 

Figure 5.22 Bearing signal and spectrum: (a) measured signal, (b) band-pass filtered signal and (c) envelope 

signal 
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Figure 5.23 shows the envelope spectrum magnified at the low frequency range. Three 

distinctive spectral peaks can be observed at sample point 18, 36 and 54, whose 

corresponding frequencies are 87.9 Hz, 170.9 Hz and 258.8 Hz, respectively. Recall the 

fault frequencies listed in Table 4.2, these frequencies agrees with the first three 

harmonics of the outer race fault frequency. Therefore, the spectrum feature can verify 

the existence of an outer race fault on the roller bearing.  

 

Figure 5.23 Envelope spectrum of roller bearing with area zoom in 

In addition, the spectrum above 500 Hz (equivalent data sample is 102) is nearly flat 

due to the effect of the band-pass filter. Therefore, only data in the low frequency range 

(less than 103 points) needs to be averaged and transmitted to the remote host computer. 

Figure 5.24 shows the roller bearing remote display results obtained with four times of 

average. As it shows, the spectral peaks of interest become more distinctive and the 

background random components are suppressed effectively by the averaging process 

compared with those in Figure 5.23. 
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Figure 5.24 Bearing remote display results averaged by 4 times 

5.4.2 Time consumption and data throughput analysis 

In the last section, the envelope analysis includes an 80-tap FIR filter, 2048-point 

Hilbert transform, and spectrum calculation. The total time consumption is measured as 

28.4 ms for the MCU running at 80 MHz. Recall the sampling frequency is 10 kHz and 

one frame of data includes 2048 points of data, this allows the time for data processing 

to be about 204.8 ms. This indicates the MCU can decrease running speed to save 

power or increase the sampling frequency to allow a wider frequency band to be 

analysed. 

For data throughput, only the size of effective data for transmission is counted and the 

extra data cost due to packaging is taken into consideration as this is not the focus of 

this thesis. A comparison of data amount that needs to be transmitted in different 

processing stages is presented in Figure 5.25. Provided the data are stored with 16-bit 

resolution, the raw data per frame (2048 points) occupy as much as 4096 bytes, and the 

envelope spectrum needs to send half of that since the spectrum is symmetric, a 

reduction of 50%. With the application of the band-pass filter in the envelope analysis, 

only 103 points of spectrum data (206 bytes) need to be transmitted, contributing a 

significant reduction of nearly 95%. In this case, the data output rate is reduced to 

approximately 8 kbps. Furthermore, if the resultant envelope spectrum is averaged by 

four times, the output rate will be reduced to only 2 kbps, which will be a much lighter 

load for the ZigBee network and the real-time transmission could be possibly achieved. 
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Figure 5.25 Comparison of the data amount 

5.5 Summary 

In this chapter, an envelope analysis with a frame length of 2048 points is successfully 

implemented on the designed wireless sensor node. The implementation process is 

explained in detail and validated carefully. From the experimental analysis, it can be 

seen that the computed envelope spectrum under a sampling frequency of 10 kHz is 

capable of expressing bearing fault features and data transmission requirement is 

reduced by nearly 95% in comparison with the raw data set. This shows envelope 

analysis is a good candidate algorithm for being embedded on the wireless sensor nodes 

for bearing fault diagnosis and hence will be explored in more detail to improve its 

accuracy, robustness and computing efficiency in later chapters. 
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CHAPTER 6  

IMPROVEMENT OF THE FREQUENCY 

RESOLUTION OF ENVELOPE SPECTRUM 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

In the last chapter, the envelope analysis is implemented on the proposed wireless 

sensor node and is proved to be effective for both extracting bearing fault features and 

reducing data transmission requirements. In this chapter, a novel signal processing 

procedure is developed to achieve the finest frequency resolution of envelope spectrum 

under constraints of limited computing and memory resources. The implementation of 

this proposed method on the embedded processor is explained in detail and the 

processing results are compared with that of the previous one. By using this method, a 

more accurate fault diagnosis can be achieved. 
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6.1 Theoretical background 

6.1.1 Frequency resolution analysis 

For a discrete signal, its frequency resolution ∆݂ is determined as: 

∆݂ ൌ
1
ܶ
ൌ
௦ܨ
ܰ

 (6.1) 

where ܶ is the time window length for FFT analysis and ܰ is the number of samples 

inside the time window length ܶ under sampling rate ܨ௦. 

Apparently, to increase the frequency resolution (i.e. reduce ∆݂), the time window 

length ܶ for FFT analysis must be increased. This can be achieved by either reducing 

 ௦ or increasing the number of sampling points ܰ. Because the sampling frequency isܨ

usually fixed and restricted by the frequency range in the bearing vibration signal, in 

practice, the frequency resolution is dependent primarily on the number of points ܰ. 

Recall the analysis in the last chapter, due to memory limitations, the maximum size for 

FFT calculation in single floating point format is limited to 2048 points. In other words, 

the maximum frequency resolution achievable is about 10000/2048≈4.88 Hz, which is 

just less than half of the FTF fault characteristic frequency. This means it would be very 

difficult to distinguish FTF and its harmonics. 

Apart from the FTF fault characteristic frequency, the harmonics of the fault 

characteristic frequencies in Table 4.2 are shown in Figure 6.1 (a). It can be seen that 

several frequency components are rather close to each other. From Figure 6.1 (b) which 

shows the frequency difference between two successive frequency components in 

Figure 6.1 (a), it can be seen the minimal frequency difference is less than 10 Hz, which 

is corresponding to one or two frequency bins as shown by the right Y-axis in Figure 

6.1 (b). This indicates that should there be a slight slip during bearing running, these 

frequency components would be very likely mixed together. Thereafter, the frequency 

resolution needs to be increased for more accurate fault diagnosis purposes. 
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Figure 6.1 (a) Harmonics of fault characteristic frequencies and (b) frequency difference between two 

successive frequencies 

6.1.2 Down-sampling, overlap processing and cascading 

Although the frequency resolution in the spectrum of the original signal is difficult to be 

improved on current wireless sensor node, it is possible to increase the frequency 

resolution of the spectrum of the envelope. Figure 6.2 shows the envelope analysis to a 

simple modulation signal, in which, a 1500 Hz carrier signal is modulated by an 80 Hz 

sine wave. In the spectrum of the modulation signal, three frequency components are 

observable and the 80 Hz frequency component is carried to the high-frequency band 

centred at the carrier frequency. After envelope analysis, the low-frequency component 

is extracted out and the high-frequency problem is transferred to a low-frequency one. 

In comparison, the sampling frequency should be higher than 3160 Hz according to 

Shannon-Nyquist sampling theorem whilst the sampling frequency of the extracted 

envelope does not need to be so high. After envelope analysis, the interested frequency 

components of the envelope signal are shifted to the low-frequency band. Thus, it is 

possible to improve the frequency resolution of envelope spectrum by down-sampling 

and then cascading the computed envelope data. 
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Figure 6.2 Application of envelope analysis to a time waveform: (a) modulation signal, (b) spectrum of 

modulation signal, (c) analysed envelope and (d) envelope spectrum 

Meanwhile, it cannot simply concatenate the down-sample envelope signal. As shown 

in the analysed envelope in Figure 6.2(c), obvious distortions appear at the front and 

end edge of the analysed envelope signal. These distortions are called edge distortions 

and are caused by the window effect when implementing Hilbert transform [145]. This 

means simply cascading the down-sampled signal may bring undesirable distortions to 

the spectrum. To exclude these unwanted distortions, an overlap processing scheme can 

be employed according to [186]. 

On this basis, a processing scheme that combines the overlap processing, 

down-sampling and cascading is proposed and illustrated in Figure 6.3. The collected 

vibration data are processed frame by frame with the size of 512 points and a 50% 

overlap is employed to keep the consecutiveness of the analysed envelope signal. As 

shown in the figure, the scheme consists of two main steps: envelope calculation and 

envelope down-sampling. In the first step, a data frame first passes through an FIR 

band-pass filter and then combines with the last filtered data frame to form a new data 

frame of 1024 data points. Then the envelope of this 1024 data is computed using 

Hilbert transform, as described in Section 5.2.2. 
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Figure 6.3 Diagram for the overlap, down-sampling and cascading scheme 

In the second step, the middle half of the computed envelope data is kept and 

down-sampled. The down-sampling rate is determined by the interested frequency band 

of the envelope signal. Recall the discussion in Section 5.3, the interested frequency 

band of the envelope signal is within 500 Hz. This indicates the sampling frequency of 

the envelope signal should be higher than 1 kHz and hence a down-sampling rate of 8 is 

employed, i.e. the sampling frequency of the envelope is 1.25 kHz. To avoid aliasing, a 

low-pass FIR filter with cut-off frequency at 1 kHz is applied to filter the envelope 

signal before down-sampling. As shown in the fourth and the fifth row of the data flow 

diagram in Figure 6.3, the original 512 points of data shrink to only 64 points. 

The repeat of the above two steps allows an envelope of 2048 points to be obtained. As 

the construction of the envelope data is based on the middle part of each frame, the edge 

distortions are avoided. By computing FFT of the down-sampled envelope data set, a 

spectrum with improved frequency resolution can be obtained. Although the size of FFT 

calculation stays the same, the above procedure actually increased the time window 

length for FFT calculation to improve the frequency resolution. For this application, the 

sampling rate for the down-sampled envelope becomes 1250 Hz, therefore, the 

resolution of the envelope spectrum is about 1250/2048 ≈ 0.61 Hz. In other words, the 

frequency resolution of the envelope spectrum is effectively increased by 8 times in 

comparison with that in Chapter 5. 
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6.2 Algorithm implementation 

With an observation of the diagram in Figure 6.3, it can be seen that the proposed 

algorithm has the following two important features: 

 The long raw signal is continuously collected but should be divided into small 

frames of 512 points for processing due to memory size limitations; 

 The buffer for envelope calculation is reused and hence the envelope calculation 

should be finished by the next frame of data ready. 

These two features bring real-time signal processing requirement for the envelope 

calculations. The Ping-Pong structure discussed in Section 5.1.1 can take its advantage 

to help implement this algorithm. 

6.2.1 Overall data flow 

By utilising the Ping-Pong structure, data processing flow inside the processor is 

presented in Figure 6.4. The vibration signal is firstly sampled by the on-chip ADC, 

which is triggered by a timer with overflow rate of 10 kHz. Then, converted results are 

moved from ADC register to internal buffer Ping or Pong alternatively through a DMA 

unit. When a buffer is full, an interrupt is generated to inform the CPU to process the 

newly collected frame data (512 points) and DMA will move new data to the other 

buffer. 

For accuracy considerations, the collected data of 16-bit unsigned integer format is 

converted to 32-bit single floating format. The overlap, down-sampling and cascading 

scheme described in Section 6.1.2 is performed on the upper half of buffer fBuf and the 

buffer lastFrame is used to temporarily store the band-pass filtered results. The 

down-sampled envelope is stored in the lower half of buffer fBuf and the FFT of 

2048-points is performed on the entire buffer fBuf to get the spectrum of the envelope. 

Finally, the computed envelope spectrum is averaged by four times in the buffer envOut 

and then sent to the ZigBee network through UART. 

From Figure 6.4, it can be seen that the memory consumption for the computation 

buffer is up to 24 kB, which is more than half the size of the total random access 

memory (RAM), i.e. 32 kB. These buffers are used for high efficiency, especially for 
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the main buffer fBuf, which is used for several calculations, such as envelope 

computation, down-sampling, cascading and FFT. 

 
Figure 6.4 Data flow inside the processor 

6.2.2 Flowchart of the signal processing 

To explain the implementation of the signal processing algorithm more clearly, the flow 

charts for the overall signal processing and the critical sub-function for envelope 

detection and down-sampling are illustrated in Figure 6.5(a) and (b), separately. 

Apparently, the sub-function for envelope detection and down-sampling needs real-time 

performance, in other words, the calculation of this function should be finished before a 

deadline, otherwise, conflicts between data collection and data processing will occur 

and thus the calculated envelope spectrum will be incorrect. The deadline for this 

function is the time for collecting 512 points of data, i.e. 512/10000=51.2 ms. 

To measure the computation time for the signal processing, two GPIO signals are set in 

the program and measured through a data acquisition system, as shown in Figure 6.6. 

The blue signal is set high when entering the DMA ISR and set low when exiting the 

ISR, thus, it indicates frame data ready and its interval is the deadline for frame data 

processing, which can be measured as 51.175 ms. The red signal is set high when 

starting frame signal processing and set low when the processing finishes, hence, the 
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time length for the red signal being high is the signal processing time, which can be 

measured as 10.875 ms. This is smaller than the deadline requirement, i.e. the real-time 

computing requirement is satisfied. 

 
Figure 6.5 (a) Flowchart of overall signal processing program and (b) flow chart of the sub-function for 

envelope detection and down-sample 

 

Figure 6.6 DMA interrupt and frame processing event measured through GPIO 
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6.2.3 Verification on a simulated signal 

To verify the correctness of the implementation of the proposed algorithm, a simulated 

modulating signal is generated and processed on the MCU. 

ሻݐሺݔ ൌ ሺ1 ൅ 0.6 ൈ sin	ሺ2ߨ ൈ ሻሻݐ80 ൈ sin	ሺ2ߨ ൈ  ሻ (6.2)ݐ1500

By setting breakpoints on relevant program lines in the debug mode, the data is 

exported for visualisation. The key signals for the first frame of envelope signal 

processing are presented in Figure 6.7, including the raw signal, band-pass filtered 

signal, calculated envelope, low-pass filtered envelope and down-sampled envelope. It 

can be seen that the first frame of the envelope calculation (1024 points) processes the 

first and second frame of raw data (512 points) and only the middle half part of the 

envelope signal is kept in the down-sampled envelope signal. Moreover, a delay exists 

in the band-pass filtered signal and the low-pass filtered envelope. This is caused by the 

group delay discussed in Section 5.2. For this application, both the band-pass filter and 

the low-pass filter has 81-tap, thus, they caused 40 points of delay separately.	
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Figure 6.7 First frame of envelope data processing: (a) raw signal, (b) band-pass filtered signal, (c) 

envelope signal, (d) low-pass filtered envelope and (e) down-sampled envelope 
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Similarly, the key signals for the second frame of envelope signal processing are 

presented in Figure 6.8, which processes the second and third frame of the raw signal. 

After processing, it also only keeps the middle half of the calculated envelope. Of note, 

the filtering of the first frame envelope starts from the first point of the calculated 

envelope whilst that of the second frame envelope starts from the 257th point of the 

calculated envelope. This operation for the first frame envelope is to avoid the 

incorrectness of the beginning of the filtered signal caused by group delay. 
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Figure 6.8 Second frame of envelope data processing: (a) raw signal, (b) band-pass filtered signal, (c) 

envelope signal, (d) low-pass filtered envelope and (e) down-sampled envelope 

The cascaded envelope of the first and second frame envelope calculation results are 

illustrated in Figure 6.9. It can be seen the joining between this two frame envelops are 

continuous and smooth, which verifies the correctness of the implementation. The raw 

signal is also presented in Figure 6.9 but with 80 points of delay compensated. It can be 

noticed that the calculated envelope fits well with the upper outline of the signal, which 

verifies the correctness of envelope calculation. 
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Figure 6.9 Cascaded envelope of first and second frame calculation results 

6.3 Results and discussion 

6.3.1 Processing results on bearing vibration signal 

To further verify the performance of the proposed algorithm, a vibration signal from a 

bearing with outer race defect is processed on the wireless sensor node. Several 

important internal processing results are visualised via the graph tools in the debugging 

mode, as shown Figure 6.10. The processing results include raw signal, calculated 

envelope, down-sampled envelope and cascaded envelope. 

