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Abstract 

Gelation of polysaccharides under shear conditions results in the formation of a weak gel 

which is able to resist elastic mechanical deformation at small strains but will flow if subjected 

to higher strains. The resulting material, described in the literature as a fluid gel or a sheared 

gel, consists of gelled microparticles which can be formulated to collectively act in bulk, as 

pourable viscoelastic fluids whilst retaining true gel characteristics at the micro/nano level. The 

tuneable behaviour of these fluid gel systems makes them potentially useful in pharmaceutical 

applications. Fluid gels prepared from gellan gum are particularly attractive, due to its 

sensitivity to physiological fluids, unique rheological and physical properties, and current 

regulatory approval for use as a food additive and pharmaceutical excipient. Therefore, the aim 

of the present study was to investigate gellan gum fluid gels as a new modified release drug 

delivery platform. The formation and production of fluid gels using low acyl (LA) gellan, high 

acyl (HA) gellan and LA HA gellan blends was investigated and applied in three different 

dosage forms; a modified release oral liquid, a mucoadhesive nasal spray and a topical 

formulation.  

A modified release oral liquid was designed using a fluid gel prepared from LA gellan gum. 

It was demonstrated that 0.75 % w/w LA gellan gum fluid gel, containing ibuprofen as the 

drug, could be formulated to have a similar viscosity profile as a marketed oral ibuprofen liquid. 

Furthermore, due to the acid insolubility of gels prepared from LA gellan, no ibuprofen was 

released in stimulated gastric fluid. Subsequent release at pH 7.4 however, was affected by the 

duration of exposure and strength of the acidic pH used and a linear relationship between onset 

of release and the preceding duration of acid exposure was observed. Delayed release was a 

result of increasing gel stiffness, a consequence of the acidity of the initial release media and 

exposure time. A much faster release rate was measured when exposure time in acid was 10 

min compared with 60 min. This study highlights the potential to design fluid gels that are 

tuned to have a specified stiffness at a particular pH and exposure time allowing the intelligent 

design oral liquids with specific modified release behaviour. 

The second part of this study was to prepare mucoadhesive nasal drug delivery systems to 

enhance the retention of the nasal spray dosage form in the nasal cavity. Several groups have 

investigated using LA gellan solution as a drug delivery vehicle but only limited research 

however, has been performed on HA gellan for this purpose, despite its properties being more 

conducive to mucoadhesion. HA gellan (even with low concentration 0.25 % w/w) produces 

highly elastic gels below 60 °C which make it difficult to spray using a mechanical spray 

device. To address this problem, fluid gels were prepared as these systems can behave as 

sprayable viscoelastic fluids. In this study the rheological behaviour was investigated and the 

mucoadhesion behaviour of fluid gels prepared from the two different types of gellan (HA and 

LA) and fluid gels prepared from a blend of LA HA gellan. The results demonstrated that by 

preparing fluid gels from a blend of LA HA gellan, the rheological properties were sufficient 

to spray through a standard nasal spray device. Moreover, the fluid gels significantly enhanced 

both HA and LA gellan mucoadhesion properties. 

In the final part of this thesis the topical application of gellan fluid gels was explored. A 

range of gellan fluid gel formulations were prepared containing diclofenac sodium for topical 

application. The rheological results showed that it was possible to produce a topical 

formulation with a viscosity and the mechanical strength similar to that of the commercially 

available Voltaren® gel using 1 % w/w of a 50:50 LA HA gellan blend. The permeation results 

highlighted that the penetration of diclofenac through procaine tissue is significantly increased 

by increasing gellan concentration and decreasing sodium ion concentration in the formulation. 
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Introduction 

  This chapter will discuss the general use of polysaccharides in pharmaceutics, 

providing a brief introduction on applications in current drug delivery systems. The physical 

and chemical properties of gel forming polysaccharides are a particular focus, in relation to use 

as physiologically responsive excipients and drug delivery vehicles in both standard and 

modified release systems.  Despite the potential benefits of immediate release dosage forms, 

they do have some critical drawbacks in particularly related with the stability of drug molecules 

within the digestive system and their subsequent bioavailability. This often results in a 

requirement of frequent dosing intervals that can reduce patient compliance due to multiple 

dosing regimens (Tao and Desai, 2003; Builders and Attama, 2011).  

 To overcome these challenges many researchers pointed to a modified release dosage 

form using polysaccharides with desirable functional properties. The physicochemical and 

biodiversity of these polymers coupled with their easy modification have potentially resulted 

in the availability of a large array of functional polymers that are useful for modified drug 

delivery applications.This chapter will also introduce the concept of polysaccharide “fluid 

gels” (or sheared gels) as a potential platform technology for controlled release applications, 

which is the major focus of this thesis. 

Almost all therapeutic products include excipients within the formulation. In fact, the total 

amount of some excipients used is greater than the amount of active material used in the 

formulation (Bhattacharyya et al., 2006). Historically, excipients have been defined as inactive 

ingredients within medicines. More recently, however, excipients are considered not as 

inactive, but to have an important impact on quality, safety, and efficacy of dosage forms (Koo, 

http://www.sciencedirect.com/science/article/pii/S1319016415000638#b0160
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2011). Furthermore, careful selection of excipients can have a greater impact on the 

functionality of the dosage form by controlling or even targeting drug release at the desired site 

of uptake (Karolewicz, 2015). 

 Polysaccharides are one class of materials that are frequently used as excipients. This 

is due to the large variety of polysaccharides available, which can have a wide diversity of 

chemical compositions and physical behaviour. Traditionally, polysaccharides were used as 

fillers, binders, and disintegrants in tablets or as thickeners in oral liquids, but are now finding 

ever increasing, more sophisticated, defined functional roles to create novel dosage forms 

(Karolewicz, 2015). These include, modulating solubility and bioavailability (Khadka et al., 

2014), enhancing permeability (Fasano, 1998; Thanou et al., 2001; Kawabata et al., 2011), 

improving stability, maintaining pH and osmolarity of liquid formulations, acting as 

antioxidants, emulsifying agents, modulating the immunogenic response of active ingredients 

(Aleeva et al., 2009; Karolewicz, 2015) and controlling drug release (Pal, et al., 2013). 

1.2 Polysaccharides  

 Polysaccharides are biological macromolecules composed of repeated monosaccharide 

sub-units that are connected to each other by O-glycosodic bonds. They occur widely in nature 

in animals, plants and microorganisms and have diverse biological functions such as energy 

sources, structural support, physical protection, lubrication and maintaining hydration in 

tissues (Izydorczyk, 2005). These diverse biological functions have inspired a wide variety of 

industrial applications that include: as a nutritional component and/or to create texture in foods, 

scaffolds for tissue engineering, encapsulation of drugs, cosmetics and personal care products, 

and as wound healing dressings (Malafaya et al., 2007; Builders and Attama, 2011). 

 The wide range of industrial applications is a result of the chemical and structural 

variety of polysaccharides that have their own unique physicochemical properties and therefore 

http://www.sciencedirect.com/science/article/pii/S1319016415000638#b0160
http://www.sciencedirect.com/science/article/pii/S1818087614000348
http://www.sciencedirect.com/science/article/pii/S0378517311007940#bib0445
http://www.sciencedirect.com/science/article/pii/S0378517311007940
http://www.sciencedirect.com/science/article/pii/S1319016415000638#b0015
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functional versatility (Cunha and Grenha, 2016). This functional versatility has led to many 

different types of polysaccharides being utilised in pharmaceutical formulations as functional 

excipients in a range of dosage forms. Furthermore, polysaccharides are renewable resources 

that are relatively cheap compared with their synthetic counterparts, which make them 

particularly desirable for use in many applications (Poli et al., 2010; Malafaya et al., 2007).  

 The biological origin of polysaccharides, does however, impart a susceptibility to 

biological variation. This can be minimised by using refined processing techniques to optimise 

batch-to-batch consistency (Kontogiorgos, 2014). Despite the potential for batch-to-batch 

variations biopolymers are attractive materials for use in designing dosage forms and have 

shown wider therapeutic applications as biomedical materials because of their biocompatibility 

and biodegradability (Builders and Attama, 2011).  

1.2.1 Polysaccharide Structure  

 There are many different types of polysaccharides that are produced by the linking 

together of simple monosaccharides through O-glycosodic bonds. This involves a condensation 

reaction between the OH group at C-1 of a hemiacetal on one residue and one of the -OH 

groups of the adjacent residue, with the elimination of water (Figure 1.1) (Pérez and Kouwijzer, 

1999). The orientation of O-1 can be axial  or equatorial and bond to the next residue at 

any of the other -OH groups at C-2, C-3, C-4 or C-6. This results in eight possible bonding 

arrangements making it possible for several different polysaccharides to be assembled from the 

same monosaccharide unit (Rees, 1975; Pérez and Kouwijzer, 1999; Rees, 2012). 
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Figure 1.1 Formation of a simple glycosidic bond between monosaccharide units (adapted from 

Rees, 1975). 

 The physical behaviour and functional properties of polysaccharides are determined by 

the structure of the monosaccharide units in the polymer chain, orientation of the glycosidic 

bonds and number of individual monosaccharides that make up the polymer i.e molecular 

weight (Boddohi and Kipper, 2010).  

 Polysaccharides that consist of a single type of monosaccharide are called 

homopolysaccharides. Cellulose, amylose and dextran for example are all linear 

polysaccharides that consist of repeating glucose units. Homopolysaccharides can also be 

branched, having a repeating backbone with small side chains, which can also be branched 

(amylopectin and glycogen). Homopolysaccharides are classified according to the constituent 

monosaccharide in the polymer chain. Cellulose amylose, amylopectin, dextran and glycogen 

are all homo-polysaccharides made from glucose and are classified as glucans. 

Homopolysaccharides consisting of only mannose would be classified as mannans, and those 

consisting of only galactose would be galactans etc (McNaught, 1997). 

 When polysaccharides are composed of two or more different types of monosaccharide 

units, they are described as heteropolysaccharides. These can be linear or branched and usually 

contain a regular repeating sequence (McNaught, 1997; Robyt, 1998; Kontogiorgos, 2014). 

This type of structure is found in the seaweed polysaccharides, carrageenan (Cunha and 

Grenha, 2016) and agarose, which are both linear heteropolysaccharides with a disaccharide 

repeating sequence. Block wise structures can also occur as in alginate whereby the linear chain 
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consists of two different monosaccharide units arranged as homopolymeric blocks of each 

single monosaccharide and heteropolymeric sequences of both monosaccharides, effectively 

having homopolymeric regions and heteropolymeric regions within the same molecule (Gacesa 

and Russell, 1990; Izydorczyk et al., 2005). Other more complicated heteropolysaccharides are 

produced by bacteria such as xanthan, which consists of a repeating unit of five sugar residues 

and gellan gum, which has a tetrasaccharide repeating unit (gellan gum structure is discussed 

in detail in Chapter 3). There are also polysaccharides that have no repeating units that can also 

be densely branched creating complex structures like those within some exudate gums such as 

gum arabic. 

1.2.2 Ordered and Disordered Conformation 

 Like most polymers, polysaccharides can exist in both ordered and disordered 

conformations. When hydrated disordered conformation is more common as there is usually 

more flexibility in the glycosidic bonds. In the disordered form, polysaccharide chains are often 

termed random coils (Wang and Cui, 2005). The relative orientation of the monosaccharides 

across the glycosidic linkage and the subsequent intra-molecular forces determine the overall 

shape of the polysaccharide chain. This can therefore, give rise to a range of chain shapes, 

which influence the physical behaviour (Wang and Cui, 2005; Kontogiorgos, 2014).  

 Generally, there are three major ordered orientations that polysaccharides adopt as a 

result of how the monosaccharide units are linked (Rees, 1975; Morris and Walsh, 1982; Wang 

and Cui, 2005). When two equatorial linkages join the monosaccharide units together 

diagonally across the saccharide ring, long extended structures occur which is termed flattened 

ribbon geometry (Figure 1.2). Here, the monosaccharide residues are parallel and only partially 

out of alignment from one another. In the disordered state, this geometry generally produces 
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random coils with large dimensions. Hydroxypropylmethylcellulose (HPMC) is an example of 

a polysaccharide used in pharmaceuticals that adopts this geometry (Wang and Cui, 2005).  

 

Figure 1.2 Flattened ribbon geometry (adapted from Wang and Cui, 2005). 

 If the glycosidic bond is via two axial linkages at C→1 and C→4, buckled ribbon 

geometry occurs. In this case, the linking bonds are also parallel, but are a full width of the 

individual monosaccharide offset from one another (Figure 1.3) (Wang and Cui, 2005). An 

example of this kind of geometry in a pharmaceutical polysaccharide is the poly-L-guluronate 

sequences of alginate. This conformation introduces large cavities to adjacent chains, which 

are of sufficient size to incorporate metal ions which in charged polysaccharides, such as 

alginate, can reduce electrostatic forces of repulsion between chains and stabilise the ordered 

structure. The random coils in the disordered state are usually more compact. 
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Figure 1.3 Buckled ribbon geometry with metal ions in the cavities between the chains (adapted 

from Wang and Cui, 2005). 

 In cases where the linkages are axial-equatorial the bonds between the monosaccharides 

are not parallel. This is the case in amylose (a component of starch), which is 1→4 axial-

equatorial linked, and causes the formation of a helix (Figure 1.4) (Wang and Cui, 2005). In 

addition, 1→3 diequatoral linkage geometry also can causes helical conformation in the 

ordered state. In heteropolysaccharides where both ribbon-forming and helix-forming linkages 

are present, the conformational twist due to the axial-equatorial bonding or 1→3 diequatorial 

bonding produces an overall helical structure. This conformation is adopted by agarose, 

carrageenan and importantly for the context of this work, gellan gum. In the disordered form, 

these chains exist as extremely compact random coils. 
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Figure 1.4 Helical geometry (adapted from Wang and Cui, 2005). 

 Although random coils are energetically favourable for polysaccharides in the hydrated 

state, conformational ordering can still occur but requires energy from interactions between the 

chains. These interactions include hydrogen bonding between monosaccharide residues on 

adjacent chains, electrostatic interactions and van der Waals forces of attraction. These non-

covalent interactions are not sufficiently strong enough to stabilise adjacent chains from single 

monosaccharide residue and require approximately twenty participating residues to maintain 

an ordered conformation (McNaught, 1997). This explains why very short chain 

polysaccharides cannot form stable ordered structures in the hydrated form.  

1.2.3 Polysaccharide Gels  

 One of the most useful properties of polysaccharides is that they can form firm gels at 

relatively low concentrations typically between 0.5 – 2.0 % w/w. This has led to multiple 

applications in the food, biomedical and pharmaceutical industries. The term gel, however, 

means different things to different industries, highlighted perfectly by Lloyd, (1926) with the 

definition ‘the colloidal condition, the gel, is one that is easier to recognise than define’. Indeed, 

within the cosmetic industry there are products such as “hair gel” and “shower gel” and in the 

pharmaceutical industry “topical gels”. The rheological definition of a gel is “a swollen 
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polymeric system showing no steady-state flow” which clearly does not describe cosmetic and 

pharmaceutical gel products. These systems are in fact viscous polymer solutions formed by 

polymer entanglement (Figure 1.5A) rather than a true gel network (Figure 1.5B) following the 

rheological definition (Clark and Ross-Murphy, 2009).  

 

Figure 1.5 Macromolecular differences between A) viscous polymer solutions formed by 

entanglement and B) an ordered gel network structure. 

 The formation of solid gel structures is the result of association of individual polymer 

chains forming a three dimensional network with the pores filled with water that prevent the 

polymer network collapsing into a compact mass (Solari, 1994). In synthetic polymers, the 

network structures are often held together by strong covalent chemical crosslinks. In 

polysaccharides, however, the associations are held together by weaker physical interactions 

along specific regions of the polymer chains that form ordered junction zones (Figure 1.6) 

(Pérez and Kouwijzer, 1999). These junction zones in polysaccharide gels are stabilised by a 

large number non-covalent interactions (of the kind discussed in section 1.2.2) which include 

hydrogen bonding, van der Waals forces, dipolar interactions, hydrophobic interactions and 
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anion-cation interactions (Clark and Ross-Murphy, 1987). There are also solubilising regions 

of the polymer network, which prevents precipitation of the polymers. 

 The extent of intermolecular association impacts upon the mechanical behaviour of gel 

networks i.e., when most of the polymer chains participate in the junction zones the resulting 

gel is likely to be strong and brittle, whereas, in networks where solubilising regions dominate 

weaker gels are produced that are often less rigid. The variable nature of these physical 

interactions, enable polysaccharide solutions to form gels as a result of changes to the local 

environment i.e., change in conditions such as temperature, ionic strength or pH. Moreover, 

the fact that these physical interactions are relatively weak, the gels can also melt or dissolve 

in response to the local environment, which provides opportunities for designing systems with 

physiologically responsive functionality. This has driven the wider application of 

polysaccharides within the pharmaceutical industry. Indeed, the different origin and nature of 

polysaccharides and the presence of specific functional groups in their molecular chains gives 

them diverse functional and physicochemical characteristics and allows considerable 

versatility in potential uses, especially in formulation and drug delivery applications. 
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Figure 1.6 Schematic representation of a polysaccharide gel network showing ordered junction 

zones and disordered connecting chains. 

1.3 Pharmaceutical Applications of Polysaccharides 

 Polysaccharides are used in a range of solid, liquid and semi-solid dosage forms 

(Beneke, et al., 2009). Many of the polysaccharides (and semisynthetic polysaccharides) that 

are used in pharmaceutical formulations are employed to improve the general properties of the 

existing dosage form. For example, microcrystalline cellulose is used in immediate release (IR) 

tablets as a binder, materials such as sodium starch glycolate or crosscarmellose sodium (cross-

linked carboxymethyl cellulose) are also added to tablet formulations as superdisintergrants 

(super swelling materials which can swell to between 8-12 times of their original size on 

contact with water) disrupting the integrity of the tablet and resulting in disintegration (Grover 

and Smith, 2009). They are also used in tablets as coating materials to improve the aesthetics 

of the product, making the formulations more acceptable to the consumer.  
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1.3.1 Modified Release Formulations  

 Modified release formulations have superior drug delivery control that is more 

convenient to the patient than immediate release formulations. Furthermore, modifying drug 

release can be used to improve the stability, safety, efficacy and therapeutic profile of a drug 

(Builders and Attama, 2011). Several dosage forms have been developed as modified release 

systems which include modified release tablets (Gohel and Panchal, 2002), capsules (Smith et 

al., 2010) and oral liquids (Miyazaki et al., 2003). Modified drug delivery systems are generally 

divided into four categories delayed release, sustained release, site specific release and receptor 

targeted (Figure 1.7) (Builders and Attama, 2011). In this thesis, the work is focused on delayed 

and sustained (extended) release systems. 

 When used in modified drug delivery systems, polysaccharides have demonstrated 

potential in altering the pharmacokinetics of drugs, which can improve bioavailability. The 

popularity of polysaccharides over synthetic polymers continues to increase. Apart from their 

relative non-toxicity and potential biodegradability, polysaccharides have also shown 

superiority in terms of being more economical, readily available having flexible structural 

makeup that allows easy modification (Builders and Attama, 2011). 
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Figure 1.7 Four categories of modified release drug delivery systems. 

1.3.1.1 Delayed Release 

 Delayed release drug delivery systems are designed to release the drugs at time other 

than administration time. Oral delayed release systems are often used to protect gastric mucosa 

from irritant bioactive materials and/or to protect certain drugs from low pH of gastric juice 

e.g. enteric-coated systems (Gruber et al., 1987). Furthermore, delayed release systems are 

often employed in cases where it may be beneficial to target the drug to a specific site along 

gastrointestinal tract (GIT) such as targeting the drug to the colon. The mechanism of the delay 

of drug release can be based on time or environmental changes such as pH. Delay in onset of 

release is followed by either immediate or sustained release of drug (Builders and Attama, 

2011).  

1.3.1.2 Sustained Release 

 Sustained release drug delivery systems (SR) are able to maintain the rate of release of 

the drug for extended periods (Builders and Attama, 2011). The role of ideal drug delivery 

system is to provide optimum concentration of a drug at the optimum time interval and at the 
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desired site of action to maintain a therapeutic range of drug in the blood plasma. The issue 

with immediate release systems is that once the drug has been fully metabolised the therapeutic 

effect is lost and a repeat dose becomes necessary (Grover and Smith, 2009). This can cause 

drug plasma concentrations to fluctuate, which could result in significant side effects due to 

plasma concentrations reaching toxic levels at certain points of the treatment course. This 

situation can be avoided by using sustained release drug delivery systems, as the drug 

concentration in the plasma remains within the therapeutic level (Figure 1.8).  

 

Figure 1.8 Simplified curves showing variation in drug plasma concentrations vs. Time 

following administration of IR and SR formulations. 

1.3.1.3 Polysaccharides in Modified Release Systems 

 Applying different formulation technologies and taking into account the wide variety 

of physicochemical and functional properties, polysaccharides are particularly useful in the 

design of modified release drug delivery systems (Toa and Desai, 2003; Builders and Attama, 

2011). Indeed, by understanding and evaluating the physicochemical properties of the vast 

selection of available polysaccharides, the relevance and functionality can be identified and 

incorporated into the delivery system. This has guided researchers to use these materials in 

modified release delivery systems. This approach is applied in sustained release matrix tablet 
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systems for example, where hydroxypropyl methylcellulose (HPMC) is used. When sustained 

release tablets formulated with HPMC, encounters the aqueous environment of the stomach, 

hydration of the HPMC occurs forming a hydrated polymeric layer surrounding the dosage 

form, which creates a barrier to diffusion of the drug. This is often referred to a gel layer but 

this should not be confused with a true gel structure containing ordered junction zones as 

discussed in section 1.2.3., but is the result of polymer entanglement as the HPMC becomes 

hydrated (Clark and Ross-Murphy, 2009; Builders and Attama, 2011). 

 The release of drugs from polysaccharide based sustained release tablets can be 

described as a complex interaction between the rate and extent of the swelling (hydration), 

diffusion rate of the drug through the hydrated polymeric layer and erosion or dissolution of 

the hydrated polysaccharides in to the release media (Harland et al., 1988, Peppas and Sahlin, 

1989; Reynolds et al., 1998; Munday and Cox, 2000, Ghori et al., 2014 and Nep et al., 2015).  

 Increasing the proportion of polysaccharides in the formulation generally reduces the 

diffusion of the drug and delays the erosion of the tablet matrix due to an increased swelling 

volume resulting in a larger hydrated layer and hence larger diffusional path length. The rate 

of polysaccharide hydration and dissolution can be increased by using lower molecular weight 

polymers, which reduces the viscosity of the hydrated layer that subsequently increases drug 

release rate. Polyanionic polysaccharides such as xanthan gum can also be used to sustain drug 

release. In these systems, however, rate of release can be further dependent on the ionic strength 

of the release media, as this will affect the hydration and dissolution of the negatively charged 

polysaccharide (Talukdar and Kinget, 1995). 

  Although tablets are widely accepted as the dosage form of choice, for many patients 

they are inappropriate. This has resulted in the development of alternative dosage forms with 

sustained release behaviour. Drug release from other polysaccharide-based dosage forms is 
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also a controlled to some extent by the swelling, diffusion and erosion of the polysaccharide 

component. Such dosage forms include films (Remuñán-López et al., 1998), gel beads (Babu 

et al., 2010), microparticles (Dalmoro et al., 2010), nanoparticles (Pandey et al., 2005) as well 

as viscous liquid formulations for oral and topical delivery (Cuna et al., 2000; Chamarthy and 

Pinal, 2008).  

1.4 Polysaccharides as Physiologically Responsive Excipients  

 The two major ways polysaccharides respond to the physiological environment are by 

interacting with the surfaces of tissues (bioadhesion) and by undergoing changes in mechanical 

behaviour on contact with physiological fluids (sol to gel or gel to sol transition). Both can be 

used to modify drug release and can occur on their own or synergistically. 

1.4.1 Bioadhesion 

 Bioadhesion (and mucoadhesion) is the process whereby synthetic and natural 

macromolecules adhere to mucosal surfaces in the body (Woodley, 2001). This is an 

advantageous property of certain polysaccharides that enables them to adhere to biological 

tissue for an extended period. This process is often used within pharmaceutical formulations to 

increase the residence time of drugs at the site of absorption, and increase drug uptake, 

subsequently, increasing bioavailability (Woodley, 2001; Peppas, 2004). 

 Mucoadhesive polymers are often characterised by certain specific intrinsic properties 

that have been related to the muco/bioadhesive behaviour. These properties include the 

presence of strong hydrogen bond forming functional groups such as carboxylate and hydroxyl 

groups, presence of a charged groups, high molecular weight, high viscosity, high hydration 

capacity, chain flexibility and high surface energy that favours spreading onto the mucus 

(Grover and Smith, 2009). Many polysaccharides employed for drug delivery applications have 

http://www.sciencedirect.com/science/article/pii/S0378517314006103#bib0005
http://www.sciencedirect.com/science/article/pii/S0378517314006103#bib0005
http://www.sciencedirect.com/science/article/pii/S0378517314006103#bib0045
http://www.sciencedirect.com/science/article/pii/S0378517314006103#bib0035
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potential mucoadhesiveness since most of them show high intrinsic conformity to the above 

listed properties (Grover and Smith, 2009; Builders and Attama, 2011). 

 Many polysaccharide-based mucoadhesive polymers show a high degree of interaction 

with mucus-membranes. The mucoadhesion is the result of a combination of surface and 

diffusional phenomena that contribute to the formation of adequately strong interchain bridges 

between the polymer and the biological medium (Peppas, 2004). Mucoadhesive 

polysaccharides have been used for oral (Remuñán-López et al., 1998), nasal (Cao et al., 2009), 

oesophageal (Batchelor et al., 2002), transdermal and ocular delivery using a range of 

polysaccharides that include cellulose ethers (methylcellulose, ethylcellulose, 

hydroxypropylmethyl cellulose, hydroxy ethyl cellulose and hydroxyl propyl cellulose), 

chitosan and its derivatives, alginate, gellan gum and some hemicelluloses (Le Bourlais et al., 

1998; .Lee et al., 2000). 

1.4.2 In Situ Sol-Gel Transitions 

 As discussed in section 1.2.3 some polysaccharides have the ability to form firm gels 

at relatively low concentrations whereby the polymer chains are held together by association 

of chain segments through long conformationally ordered junction zones, creating an expansive 

three-dimensional network. In some anionic polysaccharides the polymer chains can be held 

together by addition of metal ions such as K+, Na+, Ca2+ and Mg2+ (or H+) which supress the 

repulsive charge on the polysaccharide resulting in an ordered structure. This has been 

exploited in several pharmaceutical products whereby the formulations are delivered as liquids 

and then on contact with the ions in physiological fluid, undergo a rapid sol-gel transition in 

situ to enhance the therapeutic effect. The most successful of such products is Gaviscon®, 

which is used to treat heartburn and has been commercially available for 40 years. Gaviscon® 

contains sodium alginate in the formulation which is swallowed as an oral liquid (tablet 

formulations are also available) (Grover and Smith, 2009). As the formulation reaches the 
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stomach, the sodium alginate undergoes a rapid sol-gel transition on contact with the H+ in the 

stomach acid, which results in the formation of a gel raft on the surface of the gastric fluid, 

which helps prevent gastric reflux (Liu et al., 2003). 

 Another commercially successful example of in situ cross-linking on contact with 

physiological fluid is in Timoptol-XE®. This is a sustained release ophthalmic formulation for 

the treatment of glaucoma containing the active ingredient timolol maleate (Grover and Smith, 

2009; Shedden et al., 2001). Here, gellan gum is used in the formulation and utilises the salts 

present in lacrimal fluid as the cross-linking ions for in situ gelation increasing retention time 

of the drug at the site of action (the mechanism of gellan gum gelation is discussed in detail in 

chapter 3). This formulation is easily dispensed in the form of drops due to the relatively low 

viscosity of gellan gum in solution. On contact with the surface of the eye, the formulation 

provokes lacrimal fluid secretion effectively delivering more cross-linking ions to the gellan 

gum causing the gel to increase in strength. The gel then controls the release by providing a 

diffusional barrier for the drug, which is subsequently released more gradually than in 

immediate release formulations of timolol eye drops (Grover and Smith, 2009). 

 The rich ion sources of physiological fluids (e.g. nasal fluid, lacrimal fluid, saliva and 

GIT fluid) offers an excellent opportunity to develop other in situ gelling drug delivery systems. 

In addition, the highly tuneable and multifunctional nature of polysaccharides provides scope 

for intelligently designing formulations for different target sites. 

1.5 Fluid Gels 

 One simple way of dramatically changing the physical properties of polysaccharide 

hydrogels without changing the chemical properties at the molecular level, is by applying shear 

force during the gelation process (usually by cooling of the polysaccharide solution) which 

produces ‘fluid gels’(sometimes referred to as ‘sheared gels’). This process creates gelled 
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particles, that are in the m size scale (depending on the strength of the shear force experienced) 

rather than producing a singular bulk gel that occurs when left to gel quiescently (Figure1.9).  

 The concept of producing fluid gels by applying shear to a gelling biopolymer was first 

proposed in the patent literature in the 1990s by (Brown et al., 1990; Kawachi et al., 1993) as 

a method to produce liquid like behaviour in biopolymers, that formed a bulk gel when cooled 

under quiescent conditions (Figure 1.10). This allowed the material to be easily pumped or 

transported as a ‘liquid’ and could be returned to its original bulk gel form by simply heating 

above the gel melting temperature and then being allowed to cool quiescently (Morris et al., 

2012). It was also noted that these fluid gel particles exhibited similarity to fat droplets, which 

prompted investigations for further applications within the food industry (Farrés et al., 2013; 

Farrés et al., 2014). 

