
University of Huddersfield Repository

Zhang, Wei Emma, Sheng, Quan Z., Qin, Yongrui, Yao, Lina, Shemshadi, Ali and Taylor, Kerry

SECF: Improving SPARQL Querying Performance with Proactive Fetching and Caching

Original Citation

Zhang, Wei Emma, Sheng, Quan Z., Qin, Yongrui, Yao, Lina, Shemshadi, Ali and Taylor, Kerry
(2015) SECF: Improving SPARQL Querying Performance with Proactive Fetching and Caching. In:
Proceedings of the 31st Annual ACM Symposium on Applied Computing - SAC '16. ACM, New
York, pp. 362-367. ISBN 978-1-4503-3739-7

This version is available at https://eprints.hud.ac.uk/id/eprint/29223/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

SECF: Improving SPARQL Querying Performance with
Proactive Fetching and Caching

Wei Emma Zhang, Quan Z. Sheng,
Yongrui Qin, Lina Yao, Ali Shemshadi

School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia
wei.zhang01@adelaide.edu.au

Kerry Taylor
CS&IT Building 108

Australian National University
Canberra, ACT 2601, Australia

kerry.taylor@csiro.au

ABSTRACT
Querying on SPARQL endpoints may be unsatisfactory due
to high latency of connections to the endpoints. Caching is
an important way to accelerate the query response speed. In
this paper, we propose SPARQL Endpoint Caching Frame-
work (SECF), a client-side caching framework for this pur-
pose. In particular, we prefetch and cache the results of
similar queries to recently cached query aiming to improve
the overall querying performance. The similarity between
queries are calculated via an improved Graph Edit Distance
(GED) function. We also adapt a smoothing method to
implement the cache replacement. The empirical evalua-
tions on real world queries show that our approach has great
potential to enhance the cache hit rate and accelerate the
querying speed on SPARQL endpoints.

CCS Concepts
•Information systems → Database management sys-
tem engines; Database query processing;

Keywords
Caching, SPARQL, Query Suggestion, MSES

1. INTRODUCTION
Consuming structured data is a promising way to improve
the effectiveness of search. RDF is widely accepted for mod-
elling information in a structured way. It connects a subject
to an object with a predicate, a labelled edge. SPARQL
is the query language to retrieve information formatted in
RDF from triple stores. SPARQL Endpoints are interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016, April 04-08, 2016, Pisa, Italy

that enable users to query these publicly accessible knowl-
edge bases. As the SPARQL 1.1 specification introduces
the SERVICE keyword, federated queries can be realized by
using SERVICE to access data offered by other SPARQL
endpoints. However, network instability and latency affects
the query efficiency. Therefore, the most typical way for
consumers who want to query public data is to download
data dump and set up their own local SPRAQL Endpoint.
But data in a local endpoint is not up-to-date and hosting
an endpoint requires expensive infrastructural support.

Many research efforts have been dedicated to circumvent
this problem [9, 15, 8, 14] and caching is one of the pop-
ular directions [12]. While most research efforts focus on
providing a server-side caching mechanism, being embedded
in triple stores, client-side caching has not been fully ex-
plored [9]. In this paper, we propose a domain-independent
client-side caching framework SECF for SPARQL endpoints
to facilitate the query answering process. Our approach
is based on the observation that end users who consume
RDF-modelled knowledge typically use programmatic query
clients to retrieve information from SPARQL endpoints [8].
These queries usually have same query patterns and only dif-
fer in specific attributes of triple patterns. Moreover, they
are usually issued subsequently. Figure 1 shows example
of two similar queries. Query 1 retrieves career start year
from the actors of the movie Rain Man and the year should
be later than 1980. Query 2 requests the same information
for movie (Eyes Wide Shut). The differences between these
two queries are the movie name (the underlined terms) and
the year in Filter expression. We call the different attribute
(movie name here) the replacable attribute. Thus, the similar
queries are defined in our paper as queries with same pattern
and different replacable attributes in their triple patterns.

By considering these observations, we propose a caching
mechanism that is based on proactive fetching (i.e., prefetch-
ing) the query results of similar queries in advance. Since
these similar queries are potentially subsequent queries, the
cached results can be returned immediately rather than be-
ing retrieved from SPARQL endpoints if cache hit. Thus,
the average query response time will be reduced.

