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Graphical Abstract 17 

Reaction of strongly electron withdrawing cyano substituted pyridyl oxime with metal precursor 18 

afforded the neutral oximato metal complexes due to the deprotonation of the oxime hydrogen 19 

whereas reaction of weakly electron donating substituted phenyl and methyl oximes yielded 20 

cationic oxime complexes. The iridium complexes were found to be more active against 21 

MIAPaCa-2 cancer cell line. 22 

 23 
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Abstract 24 

The reaction of [(p-cymene)RuCl2]2  and [Cp*MCl2]2 (M = Rh/Ir) with chelating ligand 2-pyridyl 25 

cyanoxime {pyC(CN)NOH} leads to the formation of neutral oximato complexes having the 26 

general formula [(arene)M{pyC(CN)NO}Cl] {arene = p-cymene, M = Ru, (1); Cp*, M = Rh (2); 27 

Cp*, M = Ir (3)}. Whereas the reaction of 2-pyridyl phenyloxime {pyC(Ph)NOH} and 2-28 

thiazolyl methyloxime {tzC(Me)NOH} with precursor compounds afforded the cationic oxime 29 

complexes bearing formula [(arene)M{pyC(ph)NOH}Cl]+ and [(arene)M{tzC(Me)NOH}Cl]+ 30 

{arene = p-cymene M = Ru, (4), (7); Cp*, M = Rh (5), (8); Cp*, M = Ir (6), (9)}. The cationic 31 

complexes were isolated as their hexafluorophosphate salts. All these complexes were fully 32 

characterized by analytical, spectroscopic and X-ray diffraction studies. The molecular structures 33 

of the complexes revealed typical piano stool geometry around the metal center within which the 34 

ligand acts as a NNʹ donor chelating ligand. The Chemo-sensitivity activities of the complexes 35 

evaluated against HT-29 (human colorectal cancer), and MIAPaCa-2 (human pancreatic cancer) 36 

cell line showed that the iridium-based complexes are much more potent than the ruthenium and 37 

rhodium analogues. Theoretical studies were carried out to have a deeper understanding about 38 

the charge distribution pattern and the various electronic transitions occurring in the complexes. 39 

Keywords: Ruthenium, rhodium, iridium, oximes, cytotoxicity  40 
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1. Introduction 41 

The study of half-sandwich arene ruthenium (arene = p-cymene and its derivatives) 42 

Cp*Rh and Cp*Ir complexes represents one of the most versatile subject in the field of 43 

organometallic chemistry because of their potential applications in various areas [1-6]. These 44 

complexes bearing the general formula [(arene)(M)(L)X] + (M = Ru, Rh and Ir, L is a chelating 45 

ligand and X is a halide) have been extensively studied as potential metal-based anticancer drugs 46 

[7-11]. The coordination sphere of the metal center in these half-sandwich complexes is 47 

stabilized by the arene moiety which protects the metal’s oxidation state occupying three 48 

coordinating sites, the chelating ligand L which controls the reactivity through various 49 

interactions and the M-Cl bond which easily gets dissociated and produces the active site for the 50 

metal ion to target biomolecules [12, 13]. It is seen that the leaving group, the chelating ligand 51 

and the arene substituent strongly influence the biological and structure activity relationship of 52 

these complexes [14]. Sadler et. al carried out number of experiments with chelating N,N-, N,O- 53 

and O,O- ligands to study the SAR activity of cytotoxic ruthenium(II) complexes by increasing 54 

the size of the arene ring [15]. Also it has been proposed by various research groups that the 55 

cytotoxicity of half-sandwich metal complexes increases with increase in size of the arene 56 

substituent [16-18]. These complexes have also displayed their remarkable activity as catalyst in 57 

various organic transformation reactions such as hydrogenation, water oxidation and C-H 58 

activation [19-21]. In recent years many half-sandwich complexes with NNʹ chelating nitrogen 59 

donor ligands have been accomplished in our laboratory [22]. 60 

Oxime ligands in particular have developed a keen interest in the field of coordination 61 

chemistry [23]. The oxime ligand can act as an ambidentate ligand and can coordinate with metal 62 

ions either through nitrogen or oxygen atoms [24]. Cyanoximes having the general formula 63 
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{HO-N=C(CN)-R}, where R is an electron withdrawing group represents an important class of 64 

biologically active compounds and transition metal complexes of cyanoximes have shown 65 

pronounced cytotoxicity and antimicrobial activity [25, 26]. The presence of the cyano group as 66 

a substituent close to the oxime fragment increases the acidity of the oxime several thousand 67 

times greater than that of common oximes [27]. The anions of 2-pyridyl oximes serve as a 68 

versatile ligand for preparation of complexes with unusual topologies exhibiting interesting 69 

magnetic properties [28]. Oximes have the capability to remain intact in the co-ordination sphere 70 

of the metal by undergoing O-H bond cleavage to afford oximate derivatives [29]. Despite 71 

having a rich diversified chemistry of metal oxime and oximato complexes, it is noteworthy that 72 

only a few half-sandwich platinum group metal oxime complexes have been reported to date [30, 73 

31]. 74 

In our present work we report the synthesis of ruthenium, rhodium and iridium half-75 

sandwich oximato and oxime complexes, their biological activity and theoretical studies. 76 

Ligands used in the present study are shown in Chart-1. 77 

2  Experimental 78 

2.1. Materials and methods 79 

All reagents were purchased from commercial sources and used as received without 80 

further purification. RuCl3.nH2O, RhCl3.nH2O, IrCl3.nH2O was purchased from Arora Matthey 81 

limited. 2-acetylthiazole and 2-benzoylpyridine were obtained from Aldrich, 2-82 

pyridylacetonitrile was obtained from Alfa Aesar and hydroxylamine hydrochloride was 83 

obtained from himedia. The solvents were purified and dried according to standard procedures 84 

[32]. The starting precursor metal complexes [(p-cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) 85 

were prepared according to the literature methods [33, 34]. The oxime ligands 2-pyridyl 86 
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cyanoxime, 2-pyridyl phenyloxime and 2-thiazolyl methyloxime were synthesized according to 87 

published procedures [29, 35 and 36]. Infrared spectra were recorded on a Perkin-Elmer 983 88 

spectrophotometer by using KBr pellets in the range of 400-4000 cm-1. 1H NMR spectra were 89 

recorded on a Bruker Avance II 400 MHz spectrometer using DMSO-d6 as solvents. Absorption 90 

spectra were recorded on a Perkin-Elmer Lambda 25 UV/Vis spectrophotometer in the range of 91 

200-800 nm at room temperature in acetonitrile. Mass spectra were recorded using Q-Tof APCI-92 

MS instrument (model HAB 273). Elemental analyses of the complexes were performed on a 93 

Perkin-Elmer 2400 CHN/S analyzer. 94 

2.2. Structure determination by X-ray crystallography 95 

Suitable single crystals of complexes (1), (2) and (3), were obtained by slow diffusion of 96 

hexane into acetone solution and crystals of complexes (4), (5), (7) and (8) were obtained by 97 

diffusing hexane into DCM solution. Single crystal X-ray diffraction data for the complexes 98 

were collected on an Oxford Diffraction Xcalibur Eos Gemini diffractometer at 293 K using 99 

graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). The strategy for the data collection 100 

was evaluated using the CrysAlisPro CCD software. Crystal data were collected by standard 101 

‘‘phi–omega scan’’ techniques and were scaled and reduced using CrysAlisPro RED software. 102 

