

University of Huddersfield Repository

Lee, Hyunkook

Capturing and Rendering 360° VR Audio Using Cardioid Microphones

Original Citation

Lee, Hyunkook (2016) Capturing and Rendering 360° VR Audio Using Cardioid Microphones. In: AES Conference on Audio for Augmented and Virtual Reality, 30 Sep - 1 Oct 2016, Los Angeles, USA.

This version is available at http://eprints.hud.ac.uk/id/eprint/29582/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Capturing and Rendering 360° VR Audio using Cardioid Microphones

Hyunkook Lee

h.lee@hud.ac.uk

Applied Psychoacoustics Lab (APL) University of Huddersfield, UK

Motivation

- Near-coincident mic arrays
 - ORTF, NOS, etc.
 - Arguably, preferred to pure coincident or pure spaced techniques by most professional recording engineers.
 - Rely on the trade-off between Time and Level differences.
 - Best of both worlds (Localisability & Spaciousness).
- Cardioid microphones
 - Most popular.
 - Most widely available.
- Record for VR using favourite cardioid mics arranged in a near-coincident fashion?

Contents

- Research background
- Localisation test in loudspeaker reproduction
- Localisation test in binaural reproduction
- Discussion
- Summary

Research Background

Existing methods for VR audio capture

• First Order Ambisonics (FOA)

Pros	Cons
 Very good "localisability" due to the coincident nature (But not 	 High interchannel correlation.
necessarily good localisation "accuracy").	 Lack of spaciousness.
	Comb-filtering and rapid
 Virtual microphones from flexible decoding. 	change in image position even with a small head movement.
 Compact. 	

5

Existing methods for VR audio capture

• Higher Order Ambisonics (HOA)

	Pros		Cons
•	Higher spatial resolution.	 Requires a large num of channels for a prop decoding. N = (M + 1)² 	Requires a large number of channels for a proper
•	More accurate localisation.		decoding. N = $(M + 1)^2$
		•	Very expensive.
		•	Tonal quality.
		•	Spaciousness?

Existing methods for VR audio capture

Quad Binaural

	Pros	Cons	
•	Direct pinnae filtering.	 Inaccurate localisation and comb-filtering due 	to
•	No need for extra binaural synthesis.	crossfading between ear signals.	
		 Not possible to use personal HRTFs. 	
		 Only for horizontal head rotation. 	d
		Expensive.	

• In VR, it is important to match the actual and perceived source positions.

• The perceived source position should stay the same as the head rotates.

• The perceived source position should stay the same as the head rotates.

- Limitation of FOA
 - Quadraphonic Cardioid decoding.

- Limitation of FOA
 - Only 6dB ICLD (interchannel level difference) for the front pair for a source at 45°.
 - \rightarrow Not sufficient for a full phantom image shift to 45°.

- Limitation of FOA
 - Another 6dB ICLD for the left pair.
 - The image is perceived almost at the front left speaker (mainly one ear \rightarrow no effective interaural difference)

- Limitation of FOA
 - The resulting image position in the quadraphonic reproduction is still not fully shifted to 45°.

- Problems of B-format (FOA) binauralisation for VR
 - Inaccurate localisation due to insufficient ICLD.
 - The image follows you when you rotate the head.

Proposed Technique

• Equal Segment Microphone Array (ESMA)

- A design concept proposed by Williams (1991), but for 360 multichannel reproduction.
- Requirements
 - 1. Equal subtended angle for all stereo segments (±45°).
 - 2. The stereophonic recording angle (SRA) of each segment should match the subtended angle of the segment. (±45°)

- IRT-Cross by Theile
 - Originally designed for ambience capture.
 - d = 20 to 25cm.

- ORTF-Surround (or 3D)
 - SRA not consistent for every segment.
 - Not suitable for ESMA.

• BBC Proms using ORTF 3D

• The SRA of ±45° for quadraphonic ESMA

→ A source at ±45° in recording should be localised at ±45° in reproduction.

• The SRA of ±45° for quadraphonic ESMA

→ A source at ±45° in recording should be localised at ±45° in reproduction.

• Suitable for VR applications with head-tracking.

Psychoacoustic basis

- The appropriate spacing between microphones to produce the ±45° SRA?
 - Depends on what psychoacoustic time-level trade-off model is used for calculating the SRA.

Model	Microphone spacing	Source to mic array distance		
Williams	23.8cm	unknown		
Sengpiel	25cm	unknown		Based on ICTD and ICLD data obtained using ±30 setup° Optimised for ±45 setup°
Wittek + Theile	24cm	2m		
Lee + Theile	30cm	2m	ノ	
Lee	50cm	2m	$] \longrightarrow$	

Designing a near-coincident VR mic array

- Linear time-level trade-off functions (Lee 2016)
 - Shift region dependent.
 - Loudspeaker base angle dependent.

