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Abstract— With the exponential growth in data collection and 

storage and the necessity for timely prognostic health 

monitoring of industrial processes traditional methods of data 
analysis are becoming redundant. Big data sets and huge 

volumes of inputs give rise to equally massive computational 

requirements. In this paper the differences in input parameter 

selection using a subset of the original variables and using data 

reduction techniques are compared. Each selection procedure 
being illustrated by both statistical methods and machine 

learning techniques. It is shown that the subsequent 

classification models are highly comparable. Finally the merits 

of a combined multivariate statistical and wavelet 

decomposition approach is considered. Techniques are applied 

to output signals from an experimental compressor rig. 

Keywords- Fault classification; Big data; Data compression; 

MSPCA 

I. INTRODUCTION 

As the volume of data continues to increase so do the 

complexit ies and relationships within the data. A globalised 

optimisation goal is necessary to avoid localised bias. 

Computational savings through reduction of input 

parameters and subsequent reduction in model complexity is 

essential [1]. Selecting  a representative sample is also 

critical in avoid ing bias and ensuring precision and accuracy 

of estimates. In this paper the problems of large data 

volumes are explored using the example of an industrial 

compressor [2, 3]. 

Compressors are an intrinsic part  of many industrial  
processes whose performance and efficiency rely on early 

detection of compressor component deterioration. System 
faults can reduce performance levels and increase energy 

consumption in addition to potential machine damage and 

eventual shut-down. For example, compressors incorporated 
in water jet cutting systems are required to perform at the 

highest level in  producing and maintaining the extremely 
high internal pressures necessary to force the water through 

small orifices producing exit velocities in excess of 2000 
mph. Condition monitoring (CM) focuses continually on the 

health of a process ensuring near optimal performance for 
the duration of operation whilst enabling timely detection 

and identification of faults. Since the process is continually 

monitored informat ive non-intrusive measurements such as 
vibration signals externally captured at strategic points are 

invaluable. In this paper it is shown that the power of 

prognosis is further amplified by strategic selection of model 
input parameters and rigorous model construction. 

Prior research [4] has shown that features extracted from 
the envelope spectra of vibration signals in the frequency 

domain have superior determin istic properties over their time 
domain equivalents in condition monitoring. Amplitudes of 

the harmonics being specific to process condition with a 

greater amplitude or displaced amplitude implying presence 
of a fault. Envelope spectra show only the amplitude profile 

of original signals and so provide a clearer insight into the 
underlying behaviour of processes having extraneous noise 

removed. 
Cluster analysis (CA) [1, 5] was demonstrated to create 

homogeneous groups of variables. Clusters being formed in 

such a way that objects in the same cluster are very similar 
and objects in different clusters are distinct. CA gives a clear 

measure of variable properties whereas relevance vector 
machines (RVM) and support vector machines (SVM) do 

not.  
Other variable clustering methods follow similar 

selection criteria. Evolutionary Genetic Algorithms (GA) or 
Particle Swarm Optimisation (PSO) are both population 

based search methods inspired by observation of the 

collaborative behaviour of biological populations such as 
birds or bees. Specifically these populations are seen to 

demonstrate a collective intelligence. [6] PSO has been 
shown to deliver comparable results to GA with significant 

gains in reduced computational time except for particularly 
complex cases. However, the majority of GA,  PSO and 

Tipping’s algorithms [7, 8] are restricted to 10 to 15 input 

parameters for convergence within reasonable time 
constraints 

The aim of this paper is to compare the efficiency of 
models constructed using a reduced number of pre-selected 

input parameters to models using variable reduction 
techniques. Classification models constructed using both 

multivariate statistical methods and machine learning 

techniques are assessed their efficacy measured by 
successful classification rates. Comparisons are then drawn 

with mult iscale PCA (MSPCA) which combines multivariate 
statistical methods and wavelet decomposition [9]. 



  

II. DATA ACQUISITION 

Output signals for the second stage vibration 

measurements were collected from an accelerometer 

attached to the exterio r of the second stage cylinder on a 

two-stage, single-acting Broom Wade TS9 reciprocating 

compressor (RC) which has two cylinders in  the form of a 

“V”. The RC was operated under healthy conditions and 

with four independently seeded faults (suction valve leakage 

(SVL), discharge valve leakage (DVL), intercooler leakage 

(ICL) and loose drive belt (LB)), each condition (class) 

being repeated 24 t imes. The amplitude and frequency of 

the first 32 envelope harmonics for the demodulated second 

stage vibration signal were stored for each of the 120 

observations across the 5 classes.  

From the vibrat ion envelope spectrum a heterogeneous 

group of input parameters was selected by multivariate CA, 

as described in prev ious work. Both a multivariate statistical 

classifier (Discriminant analysis) and a machine learn ing 

classifier (Naïve Bayes) were constructed and their 

efficiency in terms of classification success rates compared.  

