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ABSTRACT 

This paper evaluates a perceptually motivated objective model for the measurement of ‘punch’ in musical 
signals. Punch is a perceptual attribute that is often used to characterise music that conveys a sense of dynamic 
power or weight. A methodology is employed that combines signal separation, onset detection and low level 
parameter measurement to produce a perceptually weighted ‘punch’ score. The model is evaluated against 
subjective scores derived through a forced pairwise comparison listening test using a wide variety of musical 
stimuli. The model output indicates a high degree of correlation with the subjective scores. Correlation results 
are also compared to other objective models such as Crest Factor, Inter-Band-Ratio (IBR), Peak-to-Loudness 
Ratio (PLR) and Loudness Dynamic Range (LDR). 
 

1 Introduction 
 
Music classification and information retrieval (MIR) 
is an area that benefits from the extraction of low 
level features to determine such things as, but not 
limited to, genre, BPM and musical key. Different 
approaches to obtain the features are utilized, some 
of which involve time and frequency domain 
transforms to achieve this. In the multimedia content 
description standard (MPEG-7) a number of audio 
based descriptors have been defined and their 
underlying algorithms have been formalised. This 
standard, and associated tools developed from it, 
allow measurement and categorisation of audio 

content which allows fast and efficient searching for 
material that is of interest to the user 
 
Automatic loudness normalisation is being used by 
broadcasters and may hopefully have an impact on 
lowering the proliferation of low dynamic range 
material being offered to the consumer however, 
there still appears to be a reluctance to correctly use 
this normalisation in music production; the trend 
being that loudness level meters are simply being 
used to match loudness to ‘current’ released audio 
rather than to the proposed broadcast levels. This 
trend contradicts the artist desire of releasing music 
that possesses both dynamic quality and 
spaciousness, all of which can be somewhat 
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destroyed through ‘target’ driven mastering. 
Additional metrics, or low level parameters, 
available to both artist and engineers would be 
beneficial in highlighting perceptual attributes 
affected, or not, during this process.  
 
A characteristic that is related to dynamics is known 
as ‘punch’. Punch can be defined as a short period of 
significant change in power in a piece of music or 
performance [1]. In essence, productions that do not 
possess any transient information cannot possess 
punch. Thus, punch is both related to transient 
change and the energy density at a particular 
moment in time and duration. Further to the above 
hypothesis, dynamic change in particular frequency 
bands contribute to the overall perception of punch 
perceived by the listener and the overall average 
loudness level inherently affects this at that time [2]. 
 
Previous work by the authors [3] explored and 
proposed a perceptually based model that combined 
signal decomposition and low level parameter 
measurement to produce a perceptually weighted 
‘punch’ score. Within that publication, links 
between the stimuli under test and the perception of 
the punch attribute based on the changes made to the 
stimuli were explored. The reasoning behind this 
was that subjects might differ in their choice of low-
level attribute when describing their perception of 
‘punch’. Even if they agree on the attribute, they 
may give a punch rating based on different ranges of 
values within that attribute. 
  
The model output indicated a possible correlation 
with the perceptual sensation of punch but a formal 
listening test and evaluation was not undertaken to 
evaluate the various model outputs.  
 
This work begins by briefly outlining the model and  
its outputs. Following this a controlled listening test 
is employed to elicit subjective perceptual punch 
scores for a wide selection of musical stimuli. The 
goal was to quantify the perceived punch of each 
stimulus as an attribute of the sound itself. The use 
of differing genres was to test the validity of the 
output regardless of genre. The experiment did not 
aim to establish a good or bad level of punch. The 
validation test involved various stages, these were 

subjective test and score collation, objective 
measurement of the stimuli and correlation analysis 
of various model output variables with respect to the 
subjective punch scale scores. 
 
As punch could be considered as both a momentary 
and/or long-term perceptual attribute, statistical 
metrics are also explored. These can be useful in 
quantifying an overall song attribute.  

2 Model Outline 
 
The model proposed by Fenton and Lee [3] consists 
of a signal separation stage, weighting stage and 
onset detection mechanism. Its outline can be seen in 
Figure 3. The model is perceptually weighted 
through the use of coefficients derived through the 
analysis of subjective perception relating to pink 
noise stimuli having differing onset time and octave 
band centre frequencies.   
 