The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least 103 

squares with SHELXL-97 refining on F2 [37, 38]. The positions of all the atoms were obtained 104 

by direct methods. Metal atoms in the complex were located from the E-maps and non-hydrogen 105 

atoms were refined anisotropically. The hydrogen atoms bound to the carbon were placed in 106 

geometrically constrained positions and refined with isotropic temperature factors, generally 1.2 107 

Ueq of their parent atoms. Crystallographic and structure refinement parameters for the 108 

complexes are summarized in Table 1, and selected bond lengths and bond angles are presented 109 
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in Table 2. Figures 1-3 were drawn with ORTEP3 program whereas Figures S2-S6 was drawn by 110 

using MERCURY 3.6 program [39]. 111 

The crystal structure of complex (5) contains disordered hexane molecule, which has 112 

been removed by SQUEEZE method [40]. Crystal structure of complex (6) contains fourfold 113 

disordered solvent molecule, which has been refined and removed by SQUEEZE method. 114 

Crystal structure of complex (8) contains solvent molecule in their solved structure. 115 

2.3. Biological studies 116 

The complexes (1-9) were dissolved in DMSO at 100 mM and stored at -20 °C until 117 

required. The cytotoxicity of the complexes was studied against HT-29 (human colorectal 118 

cancer) and MIAPaCa-2 (human pancreatic cancer) cell line. Cells were seeded into 96 well 119 

plates at 1 x 103 cells per well and incubated at 37 °C in a CO2 enriched (5%), humidified 120 

atmosphere overnight to adhere. The cells were exposed to a range of drug concentrations in the 121 

range of 0-100 µM for four days before cell survival was determined using the MTT assay [41]. 122 

To each well MTT (0.5 mg/ml) in phosphate buffered saline was added and was further 123 

incubated at 37 °C for 4 hours. The MTT was then removed from each well and the formazan 124 

crystals formed were dissolved in 150 µM DMSO and the absorbance of the resulting solution 125 

was recorded at 550 nm using an ELISA spectrophotometer. The percentage of cell inhibition 126 

was calculated by dividing the absorbance of treated cell by the control value absorbance 127 

(exposed to 0.1 % DMSO). The IC50 values were determined from plots of % survival against 128 

drug concentration. Each experiment was repeated three times and a mean value obtained and 129 

stated as IC50 (µM) ± SD.  130 
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2.4. Computational Methodology 131 

The geometry optimization of all the complexes were done in the gas phase using the 132 

Density Functional Theory (DFT) based B3LYP method in conjugation with 6-31G** basis set 133 

for lighter atoms (H, C, N, O, Cl, S, P and F) and LANL2DZ [42, 43] basis set for heavier atoms 134 

(Ru, Rh and Ir). LANL2DZ is a widely used Effective Core Potential (ECP) basis set which 135 

considers the core electrons as chemically inactive and performs only on the valence electrons 136 

and thus reduces the computational cost. Harmonic frequency calculations were carried out at the 137 

same level to ensure that the geometries are minima at the potential energy surface (PES). 138 

Natural Bond Orbital (NBO) [44] analysis was carried out to get charges on individual atoms 139 

present in the complexes. Time dependent-Density Functional Theory (TD-DFT) [45] has been 140 

employed to evaluate the absorption spectra and the electronic transitions of the metal 141 

complexes. In order to incorporate the effect of the solvent around the molecule, the Polarizable 142 

Continuum Model (PCM) [46] was used in TD-DFT calculations. The composition of the 143 

molecular orbital analysis was carried out using the Chemissian software package [47]. All the 144 

electronic energy calculations were carried out using Gaussian 09 suite of program [48]. 145 

2.5. General procedure for synthesis of neutral complexes (1-3) 146 

A mixture of starting metal precursor (0.1 mmol) and ligand 2-pyridyl cyanoxime, 147 

{pyC(CN)NOH} (0.2 mmol) were dissolved in dry methanol (10 ml) and stirred at room 148 

temperature for 8 hours (Scheme-1). A yellow colored compound precipitated out from the 149 

reaction mixture. The precipitate was filtered, washed with cold methanol (2 x 5 ml) and diethyl 150 

ether (3 x 10 ml) and dried in vacuum. 151 

2.5.1. [(p-cymene)Ru{pyC(CN)NO}Cl] (1) 152 
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Yield: 62 mg (74%); IR (KBr, cm-1): 2959(m), 2203(m), 1603(m), 1482(m), 1443(m), 1396(s), 153 

1368(m), 871(m), 788(m); 1H NMR (400 MHz, DMSO-d6): δ = 9.20 (d, 1H, J = 8.0 Hz , CH(py)), 154 

7.94 (t, 1H, CH(py)), 7.38 (t, 1H, CH(py)), 7.30 (d, 1H, J = 8.0 Hz, CH(py)), 1.01 (dd. 6H, J = 8 and 155 

8 Hz, CH(p-cym)), 2.07 (s, 3H, CH(p-cym)), 2.62 (sept, 1H, CH(p-cym)), 5.60 (d, 1H, J = 8.0 Hz, CH(p-156 

cym)), 5.68 (d, 1H, J = 4.0, CH(p-cym)), 5.80 (d, 1H, J = 8.0, CH(p-cym)), 5.87 (d, 1H, J = 8.0 Hz, 157 

CH(p-cym)); HRMS-APCI (m/z): 417.0302 (M+H)+; UV-Vis { Acetonitrile, λmax nm (ε/10-4 M-1 158 

cm-1)}: 237 (1.83), 302 (1.18), 370 (0.61); Anal. Calc for C17H18ClN3ORu (416.86); C, 48.98; H, 159 

4.35; N, 10.08. Found: C, 49.14; H, 4.42; N, 10.23 %. 160 

2.5.2. [Cp*Rh{pyC(CN)NO}Cl] (2) 161 

Yield: 66 mg (78%); IR (KBr. cm-1): 2918(m), 2212(m), 1602(m), 1481(m), 1444(m), 1398(s), 162 

1372(s), 1155(m), 766(m); 1H NMR (400 MHz, DMSO- d6): δ = 8.54 (d, 1H, J = 4.0 Hz, CH(py)), 163 

7.88 (t, 1H, CH(py)), 7.40 (t, 1H, CH(py)), 7.31 (d, 1H, J = 8.0 Hz, CH(py)), 1.59 (s, 15H, CH(Cp*)); 164 

HRMS-APCI (m/z): 420.0451 (M+H)+; UV-Vis { Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 236 165 

(1.78), 255 (1.35), 289 (1.08), 374 (0.71); Anal. Calc for C17H19ClN3ORh (419.71); C, 48.65; H, 166 

4.56; N, 10.01. Found: C, 48.68; H, 4.62; N, 10.18 %. 167 

2.5.3. [Cp*Ir{pyC(CN)NO}Cl] (3) 168 

Yield: 80 mg (78%); IR (KBr. cm-1): 2922(m), 2204(m), 1605(w), 1483(m), 1394(s), 1368(s), 169 

765(m); 1H NMR (400 MHz, DMSO-d6): δ = 8.54 (d, 1H, J  = 4.0 Hz, CH(py)), 7.80 (t, 1H, 170 

CH(py)), 7.52 (d, 1H, J = 4 Hz, CH(py)), 7.23 (t, 1H, CH(py)), 1.62 (s, 15H, CH(Cp*)); HRMS-APCI 171 