Figure 6.10(a) shows one frame of the raw signal with 512 points of data, from which 

short period impact pulses can be observed whilst high-level noises are also noticeable. 

Figure 6.10(b) shows one frame of extracted envelope with 1024 points, which shows 

that high-frequency components have been removed whilst the period pulses are still 

clear. In the down-sampled envelope in Figure 6.10 (c), the pulses are still obvious 

while the down-sampled envelope only contains one-eighth of that in Figure 6.10 (b). 

To avoid edge distortions, only the middle half of the down-sampled envelope is kept 

and cascaded to compose the longer envelope signal in Figure 6.10 (d), which shows 

quite a number of pulses. 
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Figure 6.10 Bearing vibration signal processing results: (a) raw data (512 points), (b) envelope (1024 

points), (c) down-sampled envelope (128 points) and (d) cascaded envelope (2048 points) 

The spectrum of the cascaded envelope is presented in Figure 6.11. In the test, the 

sampling rate of the AD converter is set at 10 kHz and after 8 times’ down-sampling, 

the true sampling rate of the cascaded envelope is reduced to 1250 Hz. Therefore, the 

frequency resolution after 2048 points’ FFT calculation is about 1250/2048≈0.61 Hz. 

The corresponding frequencies for the peaks are illustrated in Figure 6.11 to get a better 

understanding of the spectrum. Recall the fault characteristic frequencies in Table 4.2, 

the peak frequencies in Figure 6.11 well matches the harmonics of the outer race fault 

frequency, which verifies the existence of the outer race fault on the rolling bearing. 

 

Figure 6.11 Spectrum of the cascaded envelope 
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To highlight the benefits of the improved algorithm, the normal envelope spectrum 

discussed in Chapter 5 is also employed to analyse the signal from the same defect 

bearing and shown in Figure 6.12 in comparison with the proposed method in this 

Chapter. Apparently, the outer race fault can be identified by both algorithms. However, 

the fault frequency identified from the improved algorithm is 84.23 Hz, which is much 

closer to the expected characteristic frequency, i.e. 84.5 Hz, whereas that from normal 

envelope algorithm is 83.01 Hz, more deviated from the expected one. 

This shows that the improved algorithm produces more accurate and reliable diagnostic 

results. In addition, it can be seen that the ratio from the spectrum of the improved 

algorithm between the amplitude at the fault frequency and the background noise level 

is more than 6 while that from the normal envelope spectrum is less than 5. This means 

that the improved algorithm provides a higher SNR for better detection and diagnosis 

performance. 
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Figure 6.12 (a) Normal envelope spectrum and (b) envelope spectrum using proposed method 

6.3.2 Data throughput requirement analysis 

In the proposed method, much longer raw data (32*512=16384 points) are analysed 

than that in Chapter 5 (2048 points). By analysing the data with a longer time span, a 

higher frequency resolution is thereafter achieved in the resultant envelope spectrum. 

With an improved resolution, more data points in the envelope spectrum are required to 

be transmitted. The number of data points under 500 Hz can be calculated as 

500/0.61≈820. In comparison with the raw data set, the reduction ratio in data size is 

still kept as 95%. 

Table 6.1 summarises the effective data rate per second for different processing stages 

on the sensor node. All the data are supposed to be stored with 16-bit resolution. It can 
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be seen the improved method has similar data throughput requirement as the former one 

obtained in Chapter 5. Furthermore, it should be noted that the improved envelope 

spectrum has higher SNR, which allows a higher compression ratio and hence a lower 

data throughput requirement to be achieved. 

Table 6.1 Required effective data rate comparison 

Data type Data rate (kbps) 

Raw data 160 

FFT of raw data 80 

Envelope analysis without cascading 8 

Envelope analysis with cascading (entire spectrum) 9.7 

Envelope analysis with cascading (within 500Hz) 8 

6.4 Summary 

In this chapter, an envelope analysis algorithm with accurate frequency resolution is 

developed on a wireless sensor node for bearing fault diagnosis. The key processing 

steps of the algorithm include down-sampling, data frame overlapping and cascading. 

Through these steps, the resultant envelope spectrum can be obtained on the same 

wireless sensor node in Chapter 5 but with increased frequency resolution and 

amplitude accuracy for reliable diagnostic results. 

Experimental evaluation shows that after down-sampling and cascading, the frequency 

resolution is increased by eight times in comparison with the normal envelope analysis 

algorithm in Chapter 5. The edge distortions caused by Hilbert transform is minimised 

by a 50% overlap scheme, which requires real-time signal processing performance. 

With these improvements, the tested bearing fault can be identified reliably in the 

envelope spectrum. 
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CHAPTER 7  

OPTIMAL BAND-PASS FILTER SELECTION BASED 

ON FAST KURTOGRAM 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

With the improved envelope analysis in the last chapter, a more accurate fault 

feature can be obtained for bearing fault diagnosis. Meanwhile, it can be noticed 

that the fault features can be successfully extracted out only when a proper 

band-pass filter is applied to the band that includes resonant frequency components. 

This indicates that band-pass filter plays a crucial role in the envelope analysis. 

In this chapter, the methods for selecting an optimal band-pass filter for envelope 

analysis are explored and the fast kurtogram algorithm is chosen for selecting the 

optimal band-pass filter. Due to its computation complexity, the fast kurtogram is 

implemented on the host computer and the band-pass parameters are updated 

periodically in the raw data backup procedure or when required. 
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7.1 Investigation on optimal band-pass filter selection 

In the last chapter, a method is proposed to improve the frequency resolution of the 

envelope spectrum, thus more accurate and reliable diagnosis results can be obtained. 

However, the performance of envelope analysis is highly affected by the selected 

band-pass filter. Due to the wide varieties of the bearing resonances, a fixed frequency 

band may or may not encompass the structural resonances excited by the bearing 

damage [9]. Thus, there has been an active study on how to choose the most suitable 

band to perform envelope analysis [14], [120]. 

Traditionally, two methods are usually employed to choose a suitable band-pass filter 

for envelope analysis. One method is searching for a peak at a high frequency in 

response spectra, on the assumption that the peak frequency would be excited by 

bearing faults [14]. In this method, a number of trials may be needed before the correct 

band is selected due to the noise interferences, which obviously is not suitable for 

automatic applications. Another method is using a hammer impact test to find bearing 

housing resonances when installing the sensor [14] and a band-pass filter encompasses 

the system resonance is thereafter designed. However, this test usually needs an expert 

to use professional equipment to perform. It is therefore not convenient for practical 

factory cases where there are quite a number of bearing systems. In addition, the system 

responses may change with bearing conditions, which may cause the fixed filter 

parameters to be no longer suitable. 

This problem has now largely been solved by the use of spectral kurtosis (SK) and the 

kurtogram to find the most impulsive frequency band [14]. In this method, an optimal 

band-pass filter can be precisely selected automatically. This means that the filter can be 

updated in an adaptive way and maintained optimum even if the system responses have 

changed with the bearing condition. However, the computation of the kurtogram is quite 

costly and not convenient for online industrial purposes, thus, in 2007, a fast kurtogram 

algorithm is proposed by Antoni to accelerate the computation [187]. 

In this chapter, a scheme is proposed to bring the fast kurtogram to the wireless CM 

system for automatic bearing fault diagnosis. The fast kurtogram is implemented on the 

host computer for selecting an optimal frequency band where to filter and demodulate 

the signal, while the envelope analysis is embedded on the wireless sensor node for 
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calculating the envelope spectrum. With this scheme, the implementation of envelope 

analysis on the wireless sensor node can be made more meaningful and practical. 

7.2 Introduction to fast kurtogram 

7.2.1 Spectral kurtosis and kurtogram 

The objective of bearing fault detection is to test if the vibration signal contains the 

faulty bearing signal. For a healthy bearing, its vibration signal is considered to follow 

the Gaussian distribution while, for a bearing with defect, impulsive series will be added 

to the measured vibration signal, resulting in the signal not following Gaussian 

distribution any more. The Gaussian distribution can usually be checked using the 

global kurtosis. If the signal follows a Gaussian distribution, its kurtosis is almost equal 

to 0, otherwise, the value will be higher than 0. However, the impulses from early stage 

faults are likely to be very weak and can be easily buried by the large background 

noises, making the fault difficult to be detected using the global kurtosis. 

Therefore, SK was proposed to solve this problem, which is a function of frequency that 

can indicate the impulsiveness of a signal distributing in the frequency domain [14]. Its 

usage can be traced back to 1980s when it was firstly employed for detecting impulsive 

events in sonar signals [188]. The SK of a signal ݔሺݐሻ can be computed using Eq. (7.1) 

based on STFT ܺሺݐ, ݂ሻ, which is local Fourier transform at time ݐ obtained by moving 

a window along the signal. 

ሺ݂ሻܭ  ൌ
൏ |ܺሺݐ, ݂ሻ|ସ ൐
൏ |ܺሺݐ, ݂ሻ|ଶ ൐ଶ െ 2 

(7.1) 

 

where <•> denotes the time-averaging operator. The subtraction of 2 is used to enforce 

ሺ݂ሻܭ ൌ 0 since ܺሺݐ, ݂ሻ here is complex Gaussian (instead of 3 for real signals) [189]. 

According to the definition of SK, the frequency band dominated by the bearing fault 

signal will incur a high value of SK, otherwise, the value of SK will be small. 

Therefore, the SK can be used as a filter function to choose the frequency band that has 

the highest level of impulsiveness, as shown in Eq. (7.2). 

௬ሺ݂ሻܭ  ൌ
௄ೣሺ௙ሻ

ሾଵାఘሺ௙ሻሿమ
  

(7.2) 

 

where ߩሺ݂ሻ is the noise-to-signal ratio function of frequency. 
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Because the computation of SK is based on STFT, its value is also critically related to 

the choice of the STFT window length. Therefore, the two-dimensional kurtogram is 

raised to improve the filter function, which is a function of both centre frequency ݂ 

and the frequency resolution ∆݂. A combination of ݂ and ∆݂ determines a value of 

SK and is named a dyad ሼ݂; ∆݂ሽ. The dyad ሼ݂; ∆݂ሽ with the maximum value is 

considered as the optimum band-pass filter parameters. 

7.2.2 Fast kurtogram 

As explained above, the kurtogram contains a host of dyads ሼ݂; ∆݂ሽ and a thorough 

computation of all possible dyads is quite costly and not practical for on-line industrial 

applications. Therefore, Antoni proposed a fast kurtogram algorithm to solve this 

problem [187]. Using this algorithm, an equivalent dyad can be computed but with 

much better speed performance. As an example in [187], on the same computer, for the 

computation of the same signal with 1.37s, the fast kurtogram took a fraction of a 

second while the full kurtogram took more than 10 minutes. 

The principle of fast kurtogram is based on an arborescent multi-rate filter bank 

structure using a quasi-analytic filter [187]. Let ݔሺ݊ሻ	be a non-stationary process and 

݄ሺ݊ሻ a low-pass prototype filter used to construct two quasi-analytic low-pass and 

high-pass analysis filters ݄଴ሺ݊ሻ and ݄ଵሺ݊ሻ, in the frequency bands [0; 1/4] and [1/4; 

1/2], respectively. 

 
݄଴ሺ݊ሻ ൌ ݄ሺ݊ሻ݁௝గ௡/ସ, 

݄ଵሺ݊ሻ ൌ ݄ሺ݊ሻ݁௝ଷగ௡/ସሺ݆ଶ ൌ െ1ሻ 
(7.3) 

Then, these two filters are used to perform the elementary low-pass/high-pass 

decomposition illustrated in Figure 7.1. As it shows, the sequence number is doubled 

after the decomposition, but their respective length is also halved so that the total 

amount of data remains the same. By using this decomposition, a tree of filter banks can 

be built, as shown in Figure 7.2 (a). In the filter-bank tree, there are 2௞ bands in the 

corresponding level and the coefficients ܿ௞
௝ሺ݊ሻ can be interpreted as the complex 

envelope of signal ݔሺ݊ሻ. 



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PhD)  155 

1H

0H
i ( )kC n

2
1( )i

kC n

2 1
1 ( )i

kC n


( )nj
 

Figure 7.1 Basic decomposition 

Then, the kurtogram ܭ௞
௜  is estimated using Eq. (4) by computing the kurtosis of all 

sequences ܿ௞
௜ ሺ݊ሻ, ݆ ൌ 0,… , 2௞ െ 1, ݇ ൌ 0,… , ܭ െ 1. 

݇ܭ 
݅ ൌ

൏ |ܿ݇
݅ ሺ݊ሻ|

4
൐

൏ |ܿ݇
݅ ሺ݊ሻ|

2
൐
2 െ 2 (7.4) 

 

To achieve a finer sampling of the dyad plane, a 1/3-binary tree of filter-banks is 

extended on the binary tree structure shown in Figure 7.2 (a). Three additional 

quasi-analytic band-pass filters ݃௝ሺ݊ሻ, ݆ ൌ 0,1,2 are defined with pass-bands [0; 1/6], 

[1/6; 1/3] and [1/3; 1/2], respectively. These filters are then used to further decompose 

each sequence ܿ௞
௜ ሺ݊ሻ into three sub-sequences ܿሺ௞ାଵሻ.଺

ଷ∗௜ା௝ ሺ݊ሻ, ݆ ൌ 0, 1, 2. 

Finally, the kurtogram of the corresponding 1/3-binary tree are also calculated using Eq. 

(4) and the complete fast kurtogram paving of the ( ௜݂ , ሺ∆݂ሻ௞ሻ plane is illustrated in 

Figure 7.2 (b). For each dyad { ௜݂ , ሺ∆݂ሻ௞ሽ, a kurtosis value is calculated. The optimum 

band-pass filter is expected to have the maximum kurtosis value. 
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Figure 7.2 (a) Fast calculation of the kurtogram by using an arborescent filter-bank structure and (b) the 

complete paving of the (frequency / frequency resolution) plane 

7.3 Implementation of fast kurtogram in the wireless sensor network 

7.3.1 Implementation scheme 

To accomplish the task of band-pass filter automatic selection and localised envelope 

analysis in the proposed wireless CM system, the system works in two modes which are 

named as configuration mode and monitoring mode respectively, as shown in Figure 

7.3. The configuration mode is used for updating the optimal band-pass filter 

coefficients. It operates at the installation of the system and during a period when a 

significant change appears in the monitoring mode or at a given long time interval. Most 

of the time, the system works in the monitoring mode, in which the wireless sensor node 

uses the optimum band-pass filter calculated in the configuration mode to analyse the 

vibration signal and transmit the envelope spectrum to the host computer for fault 

diagnosis. Thus, this system can automatically finish the optimum band-pass filter 

selection and perform effective condition monitoring. 
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Figure 7.3 System working scheme 

7.3.2 Configuration mode 

In this mode, a dataset containing 8192 points of data is firstly collected on the sensor 

node and transmitted to the host computer via the wireless network. Then, the fast 

kurtogram is computed on the host computer to obtain the optimal band-pass filter. As 

discussed in Section 7.2.2, the filters are designed as a complex type, which is quite 

challenging and time-consuming when implementing on the memory limited 

microcontroller. Thereafter, an equivalent FIR filter with only real part coefficients is 

generated based on the parameters of the calculated optimum band-pass filter. At last, 

the coefficients of the FIR filter are sent back to the sensor node where the coefficients 

will be renewed for the next coming computation cycle. 