The audio signal is first separated into transient, 
steady state and residual components. The transient 
components are then fed through a spectral 
weighting filter. Measurements are then made across 
the octave bands of both signal energy and onset 
time. Onsets and transient durations are extracted in 
the temporal data stage. This data is utilised to 
control the weighting factors of each frequency band 
before the final punch output is summed together. 
 
 

 
Figure 1. Block diagram of the punch-prediction 

model. 
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3 Model Output 
 
The model output range is in dB(FS), with 0dB 
representing the largest punch output possible by the 
model. For comparison, Figures 2 and 3 show the 
standard momentary loudness model [4] and the 
punch model respectively for  the opening bars of 
Michael Jackson’s track - ‘Billy Jean’. 
 

 
Figure 2. ‘Billy Jean’ – standard momentary 

loudness model output. 

 

 
Figure 3. ‘Billy Jean’ – punch model output. 

 
Using loudness as a metric, it can be seen that there 
is little that can be obtained from Figure 2 in terms 
of signal dynamics. Comparing this to the model 
output, Figure 3, the signal dynamic with respect to 

the transient components is clearly visible. More 
punch is evident at roughly 1-second intervals 
starting from 0s, less punch is evident starting at 
approximately 0.75s using the same interval. 
 
With suitable metering ballistics, the raw output in 
dB(FS) of the model could prove useful in offering a 
real time indicator of punch to an engineer. A more 
useful application of the model output can be 
considered by evaluating the punch scores over a 
period of time, for example in a histogram. The 
output variables obtained from the histogram can be 
analysed, giving statistical data relating to the 
stimuli under test. 
 
The histogram shown in Figure 4 represents the data 
extracted from the Billy Jean sample. It shows the 
magnitude of a particular punch frame and its 
frequency within the section of music under test. By 
examining the data in this way, maximum, 
minimum, range, median and standard deviation 
type measures can be extracted.  
 

 
Figure 4. ‘Billy Jean’ - Histogram of punch scores. 
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Figure 5. ‘Billy Jean’ – percentile plot of punch 

scores. 

 
This punch model output can also be shown in the 
form of a percentile plot, Figure 5, showing an 
effective insight into the underlying ‘punchiness’ of 
the music being measured. Use of such percentile 
data offers the possibility to compare entire pieces of 
music or sections therein.  
 
With reference to Figure 5, it can be stated that 
punch frames of -20dB or more only occur 
approximately 10% of the time. Conversely, punch 
frames of -20dB or less occur approximately 90% of 
the time. Similarly to the current loudness range 
metering algorithm [4] and its ‘Loudness Range’ 
measure, upper and lower percentiles could be 
ignored therefore resulting in a ‘punch range’ 
measure being extracted. In addition, a peak punch 
to average may be of use to indicate dynamic 
variability between audio stimuli. 
 

4 Subjective Perception of Punch 

4.1  Experimental design 
 
A forced pairwise comparison test was adopted 
which presented randomised pairs of samples to the 
listeners. The listeners simply had to select the 
stimuli they thought exhibited the most punch.  12 
samples were utilised and 11 expert listeners took 

part in the test. A total of 66 comparisons were made 
by each listener. 
 
The subjects were given the opportunity to listen to 
the stimuli prior to the test and were instructed not to 
base their choices on melody, genre, personal taste 
or arrangement. This enabled them to adjust to the 
listening environment and also gauge the range of 
stimuli they were going to rate. 
 
If they rated A as more punchy that B in the pairwise 
test, A was awarded a vote of 1 and B was awarded 
a vote of 0. As this was a forced test, A=B was not 
allowed. 
 
The subjects listened in a near-field setup with 
Genelec speakers in an ITU-R BS. 1116-compliant 
listening room. The listening level was set and 
measured to be 76dB(A) and each subject stated this 
was a general listening level that they were used to. 

4.2  Stimuli 
 
The stimuli consisted of 12 excerpts of 
commercially available music; these are detailed in 
Table 1. The duration of each was 7s. All excerpts 
were down-mixed to mono, to suppress any spatial 
effects.  
 
Each excerpt was then loudness normalized 
according to ITU BS.1770-3 [4], such that the 
overall loudness of the stimuli would be equal on 
playback. The level chosen was -23LU.  
 