(m/z): 510.0824 (M+H)+; UV-Vis { Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 233 (1.46), 288 172 

(0.96), 378 (0.53); Anal. Calc for C17H19ClN3OIr (509.02); C, 40.11; H, 3.76; N, 8.26. Found: C, 173 

40.28; H, 3.88; N, 8.38 %. 174 

2.6. General procedure for synthesis of cationic complex (4-9) 175 
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A mixture of starting metal precursor (0.1 mmol) and ligand 2-pyridyl phenyloxime 176 

{pyC(Ph)NOH} or 2-thiazolyl methyloxime {tzC(Me)NOH} (0.2 mmol) and 2.5 equivalents of 177 

NH4PF6 were dissolved in dry methanol (10 ml) and stirred at room temperature for 8 hours 178 

(Scheme-2 and 3). The solvent was evaporated the residue was dissolved in dichloromethane and 179 

filtered through celite, the filtrate was concentrated to 1 ml and excess hexane was added to 180 

precipitate the compound. The precipitate was collected and dried in vacuum. 181 

2.6.1. [(p-cymene)Ru{pyC(Ph)NOH}Cl](PF6) (4) 182 

Yield: 96 mg (78%); IR ((KBr. cm-1): 3314(b), 3090(s), 2967(w), 1598(s), 1472(s), 1366(m), 183 

1192(s), 1031(s) 838(s); 1H NMR (400 MHz, DMSO-d6): 9.45 (d, 1H, J  = 8.0 Hz, CH(py)), 8.04 184 

(t, 1H, CH(py)), 7.66 (t, 1H, CH(py)), 7.54-7.59 (m, 3H, CH(py), (Ar)), 7.29-7.32 (m, 3H, CH(Ar)), 185 

1.06 (d 3H, J = 8.0 Hz, CH(p-cym)), 1.13 (d, 3H, J = 8.0 Hz, CH(p-cym)), 2.26 (s, 3H, CH(p-cym)), 186 

2.70 (sept, 1H, CH(p-cym)), 5.72 (d, 1H, J = 8.0 Hz, CH(p-cym)), 6.02 (d, 1H, J = 8.0 Hz, CH(p-cym)), 187 

6.12 (d, 1H, J = 8.0 Hz, CH(p-cym)), 6.19 (d, 1H, J = 8.0 Hz, CH(p-cym)), OH not observed; HRMS-188 

APCI (m/z): 469.0652 (M-PF6)
+; UV-Vis {Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 233 (2.28), 189 

272 (0.95), 376 (0.29); Anal. Calc for C22H24ClF6N2OPRu (613.93); C, 43.04; H, 3.94; N, 4.56. 190 

Found: C, 43.21; H, 4.06; N, 4.63 %. 191 

2.6.2. [Cp*Rh{pyC(Ph)NOH}Cl](PF6) (5) 192 

Yield: 108 mg (87%); IR (KBr. cm-1): 3314(b), 3112(m), 2922(m), 1595(s), 1470(w), 1378(w), 193 

1189(s), 1027(s), 841(s); 1H NMR (400 MHz, DMSO-d6): δ = 8.77 (d, 1H, J  = 4.0 Hz, CH(py)), 194 

8.06 (t, 1H, CH(py)), 7.77 (t, 1H, CH(py)), 7.59-7.63 (m, 3H, CH(py), (Ar)), 7.40-7.45 (m, 3H, 195 

CH(Ar)), 1.77 (s, 15 H, CH(Cp*)), OH not observed; HRMS-APCI (m/z): 471.0721 (M-PF6)
+; UV-196 

Vis {Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 266 (0.75), 357 (0.30); Anal. Calc for 197 

C22H25ClF6N2OPRh (616.77); C, 42.84; H, 4.09; N, 4.54. Found: C, 42.91; H, 3.96; N, 4.67 %. 198 
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2.6.3. [Cp*Ir{pyC(Ph)NOH}Cl](PF6) (6) 199 

Yield: 110 mg (78%); IR (KBr. cm-1): 3438(b), 3137(m), 2975(m), 1624(s), 1457(w), 1378(w), 200 

1142(s), 1033(s), 843(s); 1H NMR (400 MHz, DMSO-d6): δ = 8.78 (d, 1H, J  = 4.0 Hz, CH(py)), 201 

7.92 (t, 1H, CH(py)), 7.79 (t, 1H, CH(py)), 7.48-7.53 (m, 3H, CH(py), (Ar)), 7.43-7.47 (m, 3H, 202 

CH(Ar)), 1.77 (s, 15 H, CH(Cp*)), OH not observed; HRMS-APCI (m/z): 561.1283 (M-PF6)
+; UV-203 

Vis {Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 296 (0.78), 360 (0.59); Anal. Calc for 204 

C22H25ClF6N2OPIr (706.08); C, 37.42; H, 3.57; N, 3.97. Found: C, 37.58; H, 3.65; N, 4.11 %. 205 

2.6.4. [(p-cymene)Ru{tz(CH3)NOH}Cl](PF6) (7) 206 

Yield: 88 mg (79%); IR (KBr. cm-1): 3594(s), 3429(b), 3109(m), 2970(m), 1631(s), 1505(m), 207 

1471(w), 1381(s), 1140(s), 1040(m), 846(s); 1H NMR (400 MHz, DMSO-d6): δ = 11.3 (s, 1H, 208 

OH), 8.50 (d, 1H, J = 4.0 Hz, CH(tz)) 7.89 (d, 1H, J = 8.0 Hz, CH(tz)), 2.52 (s, 3H, CH3), 1.10 (d, 209 

3H, J = 8 Hz, CH(p-cym)), 1.18 (d, 1H, J = 8 Hz, CH(p-cym)), 2.29 (s, 3H, CH(p-cym)), 2.75 (sept, 1H), 210 

6.06 (d, 1H, J = 4 Hz, CH(p-cym)), 5.89 (d, 2H, J = 8 Hz, CH(p-cym)), 5.64 (d, 1H, J = 4 Hz, CH(p-211 

cym)); HRMS-APCI (m/z): 413.0118 (M-PF6)
+; UV-Vis {Acetonitrile, λmax nm (ε/10-4 M-1 cm-1)}: 212 

297 (0.48), 350 (0.32); Anal. Calc for C15H20ClF6N2OPRuS (557.88); C, 32.29; H, 3.61; N, 5.02. 213 

Found: C, 32.41; H, 3.69; N, 5.13 %. 214 

2.6.5. [Cp*Rh{tzC(CH3)NOH}Cl](PF6) (8) 215 

Yield: 84 mg (75%); IR (KBr. cm-1): 3618(s), 3433(b), 3138(m), 2824(w), 1598(s), 1470(w), 216 

1382(w), 1139(m), 1027(w), 842(s); 1H NMR (400 MHz, DMSO-d6): δ = 11.81 (s, 1H, OH), 217 

8.14 (d, 1H, J = 4 Hz, CH(tz)), 8.08 (d, 1H, J = 4 Hz, CH(tz)), 2.56 (s, 3H, CH3), 1.78 (s, 15 H, 218 

CH(Cp*)); HRMS-APCI (m/z): 415.0131 (M-PF6)
+; UV-Vis { Acetonitrile, λmax nm (ε/10-4 M-1 219 

cm-1)}: 230 (0.53), 287 (0.35), 351 (0.32); Anal. Calc for C15H21ClF6N2OPRhS (560.73); C, 220 