The key challenge to improve the hit rate centers on how to
effectively obtain similar queries that possibly be requested
subsequently. We look into this issue and utilize a cluster-

362

Query 1
SELECT ?actor ?year WHERE {
:Rain_Man dbpedia-owl:starring ?actor .
?actor dbpedia-owl:activeYearsStartYear ?year .
}
FILTER(?year>1980)

Query 2:
SELECT ?actor ?year WHERE {
:Eyes_Wide_Shut dbpedia-owl:starring ?actor .
?actor dbpedia-owl:activeYearsStartYear ?year .
}
FILTER(?year > 1960)

Figure 1: Example Queries

ing algorithm to suggest similar queries. Firstly, we trans-
form queries into vector representations by leveraging the
idea in [4]. We improve their work by not only considering
Basic Graph Patterns (BGPs), but also take other feature
keywords e.g., FILTER, BIND and VALUES, into consid-
eration. Secondly, we train a modified K Nearest Neighbor
(KNN) model [4], essentially a clustering algorithm, using
these feature vectors. Moreover, we adopt the Principal
Component Analysis (PCA) [5] to project original queries
to a lower dimensional subspace to accelerate the nearest
neighbor calculations. In the last step, the trained model
suggests similar queries. Our algorithm prefetches the re-
sults of these queries and caches the (query, results) pairs.
The suggestion process runs in a background thread to the
query process. The training and mining process can be per-
formed only once as a pre-computing step.

We also introduce cache replacement algorithm because of
the limited cache size. However, techniques for relational
databases ([10]) cannot be directly applied into our caching
framework because our caching is record based, rather than
traditional page-based caching algorithms. Moreover, our
client-side application is not based on RDBMS and is not
designed for server side as traditional caching algorithms
do. In this paper, we use a time-aware frequency based algo-
rithm evaluated in our previous work [16]. More specifically,
we use Modified Simple Exponential Smoothing (MSES) to
evaluate the frequencies of cached queries and remove the
ones with the lowest scores from the cache.

Our main contributions are summarized as follows:

• We address the problem of providing client-side caching
for accelerating query answering process for SPARQL
endpoints and design a caching mechanism that can
either be deployed as a web browser plugin or be em-
bedded in the firewall. We envisage ultimately it be-
ing embedded within SPARQL endpoints that act as
clients to other SPARQL endpoints by interpreting the
SERVICE keyword for SPARQL 1.1 federated queries.

• Our approach suggests similar queries by leveraging
machine learning techniques. We combine GED and
functions for special feature keywords to measure the
similarity between SPARQL queries. KNN and PCA
are utilized to learn similar queries. We also adopt a
smoothing method in cache replacement.

• We perform extensive experiments on real world queries.

The empirical results show that our approach has great
potential to accelerate the querying speed on SPARQL
endpoints.

The remainder of this paper is structured as follows. We
present some backgrounds in Section 2. In Section 3, our
methodology is introduced. The experimental results are
reported in Section 4. Finally, we overview the related work
in Section 5 and conclude this paper in Section 6.

2. PRELIMINARIES
The official syntax of SPARQL1.1 considers operators OP-
TIONAL, UNION, FILTER, SELECT and concatenation
via a dot symbol (.) to GROUP patterns. VALUES and
BIND are to define sets of variable bindings. We use B,
I, L, V for denoting the (infinite) sets of blank nodes, IRIs,
literals, and variables. A SPARQL graph pattern expression
is defined recursively as follows [11]:

(i) A valid triple pattern T ∈ (IV B)× (IV)× (IV LB) is
a graph pattern,

(ii) If P1 and P2 are graph patterns, then expressions (P1

AND P2), (P1 UNION P2) and (P1 OPTIONAL P2)
are graph patterns,

(iii) If P is a graph pattern and R is a SPARQL build-
in condition, then the expression (P FILTER R) is a
graph pattern.

A BGP is a graph pattern when it is represented by the con-
junction of multiple triple patterns. Let Q = (SQ, PQ) be
the query where SQ is the SELECT expression and PQ =
P1 ⊕ ...⊕Pn is the query pattern with ⊕ ∈ {AND, UNION,
OPTIONAL, FILTER, BIND, VALUES, MINUS}. When
pattern feature ⊕ ∈ {AND, UNION, OPTIONAL, MINUS},
graph pattern Pi, i ∈ [1, n] can be recursively decomposed
to sub-level graph patterns until the graph pattern is a
BGP which can further be decomposed to triple patterns
as Pbgp,i = T1 ⊕ ... ⊕ Tk, where ⊕ = AND. When pattern
feature ⊕ ∈ {FILTER, BIND, VALUES}, graph pattern Pi

cannot be decomposed to BGPs and is represented as ex-
pressions. It is easy to observe that query Q can also be
represented as Q = (SQ, {Pbgp, Pfilter, Pbind, Pvalue}) where
Pbgp, Pfilter, Pbind, Pvalue are BGP, FILTER, BIND and
VALUE patterns in PQ respectively. Note that each graph
pattern can appear multiple times in a query pattern.

