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Abstract

One of the most important bits of every search engine is
the query interface. Complex interfaces may cause users
to struggle in learning the handling. An example is the
query language SQL. It is really powerful, but usually re-
mains hidden to the common user. On the other hand the
usage of current languages for Internet search engines is
very simple and straightforward. Even beginners are able
to find relevant documents.

This paper presents a hybrid query language suitable for
both image and text retrieval. It is very similar to those of
a full text search engine but also includes some extensions
required for content based image retrieval. The language
is extensible to cover arbitrary feature vectors and handle
fuzzy queries.

1. Introduction

After several years of research the idea of content based
image retrieval (CBIR) [6, 17] is still not established in daily
life. Currently most effort in CBIR is put into closing the
semantic gap between simple visual features and the real
image semantics. The work done in this area is very impor-
tant to allow untrained users to work with image retrieval
systems. A survey about such systems is available from
Liu [9]. None of the systems analysed there is really capa-
ble of closing the gap completely. Either the solutions are
far to specific or require much human attention. Liu con-
cludes with the demand for ”a CBIR framework providing a
more balanced view of all the constituent components”. The

most important open tasks identified are ”query-language
design, integration of image retrieval with database man-
agement system, high-dimensional image feature indexing”
and ”integration of salient low-level feature extraction, ef-
fective learning of high-level semantics, friendly user inter-
face, and efficient indexing tool” [9].

The cross-language image retrieval campaign Image-
CLEF [5, 4] aims to evaluate different approaches of text
and content based retrieval methods. The focus is set on a
(natural) language independent solution for image retrieval
exploiting both textual annotations as well as visual fea-
tures. This effort also shows quite clearly the need for a
powerful image retrieval system.

This paper introduces one approach to solve some of the
claims stated above. It describes a query language which
is designed to be reasonably user friendly and allows the
integration of high-level semantics and low-level feature ex-
traction in a single query.

Taking a look at current full text retrieval engines reveals
the main differences to CBIR engines. Image retrieval in-
evitably contains fuzzy aspects. A search based on image
features usually produces a list of results with decreasing
similarity. In contrast a full text search can determine sep-
arate hit and miss lists, even if some fuzziness is added by
language analysis (e.g. ignoring word endings).

Such a language must tackle the tasks of synthesizing
simple result sets with fuzzy sets [7] as well as keeping the
final result in a maintainable size. The latter requirement
is important because every similarity above 0.0 is somehow
part of the hits.

At the same time, query composing in CBIR environ-



ments is often much more difficult as there are no keywords
for low-level features. The query language presented in this
paper is rooted in the established area of text retrieval and
is extended by essential CBIR related additions.

2. Related Work

Query Language The Lucene Query Language [10] is a
full text retrieval language. The Lucene library comes with
a parser which converts a query string into a query object.
This object represents all query details and the search en-
gine generates the result based on it. This language is not
suitable to handle fuzzy results out of the box, but provides
a simple and clear structure. It allows boolean and nested
queries as well as the definition of document fields. These
fields hold some meta information (i.e. title, content, au-
thor, ...) and can be used to compose reasonably complex
queries.

With the development of object-oriented DBMS the
ODMG-93 [3] standard emerged. The OQL query language
[2] has been created. It combines SQL syntax with the
OMG object model. An interesting extension to this lan-
guage is called FOQL [12]. This language extension tries
to capture fuzzy aspects which are required for CBIR appli-
cations. The FOQL approach is to attach a set of matching-
methods to each stored objects. These methods are used to
match any two objects of the same kind in a specific way.
The resulting similarity is somewhere between 0.0 (no sim-
ilarity) and 1.0 (identity). The newly introduced data type
is the Fuzzy-Boolean. In addition the result can be limited
by a threshold defining the minimum similarity.

Another query language is OQUEL [18, 19] which is de-
signed to be user friendly. It is based on a simplified natural
language and an extensible ontology. The system extracts a
syntax tree from the query to retrieve images.

Data Description The feature vector paradigm states a
plain list of several float values to create a vector. But
looking at any random technique reveals that features may
be composed in many different ways, containing proba-
bly complex data structures. These structures need to be
mapped to the query language.

The language MPEG-7 [11] is rather a multimedia de-
scription than a query language. It is an emerging standard
used in multimedia archives, often containing high-level se-
mantic information. Using an XML based language for
typed queries appears to be very unhandy and overly com-
plex.

A possible alternative is the minimalistic approach in
JSON. This sub set of JavaScript is an important part of the
current Ajax technology. JSON is intended to be a simple
data interchange format with minimal overhead.

3. Proposed Language Design

The proposed query language is based on the Lucene
Query Parser [10] which defines a common language for
full text search. It is intentionally chosen to provide begin-
ners with a simple and familiar syntax. The language allows
queries similar to those used in traditional search engines
and the parser is generated by JavaCC.

