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Abstract 

The addition of monosaccharides to metal-catalyzed coupling reactions can be beneficial in terms of decreasing the time 
required, chemical waste products and overall cost of the process. Monosaccharides are used in a number of different ways, 
including: (a) acting as a ligand for the metal, (b) providing the appropriate reduction potential for a chemical process and 
(c) acting as a reducing agent for the formation and stabilization of catalytically active metal nanoparticles. Recently, there 
has been a significant amount of research in this growing field and there is thus the potential for the addition of 
monosaccharides to coupling reactions to have significant impact on the synthesis of the important small molecules on 
which we have all come to rely. This Perspectives Article will cover recent developments in the addition of 
monosaccharides to metal-catalyzed coupling reactions with an emphasis on their utility and limitations in order to facilitate 
the further development of this exciting area of research. 

Keywords: Monosaccharide, Bio-renewables, Metal Catalysis, Green Chemistry, Nanoparticle  

Introduction 

Metal-catalyzed coupling processes are a ubiquitous part of the modern chemists’ toolkit for the synthesis of added-value 
small molecules on which we have all come to rely. In order to make these processes more efficient, in terms of time, 
expense and cost to the environment, unmodified monosaccharides have been added to metal-catalyzed reactions as part of 
research into the use of bio-renewables in catalytic / chemical reactions. The addition of monosaccharides can serve many 
purposes in these reactions, including: (a) acting as a ligand for the metal, (b) providing the reduction potential for a 
chemical process and (c) acting as a reducing agent for the formation and stabilization of catalytically active metal 
nanoparticles. The ability of monosaccharides to reduce metals has been known for decades,1 for example Benedict’s2 or 
Fehling’s tests,3 but their use in cross-coupling reactions has flourished in recent years. This review will focus on the latest 
uses of monosaccharides in metal-catalyzed coupling reactions. Due to recent reviews and full publications the following 
areas will not be covered in this review: polysaccharides,4,5,6,7,8,9 smaller sugar derived aldehydes / carboxylic acids 
(Leuckart-Wallach reaction) 10,11,12,13,14,15,16 or reactions in which sugars are used as starting materials or incorporated into 
the molecule.17,18,19,20,21,22,23,24  

Monosaccharides as ligands 

One of the most common uses of monosaccharides in metal-catalyzed reactions are as ligands for a catalytically active 
metal species.25 For example, Sekar and Thakur recently disclosed the synthesis of phenols 2 from aryl halides 1 in a 
process that was catalyzed by a copper/glucose system (Scheme 1).26 Aryl iodides and bromides 1 were reacted with excess 
potassium hydroxide (4-8 equiv.) in the presence of copper(II) acetate (5 mol %) and D-glucose (5 mol %) to give good to 
excellent yields of the corresponding phenols 2. The reactivity of aryl chlorides depended on the nature of the electron 
withdrawing group with substrates containing a nitro group giving an excellent yield of phenol 2.  

Scheme 1. 
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Recently a number of carbon-nitrogen cross-coupling reactions have been developed employing a catalytic system formed 
in situ from copper(I) iodide and D-glucosamine in the presence of base.27 For example, anilines were formed from aryl 
halides in the presence of excess aqueous ammonia (10 equiv.) or sodium azide (3 equiv.).28,29 Zhang et al. reported the use 
of similar conditions for the cross-coupling of aryl halides 3 with nitrogen heterocycles 4 (1.2 equiv.; Scheme 2).30 Most of 
the examples used imidazole as the heterocycle 4, and good yields were observed for aryl iodides 3 bearing electron-
withdrawing groups. Unfortunately, the reaction did not occur with aryl chlorides.  

Scheme 2. 

 
 

Zhang et al. extended this methodology to carbon-sulfur cross-coupling reactions. In this work, aryl iodides 6 were reacted 
with diphenyl disulfide (7, 0.6 equiv.) in the presence of copper(I) iodide (10 mol %), D-glucosamine (10 mol %) and 
cesium carbonate (2 equiv.) to give the corresponding unsymmetrical diaryl sulfide 8 (Scheme 3).30 When aryl bromides 
were tested the reaction occurred, but required 24 hours to go to completion. Similar methodology was used by the same 
group to synthesize a variety of diaryl sulfones from aryl halides and sodium benzenesulfonates.31 

Scheme 3. 