3. THE SECF METHODOLOGY
Figure 2 illustrates the process of SECF. When a new query
is issued, SECF first checks if an identical query has been
cached. In this case, the results are returned immediately.
Otherwise, the process moves on. If query recording is en-
abled, a background process will log all queries by this user
into a file for further learning processing. When query sug-
gestion is enabled, during runtime, similar queries are sug-
gested for the current query. The results of these queries will
be retrieved from the SPARQL Endpoint in advance and
cached in the form of (query, result) pairs ((qi, ri) in Figure
2). At the same time, current query results are returned to

363

Figure 2: SECF

the client. A cache replacement algorithm is executed when
the cache is full. It runs in a separate thread so that it does
not affect the query answering process.

In this section, we discuss our method to measure similarity
between queries (Section 3.1) and how to mine historical
queries based on the similarity function to suggest similarly-
structured queries (Section 3.2). We also introduce a cache
replacement algorithm for cache update (Section 3.3).

3.1 Query Similarity
To find similar queries, we compute the distance between
two given queries by calculating the distance between pat-
terns of the two queries:

d(PQ, P
′
Q) = d(Pbgp, P

′
bgp) + d(Pfilter, P

′
filter)+

d(Pbind, P
′
bind) + d(Pvalue, P

′
value)

(1)

Where PQ contains Pbgp, Pfilter, Pbind, Pvalue and P
′
Q con-

tains P
′
bgp, P

′
filter, P

′
bind, P

′
value. d(PQ, P

′
Q) = 0 denotes the

two queries are structurally the same.

We calculate d(Pbgp, P
′
bgp) using GED [13] since SPARQL

queries are graph-structured. We adopt the idea to build
graphs from SPARQL query pattern in [4] and use a subop-
timal solution integrated in the Graph Matching Toolkit1 to

compute d(Pbgp, P
′
bgp). Because the graph of BGPs in the

two example queries are the same, their BGP distance (i.e.,
GED) equals 0, namely d(Pbgp1 , Pbgp2) = 0 in this case.

When d(Pbgp, P
′
bgp) = 0, we further calculate d(Pfilter,

P
′
filter), d(Pbind, P

′
bind) and d(Pvalue, P

′
value). We define dis-

tance between two FILTER expressions as half of their leven-
shtein distance when the variables in these two expressions
are identical, otherwise the distance is a fixed value 1. Thus
the distance is in the range of [0, 0.5] or equals to 1.

d(Pfilter,i, P
′
filter,i) =

levenshtein(E(i),E

′
(i))

2max(length(E(i)),length(E
′
(i)))

,

if V (i) = V
′
(i)

1, else

(2)

where E(i) and E
′
(i) represent the FILTER expression for

1http://www.fhnw.ch/wirtschaft/iwi/gmt

Pfilter,i and P
′
filter,i. V (i) and V

′
(i) are variables in these

two FILTER patterns respectively. When there are multiple
Filter expressions that can be compared, the total difference
is defined as:

d(Pfilter, P
′
filter) =

m∑
i=1

d(Pfilter,i, P
′
filter,i) (3)

We can also have similar functions for BIND and VALUE
patterns. Filter expressions in Query 1 and Query 2 are simi-

lar as the distance is 0.05 using Equation 3. So d(PQ1, P
′
Q2) =

0.05 (Equation 1).

3.2 Prefetch and Cache Similar Queries
We identify the most similar queries by mining historical
queries. When a new query comes, we prefetch the results
of its similar queries, and cache them along with its results.
Two approaches are developed for this step.

3.2.1 Basic Approach
Basic approach includes three steps:

• We construct the feature vectors for training queries by
adopting k-medoids algorithm [6] and applying Func-
tion 1. Specifically, we cluster training queries and
obtain the center query of each cluster. Then we cal-
culate the distance between a query and each center
query, and use the distance as a dimension of the fea-
ture vector of this query. The number of clusters equals
to the number of dimensions of feature vectors.

