University of Huddersfield Repository

Johnes, Jill

Performance indicators and rankings in higher education

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/29908/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
PERFORMANCE INDICATORS AND RANKINGS IN HIGHER EDUCATION

Jill Johnes
University of Huddersfield
Outline of talk

- Introduction
- Composite indicators (CIs) and university rankings
- Producing a performance indicator (PI)
- Comparing CIs and PIs
- From point estimates to groupings
- Conclusions
Why do we need performance indicators (PIs)?

- **Principal-agent problem:** the objectives of the principal and the agent may not be aligned
- In a publicly-funded HE sector, the government (principal) can only imperfectly observe the actions of those running the HEIs (agents)
- **Link funding to performance?**
- **Customers (prospective students) want to know about performance in order to make informed decisions about university choice**
Introduction

Awarding funding based on performance

• UK – Research Assessment Exercises, Research Excellence Framework
• Australia – performance-based schemes for allocating funding for research and research training
• Other countries have also used performance-based research funding systems eg: Spain, Hong Kong, Poland, Portugal, Italy, New Zealand, Norway, Sweden, Denmark, Finland (Hicks, 2012)
Introduction

From PIs to university rankings and league tables

• PIs are quantitative data on the performance of HEIs typically used by policy-makers for resource allocation.

• Rankings are lists of HEIs ranked according to a set of quantitative data (much like the PIs) combined into a composite index (CI) and presented in the format of a league table.

• Rankings draw attention to relative performance between HEIs

• Rankings are often aimed at the general public but are increasingly used by managers and policy-makers
Introduction

• ‘In league tables and ranking systems, ranks are often presented as if they had been calculated under conditions of certainty. Media and stakeholders take these measures at face value, as if they were unequivocal, all-purpose yardsticks of quality. To the consumers of composite indicators, the numbers seem crisp and convincing’ (Saisana et al 2011)

Some questions:

• Can a composite index of performance adequately reflect university performance for the stakeholders?

• Can we find an alternative methodology?
Composite indicators (CIs) and university rankings

• We identify various indicators of interest and combine them into a CI for eg funding or student choice

Points to address

• Level of analysis: what are the entities being measured?
• Dimensions: what are the dimensions along which performance should be measured?
• In producing a CI what weights should be used?
Composite indicators (CIs) and university rankings

Historical development of rankings

- Unregulated and highly-competitive higher education market in USA has led to it pioneering the production of rankings (Dill, 2009).
- Graduate programs in the USA based on a survey of faculty (Hughes 1925). Also used to rank universities.
- The first media rankings of universities and colleges (at the institution level) are attributed to *US News and World Report* in 1983 (Dill, 2009).
Composite indicators (CIs) and university rankings

What dimensions are used?

• Research – Assessment exercises, Publications, Citations
• Teaching
 - Good honours degrees
 - non-continuation rates
 - module completion rates
 - employment of graduates
 - widening participation rates
 - student feedback
• Environmental impact (‘green’ credentials)
• Squirrels (!!!)
Composite indicators (CIs) and university rankings

From individual dimensions to a CI: Weights

• Equal weights?
• *Complete University Guide* weights range from 0.5-1.5
• Why these weightings?
• Ideally weightings should reflect the preferences of the target audience
Weights

• Deriving preferences for a group from the preferences of the individuals within that group is notoriously difficult. ‘Indeed, once one realizes that different students may value the characteristics of universities differently, the notion that one can come up with a single number that summarizes the overall ranking of an academic institution seems quite silly.’ (Ehrenberg, 2000, p53)
Composite indicators (CIs) and university rankings

The Complete University Guide: Weights and correlation with ranking

<table>
<thead>
<tr>
<th>1. Entry standards</th>
<th>1.0</th>
<th>0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Student satisfaction</td>
<td>1.5</td>
<td>0.35</td>
</tr>
<tr>
<td>3. Research assessment</td>
<td>1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>4. Research intensity</td>
<td>0.5</td>
<td>0.78</td>
</tr>
<tr>
<td>5. Graduate prospects</td>
<td>1.0</td>
<td>0.83</td>
</tr>
<tr>
<td>6. Staff-student ratio</td>
<td>1.0</td>
<td>0.82</td>
</tr>
<tr>
<td>7. Academic services spend</td>
<td>0.5</td>
<td>0.64</td>
</tr>
<tr>
<td>8. Facilities spend</td>
<td>0.5</td>
<td>0.34</td>
</tr>
<tr>
<td>9. Good honours</td>
<td>1.0</td>
<td>0.89</td>
</tr>
<tr>
<td>10. Degree completion</td>
<td>1.0</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Principal components (PC) analysis: results

- The first two PCs account for nearly 70% of the variation (information) in the data set