 

 

D-glucosamine has also been successfully employed as a ligand in iron-catalyzed Grignard cross-coupling reactions of 
vinylic 10 and allylic bromides 11 (Scheme 4). Phenyl- or benzylmagnesium bromides 9 were reacted with bromides 10 or 
11 in the presence of iron(II) acetylacetonate (5 mol %) and D-glucosamine hydrochloride (5 mol %). Triethylamine (5 
mol %) was added to deprotonate the ligand and thus increase its solubility in THF.32 Moderate yields of substituted alkenes 
12 were obtained from allylic bromides 10, and good yields of the sp3-hybridized products 13 were obtained from alkenyl 
bromides 11. 

Scheme 4. 
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D-glucosamine was shown to improve the yield in palladium-catalyzed Mizoroki–Heck reactions of aryl halides (Scheme 
5).33 Aryl halides 14 were reacted with activated alkenes 15 (1.2 equiv.) in the presence of palladium(II) acetate (0.5 mol %), 
D-glucosamine (1 mol %) and potassium carbonate (2.0 equiv.). Aryl iodides and bromides afforded good to excellent 
conversion to stilbenes 16 with unsubstituted and para-substituted electron withdrawing groups. Conversion was moderate 
when the arene was substituted at the ortho position. Aryl chlorides 14 reacted, albeit with low conversion (5-25%). 

Scheme 5. 

 

 

Monosaccharides for nanoparticle formation 

One of the most common uses of monosaccharides in organic transformations are as reductants for the formation of metal 
nanoparticles, in which the sugar serves to reduce the metal in the presence of a template.34,35,36,37,38,39,40,41,42,43,44,45 

Monosaccharides, glucose in particular, have also been used as supports for metal nanoparticles.46,47,48,49 In some cases, the 
monosaccharides act as both the stabilizer for the metal nanoparticles as well as the reducing agent.50,51,52,53,54 Alternatively, 
additional reducing agents can be added to the mixture of sugar and metal if required. For example, monodispersed colloidal 
carbon spheres have been synthesized by a two-step hydrothermal approach under mild conditions by Sun et al.55 In this 
work, separating the nucleation and growth steps allowed for a narrow size distribution with diameters ranging from 160-
400 nm. Interestingly, the size distribution decreased with an increasing concentration of glucose. D-glucose has also been 
used as the metal nanoparticle support. In this case palladium(0) nanoparticles were synthesized by the reduction of 
H2[PdCl4] or [Pd(NH3)4Cl2]Cl2 in the presence of excess hydroxylamine and D-glucose under ambient, aqueous 
conditions.56 Characterization of the palladium nanoparticles revealed magnetization differences depending on the oxidation 
state of the palladium precursor. TEM analysis revealed that when starting from the Pd(II) complex, the nanoparticles were 
an average size of 6 nm and polydispersed, while starting from the Pd(IV) complex formed nanoparticles with an average 
size of 8 nm that were mainly monodispersed. In 2004 Sun and Li reported the synthesis of colloidal carbon spheres starting 
from glucose, which underwent subsequent functionalization due to the reactive surface present.57 For example, the FTIR 
spectrum revealed the existence of carbonyl and hydroxyl groups which maintained the hydrophilicity of the carbon spheres. 
Colloidal carbon spheres were prepared from aqueous glucose by hydrothermal synthesis, undergoing aromatization and 
carbonization to form 200 nm carbon spheres at 160 ºC in 3.5 hours, and 1500 nm at 180 ºC in 10 hours. Under reflux, 
palladium(0) nanoparticles were loaded onto the surface, covering the carbon spheres with a uniform shell of 10-20 nm 
palladium. In related methodology, Zhang et al. described the preparation of highly dispersed, narrow diameter palladium 
nanoparticles on carbon spheres via in situ reduction.58 Precise control of the dispersity and size of the palladium(0) 
nanoparticles was possible by careful adjustment of the reaction conditions (temperature, time, pH and ratio of palladium(0) 
to carbon spheres). Homogenously distributed, small diameter (7.7 nm) palladium crystals were prepared on carbon spheres 
at pH 7.0 in ethanol at 70 ºC. 

The isolated metal nanoparticles have subsequently been used in a number of important catalytic processes. For example 
Sen et al. recently reported a palladium(0) nanoparticle catalyzed domino Sonogashira-cyclization reaction to synthesize 
various isoindolinones 20 and furoquinolines 21 in good yields (Scheme 6).59 Palladium(0) nanoparticles were prepared by 
the procedure of Sarkar et al. in which H2[PdCl4] was reduced in the presence of hydroxylamine and D-glucose under 
aqueous conditions.56 Following the reaction, the catalyst could be recovered in high yield and a recycling study showed 
only a gradual decrease in activity for up to five subsequent reactions before significant loss of yield was observed. 