In this application, the sampling rate of the ADC is raised to 32 kHz and 8192 points of 

data is collected. That’s a signal length of about 0.256 seconds, which is fairly enough 

for performing fast kurtogram. As discussed in Chapter 5, the frequency range of 

interest in the bearing system is less than 500 Hz. According to Figure 7.2 (b), the 

bandwidth at level 5 has reached 500 Hz with the sampling rate at 32 kHz, therefore, 5 

levels’ analysis is sufficient for this system. 

7.3.3 Monitoring mode 

Most of the time, the system works in the monitoring mode, in which the envelope 

analysis is carried out at the sensor node and the calculated envelope spectrum is 
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transmitted wirelessly to the host computer for display and further analysis. Due to 

limited computing memory size on the sensor node, only small frames of data can be 

calculated at one time. To obtain a high-frequency resolution, the algorithm proposed in 

Chapter 6 is employed. For this method, a large frame of data is divided into several 

smaller frames and processed in different time divisions. 

To explore the optimal band-pass filter in a wider frequency band, the sampling rate is 

increased to 32 kHz and the diagram for the data processing scheme is updated and 

illustrated in Figure 7.4, which is upgraded from Figure 6.3. As shown in Figure 7.4, the 

collected data are also processed frame by frame with a size of 512 points. The frame 

first passes through a band-pass filter and combines with the last filtered frame to 

produce a new frame of 1024 data points. Then the envelope of the newly produced 

frame is computed using Hilbert transform. To avoid distortions on the edge of the 

extracted envelope using Hilbert transform, only the middle half of the computed 

envelope data are reserved. Then, the data are filtered using a low-pass filter with the 

cut-off frequency at 500 Hz and down-sampled by a ratio of 1/32 to save computation 

memory and reduce the calculation amount. After the process, the original 512 points of 

data shrink to only 16 points while the envelope information of the raw data is still 

reserved. 

As shown in Figure 7.4, from the second frame, every frame of data will create 16 

points of envelope data and after the 129th frame; an envelope signal with 2048 points 

can be obtained. The consistency of envelope signal is guaranteed by a 50% overlap 

processing when calculating the envelope. 

In the above process, there are two kinds of sampling rate: 32 kHz and 1 kHz. Data with 

high sampling rate share the same computing space and are computed in different time 

divisions. The high sampling rate of the raw data allows high-frequency components to 

be analysed and the low sampling rate of the envelope signal allows longer analysis 

time length and thus higher frequency resolution can be achieved. 

For the down-sampled envelope signal, its equivalent sampling rate becomes 1 kHz; 

therefore, the resolution of the envelope spectrum is about 0.49 Hz. This means the 

frequency band of interest has about 1024 points of data, which are the data needs to be 

transmitted to the host computer. 



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PhD)  159 

 

Figure 7.4 Diagram for the overlap, down-sampling and cascading scheme 

Recall the signal processing diagram in Figure 6.5, where the calculation for one frame 

of envelope signal requires real-time computation performance. Because of the increase 

in sampling rate, it brings more strict real-time computation performance. The deadline 

for processing one frame data of 512 points sampled at 32 kHz can be calculated as 

512/32=16 ms. 

Because the sampling rate is increased, the length of the FIR filter needs to be increased 

as well in order to achieve the same frequency response performance for the same pass 

band. Figure 7.6 shows the 512-point magnitude and phase response of a series of FIR 

low pass filter with different lengths, which are designed using the same pass band and 

stop band criteria. It can be seen that all filters have a linear phase response but the ones 

with longer filter coefficients have a flatter passband response and a greater attenuation 

ratio in the stop band. 
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Figure 7.5 512-point filter response of a series of FIR low-pass filter with different lengths: (a) magnitude 

response with magnified portion shown as an inset and (b) phase response 

Similarly, a series of FIR band-pass filters are designed using the same pass band and 

stop band criteria and their 512-point magnitude and phase response are presented in 

Figure 7.6. The similar phenomenon as Figure 7.5 can be observed, with the increase of 

filter length, the magnitude response within pass band becomes flatter and the 

attenuation ratio of the stop band becomes greater. 
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Figure 7.6 512-point filter response of a series of FIR band-pass filter with different lengths: (a) magnitude 

response with magnified portion shown as an inset and (b) phase response 
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Therefore, to get better filtering results, there needs a longer length of the low-pass filter 

and a band-pass filter. However, the increase of filter length also increases the 

computation time significantly. Thus, there should be a balance between filtering 

performance and computation time. The computation time of one frame of the envelope 

for different band-pass and low-pass filter lengths is presented in Figure 7.7, which are 

calculated for the MCU running at 80 MHz. 

It can be observed that the real-time requirement cannot be achieved for longer length 

low-pass and band-pass filter combinations. Together with the filter response in Figure 

7.5 and Figure 7.6, it can be observed that low-pass filter length of 100-point and a 

band-pass filter of 160-point or 180-point can be a good balance between filtering 

performance and computation time. 

 
Figure 7.7 Computation time of one frame of envelope for different band-pass and low-pass filter lengths 

7.3.4 Band-pass filter implementation in the frequency domain 

Although the real-time performance for the calculation of one frame of the envelope can 

be satisfied with a proper combination of low-pass and a band-pass filter, the 

computation time is rather close to the deadline requirement, with just about 1 ms’ 

headroom. If other operations are conducted in the meantime, the calculation might not 

be able to be finished in time. For this consideration, an improvement is applied on the 

implementation of diagram for the overlap, down-sampling and cascading scheme, as 
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shown in Figure 7.8. The idea of this improvement is to remove the FIR band-pass filter 

calculation in the time domain and apply directly a band-pass window on the calculated 

FFT results in the frequency domain. In this way, the former convolution operation of 

the FIR filter becomes a multiplication in the frequency domain. Thus, the calculation 

can be much faster. 

 
Figure 7.8 Improved diagram for the overlap, down-sampling and cascading scheme 

Of note, applying a rectangle window in the frequency domain usually, introduces 

distortions to the corresponding signal in the time domain. Because an overlapping 

mechanism of up to 50% has already been applied in the diagram, the end distortions 

due to the window effect can be effectively avoided. Another benefit of applying 

band-pass window in the frequency domain is that there is no need to transmit long FIR 

coefficients, instead only two boundary frequencies, i.e. the lower and upper cut-off 

frequency need to be updated in the configuration mode. 

The computation time of one frame of the envelope by applying different band-pass 

window widths and different low-pass filter lengths is presented in Figure 7.9. It can be 

seen the computation time is significantly reduced and all the combinations in the figure 

can satisfy the real-time computing requirement, with the headroom for more than 5 ms. 

For the same low-pass filter, the increase of band-pass window width only brings a 

slight increase in the computation time. Thereby, applying a band-pass filter in the 

frequency domain has better real-time performance than the FIR method. 
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Figure 7.9 Computation time of one frame of envelope by applying different band-pass window widths 

7.4 Results and discussion 

To evaluate the performance of the fast kurtogram for selecting optimal band-pass filter 

and the effectiveness of the selected band-pass filter for extracting bearing fault 

features, the proposed condition monitoring scheme is employed for processing 

vibration signals from three types of defect bearing, including outer race fault, inner 

race fault, and roller fault. 

7.4.1 Outer race fault detection results 

A vibration signal (8192 points, approximately 0.25s) measured on the bearing with 

outer race fault is shown in Figure 7.10 (a) and its spectrum in Figure 7.10 (b). This data 

set is received from the host computer in the configuration mode and calibrated on the 

host computer before displaying. As shown in Figure 7.10 (a), periodical spikes are 

observable which are caused by the defect on the outer race. From its spectrum, it can 

be seen that the signal has a wide frequency range which makes it difficult to identify 

the fault types. Several peaks exist in the spectrum and it’s not easy to tell which one is 

suitable for implementing the envelope analysis. 
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Figure 7.10 Outer race raw dataset: (a) time domain and (b) frequency domain 

The corresponding fast kurtogram of this data set is displayed in Figure 7.11, which 

shows a high non-stationary activity around the carrier frequency f = 9.33 kHz. The 

dyad which maximises the kurtosis is ሼ ସ݂; ሺ∆݂ሻଶ.଺ሽ ൌ ሼ9.33	݇ݖܪ;  ሽ, that is theݖܪ݇	2.67	

frequency band ሼ8	݇ݖܪ;  ሽ. According to Figure 7.10 (b), high peaks areݖܪ݇	10.67	

observable in this frequency band. Thus, band-pass filter window with pass band 

between 8 kHz and 10.67 kHz is applied on the sensor node for implementing envelope 

analysis. 

The envelope spectrum computed on the sensor node is given in Figure 7.12. It clearly 

shows the spectrum lines at the characteristic frequency of outer race fault. Without 

question, it can be based on to diagnose the outer race fault on the bearing. 
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Figure 7.11 Fast kurtogram of the outer race raw data set, maximum kurtosis is 2.6 at level 2.6. The 

optimum band-pass filter is centred at 9.33 kHz with 2.67 kHz bandwidth. 
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Figure 7.12 Envelope spectrum for bearing with outer race fault 

7.4.2 Inner race fault detection results 

Similarly, a dataset of vibration signal was collected on the bearing with inner race 

fault, as shown in Figure 7.13 (a), and its spectrum in Figure 7.13 (b). The periodical 

spikes are observable but not as obvious as those in Figure 7.10 (a). Its spectrum also 
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spread over a wide frequency range and the peaks are a bit different from those in 

Figure 7.10 (b), which indicates the resonances of the bearing system have changed 

slightly with the change of the installed bearing. 

 
Figure 7.13 Inner race raw dataset: (a) time domain and (b) frequency domain 

 

Figure 7.14 Fast kurtogram of the inner race raw data set, maximum kurtosis is 1.1 at level 2.6. The 

optimum band-pass filter is centred at 4 kHz with 2.67 kHz bandwidth. 
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Figure 7.15 Envelope spectrum for bearing with inner race fault 

The corresponding fast kurtogram is obtained as shown in Figure 7.14. Its maximum 

kurtosis is reached at dyad ሼ ଶ݂; ሺ∆݂ሻଶ.଺ሽ ൌ ሼ4	݇ݖܪ;  ሽ. As shown in Figureݖܪ݇	2.67	

7.13 (b), the frequency bins around 4 kHz have relative higher amplitudes. Therefore, 

an 80-order FIR band-pass filter with the frequency band from 2.67 kHz to 5.33 kHz is 

designed accordingly. 

The envelope spectrum calculated using the above band-pass filter is shown in Figure 

7.15, which clearly reveals the existence of the inner race defect on the bearing. 

7.4.3 Roller fault detection results 

A dataset of vibration signal was collected on the bearing with roller fault and presented 

in Figure 7.16(a), and its spectrum in Figure 7.16(b). The periodical spikes are 

observable but not as obvious as those in Figure 7.10 (a). Its spectrum also spread over 

a wide frequency range and the peaks are a bit different from those in Figure 7.10 (b), 

which indicates the resonances of the bearing system have changed slightly with the 

change of the installed bearing. 

The corresponding fast kurtogram is obtained as shown in Figure 7.17. Its maximum 

kurtosis is reached at dyad ሼ ହ݂; ሺ∆݂ሻସሽ ൌ ሼ4.5	݇ݖܪ; ሽݖܪ݇	1	 . As shown in Figure 

7.17(b), the frequency bins around 4 kHz have relative higher amplitudes. Therefore, an 

80-order FIR band-pass filter with the frequency band from 4 kHz to 5 kHz is designed 

accordingly. 
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Figure 7.16 Roller raw dataset: (a) time domain and (b) frequency domain 

 

Figure 7.17 Fast kurtogram of the roller raw data set, maximum kurtosis is 1.1 at level 4. The optimum 

band-pass filter is centred at 4.5 kHz with 1 kHz bandwidth. 

The envelope spectrum calculated using the above band-pass filter is shown in Figure 

7.18, which clearly reveals the existence of the roller defect on the bearing. 
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Figure 7.18 Envelope spectrum for bearing with roller defect 

7.4.4 Data throughput requirement analysis 

In the configuration mode, a large dataset needs to be transmitted over the wireless 

network for kurtogram calculation and filter optimisation. However, considering that 

the fault progression is a slow and gradual process, the filter, once optimised, can be 

used for a long time period. This means that this mode does not need to run frequently; 

instead, it may be activated once a week or a month when the raw data backing up is 

carried out. In addition, the large raw dataset does not need to be transmitted in 

real-time. So it can be organised into small packages for transmission when the wireless 

network is not busy. 

On the other hand, the monitoring mode requires a high-speed data flow so that the 

monitoring can be achieved in real time. As discussed in Section 3.3, 2048 points of 

envelope data are produced for every 129 frames of raw data (each frame is composed 

of 512 points of data) and the envelope spectrum only contains 1024 points of effective 

data. In order to evaluate the performance of data reduction in this mode, the data 

throughput requirements in different processing stages are summarised in Table 7.1. All 

the data are supposed to be transmitted at a 16-bit resolution occupying two bytes’ 

space. 
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Table 7.1 Data throughput requirement comparison 

Processing stages 
Data points per 

computation cycle 

Data throughput 

requirement (kbps) 

Raw dataset 66048 512 

Envelope 2048 15.88 

Envelope spectrum 1024 7.94 

Averaged spectrum 256 1.99 

As shown in Table 7.1, the data throughput requirement for the raw data is as high as 

512 kbps which are even higher than the maximum transmission speed of ZigBee, i.e. 

250 kbps. However, after the processing on the sensor node, the data throughput of the 

envelope and its spectrum are significantly reduced to about 16 kbps and 8 kbps, 

respectively. Supposing a four-time average is carried out on the envelope spectrum, the 

data throughput requirement can be further decreased to less than 2 kbps. Therefore, 

multiple such sensor nodes would be allowed to coexist in the same wireless network 

for bearing fault diagnosis. 

7.5 Summary 

In this chapter, an adaptive envelope analysis scheme is proposed for automatically 

selecting the optimal band-pass filter in the wireless CM system. The fast kurtogram is 

realised on the host computer due to its computation complexity and envelope analysis 

is embedded in the wireless sensor for extracting envelope spectrum and reducing the 

data throughput requirement. By using this scheme, the vibration signal can be 

monitored effectively over the bandwidth limited wireless sensor network for bearing 

fault diagnosis. Furthermore, frequency domain filtering is implemented instead of the 

FIR filter to reduce data size for filter parameters updating and the sampling frequency 

is increased to 32 kHz to allow a wide frequency band being analysed while similar 

level frequency resolution is still kept as that in Chapter 6. 
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CHAPTER 8  

IMPROVEMENT OF COMPUTATION SPEED OF 

ENVELOPE DETECTION METHODS 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

From the work in the last three chapters, it can be noticed that envelope detection is a 

most time-consuming part of the envelope analysis process. For this reason, this 

chapter explores several envelope detection methods, including the simple envelope 

detectors, a recent method based on short-time statistical features and the precise 

Hilbert transform. 