• We then train a modified KNN [4] to suggest similar
queries. Euclidean distance is used in KNN to measure
distance between feature vectors.

• When a new query is issued, we choose the K nearest
neighbors obtained from Step 2 as suggested queries.
We prefetch the results of these queries and put the
(qi, ri) pairs into the cache during the caching process.

3.2.2 Improved Approach with PCA
To further reduce the suggestion time, we employ PCA to
preprocess the queries. Given training queries {qn

i=1} ∈ Rm,
PCA calculates a linear transformation qi → Lqi, which
maps the original data to a variance-maximizing subspace.
The variance of the projected data can be computed using
the covariance matrix:

C =
1

n

n∑
i=1

(qi − µ)T (qi − µ) (4)

where µ =
1

n

∑n
i qi is the mean value of all queries. To

this point, the objective of PCA is to find an optimal lin-
ear transformation L, which can maximize the variance of
projected data. The objective function is formulated as:

max
L

Tr(LTCL), s.t. LLT = I (5)

thus, the top T ≤ m eigenvectors of covariance matrix C
would be the optimal solutions of Equation 5.

The only difference compared to the basic approach is in
the first step, constructing feature vectors. We use the same

364

clustering and similarity algorithms to construct basic fea-
ture vectors for training queries, but we further reduce di-
mensions by using PCA and generate multiple feature vec-
tors. For example, if we use 20 clusters in the basic ap-
proach, the feature vector for a query is a 20-dimensional
vector. Here by using PCA, we generate 19 feature vectors,
with dimensions from 1 to 19, for this query separately. We
choose one of these feature vectors as inputs of Step 2. In
Section 4.3, we compare the performance using feature vec-
tors of different dimensions.

3.3 Cache Replacement
The key point of cache replacement algorithm is to identify
the most useful data. One way is to find most frequent
used data. In [16], we use Modified Simple Exponential
Smoothing (MSES) to evaluate the frequency of accessed
triples and prove its simplicity and accuracy. In this paper,
we use MSES (Equation 6) to estimate cached queries.

Et = α+ Etprev ∗ (1− α)tprev−t (6)

where Et stands for smoothed observation of time t. tprev
represents the time when the query is last observed and
Etprev denotes the previous frequency estimation for the
query at tprev. α is a constant with α ∈ (0, 1). From this
equation, it is easy to observe that MSES assigns exponen-
tially decreasing weights as the observation becomes older,
which meets the requirement of caching the most frequently
and recently issued queries.

We perform cache replacement based on the estimation score
calculated by MSES. Each time a new query is executed, we
examine the frequency of this query using MSES. If it is in
the cache, we update the estimate for it. Otherwise, we just
record the new estimate. We keep the estimate records for
all processed queries if query recording is enabled. When the
top H estimations are changed, the cache will be updated
to reflect the new top H queries. Lower rank queries will be
removed from the cache.

4. EVALUATION

4.1 Setup
We set up local SPARQL Endpoint using Virtuoso 7.2 as
backing system, installed on Ubuntu 14.04 64 bit, 32GB
RAM. All the learning algorithms are performed on a PC
with Windows 7 64 bit, 8GB RAM and 2.40GHZ Intel i7-
3630QM CPU using Java SE7 and Apache Jena-2.11.2.

4.2 Datasets
We evaluated our approach using real world queries provided
by USEWOD 2014 challenge2. We focus on SELECT queries
and extracted 198,235 valid queries from the query logs of
DBPedia’s SPARQL endpoint3 (DBpedia3.9) and 1,790,047
valid queries from the query logs in Linked Geo Data’s end-
point4 (LinkedGeoData). Within the SELECT queries, ex-
cept for patterns which can be finally decomposed to BGPs

2http://usewod.org
3http://dbpedia.org/sparql/
4http://linkedgeodata.org/sparql

(e.g., AND, UNION, OPTIONAL and MINUS), FILTER,
VALUES and BIND are used, especially for FILTER, which
occurs in 83.97% DBpedia3.9 queries and 50.72% Linked-
GeoData queries(Table 1). This actually provides a strong
evidence that FILTER expressions should not be ignored
when calculating similarity between queries.