This approach tries to merge the design principles of dif-
ferent languages. Some are like OQUEL [18] where queries
are kept as simple and natural as possible. Others like SQL
define a strict grammar to be highly machine readable.

There are two changes made to the Lucene grammar to
fit the requirements of an extensible feature vector based
query language: fuzzy related operators and a nested two-
layer grammar.

The previous boost parameter for terms has been ex-
tended to multiple TermParams allowing additional control
of fuzzy result sets.

To provide a high extensibility the grammar is split into
two different layers.

The basic layer (see 3.1) is parsed and interpreted by the
search engine directly. Here the grammar is predefined and
fixed. Users may specify which meta information should
be searched for by using fields. Images hold other fields
than normal text documents, typically EXIF and IPTC in-
formation. Additionally a CBIR environment provides one
or multiple feature vectors holding low-level information
about the pixels. These feature vectors can be added by
plug ins, each one having a unique identifier which is the
field name for content based queries. The difficulty now
lies in specifying how the query feature vector is entered.
There are three different ways possible:

• ID of an image stored in the repository

• URI of a query image

• specification of the feature vector itself

The simplest way is to use an existing image for a query
(query-by-example). Images already in the repository have
the prepared feature vector available. Specifying the URI of
an image requires the engine to load the image and to extract
the feature vector. The most advanced and complicated way
is to let the user specify a feature vector in detail.

As a custom feature vector may contain any kind of pro-
prietary data, offering an all-embracing language is not pos-
sible. Thus a second layer is added to the query language.
A Term may contain the string <FEATURE START>
[<FEATURE CONTENT>] <FEATURE END>. The
parenthesized part <FEATURE CONTENT> is extracted
by the search engine and passed to the responsible plug in.
The plug in is fully responsible for parsing and interpreting



this string to return the object representation of the feature
vector.

3.1. Grammar

Conjunction ::= [ <AND> | <OR> ]

Modifiers ::= [ <PLUS> | <MINUS> | <NOT> ]

Query ::= ( Conjunction Modifiers Clause )*

Clause ::= [ LOOKAHEAD(2)
( <TERM> <COLON> | <STAR> <COLON> ) ]
( Term | <LPAREN> Query <RPAREN> [TermParams] )

Term ::=
(

( <TERM> | <STAR> | <PREFIXTERM> |
<WILDTERM> | <NUMBER> | <URI> )

[ <FUZZY_SLOP> ]
[ TermParams [ <FUZZY_SLOP> ] ]
| ( <RANGEIN_START>

( <RANGEIN_GOOP>|<RANGEIN_QUOTED> )
[ <RANGEIN_TO> ]

( <RANGEIN_GOOP>|<RANGEIN_QUOTED> )
<RANGEIN_END> )

[ TermParams ]
| ( <RANGEEX_START>

( <RANGEEX_GOOP>|<RANGEEX_QUOTED> )
[ <RANGEEX_TO> ]

( <RANGEEX_GOOP>|<RANGEEX_QUOTED> )
<RANGEEX_END> )

[ TermParams ]
|

( <FEATURE_START>
[ <FEATURE_CONTENT> ]
<FEATURE_END> )
[ TermParams ]

| <QUOTED>
[<FUZZY_SLOP> ]
[ TermParams ]

)

TermParams ::=
(
<CARAT> boost (
([ <HASH> maxCount ] [ <AT> threshold ])

| ([ <AT> threshold ] [ <HASH> maxCount ])
)

| <HASH> maxCount (
([ <CARAT> boost ] [ <AT> threshold ])

| ([ <AT> threshold ] [ <CARAT> boost ])
)

| <AT> threshold (
([ <CARAT> boost ] [ <HASH> maxCount ])

| ([ <HASH> maxCount ] [ <CARAT> boost ])
)

)

3.2. Operators

The main difficulty of combining sub results from a
CBIR system is the fuzzy nature of the results. Some sim-

ple features with filtering character (e.g. keywords) deliver
a rather clean set of hits. But it is essential to have a a fuzzy
model for merging these with highly similarity based fea-
tures which results are usually a sorted list [7, 16].

The approach by Fagin [7] interprets results as graded
sets, which are lists sorted by similarity and set characteris-
tics. He uses the basic rules defined by Zadeh [20]:

• Conjunction:
µA∧B(x) = min{µA(x), µB(x)} (AND)

• Disjunction:
µA∨B(x) = max{µA(x), µB(x)} (OR)

• Negation:
µ¬A(x) = 1− µA(x) (NOT)

The text retrieval concept of boosting single terms by
any float value is adapted to the extended engine. Before
merging sub results, the similarities are boosted as specified
to shift the importance into the desired direction.