32.13; H, 3.77; N, 5.00. Found: C, 32.19; H, 3.85; N, 5.12 %. 221 
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2.6.6. [Cp*Ir{tzC(CH3)NOH}Cl](PF6) (9) 222 

Yield: 100 mg (77%); IR (KBr. cm-1): 3619(s), 3339(b), 3136(m), 2926(m), 1599(m), 1458(m), 223 

1387(m), 1144(w), 1036(m), 844(s); 1H NMR (400 MHz, DMSO-d6): δ = 11.81 (s, 1H, OH), 224 

8.25 (d, 1H, J = 4 Hz, CH(tz)), 8.23 (d, 1H, J = 4 Hz, CH(tz)), 2.58 (s, 3H, CH3), 1.77 (s, 15 H, 225 

CH(Cp*)); HRMS-APCI (m/z): 505.0761 (M-PF6)
+; UV-Vis {Acetonitrile, λmax nm (ε/10-4 M-1 cm-

226 

1)}: 290 (0.76), 360 (0.346); Anal. Calc for C15H21ClF6N2OPIrS (650.04); C, 27.72; H, 3.26; N, 227 

4.31. Found: C, 27.90; H, 3.32; N, 4.41 %. 228 

3. Results and discussion 229 

3.1. Synthesis of the complexes 230 

The neutral metal oximato complexes (1-3) were isolated by the reaction of metal 231 

precursors with 2-pyridyl cyanoxime. The neutral metal complexes were formed as a result of 232 

deprotonation of the oxime hydrogen as confirmed by spectroscopic and X-ray diffraction 233 

studies. It is assumed that the presence of the cyano group as a substituent in 2-pyridyl 234 

cyanoxime increases its acidity leading to its deprotonation and resulting in elimination of HCl. 235 

Furthermore deprotonation of oxime hydrogen generates an anionic charge on oxime-O which 236 

was found to be delocalized over the 2-pyridyl cyanoxime moiety as reflected from the bond 237 

lengths values (Table 2). The cationic metal oxime complexes (4-9) were prepared by the 238 

reaction of metal precursors with 2-pyridyl phenyloxime and 2-thiazolyl methyloxime. 239 

Deprotonation of oxime hydrogen was not observed in this case with phenyl and methyl as 240 

substituent. The cationic complexes were isolated with PF6 counter ion. All these complexes 241 

were isolated as yellow solids except complexes (6 and 9) which were isolated as orange solids. 242 

These complexes are non-hygroscopic, stable in air as well as in solid state. They are soluble in 243 

common organic solvents like acetone, acetonitrile, dichloromethane and DMSO but insoluble in 244 
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hexane and diethyl ether. All these complexes were fully characterized by spectroscopic 245 

techniques. 246 

3.2. Spectral studies of the complexes 247 

The IR spectra of all the complexes shows characteristic stretching frequencies for C=N 248 

and C=C around 1450-1620 cm-1 and these values are shifted to higher frequencies as compared 249 

to the free ligand following coordination of the ligand to the metal atom. The C≡N stretching 250 

frequencies for the neutral complexes (1-3) appeared in the lower frequency region around 2204-251 

2212 cm-1 as compared to the free ligand at 2229 cm-1 which may be due to delocalization of the 252 

anionic charge on oxime-O. The disappearance of the OH stretching frequency around 3100-253 

3400 cm-1 in the neutral complexes (1-3) indicates the deprotonation of the oxime hydrogen, 254 

which is also confirmed from the crystal structures. The presence of the OH stretching frequency 255 

around 3100-3450 cm-1 in cationic complexes (4-9) suggests that the binding occurs through the 256 

nitrogen atom. In addition, the cationic metal complexes (4-9) displayed a strong intense band 257 

around 838-849 cm-1 corresponding to the P-F stretching frequency of the counter ion [49]. 258 

In the 1H NMR spectra of the complexes the signals for the aromatic protons of the ligand 259 

was observed in the downfield region around 7.32-9.50 ppm. The shift of the ligand resonance 260 

signals clearly indicates the coordination of the ligand to the metal ion. The disappearance of the 261 

OH proton signal in the neutral complexes (1-3) as compared to the free ligand at 13.02 ppm 262 

indicates the deprotonation of the hydroxyl proton. The OH proton resonance for complexes (7-263 

9) was observed as singlet around 11.3-11.9 ppm respectively. Besides these resonance signals 264 

for the aromatic part of the ligand complexes (1, 4 and 7) displayed an unusual pattern of signal 265 

for the p-cymene moiety. The aromatic proton signal for the p-cymene ligand showed four 266 

doublets for complexes (1) and (4) at around 5.60-6.19 ppm and three doublets for complex (7) 267 
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around 5.64-6.06 ppm instead of two doublets in the starting metal precursor. And also methyl 268 

protons of isopropyl group displayed two doublets for complex (4) and (7) and one doublet of 269 

doublet for complex (1) around 1.01-1.18 ppm instead of one doublet in the metal precursor. 270 

This surprising pattern of signals is due to desymmetrization of the p-cymene ligand upon 271 

coordination of the oxime ligand and these results are in good agreement with similar reported 272 

complexes [50]. Complexes (1, 4 and 7) displayed septet and singlet around 2.07-2.75 ppm 273 

corresponding to the methine protons of the isopropyl group and methyl group of the p-cymene 274 

ligand. The methyl proton resonance for complexes (8) and (9) was observed as a singlet at 2.56 275 

and 2.58 ppm. In addition, to all these signals a strong peak for the Cp*Rh complexes (2, 5 and 276 

8) and the Cp*Ir complexes (3, 6 and 9) was observed between 1.59-1.78 ppm for the methyl 277 

protons of the pentamethylcyclopentadienyl ligand. 278 

In the mass spectra of the neutral complexes (1-3), the molecular ion peak was observed 279 

as (M+H)+ ion peak at m/z: 417.0302, m/z: 420.0451 and m/z: 510.0824 respectively. Whereas 280 

the mass spectra of the cationic complexes (4-9) displayed their molecular ion peaks at m/z: 281 

469.0652, m/z: 471.0721, m/z: 561.1283, m/z: 413.0118, m/z: 415.0131 and m/z: 505.0761 282 

which corresponds to the [M-PF6]
+ ion. The mass spectra values of the complexes strongly 283 

support the formation of the complexes. 284 

The absorption spectra of the complexes were recorded in acetonitrile at 10-4 M 285 

concentration at room temperature and the plot is shown in (Figure S1). The electronic spectra of 286 

the complexes display absorption band in the higher energy region around 230-305 nm which 287 

can be assigned as ligand centered π-π* and n-π*transition [51]. The low spin Ru(II), Rh(III) and 288 

Ir(III) complexes provides filled dπ (t2g) orbitals of proper symmetry which can interact with low 289 

lying π* orbitals of the ligand. Therefore a metal to ligand charge transfer (MLCT) band is 290 
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expected in their absorption spectra. The bands in the lower energy region around 350-380 nm 291 

can be assigned as metal to ligand charge transfer (MLCT) dπ(M) to π*(L) transition [52]. 292 

3.3. Molecular structures of complexes 293 

The molecular structures of some of the respective complexes were established by single 294 

crystal X-ray analysis. Suitable single crystals were attached to a glass fiber and transferred into 295 

the Oxford Diffraction Xcalibur Eos Gemini diffractometer. The crystallographic details and 296 

structure refinement details are summarized in Table 1. The geometrical parameters around the 297 

metal atom involving ring centroid are listed in Table 2. Complex (1) crystallized in 298 

orthorhombic system with space group Pca21. Complexes (2, 3 and 8) crystallized in monoclinic 299 

crystal system with space group P21/c whereas complexes (4) and (7) crystallized with P21/n and 300 