The simple envelope detectors, especially the squared rectifier, have fast computation 

speed but also suffer from accuracy problems. With a further study, it is found that it 

can get an envelope with satisfactory accuracy as Hilbert transform when processing 

bearing vibration signal. Meanwhile, Hilbert transform is fully explored in both time 

domain and frequency domain and a fast implementation method is proposed in the 

frequency domain for getting the squared envelope spectrum. 

At the end, two fast implementation methods are proposed and employed for calculating 

the spectrum of high resolution and adaptive filtering. The experimental results show 

satisfactory accuracy and computation improvement in comparison with the algorithm 

in Chapter 7. 
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8.1 Simple envelope detectors 

Envelope detection has played an important role not only in extracting fault features in 

vibration signals from rotating machinery components but also in many other areas, 

such as ECG signal processing in the medical area [190] and envelope tracking to 

improve the power efficiency of the transmission amplifier in the communication area 

[191]. 

In radio signal processing, a simple rectifier circuit shown in Figure 8.1 can be 

employed for the demodulation of an amplitude modulated (AM) analogue signal. This 

method can also be utilised to process a vibration signal from rotating components (like 

bearings, gears or valves) with AM effect. However, it should be noted that the carrier 

frequency in radio (several MHz) are usually much higher than that of modulating 

signals (several kHz). For a bearing vibration signal with AM effect, the carrier signal 

comes from resonances of the bearing housings, whose frequency (several kHz) are 

close to that of the modulating faulty signals (dozens to hundreds Hz). In addition, 

vibration signals usually contain several resonances, which are also varied for different 

bearing systems. Thus, it is difficult to find proper analogue filtering appropriate 

circuits for getting the faulty signal from an AM vibration signal by using a simple 

rectifier shown in Figure 8.1. In comparison, the digital signal processing can also fulfil 

the rectifiers in analogue circuits and more flexible filtering options can be applied to 

get a better processing result. 

8.1.1 Half-wave, full-wave and squared rectifier 

Three simple envelope detectors are presented in Figure 8.2, which can be used to 

simulate the half-wave, full-wave and squared rectifier methods. Comparatively, when a 

sinusoidal signal passes through a half-wave or full-wave rectifier, the harmonics 

extend to infinity in the output spectra while the output of the squared signal only 

contains DC component plus double frequency component of the original signal. The 

harmonics in the half-wave and full wave rectifier method will inevitably alias into the 

measurement range due to the fact that the sampling rate is limited. 
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Figure 8.1 Half-wave rectifier 

 

Figure 8.2 Illustration of a signal passing through different rectifiers: (a) original signal, (b) half-wave 

rectified signal, (c) full-wave rectified signal and (d) squared signal 

Figure 8.3 shows a modulation signal passes through the above three rectifiers, where 

the modulation signal is centred at 1500 Hz with two frequency components 80 Hz and 

120 Hz situated at its both sides. As shown in Figure 8.2, after passing through the three 

types of rectifiers, harmonics of the half-wave and full wave rectifier extend further and 

aliases back to the low-frequency band as highlighted in the red circle in Figure 8.2(b) 

and (c). Meanwhile, in the spectra of the squared signal, there is no such distortion. 

However, it can be expected that if the carrier frequency of the modulation signal is 

near or even higher than the ¼ of the sampling frequency, similar aliasing problems 

could also happen in the spectra of the squared signal. 

It can be observed that low-frequency components are demodulated in the spectra of 

rectified signals in Figure 8.3 (b), (c) and (d). With a closer look at this frequency band 

of these rectified signals as shown in Figure 8.4. The modulating frequency components 
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80 Hz and 120 Hz can be found in all three spectra while in the spectra of the squared 

signal, frequency components of 160 Hz, 240 Hz, and 200 Hz can also be observed. 

These extra frequency components are actually the 2nd harmonics and sum of 80 Hz and 

120 Hz, which result from the squared effect and can be removed by the following 

square-root method. 
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Figure 8.3 A modulation signal centred at 1500 Hz: (a) original signal, (b) half-wave rectified signal, (c) 

full-wave rectified signal and (d) squared signal 
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Figure 8.4 Partially magnified view of the spectra: (a) half-wave rectified signal, (b) full-wave rectified 

signal and (c) squared signal 

In summary, distortions will be inevitably brought in with half-wave and full wave 

rectifier method due to infinite extended harmonics. Distortions can be attenuated with 

an increase of the sampling frequency, in which case, fewer harmonics will alias back 

into the measurement range. Meanwhile, distortions in squared rectifier can be 

compensated with a following square root method but also requires a higher sampling 

frequency to avoid aliasing. Note that in some cases, the squared envelope spectrum 

might be more preferred as it can provide higher SNR in comparison with the envelope 

spectrum [49]. 

In practice, vibration signals are usually band-pass filtered before the squared operation 

to find an optimal band and enhance SNR as discussed in Chapter 7. Later in Section 

8.3.2, it is compared with the Hilbert transform method and the reason for its capability 

for demodulation will be explained. 

8.1.2 Peak detector 

In the above three rectifier methods, new frequency components are brought in, which 

may cause an aliasing problem if they are not properly handled. With the increase of 

sampling frequency, distortions can be reduced, which consequently will increase the 

computation load. The peak detector is another simple but effective envelope detector, 

in which no new frequency components are generated. Figure 8.5 highlights that the 

peak-detector is an approximation of the envelope signal. When the sampling frequency 
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is much higher than the carrier frequency, the results would be more precise. Otherwise, 

when the carrier frequency is close to the sampling frequency, the sampling points may 

not appear near the carrier peaks and thus, the results may not be accurate. Therefore, 

the peak detector method also requires a much higher sampling frequency of the carrier 

signal. 

It should be noted that the peak detector can be extremely sensitive to noises and hence 

the detection result of peak-detector has low repeatability problem sometimes and can 

lead to a false reading. 

 

Figure 8.5 Envelope detected by peak method in comparison with the true envelope 

8.1.3 Short-time statistical features 

Short-time statistical features are another simple yet effective method for extracting 

bearing fault features, which were based on the concept of cyclostationary [129], [192]. 

The aim of this method is to extract the fault characteristic information by finding the 

cyclic information from the short-time features. The statistical features for calculation 

can be second and fourth statistical moments, peak value and kurtosis.  

The short-time statistical feature of signal ݔ by using a statistical operator ܲ, can be 

written as: 

 ܵ ௫ܶ
௉ሺݐ, ݀ሻ ൌ ܲሼݔሺ߬ሻ ൈ ௗሺ߬ݓ െ  ሻሽ (8.1)ݐ

Where ݓ  is the window function, ݐ  is the origin of the window, ߬  is the time 

variable, and ݀ is the window size. The window function may be different types, such 
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as uniform, triangle, Hanning, or Hamming. The window function slides over the signal 

with a constant step size, which is suggested to be smaller than 25 percent of the 

window size to avoid aliasing [129]. After statistical features at all windows are 

calculated, an FFT operation is performed on the extracted statistical features to find 

periodic patterns. 

For better understanding, the above computation process for short-time statistical 

features is illustrated in Figure 8.6, where a window of size ܯ slides over the signal ݔ 

with a step size of ܵ. At each step, a statistical feature ܲ is computed for the signal 

extracted by the sliding window. 

 

Figure 8.6 Illustration of short-time statistical feature calculation with step size of S and window size of M 

In [129], Behzad et al. proved the best statistical feature for detecting localised bearing 

fault is the square root of the second moment, i.e. RMS. For the statistical feature RMS, 

this process actually calculates a series of instant power for signal ݔ. Recall the 

definition of RMS in Eq. (4.6), short-time RMS can be considered as a simplified 

squared rectifier with the low-pass filter and downsample operation being implemented 

by an overlapped average. The sliding window together with RMS calculation acts like 

a low-pass filter to omit high-frequency fluctuations in the squared signal and the step 

size is the down-sampling ratio. 

The window length and step size are critical parameters for short-time RMS calculation. 

The larger the step size is, the lower of computation complexity will be. Meanwhile, the 

window length plays a significant role in the success of this method. A window time 

length ௪ܶ for detecting all bearing fault features is recommended in [129] as: 

 ௪ܶ ൌ ௥ܶ

ܰ
ൌ

1
௥ܨܰ

 (8.2) 
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in which, ௥ܶ is the shaft rotation time, ܨ௥	 is the shaft rotation frequency, and ܰ is 

the number of rolling elements. In [129], Behzad et al selected the windows according 

to a so-called peak clarity ratio, which only takes the fundamental fault frequency into 

consideration. From the view of low-pass filter and down-sampling discussed above, the 

window size can be determined by the maximum interested frequency component of the 

short-time features and the step size should be less than half of the window size. 

Figure 8.7 shows the short-time RMS and its spectrum of a vibration signal from a 

bearing with an outer race defect. The sampling rate of the signal is 32 kHz and a 

uniform type window of 64 points is applied for the calculation with a step size of 32 

points. Before short-time RMS calculation, the signal is filtered by a high-pass filter 

with cut-off frequency at 500 Hz for removing the influence of low-frequency vibration 

components. 

From Figure 8.7(a), it can be seen that the periodic impulses in the vibration signal can 

be well represented by the extracted short-time RMS feature, although this is not the 

envelope of the original signal. From its spectrum in Figure 8.7(b), a series of 

harmonics of the outer race fault frequency can be clearly observed with good SNR, 

which verifies the existence of the outer race defect on the bearing. 
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Figure 8.7 Short-time RMS of a bearing vibration signal with outer race fault 

(a) raw signal and short-time RMS and (b) spectrum of short-time RMS 

The schematic for a short-time RMS based envelope analysis is presented in Figure 8.8. 

Note that the sampling frequency of the obtained ݔ௘௡௩ is 1/ܵ of that in the original 
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input signal ݔ, therefore, for the same size of FFT calculation, the envelope spectrum 

frequency resolution is ܵ times of the original signal spectrum. 

 

Figure 8.8 Schematic of short-time RMS based envelope analysis 

8.2 Hilbert transform based envelope detection 

The simple envelope detectors are easy to implement, but their performance might be 

unreliable with respect to the signal. In comparison, Hilbert transform based envelope 

detector is more precise and is not sensitive to the carrier [193]. In this section, Hilbert 

transform will be studied in detail and the reason for its preciseness will be explained in 

comparison with the squared rectifier. 

8.2.1 Definition of Hilbert transform and analytic signal 

Hilbert transform (HT) is named after David Hilbert and was firstly introduced to solve 

a special case of integral equations in the area of mathematical physics. The HT of a 

real-valued function ݔሺݐሻ extending from െ∞ to ൅∞ is a real-valued function ݔ෤ሺݐሻ 

defined as [193]: 

ሻሿݐሺݔሾܪ  ൌ ሻݐ෤ሺݔ ൌ
1
ߨ
න

ሺ߬ሻݔ
ݐ െ ߬

ஶ

ିஶ
݀߬ (8.3) 

A complex signal whose imaginary part ݔ෤ሺݐሻ is the HT of the real component ݔሺݐሻ is 

called an analytic or quadrature signal [193], [194]: 

ሻݐ௔ሺݔ  ൌ ሻݐሺݔ ൅  ሻ (8.4)ݐ෤ሺݔ݆

An example of the analytic signal is presented in Figure 8.9. The analytic signal only 

contains positive or negative frequency components. The HT is usually employed either 

to generate or to measure complex time-domain signals, where the HT’s power lies. It 

delivers another dimension of signal processing capabilities as we move from 

two-dimensional real signals to three-dimensional complex signals. 
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Figure 8.9 Illustration of an analytic signal in three dimensions: (a) analytic signal, (b) real signal, (c) HT 

signal and (d) phasor in complex plane [193] 

By calculating the amplitude of an analytic signal, the envelope of a modulating signal 

can be obtained, as illustrated in Figure 8.10. For the implementation of Hilbert transform, 

it can be achieved either in the frequency domain, which is more straight forward as 

explained in Section 5.2.2, or can be implemented in the time domain using a Hilbert 

transformer, which will be explained in Section 8.2.3. 
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Figure 8.10 Illustration of HT based envelope detection: (a) modulating signal, (b) HT of modulating signal 

and (c) envelope calculated using HT 

8.2.2 Frequency domain implementation and its problems 

The Fourier transform of the analytic signal ݔ௔ሺݐሻ can be expressed as: 
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ܺ௔ሺ݂ሻ ൌ ቐ
2ܺሺ݂ሻ,					݂ ൐ 0,
ܺሺ݂ሻ,						݂ ൌ 0,
0,													݂ ൏ 0

ൌ  ሺ݂ሻܺሺ݂ሻݑ2

(8.5) 

where ܺሺ݂ሻ is the Fourier transform of ݔሺݐሻ and ݑሺ݂ሻ is the step function. 

In the Hilbert implementation in Section 5.2.2, a schematic for the frequency domain 

HT based envelope analysis is presented in Figure 8.11. The HT window function 

applied in the frequency domain actually forces the spectrum of ݔሺݐሻ to become the 

spectrum of ݔ௔ሺݐሻ. 

 
Figure 8.11 Schematic of frequency domain HT based envelope analysis 

This operation is straightforward and easy to understand, but it brings edge distortions 

to the result. Figure 8.12(a) shows an envelope detection result for applying a 128-point 

window (see Eq. (5.2)) in the frequency domain. Obvious distortions can be clearly 

witnessed in the beginning and end of the calculated envelope signal, which is called the 

end effect. This problem appears in a digital filtering or discrete Fourier transform due 

to an incomplete data periodicity when the waveform has not completed a full cycle 

within its period of the analysis [193]. With the increase of FFT size, the influence of 

this effect can be reduced. However, the size of FFT calculation on an MCU is limited 

as aforementioned. 

  

Figure 8.12 Envelope detection results for a 128-point signal in the frequency domain 
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According to the convolution theorem [178], multiplying the window function in the 

frequency domain equals to circular convolving the time domain signal with the inverse 

FFT of the window function. The impulse response of the 128-point window function is 

shown in Figure 8.13 by presenting its real and imaginary part separately. The real part 

of the impulse response has a single value of 1 in the middle with the other values being 

zero, thus, it results in itself after passing through the filter. The imaginary part of the 

impulse response is the actual HT kernel, which produces the HT of the input signal. As 

can be seen in Figure 8.13(b), the imaginary component extends its value until both 

ends, in which case it wraps around itself in the convolution and time-domain aliasing 

problem comes in [183]. 

 
Figure 8.13 The impulse response of the 128-point window function: (a) real part and (b) imaginary part 

with partially magnified as an inset 

8.2.3 Time domain implementation 

The overlap processing method proposed in Chapter 6 is one effective method to solve 

the aliasing problem and another method is to design a Hilbert transformer with finite 

length while it still approaches the ideal HT transfer function. The designed HT 

transformer can be either FIR or IIR type and the FIR type filter is preferred due to its 

linear phase response performance. 