 The mechanism behind how fluid gels form was proposed by Norton et al., (1999) who 

describe the process as a nucleation and growth mechanism with the size of the particles 

growing to equilibrium permitted by the given shear environment. As fluid gel formation 

occurs during cooling of a gel-forming polysaccharide, there is a characteristic increase in 

viscosity as the molecular ordering begins and ordered domains begin to aggregate. This 

molecular ordering has been described as a phase separation event via spinodal decomposition 

and therefore under shear conditions there are many potential gel nucleation sites, which are 

separated from one another by the applied shear. This limits the molecular ordering to occur 

within distinct particles (Cassin et al., 2000; Norton et al., 2000). The mechanism of growth is 

not fully understood but has been proposed to occur through recruitment of polymer chains 

from the surrounding ungelled matrix (de Carvalho and Djabourov 1997) or by a process where 

the gel particles are physically forced to aggregate as a result of the shear flow (Norton et al., 

1999). 
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 As the gel nuclei begin to grow there is a characteristic increase in viscosity, which 

peaks at the point where all gel nucleation sites have grown to the shear rate dependent limit 

and therefore reached the maximum permitted volume fraction. At this point further ordering 

only takes place within the formed particles. At the surface of the newly formed particles are 

disordered polymer chains that have been described as ‘hairy’ chains and these hairy regions 

at the surface facilitate particle-particle interactions manifested by an increase in viscosity. As 

the further ordering continues within the particles these hairy chains begin to order within the 

gel particle resulting in a smoother surface and consequently reduce particle-particle 

interactions and subsequent reduction in viscosity (Figure 1.11) (Norton et al., 1999). 

Once formed, fluid gels exist as a suspension of microgel particles dispersed in a non-gelled 

continuous medium which can be formulated to have a various structural properties (Cassin et 

al., 2000 and Norton et al., 2000). 
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Figure 1.9 Schematic diagram of fluid gel formation by applying shear during a sol-gel 

transition. 

 

Figure 1.10 Photographs of gels produced under quiescent (left) and sheared conditions 

(right). 
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Figure 1.11 Schematic diagram of the molecular events occurring during fluid gel formation 

(adapted from Norton et al., 1999). 

 The physical behaviour of fluid gels is dependent on the microstructure of the particles 

and the inter-particle interactions. Both of these can be controlled by varying the process 

parameters such as the applied shear rate and cooling rate used during conformational ordering 

and subsequent gelation of the polysaccharide. By manipulating these parameters, a wide range 

of structures can be obtained from the same polymer. At low cooling rates, the gelation process 

generally occurs at a slow rate causing the applied shear rate to dominate and fine spherical-

shaped particles are produced. Increasing rate of cooling however, causes larger irregular-

shaped particles to be produced. This can be overcome however, by increasing the magnitude 

of shear rate, which results in small particles forming. Fluid gels with small and uniform 

particles size have a lower viscosity and elasticity compared with fluid gels with larger particles 

(Norton et al., 1998 and Gabriele et al., 2009). 
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 Other ways to control fluid gel physical properties can be achieved by manipulation of 

polymer concentration, polymer type, and for polymers that undergo ionotropic gelation, ion 

species and concentration (Norton et al., 2000). 

 Fluid gels can be made from a wide range of gel forming biopolymers that include 

gelatin (de Carvalho and Djabourov, 1997), agar/agarose (Norton et al., 1998; Norton et al., 

2000; Farrés and Norton, 2015) whey protein (Lazidis et al., 2016), alginate (Farrés et al., 

2013) carrageenan (Gabriele et al., 2009) and gellan gum (Sworn et al., 1995).This wide choice 

of materials combined with the potential to tune the physical properties by simply altering the 

processing parameters offers potential to the pharmaceutical industry. This coupled with the 

potential for biologically responsive behaviour of the materials when exposed to different 

physiological fluids makes fluid gels prepared from polysaccharides particularly attractive. 

 In this thesis, the investigation focus on developing fluid gels from gellan gum as a drug 

delivery platform for several modified release drug delivery dosage forms. Gellan gum was 

chosen as a suitable candidate due to its particular sensitivity to pH and physiological 

concentrations of salts, interesting rheological properties, formation of gels that are transparent 

and current commercial use within pharmaceutical preparations. 

1.6 Aims and Objectives 

 The overall aim of this study was to highlight the potential applications and limitations 

of gellan gum fluid gels as drug delivery systems and to provide a platform of knowledge for 

the investigation of other fluid gel systems for pharmaceutical use in the future. The main 

objectives were to evaluate the range of properties that could be produced in fluid gels produced 

from gellan gum, then to apply this knowledge to develop bio-responsive drug delivery systems 

using these fluid gels while evaluating the physical and chemical characteristics of these 

particular drug delivery systems.  
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 Working towards these objectives, modified release ibuprofen oral liquid formulations 

were prepared from low acyl (LA) gellan fluid gels, blends of low acyl and high acyl LA HA 

gellan fluid gels were evaluated as an in situ mucoadhesive nasal spray system containing 

caffeine and blends of LA HA gellan gum fluid gel was also investigated to formulate a topical 

diclofenac formulation.  

 The effect of polymer concentration on rheological properties and drug release was 

investigated along with the effect of shear rate and cooling rate on the size of fluid gel particles. 

These properties relate to the ability for the formulations to be easily administered and release 

drug at the appropriate rate and probe the influence of the production conditions on the 

structural and physical behaviour of gellan gum fluid gels. The effect of physiological 

environmental factors such as pH, and ion concentration was also considered and how these 

parameters influence drug release at the desired site of delivery. Of particular interest was the 

potential for bioresponsive behaviour such as changes in gel strength in the GIT (oral liquid), 

adhesion to mucus membranes (nasal spray) and lubrication properties (topical gel). 

1.7 Thesis Structure 

 This thesis covers the production and properties of gellan gum fluid gels and designing 

novel drug delivery systems from these gels to solve particular pharmaceutical problems.  

 Chapter 2 (Rheology and Tribology) will provide background information to the 

rheological methodology presented in all the results chapters (chapter 4-6) and also 

includes an introduction to tribology used in chapter 6. Methodologies, which are 

specific to the investigated formulations, are given separately in the appropriate 

chapters 

 Chapter 3 will provide an in depth background of gellan gum which was the main 

material used throughout the thesis focusing on the chemical structure and 
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conformational properties, the gelation mechanism and a literature review of 

pharmaceutical applications of gellan gum 

 The results begin in Chapter 4, which discusses the results obtained from developing a 

modified release oral liquid formulations (published as “Evaluation of gellan gum fluid 

gels as modified release oral liquids” (Mahdi et al., 2014)). This begins with an 

introduction to the recent work on modified release oral liquids and the issues with 

current formulations. Then information on the characterisation of the fluid gels is 

provided highlighting their physical properties and structure. This characterisation also 

includes measuring particle size, where the development of a method to control the 

particle size is presented. The final part of chapter 4 discusses the potential use of gellan 

gum fluid gels in the formulation of modified release oral liquids investigating how the 

physical behaviour in simulated GIT environmental conditions can influence drug 

release 

 Chapter 5 will present the results obtained from the development of a sustained release 

nasal spray formulation (published as “Development of mucoadhesive sprayable gellan 

gum fluid gels” (Mahdi et al., 2015)). This chapter begins with an introduction to the 

challenges associated with nasal spray formulations, nasal physiology and problems 

with commercial nasal spray solutions. Here, rheological properties of fluid gel 

formulations obtained from different ratios of LA HA gellan gum blends are 

investigated. How this can potentially influence mucoadhesion and drug release from 

such formulations is then discussed. 

 Chapter 6 will discuss the results of a fluid gels obtained from gellan gum LA HA 

blends as topical formulations (Published as gellan gum fluid gels for topical 

administration of diclofenac and titled in this thesis as development of gellan gum fluid 

gels as topical formulations). This chapter begins with an introduction to the challenges 
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of transdermal delivery, skin physiology and the properties of commercially available 

gels. Rheological properties and drug permeation through ex vivo skin is discussed. The 

lubrication properties of the gellan gum fluid gels were also studied. This was 

performed alongside a commercial topical gel formulation using soft tribology to 

provide an insight to the topical application of the gel.  

 Chapter 7 will give a summary of the conclusions from this thesis together with 

recommendations for future work. 

1.8 Publications and Presentations 

Publications from this thesis are as follows 

Journal Publications: 

 Mahdi, M.H. Conway B. R. & Smith, A.M. * (2014) Gellan gum fluid gels as modified 

release oral liquids International Journal of Pharmaceutics 475 pp. 335-343 

 Mahdi, M.H. Conway B. R. & Smith, A.M. * (2015) Development of Mucoadhesive 

Sprayable Gellan Gum Fluid Gels International Journal of Pharmaceutics 

 Ghori M.U., Mahdi, M.H., Smith, A.M. & Conway B.R. (2015) Nasal Drug Delivery 

Systems: An Overview. American Journal of Pharmacological Sciences 3(5), 120-125 

 Mahdi, M.H1. Conway B. R1. Mill T2 & Smith, A.M1. (2016) Gellan Gum Fluid Gels 

for Topical Administration of Diclofenac, International Journal of Pharmaceutics in 
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Conference Presentations: 

 Mahdi, M.H., Saleem, I. & Smith, A.M. (2013) Gellan gum blends as an in situ gelling 

nasal delivery system, UK PharmSci, Edinburgh, UK 

 Mahdi, M.H. and Smith, A.M. (2013) Development of modified release paediatric 

liquids, 5th European Paediatric Formulation Initiative Conference, Barcelona, Spain 
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CHAPTER 2 RHEOLOGY AND TRIBOLOGY 

2.1 Introduction to Rheology 

 An important part of this thesis involves the rheological characterisation of gels; 

therefore, the basic concepts of rheology will be discussed here. First of all, a brief overview 

of rheology will be discussed, however since the work involved polysaccharides for 

pharmaceutical applications, aspects of rheology related to pharmaceutical application is 

covered in more detail. 

 The word ‘rheology’ is derived from the Greek words rheo (ʹʹto flowʹʹ) and logos 

(ʹʹscienceʹʹ) and was first coined in 1929 by Bingham and Reiner. Rheology can be described 

as the relationship between stress and strain within a material as a function of time, temperature, 

frequency and etc. The term ‘stress’ refers to the force per unit area applied on a system while 

‘strain’ refers to the deformation as a result of the applied stress. Rheology therefore, is the 

scientific study of the deformation and flow properties of matter (Picout and Ross-Murphy, 

2003).  

 Materials are classified according to observed physical behaviour i.e. liquid (viscous) 

or solid (elastic) with the two extremes of behaviour corresponding to a perfect (Newtonian) 

liquid or and a perfect (Hookean) solid. Materials such as polysaccharides having properties 

that are both viscous and elastic, hence, are referred to as viscoelastic (Mezger, 2006; Marriott, 

2007). Since rheology gives information about the physical and mechanical properties of a 

sample, it is important to use rheological measurements to evaluate the viscoelastic properties 

of pharmaceutical products as this behaviour can have an impact on all the stages of dosage 

form development right through to administration. Moreover, in this thesis the changes in 

rheological behaviour in a physiological environment are central to the efficacy of the 

developed formulations. 
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2.2 Principles and Basic Concept of Rheology  

2.2.1 Stress and Strain 

 Stress is, defined as the force (F) per unit area (A) on or within a material and is 

measured in units of pressure (Pa) (Equation 2.1). 

Stress = F/A                           Eq. 2.1 

 When measuring the rheological properties of materials there are three different types 

of deformation that can be considered depending on the direction in which the force is applied. 

Compressive/elongational stress where the force is perpendicular to the area, shear deformation 

where the force is lateral to the area and isotropic or (bulk stress) where force is applied from 

all directions (Figure 2.1). 

 The stress causes strain and the resulting strain is dependent on type and amount of 

stress applied. Strain is geometric quantity and therefore is dimensionless ratio and has no units. 

In rheology strain is defined as fractural deformation induced by the stress and it is given by 

Equation 2.2. 

Strain = ∆𝑙/𝑙                           Eq. 2.2 

 Where ∆𝑙 is the change in sample length and 𝑙 is the original length of the sample prior 

to applying the stress. The relationship between stress and strain can be used to determine 

material properties and is given the term modulus. The change in strain over change in time is 

also an important parameter and is described as the strain rate or shear rate (𝛾)̇  and it has units 

of reciprocal seconds (1/s). 
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2.2.2 Stress-Strain Relationship (modulus) for Materials 

Longitudinal/Young’s modulus (E) (Figure 2.1A):  

 Useful for solid materials which are self-supporting with a defined shape and size. After 

applying a force, perpendicular to a solid material, the energy is stored as a potential energy 

which can be fully recovered after the applied force is released causing the material to 

return to its original form. A perfect example of this is elastic materials such as springs 

which deform to a given strain in response to a given stress and remain compressed 

indefinitely unless the stress is removed, at which time the material returns to its initial 

position. This behaviour follows Hooke’s law in which stress is always directly 

proportional to the strain but independent of the rate of strain. Longitudinal modulus is 

equal to the stress divided by the strain (Equation 2.3). 

E =
stress

strain
=  σ/ɛ                           Eq. 2.3 

Shear modulus (G) (Figure 2.1B):  

 This type is more useful for non-self-supporting materials such as soft solids or 

viscoelastic liquids which makes it more suitable for the fluid gel systems used in the work 

described in this thesis. The force is applied tangentially0 and causes the material to deform 

through an angle θ. The shear stress is defined in Equation 2.4. 

σ = F/A                           Eq. 2.4 

 Where F represents the tangential force and A is the tangential area. The resulting shear 

strain is given by Equation 2.5. 

𝛾 = ∆𝑙/𝑙 = tan(𝜃) = 𝜃                           Eq. 2.5 

 Where ∆l is the tangential displacement, l is the sample thickness and is the θ the 

angle of deformation. 
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 The shear modulus (G) is given as described in Equation 2.6. 

G = σ/γ                           Eq. 2.6 

Bulk relaxation modulus (K) (Figure 2.1C): 

 Bulk modulus is defined as the modulus of the volume expansion: the ratio of the 

isotropic stress to the relative change in volume (Equation 2.7).  

K=σv/ɛv                            Eq. 2.7 

 Where σv represents the bulk stress and ɛv represents the volumetric strain. 

Most of matter can be compressed and therefore all matter has bulk modulus. Measurements 

of bulk modulus in polysaccharide systems are relatively uncommon.  

 

Figure 2.1 Schematic illustration of material deformation. 
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2.3 Rheological Measurements  

2.3.1 Steady State Flow (Viscosity)  

 Viscosity can be described as the friction between the internal molecules of a material, 

i.e., its resistance to flow (Lewis, 1996). Viscosity of liquids is a very important parameter that 

can be used to predict the behaviour of pharmaceutical formulations during manufacturing, on 

application and storage, and can also have an impact in drug release.  

2.3.1.1 Newtonian and Non-Newtonian systems 

 Viscosity was first time described by Isaac Newton who was the first that realized that 

the flow of certain liquids is directly proportional to the stress applied. This is true for 

Newtonian liquids and can be expressed as in Equation 2.8 (Marriott, 2007). 

 Viscosity (η) = Stress (σ)/rate of shear (𝛾)̇                      Eq. 2.8 

 Such behaviour occurs in liquids such as water, oils and other solvents over a wide 

range of shear rates (Steffe, 1996). When materials do not follow the Newtonian law of flow 

the viscosities will be shear rate dependent. There are several common types of non-Newtonian 

flow behaviour found in pharmaceutical systems highlighted in (Figure 2.2) as a plot of shear 

stress vs. shear rate. 

 The power law is generally used for non-Newtonian materials which is given in 

Equation 2.9. 

σ = k γṅ                               Eq. 2.9 

 where k is the consistency index and n is the flow index. This model describes both 

shear thinning and shear thickening behaviour. For a shear thinning (pseudoplastic) material 

where the viscosity generally decreases with increasing shear rate, n < 1 and for a shear 
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thickening (dilatant) material where the viscosity increases with increasing shear rate, n > 1 

therefore, when n = 1 the material will be Newtonian. Emulsions, suspension and topical gels 

are examples of non-Newtonian systems found in the pharmaceutical sector (Schramm, 2004a). 

 

Figure 2.2 Flow curves (shear stress vs shear rate) for Newtonian and non-Newtonian flow 

behaviour with yield stress region shown (Adapted from Miri 2010). 

 For some materials, a minimum shear stress needs to be exceeded for flow to begin. 

This is known as the yield stress. Once the yield stress is reached, the system begins to flow 

either in a Newtonian manner, which is termed Bingham plastic behaviour and can be 

expressed as given in Equation 2.10. 

σ = σo + ηγ̇                       Eq. 2.10 

 where σo is the yield stress, or in a pseudoplastic (shear thinning) manner (Herschel-

Bulkley model behaviour) whereby the power law in Equation 2.9 can be extended to include 

the yield stress value as in Equation 2.11: 

σ = σo + k γṅ                      Eq. 2.11 
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 Hydrated polysaccharides generally follow shear thinning behaviour and the degree of 

shear thinning depends on intrinsic molecular characteristics including conformation, 

molecular weight and charge for anionic polysaccharides. Factors such as concentration, 

temperature and pH may also affect flow properties (Koliandris, 2008). The concept of shear 

thinning can be explained by ‘make and break’ interactions between the polymer chains 

(Graessley, 1974). At low shear rates, dis-entanglement and re-entanglement of polymer chains 

occurs at the same rate which causes the solution to have Newtonian behaviour (at the yield 

point) because the entanglement density remains constant. As the shear rate increases however, 

the rate of dis-entanglement is greater than the rate of re-entanglement, reducing entanglement 

density which causes the viscosity measurements to decrease (Figure 2.3). This kind of 

behaviour is beneficial in most liquid pharmaceutical formulations as at low shear rates the 

viscosity is high which helps to suspend and stabilise formulations. Then by simply shaking 

the formulation the shear thinning behaviour causes a reduction in viscosity and subsequently 

facilitates dispensing by either pouring or spraying. 

 

Figure 2.3 Viscosity vs shear rate for a typical shear thinning polysaccharide solution showing 

the shear dependent regions of Newtonian and non-Newtonian flow behaviour. 
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2.3.2 Oscillation and Viscoelasticity  

 Oscillatory measurements are widely used in characterization of viscoelastic materials 

where a sinusoidally oscillating stress or strain is applied to the material. In this method, both 

stress and strain vary cyclically with time, with sinusoidal variation being the most commonly 

used. This is one of the most popular methods to characterize viscoelasticity in biopolymer 

materials, since relative contributions of viscous and elastic response of materials can be 

measured and provides a valuable insight into the polymer-polymer interactions. This is 

particularly useful to study any transitions that occur in the system, for example aggregation 

phenomena, gel formation or melting.  

 The cycle time, or frequency of oscillation, defines the timescale of these 

measurements. The tests are performed by subjecting a sample to sinusoidal deformation and 

measuring the resulting mechanical response as a function of time, frequency of oscillation or 

amplitude of oscillation (Schramm, 2004b). 

 If for instance, a sinusoidal strain wave with a fixed low amplitude and frequency, is 

applied then the sinusoidal strain can be represented as described in Equation 2.12: 

γ = γ0 sin ωt                            Eq. 2.12 

where γ is the instantaneous strain, γ0 is the strain amplitude and  the angular frequency. The 

resulting shear stress will be a sine wave as well, but with different amplitude and phase and 

can be written as described in Equation 2.13: 

σ = σ0 sin (ωt + δ)                            Eq. 2.13 

where δ is the phase angle between the strain and stress waves. 

 The recorded stress wave resulting from the applied strain is highly dependent on 

samples viscoelastic properties and is theoretically presented in (Figure 2.4).  
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 In case of a perfect elastic solid (Hookean solid), where the stress is proportional to 

strain, the stress and strain waves would be completely in phase (phase angle, δ=0°). While in 

case of perfect fluid (Newtonain fluid), where the stress is proportional to strain rate, the 

resulting stress wave would be exactly 90° out of the phase with the strain wave. For a material 

which has an element of both liqiud-like and solid-like behaviour (viscoelastic materials), the 

phase angle, δ would be between 0° and 90°. 

 

Figure 2.4 Differences in stress response for elastic, viscous and visocelastic materials under 

small amplitude oscillatory testing following an applied strain (red curve). Elastic solid 

response (black curve), viscous liquid response (blue curve) and viscoelastic response (violet 

curve). 

 In constant deformation experiments, the modulus is defined as the ratio of stress/strain, 

while for a dynamic sinusoidal experiments the response of viscoelastic materials is quantified 

by resolving in-phase and out-of-phase stress components. Resolving the in-phase and out of 

phase behaviour allows the determination of several important parameters for describing the 

viscoelastic behaviour (Schramm, 2004b). 
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 The storage (elastic) modulus (Gʹ) is defined as the ratio between the in-phase stress 

and strain, it is given by Equation 2.14: 

Gʹ= (σ0 / γ0) cos δ                           Eq. 2.14 

Gʹ therefore, is measure of the energy stored in the material and recovered from it per cycle 

and is taken as an indication of the solid or elastic character of the material under the test.  

 The loss (viscous) modulus Gʹʹ is defined as the ratio between out of phase stress and 

strain as described in Equation 2.15. 

Gʹʹ= (σ0 / γ0) sin δ                           Eq. 2.15 

Gʹʹ therefore, is a measure of energy dissipated or lost as heat per cycle and it taken as indication 

of liquid or viscous character of material under the test.  

 The loss tangent (tan δ) is an important parameter which is useful in providing 

information as the material undergoes gelation or melting and it can be derived from elastic 

and viscous moduli as described in Equation 2.16. 

tan δ= Gʹʹ / Gʹ                            Eq. 2.16 

 The overall stress response to the strain, defined as the ratio of stress amplitude to strain 

amplitude regardless of the elastic or viscous response is described as the complex modulus 

G* and it is given by Equation 2.17: 

G*= [Gʹ2 +Gʹʹ2]1/2                            Eq. 2.17 

Complex modulus is related to another useful parameter, the complex dynamic viscosity (η*), 

which is a ratio of the complex modulus to the frequency of the oscillation as given in Equation 

2.18: 

*=G*/                               Eq. 2.18 
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Complex dynamic viscosity is often compared with steady shear viscosity to detect any 

sensitivity of sample structure to the large strains. 

 Critical to oscillatory experiments for analysis of viscoelasticity is the determination of 

the linear viscoelastic region (LVR). Within this region the applied stress will give a 

proportional strain response (Figure 2.5A). This region can be determined experimentally by 

gradually increasing applied amplitude of strain or stress until the deformation becomes large 

enough that the linear region is exceeded and modulus Gʹ begins to decrease as the sample 

begins to fail (Figure 2.5B). Once the LVR is determined for the sample a stress or strain value 

that sits well within the linear region is selected for all other small deformation rheological 

tests on that particular sample (Hyun et al., 2011).  

 

Figure 2.5 A) Illustration of the proportional behaviour of stress and strain within the linear 

viscoelastic region (dotted arrows indicate the point the system becomes non-linear) and B) 

experimental determination of the LVR required for the selection of an appropriate stress or 

strain to use in further viscoelastic testing. 

 Several recent studies have used the stress at the onset of Gʹ non linearity in 

polysaccharide systems as a measurement of yield stress (Farrés and Norton, 2015). Stress (or 

strain) sweep measurements therefore are a simple and convenient method of determination of 
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not only the LVR but the critical stress (or strain) at failure that can be related to the yield stress 

of the sample. 

2.3.2.1 Mechanical Spectrum of Polysaccharide Solutions and Gels 

 Mechanical spectra profiles provide useful information on structural properties of a 

polysaccharide samples. They are obtained by measuring Gʹ, Gʹʹ and η* plotted against a range 

of oscillation frequencies and reveals the profile of the mechanical characteristics of the 

samples tested. Figure 2.5 shows the mechanical spectra for four typical polysaccharide 

systems dilute solutions, concentrated polymer solutions, strong gels (true gels) and weak gels 

(including fluid gels). 

Dilute polysaccharide solution (Figure 2.6 A): 

 This type of spectrum characterized by liquid-like behaviour with loss modulus Gʹʹ 

greater than Gʹ throughout all the frequency ranges. Both moduli increase with frequency and 

the complex dynamic viscosity (η*) is independent of frequency (). This system is 

experienced when the polymer concentrations are low and chains are in isolation from one 

another.  

Concentrated polysaccharide solution (Figure 2.6 B): 

 This mechanical spectrum is obtained when the concentration of polysaccharide is large 

enough for the polymer chains to entangle with one another. At low frequency, the entangled 

polymer chains have enough time for the entanglements to become detached within the 

oscillation period. This causes the concentrated polymer solution to appear behaving as a dilute 

solution with Gʹʹ being dominant over Gʹ and η* independent of . As the frequency increases 

further the polysaccharide sample develops more elastic response with Gʹ becoming greater 

than Gʹʹ and with η* beginning to decrease steeply with frequency. This is due to the 

disentanglement of the chains becoming more difficult within the period of oscillation. 
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Weak gels (Figure 2.6 C): 

The mechanical spectra of weak gels is characterized by both moduli having dependence 

with Gʹ > Gʹʹ and a liner decrease in η* with increasing . The most widely used example of 

this kind of behaviour is that of xanthan gum, however, the fluid gels often have similar spectra. 

These types of systems have free flowing solution behaviour and can be stirred or poured but 

have elastic behaviour in response to very small deformations. Unlike concentrated polymer 

solutions, weak gels are formed by tenuous association of rigid, ordered structures or by 

junction zones, rather than by entanglement. The mechanism of interchain associations are 

responsible for the strange behaviour of weak gels. In a recent review on the gelation of gellan 

gum the term “weak gel” was discussed with several different terminologies for this kind of 

behaviour to avoid confusion between with conventional gels that are “weak” i.e. having low 

moduli (Morris et al., 2012). Other descriptions included “pourable gels” (Morris, 1991) or 

“structured liquids” (Ross-Murphy, 2008). Conventional gels, which are often described as 

“true gels”, fracture in response to high stress, whereas “weak gels” respond by flowing. The 

work of this thesis focus on this type of gel. 

True gels (Figure 2.6 D): 

True gels have a distinctive mechanical spectrum with Gʹ substantially greater than Gʹʹ and 

independent of  across a wide range of frequencies. Moreover, decreases linearly as  

increases. True gels are strain independent until the strain is large enough to result in material 

failure.  
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Figure 2.6 The four classes of mechanical spectra for biopolymer systems: (A) dilute solution; 

(B) entangled polymer solution; (C) weak gel; and (D) true gel. 
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2.4 Introduction to Tribology  

 Tribology is the science that focuses on the interaction between two surfaces in relative 

motion and encompasses the study of friction and lubrication. The word tribology is derived 

from the Greek ‘trivee’ meaning ‘to rub’ and ‘logos’ meaning ‘discourse’. Traditionally, 

tribology has long been studied for the purpose of optimising machine elements and lubrication 

of such systems. Recently, the use of tribology has widened to cover food and healthcare 

products. The most useful areas of tribology for the purpose of food and healthcare research 

are in the measurements of friction and lubrication (Malone et al., 2003). This section presents 

the basic principles of tribology with a focus on the areas that are relevant for topical 

formulations (as discussed in chapter 6 of this thesis) with the rationale of the finger and the 

skin being two contacting surfaces that are in relative motion when applying a topical gel. 

 To initiate or continue motion the required force must be greater than the frictional 

force. Leonardo da Vinci was first pioneer of the study of friction in 16th century. Then in 1699 

the first law of friction was published by Guillaume Amonton as the force of friction is 

proportional to the normal load, and therefore, the tribological properties are always described 

by the coefficient of friction (μ) described in Equation 2.19 (Amontons, 1699; Bowden and 

Tabor, 2001). 

= F/W                           Eq. 2.19 

where F is the tangential friction force and W is the normal load, both in units of Newton (N).  

 Lubrication is the process or technique employed to reduce friction by separating two 

opposing tribo surfaces by means of a lubricant. For example, skin is susceptible to friction in 

everyday life situations. However, sweat or skin care products can serve as a lubricant 

providing protection of surfaces from skin injury (Vilhena and Ramalho, 2016). Measurements 

of friction are usually performed on traction machines consisting of a ball and a disk whereby 
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a normal force (W) is applied and the ball and disk are rotated at different speeds enabling a 

relative motion between the ball surface and the disk (Figure 2.7). The ball and disk velocities 

(V) determine the entrainment speed (U), which is defined in Equation 2.20 (De Vicente et al., 

2006): 

U = (Vball+Vdisk)/2                            Eq. 2.20 

 

Figure 2.7 Schematic representation of a mini traction machine (adapted from De Vicente et 

al., 2006). 

 The lateral force exerted on the ball is measured through a force transducer and yields 

the friction coefficient (μ) (Equation 2.19). This is performed at increasing entrainment 

speeds to understand the mechanism of lubrication in the form of a Stribeck curve. 

2.4.1 Stribeck Curve 

 The Stribeck curve was first proposed by Richard Stribeck in 1908 when it was noticed 

that the friction coefficient was not linear with entrainment velocity while studying the 

lubrication mechanism in metal bearings. Stribeck curves can be obtained by monitoring μ as 

a function of U, where friction initially decreases to a minimum, then followed by an increase 

as the gap height widens (or lubrication film thickness) as shown in Figure 2.8.  
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Figure 2.8 Schematic diagram of a complete idealised Stribeck curve showing three principle 

regimes of lubrication: boundary, mixed and hydrodynamic where the ball and disc surfaces 

are in full contact, partial separation and full separation, respectively (adapted from De Vicente 

et al., 2006). 

 Three regimes of lubrication can be clearly identified from the shape of the curve: 

Boundary lubrication, mixed regime of lubrication and hydrodynamic lubrication (De Vicente 

et al., 2006). The relation of friction coefficient to entrainment speed is highly related to 

lubricant structure and properties of contacted surfaces. 