Table 1: Selected Keywords from SELECT Queries

FILTER VALUES BIND
DBpedia3.9 166,465 (83.97%) 1,615 (0.81%) 123 (0.06%)

LinkedGeoData 907,963 (50.72%) 101 (0.005%) 1 (0.0005%)

4.3 Experiments
The experiments aim to verify the effectiveness of our ap-
proach by comparing average hit rate, average query time
and space usage. We evaluated the impact of K in KNN and
the performance under the scenarios of applying and without
applying suggestion/prefetching (Section 4.3.1). We investi-
gated the impact on performance when using PCA to reduce
the dimension of graph feature vectors (Section 4.3.2). We
also compared our work with the Adaptive SPARQL Query
Cache (ASQC) introduced in [9] (Section 4.3.3). In order to
measure the impact on SPARQL Endpoint server, we moni-
tored server workload and give our observation (Section4.3.4).

We randomly chose 21,600 training queries and 5,400 test
queries from the two query sets separately. The cache re-
placement algorithm we used in all test cases is MSES (Sec-
tion 3.3). We chose α = 0.05 according to our previous ex-
perience [16]. Because the larger size of cache, the higher hit
rate would achieve, we only show experiment results when
the number of queries in cache is set to 1,000.

4.3.1 Impact of Cluster Number
As the generation of SPARQL feature vectors depends on
the number of clusters, we compared the impact of different
number of clusters on the average hit rates. Figure 3 shows
the hit rates with different number of clusters (i.e., 5, 10,
15, 20, 30) and different K in KNN (i.e., 2, 5, 10, 20, 50, 100
as K). Although the hit rates on DBpedia3.9 queries change
slightly when using the same K with different clusters, we
can find that Cluster 10 (C10 for short thereafter) gives high-
est performances from 77.18% (K=2) to 94.18% (K=100).
For LinkedGeoData queries, the highest hit rate is achieved
by C15 from 38.03% (K=2) to 20.60% (K=100). In the fol-
lowing experiments, we used C10 for DBpedia3.9 query and
C15 for LinkedGeoData for feature vector generation. More-
over, Figure 3 shows that the hit rates performed without
suggestion is always lower than the ones with suggestions be-
cause cached similarly-structured queries contribute to the
improvement of hit rates.

4.3.2 Impact of Dimension Reduction
Dimensions of the feature vectors also affect the hit rate.
We generated feature files with different dimensions for the
two sets of queries, namely, files from Dimension 1 (D1) to
D9 for DBpedia3.9 with 10 clusters (C10) and D1 to D14
for LinkedGeoData with 15 clusters (C15). We then trained

365

0 10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

Value of K

A
v
e
ra

g
e
 H

it
 R

a
te

 (
%

)

noSuggest

C5

C10

C15

C20

C30

(a) DBPedia3.9

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10

Value of K

A
v
e
ra

g
e
 H

it
 R

a
te

 (
%

)

noSuggest

C5

C10

C15

C20

C30

(b) LinkedGeoData

Figure 3: Hit Rates with Different Clusters and K

KNN model with these files. We compared the average hit
rates and average query time between with and without us-
ing PCA to reduce the dimension of feature vectors. From

K=2 K=5 K=10 K=20 K=50 K=100
60

65

70

75

80

85

90

95

K of KNN

A
v
e

ra
g

e
 H

it
 R

a
te

s
 (

%
)

noPCA

D1

D2

D3

D4

D5

D6

D7

D8

D9

(a) Hit Rates

K=2 K=5 K=10 K=20 K=50 K=100
0

100

200

300

400

500

600

K of KNN

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 (

M
ill

is
e
c
o
n
d
s
)

noPCA

D1

D2

D3

D4

D5

D6

D7

D8

D9

(b) Average Query Time

K=2 K=5 K=10 K=20 K=50 K=100
0

1

2

3

4

5

6

7

8

9

10

K of KNN

A
v
e

ra
g

e
 H

it
 R

a
te

s
 (

%
)

noPCA

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

(c) Hit Rates

K=2 K=5 K=10 K=20 K=50 K=100
0

2

4

6

8

10

12

14

16
x 10

4

K of KNN

A
v
e

ra
g

e
 Q

u
e

ry
 T

im
e

 (
M

ill
is

e
c
o

n
d

s
)

noPCA

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

(d) Average Query Time

Figure 4: Performance Comparisons on Dimensional
Reduction. (a) and (b) are for DBpedia3.9, (c) and
(d) are for LinkedGeoData