Scheme 6. 
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Monosaccharides as reductants in chemical processes 

Monosaccharides can also be added to organic transformations to act as reductants for chemical process that occur in the 
absence of catalyst60,61 or to reduce a metal pre-catalyst to the necessary oxidation state in situ so that the reaction can 
proceed. This concept has been employed for a variety of reactions such as dehalogenations,62 reductions63,64,65,66 and 
coupling processes. Glucose can also be used for the in situ formation of the active metal catalyst. For example, Cuevas-
Yañez et al. showed that addition of 25 mol % of glucose to the reaction mixture resulted in an increased yield of the 
desired triazoles 24 from alkynes 22 and azides 23 under copper-catalyzed click reaction conditions (Scheme 7).67  

Scheme 7. 

 

 

In related work, Singh et al. showed that it was beneficial to add glucose to copper-catalyzed click reactions68 that were part 
of multicomponent coupling reactions under microwave conditions (Scheme 8). Thus, the three component reaction of 
phenylazides 25, 4-(prop-2-yn-1-yloxy)benzaldehydes 26, and 1,2-diaminobenzenes 27 afforded the triazole adducts 28 in 
good yields (Scheme 8a).69 Additionally, a four component process resulted in the efficient formation of 3-phenyl-2-[4-{(1-
phenyl-1H-1,2,3-triazol-4-yl)methoxy}phenyl]thiazolidin-4-ones 29 from readily available starting materials (Scheme 8b)70. 
In both cases, the glucose is purported to reduce the copper to the catalytically active species. Related work by Wan et al. 
demonstrated that copper – glucose systems catalyzed the three component reactions of phenols, acyl chlorides and Wittig 
reagents to form β-aryloxy acrylates.71 Furthermore, Guchhait et al. developed a novel A3-coupling methods for the 
synthesis of N-fused imidazoles using a copper(II) sulfate – glucose catalyst.72 This methodology was subsequently 
harnessed by Iyer et al. for the synthesis of luminescent imidazo[1,2-a]pyridines.73 

Scheme 8. 
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Monosaccharides for the in situ formation/stabilization of catalysts 

One of the most important advances in this area is the ability to form catalytically active metal nanoparticles in situ from 
unmodified reducing sugars and subsequently recycle the catalyst. Traditionally, bio-derived metal catalysts need to be 
synthesized and isolated prior to reaction, and are frequently difficult to recycle following the reaction, which can increase 
the amount of time, chemical waste and expense of the overall process.74,75,76,77,78,79,80,81 Building upon the work in 
nanoparticle formation from reducing sugars, and the use of reducing sugars as reductants in catalytic processes, Nacci et al. 
recently disclosed an Ullman type homo-coupling of aryl halides catalyzed by in situ generated palladium(0) nanoparticles 
(Scheme 9).82 Thus the homo-coupling of bromo- and chloroarenes 30 in the presence of glucose (0.5 equiv.), palladium(II) 
acetate (3 mol %) and tetrabutylammonium hydroxide (3.0 equiv.) afforded the desired biaryls 31 in good yield. In this 
process, the glucose is believed to both reduce the palladium(II) acetate to the catalytically active palladium(0) species, as 
well as stabilize the in situ formed catalyst through the formation of nanoparticles. In contrast to other related reports (vide 
infra), exogenous capping agents were used in this study. TEM analysis was used to confirm the formation of nanoparticles, 
which had an average particle size around 15 nm, and XPS was used to show that the palladium in the isolated nanoparticles 
was in the zero oxidation state. A recycling study demonstrated that the catalytic solution was active for 3 cycles, but the 
yield decreased precipitously thereafter.  

Scheme 9. 
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Nacci et al. also showed that an Ullman type homo-coupling of haloarenes 32 to give the corresponding biaryls 33 could be 
facilitated by gold nanoparticles formed in situ from the reduction of gold(III) acetate (2 mol %) with a stoichiometric 
amount of glucose (Scheme 10).83 This catalytic system was active for bromo- and iodo-substituted arenes 32, as well as 
alkenes. The less reactive aryl chlorides were found to be unreactive under the reaction conditions. It was also found that the 
ionic liquid tetrabutylammonium acetate (TBAA) was a competent solvent and base for the reaction, which could substitute 
for water. Interestingly, the nanoparticles formed in the ionic liquid were much larger than those formed in water (circa 2 
nm vs. 20 nm respectively) and in general resulted in a decreased yield compared to the aqueous conditions. Unfortunately, 
attempts at recycling these catalysts showed a similar poor performance to the palladium system discussed above (cf. 
Scheme 9). 

Scheme 10. 