 In case of boundary lubrication the μ is independent of U and is observed at low speeds. 

At this stage the two surfaces are in full contact and the applied normal load is fully supported 

by the contact of the surfaces. In the boundary regime the bulk lubricant is excluded from the 

contact (Williams, 2005).  

 In the mixed regime of lubrication, a decrease of friction with increase in entrainment 

speed can be clearly identified and occurs due to surface separation as a result of increased 

lubricant pressure. At this stage, W is supported partially by the contact of the surfaces and 
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partially by lubricant pressure. As a result, both the surface and lubricant properties influence 

friction. As the speed increases further the contact between two surfaces decreases until full 

separation occurs where μ reaches a minimum (Spikes, 1997). 

 Hydrodynamic lubrication then observed at high entrainment velocity and occurs due 

to an increase in the film thickness requiring a greater volume of fluid to be sheared by the 

rotating surfaces. Friction in this regime is solely dependent on the lubricant rheology (de 

Vicente et al., 2005). 

 Malone et al., (2003) were the first to correlate mixed regime of lubrication to the 

complex sensory oral processing by using a modified mini traction machine and a trained 

sensory panel. Since then, focus on the biological tribology of surfaces such as human skin, is 

growing (Chen and Stokes, 2012). Skin has shown frictional properties that are different from 

those in the mouth. This is a due to differences related to the physical attributes of the surface 

of the skin, such as roughness and elasticity. The average friction coefficient of the dry skin 

has been found to be 0.7 (Adams et al 2007).  

 Tribology is particularly relevant to topical pharmaceutical research, as the physical 

processes involved in rubbing the topical dosage form (e.g. cream, lotion or gel) into skin is 

relative motion. The skin is an elastic tissue and steel-on-steel tribometry gives high pressures 

(Vilhena and Ramalho, 2016; Cassin et al., 2001) which are not appropriate for describing the 

lubricating processes occurring in the skin. In addition, the wetting and adsorption properties 

are different from that of the skin surface. To reduce the pressure and to assemble similar 

physical parameters of skin surface at least one soft surface (either ball or disk) is usually 

required when performing tribological experiments relevant to soft biological tissues. 
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2.4.2 Lubrication of Biopolymers in Soft-tribological Contacts 

 There have been many of soft-tribology studies performed on polysaccharides in an 

attempt to determine their behaviour during oral consumption. A correlation between the 

perception of ‘slipperiness’ and  of guar gum solutions in the mixed regime in a steel-silicone 

contact has been shown by Malone et al., (2003) and Cassin et al., (2001) reported that 

increasing concentrations of guar gum leads to a reduction of  in the mixed-regime.  Similar 

observations were noticed with xanthan gum by de Vicente et al., (2005). The reduction in  

in these systems was explained by a combination of viscous and hydrodynamic forces. 

 Tribology of fluid gels was first studied by Gabriele et al., (2010) who investigated 

agarose fluid gels (~ 100 μm diameter particle size) using a steel-on-silicon tribopair. A 

conceptual model was proposed which identified three distinguishable zones represented 

schematically in (Figure 2.9). Zone A, at the lowest speeds, represents partial entrainment of 

the continuous phase in a mixed regime of lubrication; μ then increases with speed as the 

particles begin to be entrained forming a monolayer and the friction resulted from the rolling-

sliding motion of the particles in the thin film (Zone B); on increasing speed further Zone C is 

reached where the bulk fluid is entrained and the mixed regime continues.  
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Figure 2.9 Schematic diagram for the conceptual model of fluid gel lubrication (Gabriele et al., 

2010) (used with permission). 

 In the study by Gabriele et al., (2010), increasing particle size was shown to increase 

. This was similar to the findings of de Wijk and Prinz (2005) in custard systems. Gabriele et 

al., (2010) also noticed that the critical velocity at which friction starts to increase in the mixed 

regime, decreased with increasing agar concentration which was assigned to the elasticity of 

the particles, with stiffer particles requiring lower velocities for entrainment. However, it could 

also be argued that less stiff particles may entrain at lower velocities due to their increased 

deformability. An alternative hypothesis for the increase in  is that particles build-up around 

the ball-on-disc contact thereby preventing the entrainment of the continuous phase. 
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CHAPTER 3 GELLAN GUM: PHYSICOCHEMICAL 

PROPERTIES AND PHARMACEUTICAL APPLICATIONS 

3.1 Introduction 

 Gellan gum is bacterial exo-polysaccharide produced by bacterium called 

Sphingomonas elodea (formally known as Pseudomonas elodea), and was discovered by 

Kaneko and Kang in 1978. In 1988 Japan approved gellan gum to be used in food and few 

years later in 1992 the USA food and drug administrations (FDA) also approved gellan for use 

as a food additive (Sworn et al., 1995; Kirchmajer et al., 2014).  

 Gellan gum is produced by an aerobic fermentation process. A pure culture of S. elodea 

is inoculated in a fermentation medium. The medium contains a carbon source, such as glucose, 

phosphate and nitrogen sources, and appropriate number of inorganic salts (Gibson and 

Sanderson, 1997). The viscosity of the broth increases gradually as the organism metabolises 

glucose and the gellan gum is secreted. Fermentation conditions such as pH, agitation and 

temperature are important to assure product consistency. Therefore, batch to batch variability 

can be reduced by strictly controlling these parameters. After fermentation, the viable cells in 

the viscous broth are killed by pasteurisation and the gellan is then recovered (Gibson and 

Sanderson, 1997; Bajaj et al., 2007). There are two ways to recover the gellan. Direct recovery 

by alcohol precipitation from the broth yields production of substituted native form known as 

high acyl gellan gum (HA gellan). The second way is by treatment of the broth with hot alkali 

prior to alcohol precipitation, which results in de-acylation reaction and yields production of 

unsubstituted, low acyl gellan gum (LA gellan) (Sworn et al., 2009). Gellan gum is 

commercially available in both the HA and LA form and have very different physical 

properties.  

http://www.sciencedirect.com.libaccess.hud.ac.uk/science/article/pii/S0008621514000792
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib35
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib35
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3.2 Gellan Gum Structure  

 Gellan gum is a high molecular weight polysaccharide (approximately ~5 x105 Da). 

Chemically it is a liner anionic polymer with repeating tetrasaccharide unit built up by glucose, 

glucuronic acid and rhamnose residues in 2:1:1 ratio: [→3)–β– D – glucose – (1→4)–β– D – 

glucuronic acid – (1→4)–β– D – glucose – (1→4) –β– L – rhamnose – (1→]. The native 

polymer is in the HA gellan form and has two acyl substituents, L-glyceryl at O (2) and acetyl 

at O (6), present on the 3-linked glucose (Figure 3.1) (Morris et al., 2012). Free carboxylate 

groups are present on the glucuronic acid residue in the structure, which gives gellan gum an 

anionic charge that is crucial to the gelation mechanism (Sworn et al., 2009). 

 

Figure 3.1 Chemical structure of gellan gum (Morris et al., 2012) (used with permission). 

3.3 Gelation Mechanism 

 Gellan gum forms aqueous gels through a molecular ordering process whereby the 

polymer chains adopt double helical conformations that aggregate to form a three dimensional 

network. The mechanism of gelation is described by the domain model (Robinson et al., 1991), 

which assumes the formation of distinct junction zones that are connected adjacently by 

disordered polymer chains. This model is depicted schematically in (Figure 3.2).  

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib149
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Figure 3.2 Domain Model used to describe gellan gelation (adapted from Robinson et al., 

1991). 

 After hot dispersion (about ~85 °C) of gellan in dissolution media (normally water), 

gellan gum hydrates and exists in the random coil state. On cooling, gellan undergoes disorder-

order (coil-helix) transition (Miyoshi et al., 1996), similar to that of agarose and -carrageenan. 

The solution at this stage behaves as a viscous solution (Durand et al., 1987). Formation of gel 

requires association of double helices into a stable aggregated form. Natural aggregation of 

gellan double helices is inhibited by electrostatic repulsion due to the presence of carboxylate 

groups. This negative charge can be reduced to promote aggregation either by reducing the pH 

of the aqueous media or by adding cations (Morris et al., 2012). Cations cause further reduction 

in repulsion by clustering around the helices and thus lowering their effective negative charge 

hence three dimensional structure forms by aggregation of two or more double helices (Huang 

et al., 2003; Morris et al., 2012). 

3.3.1 Gelation of Low Acyl Gellan Gum 

 Low acyl gellan forms a three-dimensional network following aggregation of the gellan 

doubles helices, by gel promoting cations to form hard, brittle gels. Monovalent cations 

enhance aggregation of double helices by attaching directly to glucuronate carboxyl groups 

and forming stable ion pairs. Site binding is triggered initially by electrostatic attraction of 

http://www.sciencedirect.com/science/article/pii/S0144861796000938
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib29
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cations to the carboxylate groups of the polymer. The order of effectiveness for the gelation of 

LA gellan with monovalent cations was reported by (Grasdalen and Smidsrød, 1987; Milas and 

Rinaudo, 1996). They reported that the order of monovalent cations in promoting aggregation 

of gellan double helices lie in order as Li+ < Na+ < K+ < Cs+ < H+ (Grasdalen and Smidsrød, 

1987). This would imply that Cs+ ions give the best geometric fit to the binding site, with 

progressively less efficient coordination as the size of the cation decreases.  

 Divalent cations can also cross link gellan gum helices however this occurs by forming 

direct bridges between adjacent pairs of helices rather than by simply balancing the negative 

charge of the carboxylate as with monovalent ions. As a consequence the concentrations of 

divalent ions required to crosslink gellan are much lower than monovalent ions. Moreover, 

divalent ions promote aggregation of gellan double helices twice as strongly as monovalent 

ions and the resulting gels have a greater thermal stability (Morris et al., 2012). The affinity of 

divatent ion species for gellan are thought to be similar for Group II cations Mg2+, Ca2+, Sr2+ 

and Ba2+ although transition metal ions have been found to have an even greater affinity to 

gellan. (Grasdalen and Smidsrød, 1987). 

 In addition, gel strength increases with increasing ion concentrations for both 

monovalent and divalent ions which allows the mechanical properties to be tailored by addition 

of various concentrations and species. When gellan is dissolved in water, the only cations 

present in the resulting solution are those present as counter ions to the charged groups of the 

polymer chains. These low concentrations of cations are not sufficient to facilitate aggregation 

and subsequent gel formation. Therefore, gellan gum can undergo coil-helix transition but not 

sol-gel transition. When ion concentrations are equivalent to the number of COO- groups then 

gellan undergo sol-gel transition (Matsukawa et al., 1999; Miyoshi and Nishinari, 1999). 

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib80
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib80
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
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 Intermolecular association of LA gellan molecules in solution results initially in 

formation of small, soluble clusters. On cooling further these clusters grow gradually until they 

become large enough to span the entire volume of the solution and form a continuous cross-

linked network. The point at which cation-mediated aggregation occurs is called the “critical 

gel point”. In LA gellan this aggregation occurs rapidly, immediately after a specific 

temperature has been reached. When following this using a rheometer, G′ increases steeply as 

intermolecular association occurs on cooling, until stabilising when the network is fully formed 

(Figure 3.3). The point at which the two curves (storage modulus G′ and viscous modulus G″) 

crossover (i.e., going from G′ < G″ to G′ > G″) is often taken as the sol–gel transition 

temperature (Dai et al., 2008). 

 

Figure 3.3 Typical rheogram showing the cation mediated gelation of LA gellan on cooling 

(adapted from Moxon and Smith, 2016). 

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib26
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3.3.2 Gelation of High Acyl Gellan 

 On average, there is one acetyl for every two repeating units and one glyceryl per 

repeating unit in HA gellan (Kuo et al., 1986) and these acyl groups have a profound influence 

on the gel characteristics. The acetyl group lies on the periphery of the double helices while 

the glyceryl group lie in the interior of the helix, hence exerts steric hindrance on gellan chain 

and modifies the underlying helix geometry by forcing the carboxylic group on the adjacent 

glucuronic acid residue to rotate which impacts upon the ion binding characteristics (Huang et 

al., 2003; Morris et al., 2012) and therefore effects the gelation mechanism. Moreover, the 

three oxygen atoms in the glyceryl group stabilize the double helical structure by forming new 

hydrogen bonds within and between the participating strands (Huang et al., 2003). Therefore, 

HA gellan helices are intrinsically more stable than the LA gellan helices.  

 High acyl gellan gum solutions exhibits similar coil helix transitions on cooling, 

however further aggregation of the helices is restricted by the presence of the acyl groups 

(Morris et al., 1996) therefore HA gellan has little capacity for cation-mediated aggregation 

(Morris et al., 1996). It is thought that the acyl groups also inhibit end-to-end type 

intermolecular associations through steric hindrance, resulting in a decrease in the degree of 

continuity and homogeneity of the gelled system (Noda et al., 2008).  

 Due to the increased stability of HA gellan helices, true gels can be formed without the 

addition of cations (Huang et al., 2003). Coil-helix transition of HA gellan occurs on cooling 

at ~ 70 °C, and shows no thermal hysteresis (i.e., their setting and melting temperatures are 

identical) (Morris et al., 2012). Addition of cations does, however, result in increased gelation 

temperature (Huang et al., 2004). The concentration of HA gellan gum required to form “self-

supporting gels” is > 0.2 % w/w (Sworn et al., 2009). From a physical behaviour point of view 

HA gellan generally produces gels that are softer and more elastic than those formed by LA 
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gellan gum. Thus, the strain before the material breaks is much greater and therefore less brittle 

(Morris et al., 2012). 

 Huang et al., (2004), studied effect of Na+, K+, Ca2+ and Mg2+ cations on the sol–gel 

transitions of HA gellan dispersions using dynamic rheological analysis. They reported that the 

gelling temperature of gellan increased as the cation concentrations was increased and gelation 

with monovalent cations of either species tested (Na+ and K+) exhibited similar gel properties. 

There was no significant difference in setting temperature between gellan samples dispersed in 

equivalent concentrations of Ca2+ and Mg2+ indicating that the size of cations used had no effect 

on the gelation (Huang et al., 2004). 

3.3.3 Gelation of HA LA Gellan Blends  

 Mixtures of LA and HA gellan produce interpenetrating networks, with double helices 

through incorporating strands of same types only (Sworn et al., 2009; Morris et al., 2012). 

Blending the LA and HA gellan gives diverse range of gel textures that lie between the extreme 

brittleness of LA gellan and the extreme extensibility of the HA gellan (Sworn et al., 2009). 

Figure 3.4 shows schematically how mixtures of HA and LA gellan gum gels compare with 

other common gelling systems (Mao et al., 2000; Huang et al., 2003). By varying the ratio of 

LA HA gellan gum, it is possible to obtain textures close to those of other polysaccharides 

(Sworn et al., 2009). 
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Figure 3.4 Schematic comparison of the gel texture of HA and LA gellan gum gels compared 

with other common gelling systems (adapted from Sworn et al., 2009). 

 Kasapis et al., (1999) studied the rheological response of the LA HA blends and found 

that on cooling, there were two separate gelation regions, one at high temperature (designated 

to HA gellan) and second at lower temperature (designated to LA gellan). It is thought that the 

gellan gum blends are likely to have “segregative interpenetration”, i.e. double helices with the 

same gellan type, rather than having “associative interaction” between both polymers. In fact, 

segregative interactions are much more common in general and occur in virtually all 

biopolymer mixtures where there is no over-riding drive to heterotypic binding (Morris, 2009).  

 During preparation of LA HA gellan blends, at high temperatures a water-in-water 

emulsion is produced with HA gellan acting as the continuous phase with LA gellan dispersed 

through it as small liquid droplets (Morris, 2009). As the solution is cooled the HA undergoes 

ordering first (as it has a much higher gelation temperature compared with LA gellan) resulting 

in a biphasic co-gel in which LA gellan is dispersed as liquid droplets through the HA gellan 

network. On further cooling LA gellan then undergoes a sol-gel transition producing a gel 

within a gel. At this stage the polymer with stronger gel properties acts as the continuous phase 
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while the other will act as the dispersed phase (Mohammed et al., 1998). Varying the LA to 

HA gellan ratio therefore can produce a wide range of gel textures (Sworn et al., 2009).  

 The quantity of acyl groups on gellan can also be controlled as both glyceryl and acetyl 

groups on the HA gellan can be hydrolysed when exposed to an alkali media such as NaOH 

and KOH. The reaction can be expressed as in equation 3.1 (Morris et al., 2012). 

𝑅 − 𝐶𝑂𝑂 − 𝑅′ + 𝑆𝑎𝑙𝑡 − 𝑂𝐻 → 𝑅 − 𝐶𝑂𝑂 − 𝑆𝑎𝑙𝑡 + 𝐻𝑂𝑅′      Eq. 3.1 

 Where R–COO and R′ denote, respectively, the substituent and the polymer chain. By 

controlling parameters of the reaction such as the temperature at which the reaction occurs, 

time of exposure and alkali concentrations, it is possible to produce partial acylated gellan 

(Morris et al., 2012). When the hydrolysis reaction takes place at high temperature the gellan 

polymer will be in disordered form. This causes the glyceryl substituents to be removed faster 

than acetyl groups. Hydrolysing at low temperature however, release of acetyl groups from the 

periphery of the double helix occurs far more rapidly than removal of glyceryl substituents 

embedded within the helix. Moreover, the reactions at low temperature require much longer 

time.  

3.3.4 Effect of pH on Gelation  

 Gelation of gellan can also occur by reducing the pH, forming strong gels when the pH 

is lowered to below pKa of carboxylic acid on the glucuronic acid residue (∼ pH 3.4) 

(Grasdalen and Smidsrød, 1987). Low pH induces gelation by minimising the negative charge 

of the gellan and promotes the aggregation (Sworn et al., 2009; Morris et al., 2012). Since the 

carboxyl group is a weak acid, thus the degree of dissociation of carboxyl groups in aqueous 

systems is dominated by the dissociation constant. The lower the pH value, the smaller fraction 

of dissociated carboxyl groups, thus making the gellan less charged by conversion of 

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
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glucuronate carboxyl group from negatively-charged COO− form to the uncharged COOH 

form. The overall network structure becomes less charged and electrostatic repulsion of the 

double helices is reduced (Grasdalen and Smidsrød, 1987). It is also reported that the decrease 

in electrostatic repulsion between the intramolecular segments may result in suppression of 

gellan chain expansion, making association and aggregation even easier (Horinaka et al., 

2004).  

 Previous studies reported that the LA gellan is particularly acid sensitive forming strong 

gels at low pH (Norton et al., 2011), whereas HA gellan is much less sensitive (Bradbeer et al., 

2014). Moreover, Bradbeer et al., (2014), investigated the effect of acidic medium on 

mechanical properties of LA HA gellan blends and found that post-production exposure, of 

blends with a high LA to HA ratio, to an acidic medium leads to an increase in total work 

required to fracture the gel. It was suggested that the cross-links between the LA gellan chains 

are reinforced by acid exposure. Increasing acid exposure for more than one hour showed no 

effect on mechanical properties of gels with high LA to HA ratio. In contrast, gels with a high 

HA proportion began to show signs of breakdown after 3 hours acid exposure, with a decrease 

in bulk modulus and total work to fracture. This weakening of the gel became more pronounced 

with increasing HA to LA ratio and reached a maximum at 0:100 LA HA ratio.  

3.4 Pharmaceutical Applications 

 Polysaccharides in particular, find widespread use in pharmaceutical formulations as 

they possess flexible physicochemical properties (Prajapati et al., 2013). Gellan gum has 

received particular attention from pharmaceutical researchers because of its unique 

physicochemical properties. In pharmaceuticals, gellan gum is found in many dosage forms 

performing a variety of functions these includes: swelling agents, binders and disintegrants in 

tablets, shells of hard capsules, gelation agents in oral liquid formulations. The first commercial 

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib39
http://www.sciencedirect.com/science/article/pii/S014486170600539X#bib4
http://www.sciencedirect.com/science/article/pii/S014486170600539X#bib4
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pharmaceutical product containing gellan was the in situ gelling eye drop formulation 

containing timolol maleate (Timoptic-XE®) to treat glaucoma (Shedden et al., 2001; Grover 

and Smith, 2009). Since then, gellan has been investigated as carrier in many dosage forms for 

various routes of delivery. 

3.4.1 Oral Drug Delivery 

 Drug delivery through oral cavity is the most preferred route of drug administration for 

both solid and liquid dosage forms. The oral route is considered as the safest and most 

convenient way of drug administrations. Gellan gum is a widely used food ingredient (E418) 

and is generally regarded as safe to consume. Using gellan gum in oral pharmaceutical 

formulations has mainly been used to try to deliver or retain the active pharmaceutical 

ingredients (API) at specific sites of the gastric intestinal tract (GIT). This section describes 

gellan gum used in oral dosage forms.  

3.4.1.1 Tablets 

There are several different types of tablet formulations where gellan gum has been investigated 

for various functionalities.  

3.4.1.1.1 Swelling Agent 

 Size-increasing tablets and floating tablets are commonly used approaches to achieve 

prolonged residence time in stomach. Transit time for normal tablets in the stomach is very 

short therefore a conventional tablet will rapidly pass to the small intestine. Tablets however, 

can be retained in stomach for a prolonged period of time, if the size of tablet is bigger than the 

dimension of the pyloric sphincter. This can be in the order of 5 cm length or a diameter of 3 

cm (Klausner et al., 2003). Difficulty swallowing such large tablets was an obstacle for these 

formulations. This problem can be potentially addressed by using a polymer which can swell 

rapidly in situ. Indeed, many hydrophilic polysaccharides have been investigated to be used in 

http://www.mydr.com.au/medicines/cmis/timoptol-xe-gel-forming-eye-drops
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formulations of in situ swelling tablets due to their ability to absorb large amounts of water and 

rapidly swell. Using these highly swelling polymers, tablets can be formed at a standard size 

suitable for swallowing and can swell and increase in size in the stomach thus, prolonging 

residence time. Gromova et al., (2007) formulated acyclovir gastro-retentive tablets based on 

a mixture of guar gum and LA gellan (Figure 3.5). This formulation utilised the synergistic 

swelling effect of guar and gellan and results showed that the degree of swelling was enough 

to retain the formulation in the stomach for an increased period of time. The tablet was found 

to swell more than two-fold during the first 60 minute of dissolution, which was enough for 

gastro-retentive effect. 

  

Figure 3.5 Relative dimensions of gastro-retentive acyclovir tablets (500 mg) before and after 

the dissolution test (Gromova et al., 2007) (used with permission). 

 El-Zahaby et al., (2014) studied the effect of cross linking cations (Ca2+ and Al3+) on 

in situ swelling tables prepared from LA gellan. The results of the study indicated that the 

addition of cations slow down the release of API drastically. In addition, type of ions had a 

significant effect on the drug release. Surprisingly, they found that divalent ions (Ca2+) 

sustained release of API more than the trivalent ion tested (Al3+). This was explained by an 
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increased capacity for water uptake of gellan-calcium compared with that of gellan-aluminium 

causing a greater swelling effect. A greater swelling capacity results in an increased diffusion 

path length, which in turn increases diffusion time and thus a slower drug release (El-Zahaby 

et al., 2014). The angle of repose, bulk and tap density of gellan gum and gellan-Ca2+ were also 

investigated and the results showed that gellan has excellent flow with good compressibility 

(El-Zahaby et al., 2014). 

3.4.1.1.2 Disintegrant 

 Disintegrants are agents added to tablets and some encapsulated formulations to 

promote the break-up of compacted powder when exposed to aqueous media. The use of gellan 

gum as a disintegrant was first investigated by Antony and Sanghavi, (1997) and later by Emeje 

et al., (2010) who compared it with standard disintegrants (maize starch and sodium starch 

glycolate). Different gellan concentrations 0.2 %, 5 %, 10 % and 15 % w/w and different modes 

of incorporation of the gellan were investigated and they found that the gellan was as most 

effective as a disintegrator when used extra-granularly at 0.2 % w/w. This formulation had a 

disintegration time in 0.1 N HCl of 12.9 min (Emeje et al., 2010). The disintegration time for 

5 %, 10 % and 15 % w/w, however, were slower 90, 100 and 119 min respectively. Hence 

gellan gum at these higher concentrations was not useful for immediate release dosage forms 

as disintegration time is much to slow. In another study, 4 % w/w gellan gum showed the 

shortest disintegration compared with other disintegrants used in sublingual tablets (Prajapati 

et al., 2014). These results are not in good agreement with Emeje et al., (2010) and this may 

be due to deionised water being used as the disintegration media in Prajapati study rather than 

0.1 N HCl. This ignores the fact that gellan is an ion active polymer and it is strongly affected 

by the pH and the ions present in the dissolution media. In both studies the results showed that 

the disintegration time increases by increasing gellan concentration which could be useful to 

design sustained release formulations.  

http://informahealthcare.com/action/doSearch?Contrib=Sanghavi%2C+N+M
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3.4.1.1.3 Binding Agent 

 Some polymers such as gellan gum have both disintegrant and binding properties when 

used in different concentrations. Binders are usually used when making granules for 

formulating tablets or capsule fillings. Selecting the appropriate binding agents for granulation 

can be important in preparing tablets with specific mechanical strength and drug release 

profiles. 

 The adhesion properties of LA gellan and its binding capacity has previously been 

investigated (Ike-Nor et al., 2006; Franklin-Ude et al., 2008). Gellan when used at 

concentrations of 20-30% showed comparable binding capacity to acacia gum and gelatin and 

a stronger binding capacity compared with maize starch (Franklin-Ude et al., 2008). The gellan 

formulations however had the longest disintegration time which was in good agreement with 

(Emeje et al., 2010), who previously reported using gellan at high concentration leads to an 

increase in disintegration time. This increased binding capacity and subsequent increased 

disintegration time can be utilised to prolong the release of drug. This effect was reported by 

Franklin-Ude et al., (2007) when using 20 % to 30 % of gellan gum to produce granules which 

sustained drug release for up to 8 hours (Franklin-Ude et al., 2007). This is due to the binding 

and swelling capacity of gellan gum and shows excellent potential as a controlled release 

matrix. 

3.4.1.2 Capsules 

 Capsules are solid dosage forms, the word capsule comes from Latin capsula which 

means a small box. Capsules are superior to tablets when problems arise such as 

compressibility, solubility and bitter taste problems. There are two types of capsules hard and 

soft capsules. Hard capsules consist of two hard shells (cap and body). Gelatin is widely used 

to make hard shell capsules but due to its animal origin, there was a demand to find alternative 
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non animal source. Recently, a great interest has been given to HPMC as an alternative to 

gelatin to formulate hard shell capsule as HPMC is promising from a manufacturing, 

regulatory, dietary and religious perspective (Missaghi and Fassihi, 2006). Shells formed by 

HPMC, however, are weaker than gelatine-shells (Al-Tabakha, 2010) and often require a 

gelling agent in the formulation to maintain the capsule shape. To overcome this problem, Ku 

et al., (2010) used HPMC blended with gellan gum to support the shell wall (Ku et al., 2010), 

which resulted in less brittle capsule compared with HPMC alone and observed slower in vitro 

disintegration and dissolution. The slower disintegration and dissolution was likely due to the 

insolubility of gellan in the gastric acid. 

 The ability to support the structure of HPMC capsules and slow disintegration time in 

acid was investigated by Smith et al., (2010), who developed a capsule shell formulation using 

various ratio of HPMC, sodium alginate and gellan gum to design two-piece hard capsule for 

post-gastric delivery. The resultant capsule parameters such as thickness and water content 

found to be comparable to commercial gelatin capsules. These capsules were shown to open 

after only 5 min in phosphate buffer (pH 6.8) after being submerged in 0.1 M HCl (pH 1.2) for 

2 h, highlighting the potential for delayed release capsule formulations using gellan gum. 

 HA and LA gellan gum blends have also been used in formulations to replace gelatin 

in soft capsule formulations. Different ratios of blended LA HA gellan were mixed with 

carrageenan and mannan gums to produce soft capsules. (Winston et al., 1994). 

3.4.1.3 Oral Liquids 

 Different polysaccharides are used in the formulation of oral liquid dosage forms. These 

polysaccharides are usually used to thicken the formulation, to facilitate suspension of drugs, 

aid dispensing of the liquid and improve mouth feel. Recently the acid gelling properties of 

gellan gum has been identified by researchers as a good candidate for an in situ gelling oral 
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liquid due to the low pH of the stomach. Rajinikanth and Mishra, (2008) have described the 

main prerequisites for oral liquid in situ gelling systems, these are optimum viscosity for ease 

of swallowing and mouth feel, gelling cappacity and a rapid sol-gel transition due to ionic 

interactions. All of these prerequisites  can be suitably addressed using gellan gum. 

 Indeed, previous studies (Miyazaki et al., 1999; Miyazaki et al., 2001; Kubo et al., 

2003; Rajinikanth et al., 2007; Rajinikanth and Mishra, 2008) reported that gellan has the 

potential to be used for oral-liquid in situ gelling systems containing complexed calcium ions. 

Once the formulation is administered, the calcium ions are released due to low pH of stomach, 

resulting in crosslinking of the gellan in situ. Miyazaki et al., (1999) reported sustained release 

of theophylline from an in situ gelling formulation and the bioavailability was increased 3 fold 

in an animal model, following administration of LA gellan oral liquid formulations. 

 This in situ gelling system using LA gellan has been further investigated by Rajinikanth 

et al., (2007) and Rajinikanth and Mishra, (2008) to treat stomach ulcers caused by H. pylori 

using clarithromycin and amoxicillin, respectively. In these works, the formulations showed 

better anti H. pylori activity than conventional suspensions. The formulations form a strong gel 

in the stomach acid and are buoyant on the gastric fluid causing an increase of gastric residence 

time. Therefore, a lower dose of clarithromycin and amoxicillin are required in the formulation 

and dosing frequency can be reduced, which can improve patient compliance and lead to more 

successful treatment of H. pylori. 

