University of Huddersfield Repository

Fleming, Leigh and Power, Jess

The future of wound measurements - 3D printing and scanning

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/29428/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The future of wound measurements

Overview

- Technologies
 - Textiles
 - Multi-disciplinary Innovation
 - 3D printing product
- Innovation – prototypes, innovation, projects/research
 - Wiggle bag
 - Paxman cooling cap
 - 21st Century Medical Bag
- TSB project (Orthox, 3T, Cardiff University)
- The challenge of measurement

Technologies

- 3D Printing and knitting ADA
 - 10gg Shima Soji FIRST (wholegarment knitting machine)
- 3D visualisation software
 - Computerised Tomography Scan (CT), Infinite focus Microscopy (IFM), 3D Microscopy, X-Ray Florescence (XRF) – chemical composition (Calvet, Power, Ryall, Bills - 2014)
 - Test sculpture for pattern making experiment by MA Postgraduate students (Taylor and Unver, 2013)

“Wigglebag”

Harness to improve well-being of children with cancer

- Ergonomically designed
- Comfort / functionality/ dignity
- Stylish
- Antibacterial

Paxman cap

Dr Unver worked with product Design team on externally funded Paxman cap design and manufacturing. This project currently being patented.

Paxman required new innovative, low cost and mass manufactureable of new caps. To challenge this, Paxman engaged the expertise of researchers at the University of Huddersfield's academic schools. Initially funded by an Innovation Voucher from Kirklees Council, Paxman started working with the School of Applied Sciences, using its cutting-edge cell biology techniques to help identify the mechanisms that govern patients’ variable response to scalp cooling. Following additional funding from Knowledge Transfer Partnership (KTP) and Technology Strategy Board (TSB) grants, the Collaborative Ventures Fund at the University, the School of Art, Design and Architecture joined the team to investigate the design of the scalp cooling cap.

Cartilage repair

TSB project (Orthox, 3T, Cardiff University)

"Development of single protein fibre matrix composites for high performance cartilage repair devices."

Silkworm silk technologies for cartilage repair

The knitted structure lays in the device to enable sutures to be anchored through the textile structure to the bone.
Why is measurement important?

- Assessing functionality and performance
 - Wound healing
 - Integrity
 - Risk
 - Device development

- Barrier
- Contact
- Support
- Delivery

Measurement of Skin Integrity

- Contact – Pressure, area
- Condition – Texture, moisture, temperature, integrity
- Performance – Hydration, absorption, elasticity, strength
- Interaction – Pressure, shear, friction, temperature

Measurement of skin texture

- Average roughness: \(\text{Sq} = 92 \mu m \)
- Functional pore volume: \(V_{vc} = 42 \text{mL/m}^2 \)
- Average roughness: \(\text{Sq} = 65 \mu m \)
- Functional pore volume: \(V_{vc} = 25 \text{mL/m}^2 \)

Assessing Pressure Care

Stiletto vs Elephant

- (80kg/2) / 0.001m² = 3,000,000 n/m²
- (3,000kg/4) / 0.1m² = 125,000 n/m²
Challenges of measurement for Skin Integrity

- Integrity of the system
- Scale of the accuracy
- Repeatability
- Reliability
- Non-standard geometry (free form surfaces)
- Varying textures
- Hydrated surfaces
- Infection prevention
- Standardisation
-etc