P21/m space group in monoclinic crystal system. Complex (5) crystallized in triclinic system 301 

with space group P ͞1. 302 

The molecular structures of the complexes revealed a typical three legged “piano stool” 303 

geometry about the metal center with the metal atom coordinated by the arene/Cp* ring in a η
6/ 304 

η
5 manner, two nitrogen donor atoms from chelating ligand in a bidentate κ2 NNʹ fashion and one 305 

chloride atom. The metal atom in these complexes is situated in a pseudo-octahedral arrangement 306 

with the ligand coordinating through the pyridine and oxime nitrogen atom forming a five 307 

membered metallocyclic ring. The bite angle values N(1)-Ru(1)-N(2) in ruthenium complexes 308 

are 77.81(13) (1), 75.66(7) (4) and 78.0(10) (7). The average Ru-C distances in complexes (1) 309 

and (4) are almost equal 2.203 and 2.205 Å, while in complex (7) the Ru-C distance is 2.179 Å. 310 

The Ru-centroid of the arene ring distances in complexes (1) and (4) are equal 1.696 Å while in 311 

complex (7) it is slightly longer 1.728 Å. The bite angle values N(1)-M(1)-N(2) in rhodium and 312 

iridium complexes are 78.06(16) (2), 78.0(3) (3), 74.92(11) (5) and 75.16(15) (8). The average 313 
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M-C distances (where M = Rh/Ir) are {2.165 (2), 2.170 (3), 2.157 (5) and 2.149 (8) Å} while the 314 

distance between the metal to centroid of the Cp* ring is found to be in the range of 1.775-1.803 315 

Å respectively. The M-N and M-Cl bond distances (where M = Ru, Rh and Ir) in all these 316 

complexes are found to be in close agreement with previously reported values for ruthenium, 317 

rhodium and iridium complexes with NNʹ donor ligands [53]. Surprisingly, the molecular 318 

structures of complexes (1, 2 and 3) revealed the deprotonation of the oxime hydrogen 319 

generating an anionic charge on oxime-O. This anomalous behavior of deprotonation of the 320 

oxime hydrogen is not surprising as the presence of electron withdrawing cyano group increases 321 

the acidity of the oxime fragment. It was further observed that the anionic charge on the oxime-O 322 

was delocalized over the 2-pyridyl cyanoxime moiety. This is supported by the oximate C(6)-323 

N(2) {1.330(5) (1), 1.334(7) (2) and 1.360(11) (3) Å} and N(2)-O(1) {1.271(4) (1), 1.262(5) (2) 324 

and 1.254(9) (3) Å} bond lengths which is slightly larger and smaller than the corresponding C-325 

N {1.287(2) Å} and N-O {1.367(2) Å} bond in the free ligand indicating their partial double 326 

bond character and delocalization of the anionic charge (Scheme-1) [54]. These results are 327 

further supported by the theoretical calculations as well (Table S1). A similar pattern of 328 

delocalization of charge was reported for the cyclometalated iridium complex [Ir(ppy)2(pyald)] 329 

(ppy = 2-phenylpyridine, pyald = 2-pyridinealdoxime) where the anionic charge was delocalized 330 

over the pyridine aldoxime moiety [55]. The positive charge of the ruthenium atom in complex 331 

(1) is balanced by one negative charge from chloride ion and one negative charge from the 332 

oxime-O. Similarly in complexes (2) and (3), the positive charge of the metal atom is balanced 333 

by one anionic charge from Cp* ligand, one chloride ion and anionic oxime-O. 334 

Further the crystal structure of complex (1) displayed three different types of 335 

intermolecular hydrogen bonding; the first between the anionic oxime-O and hydrogen atom 336 
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from pyridine (2.393 Å), the second between the oxime-O and methine hydrogen (2.383 Å) and 337 

third from the aromatic hydrogen of p-cymene ligand (2.531 Å). Also C-H····Cl (2.848 Å) 338 

interaction between the chloride atom and H-atom of pyridine ring (Figure S2) has been 339 

observed. Crystal structure of complex (2) exhibits two different types of C-H·····Cl (2.813 and 340 

2.902 Å) interactions between the chloride atom attached to metal and H-atom of Cp* group and 341 

pyridine and also C-H·····π (2.904 Å) interaction was observed between the methyl-H atom and 342 

Cp* group (Figure S3). The crystal structure of complex (3) is stabilized by C-H·····π (2.756 Å) 343 

interaction between the methyl-H atom and Cp* group and C-H·····Cl (2.917 Å) interaction 344 

between chloride atom and methyl H atom of Cp*. It also exhibits two types of intermolecular 345 

hydrogen bonding C-H·····O (2.713 Å) between the anionic oxime-O and methyl-H of Cp* and 346 

C-H·····N (2.689 Å) interaction between nitrogen atom of cyano group and pyridine-H atom 347 

(Figure S4). The crystal packing of complex (4) and (5) forms a dimeric unit via weak 348 

intermolecular C-H·····O (2.700 and 2.848 Å) and O-H·····Cl (2.228 and 2.245 Å) interactions 349 

between the methyl-H atom of Cp* and oxime-O and oxime-H atom and chloride atom attached 350 

to metal ion (Figure S5). Further the crystal structure of complex (8) crystallized with one water 351 

molecule which forms four different types of intermolecular hydrogen bonding the first between 352 

the hydrogen atom of water molecule and chloride atom O-H·····Cl (2.807 Å), the second 353 

between the fluorine atom of counter ion PF6 and H-atom of water molecule O-H·····F (2.319 Å), 354 

the third between the O-atom and H-atom of Cp* group C-H·····O (2.507 Å) and the last between 355 

the O-atom and H-atom of oxime moiety O-H·····O (1.829 Å) (Figure S6). These weak 356 

interactions play an important role in the formation of supramolecular motifs. 357 

3.4. Chemosensitivity studies 358 
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The oximato and oxime metal complexes (1-9) were tested for their in vitro activity 359 

against two cancer cell lines HT-29 (human colorectal cancer) and MIAPaCa-2 (human 360 

pancreatic cancer) using the MTT assay. The response of the cell line HT-29 and MIAPaCa-2 to 361 

the test complexes (1-9) and cisplatin is presented in graphical form in Figure 4 and in tabular 362 

form in Table 3. Complexes (1) and (8) were found to be inactive against both the cell line with 363 

IC50 values > 100 µM. Complexes (4) and (5) were found to be less active against HT-29 cell 364 

line whereas complex (4) was found to be more active against MIAPaCa-2 cell line. In contrast 365 

complexes (2) and (7) displayed moderate activity against both cell lines with IC50 value in the 366 

range of 8.28 to 23.74 µM. However, among all the ruthenium, rhodium and iridium complexes, 367 

the iridium complexes (3), (6) and (9) with cyano, phenyl and methyl substituted oximes 368 

displayed high cytotoxicity. The iridium complexes were found to be highly active against HT-369 

29 cancer cell line with IC50 values in the range of 5.82 to 10.54 µM. Also, the iridium 370 

complexes exhibits high potency against MIAPaCa-2 cell line with IC50 values ranging from 371 