HT introduces a 90-degree phase shift to all sinusoidal components. In the discrete-time 

periodic-frequency domain, the transfer function of HT is specified as follows: 

ሾ݆߱ሿܪ  ൌ ൜
െ݆, 0 ൏ ߱ ൏ ߨ
݆,						 െ ߨ ൏ ߱ ൏ 0  (8.6) 
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Thus, the impulse response of the transfer function can be calculated through inverse 

Fourier transform: 

 ݄ሾ݊ሿ ൌ
1
ߨ2

න ሺ݆߱ሻ݁௝ఠ௡݀߱ܪ
గ

ିగ
ൌ ൝

ሻ݊ߨଶሺ	݊݅ݏ2
݊ߨ

, ݊ ് 0

0,																												݊ ൌ 0
 (8.7) 

It can be seen that the impulse response is with infinite length, which is the cause of the 

time-domain aliasing problem. By multiplying the ideal impulse response ݄ሾ݊ሿ with a 

window function ݓሾ݊ሿ having a finite support (let’s say from ݊ ൌ െܰ	݋ݐ	ܰ), then the 

resulting function ݓሾ݊ሿ݄ሾ݊ሿ yields an approximate magnitude response ܪఠሺ݆߱ሻ that 

has a smooth transition between negative and positive frequencies as well as ripples in 

both regions. The height of the ripples can be reduced by selecting the window function 

wisely, while the transition bandwidth is inversely proportional to the window length. 

As an example, an FIR type HT transformer with 31 points is designed in Figure 

8.14(a). Suppose it is applied to process an array of data sampled at 10 kHz, the 

amplitude response is presented in Figure 8.14(b), which shows the filter produces a flat 

pass-band from 0.5 kHz to 4.5 kHz and the pass-band ripple is measured as less than 

0.05 dB. Suppose a carrier signal of 1500 Hz is modulated by a sinusoidal signal of 80 

Hz, by passing through this designed 31-tap FIR filter, its HT output, and the computed 

envelope is shown in Figure 8.15. As it shows, the obtained envelope signal is smooth 

even at both ends. 
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Figure 8.14 An FIR Hilbert transformer with 31-tap: (a) impulse response and (b) zero-phase response 
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Figure 8.15 The envelope computed using a 31-tap FIR Hilbert transformer 

Although Hilbert transformer minimises edge effects, it has some restrictions. The 

performance of a Hilbert transformer, including transition region and ripples in the 

passband, is affected by the filter length. With the increase of filter length, the transition 

region becomes narrower and the ripples in the passband are smaller, however, the 

computation time for applying the transformer increases as well. Thereby, a good 

balance between transformer performance and computation time is required. 

A schematic of time domain HT based envelope analysis is illustrated in Figure 8.16. It 

shows two FIR filters are required for this implementation. The pass band of the 

band-pass filter needs to be updated for different bearing tests and a wider passband of 

the Hilbert transformer is also required for accommodating various band-pass filter 

conditions. 

݌ܾݔ 	

݆	

݄݌ܾݔ 	

 

Figure 8.16 Schematic of time domain HT based envelope analysis 

In a comparison of applying a band-pass filter and Hilbert transform directly in the 

frequency domain as discussed in Section 7.3.4, the FIR based band-pass filter and 

Hilbert transformer can be more efficient in terms of computation time for short filters. 

However, it can be even more time consuming on the condition long filters are required. 
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8.2.4 FFT convolution 

When long filters are required, the time domain implementation method in Section 8.2.4 

can be time-consuming. On this occasion, this operation can be accelerated by 

implementing the FIR filter in the frequency domain, which is called FFT convolution 

(also fast convolution) based on the convolution theorem [178]. 

A diagram for FFT convolution is presented in Figure 8.17, where the input signal ݔሾ݊ሿ 

and the filter coefficient ݄ሾ݇ሿ are firstly converted to the frequency domain via N-point 

FFT operations. Then, the obtained ܺሾ݉ሿ and ܪሾ݉ሿ are multiplied and their results 

are converted back to time domain through an N-point IFFT operation. Note that FFT of 

the FIR filter only need to be computed once in advance and stored in the memory to 

save computation time. 

 

Figure 8.17 Schematic of fast convolution process [178] 

The computational complexity of FFT convolution is approximate ܱሺ݈ܰ݃݋ଶܰሻ instead 

of ܱሺܰଶሻ in direct FIR filter [195]. Clearly, very small FIR filters are more efficient 

while fast convolution will win as the FIR filters get longer. A typical efficiency 

crossover point is at 25–30 filter coefficients, depending on the CPU structure and FFT 

efficiency, etc. [195] 

A benchmark for the MCU employed in this thesis is presented in Figure 8.18, which 

shows the average time consumption for one effective data point by the FIR and FFT 

convolution methods by only taking the valid output data number into consideration, 

illustrating that the crossover point is at around 60. Furthermore, it can observe that the 

time consumption for the FIR filter method increases faster than the FFT convolution 

method, which confirms their computational complexity discussed above. 
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Figure 8.18 Average time consumption for one effective data point by FIR and FFT convolution 

A schematic for the FFT convolution HT based envelope analysis is presented in Figure 

8.19. Its only difference with frequency domain HT envelope analysis in Figure 8.11 is 

the HT window applied. For the FFT convolution based method, the HT window can 

more effectively minimise the aliasing problem in the obtained ݔ௔ . Similarly, the 

band-pass window can also cause aliasing problem and a similar window function can 

be produced from band-pass FIR filter coefficients. 

 

Figure 8.19 Schematic of FFT convolution HT based envelope analysis 

Note that the implementation of FFT convolution is restricted by memory size on the 

processor. For the MCU employed in this thesis, the maximum size for FFT calculation 

is restricted to 2048 point as discussed in Section 5.2.2. In this way, the input sequence 

 ሺ݊ሻ can be partitioned into multiple frames, which are then processed individually. Ofݔ

note, part of the results yielded have time-domain aliasing errors due to the circular 

convolution in the FFT computation, which can be minimised by using two techniques: 

overlap-save or overlap-add method [178], [195]. 

50 100 150 200 250

2

4

6

8

10

12

FIR filter length (Points)

C
om

pu
ta

tio
n 

tim
e(

us
)

 

 

FIR

FFT convolution



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  187 

8.3 Spectral convolution and spectral correlation 

Recall the implementation of HT in the frequency domain for envelope analysis in 

Figure 8.11. It can be observed that two forward FFT and one inverse FFT are involved 

during the implementation. Recall the convolution theorem that the production in one 

domain equals to the convolution in the other domain, it reminds us of one question: is 

it possible to calculate the envelope spectrum using one single FFT without the inverse 

FFT and the second forward FFT? If this can be achieved, the computation time can be 

significantly reduced since the FFT and IFFT operation is rather expensive in terms of 

computation time. 

8.3.1 Spectral correlation for squared envelope spectrum 

In Figure 8.11, the analytic signal ݔ௔  is obtained after the IFFT operation. By 

calculating the amplitude of the analytic signal ݔ௔, the envelope of the input signal ݔ 

can be obtained. Here, the amplitude is computed by the square root of the product of 

∗௔ݔ ௔ with its conjugateݔ  in the time domain. In the frequency domain, as shown in 

Figure 8.20, the product between ݔ௔ and ݔ௔∗  is equivalent to the convolution of ܺ௔ 

and ܩ௔, where ܺ௔ and ܩ௔ are the FFT of ݔ௔ and ݔ௔∗ , respectively; • is the inner 

product operator and ∗ is convolution operator. The result of convolution of ܺ௔ and 

௘௡௩ଶݔ ௔ produces ܺ௘௡௩௦, which is the FFT of squared envelopeܩ . In [49], the authors 

show that analysing the squared envelope can improve the SNR ratio when SNR is 

greater than unity.  

ܽݔ 				 • ∗ܽݔ				  

ܺܽ 			∗ ܽܩ				  

ݒ݊݁ݔ 2ݒ݊݁ݔ 						√   

ݏݒ݊݁ܺ ݒ݊݁ܺ   
 

Figure 8.20 The amplitude calculation of analytic signal ݔ௔ in time domain and frequency domain 

For ܺ௔  and 	ܩ௔ , they only contain either the positive or negative frequency 

components. According to the definition of ܺ௔ሺ݂ሻ in Eq. (8.5), the Fourier transform 

of ݔ௔∗ሺ݂ሻ can be expressed as: 
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௔ሺ݂ሻܩ ൌ ሺെ݂ሻܺ∗ሺ݂ሻݑ2 ൌ ܺ௔∗ሺെ݂ሻ (8.8) 

This shows that the Fourier transform ܩ௔ሺ݂ሻ of ݔ௔∗ሺݐሻ can be easily obtained from the 

spectrum of ܺሺ݂ሻ. Thereafter, a convolution operation between ܩ௔ሺ݂ሻ and ܺ௔ሺ݂ሻ 

gives the spectrum of the envelope directly instead of using one additional forward FFT 

and inverse FFT in Figure 8.11. We can look at this operation in more detail. Recall the 

definition of cross-correlation and convolution: 

݂ሾ݊ሿ ⊗ ݃ሾ݊ሿ ≝ ෍ ݂∗ሾ݉ሿ݃ሾ݉ െ ݊ሿ
ஶ

௠ୀିஶ

ൌ ෍ ݂∗ሾ݉ െ ݊ሿ݃ሾ݉ሿ
ஶ

௠ୀିஶ

 (8.9) 

݂ሾ݊ሿ ∗ ݃ሾ݊ሿ ≝ ෍ ݂ሾ݉ሿ݃ሾ݊ െ ݉ሿ
ஶ

௠ୀିஶ

ൌ ෍ ݂ሾ݊ െ݉ሿ݃ሾ݉ሿ

ஶ

௠ୀିஶ

 (8.10) 

where ⊗ and ∗ are cross-correlation operator and convolution operator, respectively. 

Suppose ݏሾ݊ሿ ൌ ݂∗ሾെ݊ሿ, the convolution between ݏሾ݊ሿ and ݃ሾ݊ሿ can be expressed 

as: 

ሾ݊ሿݏ ∗ ݃ሾ݊ሿ ൌ ෍ ሾ݊ݏ െ݉ሿ݃ሾ݉ሿ
ஶ

௠ୀିஶ

ൌ ෍ ݂∗ሾ݉ െ ݊ሿ݃ሾ݉ሿ
ஶ

௠ୀିஶ

ൌ ݂ሾ݊ሿ ⊗ ݃ሾ݊ሿ 

(8.11) 

Thereby, the convolution between ܩ௔ሾ݊ሿ and ܺ௔ሾ݊ሿ become: 

௔ሾ݊ሿܩ ∗ ܺ௔ሾ݊ሿ ൌ ܺ௔∗ሾെ݊ሿ ∗ ܺ௔ሾ݊ሿ

ൌ ܺ௔ሾ݊ሿ ⊗	ܺ௔ሾ݊ሿ 
(8.12) 

This result is useful, which means the squared envelope spectrum can be simply 

computed from the cross-correlation of ܺ௔  with itself, i.e. the correlation of ܺ௔ . 

Thereafter, the convolution and correlation operation on the spectrum of the analytic 

signal are equivalent, as shown in Figure 8.21. In comparison, the conjugate operation 

in correlation is more straightforward to understand than the folding operation in 

convolution. Usually, the correlation is used to represent similarity of a signal to a 

delayed version of itself. Here, the correlation of ܺ௔ can be interpreted as finding the 

difference frequency components in ܺ௔. 
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Figure 8.21 Illustration of convolution and correlation operation of the spectrum of the analytic signal 

On this basis, the diagram in Figure 8.11 can be simplified as Figure 8.22, which 

obtains the spectrum of the squared envelope instead of the spectrum of the envelope in 

Figure 8.11. As usually only a partial band in the spectrum of an analytic signal is 

selected for correlation, the selected band can be shifted to the low-frequency band and 

perform correlation with a lower sampling frequency [49]. Thereafter, the correlation of 

ܺ௔ can be updated as: 

ܺ௔ሾ݊ሿ ⊗ ܺ௔ሾ݊ሿ ൌ ෍ ܺ௔∗ሾ݉ሿܺ௔ሾ݉ െ ݊ሿ
ே

௠ୀ଴

ൌ ෍ ܺ௔∗ሾ݉ሿܺ௔ሾ݉ െ ݊ሿ

௡௙ு

௠ୀ௡௙௅

 

(8.13) 

where ݂݊ܮ and ݂݊ܪ is the index for low and high cut-off frequency in the band-pass 

filter, respectively. 

ݏݒ݊݁ܺ  

 

Figure 8.22 Schematic of spectral correlation based envelope analysis 

Furthermore, for bearing fault diagnosis, only a small portion of the envelope spectrum 

is of interest, hence there does not need a through computation of correlation. The data 

points effective for squared envelope spectrum analysis ( ௘ܰ௡௩௦) can be calculated as: 

௘ܰ௡௩௦ ൌ ܰ ௘݂௠ ⁄௦ܨ  (8.14) 

where ܰ is the FFT size, ௘݂௠ is the interested maximum envelope frequency and ܨ௦ 

is the sampling frequency. 
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These indicate the method in Figure 8.22 can be very efficient in terms of computation 

time. To demonstrate the spectral correlation based method, the modulation signal in 

Figure 8.3 is also processed by this method. Below are the processing steps: 

1) Perform a 2048-points FFT on the modulation signal. 

2) Extract the frequency components from 1000 Hz to 2000 Hz (index from 64 to 

129) and double its amplitude to get the analytic spectrum. 

3) Perform a correlation operation on the obtained analytic spectrum to obtain the 

squared envelope spectrum. 

The calculated squared envelope spectrum through spectral correlation is shown in 

Figure 8.23. This highlights that the results are a good match with the convolution for 

the full analytic spectrum, verifying the equality of spectral correlation and spectral 

convolution on the analytic spectrum. 

 

Figure 8.23 Comparison between spectral convolution and spectral correlation: (a) amplitude and (b) phase  

Moreover, the envelope signal is obtained by performing an inverse FFT and a 

following square root operation on the spectrum of spectral correlation, which is 

presented in Figure 8.24 in comparison with the raw modulation signal. It shows the 

computed envelope from spectral correlation has a good match with the upper outline of 

the modulation signal. 
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Figure 8.24 Raw modulation signal and envelope obtained from spectral correlation 

8.3.2 Squared rectifier in the frequency domain 

Since the inner production of an analytic signal with its conjugate is equivalent to the 

spectral correlation of the analytic signal, another question is presented: how to 

understand the inner production of a real-valued signal, i.e. square operation, in the 

frequency domain? 

According to convolution theorem, a square process in the time domain is equivalent to 

the spectrum being convolved with itself in the frequency domain. For the spectrum 

	ܺሾ݊ሿ of a real-valued signal ݔ, it has the property of conjugate symmetric [178], i.e. 