An additional acknowledgement to the fuzzy nature is
the use of additional set operators to keep the results at a
reasonable size. The minimum similarity is a value between
0.0 and 1.0 and forces the engine to drop all results below
this similarity threshold. As the efficiency of the threshold
highly depends on the available images and features, a max-
imum size parameter limits the result to the specified size.

3.3. Plug-Ins

The plug in concept of the retrieval framework described
in [15] allows the definition of any new feature. To make
such a plug in available in this language, only a few require-
ments need to be met.

The plug in needs an identifier which is automatically
used as a term field. With this information it is already pos-
sible to formulate queries containing an example image (ei-
ther by internal id or URI).

The tricky part is to develop a syntax for user defined
feature vector information embedded in a query. As features
can be arbitrarily complex, it is intended to support a simple
default language like JSON. Otherwise the embedded data
string of a query is forwarded directly to the feature plug in
where it needs to be converted into a valid feature object.

At this point, the plug in developer needs to decide on
how to support wild cards. If a simple feature contains the
RGB means of an image, the user could specify an array
like ”[36, 255, *]”. In this case the results should con-
tain some red, dominant green and the rate of blue does not
matter at all. Putting some more effort into the feature ab-
straction, a more convenient query like ”some red and very
much green”is also possible. This lies in the responsibility
of the plug in developer.



3.4. Conversions/Alternative Representa-
tion

As the query language is based on the lucene toolkit, the
parser automatically generates an object representation of
the whole query. This query object could also be created by
a suitable front end, but the stringified representation can
be manipulated directly by users. Having an object repre-
sentation of the query, converting it into XML or another
standard is only a small step. Plug ins could also specify
their feature conversion into XML and back to simplify the
use of the MPEG-7 standard.

3.5. Examples

The following examples demonstrate the use of different
language constructs, where the ”keywords” field is the only
text based one.

1. IPTC keyword:
keywords:oystercatcher

2. external image, similarity at least 95%:
histogram:”file://query.jpg”@0.95

3. wavelet of three images by internal ID:
wavelet:(3960 3941 3948)

4. two histograms, maximum of 10 results each:
histogram:3963#10ˆ2.0 OR histogram:3960#10

5. spatial histogram without 50 images similar to image
190:
spatial histo:5456 -histogram:190#50

6. mean colour with embedded feature and filtering key-
word:
rgb mean:($[200, 50, *]$) +keywords:car

Example query 1 is a simple text based query based on
the IPTC meta information. It works exactly like every
common full text retrieval. The field keywords is derived
directly from the IPTC data and other fields such as title,
author or createdate are also available.

More interesting are queries allowing CBIR relevant fea-
tures. The fields are picked by the feature identifier and pro-
cessed in the plug ins.

Number 2 searches for similarities based on a histogram
plug in implementing a feature proposed by Al-Omari and
Al-Jarrah [1]. An URI to an image is specified which is
used for query-by-example. The engine loads the image
and extracts the required query feature. The final result is
limited to images with at least 95% similarity.

Query 3 calls the wavelet plug in which is an implemen-
tation of a feature by Jacobs et al. [8]. The query contains

three internal image IDs. The engine performs three paral-
lel sub retrievals and merges the three result lists by default
with OR. Using the IDs shortens the query string itself and
allows the engine to load the prepared feature vectors di-
rectly from the persistence.

Because of the fuzziness in CBIR it is not clear how
many results are returned when giving a similarity thresh-
old. Dependent on the quality of the feature implementation
and the repository size, many thousands of images could
have a similarity above a given threshold. This is usually a
waste of resources because users want the result to appear in
the first few hits, say the first result page. Query 4 presents
the second way to keep the result size tight. Here the result
set of each term is cut off after a maximum of 10 results.
This restricts the maximum result size to 10 + 10 = 20
images. Additionally the first term is boosted by factor 2,
giving it a higher weight than the second term.

Having multiple feature plug ins opens an interesting
new field to composing CBIR queries. Different features
often mean very different result sets. The NOT modifier in
query 5 shows an example how to remove unwanted con-
tent from the result. First the engine searches for the feature
spatial histo, which is a histogram with additional informa-
tion about spatial colour distribution [14]. As this query
might return several images which does not correspond to
the wanted context, a NOT term filters out the 50 highest re-
sults similar to an unwanted result which are hopefully very
similar in the simpler histogram space.

Finally the conjunction of the two different worlds is
done by example 6. The first term searches for the content
based rgb mean. The embedded part within the brackets is
interpreted by the simple rgb mean plug in, where the three
values stand for red, green and blue. The desired values
for red and green are defined and the blue colour does not
matter at all. Because this low-level feature is far too sim-
ple for efficient retrieval, a second term is specified. In this
example the keywords field is mandatory (AND) and has a
filtering effect. Only images containing the keyword ”car”
are allowed to be in the result.