3.4.1.4 Gellan Beads 

 Gellan beads can be easily prepared using an external ionotropic-gelation method. 

Beads are formed by the dropwise addition of aqueous solution of gellan gum into aqueous 

solution of crosslinking ions or vice versa (Tripathi et al., 2012). This simple technique can be 

used to entrap drugs by simply dissolving or dispersing the drug in the polymer solution or in 
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the crosslinking ions.  The gellan gum gels almost instantaneously at the external surface when 

the droplets come into contact with the crosslinking ions creating a gel coat (Osmelak et al., 

2014). This is due to the rapid gelation kinetics of gellan. Using this technique, the crosslinking 

ions must diffuse through the gellan gum structure to crosslink the central regions of the bead. 

In addition the un-crosslinked gellan will also migrate towards the crosslinking ions at the 

surface subsequently producing a gel that has a higher concentration of gellan at the surface 

than at the centre of the structure (Figure 3.6). Time exposed to the crosslinking ion source 

therefore, also impacts on the strength of the gellan beads and homogeneity. The longer the 

beads are submerged in the crosslinking ion solution the more time there is for diffusion of the 

ions to occur and increase the crosslinking density of the gellan beads. 

 

Figure 3.6 Mechanism of Gellan Gum Bead formation using external ionotropic gelation. 

 Once the beads are prepared they are usually washed with water and dried prior to use. 

The properties of formed beads can be controlled by different factors that includes polymer 

concentration, polymer molecular weight, ion concentration and species, aperture size, pH of 

the crosslink media, and drying parameters (Narkar et al., 2010; Verma and Pandit, 2011). In 

low pH media gellan beads are stable and swell rapidly but in high pH media beads can 
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dissolve. Therefore, any encapsulated drug releases faster in intestinal conditions compared 

with the acidic gastric conditions (Babu et al., 2010). LA gellan gum has been shown useful in 

the preparation of sustained release bead systems, either alone (Kedzierewicz et al., 1999; 

Emeje et al., 2009; Babu et al., 2010), or by blending with clay (Santucci et al., 1996) or with 

other polymers such as chitosan (Dixit et al., 2011; Verma et al., 2012; Yang et al., 2013), 

sodium alginate (Srinatha and Pandit, 2008; Totosaus et al., 2013; Prajapati et al., 2013b) and 

hydroxypropyl methylcellulose (Ariza et al., 2013) to deliver API to specific target sites 

(stomach, intestine and colon). Thus by appropriate manipulation of above parameters, it is 

possible to obtain beads with different functionality. 

 Narkar et al., (2010) used chitosan coated gellan gum to formulate mucoadhesive beads 

containing amoxicillin trihydrate to treat H. pylori. The in vitro release study illustrated that 

the drug released in controlled manner for up to 7 hours. Additionally, chitosan contributed to 

greater mucoadhesive behaviour. Ahuja et al., (2010) showed that sustained release from beads 

can be obtained by combining of gellan gum with gum Cordia which is strongly mucoadhesive. 

The experiments revealed that release of metformin HCl was prolonged up to 24 h (Osmelak 

et al., 2014). 

 Many APIs used to treat H. pylori infections have been encapsulated within gellan 

beads that float on the surface of the stomach to increase retention time, such as 

acetohydroxamic acid (Rajinikanth, 2007), clarithromycin (Rajinikanth and Mishra, 2009), 

ofloxacin (Kabbur et al., 2011), amoxicillin (Tripathi et al., 2012) and rifabutin (Verma and 

Pandit, 2011). The release of the drug from floating gellan bead systems can be sustained up 

to 10 h depending on formulation parameters (Tripathi et al., 2012). Gellan gum formulations 

blended with other polysaccharides have also been investigated and shown a beneficial effect 

for sustained release. Kabbure et al., (2011) compared beads formulated from low methoxy 

http://www.sciencedirect.com/science/article/pii/S0378517314001902#bib0015
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pectin (LMP) alone and a blend of LMP and gellan gum. The results showed that beads 

formulated with gellan demonstrated sustained release of ofloxacin for more than 8 h.  

3.4.2 Intranasal Drug Delivery 

 Nasal cavity is used mainly for local treatment of nasal congestion, infections or allergic 

symptoms (Illum, 2003). However, intranasal route may be suitable to achieve the systemic 

action, especially for drugs that are quickly metabolized or not efficiently absorbed in the GI 

tract (Jansson et al., 2005). LA gellan gum has generated interest as a promising polymer for 

use in nasal formulations because of its ability to form strong clear gels in situ at physiological 

conditions. In situ forming polymer formulations are drug delivery systems that are in solution 

(Cao et al., 2009) or in dry microparticle (Mahajan and Gattani, 2009a) form before 

administration, but once administered, undergo gelation in response to the physiological 

environment. In vivo studies have confirmed gellan gum to be non-irritant and non-toxic to the 

epithelial tissue even when applied for a prolonged period of time (Cao et al., 2009; Mahajan 

and Gattani, 2009a), in addition to remaining stable for over 6 months. 

 LA gellan has been used to formulate a metoclopramide dry powder nasal spray in the 

form of micro-particles manufactured by spray drying. This formulation is based on in situ 

transition from a dry powder to a swollen gel as the particles delivered in dry solid state. 

(Mahajan and Gattani, 2009a). Following administration, the LA gellan micro-particles were 

shown to swell and adhere to nasal mucosa. Release of the metoclopramide was moderately 

sustained with no observed lag time.  

 More widely investigated LA gellan in situ gelation formulations are those based on a 

sol-gel transition with the gellan solution sprayed out from a nasal spray device in the liquid 

state with the drug dispersed or dissolved within the gellan. This was first described by Bacon 

et al., (2000) who reported that to achieve a reproducible dispensing volume from a nasal spray 

device requires a low viscosity formulation but viscous enough to aid adhesion on application 

http://www.sciencedirect.com/science/article/pii/S0378517314001902#bib0300
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site. LA gellan is a particularly good candidate vehicle for nasal sprays as it exhibits shear 

thinning behaviour which facilitates the dispensing through spray devices and rapidly thickens 

and forms a gel on contact with the physiological concentrations of cations. Various beneficial 

properties have been reported when using LA gellan as an in situ gelling system for the delivery 

of a range of drugs via the nasal route (Table 3.1). 
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Table 3.1 Shows investigated in situ gellan formulation. 

 

Gellan Formulations Active Pharmaceutical Ingredients Target of Action Reference 

In situ gelling – Liquid Carvedilol Systemic (Saindane et al., 2013) 

In situ gelling – Liquid Mometasone furoate Local (Cao et al., 2009) 

In situ gelling – Liquid Sumatriptan succinate Systemic (Galgatte et al., 2014) 

In situ gelling – Liquid Gastrodin Systemic (Cai et al., 2011) 

In situ gelling – Liquid Scopolamine hydrobromide Systemic (Cao et al., 2007) 

In situ gelling – Liquid Huperzine A Systemic (Tao et al., 2006) 

In situ gelling – Liquid Influenza vaccine Systemic (Bacon et al., 2000) 

In situ gelling – Microparticle Metoclopromide hydrochloride Systemic (Mahajan and Gattani, 2009a) 

In situ gelling – Microparticle Ondansetron Systemic (Mahajan and Gattani, 2009b)  
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 Bacon et al., (2000) reported a moderate enhancement to the local and serum antibody 

response in mice after gellan nasal administration of influenza vaccine. A few years later 

Jansson et al., (2005) reported that a LA gellan based in situ gelling intranasal formulation 

enhanced epithelial uptake of high molecular weight fluorescein dextran. Compared with oral 

and subcutaneous formulations, gellan based nasal spray formulations of scopolamine 

hydrobromide showed superior action in significantly minimising motion sickness symptoms 

(Cao et al., 2007). Saindane et al., (2013) reported that LA gellan base nasal spray enhanced 

bioavailability and improved therapeutic efficacy of carvedilol. They also demonstrated that 

the carvedilol was released in sustained manner but was dependent on the concentration of 

gellan used. A concentration of 1 % w/w LA gellan had zero order release indicating 

concentration independent drug release while, 0.5 % and 0.25 % w/w LA gellan showed first 

order release indicating concentration dependent drug release. This was explained by the gellan 

gel eroding more rapidly at low concentrations, in contrast to the higher concentrations of LA 

gellan which tend to form stronger gels that are less likely to erode.  

3.4.3 Ocular Drug Delivery 

 The eye is a complex site of application because of its unique anatomic and 

physiological structure. There are challenges to deliver drugs to the eye such as restricted 

precorneal permeability and rapid clearance of the dose by the action of both the lacrimal fluid 

and blinking, which results in a short precorneal contact time. Therefore, only a small amount 

of the medication is delivered and maintained in the place of action (Gurtler et al., 1995). This 

subsequently leads to poor bioavailability (Osmelak et al., 2014). Due to these limitations, in 

situ gelling systems with the prolonged drug release are particularly useful as the elastic 

properties of gels can resist ocular drainage. Indeed, the application of in situ gel formulations 

has been shown to sharply increase precorneal residence time for up to several hours. This was 

first exploited by Pramoda et al., (1979) who used the pH dependent sol-gel transition of 

http://www.sciencedirect.com/science/article/pii/S0378517314001902#bib0240
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xanthan locust bean gum mixtures. The formulation exists as a liquid at low pH (~pH 3.5) and 

then undergos gelation at the physiological pH of the eye (~pH 7). This approach increased 

residence time and improved bioavailability, however, application of acidic formulation to the 

eye could be problematic and uncomfortable to the patient (Chastaing et al., 2001). A more 

patient friendly approach to deliver the drugs to the eye via in situ gelling systems is to use LA 

gellan, which utilises the ionic composition of lacrimal fluid to induce gelation. Indeed, 

ophthalmic formulations are the most frequently encountered examples of LA gellan in current 

commercial pharmaceutical use (Grover and Smith, 2009). Lacrimal fluid consists of a 

complex mixture of proteins, vitamins, sugars and lipids but importantly also contains a range 

of electrolytes that include Ca2+, Na+ and K+ at concentrations sufficient to crosslink gellan 

gum. In addition, the gels formed by LA gellan in particular are optically transparent which 

has obvious benefits for ocular application. It is well tolerated and can be used without the risk 

of any toxic effects (Rozier et al., 1989). One such example that is currently on the market is 

Timoptic XE® which uses LA gellan-based formulation for the sustained release of timolol 

maleate. In comparison with the standard timolol solution, the gellan containing in situ gelling 

formulation enhances the bioavailability of the drug by three- to four-fold when applied to the 

cornea (Rozier et al., 1989). 
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Table 3.2 Ionic content of tear fluid (adapted from Grover and Smith, 2009). 

Electrolyte Concentration mMol/L 

Calcium  0.57 

Sodium  ~140 

Potassium 15 - 29 

Chloride  120 - 135 

Bicarbonate  26 

 

 Gan et al., (2009) designed a microemulsion in situ electrolyte triggered gelling system 

for ophthalmic delivery of a lipophilic drug (cyclosporine A). Cyclosporine A loaded 

microemulsion was prepared using castor oil, solutol HS 15 (surfactant), glycerol and water. 

This microemulsion was then dispersed in a LA gellan solution to form the final microemulsion 

in situ electrolyte-triggered gelling system. In vivo studies revealed that the area under the curve 

AUC0 - 32h of corneal cyclosporine A for the microemulsion LA gellan system was 

approximately 3-fold greater than for a cyclosporine A emulsion.  

 The rate of the gel formation after drop installation in the eye is very important, as a 

solution or weak gel will also be prone to elimination by the fluid of the eyes. Rate of gelation 

depend on the rate of electrolyte binding by the gel, which is dependent on osmotic gradient 

across the surface of the gel. Osmolality of the solution therefore, might have an influence on 

the rate of the sol-gel transition and subsequent efficacy of the formulation, since the precorneal 

residence time of the gels depend on rheological properties. Carlfors et al., (1998) investigated 
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contact time of gellan formulations at concentrations ranging from 0.4 - 1.2 % w/w, with 

glycerol added at varying concentrations 0 – 4 % w/w to obtain a formulation with different 

osmolality. Irrespective of gellan concentration, contact time decreased with increasing 

osmolality. At 1.5 % w/w glycerol, contact time increased with increasing gellan 

concentrations. In the absence of glycerol, however, contact time was independent on gellan 

concentrations (Carlfors et al., 1998). 

3.4.4 Topical Drug Delivery 

 In the past, many of natural materials such as honey pastes, plant fibers, and animal fats 

were used to cover wounds and burns in order to prevent infection and to enhance healing. 

Nowadays, biopolymers play a significant role in modern wound dressings. Amin et al., (2012) 

investigated developing a wound dressing using polyelectrolyte complex of chitosan-LA gellan 

containing levofloxacin and titanium dioxide (TiO2). In this system, the LA gellan composite 

supported the growth of fibroblasts (L929) cells and had excellent antibacterial properties. 

These results were in good agreement with (Lee et al., 2010), as they also have shown that 

gellan films have similar behaviour on L929 cells (Amin et al., 2012). Gellan-silver wound 

dressing films have also been designed to provide similar antimicrobial activity of topical 

silver, with advantages of a sustained silver release and a reduced number of dressing changes 

(Cencetti et al., 2012). 

 A new hydrogel based on gellan gum and sulphated hyaluronic acid was recently 

introduced by Cencetti et al., (2011) to prevent post-surgical adhesion. The characterization of 

the new material demonstrated that the gellan, due to its high-viscosity, could effectively act 

as a barrier with a long in situ residence time. The material showed good stability for 12 months 

at room temperature. Formulation with 2 % w/w gellan showed high elastic modulus values 

which facilitates a long residence time (Cencetti et al., 2011). The transparent gels that LA-
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gellan form are another advantage of topical application especially when used as a wound 

healing material as it possible to view the underlying wound without removal of the dressing 

(Figure 3.7). 

 

Figure 3.7 1 % w/w LA gellan hydrogel highlighting the optically transparent properties when 

applied to the skin (adapted from Smith et al., 2016). 

3.5 Gellan Gum Fluid Gels 

 As discussed in section 3.3, on cooling a solution of gellan gum in presence of 

monovalent or divalent cations (LA gellan), under quiescent conditions results in the formation 

of a three dimensional structured gel network. By applying a shear force during this gelation 

process, however, it is possible to form ‘fluid gels’, which are suspensions of gelled particles 

dispersed in a non-gelled continuous medium (as described in Chapter 1 section 1.5).  

 Typically, ion concentrations required to gel gellan are in the region of ~100 mM for 

monovalent cations and ~5 mM for divalent cations, however, the strength of the gels produced 

depend on the concentration of gellan (Morris et al., 2012). Fluid gels have the ability to flow 

freely, whilst having mechanical spectra similar to those of typical gel networks (Bradbeer et 

al., 2014). Fluid gels are able to self-structure but they are unable to fully support themselves 

therefore have been termed weak gels. The main different between true gels and fluid gels is 

that true gel respond to external force by fracturing which cannot be reversed whilst a fluid gel 
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responds to external force by flowing and restructuring again to the same initial status when 

the applied stress is removed. Therefore, conventional gels that show ‘weak’ gel properties in 

that they have low moduli are not classified as “fluid gels” (Morris et al., 2012). Mechanical 

spectra of “weak gels” normally differs from those of true gels in having greater frequency-

dependence of G′ and G″ and smaller separation between the two moduli. 

 There has been an intensive research focus on formation and evaluation of gellan gum 

fluid gels. Sworn et al., (1995), studied the properties of gellan gum gels prepared under shear 

force (fluid gels) and gels prepared under quiescent condition (true gels). A fixed concentration 

of gellan (0.125 % w/v) was incorporated in solutions of NaCl (ranging from 0-18 %) or CaCl2 

(ranging from 0 to 0.7 %) measured at 25 °C. The onset temperature for gelation on cooling, 

as determined by measurements of  increased with increasing ionic concentration to a 

maximum with both calcium and sodium ions. The maximum transition temperature observed 

with Na+ (55.1 °C) was greater than the maximum observed with Ca2+ (48 °C). The fluid gels 

produced, had a viscosity when measured at 25 °C that follows the same trends as those of gel 

strength in the quiescent gels, relative to the ion concentrations used. In other words, the 

stronger the gel prepared under quiescent conditions, the higher the viscosity of the same 

system when prepared as a fluid gel (Sworn et al., 1995). By controlling the concentration of 

LA gellan and the ions used in the gelation it is possible for the fluid gels to be prepared as 

homogeneous structured liquids at a specific range of concentration, especially in combination 

with sodium ions. For example, a smooth fluid gel capable of suspending herbs was produced 

for the food industry by using 1 % NaCl with as little as 0.03 % gellan gum. At high 

concentrations, however, i.e., those used to create very strong quiescent gellan gels, the fluid 

gels produced have cloudy or grainy appearance described as the 'crushed ice' effect (Sworn et 

al., 1995).  
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 Caggioni et al., (2007), have used video imaging to study the internal rheology of both 

sheared and un-sheared gellan gel structures. They found that the microgel particles created as 

a result of cooling under shear have identical internal structures as the continuous gel networks 

obtained on quiescent cooling. The failure of gellan gum “fluid gel” networks formed under 

shear have been recently investigated by Garcia, et al., (2011). LA gellan solutions (0.025 – 

0.25 wt.%) were used alongside a fixed NaCl concentration (0.22 M) at 80 °C, and the sol-gel 

transition temperature on cooling was recorded at ~ 41 °C. “Fluid gels” were then formed at 

700 rpm shear rate at 41 °C for 1 min. Fluorescently labelling the gellan using fluoresceinamine 

enabled the observation of irregularly-shaped particles (0.1 – 1 mm dimension at 0.25 wt.% 

gellan) which were roughly 10 times larger than those reported by Caggioni et al., (2007) where 

vigorous and prolonged shearing was performed. 

 Garcia et al., (2011) also reported that the mechanical spectra of the fluid gels were 

comparable to the quiescent gel mechanical spectrum, with G′ being approximately an order of 

magnitude greater than G″, and with both moduli displaying slight increases with increasing  

angular frequency (ω) (Morris et al., 2012). Furthermore, Sworn et al., (1995) stated that the 

mechanical spectra for a 0.125 % gellan fluid gel with 6 % NaCl exhibit typical gel-like 

response at all frequencies tested (0.01- 10 Hz). Gellan gum fluid gels exhibit pseudoplastic 

flow behaviour when subjected to steady state shear, similar to that of entangled polysaccharide 

solutions. Particle-particle interactions between gellan micro-particles, is strong enough 

therefore, to require a high stress to yield flow (Sworn et al., 1995). This rheological behaviour 

would account for the remarkable suspending power of gellan gum fluid gels, which is evident 

at much lower concentrations than with other polysaccharides. 

 These functional mechanical properties coupled with the sensitivity of gellan to 

physiological concentrations of ions and the potential for tuneable and bioresponsive behaviour 

http://www.sciencedirect.com/science/article/pii/S0268005X12000057#bib15
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make fluid gels prepared from gellan an attractive material to investigate potential applications 

as various dosage forms. The following chapters propose the potential use of gellan gum fluid 

gels as an oral sustained release liquid, mucoadhesive nasal spray and a topical gel. 
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Results presented in this chapter are published in the International Journal of Pharmaceutics 
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CHAPTER 4 EVALUATION OF LA GELLAN GUM FLUID 

GELS AS MODIFIED RELEASE ORAL LIQUIDS 

4.1 Introduction 

 There is an ever increasing demand for the development of age-appropriate dosage 

forms, especially for paediatric patients and older adults who have difficulties in swallowing 

tablets. This is most apparent in modified release formulations where the functional excipients 

responsible for controlling drug release can become ineffective due to manipulation prior to 

administration to children. Even over the counter, antipyretic formulations have an increased 

risk of side effects in children. Worryingly, there are very few oral modified-release drug 

delivery platforms suitable for administration to paediatrics.  

 Generally, for children and other patient groups who find swallowing is difficult, syrup-

based oral liquids are the preferred dosage form. However, formulating these dosage forms to 

have modified release properties can be challenging. Recently researchers have looked to 

develop such dosage forms using enteric coated microparticles (Dalmoro et al., 2010) and ion 

exchange resins (Cuna et al., 2000) however these systems are often costly, suffer from poor 

mouth feel and are only suitable for use with specific drugs. There is therefore a real need for 

alternative formulations. A potential route to achieve modified release in oral liquids is by 

using polysaccharide solutions which undergo a sol-gel transition on exposure to stomach acid. 

Indeed, several authors have evaluated the oral sustained delivery of drugs such as 

theophylline, ambroxol, paracetamol and cimetidine from various in situ gelling 

polysaccharides which have included xyloglucan (Miyazaki et al., 2003; Itoh et al., 2008; Itoh 

et al., 2010), pectin (Kubo et al., 2004; Miyazaki et al., 2005; Kubo et al., 2005; Itoh et al., 

2008), and sodium alginate (Kubo et al., 2003; Itoh et al., 2010). Although these systems have 
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shown some promise as drug delivery vehicles, there are issues associated with their use such 

as leaching of water soluble drugs and lengthy gastric retention due to large bulk gel formation 

in situ (Kubo et al., 2003).These issues could potentially be overcome by using LA gellan gum 

fluid gels. The ability of LA gellan gum to form acid-insoluble gels renders it a particularly 

attractive candidate for developing oral bioresponsive drug delivery systems.  

 LA Gellan gum has previously been investigated in the form of gastro-retentive 

controlled release (Babu et al., 2010), enteric release (Smith et al., 2010) and as floating in situ 

gelling systems (Rajinikanth and Mishra, 2008). Furthermore, oral sustained delivery using 

gellan solutions (which formed acid gels in the stomach) has also been explored and drug 

bioavailability released from these gels formed in situ was similar to that of a commercially 

available suspension (Kubo et al., 2003). 

 Unlike tablet or capsule formulations, there is no standard technique for measuring the 

dissolution properties of oral liquids. Biopharmaceutical measurements of such formulations 

are usually performed using modified USP dissolution apparatus which can lead to high 

variability. This is a particularly important issue when designing medicines for children as 

extrapolating adult biopharmaceutical measurements is difficult due to the difference in 

gastrointestinal physiology in paediatric patients (Batchelor et al., 2013). Moreover, large 

variations in physiology within paediatric populations are also evident from birth through to 

adolescence (Bowles et al., 2010) which further complicates the design of suitable 

biopharmaceutical methodologies. There are several physiological factors such as gastric 

transit time and gastric pH variation that could have an effect on bioresposnsive formulations, 

consequently, effecting drug release and subsequent absorption. Therefore, it is necessary to 

understand the physiology of gastrointestinal tract (GI) and how this may impact on the 

behaviour of LA gellan fluid gels during passage through GI tract (Charman et al., 1997; Pang, 

2003). 
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 This chapter provides an overview of the anatomy and physiology of GI tract and the 

physical, chemical and pharmacological properties of ibuprofen (which is the drug used in this 

investigation). LA gellan gum fluid gel formulations loaded with ibuprofen, are then evaluated 

as a modified release oral liquid. The fluid gel formulations were investigated over a range of 

pH and acid exposure times to evaluate how variations in gastric physiology may impact on 

the mechanical properties of these physiologically responsive fluid gels, and how this relates 

to release behaviour. 

4.2 Anatomy and Physiology of Gastrointestinal Tract 

 The gastrointestinal tract (GI) provides the pathway for both digested food and digested 

medication through the body. From the anatomical point of view, the GI is a muscular tube 

approximately 6 m long starting from the oral cavity and terminating at the anus (Ashford, 

2007). The wall of GI tract is similar throughout the tract and is lined by a mucous membrane. 

Most parts of the mucous membrane are covered by a viscoelastic thin a layer of mucus. This 

layer is continuously replaced with freshly secreted mucus that acts as a protective layer and 

mechanical barrier. The GI tract is anatomically subdivided into different sections and 

subsections. The four parts of GI tract are oesophagus, stomach, small intestine and large 

intestine or colon (Dressman et al., 1990; Ashford, 2007) (Figure 4.1). The average transit time 

from the mouth to the anus is approximately 24 h.  
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Figure 4.1 Illustration of the main anatomical regions of the GI tract (adapted from Ashford, 

2007). 

4.2.1 Oesophagus 

 The oeophagus is a thick muscular layer about 250 mm long and 20 mm in diameter, 

connecting oral cavity with the stomach. It is vertical in orientation with a few curves along its 

path. It passes down through the neck along a central path in front of the trachea and is 

connected to the stomach at cardiac orifice. The oesophagus lumen has pH ranging from 5 to 

6. Following oral ingestion, material travels down the oesophagus (few seconds transit time) 

to the stomach (Patti et al., 1997; Ashford, 2007). 

4.2.2 Stomach 

 The stomach is defined as the dilated part of GIT, located between the oesophagus and 

small intestine. It is about 200 mm in length and has a surface area of 0.2 m2 (Minami and 

McCallum, 1984). The stomach has two major functions, act as temporary storage for ingested 

materials and to decrease the size of ingested solids to a uniform mass by acid – enzyme 

digestion (Hoichman et al., 2004). Also, the stomach has a protective role, reducing the risk of 
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noxious agents reaching the intestine (Ashford, 2007). The stomach produces gastric secretions 

when food is ingested. These gastric secretions consist of hydrochloric acid (HCl) (~0.1 M), 

pepsin (secreted in the form of the precursor pepsinogen), gastric lipase, gastrin and mucus, 

which together, make up the main components of gastric fluid.  

 The volume of gastric fluid in the stomach ranges from ~50 mL in the fasted state to 

~1500 mL in fed state (Bannister, 1995; Waugh et al., 2001). The pH of the stomach varies 

and is dependaent on the amount of HCl excreted, which in turn, depends on whether the person 

is in the fasted state or fed state. Under fasted conditions, the pH of gastric fluid is usually 

between 1 and 3. In the fed state, however, the gastric fluid is buffered to a less acidic pH 

ranging from 3 to 7 (Ashford, 2007). The fed state gastric fluid pH eventually returns to fasted 

state values after approximately 2 to 3 hours. There are also variations in gastric pH between 

age groups, for instance, the pediatric gastric pH value is neutral at birth and it may not reach 

comparable adult values until two years (Bowles et al., 2010; Batchelor et al., 2013). 

 The movement of materials from the stomach to the small intestine is controlled by 

pyloric sphincter which relaxes to release the stomach contents into the small intestine 

(Deshpande et al., 1996). The gastric transition is controlled by the migrating motor complex 

(MMC) and digestive motility pattern. The MMC are cyclic waves of electrical activity that 

triggers the recurring motility pattern of peristalsis that occurs in the smooth muscle tissue of 

the stomach and small intestine (Deloose et al., 2012). Starting at the lower oesophagus the 

MMC occurs in the fasted state and spreads over the whole stomach and small intestine ending 

at the terminal region of the ileum. MMC cycle can be divided into 4 phases, starting with 

phase I (basal phase) which is a prolonged period of approximately 45 min to one hour. Phase 

II (pre-burst phase) lasts for approximately 40 to 60 min. During phase I and II the stomach 

exhibits low mechanical activity compared with the most active Phase III (burst phase) 

(Minami and McCallum, 1984). Phase III only lasts for approximately 4 to 6 min and consists 
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of intense regular contractions originating from the duodenum or antrum and that migrates 

distally, which helps to empty the stomach contents into the small intestine (Soppimath et al., 

2001). The cycle is completed in Phase IV, which lasts for a maximum of 5 min as the activity 

declines between Phase III and Phase I of consecutive cycles. A complete cycle lasts between 

90 to 120 min. In the fed state, however, the MMC is interrupted by the digestive motility 

cycle, which starts within 5 to 10 minutes after food ingestion. The muscle contractions during 

this phase exhibit relatively low mechanical activity and can lasts for up to 4 hours (Pawar et 

al., 2011). 

 Gastric emptying of pharmaceutical dosage forms depends therefore, on which cycle is 

active at the time of drug is administered. In the fed state, after the comminution of food to 

small sizes (between 1 and 2 mm) the residence time depends on the type of material consumed. 

Liquids and small particles will be easily transferred into the small intestine while solids and 

larger particles are released much more slowly (Conway, 2005). The gastric emptying time of 

pharmaceuticals can therefore range from 5 to 120 min (Ashford, 2007). There are also 

variations in gastric emptying times between age groups. This is most dramatically highlighted 

in neonates who have a much slower and more irregular gastric emptying time compared with 

that of older children and adults (Bartelink et al., 2006; Bowles et al., 2010; Batchelor et al., 

2013; Bonner et al., 2015). 

4.2.3 Small Intestine 

 The small intestine begins at the pyloric sphincter of the stomach and stretches to the 

ileocecal junction where it attaches to the large intestine. It is approximately 4 to 5 m in length 

and it is divided into three sections, with each section varying in length (Ashford, 2007). The 

duodenum which contributes about 250 mm of the length, the jejunum which is approximately 

2 m in length and the ileum, the final part of the small intestine, which contributes 

approximately 3 m of the length (Barrett et al., 2010).  
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 The fluid within the small intestinal consists of pancreatic juice (containing several 

digestive enzymes), bicarbonate and bile secretions which collectively are responsible for 

elevation and fluctuation of pH values in the intestinal fluid which are usually between 6 and 

7.4. These differences in pH values provides a variable environment for drug formulations 

(Ashford, 2007; Ibekwe et al., 2008) which need to be considered when designing dosage 

forms. The main functions of the small intestine are digestion and absorption of nutrients. Most 

drugs are absorbed in the small intestine because of the large surface area which is ~ 200 m2. 

