Computing and Library Services - delivering an inspiring information environment

Application of carbon reinforced composites and rapid prototyping in low volume automotive production

Durgun, Ismail, Cankaya, Oguzhan, Kus, Abdil and Unver, Ertu (2016) Application of carbon reinforced composites and rapid prototyping in low volume automotive production. Journal of Materials Testing, 58 (10). pp. 870-876. ISSN 0025-5300

[img] PDF - Accepted Version
Restricted to Repository staff only

Download (465kB)
[img] PDF
Restricted to Repository staff only

Download (887kB)


In this research, a method was developed for the production of plastic component parts for the use in low volume automotive production. The hollow parts having a complex geometry were produced in blown plastic injection molds. The part production method employed a combination of carbon fiber reinforced composites and rapid prototyping technology. Surface operations were applied on the core model and the effects of the surface quality were researched as a case study. The fused deposition modeling method (FDM) was used to build the core from soluble material. This technique affected the inside surface roughness and quality of the final parts. As these types of components require smooth surfaces for good air flow and low resistance, the surface area of the physical model of the soluble core was too rough to be used directly in the carbon fabric application process and consequently, required preliminary surface treatment in order to improve the surface quality of the manifold part. Specimens were fabricated using different surface treatments in order to determine the smoothest surface quality. The best result was obtained using the acetone-gelcoat post-processing method.

A composite material can be defined as a combination of two or more materials that results in better properties than those of the individual components used alone. In contrast to metallic alloys, each material retains its separate chemical, physical and mechanical properties. The two constituents are the reinforcement and the matrix. The main advantages of composite materials, when compared with bulk materials, are their high strength and stiffness combined with low density allowing for a weight reduction in the finished part [1]. Some properties in combination, such as high specific strength, high specific stiffness or modulus and good dimension stability, give composites advantages not easily obtainable with alloys [2].
Abstract in German:
Anwendung von kohlefaserverstärkten Kompositen und Rapid Prototyping in der Automobilherstellung. In der diesem Beitrag zugrunde liegenden Studie wurde ein Verfahren speziell für die Automobilindustrie für die Produktion von Plastikteilen entwickelt, die in Blas- und Spritzformen in geringen Stückzahlen hergestellt werden und sowohl eine komplexe Geometrie, als auch hohle Teile enthalten. Das Teileproduktionsverfahren wurde in einer Kombination aus kohlefaserverstärkten Kompositen mit Rapid Prototyping untersucht und es wurden die Auswirkungen der Oberflächenbearbeitung des Kernmodells auf die Oberflächenqualität der Teile als Fallstudie untersucht. Um den Kern aus löslichem Material aufzubauen, wurde das so genannte Schmelzschichtungs-Verfahren (Fused Deposition Modeling (FDM)) eingesetzt. Die FDM-Teile beeinflussen die innere Oberflächenrauheit und -qualität der Endteile, zumal die Komponenten dieses Typs eine glatte Oberfläche für einen guten Luftdurchsatz und einen geringen Widerstand benötigen. Das physikalische Modell der löslichen Kernoberfläche erwies sich leider als zu rau, um es direkt im Prozess der Carbontextur anwenden zu können, so dass es zuvor eine Oberflächenbehandlung benötigt. Um die Oberflächenqualität des Krümmers zu verbessern, wurden Proben mit verschiedener Oberflächenbehandlung hergestellt, um die glatteste Oberflächenqualität wählen zu können, und das beste Ergebnis zeigte sich für eine Aceton-Gel-Beschichtungsnachbehandlung des Krümmers.