ܺሾ݊ሿ ൌ ܺ∗ሾെ݊ሿ , thereby, the convolution of ܺሾ݊ሿ  with itself is equivalent to its 

correlation: 

ܺሾ݊ሿ ∗ ܺሾ݊ሿ ൌ ܺሾ݊ሿ ⊗ ܺሾ݊ሿ (8.15) 

The convolution of a full baseband signal is presented in Figure 8.25(a) using an 

equivalent correlation. It can be seen that aliasing is brought in and the envelope 

spectrum includes both sum and difference frequency components. Note that, the 

correlation is actually a circular one due to the circular convolution in Fourier transform 

and the first aliasing area in Figure 8.25(a) is caused by this phenomenon. Furthermore, 

it can be observed that difference frequency components come from the correlation of 

positive or negative frequency components while sum frequency components are 

contributed by the cross-correlation between positive and negative ones. 

On the occasion when a signal is band-pass filtered (band-pass filtered squared 

rectifier), as shown in Figure 8.25(b), the aliasing problem can be effectively avoided. It 

has been proved that through proper zero-padding on both lower and the upper side of 
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the passband in the frequency domain, the band-pass squared rectifier can achieve the 

same results as Hilbert transform [49]. In practice, there is no need to transform signals 

to the frequency domain, zero-pad the spectrum and then perform correlation, as this 

operation will have the same result apart from there being more computation 

requirement than frequency domain HT. 

 

Figure 8.25 Equivalent spectral correlation of time domain squared operation: 

(a) full baseband signal and (b) band-pass filter signal 

For a band-pass filtered signal, its square operation in the time domain can avoid the 

aliasing problem on the condition that its spectrum is already zero-padded as discussed 

above, i.e. its lower pass band ௅݂ and upper pass band ு݂ can satisfy the following 

criteria: 

୐݂ ൒ ሺ ୌ݂ െ ୐݂ሻ/2 
(8.16) 

௦/2ܨ െ ு݂ ൒ ሺ ୌ݂ െ ୐݂ሻ/2 

where ܨ௦ is the sampling frequency. Recall the squared rectifier in Section 8.1, the 

spectrum of the simulated signal only occupies a limited band, which can satisfy Eq. 

(8.16). Thus, its sum and difference frequency components are well separated in the 

spectrum of the squared signal. 

In bearing fault diagnosis, only low-frequency components in the envelope spectrum are 

of interest as discussed in Section 5.3. This indicates aliasing in the high-frequency 

range of a squared signal is acceptable as they are ineffective for bearing fault diagnosis 

and can be easily eliminated with a high-pass filter. 

Supposing the maximum interested frequency component in the envelope spectrum is 

௘݂௠, the band-pass filter restriction in Eq. (8.16) becomes: 
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୐݂ ൒ ௘݂௠/2 
(8.17) 

௦/2ܨ െ ு݂ ൒ ௘݂௠/2 

As for a bearing vibration with the sampling frequency at 32 kHz, discussed in this 

thesis, the frequency range of interest for an envelope spectrum is well within 500 Hz. 

According to Eq. (8.16), a band-pass filter whose pass band falls inside the range 

between 250 Hz and 15,750 Hz can easily avoid aliasing problem within the interested 

envelope spectrum.  

Thereby, a flow chart can be designed as Figure 8.26 for implementing band-pass 

squared rectifier based envelope analysis. 

݌ܾݔ 	

 
Figure 8.26 Schematic of band-pass squared rectifier based envelope analysis 

8.4 Comparison and benchmark 

In the previous three sections, different envelope detection methods are studied and 

discussed. These methods have their own advantages, disadvantages and also there are 

some connections between some of them. It has shown the band-pass squared rectifier is 

equivalent to the Hilbert transform in some conditions and the short-time RMS can be 

considered as a simplified squared rectifier. In this section, these methods will be 

compared by dividing them into two categories: time domain and frequency domain. 

8.4.1 Time domain methods comparison 

The time domain envelope analysis methods include a band-pass squared rectifier, 

short-time RMS, and time domain HT, as illustrated in Figure 8.27. For these methods, 

a raw vibration signal firstly passes through a band-pass filter to select a demodulation 

band that has high SNR; then envelope signal is computed, which mainly differentiates 

these methods, and finally the envelope spectrum is obtained with a forward FFT and an 

amplitude computation. Note that the high-pass filter of short-time RMS method in 

Figure 8.8 is changed to a band-pass filter, which can provide better SNR. Similar to the 

short-time method, a down-sampling process can be added in the band-pass squared 

rectifier and timed domain HT to speed up the FFT calculation. 



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  194 

The main difference for these three methods lies in the envelope detection part. Time 

domain HT is the most accurate envelope detection method and also the most expensive 

one in terms of computation time. The band-pass squared rectifier can achieve very 

much similar results with time domain HT through a proper selection of band-pass filter 

and low-pass filter as discussed in Section 8.3.2. The short-time RMS can be considered 

as a simplified band-pass squared rectifier with faster speed. 

݌ܾݔ 	

݆	

݄݌ܾݔ 	

݌ܾݔ 	

݌ܾݔ 	

 

Figure 8.27 Comparison of time domain envelope analysis methods 

To evaluate the performance of these three methods, they are employed to process the 

same vibration signal from bearing with inner race fault. The sampling rate of the signal 

is at 10 kHz and 2048-points of data are processed. The raw vibration signal and its 

spectrum are shown in Figure 8.28(a). An 81-tap FIR filter with a pass band from 250 

Hz to 4750 Hz is utilised to filter the raw signal. The filtered signal and its spectrum are 

presented in Figure 8.28, which shows the high amplitude low-frequency components in 

the raw spectrum are filtered out. 

To illustrate the interference of low and high-frequency components on the envelope 

spectrum, the squared rectifier is performed on both the raw signal (full band) and 

band-pass rectifier and the computed envelope and spectrum are compared in Figure 

8.29. Obvious aliasing components can be clearly observed in the envelope spectrum of 

the raw signal, which has buried the inner race fault frequency and its harmonics, 

making it not reliable for fault diagnosis. Meanwhile, in the spectrum of the band-pass 

filtered one, the first three harmonics of inner race fault can be clearly observed, which 

validates the existence of inner race fault. This shows the effectiveness of the band-pass 

filter for minimising aliasing problems. 
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Figure 8.28 A vibration from bearing with inner race fault in both time and frequency domain: 

(a) raw signal (b) band-pass filtered signal 

  

Figure 8.29 Comparison of squared rectifier on raw signal (full band) and band-pass filtered signal: 

(a) envelope and (b) envelope spectrum 

Furthermore, the band-pass filtered signal is also processed by the short-time RMS and 

time domain HT methods. A 63-tap Hilbert transformer with a transition zone of 500 Hz 

is applied in the time domain HT method. The processed results of these three methods 

are compared in Figure 8.30, including both envelope and its corresponding spectrum. 

The first three harmonics of the inner fault can be clearly observed in all three methods. 
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It can be observed that the amplitude for band-pass squared rectifier and time domain 

HT are very close, which further verifies the effectiveness of minimising aliasing for 

band-pass squared rectifier just as the time domain HT one. Also, it shows the 

amplitude of the harmonics for short-time RMS method is lower than those from the 

other two methods, which can be explained by the strong filtering effect of the 

overlapped average in the short-time RMS. 

In terms of computation speed, their difference mainly lies in the envelope detection 

part as illustrated in Figure 8.31, which is measured on the condition of MCU running at 

80 MHz. It shows short-time RMS method is the fastest, followed by band-pass squared 

rectifier and time domain HT is the most time consuming. Note that the low-pass filter 

and down-sampling process in band-pass squared rectifier are simplified as an N-tap 

average operation in short-time RMS. Hence, short-time RMS requires much less 

computation time than the corresponding operation in the band-pass squared rectifier. 

  

Figure 8.30 Calculated envelope and its spectrum by time domain methods: 

(a) band-pass squared rectifier (b) short-time RMS and (c) time domain HT 
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Figure 8.31 Time consumption for three time-domain methods with frame size of 2048 points 

In this section, it has shown that a band-pass squared rectifier can well minimise the 

aliasing influence similar as the time domain HT. In practice, a high-pass filter can be 

used instead of a band-pass filter in band-pass squared rectifier as the high-frequency 

components that might cause aliasing problems have usually been attenuated before fed 

into ADC for satisfying Nyquist sampling theorem. 

8.4.2 Frequency domain methods comparison 

The frequency domain envelope analysis methods include frequency domain HT, FFT 

convolution HT, and spectral correlation, as illustrated in Figure 8.32. For these 

methods, a forward FFT operation is firstly conducted on the raw vibration signal and 

both band-pass selection and Hilbert transform are realised in the frequency domain. It 

can be seen that the frequency domain HT and FFT convolution HT are very similar and 

their only difference is the applied HT window. As for the envelope spectrum 

calculation, the spectral correlation obtains the squared envelope spectrum directly in 

the frequency domain while the other two methods convert spectrum back to time 

domain for envelope spectrum calculation. 
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ݏݒ݊݁ܺ  

 

Figure 8.32 Comparison of frequency domain envelope analysis methods 

To compare their performance, the three frequency domain methods are employed to 

process the same vibration signal in Section 8.4.1. The same Hilbert transformer in time 

domain HT method is used in the FFT convolution HT and its response is compared 

with the ideal HT response in Figure 8.33. It can be observed that the ideal HT has a 

sharper transition zone than that of the Hilbert transformer. 

 

Figure 8.33 Amplitude response comparison between an ideal HT and an FIR Hilbert transformer 

(63-tap and 1 kHz transition band) 

The computed envelope and corresponding spectrum for these methods are presented in 

Figure 8.34. Note that results for spectral correlation in Figure 8.34(c), the squared 

envelope is obtained through an inverse FFT on the squared envelope spectrum. It can 

be seen that the first three harmonics of the inner fault can be clearly observed in all 

three methods. The spectrum from frequency domain HT and FFT convolution HT are 

similar and also very close to the spectrum from time domain HT in Figure 8.30(c). This 

shows the conformity for time domain and frequency domain implementation. In 

comparison, the amplitude from squared envelope spectrum in Figure 8.34(c) is higher 
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than that in Figure 8.34(a) and Figure 8.34(b) but the peakness of their three harmonics 

are very similar. Furthermore, the shape of the squared envelope signal from spectral 

correlation is very similar to the envelope in frequency domain HT and FFT 

convolution HT, which again verifies the correctness for spectral correlation. 

For their computation speed, frequency domain HT and FFT convolution HT are 

expected to be very similar, as shown in Figure 8.35, which shows their time 

consumption for processing a frame of data with 2048 points when the MCU running at 

80 MHz. Their main difference lies in applying the HT window. Applying the HT 

window in FFT convolution HT is a bit more time consuming as it involves complex 

type multiplication while in frequency domain HT, this can be easily implemented by 

filling zeros and scaling operations. Note that the FFT convolution HT needs a very 

large buffer to store the FFT of the Hilbert transformer. Furthermore, it can be noticed 

that the computation time for frequency domain HT and FFT convolution HT is less 

than the time domain HT in Figure 8.31. This shows better computation performance in 

the frequency domain over time domain when longer filter length is required. 

  

Figure 8.34 Calculated envelope and its spectrum by frequency domain methods: (a) frequency domain HT, 

(b) FFT convolution HT and (c) squared envelope and its spectrum by spectral correlation 
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Figure 8.35 Computation time comparison between frequency domain HT and FFT convolution HT 

for a frame of data with 2048 points 

For computation speed of spectral correlation, it is affected by the data points involved 

with spectral correlation, i.e. data length from ݂݊ܪ to ݂݊ܮ in Eq. (8.13), and data 

points useful for squared envelope spectrum analysis ௘ܰ௡௩௦ in Eq. (8.14). This means 

the pass band width, FFT size and sampling frequency have an influence on the 

computation time of spectral correlation. The computation time for spectral correlation 

for various bandwidths, FFT size with sampling frequency at 10 kHz and 32 kHz are 

presented in Figure 8.36. It can be seen that the computation time increases with FFT 

size and pass band width. This can be explained by that larger FFT size and wider pass 

band allow more data points involved for spectral correlation than shorter FFT size and 

narrower pass band do. For the same pass band width and FFT size, the computation for 

sampling frequency at 10 kHz is much higher than that for 32 kHz, which is due to 

more data points being involved for lower sampling frequency condition. 

In comparison with frequency domain HT and FFT convolution HT, the computation 

time of spectral correlation is more in some conditions but can be very efficient on the 

condition of a narrow pass bandwidth. Recall the band-pass filter selection results in 

Section 7.4, the optimum band-pass filter usually has a bandwidth of only 1 kHz or 2.67 

kHz. This is due to that the fault information is modulated on the resonances of bearing 

structure. According to Figure 8.36(b), their computation time are less than 10 ms for 

2048-point FFT with the sampling frequency at 32 kHz, which is much less than the 

computation time of frequency domain HT and FFT convolution HT in Figure 8.35. 
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Figure 8.36 Computation time of spectral correlation for different FFT size 

with fixed pass band of 1 kHz: (a) sampling frequency at 10 kHz and (b) sampling frequency at 32 kHz 

8.5 Implementation of short-Time RMS and spectral correlation for 

high spectrum resolution 
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domain and it can clearly reveal the simulated faults although higher harmonics in 
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spectrum with high resolution. 
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The data processing diagram for cascaded short-time RMS is presented in Figure 8.37, 

in which the collected data are processed frame by frame with the size of 512 points. 

The data is firstly filtered by an 81-tap FIR type band-pass filter. Note that the 

coefficients for the band-pass filter in Figure 8.37 can be updated from the host 

computer in the configuration mode introduced in Section 7.3.2. Then, the short-time 

RMS of the filtered signal is computed and stored in a buffer. Note that for the first 

frame of data, 13 effective feature data are produced due to the first 40 data of the FIR 

filter being invalid and thus the short RMS calculation actually starts from the third 

step. 

From the second frame until the second last frame, last 32 points from the previous 

frame are concatenated in front of the current frame of data for the short-time RMS 

calculation and hence they produce 16 points of effective feature data. For the last 

frame, only 3 points of feature data are required for filling the 2048-point buffer. After 

the 2048-point buffer is full, the spectrum of short-time RMS features is computed by 

FFT calculations. 

 

Figure 8.37 Diagram for cascaded short-time RMS 

8.5.2 Verification of short-time RMS implementation 

To verify the implementation of cascaded short-time RMS, a modulating signal is 

processed by both MCU and Matlab and their results are compared in Figure 8.38. It 

shows a good match between the MCU result and the Matlab result, which hence 

verifies the short-time RMS implementation on the MCU. 
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Figure 8.38 Comparison of short-time RMS processing results by Matlab and MCU 

To check the real-time performance of short-time RMS method, the frame data ready 

event (DMA interrupt event) and time for frame data processing (frame processing 

event) are measured with two GPIO outputs and shown in Figure 6.6, similar to the 

method in Section 6.2.2. It can be observed that the real-time requirement can be 

satisfied more than sufficient and the CPU usage time for one frame is about 2.2 ms, 

which is reduced by approximately three times than that in Section 7.3, which ranges 

from 8 ms to 10 ms. This allows the CPU to run at only 11.11 MHz, in which case, the 

processing time for one frame is about 15.84 ms and the real-time performance can still 

be satisfied. 