This large surface area is due to the presence of villi and microvilli which increases the 

absorptive area manyfold (Pang, 2003). The wall of the small intestine has a rich network of 

both blood and lymphatic vessels which also facilitate absorption. Once absorbed, nutrients 

and drugs are carried via the hepatic portal vein to the liver and then to the systematic 

circulation. Therefore, drugs absorbed from the small intestine are susceptible to first pass 

metabolism in the liver (Ashford, 2007). Transit times through the small intestine have been 

shown to vary considerably lasting from 1 to 6 hours, with the average 3 hours (McConnell et 

al., 2008). The small intestine transit time is controlled by propulsive movements of peristalsis 

which unlike the stomach does not discriminate between solid and liquid contents of the 

intestine therefore does not discriminate between liquid and solid dosage forms. The transit 

time within the small intestine is particularly important as this is the main site of drug uptake 

from orally administered medicines and can therefore impact on bioavailability especially in 

controlled release systems or with drugs that dissolve slowly in intestinal fluid (Ashford, 2007). 

4.2.4 Large Intestine 

 The large intestine is the terminal part of GI tract and consists of the caecum,  the 

appendix, the colon and the rectum. The diameter of the large intestine is twice the diameter of 

the small intestine and it makes up 25% of the total length of the GI tract (Ashford, 2007; 

Ibekwe et al., 2008). The main function of the large intestine is the formation of feces. The 
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absorption of ions and water, the secretion of mucus and the extensive metabolic action of 

microorganisms that are present in the large intestine are all involved in the production of feces 

which is stored until it is eliminated by the process of defecation (Macfarlane and Macfarlane, 

1997; Ashford, 2007). 

 There are a huge number of different bacteria types are colonized inside the colon. This 

huge bacterial mass is responsible for metabolic activity that includes hydrolysis of fatty acid 

esters and enzymatic degradation of certain polysaccharides. This process can cause the pH of 

the colon to reduce to between pH 6 and pH 6.5 (Ibekwe et al., 2008). The colonic transit of 

drugs can range from 2 to 48 hours depending on the type of the dosage form, eating habits, 

frequency of defecation and disease state (Ashford, 2007). 

4.3 Ibuprofen 

 Ibuprofen is an over the counter antipyretic and analgesic drug. It belongs to the family 

of nonsteroidal anti-inflammatory drugs (NSAIDs). Scientifically, ibuprofen is known as (RS)-

2-(4-Isobutylphenyl) propionic acid with molecular formula is C13H18O2 (Potthast et al., 2005) 

(Figure 4.2). Ibuprofen was launched in the UK in 1969 and was the first member of the 

propionic acid derivatives to be introduced as an alternative to Aspirin. It is a non-selective 

inhibitor of cyclo-oxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) which prevents the 

synthesis of prostaglandins, which play an important role in the development of inflammation, 

fever and pain. It has been reported that the anti inflammatory properties of ibuprofen is weaker 

than those of some other NSAIDs (Bushra and Aslam, 2010) but remains one of the most 

comminly used.  

 Ibuprofen is a white to off-white crystalline powder, with a melting point of 

approximately 74 °C. It is practically insoluble in water (< 0.1 mg mL-1), but it is readily soluble 

in organic solvents and in aqueous alkaline solutions. Ibuprofen has a pKa of 4.9 and an n-
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octanol/water partition coefficient of 11.7 at pH 7.4 (Potthast et al., 2005). Ibuprofen is usually 

marketed as tablets with a potency of 200, 400 and 800 mg or in liquid formulations with the 

potency of 100 mg/5mL (e.g. Calprofen®). It is used to treat moderate to mild pain related to 

dysmenorrhea, headache, postoperative dental pain, soft tissue disorder management of 

spondylitis, rheumatoid arthritis and osteoarthritis. 

 As with other NSAID, ibuprofen with high and frequent dose can cause gastrointestinal 

damage, ranging from minor damage such as dyspepsia to severe damages such as ulceration 

and GI bleeding. The mechanism of NSAIDs induced GI damage is not entirely understood, 

but it can be divided into a direct topical damage and indirect systemic action. For topical 

damage, there are two proposed theories, disruption of the epithelial barrier which allows the 

back-diffusion of acid into the mucosa caused by the “trapped ion” effect where ionised 

NSAIDs accumulate in gastric epithelial cells, a reduction in the hydrophobicity of the mucosal 

surface and the uncoupling of oxidative phosphorylation (Becker et al., 2004). Another 

mechanism has been suggested whereby NSAIDs reduce mucus and bicarbonate production 

impacting upon the decreasing the effectiveness of the juxtamucosal pH gradient in protecting 

the gastric epithelium (Allen et al.,1993; Phillipson et al., 2002 Baumgartner, et al., 2004; 

Wallace, 2008). 

 NSAIDs can also induce gastric ulceration by suppression of gastric prostaglandin 

synthesis and rendering the gastric mucosa more susceptible to the damaging effects of stomach 

secretions (acid, pepsin) including, in some cases, the NSAID itself (Wallace, 2008). One of 

the techniques used to try to prevent NSAIDs related GI upset is by using modified release 

drug delivery systems such as enteric coated tablets. There are limited options however, for 

liquid based controlled release NSAIDs formulations. The aim of the work in this chapter was 

to evaluate the potential of LA gellan gum fluid gels as a modified release oral liquid 

formulation for ibuprofen.  



106 
    

 

Figure 4.2 Structural formula of ibuprofen (adapted from Bushra and Aslam, 2010). 

4.4 Materials and Methods 

4.4.1 Materials 

 LA gellan gum (KelcogelTM) was kindly donated by CP Kelco (USA). Ibuprofen 

powder (Ibuprofen 38) was obtained from BASF (Germany). All other materials were obtained 

from Sigma–Aldrich (Poole, UK).  

4.4.2 Methods 

4.4.2.1 Preparation of Fluid Gels 

 Fluid gels were prepared by adding LA gellan at concentrations from 0.1 to 1 % w/w 

to deionised water at 85 °C while stirring. Once fully dissolved, the solutions were allowed to 

cool to ~60 °C then a paediatric dose of ibuprofen (20 mg mL-1) was added and the pH was 

adjusted to 7.4 using 1 M NaOH. Solutions were then cooled further at 2 °C min-1 whilst being 

sheared using Bohlin Gemini Nano HR rheometer at a shear rate of 500 s-1. To evaluate the 

potential of varying the particle size during formulation, fluid gels were prepared with changes 

to the processing conditions. To investigate the effect of cooling rate, 0.75 % w/w LA gellan 

gum fluid gels were prepared as described above at a fixed shear rate of 500 s-1 with cooling 
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rates of 0.5 °C min-1, 2 °C min-1 and 10 °C min-1. Similarly, to investigate the effect of shear 

rate, 0.75 % w/w LA gellan gum fluid gels were prepared at a fixed cooling rate of 2 °C min-1 

using shear rates of 100 s-1, 500 s-1 and 1000 s-1.  

4.4.2.2 Preparation of Control Formulations 

4.4.2.2.1. Viscosity Test Controls 

 To ensure the LA gellan fluid gel formulations had a suitable viscosity profile a 

marketed paediatric ibuprofen suspension was used as a standard comparison and is referred to 

as C1. 

4.4.2.2.2 Dissolution Test Controls  

 To ensure ibuprofen could be fully dissolved in the dissolution media (PBS pH 7.4) at 

the formulated dose following 20 min exposure to acid at pH 1.2 (and that any delayed release 

was not an effect of the pKa of the ibuprofen), control solutions were prepared by adding the 

drug (20 mg mL-1) to deionized water at ~60 °C which was cooled to room temperature and 

the pH adjusted to 7.4 using 1 M NaOH (referred to as C2). 

 To ensure the same grade of ibuprofen was used in all dissolution experiments 

formulations based upon standard ibuprofen suspensions were prepared as a control by adding 

0.3 % w/w xanthan gum and 0.2 % w/w sorbitol to deionized water / glycerol 50:50 at 85 °C 

while stirring (to prevent any interference with UV analysis no preservatives, colouring agents 

or flavours were added). Once fully dissolved, the solution was allowed to cool to ~60 °C then 

a paediatric dose of ibuprofen (20 mg mL-1) was added. The suspension was then cooled to 

room temperature and referred to as C3.  
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4.4.2.3 Viscosity Measurements 

 Viscosity measurements of all samples were performed at 25 °C using a Bohlin Gemini 

Nano HR rheometer using a 55 mm parallel plate geometry and across a shear rate range of 1 

s-1 to 1000 s-1.  

4.4.2.4 Microscopy  

 Fluid gel samples were imaged using an optical microscope (Keyence VHX digital 

microscope RZ x 250 - x2500 real zoom lens in high dynamic range). Samples were prepared 

for imaging by dispersing the fluid gel samples in 10 mL of 50 mM CaCl2. The suspension was 

then centrifuged at 13000 rpm and the pellet was then examined under the microscope. CaCl2 

was used as the diluent during the processing of the sample prevent aggregation of the gel 

particles during the centrifugation step. 

4.4.2.5 Dissolution Studies 

 A modified USP I apparatus (baskets at a stirring rate of 100 rpm) was used to study in 

vitro drug release. Each formulation (5 mL) was placed into dialysis tubing (12500 MWCO) 

then submerged (within the baskets) in small volume vessels containing 200 mL dissolution 

media at pH values of 1.2, 2, 3, 4, 5, and 7.4 for 20 min. The media was subsequently changed 

to pH 7.4 phosphate buffered saline (sodium chloride 137 mM, potassium chloride 2.7 mM, 

disodium hydrogen phosphate 10 mM and potassium dihydrogen phosphate 2.0 mM). All 

buffers used were prepared at the same ionic strength and pH 7.4 was used to represent the 

highest pH the formulations may encounter during intestinal transit (terminal ilium).  

 To understand how release in simulated intestinal conditions was affected by residence 

time in acidic media, samples were also exposed to pH 1.2 and pH 2 environments for time 

periods increasing from 5 min to 120 min before changing the media to pH 7.4 and recording 

the subsequent release. 
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4.4.2.6 Determination of Ibuprofen Content by Ultraviolet (UV) Spectroscopy 

  Ibuprofen standards were prepared at concentrations ranging from 10 to 1000 g mL-1 

and measured using a UV spectrophotometer at a wavelength of 254 nm to generate calibration 

curves which were plotted at all pH values tested. The concentration of ibuprofen released from 

the sample was determined from the corresponding calibration curves. All experiments were 

carried out in triplicate. A typical calibration curve for ibuprofen dissolved in phosphate buffer 

saline (PBS) pH 7.4 is shown in Figure 4.3. 

 

Figure 4.3 Mean calibration curve for ibuprofen preparation in PBS measured at λ 254 nm. 

Values represent mean ± SD (n=3). 

 The linearity of an analytical procedure is its ability (within a given range) to obtain 

test results which are directly proportional to the concentration (amount) of analyte in the 

sample. The linearity is determined by the correlation coefficient r2. 

 Limit of detection (LOD) and limit of quantification (LOQ) are important parameters 

that are used to discribe the smallest concentrations of a sample that can be reliably measured 

by an analytical procedure. LOD is defined as minimal concentration of analyte that can be 
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detected with a certain degree of confidence and LOQ is defined as the minimal concentration 

that can be measured with acceptable accuracy. LOD and LOQ are quantified by using 

equations 4.1 and 4.2 respectively:  

LOD = 3.3 σ/S                 Eq. 4.1 

LOQ = 10 σ/S                 Eq. 4.2 

where σ is the standard deviation of Y-intercept and S is the slope of the calibration curve.  

 The accuracy of an analytical method is defined as the degree of closeness between the 

accepted true value in the analyte samples and the actual result obtained from the experiment. 

Accuracy can be measured by analysing samples with known concentrations and comparing 

the measurement values with real value. Accuracy studies were evaluated at 50 %, 100 % and 

150 % of the assay concentration in triplicate. For all samples, it was found that the relative 

standard deviation (RSD) < 1 % which is accepted as a satisfactory value for RSD. 

 The precision of an analytical method is defined as the measure of how close the data 

values are to each other from the number of measurements under the same analytical 

conditions. The intra- and inter-day repeatability was determined through analysis of the 

samples on three different days in triplicate. Like accuracy, for precision the RSD for all 

samples were within the satisfactory range (RSD < 1 %). The UV method validation for the 

ibuprofen assay presented in table 4.1. 
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Table 4.1 UV method validation for ibuprofen assay. 

Wavelength 254 nm 

Correlation coefficient (r2 ) 0.99 

LOQ 6.00 g/mL 

LOD 1.98 g/mL 

Precision and accuracy RSD < 1 % 

 

4.4.2.7 Rheological Measurements 

 The following rheological measurements were performed to investigate how gel 

stiffness changes during the in vitro dissolution tests and were used to facilitate correlation of 

stiffness (G′) to drug release.  

 To understand how elastic modus (G′) was affected by residence time in acidic media, 

5 mL of the formulation was placed into a dialysis tube (12500 MWCO) then submerged in 

200 mL 0.1 M HCl at pH 1.2 for time periods increasing from 5 to 120 min before loading the 

sample on the rheometer.  

 To study the impact the change of dissolution media (to PBS pH 7.4) has on the stiffness 

of the gel following exposure to acid, another set of samples was also exposed to pH 1.2 for 10 

and 60 min (batch A and B respectively). The medium was then changed to pH 7.4 for a period 

of time ranging from 30 to 600 min for batch A and 60 to 1200 min for batch B, prior to loading 

on the rheometer. 

 All rheological measurements were carried out using a Bohlin Gemini Nano HR 

rheometer. Oscillation mode was used to determine viscoelasticity of the gel. Mechanical 

spectra were obtained by taking measurements of the elastic (storage) modulus (G′), viscous 
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(loss) modulus (G′′) and complex dynamic viscosity (*). The measurements were recorded at 

10 rad s-1 angular frequency and 0.5 % strain using a 55 mm parallel-plate geometry with a 0.5 

mm gap. The strain amplitude chosen was within the linear viscoelastic region of the samples 

determined by amplitude sweeps. All measurements were taken at 37 °C.  

4.4.2.8 Statistical Analysis 

 Statistical significance between test groups was set at p < 0.05 and was determined by 

one-way analysis of variance (ANOVA) and Tukey post-hoc test using Primer of Biostatistics 

version 4. 

4.5 Results 

4.5.1 Rheological Measurements 

 LA gellan fluid gels loaded with 20 mg mL-1 ibuprofen were formed using a rheometer 

which enabled charcaterisation during manufacture with real-time measurements of the 

changes in viscosity that occur during formation. Figure 4.4 shows the relative viscosity vs. 

temperature of a 0.1 %, 0.375 %, 0.5 %, 0.75 % and 1 % w/w LA gellan fluid gel during 

manufacture. As the temperature is decreased there is an increase in viscosity that occurs at the 

onset of gelation of the LA gellan, a maximal viscosity is then reached which is the temperature 

beyond which no further gel particles are formed (Tmax), followed by a plateau in viscosity as 

the formed particles are smoothed. The results indicate that the viscosity of the fluid gels are 

concentration dependant; onset of gelation increases from ~40 °C for 0.1 % LA gellan to ~45 

°C for 1 % LA gellan. Furthermore, the final viscosity (at 500 s-1 and 20 °C) of the fluid gels 

increases with increasing concentration from ~0.01 Pas for 0.1 % w/w LA gellan up to ~0.1 

Pas for 1 % w/w LA gellan. 
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Figure 4.4 Viscosity of LA gellan during fluid gel formation (cooling at 2 °C min-1 at a shear 

rate of 500 s-1) for 0.1 % w/w (filled diamonds) 0.375 % w/w (open squares) 0.5 % w/w (open 

circles) 0.75 % w/w (filled triangles) and 1 % (black crosses) w/w LA gellan loaded with 20 

mg mL-1 ibuprofen (Mahdi et al., 2014) (used with permission). 

 To evaluate the potential of LA gellan fluid gels as an oral liquid, samples were tested 

and compared with a proprietary ibuprofen suspension. The viscosity profiles of LA gellan 

fluid gel formulations (0.1-1 % w/w) are shown in (Figure 4.5A) and have a shear thinning 

viscosity profile. The 0.75 % fluid gel sample exhibited a viscosity profile that was most similar 

to that of a standard ibuprofen paediatric suspension. In addition, the yield stress was sufficient 

to allow inversion of the fluid gel sample without any flow however following mild shaking of 

the sample it is easily poured on a dispensing spoon as illustrated in (Figure 4.6). This 

formulation was therefore used in further investigations. Dynamic small deformation 

oscillatory measurements of G′ and G″ (Figure 4.5B) highlight the viscoelasticity of the 0.75 

% w/w fluid gel with G′ slightly greater than G″ across a range of frequencies typical of ‘weak 

gel’ rheological behaviour.  
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Figure 4.5 A) Viscosity vs. shear rate at 25 °C for 0.1 % w/w (filled diamonds) 0.375 % w/w 

(open squares) 0.5 % w/w (open circles) 0.75 % w/w (filled triangles) and 1 % w/w (black 

crosses) LA gellan loaded with 20 mg mL-1 ibuprofen. Black line indicates a proprietary 

ibuprofen paediatric suspension. B) Mechanical spectrum (0.5 % strain; 37 °C) of a 0.75 % 

w/w LA gellan fluid gel loaded with 20 mg mL-1 ibuprofen showing variation of G′ (filled 

squares), G″ (open squares) and * (filled triangles) with angular frequency (Mahdi et al., 

2014) (used with permission). 

 

Figure 4.6 Images illustrating the shear thinning behaviour of an ibuprofen loaded fluid gel 

sample with the ability to invert without any flow (Mahdi et al., 2014) (used with permission). 

 Figure 4.7 shows the effect of cooling rate on the viscosity during formation of a 0.75 

% w/w fluid gel at a fixed shear rate of 500 s-1 (Figure 4.7A) and the effect of shear rate at a 

fixed cooling rate of 2 °C min-1 (Figure 4.7B). The viscosity of the fluid gels during formation 

increased with increasing cooling rates and viscosity decreased when shear rate was increased. 
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Figure 4.7 Viscosity of 0.75 % w/w LA gellan loaded with 20 mg mL-1 ibuprofen during fluid 

gel formation using (A) different cooling rates; 10 °C min-1 (open circles), 2 °C min-1 (filled 

diamonds), 0.5 °C min-1 (open triangles) at a shear rate of 500 s-1 and (B) different shear rates 

cooling at 2 °C min-1; 1000 s-1 (open diamonds), 500 s-1 (filled diamonds), 100 s-1 (black 

crosses) (Mahdi et al., 2014) (used with permission). 

4.5.2 Effect of LA Gellan Gum Concentration  

 Microscopy images in (Figure 4.8) reveal particle sizes of the fluid gels are highly 

dependent on concentration. At 0.1 % LA gellan the particles were in the region of 1-5 m and 

were generally spherical in shape (Figure 4.8A). As the concentrations increased to 0.5 % w/w 

the particles had a larger, binomial size distribution with a population of micron sized particles 

(similar to 0.1 % w/w) and a population and a population in the region of 10-20 m (Figure 

4.8B). At 0.75 % w/w the particles appear less polydisperse than at 0.5 % and more spherical 

with the majority of the population in the region of 20 m (Figure 4.8C). When the 

concentration is increased further to 1 % w/w the particles were much larger and irregular in 

shape (Figure 4.8D). 
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Figure 4.8 Light microscopy images of LA gellan fluid gels prepared at different concentrations 

loaded with 20 mg mL-1 ibuprofen A) 0.1 % w/w, B) 0.5 % w/w, C) 0.75 % w/w and D) 1 % 

w/w (Mahdi et al., 2014) (used with permission). 

4.5.3 Effect of Cooling Rate and Shear Rate  

 Figure 4.9 shows the effect of increasing cooling rates on the particle size of 0.75 % 

w/w at fixed shear rate of 500 s-1 (Figure 4.9A-C) and the effect of increasing shear rates on 

the particle size of same concentration of LA gellan at fixed cooling rate of 2 °C min-1 (Figure 

4.9D-F). These micrographs indicate that a smaller particle size can be obtained by decreasing 

cooling rate and increasing the shear rate when forming the fluid gels. 
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Figure 4.9 Light microscopy images of 0.75 % w/w LA gellan loaded with 20 mg mL-1 

ibuprofen prepared at a shear rate of 500 s-1 using different cooling rates (A-C); A) 0.5 °C min-

1, B) 2 °C min-1 and C) 10 °C min-1 and different shear rates cooling at 2 °C min-1 (D-F); D)100 

s-1, E) 500 s-1 and F) 1000 s-1 (Mahdi et al., 2014) (used with permission). 

4.5.4 Dissolution Behaviour 

 To investigate the effects of exposure to low pH had on the fluid gels a 5 mL sample of 

each was dispensed into 0.1 M HCl at pH 1.2. A proprietary ibuprofen suspension (C1) was 

also used for comparison. The proprietary formulation formed a cloudy dispersion in the acid 

which is attributed to the poor solubility of ibuprofen at low pH. The LA gellan fluid gel on 

the other hand formed an acid gel with the ibuprofen remaining associated with the gellan. This 

remained as large aggregated gel pieces for over 6 hours (Figure 4.10). This was supported by 

dissolution experiments which showed no ibuprofen was released at pH 1.2 and in Figure 4.11 

where ibuprofen crystals can be seen to remain entrapped within the fluid gel particles. 
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Figure 4.10 Appearance of A) proprietary ibuprofen paediatric suspension and B) ibuprofen 

loaded 0.75 % gellan fluid gel following incubation in 0.1M HCl at pH 1.2 for 6 hours. 

 

Figure 4.11 Light microscopy images of LA gellan fluid showing crystallised ibuprofen 

entrapped within gel particles (adapted from Mahdi et al., 2014). 
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 Figure 4.12 illustrates the in vitro release of ibuprofen from different LA gellan fluid 

gel concentrations ranging from 0.0 % (ibuprofen alone) to 0.75 % w/w determined at pH 1.2 

then the release media was changed after 20 minutes to PBS pH 7.4 . The results show that 

there was a small quantity of ibuprofen released in acidic media for the gels containing lower 

concentrations of LA gellan and control formulations (C2 and C3). At 0.75 % w/w however, 

there was no release in acid medium and subsequent release was retarded in PBS for 30 min. 

 

Figure 4.12 Cumulative % release of ibuprofen from fluid gels prepared at different 

concentrations of LA gellan compared with a standard ibuprofen suspension. Dotted line 

indicates the point the media was changed from 0.1 M HCl at pH 1.2 to PBS at pH 7.4. Values 

are represented as mean ± SD (n=3) (Mahdi et al., 2014) (used with permission). 

 To account for the wide variation in stomach pH found in paediatric patients, release 

characteristics were determined in vitro at different pH values (1.2, 2, 3, 4, 5 and 7.4) then the 

release medium was changed after 20 minutes to PBS pH 7.4. Figure 4.13 highlights that the 

release of ibuprofen from the LA gellan fluid gel was strongly affected by pH of the dissolution 

media. There was no significant difference (p > 0.05) in release between samples initially 

immersed in pH 7.4, pH 5 and pH 4. At pH 3 however, subsequent release of ibuprofen was 
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retarded. The retardation of release became progressively more pronounced as the pH was 

dropped further, to the point where exposure to pH 1.2 for just 20 min delayed the onset of 

drug release for a further 60 min when transferred to pH 7.4. 

 The duration of exposure to acidic pH was shown to dramatically affect the lag time to 

onset of release following transfer to pH 7.4. Figure 4.14 illustrates the linear relationship 

between onset of release in pH 7.4 and the preceding exposure time at pH 1.2 and pH 2. The 

onset of release in pH 7.4 was shown to be dramatically affected by the acidity of the initial 

dissolution medium taking almost 3 hours after exposure to pH 1.2 (for 2 h) compared with 30 

min to onset of release following exposure to pH 2 (for 2 h). This lag time was shown to be 

dependent on gel stiffness.  

 

Figure 4.13 Cumulative % release of ibuprofen from 0.75 % w/w LA gellan fluid gel loaded 

with 20 mg mL-1 ibuprofen exposed to different acidic pH values for a period of 20 min. Dotted 

line indicates the point the media was changed to PBS at pH 7.4. Values are represented as 

mean ± SD (n=3) (Mahdi et al., 2014) (used with permission). 
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Figure 4.14 Relationship between onset of release at pH 7.4 and preceding exposure time in 

simulated gastric fluid at pH 1.2 (filled diamonds) and pH 2 (open diamonds) (Mahdi et al., 

2014) (used with permission). 

 Figure 4.15 shows onset of release time rises exponentially with increase in G′, which 

in turn, is dependent on exposure time to pH 1.2 as highlighted in Figure 4.16. Interestingly, 

when the fluid gel was transferred to PBS pH 7.4 following 10 min in pH 1.2, the gel stiffness 

continued to increase, albeit at a slower rate, until a plateau was reached (following 90 minutes 

in pH 7.4) where G′ was approximately 1200 Pa. When the gel was exposed to pH 1.2 for 60 

minutes the stiffness was almost an order of magnitude greater than after 10 minutes exposure. 

However following transfer to PBS pH 7.4 the stiffness gradually decreased over a period of 

180 min to the plateau where G′ is approximately 1200 Pa.  
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Figure 4.15 Exponential relationship between the onset of release in PBS pH 7.4 as a function 

of gel stiffness (G′) (Mahdi et al., 2014) (used with permission). 

 

Figure 4.16 Effect of time exposed to pH 1.2 on gel stiffness (G′) and subsequent stiffness on 

transfer to pH 7.4. The red line (filled diamonds) indicates the stiffness of the gel when exposed 

to pH 1.2 (0.5 % strain; 37 °C at 10 rad s-1). The green dashed line (open triangles) represents 

the stiffness of the gel in PBS at pH 7.4 following 10 min exposure to pH 1.2. The blue dashed 

line (filled squares) represents the stiffness of the gel in PBS at pH 7.4 following 60 min 

exposure to pH 1.2 (Mahdi et al., 2014) (used with permission). 
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 The relationship between gel stiffness and release in pH 7.4 is highlighted in Figure 

4.17. Following 60 min exposure to 0.1 M HCl the gel stiffness was 8000 Pa which gradually 

decreased on transfer to PBS. No released drug was detected until the stiffness of the gel had 

reduced to ~2000 Pa (which took 2 hours), following which zero order release 0.15 mg min-1 

was apparent (Figure 4.17A). When the sample was exposed to pH 1.2 for 10 min, the gel 

stiffness was only ~600 Pa and gradually increased to ~1300 Pa on transfer to PBS pH 7.4. In 

this system the zero order drug release occurred within 40 minutes and at an increased rate of 

0.44 mg min-1 (Figure 4.17B). After this time, the gel disintegrated and was no longer included 

in the study. These results highlight that increased gel stiffness can reduce the release rate. 

 

Figure 4.17 Cumulative % release (primary vertical axis) and gel stiffness (G′) (secondary 

vertical axis) versus time following A) 60 min exposure to pH 1.2 and B) 10 min exposure to 

pH 1.2 (Mahdi et al., 2014) (used with permission). 
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4.6 Discussion 

 The use of fluid gels as a platform technology for pharmaceutical formulations has great 

potential due to the tuneable mechanical properties and ease of manufacture. It has been 

previously shown that fluid gels can be prepared with many different biopolymers including 

gelatin (de Carvalho and Djabourov, 1997), agarose (Norton et al., 1998), -carrageenan 

(Garrec and Norton, 2012; Gabriele et al., 2009) and LA gellan (Sworn et al., 1995). Most of 

these investigations have been focused towards applications in foods to improve stability and 

improve texture. Here we have investigated the potential of LA gellan fluid gels as a modified 

release oral drug delivery system. 

 The preparation of fluid gels is a simple process, producing gelled particles that are 

dispersed in an un-gelled medium. Production using a rheometer allows the cooling rate and 

the shear rate to be accurately controlled and the characteristic change in viscosity monitored 

(the process however, is easily carried out on a larger scale using application of shear). When 

the LA gellan fluid gels were formed containing ibuprofen, the onset of ordering increased with 

increasing gellan concentration (Figure 4.4) which can be explained by the consequential 

increase in concentration of the counterions to the charged group of the polymer promoting 

aggregation (Morris, et al., 2012). Interestingly, this onset of ordering occurs at a slightly lower 

temperature that has been previously reported for LA gellan fluid gels without a drug load 

(Sworn et al., 1995). This is thought to be due to the competitive inhibition by the negatively 

charged ibuprofen binding some of the Na+ ions (introduced during pH adjustment with NaOH) 

reducing the overall ionic strength of the bulk, consequently reducing the viscosity and gelation 

temperature.  

 Once manufactured, the bulk fluid gels containing ibuprofen showed shear thinning 

behaviour similar to that of a proprietary paediatric oral ibuprofen suspension with the 0.75 % 
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w/w fluid gel having the closest match (Figure 4.5). However, unlike the proprietary paediatric 

oral ibuprofen, at very low shear rates the viscosity was sufficient for the preparation to be 

inverted without any steady state flow as illustrated in Figure 4.6. This is due to the weak gel 

properties of the ibuprofen LA gellan fluid gel (Figure 4.5B) which are thought to be a result 

of gel particle – gel particle interactions (Garrec et al., 2013) which give a larger yield stress 

to the fluid gels compared with the proprietary formulation. 

 Oral liquid formulations with relatively high values of zero shear viscosity that rapidly 

shear thin to enable dispensing would be greatly beneficial by suspending the drug more 

efficiently during product storage, while not impacting on the ease of administration. 

Furthermore, producing oral liquid formulations with modified release properties would 

provide an alternative dosage form for paediatric patients in particular. The physical properties 

of LA gellan fluid gels can be tuned by simply changing the concentration of the polymer or 

by the rate of cooling and/or shear rate during fluid gel formation (Figure 4.7). This has 

previously been demonstrated in food based applications with agarose and carrageenan fluid 

gels (Norton et al., 1998; Gabriele et al., 2009). This allows the particle size to be controlled 

as shown in Figures 4.8 and 4.9.  