 

III. MULTIVARIATE CLASSIFIERS USING REDUCED 

NUMBERS OF INPUT PARAMETERS 

A. Discriminant Analysis  

Discriminant analysis (DA) is a statistical method used in 

pattern recognition and machine learn ing whereby a 

combination of characteristic features is established with the 

aim of separating two or more classes or events. Categorical 

dependent variables are predicted by their scores on a 

discriminant function established using one or more 

continuous or binary, independent variable(s). Train ing data 

is used to estimate the parameters of the discriminant 

functions of the predictor variables. [1, 2]. 

For a set of observations x


 on each sample of an event 

with known class y in the training data set a good predictor 

for class y from any similar sample is sought given any 

further observation x. For the two class case an observation 

with log likelihood ratio greater than a threshold T is 

predicted to belong to the first class assuming the 

conditional probability density functions 

1)y|xp( and )y|x(p 


0  are normally d istributed with 

means ,   0 1 and covariances 0 , 1  respectively. 

Observations being predicted to belong to the second class if 

the log of the likelihood ratios are below the threshold T. 

The quadratic discriminant classifier is given by 

T T(x ) (x ) ln | | (x ) (x ) ln | | T
 

          
1 1

0 0 1 10 0 0 1
 

(1) 

If homoscedacity can be assumed then the class 

covariances can be assumed equal: 

 
   0 1   

and the covariance matrices have full rank. Hence (1) 

simplifies to the decision criterion being based on the dot 

product w.x c  for some threshold constant c 

where 
w ( )   1

1 0   and  

T Tc (T       1 1
0 0 0 1 1 1

1

2  

Thus the model is a function of a linear combination of the 

known observations. 

100% classification rate was achieved in the DA model 

for the two group case ‘healthy’ and ‘intercooler leakage’ 

using just two input parameters, envelope harmonic features 

4 and 6. Previously [4], although highly informative, 

envelope harmonic features 4 and 7 proved insufficient to 

fully separate these two groups. Thus confirming choice of 

input parameter is of paramount importance hence the value 

of pre-evaluation of characteristics  for optimum selection. 

B. Naïve Bayes 

Naïve Bayes [10] is a relatively simple technique for 

constructing classifiers. Classification is based on 

estimating the conditional probability k np(C | x ,..., x )1   for 

n independent variables nx (x ,..., x ) 1  

 

k k
k

p(C )p(x | C )
p(C | x)

p(x)


 

 Since the evidence, p(x), is not dependent on class and is 

effectively constant, under naïve conditional independence 

assumptions the probability model becomes  

n

k n k i k

i

p(C | x ,...x ) p(C ) p(x | C )
Z



 1

1

1

 

Where the evidence Z = p(x) is a constant scaling factor 

dependent only on nx ,..., x1   

The classifier based on this probability model, the (naïve) 

Bayes classifier is given by 

n

k i k

i

arg max
ŷ p(C ) p(x | C )

k { ,..., k}



 

1
1

 



For some k that assigns the class label kŷ C . 

T ABLE 1 CLASSIFICATION SUCCESS RATES PER NUMBER OF GROUPS AND 

PER MODEL 

 2 groups (Healthy 

and ICL) 

5 groups 

DA using 2 input parameters [4, 6] 100%  

NB using 2 input parameter [4, 6] 94% 53% 

NB using 5 input parameters [2, 7, 

9, 12, 17] 

100% 64% 

NB using 15 input parameters  

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16] 

n/a 80% 

Classification success varies extensively depending on 

the number of groups considered and the number of 

parameters incorporated in the model Table 1. A two-

dimensional DA gave perfect classification in the two group 

case (healthy and ICL) as did a 5 parameter NB model. 

However, considering all five classes simultaneously 

requires far greater model complexity and was not achieved 

using DA although a 15 parameter NB model achieved 80% 

success rate Fig. 1. 

Again model complexity hence computational efforts are 

significantly reduced by prior evaluation and selection of a 

reduced number of heterogeneous input parameters to 

ensure maximum explanatory power across all classes. The 

NB classification tree established using two input 

parameters [4, 6] is illustrated in Fig.2 and provides a useful 

visual method of classifying any further samples. For 

example: A case with a parameter 4 amplitude of 0.8 and a 

parameter 6 amplitude of 2.2 (i.e. f4 =0.8 and f6 = 2.2) 

would be allocated to the healthy group after passing 

through six decision nodes. Classificat ion success rates were 

calculated for a number of models using the features 

indicated through the cluster analysis, the highest 

classification rate achieved across all five classes was 80% 

using 15 input features [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16]. It should be noted that 15 parameters exceeds 

the maximum number permitted for many algorithms. 