 
Figure 8.39 DMA interrupt and frame processing event measured through GPIO for short-time RMS 
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8.5.3 Implementation of cascaded spectral correlation 

As discussed in Section 8.4.2, the spectral correlation can achieve similar diagnosis 

results as the other two frequency domain methods but can be much faster for 

processing vibration signal from bearing. Thereby, it is employed for cascaded 

processing to obtain an envelope spectrum with high resolution. 

To achieve cascaded processing, the envelope signal is obtained from the square 

envelope spectrum. As shown in Figure 8.40, the envelope signal is acquired by 

performing an IFFT operation on the squared spectrum ܺ௘௡௩௦ and a following square 

root operation. Note that the IFFT computation has much less points than that in FFT 

calculation, which indicates the appended IFFT and square root operation consume very 

little time. 

ݏݒ݊݁ܺ 2ݒ݊݁ݔ   

 

Figure 8.40 Schematic of spectral correlation based envelope detection 

Similar as the cascaded frequency domain HT in Figure 7.8, the cascaded processing for 

spectral correlation processed frame with a size of 1024 points and overlap ratio of 

50%, as shown in Figure 7.8. For each frame, a 1024-point forward FFT is firstly 

performed and then the frequency components in the pass-band are extracted and 

amplitude doubled to obtain the analytic spectrum. Then, a correlation is performed to 

obtain the squared envelope spectrum. Note that, with sampling rate at 32 kHz, there 

only need to be 16 points of squared envelope spectrum data to cover the 500 Hz 

envelope frequency range. 

Then, a 32-point reverse RFFT operation is performed to get the squared envelope and 

only the middle 16 points of data are kept as a valid squared envelope for scale and 

square root operation to obtain the envelope signal. 
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Figure 8.41 Diagram for cascaded spectral correlation 

8.5.4 Verification of spectral correlation implementation 

To verify the implementation of spectral correlation and the consecutiveness of the 

cascaded envelope, a modulating signal is processed on the MCU and the detected 

envelope from first three frames are extracted and illustrated in Figure 8.42. The 

cascading procedure from successive overlapped frames is visualised in the figure. It 

can be observed that the obtained envelope has a good match with the upper outline of 

the modulating signal in Figure 8.42(d). Furthermore, small distortions can be seen on 

the edge of the obtained envelope in Figure 8.42(b) and (c). These parts are not 

employed for cascaded processing. 

Similar to the verification with short-time RMS in the last section, the frame data ready 

event (DMA interrupt event) and time for frame data processing (frame processing 

event) are measured and presented in Figure 8.43. It shows the CPU usage time for one 

frame is about 3.12 ms, which is just slightly more than that in short-time RMS and two 

times reduction in comparison with that in Section 7.3. This allows the CPU running 

speed to only 16 MHz, in which case the processing time for one frame is 

approximately 15.6 ms. Note that it is easier to update the band-pass window in spectral 

correlation than to update the band-pass filter coefficients in short-time RMS. 
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Figure 8.42 Illustration of cascaded spectral correlation for envelope calculation: 

(a) first frame result, (b) second frame result, (c) third frame result and (d) cascaded envelope 

 

Figure 8.43 DMA interrupt and frame processing event measured through GPIO  

for spectral correlation 

8.5.5 Results and discussion 

To demonstrate the effectiveness of the implemented cascaded short-time RMS and 

spectral correlation, the same three types of vibration signals described in Chapter 7 are 

used for processing. The processing results from frequency domain HT, short-time 

RMS, and spectral correlation is then compared in Figure 8.44, Figure 8.45 and Figure 
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types of signals, that’s 8 kHz to 10.667 kHz for outer race fault signal, 2.667 kHz to 

5.333 kHz for inner race fault signal and 4 kHz to 5 kHz for roller fault signal. 

It can be observed that the three faults can be clearly identified in the envelope spectrum 

of all three algorithms. In comparison, it is not easy to observe the higher harmonics in 

the envelope spectrum of short-time RMS in Figure 8.44(c), Figure 8.45(c) and Figure 

8.46(c). This can be explained in the high attenuation effect of the overlapped average 

process in short-time RMS. For frequency domain HT and spectral correlation, they can 

reveal the same count of harmonics for all three faults and the amplitudes of the 

corresponding harmonics are very similar. However, more noise can be observed in the 

low-frequency range of spectral correlation than those in frequency domain HT or 

short-time RMS. 

 

Figure 8.44 Detection results for a bearing vibration signal with outer race fault: (a) raw signal, (b) envelope 

spectrum from frequency domain HT, (c) envelope spectrum from short-time RMS and (d) envelope 

spectrum from spectral correlation 
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Figure 8.45 Detection results for a bearing vibration signal with inner race fault: (a) raw signal, (b) envelope 

spectrum from frequency domain HT, (c) envelope spectrum from short-time RMS and (d) envelope 

spectrum from spectral correlation 

 

Figure 8.46 Detection results for a bearing vibration signal with roller fault: (a) raw signal, (b) envelope 

spectrum from frequency domain HT, (c) envelope spectrum from short-time RMS and (d) envelope 

spectrum from spectral correlation 
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8.6 Summary 

In this chapter, several envelope detection methods are explored, including the simple 

rectifier, short-time statistical characteristics, and the Hilbert transform implementation 

both in the time domain and frequency domain. From the analysis and discussion, it is 

found faster implementation can be achieved both in time domain and frequency 

domain. This allows the CPU usage to be decreased by about three times for time 

domain method and two times for frequency domain method in comparison with the 

implementation in Chapter 7. Furthermore, the analysis results on the vibration signals 

also show that the proposed methods have good accuracy for bearing fault diagnosis. 
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CHAPTER 9  

CONCLUSIONS AND FUTURE RESEARCH PLAN 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	  

 

 

 

 

In this chapter, the research objectives are reviewed and the corresponding achievements 

are summarised in detail. On this basis, the conclusions for the entire thesis are drawn 

and a summary of the contributions of this research is listed. Finally, several suggestions 

are given for future work. 

 

 

 

 

  



OPTIMISATION OF VIBRATION MONITORING NODES IN WIRELESS SENSOR NETWORKS 

     DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  211 

9.1 Review of research objectives and achievements 

This research aims to develop a wireless vibration CM node which allows an optimal 

implementation of advanced signal processing algorithms. The main achievements of 

this work are presented below in the same order as they appear in Section 1.5. 

Objective one: Review popular wireless techniques and compare their advantages and 

disadvantages for being applied for industrial CM applications. Investigate research 

works performed and current industrial solutions for wireless condition monitoring. On 

this basis, select one wireless protocol to prototype a wireless CM system for 

evaluation. 

Achievement one: The popular wireless protocols are investigated and compared in 

Section 2.2. It shows WirelessHART and ISA100.11a can be employed for industrial 

applications requiring low time latency and high data delivery reliability, whereas CM 

applications normally do not need such high performance. The protocols such as 

ZigBee, BLE, WiFi HaLow and Thread are suitable candidates for wireless CM.  

The research work and products for industrial condition monitoring are investigated in 

Section 2.2, which shows the distributed computation by embedding intelligent data 

processing on wireless sensor nodes are getting popular in the wireless CM area. This 

can not only solve the bandwidth limitations but also brings the benefit of lowering the 

power consumption of sensor nodes. 

In addition, the popular wireless sensor platforms are investigated which shows the 

Cortex-M series processor are becoming popular among the WSN solutions. Based on 

the investigation, an integrated wireless module specially for handling wireless network 

task is selected for establishing the wireless network. 

Objective two: Prototype a wireless CM system with a focus on the design of the 

vibration based wireless sensor node for implementing and evaluating signal processing 

algorithms that are commonly used in condition monitoring field. Consideration of its 

power consumption should be made in order to maintain a service span as long as 

possible when it is powered by batteries. 

Achievement two: A wireless CM system structure is proposed in Section 3.1, based on 

the Zigbee wireless technique. It composes a number of vibration sensor nodes for data 
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collection and embedded processing to extract fault feature and one sink node for 

organising the wireless network and relaying data packets between sensor nodes and the 

host computer. 

In Section 3.2, the main baseboard is introduced. A state-of-the-art Cortex-M4F 

processor is selected as the core processor for the wireless sensor node instead of the 

traditional DSP processors. The reason is that the fast development in Cortex-M based 

processor and their integration of DSP and FPU unit has made an additional DSP 

processor redundant and hence reduced the system cost. A LaunchPad board with 

Cortex-M4F processor is employed as the main baseboard due to its powerful 

performance and easily extensible structure. 

In Section 3.3, the vibration conditioning circuit is designed, including a charge 

amplifier, low-pass filter and voltage amplifier. For low power considerations, low 

power operational amplifiers are employed for building the circuit and load switches are 

added to power off some circuits when they are not in use. In addition, an external ADC 

with 16-bit resolution and a MicroSD card are also integrated for future upgrading 

considerations. 

In Section 3.4, an integrated wireless module is employed for establishing the wireless 

network. The XBee module is selected due to its well-recognised effectiveness, 

compatibility, and reliability. The configurations for the XBee modules are detailed in 

Section 3.4.3. For the power management on the wireless sensor node, a commercially 

available battery booster pack is employed in Section 3.5. The information like 

temperature, charging state, capacity can be accessed by the main baseboard through a 

simulated I2C communication port. 

Objective three: Study the fault generation mechanism and fault features of rolling 

element bearings and then investigate popular signal processing algorithms for their 

fault detection and diagnosis. Discuss the requirements for an algorithm to be 

implemented on processors with restricted computational capability and limited 

memory size. On this basis, select one signal processing algorithm for being embedded 

on the sensor node for bearing fault feature extraction. 

Achievement three: Through the study in Section 4.1, it is found that the existence of a 

defect on a bearing’s subcomponent (e.g. outer race, inner race, roller or cage) results in 
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the bearing to periodically vibrate at its resonance frequencies as the bearing rotates at a 

steady speed. The frequency of this periodical vibrating response is component specific 

and can be used as evidence for fault existence on corresponding components. This is a 

typical impulsive and modulating vibration signature, which can also be found in other 

common rotating components, such as gears, valves, and turbines. 

Various signal processing algorithms are then explored for analysing vibration signals 

from rolling element bearings, including time domain, frequency domain and 

time-frequency domain methods in Section 0, 4.3, 4.4, respectively. The time domain 

methods like statistical parameters and probability density function are computation 

efficient for detecting abnormal conditions in bearing but they cannot be relied on for 

diagnosing the specific fault component. TSA is helpful for de-noising but requires an 

additional synchronisation signal. The morphological filter provides an efficient way for 

envelope detection and thus can be employed as part of envelope analysis. 

The spectral analysis can visualise the vibrating frequency distribution in the spectrum 

but it is quite challenging to figure out the localised fault types. The envelope analysis 

and cepstrum extract the component fault information from the modulated vibration 

signal and can directly tell the localised fault type. In comparison, the result from 

cepstrum is noisier and more difficult to interpret than that from envelope analysis. 

The time-frequency domain analysis methods provide informative details about the 

vibration signal in both time domain and frequency domain. The methods like STFT, 

CWT and HHT are too computation complicated or memory consuming for being 

implemented on an embedded processor. In the meantime, DWT provides sufficient 

resolution for analysis and has good computation performance for being a good 

candidate for de-noising or envelope detection on an embedded processor. 

With further consideration of the efforts in implementing these algorithms, envelope 

analysis is deemed as the most appreciative one to be embedded on wireless sensor 

nodes for feature extraction. The advantages of envelope analysis are summarised 

below: 

 Capable of detecting the abnormality and localised fault components. 

 Potential to produce a small resultant feature set. 

 Suppressing interference noises from nearby components. 
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 Acceptable computation complexity and capability to well utilise the library 

functions optimised on the embedded processors. 

Objective four: Implement the selected envelope analysis algorithm on the proposed 

wireless sensor nodes for extracting the fault features of rolling bearings. Optimise and 

validate each implementation step including data acquisition, data processing, and data 

transmission. Utilise the implemented algorithm for bearing fault feature extraction and 

evaluate its performance in terms of computation speed, memory consumption and data 

reduction in comparison with the raw data transmission. 

Achievement four: In Chapter 5, by implementing Hilbert transform with an efficient 

complex FFT algorithm, an envelope analysis of 2048 points is successfully 

implemented on the proposed wireless sensor node. 

A double buffer structure combining ADC, timer, and DMA is established in Section 

5.1 for efficient data acquisition and thus reducing the interferences to the 

computation-intensive signal processing. The implementation is achieved on top of a 

real-time operating system and validated by collecting an amplitude modulated signal 

and confirming its frequency components. 

The three steps for envelope analysis, including band-pass filter, envelope detection, 

and spectrum calculation are implemented and validated in Section 5.2. An 81-tap FIR 

type filter with a passband between 1 kHz and 2 kHz is designed and validated by 

filtering a signal with several frequency components. Its preciseness is also confirmed 

with a comparison with the processing results in Matlab. The frequency domain Hilbert 

transform is utilised for envelope detection and its implementation is optimised by 

combining a real-valued forward FFT and a complex inverse FFT calculation. Its 

implementation is validated by locally processing a simulated modulating signal and 

comparing the results with that in Matlab. The spectrum is calculated with a real-valued 

forward FFT and a partial complex magnitude computation. Similarly, its 

implementation is validated by comparing the results from embedded processing and 

Matlab. Furthermore, the spectrum average is suggested for reducing noise and 

enhancing sensitivity. 

The implementation of data transmission is explained in Section 5.3. Through analysis, 

it shows only 103 data points in the calculated envelope spectrum are useful for 

transmission and further analysis. The performance of the overall implementation is 
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evaluated in Section 5.4 by processing a true vibration signal from bearing with an outer 

race fault. Experimental results show that outer race fault frequency can be clearly 

observed in the envelope spectrum, validating the existence of outer race fault, also 

correctness and effectiveness of the implemented envelope analysis on the embedded 

processor. The total time consumption for the whole processing is about 28.4 ms with 

the processor running at 80 MHz, which is less than the data collection time (204.8 ms) 

for a frame with 2048 points of data. The memory consumption is less than the 

maximum 32 kB RAM on the MCU through a large portion of memory being reused 

during calculations. A significant data reduction of more than 95% in comparison with 

the raw data set is achieved by just sending the useful results in the envelope spectrum. 

Objective five: Discuss the necessity and possibility for improving the spectrum 

resolution in the envelope spectrum. Note that this improvement should be 

accomplished on the same processor with the idea of frame data processing and 

down-sampling. Explain the implementation procedure and validate the correctness of 

the implementation. Compare the performance of the improved method on bearing fault 

feature extraction with that in the initial implementation. 

Achievement five: From the analysis in Section 6.1.1, it shows the spectrum resolution 

achieved in Chapter 5 is only about 4.88 Hz, which can very likely cause incorrect 

interpretation on fault frequencies and their harmonics. For accurate fault diagnosis, 

there is a need to increase the resolution of the envelope spectrum. 

A data processing scheme that combines down-sampling, overlap processing and 

cascading is proposed in Section 6.1.2, through which a spectrum resolution of 0.61 Hz 

can be achieved, which is eight times of that in Chapter 5. An overlap of 50% between 

successive frames is employed to avoid edge distortions and keep the consecutiveness 

of the computed envelope signal. 