 LA gellan has previously shown promise as a sustained release oral liquid which 

undergoes in situ physical crosslinking (gelation) within the gastric fluid (Miyazaki et al., 

1999). In the present study, the LA gellan fluid gel oral liquid was formulated to have a 

physically cross-linked microstructure prior to exposure to an acidic gastric environment. 

When the fluid gel comes into contact with the low pH an acid gel is formed from the previously 

un-gelled LA gellan in the continuous phase, effectively immobilising the pre-gelled particles. 

This system was shown to prevent the dispersion of ibuprofen in the gastric fluid as occurred 

with a proprietary oral liquid and the drug remained associated with the LA gellan for over 6 

hours at pH 1.2 (Figure 4.10).  



126 
    

 A problem often associated with hydrogel drug delivery systems is drug leaching 

through the pores of the gel. In this system however, the poor solubility of ibuprofen resulted 

in precipitation within the gel when exposed to 0.1M HCl pH 1.2, illustrated by the opaque 

nature of the gel (Figure 4.10) with the precipitated drug particles remaining entrapped within 

gel particles as illustrated in Figure 4.11. 

 To develop a modified release oral liquid designed particularly for children it is vitally 

important to take into account paediatric gastrointestinal physiology when designing in vitro 

biopharmaceutical tests. Variables such as stomach acid volume, gastric pH and small intestinal 

transit time, which are important for drug release, are well documented (Bowles et al., 2010). 

For example, in paediatric patients the age at which gastric acid secretion reaches adult values 

is often quoted as 6 months, however in reality the pH remains variable and the time that 

intragastric pH is maintained below pH 2 increases as a function of age. Nagita et al., (1996) 

reported that gastric acidity rapidly increased from infancy to 3 years of age and then slowly 

increased and attained adult levels (< pH 2 for 65 % of a 24 h period) by adolescence (age 14).  

 In vitro release data shown in Figure 4.12 reveal that even at concentrations as low as 

0.1 % w/w, LA gellan fluid gels have the ability to retard the release of ibuprofen following 20 

min exposure to 0.1 M HCl pH 1.2 compared with the control formulations (C2 and C3). There 

is however, still some ibuprofen (approximately 5 %) released while exposed to pH 1.2. 

Increasing LA gellan concentration further slows release and at 0.75 % w/w, no ibuprofen was 

measured during acid exposure. Moreover, when the medium was changed to pH 7.4, there 

was a lag time of a further 30 min before onset of release. 

 The effects of varying acidic pH on the subsequent release of ibuprofen from the 0.75 

% w/w LA gellan fluid gel following transfer to pH 7.4 was also evaluated. It was found that 

the release of ibuprofen from a 0.75 % w/w LA gellan fluid gel was strongly affected by the 
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pH of the dissolution media (Figure 4.13). There was no significant difference (p > 0.05) in 

release between samples that were initially exposed to pH 4, pH 5, and pH 7.4. However, as 

the pH was decreased below the pKa of the carboxyl group of the LA gellan (~3.4), an acid gel 

was formed, preventing the dissolution of the gel, thus retarding ibuprofen release. This lag 

time became progressively more pronounced as the pH was dropped further and the acid gel 

strengthened; exposure to pH 1.2 for just 20 min prevented the onset of release for a further 60 

min following transfer to pH 7.4. Moreover, there was a linear relationship between onset of 

release in pH 7.4 and the preceding exposure time at pH 1.2 for up to 120 min (Figure 4.14). 

A linear relationship was also found following exposure to pH 2 although the effect was 

substantially less pronounced. This was thought to be due to fewer H+ ions present and an 

increase in ionised carboxylate groups on the gellan at pH 2 compared with pH 1.2. This will 

result in formation of a weaker acid gel with an associated increase in hydration and dissolution 

of the ibuprofen when transferred to pH 7.4. Indeed, the stiffness of the gel had an exponential 

relationship with onset of release in pH 7.4 media (Figure 4.15). Furthermore, the stiffness of 

the LA gellan was dependent on the duration of exposure to acidic pH which has also recently 

been reported by Bradbeer et al., (2014).  

 Interestingly, regardless of the duration of acid exposure, the stiffness of LA gellan 

fluid gels eventually plateaued at approximately 1200 Pa when transferred to pH 7.4 (Figure 

4.16). Subsequently, the gel stiffness as a function of exposure time relates to in vitro release. 

When the gel was exposed to pH 1.2 for 60 min, G′ was approximately 8000 Pa and release 

was retarded, probably due to the time required for ion exchange to occur between the H+ cross-

linked gel and the phosphate buffer. This exchange gradually reduces the gel strength until 

drug release is enabled. Moreover, the diffusion of the phosphate buffer into the gel also 

increases the solubility of the ibuprofen by increasing the pH within the gel. This is thought to 

have facilitated drug diffusion into the surrounding release medium increasing release rate as 
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highlighted, with a much faster release rate of 0.44 mg min-1 when the exposure time in acid 

was only 10 min compared with 0.15 mg min-1 following 60 min exposure (Figure 4.17). This 

dependence on acidic residence time and the strength of acidic pH may be problematic in 

determining reproducible pharmacokinetics between patients where gastro intestinal 

physiology can vary. Therefore, strategies to overcome this issue would need to be addressed 

if such a carrier was to be used in clinical practice. However, by understanding the three way 

relationship between acid exposure time, gel stiffness and onset of release, there is potential 

for controlling release behaviour by tuning the fluid gels to have a specified stiffness at a 

particular pH and duration of exposure. Furthermore, producing formulations using this 

relatively simple method is particularly attractive and by careful design of processing 

parameters, the size, shape, viscoelasticity and behaviour in physiological fluids of the 

microgel particles can be manipulated to suit the application. This could open the door to 

multiple applications of fluid gel systems in pharmaceutical technology in addition to use as 

modified release oral liquids. 

4.7 Conclusion 

 In this study we have demonstrated that LA gellan fluid gels have the potential to be 

formulated with a similar viscosity profile to that of a marketed paediatric oral liquid with a 

yield stress sufficient that the sample can be inverted without any immediate flow but shear 

thins sufficiently by shaking, to be poured onto a dispensing spoon. Furthermore, we have 

shown that it is possible to modify the release of ibuprofen from LA gellan fluid gels, providing 

a simple and effective technology in formulating modified release oral liquids. The release 

behaviour of ibuprofen from LA gellan fluid gels in a simulated intestinal pH environment was 

dependent on the stiffness of the gel following exposure to simulated gastric pH media. The 

stiffness, and hence drug release, could be controlled with exposure time and acidity of the 

simulated gastric pH environment. This work highlights the potential application of LA gellan 
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fluid gels as modified release oral liquids while at the same time, illustrates the importance of 

understanding how subtle differences in patient physiology could impact on drug release from 

such formulations. A realization of this is very important especially when designing medicines 

for children. 
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CHAPTER 5 DEVELOPMENT OF MUCOADHESIVE 

SPRAYABLE GELLAN GUM FLUID GELS 

5.1 Introduction 

 Liquid nasal sprays are useful dosage forms for local and systemic delivery but often 

suffer from poor retention, dripping out of the nose or down the back of the throat, which leads 

to reduced bioavailability (Jansson et al., 2005). A way to address this problem is by 

formulating nasal sprays that contain polymers that are mucoadhesive. These polymers possess 

suitable rheological properties that enable them to flow during administration and then to 

adhere to mucosal tissue, consequently, increasing the residence time and improving 

bioavailability. 

 A complete understanding of the mucoadhesion mechanism is not entirely available. It 

is generally accepted, however, that inter-diffusion and interpenetration takes place between 

the chains of the mucoadhesive polymer and mucus gel network, which creates sufficient 

contact for entanglement. Secondary chemical bonds are then formed between the polymer 

chains and mucin molecules (Hägerstrom et al., 2003). Several polysaccharides have been 

investigated as mucoadhesive polymers due to their intrinsic physicochemical properties that 

facilitate mucoadhesion such as hydrophilicity, numerous hydrogen bonding functional groups 

and viscoelastic properties when hydrated. 

 Gellan gum is a promising polymer for use in nasal formulations because of its ability 

to form a gel in situ on exposure to physiological concentrations of cations. This helps to retain 

drugs on mucosal surfaces for a prolonged time and is currently used for this purpose in ocular 

formulations of timolol maleate as discussed in section 1.4.2. 
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 Indeed, Mahajan and Gattani, (2009a) developed a nasal spray from solid 

microparticles using LA gellan gum prepared by spray drying technique, while, Cao et al., 

(2009) developed liquid nasal formulations using LA gellan solution. Although these systems 

have shown some promise as vehicles for nasal delivery, there are issues such as erosion and 

rapid clearance by microvilli. These issues could potentially be overcome by using fluid gels 

(Figure 5.1). 

 

Figure 5.1 Illustration showing gellan gum fluid gel droplet deposition. 

 This chapter provides an overview of the anatomy and physiology of the nasal cavity 

and the physical, chemical and pharmacological properties of caffeine (which used as a model 

drug in this investigation). LA gellan, HA gellan and a 50:50 LA HA gellan blend fluid gel 

formulations (loaded with caffeine), were then evaluated as mucoadhesive nasal sprays and 

compared with gellan solutions that gel in situ. The rheological properties and in vitro 

measurements of retention time on mucosal tissue were also investigated. 
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5.2 Anatomy and Physiology of Nose 

 The nose is the primary entrance to the respiratory tract, allowing air to enter into the 

body for respiration. The nasal cavity is 120-140 mm deep, runs from the nasal vestibule to the 

nasopharynx and further leading to the trachea and oesophagus. The nasal cavity is split into 

two symmetrical halves by a cartilaginous wall called the nasal septum (Harkema et al., 2006; 

Chaturvedi et al., 2011). The nose has a surface area of around 160 cm2 and a total volume of 

up to 20 mL (Taylor, 2007). In addition to the breathing and olfactory functions of the nose, it 

also provides protective systems by warming, filtering and humidifying of the inhaled air into 

the lungs (Ghori et al.,2015). It is the primary organ for filtering out particles in the inspired 

air, and it also provides a first-line immunological defence as it brings the inspired air into 

contact with the mucous-coated membrane. The nose has three main regions: vestibular, 

turbinate and olfactory regions (Figure 5.2).  

 

Figure 5.2 Illustration of the nasal cavity anatomy (adappted from Arora et al., 2002). 

 The vestibular region is the anterior part of the nose, and it is the narrowest part of the 

nasal cavity. The vibrissae cover most of this area which renders it capable of filtering out 

airborne particles with an aerodynamic particle size larger than 10 m that may be inhaled with 

air. In the vestibular region, the surface lining changes from skin, at the first part of the passage, 

http://pubs.sciepub.com/ajps/3/5/2/index.html#Figure1
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to a stratified squamous epithelium (Chien et al., 1989; Chaturvedi et al., 2011) which are 

keratinised with sebaceous glands. Therefore, it can withstand the harmful effects of any 

inhaled toxic materials and is very resistant to dehydration. However, it allows only limited 

permeation of substances and is therefore not a preferred site for the administration and 

absorption of drugs (Taylor, 2007). 

 The turbinate region is a significant vascular part of the nose and constitutes 

approximately 80 to 90 % of the total area of the nasal cavity. This region is divided into three 

main sections; the superior turbinate, the middle turbinate and the inferior turbinate. The 

inferior and middle region of turbinate are large, and they nearly cover the entire length of the 

main nasal passage. The superior turbinate is much smaller compared with the inferior and 

middle turbinate, being only about half the length of the latter two regions (Figure 5.2). The 

turbinate region is lined with a pseudostratified columnar epithelium. It is composed of the 

mucus-secreting cells, ciliated cells, nonciliated cells and basal cells (Figure 5.3). Each ciliated 

and non-ciliated cell is covered with approximately 300 non-motile microvilli, which are 

responsible for increasing the surface area, thus, this is the region where the drug absorption is 

optimal (Chien et al., 1989).  

http://pubs.sciepub.com/ajps/3/5/2/index.html#Figure1
http://pubs.sciepub.com/ajps/3/5/2/index.html#Figure2
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Figure 5.3 Cell types of the nasal epithelium with covering mucous layer showing ciliated cells 

(A), non-ciliated cells (B), goblet cells (C), mucous gel-layer (D), sol layer (E), basal cells (F) 

and basement membrane (G) (Ugwoke et al., 2005; Ghori et al.,2015). 

 There are approximately 100 motile cilia covering each ciliated cell which are 

responsible for mucus transport, so mucociliary clearance prevails. Once drugs (as particles or 

in solution) find their way to the mucociliary area, they are cleared from the nasal cavity and 

then have limited access to the absorption site (Prajapati et al., 2015).  

 The olfactory region is an area comprising about 8 % of the total surface area of the 

nasal epithelium and is made of a non-ciliated, pseudostratified columnar epithelium. It is 

important for transporting drugs to the brain and cerebrospinal fluid (CSF). There is a mucus 

layer of 5 µm in thickness covering the epithelium cells which traps unwanted particles (Illium, 

2012 and Ghori et al., 2015). 

5.3 Nasal Mucociliary Clearance  

5.3.1 Cilia  

 Cilia are a small hair-like motile projections extending from the epithelium cells with 

each cilia measuring between 5 to 10 m in length and from 0.1 to 0.3 m in width (Taylor, 
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2007). The number of cilia is about 100 per ciliated cell. The function of these cilia is to 

facilitate mucus movement towards nasopharynx by regular waves a beats with an average 

frequency of 10 Hz. The cilia beats have three phases, an effective stroke, during which the 

cilia are extended maximally, the rest phase, in which they are parallel to the cell surface, and 

the recovery stroke (Marttine et al., 1998).  

 The ciliary beat frequency can be increased or decreased by alteration one or more of 

the following factors: physical factors (such as temperature, humidity and air flow), 

pharmacological factors (such as intracellular Ca2+and cAMP levels, and extracellular ATP), 

mechanical and chemical factors (such as viscosity of a formulation and bioadhesion) as well 

as to the disease state of the nose (Marttine et al., 1998; Gizurarson, 2015). 

 For instance, the ciliary beat frequency of human nasal cells in vitro move faster with 

rising temperature, from 5 to 20 °C. Between 20 and 45 °C, it was found to stabilize at around 

8–11 Hz, or around 14 Hz between 32 and 37 °C (Clary-Meinesz et al., 1992; Marttin et al., 

1998). 

5.3.2 Mucus 

 A thin layer of viscoelastic fluid (mucus) covers most of the respiratory part of the nasal 

cavity. The mucus possesses some physiological functions including the enzymatic and 

physical protection of the mucosa and the transportation of particulate matter due to its 

adhesive nature. The nasal mucus is secreted mainly by submucosal glands. These glands are 

composed of both mucous cells and serous cells (Marttin et al., 1998). The viscoelastic fluid is 

split into two mucus layers, the periciliary layer which is produced by serous cells, composed 

of a low viscosity fluid with a length slightly shorter than cilia and the ciliary layer which 

produced by mucous cells, composed of more viscous (gel-like) layer which covers the 

periciliary layer. The mucus is also secreted by goblet cells which secrete mucous granules by 
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exocytosis. Once excreted, granules hydrate and swell resulting in the formation of a viscous 

gel-like material that exhibits non-Newtonian behaviour (Marttin et al., 1998; Bansil and 

Turner, 2006; Cone, 2009). The volume of nasal secretion ranges from 1.5 - 2 L per day and 

the pH of the nasal secretions ranges from 5.0 to 6.5 (Washington et al., 2000; Taylor, 2007). 

The low vscosity fluid layer helps cilia during its recovery phase to return back to initial 

position and to intiate new effective stroke, while, the viscous layer helps forgien material to 

stick on it to move it to the GIT (Marttin et al., 1998).  

 The mucus secretion is a complex mixture of many substances. Water composes 90-95 

% of the mucus. The remainder of the mucus secreations consist of ions (such as potassium, 

sodium, phosphate, magnesium, chloride and bicarbonate), (Bansil and Turner, 2006; Burke, 

2014), < 1 % of lipids (such as fatty acid phospholipid, cholestrol), 2 % mucin and 1 % proteins 

(which serve as defensive agents and consist of immunoglobulins and albumins, lysosymes and 

lactoferrins) (Kaliner et al., 1984; Bansil and Turner, 2006 ). 

 The main macromolecule in mucus secretion is the mucin, and the physiochemical 

properties of the mucus is likely to correlate with physiochemical properties of the mucin. 

Mucin is a high molecular weight glycoprotein ranging from 5 × 105 up to 2 × 107 g mol-1, 

crosslinked with disulphate bridges, physical entanglement and ionic bonds (Bansil and Turner, 

2006; Abodinar et al., 2016). Mucin is responsible for viscoelastic properties of mucus and it 

is composed of 20 % protein, and 80 % carbohydrates, namely N-acetylgalactosamine, N-

acetylglucosamine, fucose, galactose, and sialic acid (N-acetylneuraminic acid) and traces of 

mannose and sulphate. Sialic acid (N-acetylneuraminic acid, Neu5Ac) and sulphate (SO4
2−) 

gives the mucin polymer negative charge, with a ζ-potential of ~ −4.4 to −10 mV at nasal pH 

(5.0 - 6.5) (Abodinar et al., 2016). 
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 Central protein segments of mucin are composed of repeats units that are rich in serine, 

threonine, and proline. In addition, it has been shown that the oligosaccharide chains link to 

the hydroxyl side chains of serine and threonines of the protein core via O-glycosidic covalent 

bonds and arranged in a “bottle brush” shape about the protein core (Bansil and Turner, 2006; 

Yuba and Kono, 2014). 

5.3.3 Mucociliary Clearance  

 Mucociliary clearance is non-selective defence system used to remove and prevent 

foreign substances from reaching the lower airways. Inhaled foreign particles and drugs are 

entrapped by the sticky mucus layer while ciliated cells provide the driving force to transfer 

them to the nasopharynx and ultimately to the GI tract. The cilia push the mucus towards the 

nasopharynx by frequently beating. The beat cycle begins, when the cilium is extended during 

the effective stroke phase, the tip of the cilia penetrates the mucus and transfers kinetic energy 

which induces slow movement of mucus. The tip then continues to the rest phase downwards 

into the periciliary fluid followed by the recovery phase which returns the cilia to the start 

position before the commencement of a new cycle (Figure 5.4) (Guirao and Joanny, 2007; 

Gizurarson, 2015) 

 Mucociliary clearance is therefore a combination of mucus entrapment and cilia 

mediated clearance. Therefore, mucociliary clearance depends upon factors that affect mucus 

production and beat frequency coordination of cilia. Average mucociliary transit time in 

humans has been reported to be between 12 to 15 min (Marttin et al., 1998).  
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Figure 5.4 Airway mucus secretion. 

5.4 Caffeine  

 Caffeine is the most widely consumed psychoactive drug. Caffeine (1,3,7-

trimethylxanthine) is a purine heterocyclic alkaloid with molecular formula C8H10N4O2 (Figure 

5.5). Caffeine is a natural product that can be extracted from several plants sources such as 

coffee and tea. Caffeine has pharmacological effects on the body that include enhancing 

alertness, relaxing bronchial smooth muscle, diuretic effects, stimulation of cardiac muscle and 

increase in metabolic rate. These stimulatory effects of caffeine are induced by blocking A1 

and A2 subtypes of the adenosine receptors. Adenosine is an endogenous neuromodulator and 

it is responsible for inhibitory effects on the nervous system. Caffeine therefore acts as an 

antagonist of the adenosine receptors reducing the inhibitory effects of adenosine at dopamine 

receptor thus, increased dopamine release and stimulating the central nervous system (CNS) 

(Solinas et al., 2002). 



140 
    

 

Figure 5.5 Caffeine structure (adapted from Agyemang-Yeboah and Oppong, 2013). 

 Caffeine at low and moderate doses has a positive pharmacological effect on human 

body. At high doses (more than 1.5 g), however, caffeine can lead to serious health problems 

such as elevation in blood pressure, and anxiety and caffeine withdrawal syndrome (consisting 

of fatigue and sedation) (Meredith et al., 2013). Caffeine is highly soluble in water. It is 

available as a white powder that is odourless with a bitter taste, it has a molecular weight of 

194.2 g mol-1 with a pKa 10.4 (Agyemang-Yeboah and Oppong, 2013). 

 Caffeine alone is not considered as an analgesic but in doses of 65 mg or higher it can 

be used as an analgesic adjuvant. Painkillers such as aspirin and paracetamol exhibit greater 

analgesic activity in combination with caffeine (Derry et al., 2012). This has been demonstrated 

by Palmer et al., (2010) who reported the benefit of paracetamol and caffeine combination over 

paracetamol alone formulations and that paracetamol/caffeine at a dose of 1000 mg/130 mg is 

efficient and safe for use in acute management of pain. 
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 5.5 Materials and Methods 

5.5.1 Materials 

 HA gellan (KelcogelTM) was kindly donated by CP Kelco (USA). LA gellan and 

caffeine were purchased from Sigma–Aldrich (Poole, UK). Phosphate buffer saline (PBS) was 

purchased from Fisher Scientific (UK). Fresh porcine mucosal tissue was donated from a local 

abattoir.  

5.5.2 Methods 

5.5.2.1 Preparation of Fluid Gel Formulations  

 Gellan gum fluid gels (LA, HA and LA HA blends) were prepared by adding precise 

amounts of HA and LA gellan to produce a 0.25 % w/w final polymer concentration in 

deionised water at 85 °C containing 2 mg mL-1 caffeine; sodium chloride (0.1 % 0.5 % and 1 

% w/w) was added to the hot caffeine-loaded gellan solutions at ~ 85 °C, as crosslinking 

cations, then loaded on to a Bohlin Gemini Nano HR rheometer and allowed to cool at 2 °C 

min−1 to 20 °C whilst being sheared at a shear rate of 500 s−1 using a 55 mm cone and plate 

geometry. Once cooled, the fluid gels were recovered and stored at room temperature prior to 

use. 

5.5.2.2 Preparation of Control Formulations (uncross-linked gellan)  

 Gellan solutions (LA, HA and LA HA blends) were prepared by adding precise 

amounts of HA and LA gellan to produce a 0.25 % w/w final polymer concentration in 

deionised water at 85 °C containing 2 mg mL-1 caffeine. This was allowed to quiescently cool 

to room temperature prior to use.  
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5.5.2.3 Rheological Measurements 

 All rheological measurements were performed using a Bohlin Gemini Nano HR 

rheometer (Malvern Instruments, Worcestershire, UK) fitted with a 55 mm cone and plate 

geometry and a Peltier thermal control system. 

5.5.2.2.1. Viscosity Measurements  

Viscosity measurements of all samples were taken at 20 °C across shear rates ranging 

from 1 s-1 - 1000 s-1 for 5 min. 

5.5.2.2.2. Yield Stress Determination 

 Stress sweeps were used to determine yield stress of different gel formulations to 

predict the stress required to initiate flow. The stress was gradually increased from 0.1 Pa to 

100 Pa at 10 rad s-1 angular frequency. All measurements were taken at 20 °C. 

5.5.2.2.3. Frequency Sweep Measurements  

 The rheological behaviour of the samples was evaluated in terms of the elastic (storage) 

modulus (Gʹ) and the viscous (loss) modulus (Gʹʹ) as a function of angular frequency (0.1–100 

rad s-1 angular frequency) to produce mechanical spectra of the samples. Measurements were 

taken at 20 °C and performed at 1 % strain (strain amplitude chosen was within the linear 

viscoelastic region of the sample determined from amplitude sweeps).  

5.5.2.4 Microscopy 

 Samples were imaged using an optical microscope (Keyence VHX digital microscope 

RZ x 250- x1500 real zoom lens, Milton Keynes, UK). Samples were prepared for imaging by 

spraying the samples on microscope slide from a nasal spray pump then examined under the 

microscope. 
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5.5.2.5 Preparation of Mucosal Membrane for Retention Studies 

 The outer muscle layers of fresh porcine oesophageal tissue were removed. The internal 

tissue was then cut into 2 x 4 cm longitudinal sections and stored at -20 °C until required. The 

tissue was allowed to defrost at room temperature before it was used. The tissue section was 

not washed prior to use as this process may have affected the surface properties and hence the 

adhesive interaction as described by Batchelor et al., (2002). The tissue section was discarded 

if residual surface debris was evident.  

 5.5.2.6 Retention Time Measurements 

 Drug retention time in phosphate buffer saline (pH 7.4, 34 °C) was studied using a 

bespoke mucoadhesion apparatus (Figure 5.6).  

 

Figure 5.6 Schematic representation of the model retention apparatus (adapted from Batchelor 

et al., 2002), A) gellan solution droplet B) gellan fluid gel droplets. 

 A sample of defrosted mucosal tissue (as prepared in section 5.5.2.5) was placed on the 

apparatus and the caffeine-loaded formulations (~100 µL) were sprayed from a mechanical 

nasal spray device onto the tissue. PBS was then perfused over the mucosal membrane at a rate 



144 
    

of 1 mL min-1. The PBS perfusate was collected at time points up to 60 min and caffeine content 

was measured using a RP-HPLC with UV detection at 272 nm. Drug retention on the surface 

was calculated using equation 5.1. 

[𝐶]−[𝐶𝑃]

[𝐶]
 × 100                           Eq. 5.1 

where [C] is the concentration of caffeine sprayed onto the tissue and [CP] is the concentration 

of caffeine detected in the PBS perfusate. 

5.5.2.7 Caffeine Assay 

 Chromatographic separation was performed on a Shimadzu System equipped with a 

SPD-20 AV Prominence UV/VIS detector, a LC 20 AT pump, and SIL-20A Prominence auto 

sampler. The data acquisition was carried out on a LC solution software integrator. The 

separation was performed using C18 L1, pH resistant (4.5 mm x 150 nm: 3.5μm) column 

(Waters, UK). Isocratic elution of the mobile phase with a composition of methanol/water (40: 

60) (v/v) was used. HPLC conditions for the caffeine assay are presented in Table 5.1. 

 Stock solutions of caffeine were prepared by dissolving 100 mg in 100 mL phosphate 

buffer saline pH 7.4. Standard solutions were prepared in concentrations between 2 μg mL-1 

and 20 μg mL-1 by diluting the stock solution with the mobile phase and were analysed in 

triplicate. Calibration standards were prepared by plotting the area under the curve (AUC) 

against the concentrations. Precision and linearity over the concentration range were assessed. 

Precision was calculated from the relative standard deviation (% RSD < 1) of the standard 

curve and linearity was assessed by the linear regression with r2 of 0.999. All compounds were 

identified by comparison of retention times obtained from the sample and standard solutions. 

LOD and LOQ were calculated as in section 4.4.2.6. HPLC validation method for caffeine 

assay presented in Table 5.2.  
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 Sample chromatogram of caffeine is shown in Figure 5.7; typical calibration curve 

constructed from peak area against concentration is shown in Figure 5.8. All chemicals used in 

this assay were of analytical grade; solvents were HPLC grade and were used as received 

without further treatment. HPLC grade water was utilized in the preparation of the mobile 

phases. The mobile phase was filtered and degassed by sonication using an ultrasonic bath 

(Fisher Scientific). All samples were analysed immediately. 

 

Figure 5.7 Typical chromatogram of caffeine detected at 272 nm. 
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Figure 5.8 Mean calibration curve for caffeine measured at λ=272 nm. Values represent mean 

± SD (n=3). 

Tablet 5.1 HPLC conditions for caffeine assay. 

Wavelength 272 nm 

Injection volume  100 m 

Flow rate 0.5 mL.min-1 

Run time  7 min 
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Tablet 5.2 HPLC method validation for caffeine assay. 

Peak tailing factor {𝑻𝒇 =
𝒂+𝒃

𝟐𝒂
} 1.2 

Retention time 5.2 min 

Limit of quantification {𝑳𝑶𝑸 = 𝟏𝟎
𝝈

𝑺
} 0.045 g/mL 

Limit of detection {𝑳𝑶𝑫 = 𝟑. 𝟑
𝝈

𝑺
} 0.016 g/mL 

Precision and accuracy RSD < 1 % 

 

5.5.2.8 Statistical Analysis 

 Statistical significance (p < 0.05) between test groups was determined by one-way 

analysis of variance (ANOVA) and Tukey post-hoc test using Primer of Biostatistics version 

4. 

5.6 Results  

 Fluid gels were prepared using a rheometer in order to have control of cooling and shear 

rate and the ability to characterize the viscosity during formation of the fluid gels. Figure 5.9 

shows cooling profile of a 0.25 % w/w HA, LA and 50:50 blend of gellan over range of NaCl 

concentrations. There was a general trend that showed HA gellan decreased in viscosity with 

an increase in ion concentration whereas the viscosity of LA gellan increased with increasing 

ion concentration. As shown in Figure 5.9A, in the absence of added ions, the HA gellan and 

the blend showed an increase in viscosity beginning at approximately 65 °C which 

corresponded with the onset of ordering of HA gellan, whereas no clear viscosity increase was 

detected for LA gellan. When increasing concentrations of NaCl were added (0.1 %, 0.5 % and 

1 % w/w), the temperature at the onset of viscosity increase in HA gellan and the blend, shifted 

to increasingly higher temperatures. Moreover, the LA gellan also showed an increase in 
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viscosity and temperature of onset when NaCl was added, which would be expected with 

increasing NaCl concentration (Figure 5.9B-D). For the blend two transitions were evident, 

one corresponding to the HA gellan ordering and one corresponding to the LA gelation.  

 

Figure 5.9 Viscosity of gellan gum during fluid gel formation at 0.25 % w/w gellan (cooling at 

2 °C min-1 at a shear rate of 500 s-1) for 0.0 % (A), 0.1 % (B), 0.5 % (C) and 1 % (D) w/w NaCl 

loaded with 2 mg mL-1 caffeine (Mahdi et al., 2015) (used with permission). 