All the stimuli were perceived by the listeners to be 
playing back at the same loudness levels. The 
stimuli were chosen from various genres in order to 
not bias the test with respect to any particular 
arrangement or preference. 
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FILE / ID ARTIST COMMENTS GENRE 

Allegro C’ 
Brio / 9 

Beethoven Strong Transients 
sparse, large 
dynamics 

Classical 

Animals / 5 Nickleback Strong 
Transient,heavy 
guitars, vocal 

Rock 

Beatbox / 6 Roni Size Vocal Beatboxing 
No Kick/Snare. 

Drum & 
Bass 

Bonfire / 2 Knife Party Drums, Vocal 
Samples, Bass, 
Synths 

Dubstep 

Frozen 
Kingdom / 12 

Weldroid Ambience Electronica 

If / 7 Destiny’s 
Child 

Rich Vocal 
Harmonies, 
Strings, Piano, 
sparse percussion 

R&B 

Mad World / 
4 

Tears For 
Fears 

Drums, Percussion, 
Synth, Bass, 
(Bridge) 

Alternative 

Pharaohs / 10 Tears For 
Fears 

Soft Drums, Strong 
Piano, vocal 
sample, Synths 

Alternative 

Sheep May 
Safely Graze / 
11 

Bach No percussion, no 
strong transients. 

Classical 

Sympathy For 
The Devil / 8 

The Rolling 
Stones 

Shaker, Vocals, 
Bass & Guitar, 
Percussion 

Rock 

The Real 
Slim Shady / 
1 

Eminem Drums, Rap, Bass, 
Synth 

Hip-Hop 

Titanium  / 3 David Guetta 
feat. Sia 

Drums, Loud, 
Vocals, Synth, 
Pumping 

Pop 

 

Table 1. Stimuli used in the model validation test. 

 
 
 

4.3  Subjective test results 
 
Table 2 shows the raw ranking scores collected from 
the pairwise test. The table shows the number of 
times a particular stimulus was chosen as having 
more punch than another. For example, 9 listeners 
voted that file ID 1 had more punch than file ID 5. 
From this data, rank score and empirical probability 
scores were extracted. Using this data, a scaled 
response was derived using a Bradley-Terry-Luce 
model [8, 9]. A Matlab script OptiPt.m [10] was 
utilised to derive the scaled response coefficients.  
 
For ease of interpretation, the table has been 
arranged in the extracted rank order of preference, 
i.e. file ID 1 received the most punch votes and file 
ID 12 received the least. File ID 1 in this case is 
Eminem. 
 

ID 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 7 6 10 9 10 10 11 11 11 11 11 

2 4 0 9 8 8 11 10 11 11 11 11 11 

3 5 2 0 7 7 9 7 10 11 11 11 11 

4 1 3 4 0 5 7 8 11 10 11 11 11 

5 2 3 4 6 0 6 8 10 9 11 11 11 

6 1 0 2 4 5 0 7 10 9 11 8 11 

7 1 1 4 3 3 4 0 5 7 9 10 11 

8 0 0 1 0 1 1 6 0 7 11 9 11 

9 0 0 0 1 2 2 4 4 0 8 10 11 

10 0 0 0 0 0 0 2 0 3 0 6 10 

11 0 0 0 0 0 3 1 2 1 5 0 10 

12 0 0 0 0 0 0 0 0 0 1 1 0 

 

Table 2. Forced-pairwise test scores. 
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4.4  Rank score and between sample 
significance testing 

 
Whilst it’s possible to rank the stimuli with respect 
to the number of votes received, it’s important to 
also establish if the ranking is statistically 
significant, for example, is the number of subjects 
that preferred file ID 1 over file ID 2 significantly 
different to the number of subjects that preferred file 
ID 2 over file ID 1? To establish this, if we assume a 
null hypothesis that the listeners were voting 
randomly, i.e. they could not establish a difference 
between stimuli; a sample probability threshold of 
50% can be assumed. Thus, the alternative 
hypothesis is if a stimulus is consistently chosen as 
having more punch a sample probability of  >50% 
will be achieved. How much higher above the 
chance level of 50% can be established through the 
calculation of z-score and consideration of both the 
population and the assumed chance population 
percentage [11]. The relationship can be summarised 
in equation 1 as follows: 
 

Psig = 1.64 * Pu(100−Pu)
n

+ Pu + 0.5
 

(1) 

Pu = assumed population percentage and n = 
sample size, in this case 50% and 11 respectively. 