In Section 6.2, the proposed data processing scheme is implemented by processing 32 

successive data frames with 512 points. Furthermore, the double buffer mechanism is 

utilised for efficient data acquisition. The processing time for one frame data is 

measured as 10.875 ms, much less than the deadline requirement of 51.2 ms, i.e. the 

time for collecting one frame of data. Then, the implemented method is validated by 

processing an amplitude modulated signal, showing correct demodulation of the 

envelope and no jumping points in the joint of successive data frames. 
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In Section 6.3, the improved method is employed for processing the same bearing fault 

signal in Chapter 5 and a much finer frequency resolution is observed in the envelope 

spectrum of the improved method, hence allowing a more accurate and reliable 

diagnosis result to be achieved. Furthermore, it shows the proposed method not only 

improves the frequency resolution by eight times on the same processor but also has no 

increment on data throughput requirement. 

Objective six: Investigate the methods for selecting an optimal band-pass filter for 

envelope analysis. On this basis, utilise one algorithm in the prototype wireless CM 

system to achieve automatic band-pass filter selection and parameters updating. Explain 

and optimise the implementation procedure. Evaluate the implemented scheme on 

different bearing fault signals to confirm its effectiveness. 

Achievement six: In Section 7.1, it is found that the traditional methods, like searching 

for peaks in the spectrum or hammer tests for finding system resonances, are not 

suitable for automated band-pass filter. The spectral kurtosis and the improved fast 

kurtogram are good candidates for optimal band-pass filter selection. Thus, their 

theories are studied in Section 7.2. On this basis, the fast kurtogram is employed for 

optimum band-pass filter selection in the proposed wireless sensor network due to its 

relatively faster computation speed than spectral kurtosis and acceptable preciseness. 

In Section 7.3, the implementation of fast kurtogram is explained. The sensor node is 

enabled to work in two modes: configuration mode and monitoring mode. In the 

configuration mode, a data set with 8192 points is collected and transmitted to the host 

computer for selecting an optimal band-pass filter through fast kurtogram. Then, the 

band-pass filter parameters are generated and sent back to the sensor node for use in the 

envelope analysis. In the monitoring mode, the sensor node collects vibration data, 

computes the envelope spectrum and just transmits the useful results back to the host 

computer. Note that the sampling rate is increased to 32 kHz to allow features being 

extracted in a wide frequency band with a frequency resolution similar to that in 

Chapter 6. Furthermore, a frequency domain band-pass filter is employed instead of the 

FIR filter in Chapter 6 to accelerate the calculation that requires real-time performance 

and also reduces the parameter size for updating in configuration mode. 

In Section 7.4, the implemented scheme is evaluated by processing three types of 

bearing fault signals, including outer race fault, inner race fault, and roller fault. The 
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experimental results show that the resonance frequency band can be correctly selected 

by the fast kurtogram method and the bearing fault types can be clearly identified from 

the calculated envelope spectrum. In addition, it shows in Section 7.4.4 that the data 

throughput requirement is very similar to that in Chapter 6 for the monitoring mode. As 

the configuration mode can be performed in data backup stage, which is unusual, it is 

not expected to cause much load in the wireless network. 

Objective seven: Investigate and compare common envelope detection methods, 

including the simple squared rectifier and the precise Hilbert transform based method. 

On this basis, find the possibility to optimise and speed up the implementation process 

of envelope detection. Implement, validate and evaluate the proposed methods for 

processing bearing fault signals. 

Achievement seven: The simple envelope detectors are investigated in Section 8.1, 

including the half-wave, full-wave and squared rectifier, peak detector and short-time 

statistical features. The half-wave and full-wave inevitably bring new frequency 

component distortions due to infinite extended harmonics while squared rectifier has 

much fewer such distortions but also requires a higher sampling rate to avoid aliasing. 

The peak detector does not bring in new frequency components while it is quite 

sensitive to noise and also requires a higher sampling frequency to obtain an accurate 

envelope. Among the various short-time statistical features, the short-time RMS is the 

best for envelope detection. In addition, the short-time RMS can be regarded as a 

simplified squared rectifier with the low-pass filter and downsample operation being 

implemented by an overlapped average. Moreover, it also shows that the short-time 

RMS is sufficiently sensitive to bearing defects. 

The Hilbert transform based envelope detection is fully explored in Section 8.2. The 

time domain Hilbert transformer can solve the aliasing problems existing in the 

frequency domain method, which can be more efficiently computed by the FFT 

convolution, especially, for the case when a long transformer is required. 

In Section 8.3.1, it is shown that the multiplication of analytic signal with its conjugate 

in the time domain is equivalent to its spectral correlation in the frequency domain. This 

indicates the squared envelope spectrum of a signal can be directly computed by the 

spectral correlation of its analytic signal, without the need for the inverse FFT and the 

second forward FFT in the frequency domain HT. The correctness of this finding is 
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verified by calculating the envelope of a modulated signal using the spectral correlation 

method. Similarly, it is shown that the square operation of a real-valued signal in the 

time domain is equivalent to its cyclic spectral correlation in the frequency domain. 

With proper zero padding in the spectrum, the square operation can obtain the same 

envelope results as that in the Hilbert transform based method. Furthermore, a squared 

rectifier with the band-pass filter of much loose restriction can obtain a precise envelope 

for bearing fault feature extraction. 

On this basis, the time domain methods, including band-pass squared rectifier, time 

domain HT and short-time RMS are compared in Section 8.4.1, which shows very 

similar performance for detecting an outer race fault while the short-time RMS method 

has the fastest computation speed. In Section 8.4.2, the frequency domain methods, 

including frequency domain HT, FFT convolution HT, and spectral correlation, are 

compared, which also shows a very similar detection result for detecting an outer race 

fault. In terms of computation speed, the FFT convolution HT consumes 2% more time 

than that the frequency domain HT while the spectral correlation has the potential to be 

faster than the other two methods. 

In Section 8.4.1, the short-time RMS and spectral correlation methods are implemented 

for achieving higher resolution in the envelope spectrum by adopting the scheme 

proposed in Chapter 6. In terms of computation time, the short-time RMS consumes 

about 2.2 ms and spectral correlation consumes about 3.12 ms, being about three times 

and two times less than that achieved in Section 7.3.4 (8 – 10 ms), respectively. 

Comparative studies show that the short-time RMS and spectral correlation can achieve 

the same accuracy as the Hilbert transform in detecting and quantifying different 

bearing faults. 

9.2 Conclusions 

Based on the investigations and evaluations described in the previous chapters, the key 

findings covered in this thesis are concluded as follows: 

Conclusion 1: The investigation on popular wireless protocols shows that 

WirelessHART and ISA100.11a can be employed for industrial applications requiring 

low time latency and high data delivery reliability, whereas CM applications normally 
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do not need such high performance. The protocols such as ZigBee, BLE, WiFi HaLow 

and Thread are suitable candidates for CM. The distributed computation by embedding 

intelligent data processing on wireless sensor nodes is getting popular in the wireless 

CM area, which can not only solve the bandwidth limitations but also bring the benefit 

of lowering its power consumption. 

Conclusion 2: Among the various signal processing algorithms, it is found envelope 

analysis is the most suitable algorithm for being embedded on wireless sensor nodes for 

extracting fault features from impulsive and modulating signals, especially the vibration 

signals from rolling element bearings. It has the following advantages: 

 Capable of detecting the abnormality and localised fault components. 

 Potential to produce a small resultant feature set. 

 Suppressing interference noises from nearby components. 

 Acceptable computation complexity and capability to well utilize the library 

functions optimised on the embedded processors. 

Conclusion 3: An envelope analysis of 2048 points is successfully implemented on a 

state-of-the-art Cortex-M4F processor with only 32 kB memory. Experimental results 

show that the computed envelope spectrum feature can well identify the simulated 

bearing fault with a significant data reduction of more than 95% in comparison with the 

raw data set. The effective optimisation for the embedded computation includes: 

 A double buffer structure combining ADC, timer and DMA for efficient data 

acquisition and thus reducing the interferences to the computation-intensive 

signal processing 

 A combination of real-valued forward FFT and complex type inverse FFT for 

accelerating the computation of Hilbert transform 

 The spectrum average for reducing noise, enhancing sensitivity and also 

decreasing the transmission of redundant information 

Conclusion 4: A data processing scheme that combines down-sampling, overlap 

processing and cascading is proposed for getting a high resolution in the envelope 

spectrum. The proposed method is successfully implemented on the same wireless 

sensor node with a spectrum resolution of 0.61 Hz being achieved, which is eight times 

of that in the initial implementation. Experimental results show extracted feature from 

the improved method can provide more accurate and reliable diagnosis results without 
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increment on data throughput requirement. One key implementation is the employment 

of a 50% overlap between successive frames, which has effectively avoided edge 

distortions and kept the consecutiveness of the computed envelope signal. 

Conclusion 5: An automatic updating scheme is proposed for selecting an optimal 

band-pass filter for the envelope analysis in the vibration based wireless CM. In the 

scheme, the complicated fast kurtogram is implemented on the host computer for 

optimal band-pass filter selection and the envelope analysis which requires real-time 

requirement is embedded on the distributed sensor nodes for extracting fault features. 

The optimal filter parameters of the envelope analysis are updated only at data backup 

stage or required by the user and thus it is not expected to cause much load in the 

wireless network. Experimental results show the implemented scheme can successfully 

select the resonance frequency band for the evaluated three types of fault signals. Two 

main efforts have been implemented for the optimisation: 

 The sampling rate is increased to 32 kHz to allow features being extracted in a 

wide frequency band with a frequency resolution of 0.49 Hz. 

 A frequency domain band-pass filter is employed instead of the FIR filter to 

accelerate the calculation that requires real-time performance and also reduces 

the parameter size for updating in configuration mode. 

Conclusion 6: A fast and accurate time domain method by cascading short-time RMS 

features is proposed, implemented and validated to be effective for bearing fault feature 

extraction on the proposed embedded processor. This method shows a three times 

reduction in CPU usage in comparison with that for the frequency domain HT. The idea 

of employing short-time RMS is based on the following three findings: 

 The short-time RMS can be considered as a simplified squared rectifier with the 

low-pass filter and downsample operation being implemented by an overlapped 

average. 

 A square operation of a real-valued signal in the time domain is equivalent to its 

spectral correlation in the frequency domain. 

 A band-pass squared rectifier can obtain a precise envelope for bearing fault 

feature extraction. There is a very loose restriction on the band-pass filter 
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parameters as aliasing in the high-frequency range of the calculated envelope 

spectrum is allowed for bearing fault feature extraction. 

Conclusion 7: It is found and validated that the multiplication of analytic signal with its 

conjugate in the time domain is equivalent to its spectral correlation in the frequency 

domain. This indicates the squared envelope spectrum of a signal can be directly 

computed by the spectral correlation of its analytic signal, without the need for the 

inverse FFT and the second forward FFT in the frequency domain HT. On this basis, it 

is implemented with the scheme of down-sampling, data frame overlapping and 

cascading to achieve a high-frequency resolution in the envelope spectrum. 

Experimental results show its effectiveness and accurate for bearing fault diagnosis with 

a two times reduction in CPU usage in comparison with that for the frequency domain 

HT. 

9.3 Contributions to knowledge 

A number of practical works have been performed in this thesis with a purpose to 

optimise the signal processing embedded on vibration based wireless CM nodes for 

bearing fault diagnosis. The contributions of this research are summarised as follows: 

First contribution: It is the first time to propose envelope analysis as a rolling element 

bearing fault feature extraction algorithm for distributed computation on wireless sensor 

nodes. Through investigation on various signal processing algorithms, envelope analysis 

is shown as the best algorithm for being embedded on wireless sensor nodes to extract 

fault features from impulsive and modulating signals, especially the vibration signals 

from rolling element bearings. Its advantages for distributed computation on embedded 

processor include: 

 Capable of detecting the abnormality and localised fault components. 

 Potential to produce a small resultant feature set. 

 Suppressing interference noises from nearby components. 

 Acceptable computation complexity and capability to well utilize the library 

functions optimised on the embedded processors. 

Second contribution: An efficient envelope analysis of 2048 points is the first time 

implemented and optimised on a state-of-the-art Cortex-M4F processor with only 32 kB 
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memory. Experimental results show that the computed envelope spectrum feature can 

well identify the simulated bearing fault with a significant data reduction of more than 

95% in comparison with the raw data set. This shows the great benefits of employing 

envelope analysis on the distributed wireless sensor nodes for condition monitoring. 

Third contribution: A data processing scheme that combines down-sampling, overlap 

processing and cascading is firstly proposed for getting a high resolution in the envelope 

spectrum on a processor with limited computation memory (32 kB). A spectrum 

resolution of 0.61 Hz is achieved, which is eight times of that in the initial 

implementation. Note that this scheme is implemented on the same wireless sensor node 

without extra requirement on computation memory. This scheme makes envelope 

analysis more attractive for accurate bearing fault diagnosis on resource constraint 

wireless sensor nodes. 

Fourth contribution: An automatic band-pass filter updating scheme is firstly 

proposed for selecting an optimal band-pass filter for the envelope analysis in the 

vibration based wireless CM. In the scheme, the complicated fast kurtogram is 

implemented on the host computer for optimal band-pass filter selection and the 

envelope analysis which requires real-time requirement is embedded on the distributed 

sensor nodes for extracting fault features. The optimal filter parameters of the envelope 

analysis are updated only at data backup stage or required by the user and thus it is not 

expected to cause much load in the wireless network. This shows a more meaningful 

and practical way of applying distributed computation in the wireless CM. 

Fifth contribution: A fast and accurate time domain method based on short-time RMS 

is firstly embedded on distributed wireless sensor nodes for bearing fault feature 

extraction. Experimental results show short-time RMS provides sufficient accuracy to 

various bearing defects with three times reduction in CPU usage in comparison with 

that for the frequency domain HT. 

Sixth contribution: The spectral correlation is firstly proposed for speeding up the 

calculation of envelope analysis on an embedded processor. Through the usage of the 

proposed scheme in Chapter 6, an accurate envelope spectrum is computed with 

sufficient accuracy for detecting various bearing faults. This algorithm shows a two 

times reduction in CPU usage in comparison with that for the frequency domain HT. 
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9.4 Future work 

Recommendation 1: Evaluate and optimise the power management scheme of the 

sensor node. Although many efforts have been performed in this thesis to optimise and 

speed up the implemented algorithms which provide the potential to reduce power 

consumption, the resources on the wireless sensor node should be utilised wisely to 

achieve real minimal power consumption. 

Recommendation 2: Explore other signal processing algorithms for embedded feature 

extraction, such as compressive sensing, DWT, and morphological filter. Such 

algorithms can provide more options for extracting different fault features. 

Recommendation 3: Achieve reliable firmware upgrading over the air. In this way, the 

signal processing algorithms can be conveniently adjusted for satisfying different 

application requirements. 

Recommendation 4: Fabricate the wireless sensor node into a more compact design 

and build up suitable package so that to can be applied to a more hash industrial 

environment. 

Recommendation 5: Add multiple wireless sensor nodes in the established wireless 

network to evaluate the performance of the distributed wireless CM system. 

Recommendation 6: Develop a graphical user interface that is more friendly and 

convenient for visualisation and control using more efficient development tools like 

Visual C++ or Python.  
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