 The results indicate that the NaCl has a potential effect on the viscosities of the fluid 

gel. The onset of gelation for HA gellan and the 50:50 LA HA gellan blend increased from ~65 

°C for the gellan solutions without sodium ions to ~78, 85 and 89 °C at 0.1 %, 0.5 % and 1 % 

w/w NaCl respectively. The onset of gelation of LA gellan changed from a slight increase in 

viscosity for the LA gellan to a clear sharp transition about ~35 °C at 0.1 % w/w NaCl. The 

onset of gelation of LA gellan increased further with increasing NaCl concentration to ~43 °C 
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and 46 °C at 0.5 % and 1 % w/ NaCl respectively. Furthermore, the final viscosity of LA gellan 

fluid gel increased from ~0.006 Pas in the absence of NaCl, to ~0.020 Pas at 0.5 % w/w NaCl, 

whereas, the final viscosity of HA gellan fluid gel decreased from ~0.045 Pas without NaCl to 

a similar level as the LA gellan at 0.5 % w/w NaCl.  

 Interestingly, the final viscosity of the LA HA gellan blend fluid gel stayed the same at 

all the salt concentrations tested. The viscosity profile of a 0.25 % w/w HA gellan, LA gellan 

and blend solutions without salt and for 0.5 % w/w NaCl are shown in Figure 5.10A and were 

all found to have a shear thinning viscosity profile. Figure 5.10B shows the viscosity of the HA 

gellan, LA gellan and 50:50 LA HA gellan blend fluid gel formulations with 0.5 % NaCl and 

the comparative un-crosslinked solutions at 500 s-1. The HA gellan fluid gel sample with 0.5 

% NaCl exhibited a viscosity profile that was most similar to the 50:50 LA HA gellan blend 

fluid gel and 50:50 LA HA gellan without NaCl (un-crosslinked). For this reason, 0.5 % NaCl 

was used to prepare the fluid gels in all further experiments. The effect of 0.5 % NaCl on the 

rheological properties of the fluid gels was further investigated using small deformation 

rheological measurements.  

 

Figure 5.10 Viscosity vs. shear rate at 20 °C for 0.25 %w/w gellan at 0.5 % NaCl fluid gel and 

for un-crosslinked gel, B) Viscosity measurements at 20 °C at a shear rate of 500 s-1 of gellan 

blends containing 2 mg mL-1 caffeine (Mahdi et al., 2015) (used with permission). 
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 LA gellan and the 50:50 blend fluid gel produced at 0.25 % w/w gellan  and 0.5 % w/w 

NaCl, generally exhibited greater Gʹ (~10 Pa) compared with the un-crosslinked samples that 

ranged from ~0.1 and 1 Pa for LA gellan and the 50:50 blend respectively. The HA gellan 

however, exhibits almost the same profile in both the fluid gel and the HA gellan without NaCl, 

having a G′ of ~10 Pa. Furthermore, G′ was slightly greater than G′′ across the range of 

frequencies measured which indicates typical ‘weak gel’ rheological behaviour (Figure 5.11).  

 

Figure 5.11 Mechanical spectram (1 % strain; 20 °C) of a 0.25 % gellan gum loaded with 2 mg 

mL-1 caffeine showing variation of Gʹ (filled triangles), Gʹʹ (open triangles) (Mahdi et al., 2015) 

(used with permission). 

 To evaluate sprayability through the nasal spray device, stress sweep rheological 

measurements were performed to determine the yield stress. The stress required to yield the 

fluid gel formulations were 1.1 Pa, 1.2 Pa and 5.7 Pa, for the LA gellan, 50:50 LA HA gellan 

blend and HA gellan respectively (Figure 5.12A), which was significantly less than the 

corresponding solutions without NaCl (Figure 5.12B).  
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Figure 5.12 A) Stress sweep for 0.25 % gellan fluid gels crosslinked with 0.5 % NaCl as 

function of HA LA ratio (LA gellan filled circles, HA gellan filled triangles and 50:50 LA HA 

gellan blend open diamonds), B) Stress sweep for 0.25 % un-crosslinked gellan for HA 

gellan(filled circles) and 50:50 LA HA gellan blend (open squares) (Mahdi et al., 2015) (used 

with permission). 

 To investigate the retention properties of the formulations on the mucosal surface, the 

release of caffeine from 0.25 % LA gellan, HA gellan and the 50:50 LA HA gellan blend (fluid 

gel and un-crosslinked gellan) were studied (Figure 5.13). The LA gellan fluid gel formulation 

released almost 96 % of after 1 h, whereas the HA gellan fluid gel had only 50 % drug release 

at the same time point with the 50:50 LA HA gellan blend releasing 65 % after 1 h. Un-

crosslinked gellan samples however, present large difference in drug release between HA 

gellan, LA gellan and the 50:50 LA HA gellan blend. LA gellan released almost 100 % of drug 

after 10 min, whereas the HA gellan only released 6 % of the drug, release at the same time 

point with the 50:50 LA HA gellan blend was 70 %. 
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Figure 5.13 Cumulative % caffeine retained on the mucosal membrane after 60 min (Mahdi et 

al., 2015) (used with permission). 

 

5.7 Discussion  

 There are two main prerequisites for in situ gelling of nasal spray systems: optimum 

viscosity and gelling capacity. The viscosity is a critical factor as the formulation should be at 

a low enough viscosity to be easily dispensed from the nasal spray device. It should then 

undergo a rapid sol–gel transition due to the physiological environment of the target site, which 

in the case of gellan, is due to ionic interactions with the cations in the nasal fluid. Also the 

viscosity needs to be sufficient to facilitate adherence to the mucus membrane and prevent the 

formulation draining out of the nose or dropping to the back of the throat. Moreover, the formed 
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gel should preserve its integrity to facilitate sustained release of drugs locally, for a prolonged 

period of time without quickly dissolving or eroding.  

 Previously, in situ gelling nasal spray formulations have been investigated using LA 

gellan (as the in situ gelling agent) suspended in xanthan gum (used to reach to the optimum 

viscosity) (Cao et al., 2009). Here we have investigated the potential use of fluid gels prepared 

from LA gellan, HA gellan and a 50:50 LA HA gellan blend, as mucoadhesive systems for 

nasal spray formulations. The preparation of fluid gels is a simple process, producing gelled 

particles that are dispersed in an un-gelled medium. Producing fluid gels using a rheometer 

allows the cooling rate and the shear rate to be accurately controlled and the characteristic 

change in viscosity monitored.  

When the gellan gum fluid gels were formed with 0.1 %, 0.5 % and 1 % w/w NaCl, the 

onset of gelation of HA gellan and 50:50 LA HA gellan blend increased (Figure 5.9B-D) 

compared with when no ions were added (Figure 5.9A) which can be explained by promoting 

ordering via suppression of the repulsive negative charge between gellan chains by the addition 

of NaCl (Morris et al., 2012). The LA gellan sample containing 0.1 % w/w NaCl exhibited a 

clear transition (Figure 5.9B) because the concentration at this level was sufficient to allow the 

crosslinking between two or more LA gellan helices (Morris et al., 2012). Sanderson et al., 

(1988) reported intermediate textural properties between HA and LA gellan gels when 

combining LA gellan with HA gellan to form a mixed gel. This is in good agreement with the 

present study, as the 50:50 LA HA gellan blend exhibited two transitions that were 

characteristic of the individual components (Figure 5.9) (Sworn et al., 1995).  

 Once manufactured, the bulk fluid gels containing caffeine showed shear thinning 

behaviour suitable for spraying through nasal spray device (Figure 5.10). Interestingly, HA 

viscosity dramatically decreased in presence of NaCl; this is thought to be due to the 
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competitive inhibition by negatively charged glycerate group binding to some of the Na+ ions 

resulting in a stereochemical change that leads to the loss in the inter or intra-chain hydrogen 

bonds (Huang et al., 2003). For LA gellan, the absence of glycerate groups facilitates binding 

of the Na+ ions to the carboxylate group of the -glucuronate residues in the gellan chains, thus 

reducing the repulsive electrostatic force on the gellan helices, promoting aggregation and 

development of a three dimensional network. There was no significant difference in viscosity 

of 50:50 LA HA gellan blend fluid gels prepared with and without 0.5 % NaCl, due to the 

balance between the HA properties and the LA properties present in the mixture. 

 Gellan gum fluid gel formulations exhibit typical weak gel properties with G′ slightly 

higher than G′′ (Figure 5.11), furthermore the G′ and G′′ for samples with NaCl have greater 

values. This has previously been demonstrated by Huang et al., (2003) and Huang et al., (2004). 

This weak gel rheological behaviour causes these formulations to be more stable at low shear 

rates with sufficient viscosity to allow the samples to be inverted without any steady state flow 

as a result of particle-particle interactions (Garrec et al., 2013). Nasal spray formulations with 

relatively high values of zero shear viscosity that rapidly shear thin to enable dispensing would 

be greatly beneficial by suspending the drug more effectively on the shelf while not impacting 

the ease of administration. Moreover, stress sweep measurements were used to determine the 

yield stress and to gain an understanding of the strength of particle-particle interactions. The 

HA gellan with no NaCl added had a higher yield stress value compared with the 50:50 LA 

HA gellan blend (Figure 5.12B) and for this reason this HA gellan was poorly dispensed from 

the nasal spray, whereas the 50:50 LA HA gellan blend could be dispensed without any 

problems.  

 It was shown that the HA gellan containing formulations significantly slowed down the 

caffeine release (detected in the PBS perfusate), indirectly indicating that the gel remains 
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adhered to the mucosal membrane for an increased time period and therefore inferring 

mucoadhesive properties (Figure 5.14). This is thought to be due to the greater elasticity and 

viscosity of HA gellan, promoting physical interactions with mucins on the surface of the 

mucosa (Mao et al., 2000). Most of the caffeine (80 %) in the HA gellan formulation, remained 

on the mucosal membrane for over 1 h when applied in the un-crosslinked form compared with 

LA gellan which was 100 % detached from the membrane in less than 10 min. This is thought 

to be due to the strong in situ gelation of LA gellan on contact with the ions on the mucosal 

surface. LA gellan favours self-association rather than interactions with the mucins in the 

mucosal membrane. In addition, LA gellan is prone to syneresis which could also contribute to 

the poor adhesion to the mucosal surface. HA gellan, therefore, appeared to be an excellent 

candidate for retaining the formulation at the site of action, however, the relatively high 

viscosity (Figure 5.9B), elasticity and yield stress (Figure 5.12B) hindered the administration 

from the nasal spray device.  

 By formulating the HA gellan as a fluid gel (containing 0.5 % NaCl) the viscosity and 

yield stress were reduced to a level similar to the LA gellan fluid gel (containing 0.5 % NaCl) 

(Figure 5.12A), which is easily administered, while maintaining ~70 % of the mucosal 

retention of the uncrosslinked HA gellan (Figure 5.14). This bulk rheology was also shown to 

be tuneable by creating a 50:50 HA LA gellan blend with rheological properties (Figure 5.11) 

and mucoadhesive properties (Figure 5.14) intermediate to those of 100 % HA gellan and 100 

% LA gellan.  

 The relatively simple process for creating fluid gels provides an attractive route to tune 

the bulk rheology of HA gellan to that which is applicable to liquid formulations while 

maintaining the elastic gel properties at the micro level. For these sprayable fluid gels to realize 

their potential, however, the biopharmaceutics of the formulations should be fully investigated.  
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5.8 Conclusion 

In this study we have demonstrated that a mucoadhesive gelling nasal spray has the 

potential to be formulated using gellan gum fluid gels with a viscosity sufficient to spray out 

from the device and with elasticity great enough to adhere to the mucosal membrane. 

Furthermore, we have shown that it is possible to modify the physical behaviour of the 

formulation by creating a LA HA gellan blend. Increasing HA gellan content in the fluid gel 

formulations increases the adherence time on mucosal surfaces. This work highlights the 

potential of using HA gellan gum in nasal spray formulations, providing a simple and effective 

technology to retain drugs at the site of uptake. 
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CHAPTER 6 DEVELOPMENT OF GELLAN GUM FLUID 

GELS AS TOPICAL FORMULATIONS 

6.1 Introduction 

 Skin is by far the largest organ of the human body making up sixteen percent of total 

body weight. Delivery of drugs through the skin is an attractive route for formulation 

development as medicines administered to the skin can exert either a local (dermal) effect or 

systematic (transdermal) effect. In dermal drug delivery, the drug is applied to treat skin 

diseases and exert their actions on the stratum corneum (SC) and those that affect the function 

of the epidermis and/or the dermis.  

 In transdermal delivery, the drug is applied to the skin in order to get the drug into the 

systemic circulation. Thus, the skin serves as the site of administration, and not as the targeted 

organ. The transdermal route offers a good alternative to the oral route when oral administration 

of the drug causes serious side effects. The transdermal route is also suitable for drugs with 

low bioavailability due to physiological properties of GIT (such as first pass metabolism) or 

physical properties of the drug (such as a drugs with low solubility and drugs with a narrow 

therapeutic window). It is also possible to maintain a sustained drug permeation rate by this 

route (Honeywell-Nguyen and Bouwstra, 2005).  

 Diclofenac is one such drug that has gastric side effects and a bioavailability highly 

affected by the physiology of GIT. It has been reported that orally administered diclofenac 

undergoes first pass metabolism and produces considerable gastrointestinal disturbance. In 

order to overcome these two major shortcomings of the oral dosage form, different transdermal 

formulations have been introduced for diclofenac delivery (Warner et al., 1999). The benefits 

of transdermal drug delivery such as simple applications and avoidance the problems 
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associated with the oral route make it useful for clinical applications (Moser, et al., 2001). 

Successful development of a topical dosage form is, however, quite challenging due to the 

protective nature of the SC. 

 Different methods have been assessed to enhance diclofenac permeation and to address 

the barrier problem of the SC; that include active methods and passive methods (Batheja et al., 

2011; Fang et al.,1999). Active methods include iontophoresis, electroporation, and 

microneedles (Batheja et al., 2011; Goh and Lane, 2014). Passive methods include the use of 

chemical penetration enhancers, supersaturated systems, prodrugs, liposomes, microemulsions 

and colloidal polymeric suspensions. Although active methods have shown some promise in 

efficiency, there are issues associated with their use such as safety and cost-effectiveness. 

Passive methods provide design flexibility (with formulation optimization) and the possibility 

of application over a larger area of skin compared with active methods. Safety issues however, 

can still be problematic. For example, chemical penetration enhancers have been intensively 

investigated over the years, but the concentrations required to improve penetration often lead 

to irritation or sensitization of the skin (Williams and Barry, 2012). There is therefore, a real 

need for alternative formulations.  

 Equally important to the effectiveness of topical dosage forms, the perceptual attributes 

of the topical formulation is very important for patients as these contribute substantially to 

whether a product is liked by patients and thus used. For instance, if the gel appearance is 

unpleasant to touch, its unlikely to be accepted by the patient even if it has potential benefits 

(Guest et al., 2013). The initial feeling of a product on the skin is likely to be dominated by the 

product characteristics, rather than the skin’s characteristics, and driven by its bulk rheological 

properties, assuming the initial layer of product at application time is thick enough to provide 

boundary lubrication. However, as the rubbing action (shear) starts, the thick layer is broken 

down to a much thinner film, it can be envisaged that the mixed regime is entered. Once rubbed 
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over a large skin area, thin surface residue may control the hydrodynamic lubrication (De 

Vicente et al., 2006). 

 This chapter provides an overview of the anatomy and physiology of the skin, drug 

penetration through the skin and pharmacological properties of diclofenac (which is the drug 

used in this study). The experimental part of this chapter discusses the application of gellan 

gum fluid gel as a platform to deliver diclofenac sodium to the skin. LA gellan, HA gellan and 

a 50:50 LA HA gellan blend fluid gel formulations (loaded with diclofenac), were then 

evaluated as a topical gel formulation and compared with the commercially available Voltaren® 

gel. Rheology measurements were used to characterize the flow properties of the formulations 

and to indirectly predict the squeezability and spreadability of the fluid gels. The lubrication 

properties of the gellan fluid gel formulations were also examined to assess potential for easy 

application on the skin. 

6.2. Anatomy and Physiology of the Skin 

6.2 Skin Structure and Function 

 The skin is a very complicated vital organ that covers the outer layer of the body and 

plays a critical role in insulation and protection from the external environment. The skin 

comprises mainly of three layers, the epidermis, the dermis and the subcutaneous tissue (Moser 

et al., 2001). These layers are in fact sub-divided into sub-layers in which thickness and cell 

morphology differ (Figure 6.1). 
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Figure 6.1 Schematic diagram of the layers of the skin (adapted from Seeley et al., 2004). 

 Within the skin, there are other tissues including those of vascular and nervous origin. 

The skin also has a number of appendages including about 2 to 5 million eccrine sweat glands 

that produce sweat, which consists of mainly water and NaCl and has a pH ranging from 4 to 

6.8. Their main function is to aid thermoregulation (Barry, 2007). When body temperature 

increases thermoreceptir neurones within the hypothalamus causes the rate of sweat production 

to increase and once on the surface of the skin, it evaporates causing the body to cool. (Seeley 

et al., 2004). The hairy skin, however, contains follicles, sebaceous glands and apocrine sweat 

glands. The apocrine sweat glands found in some areas such as the armpit produce an oily 

odorless secretion, which can be metabolized by bacteria to produce the characteristic body 

smell (Figure 6.2).  
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Figure 6.2 Illustration of skin structure and skin appendages (adapted from Seeley et al., 2004). 

 The dermis and epidermis adhere to the basement membrane which, consists of multiple 

extracellular matrix components that include collagen fibres, secreted by basal keratinocytes 

and dermal fibroblasts (Kanitakis, 2001). This junction is also responsible for metabolite 

exchange between the two layers and the interactive signalling between the dermis and 

epidermis (Burkhard and Ruppert, 1981; Kanitakis, 2001). 

6.2.1 Epidermis 

 The epidermis is of ectodermal origin and mainly consists of keratinocytes, which 

differentiate as they move up through the skin towards the outer layer of the epidermis where 

they become flattened cornified corneocytes (Figure 6.1). The epidermis is composed of five 

distinguishable sublayers, stratum basal, stratum spinous, stratum granulosum, stratum 

lucidum and SC (Figure 6.1). The basal layer is rich in stem cell, which produces keratinocytes. 

Each layer of the epidermis can be clearly recognized by the morphology and differentiation 

state of the keratinocytes (Franssen et al., 2004).  



163 
    

 The SC is the main protective layer composed of dead cells of a multilayer of keratin-

rich corneocytes and an intercellular matrix of a unique composition of lipids (Wickett and 

Visscher, 2006). The lipids make the SC impermeable to water, and therefore, humans survive 

in a nonaqueous environment without dehydration. The SC layer varies in thickness, ranging 

from a very thick layer of the palm and sole (~80 m) to very thin layer of the eyelid (~6 m) 

(Barry, 2007). 

6.2.2 Dermis  

 The dermis (also called the corium) is localised between epidermis from the top and 

subcutaneous layer from the bottom. The dermis has a thickness around 3-5 mm, and is of 

mesodermal origin. The dermis is subdivided into two layers, the papillary layer and the 

reticular layer, and both layers contain elastic connective tissue consisting of fibrous proteins 

that include elastin, reticulin and collagen. As well as the tissue and proteins, the dermis layers 

contain nerve endings, hair follicles, sweat glands and sebaceous glands, blood and lymphatic 

vessels all embedded in gelatinous mucopolysaccharides (Figure 6.2) (Wilkes et al., 1973).  

 The main dermis layer functions are to provide flexibility and mechanical support to 

the skin (Kanitakis, 2001; Bouwstra et al., 2003). The presence of the vasculature in the dermis 

is an important in controlling body temperature, delivering nutrients and removal of small 

waste molecules with the lymphatic system responsible for the elimination of larger molecules 

and immunological response (Cross and Roberts, 1993). Sebum produced by the sebaceous 

gland maintains skin hydration and flexibility.  

6.2.3 Subcutaneous Tissue  

 The subcutaneous tissue (hypodermis) is the inner layer of the skin, and it is located 

between dermis and muscles or bone. The thickness varies and depending on age, sex and 

anatomical site. The subcutaneous tissue is mainly composed of adipose tissue, providing a 
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thermal barrier to the body and serving as a shock absorber to protect against mechanical stress 

(Avram et al., 2005; Kolarsick et al., 2011). 

6.3 Drug Penetration Through the Skin 

 For successful topical delivery of drugs, active pharmaceutical ingredients need to 

penetrate or cross the skin layers to exert their functions. The SC however, represents the main 

barrier to drug penetration due to its unique structure and its lipid compositions, having a 

“brick-and-mortar” shape (Figure 6.3) (Barry, 2007). 

 

Figure 6.3 Schematic diagram illustrating the stages in drug delivery after topical/transdermal 

application. 
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 Drug molecules can penetrate through the skin by passive diffusion. Passive diffusion 

is a transport mechanism where the drug is transported according to its concentration gradient, 

namely the transport from high concentration area to low concentration area, and no energy is 

needed to trigger such reaction. Following dose application drugs diffuse from the drug 

delivery vehicle towards the skin and partition onto the surface to pass through the SC. There 

are two main pathways for the drug to permeate through, the intercellular lipid route between 

the corneocytes and the transcellular route crossing through the corneocytes (Figure 6.3). A 

small amount of drug can also penetrate the skin through hair follicles and sweat gland ducts, 

which serve as shunt pathways through the intact epidermis. At the SC layer, some drug 

molecules may bind to a depot site while the rest of the drug penetrates further down the 

epidermis.  

 The drug then passes into the dermis, where some of the drug partitions into the 

capillary walls and then into the systematic circulation. The remainder of the diffused drug 

partitions into the subcutaneous fat and muscles layers forming another drug depot (Figure 

6.3). This penetration process can be affcected by many factors including biological factors 

such as skin condition, skin age, blood flow, regional skin site and physiochemical factors such 

as drug concentration, diffusion coefficient and molecular size.  

6.4 Diclofenac Sodium 

 Diclofenac is a commonly used, highly effective non-steroidal anti-inflammatory agent 

(NSAID). It is used in the treatment of acute conditions of inflammation and pain, 

musculoskeletal disorders, arthritis, and dysmenorrhea (Warner et al., 1999). Scientifically 

diclofenac is known as 2-(2-(2,6-dichlorophenylamino)phenyl) acetic acid and commercially 

as Voltarol® and Voltaren® with a molecular formula of C14H11Cl2NO2 (Figure 6.4) and a 

molecular weight of 296.14 g mol-1 (Hadgraft et al., 2000). 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C14H11Cl2NO2&sort=mw&sort_dir=asc
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Figure 6.4 Structural formula of diclofenac (adapted from Altman et al., 2015). 

 Diclofenac has been available in oral formulations since 1983 and two years later 

topical formulations were introduced (Kienzler et al., 2010). Diclofenac is a white to off-white 

crystalline powder, with a melting point of approximately 157 °C. It is practically insoluble in 

water (12 g mL-1), but it is readily soluble in organic solvents and aqueous alkaline solutions 

and has a pKa of 4.18 (Hadgraft et al., 2000).  

 The salt forms of the drug have higher aqueous solubility than the free acid. Therefore, 

the salt forms often are preferable in commercial formulations. Topical formulations of 

diclofenac are available in several different salt forms. These include diclofenac sodium 1 % 

gel, diclofenac diethylamine gel 1.16 %, diclofenac spray 4 % gel, diclofenac DMSO lotion, 

and diclofenac epolamine patch (Nair and Taylor-Gjevre, 2010; Fini et al., 2012). Similar to 

other NSAID drugs, diclofenac inhibits prostaglandin production, which plays a significant 

role in the causation of inflammation, pain and fever. However, diclofenac inhibits 

cyclooxygenase (COX-2) enzyme with greater potency than it does (COX-1) (Altman et 

al.,2015). 

 In this study, we have used diclofenac sodium as the model drug formulated in gellan 

gum fluid gel formulations for topical application. 
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6.5 Materials and Methods 

6.5.1 Materials 

 HA gellan gum (Kelcogel™) was kindly donated by CP Kelco (USA). LA gellan was 

purchased from Sigma–Aldrich (Poole, UK). Phosphate buffer saline tablets (PBS) and 

diclofenac sodium were purchased from Fisher Scientific (UK). Fresh porcine ear tissue was 

donated from a local abattoir. Diclofenac sodium gel (Voltaren® gel 1 %) was bought from a 

local pharmacy. 

6.5.2 Methods  

6.5.2.1 Preparation of Fluid Gel Formulations 

 Gellan gum fluid gels (LA, HA, gellan and 50:50 LA HA gellan blend) were prepared 

by adding precise amounts of HA and LA gellan to produce a 0.1 %, 0.25 %, and 1 % w/w 

final polymer concentration in deionised water at ~ 85 °C containing 1 % of diclofenac sodium. 

Sodium chloride (0.5 % 1 % and 2 % w/w) was added to the hot diclofenac-loaded gellan 

solutions at ~ 85 °C, as crosslinking cations. The samples were then loaded on to a Bohlin 

Gemini Nano HR rheometer and allowed to cool at 2 °C min−1 to 20 °C whilst being sheared 

at a shear rate of 500 s−1 using a 55 mm cone and plate geometry. Once cooled, the fluid gels 

were recovered and stored at room temperature before use. 

6.5.2.2 Control Formulations  

 Two control formulations were used in this study, diclofenac solution and Voltaren® gel. 

To ensure diclofenac permeability was not affected by the heating process and to examine the 

permeability of drug excluding the effect of polymers, control solutions were prepared in the 

same way the fluid gels were prepared, but without addition of gellan.  

Voltaren® gel was bought from a local pharmacy and used as a second reference for 

comparison. 
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6.5.2.3 Rheological Measurements 

 All rheological measurements were performed using a Bohlin Gemini Nano HR 

rheometer (Malvern Instruments, Worcestershire, UK) fitted with 55 mm cone and plate 

geometry. 

6.5.2.4 Viscosity Measurements 

 Viscosity measurements of all samples were taken at 32 °C using a 2 min shear ramp 

from 20 s-1 to 200 s-1. The shear rate range was chosen to be within the most relevant ranges 

for replicating the spreading properties of pharmaceutical semisolids as previously reported by 

Garg et al., (2002). 

6.5.2.5 Yield Stress Determination 

 Stress sweeps were used to determine yield stress of the topical gel formulations to 

predict the stress required to initiate flow from a tube. The stress was gradually increased using 

small deformation oscillations from 0.1 Pa to 100 Pa at an angular frequency of 10 rad s-1. All 

measurements were taken at 20 °C. 

6.5.2.6 Frequency Sweep Measurement 

 The rheological behaviour of the samples was evaluated in terms of the elastic (storage) 

modulus (Gʹ) and the viscous (loss) modulus (G″) as a function of angular frequency (0.1-100 

rad s−1) to produce mechanical spectra of the samples. Measurements were taken at 20 °C and 

performed at 0.5 % strain (strain amplitude chosen was within the linear viscoelastic region of 

the sample). 

6.5.2.7 Tribology of Fluid Gels 

 The frictional properties of the produced gellan fluid gels were measured using a mini 

traction machine MTM2. The tribometer was equipped with a stainless steel ball (3/4inch 
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diameter) and silicone disc (46 mm diameter, 4 mm thickness) as a contact surface. A normal 

load (W) of 4 N, a temperature of 32 °C where used for all experiments. 

 Friction coefficient (μ), a dimensionless parameter is often used to represent the data 

and is given by  

μ = F/W                            Eq. 6.1 

where F is the tangential force and W is the applied normal load. Stribeck curves were 

generated by measuring the friction upon increasing the speed (U) from 1 to 1000 mm s-1 

followed by decreasing the speed from 1000 to 1 mm s-1 until a total of 6 runs were completed. 

Each test, consisting of 3 ramps up and 3 ramps down, was repeated 3 times. The error bars 

represent the standard deviation of the mean of 18 tests per fluid gel sample. Fresh silicone 

discs were cut out from the supplied sheets and were cleaned by sonicating in ethanol (5 min) 

and then sonicating in deionised water (5 min) and were not reused. The stainless steel ball was 

also cleaned in the same way.  

6.5.2.8 Release Study 

 A modified USP I apparatus (baskets at a stirring rate of 100 rpm) was used to study in 

vitro drug release. Each formulation (1 mL) was placed into dialysis tubing (12,500 MWCO) 

then submerged (within the baskets) in small volume vessels containing 100 mL dissolution 

media PBS at pH 7.4 for 8 hours then recording subsequent release. 

6.5.2.9 Preparation of Skin Membranes 

 Whole porcine ears, obtained from local abattoir, were used for the permeation studies. 

The pinna (ear flap) was removed carefully and separated from cartilage. The entire skin 

thickness (1.2 to 2.0 mm) was used. The tissue was then cut into 4 × 4 cm longitudinal sections 

and stored at -20 °C until required. The tissue was allowed to defrost at room temperature 

before it was used (the tissue section was discarded if residual surface debris was evident). 
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6.5.2.10 Ex vivo Permeation Study 

 The permeability of diclofenac through pig skin was determined in vitro using a Franz 

diffusion cell system (Figure 6.6). The diffusion area was 3.8 cm2 and the receiver compartment 

volume was 30 mL. The environmental parameters selected were previously used by Sintov 

and Botner, (2006). Briefly, the receiver solution temperature was maintained at 32 °C and 

stirred by an externally driven, Teflon-coated magnetic bar. Phosphate buffer saline pH 7.4 

was used in the receiver compartment. The tissue prepared as described in section 6.5.2.9 was 

defrosted and soaked in PBS for 30 min before being mounted on the Franz cell (epidermis on 

the top face). The system was left for another 30 min to equilibrate then 0.5 mL of samples 

were added on top of the skin. Samples (0.5 mL) were withdrawn from the receiver solution at 

predetermined time intervals, and the volume of the receiver chamber maintained by replacing 

the withdrawn sample with fresh buffer solution at each time point. The addition of PBS to the 

receiver compartment was performed with great care to avoid trapping air beneath the dermis. 