<table>
<thead>
<tr>
<th>The Complete University Guide dimensions</th>
<th>Principal components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC1</td>
</tr>
<tr>
<td>1. Entry standards</td>
<td>0.39</td>
</tr>
<tr>
<td>2. Student satisfaction</td>
<td>0.13</td>
</tr>
<tr>
<td>3. Research assessment</td>
<td>0.35</td>
</tr>
<tr>
<td>4. Research intensity</td>
<td>0.36</td>
</tr>
<tr>
<td>5. Graduate prospects</td>
<td>0.36</td>
</tr>
<tr>
<td>6. Staff-student ratio</td>
<td>0.35</td>
</tr>
<tr>
<td>7. Academic services spend</td>
<td>0.27</td>
</tr>
<tr>
<td>8. Facilities spend</td>
<td>0.07</td>
</tr>
<tr>
<td>9. Good honours</td>
<td>0.38</td>
</tr>
<tr>
<td>10. Degree completion</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Composite indicators (CIs) and university rankings

- Good performance on 8 dimensions, poor performance on student satisfaction and facility spend.

- Poor performance along all 10 dimensions.

- Poor performance on 8 dimensions, good performance on student satisfaction and facility spend.

- Good performance along all 10 dimensions.
An alternative weights system: The BOD approach to creating a CI from Cherchye et al 2007

• The weighting method is data-orientated and can be justified in the CI-context of uncertainty about, and lack of consensus on, an appropriate weighting scheme.

• Good relative performance of a HEI in one dimension (indicator) signals that this HEI considers that dimension relatively important.

• Calculated as input oriented DEA model of Charnes et al (1978), with all sub-indicators considered as outputs and a ‘dummy input’ equal to one for all HEIs
Composite indicators (CIs) and university rankings

Advantages of a CI

• Summarises information across dimensions
• Easy to interpret (Saltelli et al., 2005)
• Everyone can use the indicators, from policy-makers to the general public, promoting accountability
• Can make comparisons across HEIs and over time

Shortcomings of a CI

• It may not adequately represent all dimensions
• Inappropriate weightings may be used
• The result might be eg. inappropriate policy development or unsuitable choice of university by potential students
Producing a performance indicator

- Efficiency of resource use requires a knowledge of both outputs and inputs
- A PI should take the multi-dimensional production context into account
- Distance functions
- Frontier estimation methods:
 - DEA
 - SFA
Advantages of rankings based on distance function approach

- Evaluates the efficiency with which resources are converted into outputs
- Can take into account all dimensions
- Can make comparisons across HEIs and over time

Shortcomings of rankings based on distance function approach

- The approach is not easily understood by stakeholders
A comparison of PIs and CIs

Transparency

- A CI is transparent in terms of the method and the data used.
- A HEI can see its strengths and weaknesses and alter behaviour accordingly.
- The more complex distance function approach is not transparent.
A comparison of PIs and CIs

Gaming

• BUT greater transparency can lead to ‘gaming’
• CI rankings are potentially open to manipulation
• Many performance measures underpinning CIs are under HEI control
• Changing behaviour is a desirable consequence of performance measurement *only* if the changed behaviour genuinely improves *performance* rather than simply *rank*.
• Gaming behaviour by universities is unlikely to achieve the efficiency objective of performance assessment.
A comparison of PIs and CIs

Homogenisation

• By focusing on improvement of the components of CI rankings, HEIs can become homogeneous.
• Eg, the underlying components of the rankings are often biased towards research activity; HEIs might alter mission to scientific research activity.
• Highly-ranked elite universities become benchmarks for lower-ranked HEIs to mimic, ensuring reduction in diversity between universities.
A comparison of PIs and CIs

Precision

- CIs: Large differences in rankings, may be based on only small differences in underlying scores
- PIs: 95% confidence indicators around DEA and SFA rankings reveal large overlap
A comparison of PIs and CIs
A comparison of PIs and CIs

Rankings: DEA estimation

DEA CRS Bootstrapped Pool Mean efficiency by HEI 2012/2013

Source: Papadimmitriou and Johnes 2016
Produce groups rather than individual rankings. How?

- A possibility: peeling the onion (Barr, Durchholz and Seiford 2000)
- Use DEA to produce tiers of universities (known as ‘peeling the DEA onion’): the first application produces a set of efficient universities which are removed to form the top tier. DEA is then applied to the truncated data set, and the efficient universities removed to form the second DEA. This ‘peeling’ continues until all HEIs have been assigned to a tier.
- Can be used to form tiers on the basis of CI (BOD approach) or distance function (DEA) approach
From point estimates to groupings

Application of BOD to the data from *The Complete University Guide* reveals 4 basic groups

<table>
<thead>
<tr>
<th>Tier</th>
<th>Number of HEIs</th>
<th>Mean rank from The Complete University Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>42.15</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>54.85</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>69.53</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>98.71</td>
</tr>
</tbody>
</table>
Conclusions

- CIs commonly used by the media to produce rankings can misrepresent the data and are open to gaming.
- The BOD approach can address the issues of choice of weights and reduce the opportunity for gaming.
- But differences between HEIs based on point estimates are often not significant.
- A tiered approach might be more satisfactory. But opportunities for gaming at the margins?
- Different approaches deliver different conclusions and the user of PIs and rankings should beware: university rankings should come with a serious health warning and be handled with care.