Item Type: Article
Subjects: T Technology > T Technology (General)
T Technology > TS Manufactures
Schools: School of Art, Design and Architecture
School of Art, Design and Architecture > Innovative design lab
Related URLs:
References: 1. F. C. Campbell: Structural Composite Materials, ASM International, Materials Park, Ohio 44073-0002, USA (2010) 2. M. Rahman, S. Ramakrishna, J. R. S. Prakash, D. C. G. Tan: Machinability study of carbon fiber reinforced composite, Journal of Materials Processing Technology 89 (1999), pp. 292–297 [CrossRef] 3. G. Palardy, P. Hubert, M. Haider, L. Lessard: Optimization of RTM processing parameters for class A surface finish, Compos. Part B: Engineering 39 (7–8), (2008), pp. 1280–1286 [CrossRef] 4. J. Kiwook, C. Won-Jei, H. Chang-Sik: Influence of processing method on the fracture toughness of thermoplastic modified carbon fiber reinforced epoxy composites, Composites Science and Technology 59 (1999), No. 7, pp. 995–1001 [CrossRef] 5. Y. Xu, S. V. Hoa: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites, Composites Science and Technology 68 (2008), No. 3, pp. 854–861 [CrossRef] 6. R. Hosseinzadeh, M. M. Shokrieh, L. Lessard: Damage behavior of fiber reinforced composite plates subjected to drop weight impacts, Composites Science and Technology 66 (2006), No. 1, pp. 61–68 [CrossRef] 7. L. S. Sutherland, C. G. Soares: Impact characterization of low fibre volume glass reinforced polyester circular laminated plates, International Journal of Impact Engineering 31 (2005), No. 1, pp. 1–23 [CrossRef] 8. A. Agirregomezkorta, A. B. Martínez, M. Sánchez-Soto, G. Aretxaga, M. Sarrionandia, J. Aurrekoetxea: Impact behaviour of carbon fibre reinforced epoxy and non-isothermal cyclic butylene terephthalate composites manufactured by vacuum infusion, Composites Part B: Engineering 43 (2012), No. 5, pp. 2249–2256 [CrossRef] 9. J. J. Lee, K. C. Shin, K. H. Kim, M. C. Song, J. S. Hugh: Axial crush and bending collapse of aluminum/GFRP hybrid square tube and its energy absorption capability, Composite Structure 57 (2002), No. 1–4, pp. 279–287 [CrossRef] 10. P. Feraboli, A. Masini: Development of carbon/epoxy structural components for a high performance vehicle, Composites Part B: Engineering 35 (2004), No. 4, pp. 323–330 [CrossRef] 11. C. D. Rudd, K. N. Kendall: Towards a manufacturing technology for high volume production of composite components, Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 206 (1992), No. 2, pp. 77–91 [CrossRef] 12. R. Ilardo, C. B. Williams: Design and manufacture of a Formula SAE intake system using fused deposition modeling and fiber reinforced composite materials, Rapid Prototyping Journal 16 (2010), No. 3, pp. 174–179 [CrossRef] 13. R. Anitha, S. Arunachalam, P. Radhakrishnan: Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Materials Processing Technology 118 (2001), No. 1–3, pp. 385–388 [CrossRef] 14. D. Ahn, J. H. Kweon, S. Kwon, J. Song, S. Lee: Representation of surface roughness in fused deposition modeling, Journal of Materials Processing Technology 209 (2009), No. 15–16, pp. 5593–5600 [CrossRef] 15. R. Ippolito, L. Iuliano, P. Torino: Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish, Annual CIRP 44 (1995), No. 1, pp. 157–160 [CrossRef] 16. P. E. Reeves, R. C. Cobb: Reducing the surface deviation of stereolithography using in-process techniques, Rapid Prototyping Journal 3 (1997), No. 1, pp. 20–31 [CrossRef] 17. M. Mahesh, Y. Wong, J. Fuh, H. Loh: Benchmarking for comparative evaluation of RP systems and processes, Rapid Prototyping Journal 10 (2004), No. 2, pp. 123–135 [CrossRef] Read More:
Depositing User: Ertu Unver
Date Deposited: 27 Oct 2016 10:34
Last Modified: 28 Aug 2021 16:42


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©