Figure 4(a) and 4(c), it is evident that without dimension
reduction, hit rates are higher for both query sets. The high-
est hit rate achieved for DBpedia3.9 queries is 93.22% when
K=100 without dimension reduction. For LinkedGeoData,
the highest hit rate is 39.03%. Usually, the higher the hit
rate is, the less query time it takes. However, when taking
K and dimension in PCA into consideration, this rule does
not work. This is because it will take more time to compute
when K and dimension increase, which counteract the time
reduced by higher hit rate. In our experiment, we found
out that for DBpedia3.9 queries, when K=20, D3 gives the
least average query time, 251 ms. For LinkedGeoData, when
K=10, D5 takes least time, 1251 ms on average. In following
experiments, we will use parameters based on these results.

4.3.3 Performance Comparison with ASQC
In this experiment, we compared the average hit rate, aver-

age query time and space usage between our work, ASQC
and no cache is used. For comparison, we modified the code
of ASQC 5 to access our datasets and use MSES for cache re-
placement. DBpedia3.9 queries are used in this evaluation.
Parameters are set to K=20, D=3 according to previous ex-
periment. Table 2 presents the results. ASQC have slightly
lower hit rate (72.63%) than SECF (76.26%). ASQC takes
264 ms in average for querying and SECF takes 251 ms.
When no cache is implemented, the average query time in-
creases to 625 ms. We did not include prefetching time as
it is in separate thread. Space consumption evaluates how
much memory the cache uses. In SECF, the total usage
(before slash) for caching 1000 queries, as shown in Table
2, includes cached queries and answers as well as the es-
timation records for cache replacement (after slash). The
numbers indicate that most space are consumed by cached
(query, result) pairs.

Table 2: Performance Comparison
ASQC No Cache SECF

Hit 72.63% NA 76.65%
AvgTime 264ms 625ms 251ms
Space 7.15MB/0.45KB NA 7.15MB

4.3.4 Server Overhead
In order to evaluate the impact of cache on the endpoint
server, we monitored the memory and CPU usage as well as
I/O on the server. We captured the usage every 20 seconds
until the querying ends. Table 3 shows the average free
memory (AvgFreeMem), average I/O (AvgIO) and average
CPU time (AvgCPU) including system CPU and user CPU
time. We only present the results on querying DBpedia3.9
dataset due to limit space. From the results we find out
that SECF and ASQC cause higher computation overhead
and memory usage on server compared to querying without
cache and ASQC performs slightly better than SECF with
more free memory (217.87MB vs 203.74MB), less I/O (11.49
vs 21.84) and less CPU time (9.37ms vs 10.68ms). It is
because that SECF requires prefetching results for similar
queries from server which leads to additional overhead.

Table 3: Server Performance
ASQC No Cache SECF

AvgFreeMem 217.87MB 224.30MB 203.74MB
AvgIO 11.49 7.72 21.84

AvgCPU 9.37ms 10.09ms 10.68ms

5. RELATED WORK
In this section, we overview recent works in Semantic Caching
and Query Suggestion that are related to our work.

Semantic Caching. Semantic Caching scheme involves tech-
niques that keep previously fetched data for past queries. It
was originally developed for relational databases [2]. In re-
cent years, semantic caching technique is extended to triple

5http://wiki.aksw.org/Projects/QueryCache

366

stores that managing SPARQL queries. The work of Martin
et al. [9] is the first step towards semantic caching in triple
stores. It essentially builds a proxy layer between an ap-
plication and a SPARQL endpoint. The proxy layer caches
the query-result pairs. Yang and Wu [15] provide an ap-
proach that caches intermediate result of BGPs in SPARQL
queries. More recently, Lorey and Naumann [8] propose ap-
proaches that generate queries with templates, then prefetch
and cache the results of these queries. We draw on the notion
of prefetching from this work. The Linked Data Fragments
(LDF) approach [14] aiming at improving data availability
can also be regarded as caching technique as it caches frag-
ments of queryable data from servers that can be accessed
by client. So that each client is able to process SPARQL
queries on replicated fragments cached from servers.

Query Suggestion. Query Suggestion is an interactive ap-
proach used in search engines to better understand users’
information needs. It plays an important role in improving
the accuracy of searching. Query suggestions are usually
made by mining query logs and session records of web users’
searching history [1]. Researchers recently introduced these
mining techniques into SPARQL processing. Lehmann et
al. [7] propose a supervised machine learning framework
to suggest SPARQL queries based on examples previously
selected by users. No prior knowledge of the underlying
schema or the SPARQL query language is required. Very re-
cently, Hasan [4] uses a machine learning method to predict
the performance of SPARQL query performance. We draw
idea from it to build feature vectors for SPARQL queries.

6. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the challenges of improving
the querying performance of SPARQL endpoints. The pro-
posed similarity measurement and mining based approach
are evaluated effective. Dimensional reduction algorithm
PCA also contributes to the reduction of overall query time.
In the future, we plan to train larger query sets and further
improve the query performance by reducing space overhead.
We also plan to investigate ways to understand client inten-
tions for more accurate suggestions of similar queries.

7. ACKNOWLEDGMENTS
This research has support from the Commonwealth Scien-
tific and Industrial Research Organization (CSIRO), Aus-
tralia (Top-up PhD Scholarship OCEPhD13/03446).

8. REFERENCES
[1] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and

H. Li. Context-aware Query Suggestion by Mining
Click-through and Session Data. In Proc. of the 14th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD 2008), pages 875–883, Las
Vegas, Nevada, USA, August 2008.

[2] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava,
and M. Tan. Semantic Data Caching and
Replacement. In Proc. of the 22rd International
Conference on Very Large Data Bases (VLDB1996),
pages 330–341, Bombay, India, September 1996.

[3] E. S. Gardner. Exponential Smoothing: The State of
The Art–Part II. International Journal of Forecasting,
22(4):637–666, 2006.

[4] R. Hasan. Predicting SPARQL Query Performance
and Explaining Linked Data. In Proc. of the 11th
Extended Semantic Web Conference (ESWC 2014),
pages 795–805, Anissaras, Crete, Greece, May 2014.

[5] I. Jolliffe. Principal component analysis. Wiley Online
Library, 2005.

[6] L. Kaufman and P. Rousseeuw. Clustering by Means
of Medoids. Dodge, Y. (ed.) Statistical Data Analysis
based on the L1 Norm, 1987.

[7] J. Lehmann and L. Bühmann. AutoSPARQL: Let
Users Query Your Knowledge Base. In Proc. of the 8th
Extended Semantic Web Conference (ESWC 2011),
pages 63–79, Heraklion, Crete, Greece, May 2011.

[8] J. Lorey and F. Naumann. Detecting SPARQL Query
Templates for Data Prefetching. In Proc. of the 10th
Extended Semantic Web Conference (ESWC 2013),
pages 124–139, Montpellier, France, May 2013.

[9] M. Martin, J. Unbehauen, and S. Auer. Improving the
Performance of Semantic Web Applications with
SPARQL Query Caching. In Proc. of the 7th Extended
Semantic Web Conference (ESWC 2010), pages
304–318, Heraklion, Crete, Greece, 2010.

[10] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K Page Replacement Algorithm For Database
Disk Buffering. In Proc. of the International
Conference on Management of Data (SIGMOD 1993),
pages 297–306, Washington, D.C., USA, May 1993.

[11] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. ACM Transactions on
Database Systems, 34(3), 2009.

[12] Q. Ren, M. H. Dunham, and V. Kumar. Semantic
Caching and Query Processing. IEEE Transactions on
Knowledge and Data Engineering, 15(1):192–210,
2003.

[13] A. Sanfeliu and K. Fu. A Distance Measure between
Attributed Relational Graphs for Pattern Recognition.
IEEE Transactions on Systems, Man, and
Cybernetics, 13(3):353–362, 1983.

[14] R. Verborgh, O. Hartig, B. D. Meester,
G. Haesendonck, L. D. Vocht, M. V. Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. V.
de Walle. Querying Datasets on the Web with High
Availability. In Proc. of the 13th International
Semantic Web Conference (ISWC 2014), pages
180–196, Riva del Garda, Italy, October 2014.

[15] M. Yang and G. Wu. Caching Intermediate Result of
SPARQL Queries. In Proc. of the 20th International
World Wide Web Conference (WWW 2011), pages
159–160, Hyderabad, India, March 2011.

[16] W. E. Zhang, Q. Z. Sheng, K. Taylor, and Y. Qin.
Identifying and Caching Hot Triples for Efficient RDF
Query Processing. In Proc. of the 20th International
Conference on Database Systems for Advanced
Applications (DASFAA 2015), pages 259–274, Hanoi,
Vietnam, April 2015.

367

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