 
The z-score in this case was chosen as 1.64, this 
corresponds to a standard significance level of 5%, 
p=0.05, one-tailed. The resulting 𝑃𝑠𝑖𝑔 probability of 
75.22% is relatively high due to the low number of 
subjects involved in the testing. Using this 
probability and comparing it against the relative 
votes each stimuli received, significant differences 
can be identified between samples. For cases where 
a stimulus is significantly rated as being punchier 
than another, the votes have been shaded dark grey 
in Table 5. Those shaded as light grey are significant 
based upon a p=0.10, one tailed z-score.  
 
By inspection of Table 2, it can be seen that there is 
a general trend with respect to the original extracted 
ranking and the significant difference probabilities. 
For example file ID 1 is voted as significantly 
different to all other samples except 2 and 3. In this 
case, whilst file ID 1 has received the most votes, it 

cannot be stated with 95% confidence that it has 
more punch than files 2 & 3. We can state however 
that file ID 2 has more punch than file ID 3. On the 
other hand, we can state that file ID 12 has the least 
votes and statistically is the least punchy stimuli 
compared to all others. The goal in this analysis is to 
extract a punch scale for the stimuli used in the test. 
Given that in some cases it could be possible to have 
the same level of punch perceived between stimuli, 
it’s possible to remove some of the stimuli utilised in 
the creation of the scaled output parameters. This is 
the method adopted and is detailed in section 4.5. 
 
Whilst the pairwise data can give an indicator of 
rank score and also between stimuli significance, it’s 
difficult to establish an interval scale of preference 
that can be used to compare to the punch model 
output. To do this, a Bradley-Terry-Luce model 
approach was applied. 
 

4.5   Bradley-Terry-Luce model 
 

The Bradley-Terry-Luce (BTL) model [8, 9] is a 
well-founded approach that states, given certain 
testable conditions, preference probabilities may be 
related to scale values in the following fashion: 
 

Pab = v(a)
v(a)+v(b)  

(2) 

Where 𝑃𝑎𝑏  denotes the probability that stimuli 𝑎 
will be preferred over stimuli 𝑏 , or on this case 
punchier. 𝑣 𝑎  and 𝑣(𝑏)  are the number of votes 
that each stimuli received. A Matlab script OptiPt.m 
[10] was utilised to derive the scaled response 
coefficients based on the pairwise data and the 
output of this is shown in Figure 6. This figure is 
based on all of the stimuli tested and shows the 95% 
confidence intervals calculated from the covariance 
matrix returned by the function. These intervals 
correspond with the inter sample significance testing 
results described in section 4.4 The BTL model 
output shows the samples with significantly different 
rankings as having no confidence interval overlap. 
Likewise, where there is overlap, these samples are 
given roughly the same score by the BTL model. As 
such, it’s possible to remove these stimuli from the 
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model fit. The important goal is to derive an interval 
scale that can be tested against the objective punch 
model. Figure 7 shows the model output after the 
removal of file IDs 2, 5 and 11. Note that the x-axis 
is replaced with the label ‘Samples’ denoting file 
order with respect to punch rating. 
 
The testable conditions for a BTL model fit are those 
of transivity and goodness of fit. The former can be 
established by looking at the raw data scores in 
Table 2. The general rule of transivity is described 
as: 

 

𝐼𝑓 𝐴 ≥ 𝐵 𝑎𝑛𝑑 𝐵 ≥ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ≥ 𝐶  (3) 

 
Examination of the raw data shows that transivity is 
not violated when considering the total votes 
received by each stimuli. The goodness of fit 
statistic returned by OptiPt.m as a 𝜒!(chi squared) 
statistic is 22.84 (28). This value is within bounds of 
the lower and upper critical values of the chi square 
distribution, p=0.05, therefore the BTL model can 
account for the data. 
 

 

Figure 6. BTL Model output based on pairwise 
comparison data. 

 
Figure 7. BTL Model output using only significantly 

different scoring files. 