2.89 to 9.65 µM. However among all the iridium complexes, the iridium oximato compound (3) 372 

with cyano substituent was found to be the most potent towards MIAPaCa-2 cell line (IC50 = 373 

2.87 ± 0.26 µM) with IC50 value comparable to that of cisplatin (IC50 = 2.84 ± 2.05 µM). This 374 

high remarkable activity of the iridium based complexes suggests that the presence of the 375 

substituent in the chelating ligand plays a crucial role and affects the cytotoxicity [8]. This study 376 

demonstrates that the cytotoxicity of the complexes can be finely tuned by changing the nature 377 

and position of the substituent in the chelating ligand without changing the arene systems. 378 

3.5. Optimized structural geometry 379 

The comparison of the geometric parameters (selected bond lengths and bond angles) of 380 

the optimized structures and the crystal structures of the complexes (1-9) are listed in Table S1. 381 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

 

The calculated bond lengths and the bond angles of the complexes are in good agreement with 382 

the experimental data indicating the reliability of the theoretical method (B3LYP/6-383 

31G**/LanL2DZ) used in the present study. It should be noted that a slight discrepancy from the 384 

experimental value in N(2)-Ru(1)-Cl(1), N(1)-Ru(1)-Cl(1) and N(2)-Rh(1)-Cl(1) bond angle for 385 

complexes (1), (4) and (8) has been observed (Table S1). 386 

3.6. Molecular electrostatic potential (MESP) 387 

MESP is an important quantity to understand sites for electrophilic attack and 388 

nucleophilic attack as well as hydrogen bond interactions [56, 57]. The MESP diagram for all the 389 

complexes are shown in Figure 5. The red region represents the negative electrostatic potential, 390 

which is related to the nucleophilic reactivity whereas the blue regions represents the positive 391 

electrostatic potential and is related to the electrophilic reactivity. The red regions in complexes 392 

containing 2-pyridyl cyanoxime and 2-pyridyl phenyloxime does not change much drastically, 393 

but in complexes containing 2-thiazolyl methyloxime, the intensity of red color decreases 394 

slightly in complexes (8) and (9) as compared to complex (7). 395 

3.7. Charge Distribution 396 

The charges on the selected atoms as obtained from NBO analysis are listed in Table S2. 397 

The charge on the metal (Ru, Rh and Ir) for complexes (1-9) ranges between -0.028 e (complex 398 

7) and 0.0248 e (complex 3), which are less than their formal charges of +2 (Ru) and +3 (Rh/Ir). 399 

Moreover, as indicated in Table S2, the negative charge on the N1 decreases in all the complexes 400 

as compared to their charge in isolated ligands. These results confirm that the ligands transfer 401 

their negative charges to the metal on complex formation. The charge on the chloride atom for 402 

all the complexes ranges between -0.342 e and -0.406 e. It should be noted that the negative 403 

charges on chloride for ruthenium complexes are comparatively lower whereas it is higher for 404 

rhodium and iridium complexes. These lowering of charges in ruthenium complexes are the 405 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

reflection of the negative charges on ruthenium complex (1) and (7) and very small positive 406 

charge of 0.002 e on Ru in complex (4). As observed from the experimental results, that in the 407 

neutral complexes (1, 2 and 3) the anionic charge on oxime-O was delocalized over the 2-pyridyl 408 

cyanoxime moiety, therefore we further tried to justify these results with theoretical data as well. 409 

In isolated ligand, 2-pyridyl cyanoxime, the charges on the O1, N2 and C6 are found to be -410 

0.545, -0.037 and 0.062 e. On complex formation, the negative charges on the O1 and N2 411 

decreases and attains a value of -0.381, -0.387, -0.403 e and 0.159, 0.126, 0.107 e respectively, 412 

whereas C6 attains negative charges of -0.050, -0.036 and -0.036 e (Table S2). These results 413 

confirm that the anionic charge on the oxime-O is delocalized on complex formation. Moreover, 414 

as seen from the bond lengths values (Table 2), on complex formation, the N2-O1 bond is 415 

shortened and attains a partial double bond character whereas the N2-C6 bond is elongated as 416 

compared to the bonds in isolated ligand. 417 

3.8. Frontier Molecular Orbital and Absorption spectra 418 

It is well known that the frontier molecular orbitals (HOMO and LUMO) help in 419 

characterizing the electron donating and electron accepting ability of a molecule. Moreover, the 420 

HOMO-LUMO energy gap has been utilized as an important parameter to understand the 421 

reactivity of a molecule. A lower HOMO-LUMO gap means lesser stability and higher reactivity 422 

whereas for higher HOMO-LUMO gap, it is the reverse case. The details of the frontier 423 

molecular orbitals are shown in Figure 6 where the red and the green regions represent the 424 

positive and the negative phase respectively. The energy gap is least for complex (6) whereas it 425 

is highest for complex (8). It should be noted that the energy gap is less for the complexes 426 

containing 2-pyridyl phenyloxime indicating its less stability and greater reactivity as compared 427 

to the complexes containing ligand 2-pyridyl cyanoxime and 2-thiazolyl methyloxime. The % 428 

composition of molecular orbital analysis as shown in Table S3, predicts that for the complexes 429 
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containing 2-pyridyl cyanoxime (complexes 1, 2 and 3), the maximum percentage of HOMO i.e. 430 

42%, 35% and 39% is located on the ligand itself. The same case can be encountered for 431 

complexes (7) and (8) as well whereas for complexes (4), (6) and (9) most percentage of HOMO 432 

is located on the metal (Table S3). On the other hand, the LUMO is located mainly on the ligand 433 

for almost all the complexes except for complex (2), where it is located on the Rh metal (about 434 

37%). 435 

The electronic absorption spectra were calculated using the TD-DFT method in 436 

acetonitrile solvent employing PCM model. The calculated and the experimental absorption data, 437 

HOMO-LUMO energy gaps, and the character of electronic transitions are listed in Table 4. The 438 

H→L transitions for complexes (1), (3), (7) and (8) occurring at 492, 468, 450 and 485 nm 439 

corresponds to ILCT character, for complexes (4), (6) and (9) at 453, 464 and 463 nm 440 

corresponds to MLCT character whereas for complexes (2) and (5) at 512.44 and 477 nm 441 

corresponds to LMCT and LLCT character. These MLCT character can be assigned as 442 

dπ(M)→π∗(L) transitions, ILCT character are for π→π∗ transitions and LLCT for Pπ(Cl)→π*(L) 443 

transitions. In agreement with the experimental results, few MLCT transitions has also been 444 

observed at 357 nm (4), 359, 335 nm (7), 336 nm (8) and 350 nm (9). Further, few ILCT and 445 

LLCT transitions have been observed between 230-304 nm which are in well agreement with the 446 

experimental data. 447 

4. Conclusion 448 

In summary, we have successfully synthesized ruthenium, rhodium and iridium half-449 

sandwich oximato and oxime complexes. These complexes were full characterized by various 450 

spectroscopic studies and X-ray analysis. The ligands under study preferably bind to the metal in 451 

a bidentate κ2 NNʹ fashion using pyridine and oxime nitrogen atom. X-ray structure of 452 
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complexes (1-3) reveals the deprotonation of the oxime hydrogen atom leading to the formation 453 

of neutral complexes. Chemosensitivity activity of the complexes carried out against HT-29 and 454 