 

IV. MULTIVARIATE CLASSIFIERS USING 

VARIABLE REDUCTION TECHNIQUES 

 

In contrast to methods using a reduced number of input 

parameters, variable reduction utilises all the original 

variables to generate a reduced set of new variables. These 

new variables are generally chosen to be orthogonal and if 

successful a small number will sufficiently explain a 

significant majority of the system variation. Again a 

multivariate statistical method, principal component 

analysis (PCA), and a machine learning method, support 

vector machines (SVM), are considered with respect to 

classification success rates and model dimensionality. 

 

A. Principal Component Analysis 

 

A set of uncorrelated principal components (PCs) is 

produced from the original correlated variables [1, 10,11]. 

The first PC, Z1, accounts for the largest proportion of the 

variance in the sample; the second, Z2, which is generally  

uncorrelated with the first the second highest, and so on.  

Initially there will be as many PCs as original variables and 

collectively they account for the total variance in  the 

sample.  The vast majority of the total variance is accounted 

for by the first few PCs and only  a negligib le amount by the 

rest hence these latter PCs can be dropped from further 

analysis so reducing the ‘dimensionality’ o f the data set. 

PCA reveals the internal structure of the data in a way that 

best explains the variance in the data. 
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Fig. 1 Second Stage Vibration 15 Parameter Model 

with 80% Successful Classification Across All 5 

Groups. 

 

Fig. 2 Naïve Bayes Classification Tree Using Two Input Parameters: Envelope 

Features 4 and 6. 

 



Applying PCA to the compressor vibration signal and 

extracting the first two PCs gives the results shown in Fig. 3 

and Table 2. Clearly in the 2 dimensional case the SVL 

group is entirely separate from all other measurements with 

the lowest scores on both the 1st and 2nd principal 

components. Although less obviously separated the other 

classes form clear clusters separable using higher 

dimensional models. Principal component scores by class 

are summarised in the table for the first two PCs. 81% of the 

total variation in the system is accounted for by the first 

three PCs with ten PCs required to achieve 95% coverage. 
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 Fig. 3 Fault clustering using the first  two principal components 

 
TABLE 2 CLASS SCORES ON THE FIRST TWO PRINCIPAL 

COMPONENTS. 

Class Range of scores 

on principal 

component 1 

Range of scores 

on principal 

component 2 

Healthy [-4.351, -1.326] [0.262, 0.576] 

SVL [-5.980, -4.576] [-1.595, -0.280] 

DVL [-2.926, 1.291] [0.225, 0.818] 

 

LB [2.304, 6.850] [0.394, 2.379] 

 

ICL [1.301, 4.677] [0.445, 2.033] 

 
 

 

B. Support Vector Machines 

In machine learning, support vector machines (SVMs) [2, 

12] are supervised learning models with associated learning 

algorithms that analyse data through pattern recognition, 

used for classification and regression analysis. 

 

 
Fig. 4 SVM methodology illustrated. 

 

 
Fig. 5 SVM using Linear Kernel Function. 

 

Given a set of training data D, a set of n points of the 

form 
p n

i i i i iD {(x , y ) | x , y { , }}     111
  where yi takes 

the value 1 or -1 indicating which class the point xi belongs 
to.  Each xi is a p-dimensional real vector. The maximum-

margin hyperplane dividing points with yi=1 from those with 
yi=-1 is given by the set of points x satisfying w.x-b = 0, Fig. 

4. If the data are linearly separable, hyperplanes can be 

selected in such a way that they separate the data with no 
points between them. The region they bound, the margin is 

then maximised whilst ensuring no points are allowed to fall 
into it. The planes of the margin are given by w.x - b = 1 and 

w.x –  b = -1. Samples falling on the margin  are called the 

support vectors.  The first class occupies the region w.xi –  b 

≥ 1 and the second class the region w.xi – b ≤  -1 jo intly 

described as yi(w.xi – b) ≥ 1 for all 1 ≤ i ≤ n. 

Utilising all 32 envelope harmonics of the second stage 
vibration signal, classification into ‘healthy’ and ‘fau lty’ 

using a support vector machine (SVM) classifier gave 80% 
classification success Fig. 5, no clear linear separation is 

apparent between healthy and non-healthy cases. 
 



V. VOLUME REDUCTION BY SIGNAL SIMPLIFICATION 

PRE MODELLING 

Compression and simplification of signals offer alternative 

means of reducing data quantities. Signal compression 

which offers a crude de-no ising technique in producing a 

smoothed simplified signal is the basis of multiscale PCA. 

A simplified mult ivariate signal being reconstructed using a 

simplified representation at each of a number of resolution 

levels. The most significant PCs being selected at each 

level. 