4.6  Model output correlation analysis 
 
Two punch model outputs were compared against 
the subjective punch scores. These were the 95% 
percentile value (PM95) and the 95% Percentile 
value / Mean (PM95M). The latter could be 
considered to be a ratio derivation as found in 
dynamic range type calculations. Other 
computational measures were included to evaluate 
their correlation against the same derived punch 
scales, these were Crest Factor (CF) [5], Peak-to-
Loudness ratio (PLR) [4], Inter-band-Ratio (IBR) [6] 
and Loudness Dynamic Range (LDR) [7]. 
 
The IBR measurement adopted was given the name 
IBR_diff as it was the range of values measured up 
to the 95th percentile. The LDR measure adopted 
utilised the 10th and 95th percentile in its calculation 
with a 3s and 50ms integration time for slow and 
fast loudness level calculation respectively. 
 
As each of the measures chosen offers differing unit 
(SI) outputs, for example, dB, LU or ratio score, 
correlation analysis was utilised in order to disregard 
these differences and see how well each mapped to 
the perceptual punch scale output parameters. For 
each of the tested objective measures, Table 3 shows 
the Pearson correlation coefficient (r) and the rank 
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correlation (Spearman’s rho) between each measure 
and the subjective punch scale. 
 
 

Measure Corr(r) Corr(rho) 

CF -.351 -.483 

PLR .010 -.083 

LDR  .442 .333 

IBR_diff .706* .650 

PM95 .849** .833** 

PM95M .770* -.750* 

 

Table 3. Correlations of the tested measures with the 
perceptual punch scale. 

In addition, and in order to show possible 
correlations between measures, a correlation matrix, 
shown in Figure 8, was produced. This table 
includes r2 values where significance is prevalent. In 
Table 3 and Figure 8, * and ** signifies correlation 
is significant at the 0.05 and 0.01 level (2-tailed) 
respectively. 
 

 
 
Figure 8. Correlation matrix of all tested measures. 

 
From the results obtained, the PM95 measure 
showed a ‘very strong’ positive correlation with 
punch perception. Both r and rho coefficients (0.849 
and 0.833 respectively) being significant at the 0.01 
level (2-tailed). The p-values for both these were 
.004 and .005 respectively (2 tailed).  The PM95M 
measure, which is the PM95 measure divided by the 
mean value of punch frames also correlated very 
well with the perceptual punch scale. 
 
The PLR and CF measures showed the least 
correlation with punch perception. One might 
assume that a reduced CF or PLR may correlate well 
with punch due to the use of compression in music 
production attempting to maximise loudness and 
possibly punch in the process. In the stimuli tested, 
with the loudness having been normalised between 
stimuli, punch perception did not correlate with the 
measures. Only the CF measure showed a ‘weak’ 
negative correlation with an r coefficient of -.351. 
This reinforces the argument that the use of 
compression from a stem perspective, e.g. on a kick 
or snare drum with a view of increasing punch is 
more likely to correlate to the temporal envelope 
modification rather than the perceptual increase in 
loudness afforded, which in turn would result in a 
change the PLR and CF [1]. 
 
The IBR_diff measure showed a ‘strong’ correlation 
with punch perception, albeit less than the PM95 and 
PM95M measures. An r coefficient of .706 was 
observed with a p-value of 0.034 (2 tailed). This 
measure is based upon the relationship between 
dynamic ranges measured across frequency bands 
[1,6]. Causes of correlation between bands could be 
caused by application of compression during 
mastering, noise like stimuli or stimuli with no 
percussive based content. Higher IBR_diff values 
corresponded with higher levels of perception of 
punch in stimuli tested.   
 
The LDR measure, a measure of loudness dynamic 
range, is proposed as a measure of microdynamics 
[7]. It was included to ascertain any correlation with 
the punch attribute given the importance of 
dynamics within audio stimuli. An r coefficient of 
.442 indicates ‘moderate’ correlation strength, 
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however a p-value of .234 (2-tailed) was observed. It 
can be seen in Figure 8 that the LDR has a ‘strong’ 
correlation with both the PLR and PM95M 
measures, with r2 coefficients of 0.49 and -0.54 
respectively, both are significant being less than the 
0.05 level (2-tailed).  
 