MIAPaCa-2 cancer cell lines displayed that some of the complexes are cytotoxic however 455 

iridium-based complexes displayed more potency than ruthenium and rhodium complexes. In 456 

particularly the neutral iridium oximato compounds possessed the highest activity among other 457 

cationic iridium oxime complexes. Further, TD-DFT calculated absorption spectral data are in 458 

well agreement with experimental results. 459 
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 566 

Scheme-1 Preparation of neutral complexes (1-3) 567 

 568 

 569 

Scheme-2 Preparation of cationic complexes (4-6) 570 

 571 

Scheme-3 Preparation of cationic complexes (7-9) 572 
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 573 

Figure 1 (a) Ortep diagram of complex (1), (b) Ortep diagram of complex (2) and (c) Ortep diagram of complex (3) with 50% 574 

probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. 575 
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 576 

Figure 2 (a) Ortep diagram of complex (4) and (b) Ortep diagram of complex (5) with 50% 577 

probability thermal ellipsoids. Counter ions and hydrogen atoms (except on O1) are omitted for 578 

clarity. 579 

 580 

 581 

Figure 3 (a) Ortep diagram of complex (7) and (b) Ortep diagram of complex (8) with 50% 582 

probability thermal ellipsoids. Counter ions and hydrogen atoms (except on O1) are omitted for 583 

clarity. 584 
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 585 

Figure 4 Response of HT-29 (human colorectal cancer) and MIAPaCa-2 (human pancreatic 586 

cancer) to compounds and cisplatin. Cell was exposed to compounds (1-9) for 96 hours. Each 587 

value represents the mean ± standard deviation from three independent experiments. 588 
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 589 

Figure 5 Molecular electrostatic potential diagrams for complexes (1-9). 590 
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 591 

Figure 6 HOMO, LUMO energies and their energy gaps of complexes (1-9).592 
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Table 1 Crystal data and structure refinement parameters of complexes. 593 

Structures were refined on F0
2: wR2 = [Σ[w(F0

2 - Fc
2)2] / Σw(F0

2)2]1/2, where w-1 = [Σ(F0
2)+(aP)2+bP] and P = [max(F0

2, 0)+2Fc
2]/3594 

Compounds [1] [2] [3] [4]PF6 [5]PF6 [7]PF6 [8]PF6·H2O 
Empirical formula C17H18ClN3ORu C17H19ClN3ORh C17H19ClN3OIr C22H24ClF6N2OPRu C22H25ClF6N2OPRh C15H20ClF6N2OPRuS C15H23ClF6N2O2PRhS 

Formula weight 416.86 419.71 509.00 613.92 616.77 557.88 578.74 
Temperature (K) 292(2) 291(2) 295(2) 292(2) 296(2) 291(2) 295(2) 
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 
Crystal system Orthorhombic Monoclinic Monoclinic Monoclinic Triclinic Monoclinic Monoclinic 
Space group Pca21 P21/c P21/c P21/n P ͞1 P21/m P21/c 
a (Å)/α (°) 14.9960(5)/90 8.3023(9)/90 8.3165(6)/90  9.0701(4)/90 9.0597(5)/67.455(5) 10.5576(7)/90 12.6553(5)/90 
b (Å)/β (°) 7.8142(2)/90 27.612(2)/112.173(12) 27.5547(13)/112.388(

7) 
14.1127(6)/98.340(4) 12.7557(7)/82.956(5) 9.3658(7)/104.388(7) 10.8936(4)/98.858(4) 

c (Å)/γ (°) 14.6872(4)/90 8.1421(8)/90 8.2007(5)/90 19.6319(9)/90 13.2635(8)/87.886(5) 13.2319(10)/90 16.3323(6)/90 

Volume (Å3) 1721.07(9) 1728.5(3) 1737.61(18) 2486.38(19) 1404.86(14) 1267.34(16) 2224.75(15) 

Z 4 4 4 4 2 2 4 

Density (calc) (Mg/m-3) 1.609 1.613 1.946 1.640 1.458 1.462 1.728 

Absorption coefficient 

 (µ) (mm-1) 

1.073 1.149 7.844 0.865 0.815 0.919 1.117 

F(000) 840 848 976 1232 620 556 1160 

Crystal size (mm3) 0.24 x 0.19 x 0.09 0.24 x 0.19 x 0.08 0.29 x 0.25 x 0.02 0.29 x 0.24 x 0.12 0.21 x 0.19 x 0.15 0.36 x 0.25 x 0.23 0.25 x 0.21 x 0.19 

Theta range for data collection 3.05 to 28.74° 3.08 to 28.74° 3.03 to 28.73° 3.07 to 29.07° 3.22 to 29.12° 3.58 to 28.93° 3.14 to 29.01° 

Index ranges -20<=h<=16, -
10<=k<=9, -
17<=l<=18 

-6<=h<=11, -
36<=k<=36 -
10<=l<=10 

-11<=h<11, -
30<=k<=36, -
10<=l<=5 

-10<=h<=12, -
18<=k<=10, -
26<=l<17 

-11<=h<=11, -
16<=k<=11, -
17<=l<17 

-12<=h<=14, -
11<=k<=12, -
10<=l<17 

-13<=h<=15, -
12<=k<=13, -
22<=l<20 

Reflections collected 6209 8785 9093 9847 9798 4790 8932 

Independent reflections 3438 [R(int) = 0.0311] 3956 [R(int) = 0.0602] 3978 [R(int) = 0.0494] 5682 [R(int) = 0.0186] 6373 [R(int) = 0.0329] 3037 [R(int) = 0.0230] 5071 [R(int) = 0.0261] 

Completeness to theta = 25.00° 99.7 % 99.5 % 99.6 % 99.6 % 99.5 % 98.3 % 99.5 % 

Absorption correction Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Max. And min. transmission 0.9096 and 0.7828 0.9137 and 0.7700 0.8589 and 0.2094 0.9033 and 0.7875 0.8875 and 0.8474 0.8164 and 0.7331 0.8159 and 0.7677 

Refinement method Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 

Full-matrix least-

squares on F2 
Data/restraints/parameters 3438/1/211 3956/0/213 3978/30/213 5682/0/311 6373/136/412 3037/172/229 5071/3/275 

Goodness-of-fit on F2 1.00 1.057 1.085 1.090 1.059 1.005 1.049 

Final R indices [I>2sigma(I)] R1 = 0.0322, wR2 = 
0.0498 

R1 = 0.0566, wR2 = 
0.0966 

R1 = 0.0526, wR2 = 
0.1118 

R1 = 0.0331, wR2 = 
0.0728 

R1 = 0.0473, wR2 = 
0.1153 

R1 = 0.0524, wR2 = 
0.1426 

R1 = 0.0475, wR2 = 
0.1064 

R indices (all data) R1 = 0.0425, wR2 = 
0.0526 

R1 = 0.1081, wR2 = 
0.1077 

R1 = 0.0713, wR2 = 
0.1217 

R1 = 0.0426, wR2 = 
0.0777 

R1 = 0.0649, wR2 = 
0.1241 

R1 = 0.0640, wR2 = 
0.1540 

R1 = 0.0706, wR2 = 
0.1211 

Largest diff. peak and hole  

( e.Å-3) 

0.583 and -0.461 0.790 and -0.865 2.329 and -1.955 0.377 and -0.519 0.449 and -0.350 0.871 and -0.857 0.734 and -0.393 

CCDC No. 1486252 1486253 1486254 1486255 1486256 1486257 1486258 
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 Table 2 Selected bond lengths (Å) and bond angles (°) of complexes. 595 