The samples were then chromatographically analysed for diclofenac using HPLC. 

 

Figure 6.5 Illustration of a Franz diffusion cell. 

http://www.sciencedirect.com/science/article/pii/S0378517314005511#bib0300
http://www.sciencedirect.com/science/article/pii/S0378517314005511#bib0300
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6.5.2.11 Diclofenac Assay 

 Chromatographic separation was performed on a Shimadzu System (See section 

5.5.2.7). The mobile phase composition was acetonitrile/water (60:40) (v/v). HPLC conditions 

for the diclofenac sodium assay are presented in Table 6.1. 

 Stock solutions of diclofenac sodium were prepared by dissolving 100 mg in 100 mL 

of the mobile phase. Standard solutions were prepared at concentrations between 0.5 μg mL-1 

and 200 μg mL-1 by diluting the stock solution with the mobile phase and were analysed in 

triplicate. Calibration standards were prepared by plotting the area under the curve (AUC) 

against concentration. Precision and linearity over the concentration range were assessed. 

Precision was calculated from the relative standard deviation (% RSD < 1) of the standard 

curve and linearity was assessed by the linear regression with r2 = 0.999. All compounds were 

identified by comparison of retention times obtained from the sample and standard solutions. 

LOD and LOQ were calculated as in section 4.4.2.6. HPLC method validation for the 

diclofenac assay is presented in Table 6.2.  

 A sample chromatogram of diclofenac is shown in Figure 6.6, and a typical calibration 

curve constructed from peak area against concentration is shown in Figure 6.7. All chemicals 

used in this assay were of analytical grade; solvents were HPLC grade and were used as 

received without further treatment. HPLC grade water was utilized in the preparation of the 

mobile phases. The mobile phase was filtered and degassed by sonication using an ultrasonic 

bath (Fisher Scientific). All samples were analysed immediately. 
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Figure 6.6 Typical chromatogram of diclofenac detected at 276 nm. 

 

Figure 6.7 Mean calibration curve for diclofenac measured at λ 276 nm. Values represent mean 

± SD (n=3). 
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Tabel 6.1 HPLC conditions for diclofenac assay. 

Wavelength 276 nm 

Injection volume  10 m 

Flow rate 0.75 mL.min-1 

Run time  8 min 

 

Tabel 6.2 HPLC method validation for diclofenac assay. 

Peak tailing factor {𝑻𝒇 =
𝒂+𝒃

𝟐𝒂
} 1.3 

Retention time 5.6 min 

Limit of quantification {𝑳𝑶𝑸 = 𝟏𝟎
𝝈

𝑺
} 0.045 g/mL 

Limit of detection {𝑳𝑶𝑫 = 𝟑. 𝟑
𝝈

𝑺
} 2.3 g/mL 

Precision and accuracy RSD < 1 % 

 

6.5.2.12 Calculation of Flux Values 

 To determine the flux values, the mass of substance that crossed the membrane per 

unit area was plotted against time. The flux can then be calculated from the slope of the linear 

section of the curve. 

6.5.2.13 Statistical Analysis 

 Statistical significance (p < 0.05) between test groups was determined by one-way 

analysis of variance (ANOVA) and a Tukey post-hoc test using Primer of Biostatistics version 

4. 
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6.6 Results  

6.6.1 Rheological Characterisation of Gellan gum Fluid Gels 

 To evaluate the particle-particle interaction of gellan gum fluid gels, the stress required 

by the formulation to yield was measured and are shown in Figure 6.8. Voltaren® gel was used 

as a reference throughout all experiments. All gellan samples reported in Figure 6.8A were 

composed of 1 % w/w of gellan and crosslinked with 0.5 % NaCl. The samples had similar 

elasticity, however, the stress required to yield was different. The sample made of LA gellan 

showed the lowest yield stress while, the sample made with HA gellan, had the highest yield 

stress even greater than that of the Voltaren® gel (Figure 6.8A). Interestingly, the 50:50 LA 

HA gellan blend had a yield stress that was intermediate to that of LA gellan and HA gellan 

and was similar to that of Voltaren® gel. Therefore, this formulation was used for further 

investigations. The critical stress required to yield for 1 % w/w 50:50 LA HA gellan blend 

samples decreased with increasing NaCl concentrations above 0.5 % (Figure 6.8 B), and with 

decreasing total polymer concentration (Figure 6.8 C). 
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Figure 6.8 (A) Stress sweep for 1 % gellan fluid gels crosslinked with 0.5 % NaCl as function of HA LA ratio (LA gellan open circles, HA gellan 

black stars and 50:50 LA HA gellan blend filled red diamonds) (B) stress sweep for 1 % w/w 50:50 LA HA gellan blend fluid gels crosslinked 

with 0% (open diamonds), 0.5 % (filled red diamonds), 1 % (open triangles) and 2 % (open circles). (C) Stress sweep for 0.1 % ( open circle), 0.25 

% (open triangles) and 1 % (filled red diamonds) w/w 50:50 gellan LA HA blend fuid gels at 0.5 % w/w NaCl. Voltaren gel 1 % presented in all 

three graphs as open circle. Voltaren® gel 1 % diclofenac sodium stress sweep presented in all three graphs as filled squares. 
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 In general, the formulation with 1 % w/w 50:50 LA HA gellan blend fluid gel with 0.5 

% w/w NaCl exhibited similar elasticity and yield stress to that of the proprietary Voltaren® 

gel (Figure 6.8). This formulation was therefore used for further rheological investigations. 

 To predict the spreading characteristics of gellan gum fluid gel formulations, 

measurements of viscosity as a function of shear rate were performed. Viscosity profiles of 

both 1 % w/w 50:50 LA HA gellan blend fluid gel and Voltaren® gel had shear thinning 

viscosity profiles (Figure 6.9).  

 

Figure 6.9 Viscosity vs. shear rate at 32 °C for 1 % w/w (filled-red diamonds) LA HA gellan 

blend fluid gels at 0.5 % w/w NaCl and for Voltaren® gel 1 % diclofenac sodium (open circles). 

 Dynamic small deformation oscillatory measurements of G′ and G″ (Figure 6.10) 

highlight the viscoelasticity of the 1 % w/w 50:50 gellan blend fluid gel and Voltaren® gel with 

G′ slightly greater than G″ across a range of frequencies typical of ‘weak gel’ rheological 

behaviour. Moreover, G′ value obtained by gellan blend fluid gel was slightly higher. 
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Figure 6.10 Mechanical spectrum (0.5 % strain; 32 °C) of a 1 % 50:50 LA HA gellan blend 

loaded with 1 % diclofenac sodium showing variation of Gʹ (filled triangles), Gʹʹ (open 

triangles) and of Voltaren® gel 1 % diclofenac sodium Gʹ (filled diamonds), Gʹʹ (open 

diamonds). 

6.6.2 Lubrication Properties of Gellan Gum Fluid Gels 

 Characterisation of the lubrication behaviour of both the gellan fluid gels and the 

marketed Voltaren® gel were been performed by the means of soft tribology. The low contact 

pressures provided by the deformable surfaces were used in this study to mimic the skin, thus 

yielding frictional data with strong correlations to in-skin sensory attributes. Stribeck curves of 

several gellan gum formulations were compared with commercial Voltaren® gel (Figure 6.11). 
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Figure 6.11 (A) Stribeck curves for 1% gellan fluid gels crosslinked with 0.5 % NaCl as 

function of LA:HA ratio (LA filled circles, HA black stars and 50:50 LA HA blend filled red 

diamonds), (B) Stribeck curves for 0.1 % (filled triangles), 0.25 % (filled circles) and 1 % 

(filled red diamonds) w/w 50:50 LA HA gellan blend fuid gels at 0.5 % w/w NaCl. Stribeck 

curves for Voltaren® gel 1 % diclofenac sodium presented both figures as filled squares. 
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 The LA gellan gum fluid gel showed a slight increase in the friction and then a decrease 

in friction followed by a plateau in boundary regime until it reached critical speed in the mixed 

regime after which the friction coefficient began to increase again. Increasing the speed further 

(hydrodynamic regime) the Stribeck curve began to decrease again. HA gellan sample showed 

a continuous decrease in friction coefficient with no clear peak observed. The friction 

coefficient of 50:50 LA HA gellan blend fluid gel sample showed equivalent values to that of 

HA gellan at low speeds and equivalent to that of LA gellan at high speed (Figure 6.11A).  

 The Stribeck curve of the Voltaren® gel showed that friction was steady at the beginning 

then slightly decreased with increasing disk speed in the mixed lubrication regime before it 

increased again in hydrodynamic regime at higher speeds, indicating a classical friction 

tribology curve. The friction coefficient (μ), values had the following trend LA > 50:50 gellan 

LA HA blend > HA > Voltaren® gel. Moreover, the speed at which onset of the mixed regime 

peak began earlier at speed of approximately 13 mm s-1 for the LA gellan formulation compared  

with the 50:50 LA HA gellan blend fluid gel formulation at about 24 mm s-1 (Figure 6.11A). 

The μ of fluids gel samples decreased on decreasing gellan concentrations as shown in Figure 

6.11B.  

6.6.3 Effect of Gellan Gum on Release and Penetration of Diclofenac  

 The transdermal flux of diclofenac sodium was measured ex-vivo through porcine ear 

skin. The permeability of diclofenac from the formulations with different gellan gum fluid gel 

concentrations and Voltaren® gel across pig ear skin is shown in Figure 6.12 while penetration 

fluxes are summarized in Table 6.3.  
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Table 6.3 Flux (J) values for fluid gel formulations 50:50 LA HA gellan blend fluid gel cross 

linked with 0.5 % NaCl at different concentrations of gellan compared with those of the control 

and proprietary formulation. 

Formulations J (g.h/cm2) 

1 % LA HA gellan blend fluid gel 427.68  

0.25 % LA HA gellan blend fluid gel 364.77  

0.1 % LA HA gellan blend fluid gel 238.06  

Control 210.24  

Voltaren® gel 116.99  

 The cumulative amount of diclofenac sodium found in the receiver chamber of the 

Franz cell following the application of gellan gum fluid gel formulations to the porcine skin 

tissue, were significantly higher (p < 0.05) than those obtained by application of the Voltaren® 

formulation and an aqueous solution of diclofenac (control), which was used as a control 

(Figure 6.12). The flux values indicate that the penetration of diclofenac decreased with 

decreasing gellan concentrations. Also noticed was that the penetration of the drug released 

from control formulation was faster than commercial voltaren® gel with flux value 210.24 µg 

cm-2 h -1 and 116.99 µg cm-2 h -1 respectively (Table 6.3). 
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Figure 6.12 Cumulative amount µg.cm-2 of diclofenac sodium permeated from 50:50 LA HA 

gellan blend fluid gel formulations prepared at different concentrations compared with 

Voltaren® gel. Values are represented as mean ± SD. 

 To investigate whether the difference in drug permeation from the different 

formulations was a result of a more rapid drug release from the vehicles due to negative-

negative repulsion force between the drug and the polymer, or whether it was is related to 

enhanced degree ionization of the drug, experiments on drug release and permeation were 

performed. Figure 6.13 shows the in vitro diclofenac release and ex-vivo diclofenac permeation 

study for 1 % 50:50 LA HA gellan blend fluid gel and the Voltaren® gel formulation. The 

results show that there was no significant difference (p > 0.05) in release between fluid gel and 

Voltaren® gel and the drug reached 100 % release after 8 hours form both formulations.  
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Figure 6.13 Cumulative % release of diclofenac from 1 % w/w 50:50 LA HA gellan blend fluid 

gel (blue diamonds) and from Voltaren® gel (black squares). Cumulative % permeation of 

diclofenac from 1 % w/w 50:50 LA HA gellan blend fluid gel (green triangles) and from 

Voltaren® gel (red crosses) (n=3). 

 Thus, the question arises as to whether the affinity of the anionic charge of gellan gum 

for Na+ has a crucial role in increasing drug permeation, due to promotion of dissociation of 

Na+ counter ions from the carboxylic acid group on the diclofenac and hence increasing 

quantity of unionized drug. To address this question, the 50:50 LA HA gellan blend fluid gel 

at a concentration of 1 % was formulated with increasing NaCl concentrations to provide an 

increasing reservoir of Na+ for the gellan to bind and consequently discouraging dissociation 

of the Na-diclofenac. The results highlighted that the diclofenac permeation was strongly 

affected by NaCl concentrations (Figure 6.14). There was no significant difference (p > 0.05) 

in permeation between formulations with no NaCl and 0.5 % NaCl. Increasing NaCl 

concentration further however, led to slower diclofenac penetration. Interestingly, permeation 
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of diclofenac released from the gellan formulation containing 2 % NaCl was almost similar to 

that of the Voltaren® gel (Figure 6.14).  

 

Figure 6.14 Cumulative amount µg.cm-2 of diclofenac sodium permeated from 1 % w/w 50:50 

LA HA gellan fluid gels prepared at different NaCl concentrations compared with Voltaren® 

gel. Values are represented as mean ± SD (n=3). 

 To analyse how the drug escaped from formulation vehicle and was deposited in the 

different compartments (receiver, membrane and donor) of the Franz cell, the percentage of 

diclofenac in each compartment was plotted vs. time. The results showed that the drug 

migration rate from the vehicle to the membrane is much higher for gellan formulation (Figure 

6.15A) compared with Voltaren® gel (Figure 6.15B). In the case of the gellan formulation after 

four hours ~90 % of the drug passed out the formulations towards the skin, while only ~20 % 

of the drug migrated into skin after the same time for the Voltaren® gel (Figure 6.15A and B). 

The results for the 50:50 LA HA gellan fluid gel formulations highlighted that the percentage 

of drug increased sharply and accumulated in the skin tissue until a maximum was reached 
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(approximately ~70 %) after four hours. The drug percentage in the skin then began to decrease 

gradually until the entire drug penetrated into the receiver (Figure 6.15A). The Voltaren® gel, 

however, behaved differently as the drug concentration in the skin reached a maximum of ~20 

% of the drug at four hours and then plataued until the end of the test (Figure 6.15B).  

 

Figure 6.15 Drug % profile in different compartments of the Franz cell, donor (red line), 

membrane (green line) and receiver (blue line) for A) 1 % gellan 50:50 LA HA gellan blend 

fluid gel and B) Voltaren® gel. 
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6.7 Discussion 

 The use of fluid gels as a platform technology for pharmaceutical formulations has great 

potential due to the tuneable mechanical properties and their ease of manufacture. In the 

previous chapters, the potential use of gellan gum fluid gels in pharmaceutical formulations 

was presented, these have included an oral liquid formulation (Chapter 4) and a nasal spray 

(Chapter 5). Here, the investigation focused on the potential of use gellan gum fluid gels for 

topical formulations. It has previously been reported that stress sweeps can reflect the gel 

strength and yield stress of hydrated polysaccharides (Farrés and Norton, 2015). Through the 

yield stress measurements, the relative forces required to dispense from a tube can be predicted, 

thus, ensuring that the formulation will not leak easily. The value of Gʹ gives an indication of 

gel stiffness (Huang et al., 2004) while the yield stress value provides an indication of the 

strength of particle-particle interaction. Therefore, the reduction in Gʹ in HA gellan gum 

formulations can be explained by softer particles being produced and the reduction in the yield 

stress value for LA gellan indicates a reduction in the degree of particle-particle interactions 

(Figure 6.8A) (Farrés and Norton, 2015).  

 The 50:50 LA HA gellan blend fluid gel had an elastic modulus and yield stress value 

approximately between that of the LA gellan and the HA gellan sample (Figure. 6.8A) as 

previously reported with 0.25 % gellan fluid gel formulations in Chapter 5. Interestingly, the 

50:50 LA HA gellan blend fluid gel exhibited similar yield stress with slightly greater stiffness 

to that of the Voltaren®gel (Figure 6.8A). Therefore, a similar force would be required to 

squeeze such a formulation from a tube during application. For this reason, the 50:50 LA HA 

gellan blend fluid gel formulation was used further to study the effect of NaCl on the gel 

strength and particle-particle interaction (Figure 6.8B).  

http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0060
http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
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 Ions can promote aggregation of polymer chains in charged polysaccharides such as 

gellan and this usually leads to increased gel strength. The increase in gel strength usually 

continues with increasing ion concentrations until a maximum value is reached. At higher ion 

concentrations excessive aggregation can occur, leading to collapse of gel structure and 

ultimately, precipitation of the polymer (Morris et al., 2012). This phenomenon was apparent 

in the results shown in (Figure 6.8B) as there was significant increase in Gʹ in the 1 % w/w 

50:50 LA HA fluid gel formulation from 85 Pa to about 400 Pa with increasing the ion 

concentration to 0.5 % w/w, suggesting that the Na+ at this level was less than the maximum 

gel strength. By increasing the NaCl concentration further to 1 %, and 2 % w/w the value of Gʹ 

reduced to approximately 110 Pa and 66 Pa, respectively, indicating that ion concentration for 

maximum gel strength was exceeded, causing a reduction in gel strength. 

 The viscoelastic properties (e.g. elastic modulus) and particle size (as shown in Chapter 

4 Figure 4.8) of fluid gel can be changed by changing polymer concentrations (Norton et al., 

1999). The results in Figure 6.8C are in good agreement with the previously reported data as it 

shows that Gʹ decreased with decreasing gellan concentrations. The reduction in yield stress 

with decrease in gellan concentration could be explained by smaller particles being formed 

which then resulted in a decline in particle-particle interactions and hence, less stress required 

for yielding (Figure 6.8C). 

 To evaluate the spreadability of a topical gel preparations, rheological testing can 

provide a useful prediction (Garg et al., 2002). Viscosity measurements at different shear rates 

from 20 to 200 s-1 have previously been shown to be in a suitable range to model the spreading 

behaviour of topical formulations (Boylan, 1966). The viscosity profiles for 1 % w/w 50:50 

LA HA gellan blend fluid gel and Voltaren® gel exhibit shear thinning behaviour. The gellan 

gum formulation however, shear thined to a slightly greater extent than Voltaren® gel, 

indicating potential adventageous spreadability of the gellan formulation (Figure. 6.9).  

http://www.sciencedirect.com/science/article/pii/S0268005X09000745#bib13
http://www.sciencedirect.com/science/article/pii/S0268005X09000745#bib13
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 The Stribeck curve of LA gellan fluid gel followed behaviour slightly different from 

what had been previously reported by Gabriele et al., (2010). They described the lubrication 

mechanism in three distinctive behaviours with increasing speed (boundary, mixed and 

hydrodynamic). They assumed that in both the boundary and mixed regime the gel particles 

are excluded from the gap, and the thin film thickness is responsible for lubrication under these 

conditions.  

 In gellan gum fluid gel systems, however, the Stribeck curve showed small peak at low 

speeds (boundary regime) suggesting that the smaller fraction of fluid gel particles, rather than 

being excluded at low speeds, are entrained between the tribo-surfaces thereby providing 

friction between the two rotating surfaces together with the ungelled medium (Figure 6.16A-

B). On increasing the speed further, rearrangement of the entrained particles occurs and gap 

size increases as the un-gelled medium forms a layer over entrained particles, providing 

lubrication by preventing contact between the two rotating surfaces (Figure 6.16B-C). This 

causes the friction coefficient to decrease slightly and plateau. As the rotation speed is 

increased further, the larger fluid gel particles are gradually entrained within the gap and this 

results in an increase in friction coefficient and a second peak appears (Figure 6.16D) (Farrés 

and Norton, 2015). According to De Wijk and Prinz (2005), at this stage only the gel micro 

particles are responsible for separating the gap which results in a higher friction coefficient. At 

rotation speeds of ~ 150 mm s-1 and higher, more fluid gel particles become entrained between 

the ball and the disk. Multilayers of gel particles then cause the two surfaces to be further apart, 

therefore friction coefficient begins to reduce again (Figure 6.16E) (Gabriele et al., 2010). 

http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
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Figure 6.16 Schematic representation of the proposed mechanism of gellan fluid gel 

lubrication. (A-B) represents the boundary regime. (C-D) represents the mixed regime and (E) 

represents the hydrodynamic regime. 

 The Stribeck curve of HA gellan fluid gel, however suggests a different mechanism. 

There is no peak observed at mixed-hydrodynamic regime (Figure 6.11A), and this is thought 

to be due to the elastic properties of gel particles which makes it able to deform to resist the 

external applied force (Figure 6.17). Therefore less frictional force is measured. The 50:50 LA 

HA gellan blend fluid gel formulation showed intermediate behaviour between the two 

mechanisms. The peak in mixed regime is less pronounced (Figure 6.11A). This can be 

explained by softer and less brittle gel particles formed compared with the LA gellan system 

(Huang et al., 2003). The onset of the peak in the mixed regime occurs at higher speeds 

compared with the curve obtained from the LA gellan fluid gel samples, this could suggest that 

there is a greater fraction of larger gel particles formed in 50:50 LA HA gellan blend fluid gel. 

This explanation has been reported previously for alginate fluid gels (Farrés et al., 2013; Farrés 

and Norton, 2015).  

 As discussed earlier, by decreasing gellan gum concentration, smaller gel particles are 

produced that have a reduced yield stress due to a reduction in particle-particle interactions. 

http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0055
http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
http://www.sciencedirect.com/science/article/pii/S037851731500318X#bib0030
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This could explain the lower friction coefficient values obtained from formulations containing 

lower gellan concentrations (Figure. 6.11B), whereby the fluid gel particles are responsible for 

the friction at all rotation speeds.  

 

Figure 6.17 Illustrates the two different behaviours of gellan particles A) hard and brittle (LA 

gellan particles) and B) Soft and elastic particles (50:50 LA HA gellan and HA gellan particles). 

 The permeation study and flux values (Figure 6.12; Table 6.3) highlighted that the 

amount of the diclofenac penetrated through the porcine skin is higher in the case of gellan 

gum fluid gel formulations compared with Voltaren® gel. This could be explained by changing 

the degree of ionization of diclofenac due to competitive interaction between carboxylic acid 

groups of both gellan and diclofenac for the sodium ions. The degree of ionization of drugs has 

an effect on drug partitioning into the skin (Kalaria et al., 2012). The free acid of diclofenac 

can permeate the skin faster than diclofenac salts (Minghetti et al., 2006). At high gellan gum 

concentrations more carboxylic acid groups are available to bind with sodium ions hence, more 

unionized diclofenac will be available to penetrate the skin. This could explain the differences 

in drug permeation measured from gellan gum fluid gel formulations prepared with different 

concentrations of gellan (Figure 6.12). 

 It seems that the mechanism by which hydrophobic drugs such as diclofenac penetrate 

the skin depends on drug-vehicle interaction (Sintov and Botner, 2006). Therefore, the 

http://www.sciencedirect.com/science/article/pii/S0378517314005511#bib0300
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permeation of the drug from the aqueous control was higher compared with the Voltaren® gel. 

This could be explained by lipophilic excipients that are in the Voltaren® gel formulation, 

inhibiting drug penetration through the skin (Goh and Lane, 2014).  

 Figure 6.13 illustrates that the release of diclofenac from both Voltaren® gel and gellan 

formulations follow the same trend and the drug leaves the vehicle and becomes available to 

the skin at the same rate. Thus, confirming that the different penetration obtained is due to 

different drug ionization and not because of electrostatic repulsion force between drug and 

anionic gellan polymer. This is further supported by the data presented in Figure 6.14. The 

addition of sodium ions to the system causes an increase in the amount of sodium available to 

the gellan and the dissociation of Na-diclofenac will be inhibited. This therefore, reduces the 

ionized/unionized ratio and as a consequence, reduces the tendency for the drug to penetrate 

through the skin.  

The results obtained (Figure 6.15A) indicated that the diclofenac released from 50:50 LA HA 

gellan blend formulation has higher deposition within the skin compared with the one released 

from Voltaren® gel (Figure 6.15B). In fact, after 4 hours the entire diclofenac had migrated 

from gellan vehichle (the donor chamber) to the skin and a depot or reservoir of the drug was 

formed within the skin. It was likely that the deposition in this layer determined the rate of 

permeation of diclofenac. Thus, the drug release from skin to the receiver then occurred in a 

controlled manner. This finding can promote the use 50:50 LA HA gellan fluid gel as a novel 

platform for such topical formulations. 

6.8 Conclusion 

 In this study, it has been demonstrated that gellan gum fluid gel blends have the 

potential to be formulated with a similar rheological and mechanical profile to that of a 

marketed commercial formulation (Voltaren® gel). The stress required for the gel to flow 
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depends on LA:HA ratio, overall concentration of both polysaccharides, and ion concentration. 

This work is also believed to be the first to report the tribological properties of gellan gum fluid 

gels. It was shown that gel particles have an effect on lubrication properties of the formulations 

and therefore may improve tactile perception. Furthermore, penetration of diclofenac across 

the skin barrier depends on the vehicle-drug interactions and can be controlled by simple 

addition of counter ions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
    

 

 

 

Chapter 7 
General Conclusion and 

Future Recommendations 

 

 

 

 

 

 



193 
    

CHAPTER 7 GENERAL CONCLUSIONS AND FUTURE 

Recommendations 

The purpose of this research was to investigate a potential new drug delivery platform using 

bio-responsive fluid gel technology. Different gellan gum fluid gel preparations were produced 

that had various functional behaviours that were applied to develop pharmaceutical 

formulations. In particular, the gellan gum fluid gels were investigated for potential use as three 

different bioresponsive dosage forms (modified release oral liquid formulation, mucoadhesive 

nasal gel spray and a rapid permeation topical gel formulation). The following sections 

summarise the main conclusions made for each of the experimental results chapters. 

Fluid gels were produced by applying a shear force during gelation process (on cooling). 

Modifying the process parameters such as cooling rate and shear rate during fluid gel 

production were shown to effect gel particle size and therefore had an impact on the rheological 

behaviour. Gellan fluid gel particle size can also be controlled by altering both the gellan and/or 

crosslinking ion concentrations. This enables the microstructure and bulk rheological 

properties of the fluid gels to be tuned towards particular applications.   

 Effect of Acid Sensitive LA Gellan Fluid Gels on the Release Behaviour of Ibuprofen 

in Oral Liquid 

Chapter 4 highlighted the potential application of LA gellan gum fluid gels as a modified 

release oral liquid. Rheological properties of the fluid gels were optimised to behave similar to 

that of a marketed paediatric suspension but with a higher viscosity at low shear rates, that 

rapidly shear thins on shaking, to allow easy pouring on to a dispensing spoon. The release of 

ibuprofen from LA gellan gum fluid gels was also modified by altering LA gellan 

concentrations. This was shown by the variation in the ibuprofen release in PBS pH 7.4 at 
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different LA gellan concentrations. Also, it was found that variation in gastric pH exposure 

time, and pH value, had an impact on the release. Lower pH values and longer gastric pH 

exposure times, resulted in a greater delay in the release of ibuprofen in PBS pH 7.4.  

There is further work that could be done to further develop this formulation that includes 

optimisation of the particle size and studying the effect these different particle sizes on the drug 

release behaviour. Furthermore, an investigation on the release of drug in different PBS pH 

values to represent the other parts of GI tract would also provide important data on the potential 

variations in release profiles. Ultimately, magnetic resonance imaging (MRI) or gamma 

scintigraphy in an animal model would be useful technique to have a genuine insight to the 

behaviour of the fluid gel once ingested.   

 Performance of LA, HA and LA HA blend Gellan Fluid Gels as Mucoadhesive Nasal 

Spray Formulations 

Chapter 5 highlighted the potential of gellan fluid gels as a sprayable mucoadhesive nasal 

spray. HA gellan was shown to be much more mucoadhesive to procaine mucosal tissue than 

LA gellan. The increased viscosity of the HA gellan however, prevented the formulation being 

sprayed. To overcome this fluid gels were produced from a blend of LA gellan with HA gellan 

which reduced the viscosity sufficiently to allow the formulation to be sprayed without 

dramatically reducing the mucoadhesive functionality. This work elegantly illustrated the 

tuneability of the physical properties gellan gum fluid gels by simply blending LA and HA 

gellan. Future studies on these blended formulations could be applied to other anatomical 

regions that are traditionally difficult to target such as the throat or the oesophagus.  
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 Effect of LA, HA and LA HA Blend Gellan Fluid Gels on Diclofenac Penetration and 

Tribological Behaviour in Topical Formulations 

Chapter 6 focussed on diclofenac topical formulations that were prepared using LA gellan HA 

gellan and a 50:50 LA HA blend fluid gel. These formulations had an excellent match in 

rheological behaviour with that of the commercially marketed Voltaren® gel. The gelled 

particles in gellan fluid gels however, increased the friction compared with commercial 

Voltaren® gel when measured using soft tribology. Particle characteristics (such as size and 

elasticity) had a direct effect on lubrication behaviour of gellan fluid gels. Interestingly, the 

increasing gellan concentration in the formulations enhanced diclofenac penetration through 

skin which was attributed to an increase in dissociation of the sodium counter ion from the 

diclofenac. 

For future work it would be interesting to investigate other anionic gelling polysaccharides 

having the same negative group of gellan (carboxylic group) such as alginate and pectin or 

even other anionic gelling polysaccharides with a different negatively charged group such as 

carrageenan. 

Overall this work has demonstrated the wide applicability of gellan fluid gels as a platform 

technology for modified release dosage forms. The ease of manufacture and ability to tailor 

both physical properties and bioresponsive behaviour will no doubt prompt further research on 

gellan gum fluid gels for pharmaceutical applications. 
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