University of HUDDERSFIELD

Experiments

Aim

- To evaluate the localisation accuracies of the quadraphonic FOA and ESMA.
 - If the SRA of $\pm 45^{\circ}$ can be achieved.
 - Loudspeaker and headphone reproduction tests in simulated head rotation scenarios.
- Microphone spacing tested:
 - 0cm (FOA)
 - 24cm (Wittek + Theile)
 - 30cm (Lee + Theile)
 - 50cm (Lee)

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
- interval with the constraint of the constraint
- Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).

Mic 2

Mic 3

Simulating

90° head rotation

- Stimuli for Experiment 2 (Binaural playback)
 - Same conditions as Experiment 1, but with the full RIRs (reflections included).
 - The multichannel stimuli were binauralised with dry KU100 dummy head HRIRs from the 'SADIE' database (Kearney 2015).

Listening tests

- Experiment 1 (Loudspeaker playback)
 - Loudspeakers hidden by acoustically transparent curtains.
 - Small markers were placed on the curtain from 0° with 22.5° intervals.
 - 70dBA playback level.

Listening tests

- Experiment 1 (Loudspeaker playback)
 - 9 experienced subjects repeated each test twice.
 - The task was to mark down the perceived image position on a horizontal circle on a GUI with markers indicated with 22.5° intervals.

Listening tests

- Experiment 2 (Binaural playback)
 - The same room, subjects, task and method as Experiment 1.
 - Equalised Sennheiser
 HD650 headphones were used.
 - Loudness matched to the playback levels of multichannel stimuli.

Results – Loudspeaker experiment

39

Results – Loudspeaker experiment

Results – Binaural experiment

Results – Binaural experiment

Results – Real source

University of HUDDERSFIELD

Loudspeaker

• Loudspeaker: accurate for all source angles.

Binaural

- Binaural responses are generally more spread than loudspeaker ones.
- 0°: significantly bimodal.
- 45° : inaccurate, MED = 52° .
- 90°, 135°: accurate.
- 180°: inaccurate, bimodal.

- Microphone spacing effect
 - 0cm had the worst localisation performance overall.
 - Significant bimodal distributions for many target angle conditions.
 - Perceived to be significantly narrower for the 45° source in both loudspeaker (MED = 30°) and binarual (MED = 27°).
 - 50cm was the only spacing that achieved the SRA of ±45°.
 - Seems to validate the new psychoacoustic model.
 - 50cm had slightly better consistency and accuracy than the other configurations overall.
 - But a smaller size might be more beneficial in practical situations.
 - Practical importance of localisation accuracy in VR?

- Source angle effect
 - The 0° source produced larger response spreads and more bimodal distributions than the 45°.
 - Front-back confusion (Cone of confusion), especially for the 90° target angle.
 - Lateral phantom image localisation is highly unstable (Theile and Plenge 1977, Martin et al 1999).

- Loudspeaker vs. Binaural
 - **Front-back confusion** was more frequently observed in the binaural presentation, but not in the loudspeaker one.
 - The binaural presentation had more spread responses.
 - Real source results also show similar tendencies for the 0° and 45° .
 - Might be due to the use of **non-individualised HRTF**, rather than the microphone arrays.
 - But more about the lack of head movement?
 - FB confusion can occur even with individualised HRTF when head rotation is not allowed (Wightman and Kistler 1999).
 - The FB confusion problem might be largely resolved in practical VR applications with head tracking.

- Higher Order ESMA
 - For an octagonal setup, each segment should have the SRA of 45° (±22.5°).
 - Can potentially solve the problem of unstable side image localisation.
 - Mic spacing *d*
 - Williams: 82cm
 - Lee: 55cm

- Adding vertical dimension to ESMA
 - Cardioid + Figure-of-eight in a vertically coincident fashion.
 - Vertical Mid-Side decoding.
 - Vertical microphone spacing has little effect on LEV (Lee and Gribben JAES 2014).
 - Vertical level panning can provide source imaging with a limited resolution (Barbour 2003, Mironovs and Lee 2016).
 - Vertical time panning is highly unstable (Wallis and Lee JAES 2015).

- ESMAs had a better localisation accuracy than FOA.
- 50cm spacing had the best localisation accuracy, but 30cm or 24cm might still be acceptable.
- Front-Back confusion in binaural reproduction without head rotation.
- Ongoing works
 - Investigations on different attributes.
 - Externalisation, tonal quality, spaciousness, naturalness, etc.
 - Practical evaluations with head tracking.

Thank you for listening.

Hyunkook Lee h.lee@hud.ac.uk

50