 

 

Recently we disclosed methods for the use of glucose derived palladium(0) nanoparticles as in situ formed catalysts for 
Suzuki-Miyaura cross-coupling reactions in the green solvent isopropanol (Scheme 11).84 The cross-coupling of aryl iodides 
34 and aryl boronic acids 35 in the presence of palladium(II) acetate (1 mol %) and glucose (5 mol %) gave the desired 
biaryls 36 in moderate to good yields under either thermal or microwave heating conditions. In contrast to the reports of 
Nacci et al., only a small amount of glucose was required and no capping agents were employed. EF-TEM analysis of the in 
situ formed nanoparticles showed that the palladium was surrounded by a hydrophilic, hydroxylated shell. The 
hydrophilic/polar nature of the nanoparticles allowed for their facile removal from the cross-coupled product. ICP-MS 
analysis showed a 65% decrease in the amount of metal incorporated into the final compounds compared to reactions that 
did not contain glucose. Interestingly, Jiang and Fossey et al. have found that monosaccharides bind to boronic acid to form 
the less reactive boronate ester. They used the retardation of the Suzuki-Miyaura homo-coupling reaction to develop 
fluorescent sensors for glucose detection.85,86 

Scheme 11. 

 

 

Subsequently, Jain et al. described the use of reducing sugars in palladium mediated cross-coupling reactions, in which the 
metal was catalyzing multiple, mechanistically distinct steps; auto-tandem catalysis87,88 (Scheme 12).89 After screening nine 
difference reducing sugars, they found that the addition of mannose (3 equiv.) gave the desired cross-coupled products of 
Suzuki-Miyaura and Mizoroki–Heck reactions, whilst concurrently reducing the nitro functionality to an aniline. For 
example, reaction of halo-nitrobenzenes 37 with arylboronic acids 38 in aqueous DMF at 130 °C (microwave) gave the 
coupled biaryl anilines 39 in moderate to excellent yields. Similarly, the reaction of iodo-nitrobenzenes 40 with styrenes 41 
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under the same reaction conditions afforded substituted amino-stilbenes 42 in good to excellent yields. It is unclear from the 
analysis conducted by the researchers whether the mannose is simply acting as a ligand and source of hydrogen under the 
reaction conditions, or if it is also stabilizing in situ formed nanoparticles. 

Scheme 12. 

 

 

Building upon our work discussed above, we recently reported the use of glucose-derived nanoparticles for the Mizoroki–
Heck, Sonogashira and Suzuki-Miyaura cross-coupling reactions in aqueous solvents (Scheme 13).90 The reaction of aryl 
halides 43 with alkenes 44 or alkynes 46 proceeded in moderate to excellent yields to afford stilbenes 45 or substituted 
alkynes 47, respectively. The palladium(0) nanoparticle catalysts were formed in situ from palladium(II) acetate (2 mol %) 
via the addition of glucose (4-10 mol %) to the reaction. In addition, a Suzuki-Miyaura protocol for the synthesis of biaryls 
50 in aqueous DMF was developed using the same in situ derived palladium(0) nanoparticles. Importantly, this protocol was 
also viable for aryl bromides. In contrast to the study by Jian et al.,74 the nitro functionality was not reduced in any of the 
three cross-coupling reactions that were investigated. This is possibly due to the relatively small amount of glucose that was 
added to the reaction (cf. Scheme 12). EF-TEM analysis of the in situ formed nanoparticles confirmed that the palladium 
was surrounded by a hydrophilic, hydroxylated shell. The nature of this shell allowed for the facile partitioning of the 
catalyst between the aqueous and organic phases, which enabled catalyst recycling for up to four cycles without significant 
loss of activity. 

Scheme 13. 
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The importance of the addition of monosaccharides to metal-catalyzed processes in organic chemistry has expanded rapidly 
in recent years. These bio-renewable materials can be used for a number of important processes including as ligands for a 
metal catalyst, to provide the appropriate reduction potential for a chemical process, and as a reducing agent for the 
formation and stabilization of catalytically active metal nanoparticles. These recent developments in the field will provide 
the basis for further rapid advancements. Looking forward, catalytic processes in which the reducing potential of renewable 
sugars is harnessed for the generation, stabilization and turnover of catalytically active metal nanoparticles, sugar-powered 
catalysis, will be developed. These processes have the potential to make existing protocols greener in terms of time, expense 
and cost to the environment, as well as allowing for the development of novel metal-catalyzed processes that are currently 
not possible. Additionally, the inherent chirality of the monosaccharides will be harnessed in order to develop catalytic 
access to enantiomerically enriched products. In conclusion, the addition of monosaccharides to metal-catalyzed processes 
has resulted in a number of important new methods that allow access to the small molecules on which we have all come to 
rely. It is expected that innovative new applications will be developed that build on this exciting research. 
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