A. Multiscale Principal Component Analysis 

Multiscale principal component analysis (MSPCA) [13, 

14, 15] combines the ability of PCA to produce a set of 

uncorrelated variables with that of wavelet analysis to 

extract determin istic features. The wavelet coefficients of 

the PCA are calcu lated at each scale and selected results are 

combined. Only those scales showing significant events are 

combined thus the process both de noises and simplifies the 

original multivariate signal. The technique is appropriate for 

modelling data with dynamic events due to its’ multiscale 

nature, hence its’ suitability for process fault detection. PCA 

captures the correlation and maximum variance between 

measurements and wavelet analysis captures the within 

measurement correlat ion. Thus both the variable correlat ion 

and the signal trend are accounted for by MSPCA. The 

complementary strengths of each procedure resulting in 

maximum information being extracted from complex 

multivariate measurements. The aim of mult iscale PCA is to 

reconstruct a simplified  mult ivariate signal, starting from an 

original mult ivariate signal and using a simple 

representation at each of a specified number of resolution 

levels. Multiscale principal components analysis generalises 

the PCA of a multivariate signal represented as a matrix by 

simultaneously performing a PCA on the matrices of details 

at different levels. A PCA is performed on the coarser 

approximation coefficients matrix in the wavelet domain as 

well as on the final reconstructed matrix. By selecting the 

numbers of retained principal components, interesting 

simplified signals can be reconstructed. Rules for retention 

of PCs are akin to those of PCA for example Kaiser’s rule 

retains all PCs with eigenvalues greater than the mean 

eigenvalue i.e. those contributing greater than average 

explanatory power. 

Signal compression was executed on the first four 

envelope harmonics, Fig. 6, and clearly  illustrates the signal 

simplification achievable. The relative mean squared error 

for the first seven PCs is very good from a compression 

perspective all values being close to the maximum 100% i.e.  

97.2383   98.3299   87.5594   93.8073   87.0964   92.6310 

and 97.2287. Seven components were retained in itially  

according to Kaiser’s rule,    . As expected, the rule 

keeps two principal components, both for the PCA 

approximations and the final PCA, but one principal  
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Fig. 6 Improved Multiscale PCA Signal Comparisons for the First Four 

Envelope Harmonics Across all 120 Cases. 
 

component is kept for details at each of the five levels. 

Removal of the first three of these seven PCs which are 
primarily composed of noise with small contributions to the 

signal provides an effective albeit rather crude de-noising 
process. 

VI. DISCUSSION AND CONCLUSIONS 

The aim of this paper was to compare and contrast methods 

for optimal selection of input parameters and subsequent 

analysis in order to generate classifiers with improved fault  

classification accuracy. 

Clustering the envelope harmonics into homogeneous 

groupings using Euclidean distance enabled a heterogeneous 

input parameter set to be selected which was shown to 

produce highly successful classifiers using both 

discriminant analysis and naïve Bayes methods. In terms of 

model efficiency using the second stage vibration envelope 

harmonics a 100% successful classification was achieved 

for a two group DA with just two input parameters whereas 

a five parameter model was required using NB. Also high 

classification rates were achieved across all five classes with 

a 15 parameter NB classifier. In contrast variable reduction 

techniques utilised all 32 harmonics to create a new set of 

input parameters. Models constructed using the technique of 

SVM realised 80% successful classificat ion into the two  

groups ‘healthy’ and ‘fau lty’. PCA analysis also showed 

potential higher order modelling capabilit ies although only 

the inter-cooler leak class was completely separated from 

the other four classes in the two-dimensional model.  

Modelling with a reduced set of input variables has been 

shown to achieve high efficiency with respect to 

classification success and has the additional advantage of 

preserving the underlying variable structure which  is not the 

case for variable reduction methods. 



Variable reduction techniques provide an alternative 

approach wherein all the original variab les are reconstructed 

as a smaller number of principal components (PCs) or 

support vectors.  Each of these being a weighted 

combination of all the original variables none of the orig inal 

variables need be omitted from the analysis. Sufficient 

reduced variables are incorporated in  models to give desired 

accuracy with respect to percentage of variation accounted 

for.  

Undoubtedly there are advantages to both classical 

multivariate statistical methods and machine learn ing 

techniques equally both have their limitations particularly  

applied to large data sets with numerous classification 

groups. Glean ing the benefits of each and combin ing in a 

single compound analysis such as MSPCA can offer 

significant gains in both precision and input volume 

reduction. Likewise both preselection of input parameters 

and variable reduction techniques contribute significantly 

towards the construction of highly efficient, unbiased 

classifiers. If signals can be fu rther reduced prior to 

consideration through compression further volume 

reductions are possible. 
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