This similarity can be explained due to the method 
employed in the LDR algorithm. The measure is 
based on deriving the maximum difference between 
a ‘fast’ and a ‘slow’ loudness levels. The peak 
utilised in the PLR measure may roughly correspond 
to the ‘fast’ loudness level calculated, whilst the 
average loudness will be that of the ‘slow’ loudness 
integration employed. If for example, the ‘fast’ 
integration window were made to be 1 sample in 
length, it’s likely that the LDR/PLR correlation 
coefficient would approach 1. 
 
The LDR algorithm is also based upon the BS 1770 
model of loudness measurement [4]. Its maximal 
difference type measure also has parallels with the 
PM95M measurement. The PM95M measurement 
utilises the 95% percentile punch frame level along 
with the ‘mean’ of the punch frames to formulate its 
output. One could say this is equivalent to somewhat 
of a ‘peak’ to ‘rms’ punch frame measure (or ‘fast’ 
to ‘slow’ ratio). In addition the PM95M model 
employs a frequency weighted derivation in its 
algorithm based on coefficients derived from a noise 
burst test [3], unlike the LDR which utilises the K-
weighting of the loudness model only. 
 
In general, higher values of LDR did correspond 
with higher levels of punch perception. As an 
indicator of ‘microdynamics’ within stimuli, one 
might expect this to be the case, for example if 
drums or percussion are present or not. This was 
certainly the case with the stimuli tested, whereby 
‘Beatbox by Roni Size’ was measured with the 
highest LDR value. This particular stimulus was 
noted by the listeners as being the most dynamic. 
The PM95 and PM95M models on the other hand 
showed a stronger correlation to the punch perceived 
by the listeners. This may be due to the combination 
of both onset detection and frequency band 
weighting employed in the punch model.  
 

Both punch and LDR models implement an 
integrative process in the form of windowing. The 
LDR measure tested uses 3s ‘slow’ and 50ms ‘fast’ 
windows whilst the punch model employed 100ms 
in its frame calculations. With reference to the LDR 
algorithm, one might expect larger LDR values as a 
result of a decrease in the length of the ‘fast’ 
window size, particularly in perceptually dynamic 
material. Indeed, this was the case with the stimuli 
tested when compared to the use of a 100ms window 
size.  

5 Conclusions 
 
A perceptually motivated model of punch was 
evaluated against subjective scores obtained through 
a forced pairwise comparison test. 12 stimuli were 
utilised and 11 expert listeners took part in the test.  
 
The model utilised combines signal separation, onset 
detection and low-level parameter measurement to 
produce a perceptually weighted ‘punch’ score. The 
model coefficients were derived through a series of 
noise burst tests [3]. 
 
Four additional types of objective measures related 
to signal dynamics and loudness perception were 
evaluated against the same derived punch scale.  
 
The PLR and CF measures showed the least 
correlation to the punch attribute, whilst the PM95 
and PM95M model outputs showed the best 
correlations with r coefficients of 0.849 and 0.770 
respectively. 
 
From the results obtained, the PM95 measure can be 
consider to have a ‘very strong’ positive correlation 
to the punch scale.  
 
The IBR_diff measure showed a ‘strong’ correlation 
with punch perception, albeit less than the PM95 and 
PM95M measures. An r coefficient of .706 was 
observed with a p-value of 0.034 (2 tailed). Higher 
IBR_diff values corresponded with higher levels of 
punch perception in the stimuli tested.   
 
The LDR measure correlated well with dynamic 
levels perceived in the stimuli and correlation to the 
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punch attribute was ‘moderate’. This yields the 
possibility of using a combination of the LDR and 
PM95 models to give both an indication of 
underlying dynamics and the ‘punchiness’ of those 
dynamics. 
 
Further testing of the punch model could be 
undertaken in order to investigate the effect of its 
parameters on both processing speed and possible 
improvement in correlation with the punch scale 
derived for the stimuli. Parameters such as the 
aforementioned ‘100ms’ window size could be 
modified. In addition, temporal weightings could be 
applied as whilst temporal based weightings were 
applied to the noise burst stimuli to normalise their 
perceptual loudness, signal duration of the detected 
onsets wasn't incorporated into the model that has 
been described.  
 
A wider selection of audio stimuli and greater 
number of subjects taking part in the test would also 
be beneficial. 
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