4. Comparison

There are only a few query languages which try to tackle
the task of merging aspects of full text and CBIR retrieval.
Table 1 compares some of these languages and lists which
important requirements are met.

The language presented in this paper represents the mid-
dleware of the previously described retrieval framework
[15]. It is easily parseable and allows composition of any
query that is supported by the framework. New feature
plug ins extend the language automatically by adding a new
field. Currently the language does not inherently support
high-level concepts. A plug in for semantics could surely
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Table 1. Languages Compared

be implemented with some effort by collecting pre-defined
queries with low-level features.

FOQL appears to be too complex and thus unsuitable for
untrained users. Nevertheless many concepts like Fuzzy-
Booleans and Fuzzy-Sets are valuable. It is possible to add
any kind of feature by defining an appropriate method for
object comparison. Due to its complexity and sorting ability
the language is adequate in SQL like environments.

A closer view to OQUEL reveals some interesting fea-
tures. The language itself has been designed to be easy to
use. Users only need to specify the desired features in sim-
ple words (e.g. ”people in centre”)[19]. It is very close to
a natural language, however the ambiguity of these requires
additional attention and a well designed ontology. Concepts
of this language help creating a convenient user interface.

5. User Survey

A first small-scale user survey has been carried out to
evaluate the language. The results are explained in detail in
the related master thesis [13].

The test setup was a repository containing 6480 images
with different levels of annotation, from no IPTC data at all
up to a set of multiple descriptive keywords. The survey has
been carried out with 5 testers with at least basic experience
in computing sciences.

Tasks The tasks demand both CBIR and keyword based
approaches. The basic tasks were: retrieving images based
on a textual description or visual examples, tracking a given
example image, optimizing queries (high Precision/Recall)
for a specific content and ascertain the name of birds from
given images.

Results After a short training time most testers were able
to use both textual and content aspects in their queries.

Mostly understandable features (colour mean, histogram)
were used in combination with the query image IDs and
the wavelet plugin was often ignored. The simple rgb mean
with its 3 values was a preferred feature. In some cases even
the detailed histogram specification was tried out. As it was
not allowed to draw query images, a popular approach was
the use of random images to start with.

Most tasks were solved by the testers within less than 10
query iterations, but in some cases the available informa-
tion and tools were not sufficient to ensure a quick success.
The testers requested additional tools for query-by-sketch
and complex feature composing.

Discussion In general the testers behaved as expected and
solved the tasks. Additonal knowledge of certain image
content (e.g. bird names) sometimes sped up the retrieval
drastically. Where no or insufficient annotation was avail-
able, the search took significantly longer.

Ultimately the language still needs to be thoroughly
tested in a full-grown usability study. It needs to be evalu-
ated whether untrained and experienced users are both able
to compose queries as intended, probably with additonal
tool support.

6. Conclusion and Future Work

Achievements The proposed query language has a sim-
ple structure and is very similar to a full text search engine
while also allowing fuzzy terms. Further it is easily exten-
sible and allows arbitrary constructs for individual features.
Complex queries are possible but not necessary, giving ex-
perts the chance to fine tune all parameters as required. Nor-
mal users could either enter simple queries or generate them
with a graphical user interface.

Further the language can be easily mapped to machine
readable formats like objects or XML.



Problems Remaining Providing a basic parser like JSON
only simplifies the low-level query information. To support
higher abstractions it is necessary to fully understand the
feature itself, which is impossible for a generic language.
For this reason, keeping the language simple is the task of
the feature developers. They need to design appropriate
sub languages which contain all feature specific informa-
tion and remain as readable as possible.

Another issue is the naming of feature vector based
fields. Currently the prototype compares each field name
in the query with the list of available feature plug in iden-
tifiers. If the field name does not match a feature identi-
fier, the term is handled by the underlying Lucene engine,
executing a ”classical” full text search on the field. Oth-
erwise the term is forwarded to the corresponding feature
plug in. Having overlapping feature identifiers, basic search
fields could be hidden. It is necessary to formulate naming
conventions like reserved words or a prefix for each feature
identifier.

Future Work Unlike FOQL/SQL the language does not
support user defined sorting like ORDER BY but sorts re-
sults by an overall similarity. It is to decide whether this
extension is relevant for retrieval issues or not.

Depending on the combining functions and feature vec-
tors used, query processing can be sped up significantly. A
heuristic approach to query optimizing has been evaluated
by Ramakrishna [16].

The support of high-level concepts is not realized yet.
This could be a feature of the language itself by introduc-
ing constructs like define in FOQL which substitute certain
terms by a pre-defined low level term. Alternatively the re-
trieval engine itself could be extended by high-level plug ins
which map semantics to predefined low level requests. De-
veloping such feature plug ins is a very complex task. A lot
of testing is required to capture meaningful feature vectors
information which represents semantics.
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