Complex 1 2 3 4 5 7 8 

M(1)-CNT 1.696 1.799 1.803 1.696 1.788 1.728 1.775 

M(1)-N(1) 2.073(3) 2.093(4) 2.084(7) 2.0587(18) 2.103(3) 2.09(2) 2.108(3) 

M(1)-N(2) 2.028(3) 2.065(4) 2.039(7) 2.0854(19) 2.102(3) 2.08(3) 2.131(4) 

M(1)-Cl(1) 2.3897(11) 2.3870(16) 2.391(2) 2.4191(7) 2.4225(10) 2.415(2) 2.3991(12) 

M(1)-Cave 2.203 2.165 2.170 2.205 2.157 2.179 2.149 

N(2)-O(1) 1.271(4) 1.262(5) 1.254(9) ----- ---- ---- ---- 

N(2)-C(6) 1.330(5) 1.334(7) 1.360(11) ---- ---- ---- ---- 

N(1)-M(1)-N(2) 77.81(13) 78.06(16) 78.0(3) 75.66(7) 74.92(11) 78.0(10) 75.16(15) 

N(1)-M(1)-Cl(1) 85.22(9) 87.07(13) 84.8(2) 85.10(6) 87.58(9) 88.4(5) 88.51(10) 

N(2)-M(1)-Cl(1) 84.87(9) 86.72(14) 85.6(2) 84.20(5) 89.30(9) 81.1(6) 89.14(11) 

N(1)-M(1)-CNT 132.9 132.5 133.8 132.0 129.6 132.3 128.6 

N(2)-M(1)-CNT 130.6 130.4 131.2 131.5 130.5 133.0 132.4 

Cl(1)-M(1)-CNT 127.3 125.5 125.7 129.2 127.7 127.8 126.3 

CNT represents the centroid of the arene/Cp* ring; Cave represents the average bond distance of 596 

the arene/Cp* ring carbon and metal atom. 597 

Table 3 Response of HT-29 (human colorectal cancer) and MIAPaCa-2 (human pancreatic 598 

cancer) to complexes (1-9) and cisplatin. Each value represents the mean ± standard deviation 599 

from three independent experiments. 600 

Complexes IC50 (µM) 
 HT-29 MIAPaCa-2 

1 >100 >100 
2 23.74 ± 4.25 9.16 ± 2.89 
3 5.82 ± 2.41 2.87 ± 0.26 
4 68.83 ± 27.0 26.42 ± 0.67 
5 42.32 ± 10.69 67.18 ± 3.16 
6 7.92 ± 1.00 8.35 ± 0.29 
7 12.56 ± 4.45 8.28 ± 0.42 
8 >100 >100 
9 10.54 ± 4.73 9.65 ± 1.68 

Cisplatin 0.25 ± 0.11 2.84 ± 2.05 
IC50 = concentration of the drug required to inhibit the growth of 50% of the cancer cells (µM). 601 
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Table 4 Energy gap, theoretical and experimental absorption bands, electronic transitions and 602 

dominant excitation character for various singlet states of the complexes (1-9) calculated with 603 

TD-DFT method. 604 

The most important 
orbital excitations 

Calculated 
λ (nm) 

Energy gap 
E (eV) 

Oscillator 
strength (f) 

Dominant excitation 
Character 

Experimental 
λ (nm) 

Complex 1 
H→L 492.28 3.67 0.0021 L1→L1(ILCT)  
H-3→L 371.17 4.50 0.0025 L1→L1(ILCT) 370 
H-1→L 362.01 3.93 0.0488 L1→L1(ILCT)  
H→L+3 304.45 4.61 0.1337 L1→L1(ILCT) 302 
H→L+4 301.08 4.89 0.0161 L1→Cp*(LLCT)  
H-2→L+6 238.25 5.91 0.0034 Cl→L1(LLCT) 237 
H-5→L+2 235.61 5.92 0.0485 Ru→L1(MLCT)  

Complex 2 
H→L 512.44 3.65 0.0046 L1→Rh(LMCT)  
H-2→L+2 364.41 4.59 0.0306 Cl→Rh(LMCT) 374 
H→L+3 293.93 4.65 0.0438 L1→L1(ILCT) 289 
H-6→L+1 253.61 5.77 0.1544 Rh→L1(MLCT) 255 

Complex 3 
H→L 467.55 3.70 0.0036 L1→L1(ILCT)  
H-2→L 376.61 4.26 0.0523 Cl→L1(LLCT) 378 
H-3→L+1 290.41 5.24 0.0192 L1→Ir(LMCT) 288 
H-1→L+2 283.58 4.68 0.0903 L1→L1(ILCT)  
H-6→L+2 232.24 6.20 0.0153 Ir→L1(MLCT) 233 

Complex 4 
H→L 452.56 3.42 0.0024 Ru→L2(MLCT)  
H-2→L 379.18 4.09 0.0245 L2→L2(ILCT) 376 
H-1→L+2 357.48 4.46 0.0106 Ru→L2(MLCT)  
H-4→L+1 271.57 4.86 0.0021 L2→Ru(LMCT) 272 
H-4→L+3 231.48 5.51 0.0180 L2→L2(ILCT) 233 

Complex 5 
H→L 476.51 3.48 0.0093 Cl→L2(LLCT)  
H-1→L+2 357.91 4.27 0.1024 Cl→Ru(LMCT) 357 
H-2→L 345.27 3.95 0.0105 Cl→L2(LLCT)  
H-6→L+1 267.72 5.28 0.0341 L2→Rh(LMCT) 266 

Complex 6 
H→L 464.21 3.32 0.0223 Ir+Cl→L2(MLCT/

LLCT) 
 

H-1→L+1 352.62 4.52 0.0372 Cl→L2(LLCT) 360 
H-7→L 294.49 5.07 0.0102 Ir→L2(MLCT) 296 
H-3→L+1 290.68 5.13 0.0026 L2→L2(ILCT)  

Complex 7 
H→L 450.26 3.39 0.0038 L3→L3(ILCT)  
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H-3→L 359.31 4.01 0.0091 Ru→L3(MLCT) 347 
H-3→L+1 334.71 5.01 0.0036 Ru→L3(MLCT)  
H-4→L 293.24 5.59 0.0598 Ru→L3(MLCT) 297 
H→L+3 291.42 5.30 0.0328 L3→Ru(LMCT)  

Complex 8 
H→L 484.85 3.87 0.0028 L3→L3(ILCT)  
H-1→L+2 345.81 4.52 0.0506 L3→L3(ILCT) 349 
H-3→L 335.78 4.40 0.0238 Rh→L3(MLCT)  
H-3→L+2 285.07 4.73 0.0296 Rh→L3(MLCT) 287 
H-8→L+1 229.87 5.27 0.0127 Rh→L3(MLCT)  

Complex 9 
H→L 463.13 3.72 0.0010 Ir→L3(MLCT)  
H-1→L+1 350.0 4.81 0.0182 Ir→L3(MLCT) 360 
H-2→L 288.36 4.37 0.0250  L3→L3(ILCT)  
 605 
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Highlights 

� Neutral oximato and cationic oxime complexes of ruthenium, rhodium and 

iridium were isolated with electron withdrawing and electron donating 

substituted pyridyl oximes. 

� DFT calculations demonstrate that the calculated values are in good agreement with 

the experimental data. 

� Iridium based oximato and oxime complexes exhibited better activity than 

ruthenium and rhodium complexes. 

 


