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Abstract 

Advanced manufacturing techniques enable ultra-precision surfaces to be fabricated with 

various complicated and large-area structures. For instance, the cost-effectiveness of Roll-to-Roll 

(R2R) manufacturing technology has been widely demonstrated in industries making high 

volume as well as large-area foil products and flexible electronics. Evaluation of these fine 

surfaces by an expensive trial-and-error approach is unadvisable due to the high scrap rate. 

Therefore quality control using in-line metrology of the functional surface plays an important 

role in the success of employing R2R technology by enabling a high product yield whilst 

guaranteeing high performance and a long lifespan of these multi-layer products. 

This thesis presents an environmentally robust line-scan dispersive interferometry (LSDI) 

technique that is suitable for applications in in-line surface inspection. Obtaining a surface 

profile in a single shot allows this interferometer to minimise the effect of external perturbations 

and environmental noise. Additionally, it eliminates the mechanical scanning and has an 

extended axial measurement range without the 2π  phase ambiguity problem by dispersing the 

output of the spectrometer onto the camera. Benefiting from high-speed camera, general-purpose 

graphics processing unit and multi-core processor computing technology, the LSDI can achieve 

high dynamic measurement with a high signal-to-noise ratio and is effective for use on the shop 

floor. 

Two proof-of-concept prototypes aimed at different applications are implemented. The 

cylindrical lens based prototype has a large lateral range up to 6 mm and can be used for 

characterisation of additively manufactured surface texture, surface form and surface blemish. 

The second prototype using a 4X microscope objective with a diffraction limited lateral 

resolution (~ 4 µm) is aiming at characterisation of surface roughness, micro-scale defects, and 

other imperfections of the ultra-precision surfaces. System design, implementation, fringe 

analysis algorithms and system calibrations are presented in detail in this thesis. Their 

performances are evaluated experimentally by measuring several standard step heights as well as 

Al 2O3 coated polyethylene naphthalate (PEN) films. The measurement results acquired using 

both prototypes and a commercial available instrument (Talysurf CCI 3000) align with each 

other acceptably. This shows that the developed metrology sensors may potentially be applied to 

production lines such as R2R surface inspection where only defects present on the surface are 
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concerned in terms of quality assurance. Implementation of these prototypes offers an attractive 

solution to improve manufacturing processing and reliability for the products in ultra-high-

precision engineering. 

  

.
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SRWLI   Spectrally resolved white light interferometry 

WLCSI              White light channelled spectrum interferometry 

SDOCT              Spectral domain optical coherence tomography 

LSLO   Line-scanning laser ophthalmoscopy 

HSI   Hyperspectral interferometry 

SDSCI   Spatially dispersed short-coherence interferometry 

CUDA   Compute Unified Device Architecture 

PPM   Photodiode power meter 

FWHM              Full width at half maximum 

IFFT   Inverse fast Fourier transform 

LS     Least square 

PV   Peak-valley 

RMS   Root-Mean-Square 

PEN   Polyethylene naphthalate 

NPL   National Physical Laboratory 

ALD   Atomic layer deposition 

WVTR   Water vapour transmission rate 

CPI   Centre for Process Innovation 

RC                                    Radius of curvature 
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1 Introduction  

1.1 Application background  

Surfaces act as interfaces which have a direct influence on the functional behaviour of a 

product (De Chiffre et al., 2003). It has been shown that 90% of all engineering component 

failures in practice are surface initiated, through mechanisms such as adhesive wear, fretting 

wear, and erosion (Blunt & Jiang, 2003). Therefore, surface metrology plays an important role in 

manufacturing as well as optimising the performance of a workpiece for quality assurance.  

Advanced manufacturing techniques such as additive manufacturing (AM) and Roll-to-Roll 

(R2R) manufacturing technologies, enable ultra-precision surfaces to be fabricated with 

increasingly large areas, complicated curvatures and customised nanostructures (Leach et al., 

2015). Instead of milling a work piece from solid block, AM refers to ‘a process of joining 

materials to make objects from 3D model data, usually layer upon layer, as opposed to 

subtractive manufacturing methodologies’ (Standard, 2012). It makes components built up 

highly complex with reduced part count and shorter design cycle and is an ideal technology for 

making high-value parts. AM is increasingly being applied to make components in the 

aerospace, automotive and medical sectors (Platform, 2014). R2R, always involving the 

deposition and patterning of multi-layer thin films on large area substrates, is also one of the 

most cost-effective manufacturing processes applied in numerous fields such as flexible and 

large-area organic electronics devices (Søndergaard et al., 2013; Willmann et al., 2014), solar 

panels (Krebs et al., 2010; Schulz-Ruhtenberg et al., 2014), flexible displays (Gregg et al., 2005), 

thin-film batteries (Keranen et al., 2012) and chemical separation membranes (Morse, 2012). It 

has been reported that the flexible Photovoltaic (PV) films based on CuInxGa(1-x)Se2 (CIGS) 

could conserve the light energy with an efficiency up to 19% (Jackson et al., 2011). The extreme 

miniaturisation of critical feature sizes to the nano-scale makes the R2R technology of 

considerable interest to modern industry (Morse, 2012).  

However, surface quality is one of the main constraints concerning AM (Grimm et al., 2015) 

and R2R technology (Lee et al., 2010). One of the biggest challenges faced by industry is 

characterisation of surface texture, defects, and other imperfections as surface effects are 

responsible for 10% of the failure rate for manufactured parts (Leach, 2011). Meanwhile, it has 

been reported that traditionally high quality fabrication relies mainly on experience or trial-and-
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error, which makes the manufactured items suffer from a scrap rate as high as 50-70% (Heeren 

& El-Fatatry, 2008; Jiang et al., 2010). It is suggested that in-process measurement is the ideal 

way to monitor the manufacturing process but with a great challenge, which subsequently 

stimulates the development of modern metrological instrumentation. Take R2R manufactured 

components as an example, the film products must be uniform and largely perfect across most of 

the area of the foil. Defects are undesirable for printed electronics since they cause open and 

short circuits, thus preventing correct function. Likewise, the defects present on an Al2O3 barrier 

layer of flexible PV cells make the active elements suffer from environmental degradation due to 

the penetration of water and oxygen vapour (Carcia et al., 2006; Rossi & Nulman, 1993) and 

thus are detrimental to the performance of the PV module (Blunt et al., 2014; Elrawemi et al., 

2013). Therefore, concerning the success of employing R2R technology, an in-line surface 

inspection system needs to be implemented to optimise the manufacturing process for coated 

polymer films in terms of quality control. After the effective inspection, further processes like 

local repair techniques can be applied according to the provided feedback to remove the defects 

and correct the fabrication anomalies, which consequently achieves a reduction in product costs 

and throughput time as well as guarantees a high performance and long lifespan of these multi-

layer products.  

1.2 Metrological techniques overview 

Advances in modern manufacturing have led to the progress and development of wide range 

of metrology devices and instrumentation. Faster measurement speed with sophisticated 

computational capabilities has been made possible with the use of modern computers and 

efficient algorithms. This section details various examples of developed metrology instruments 

so far, which mainly based on two classifications, namely contact and non-contact types (Conroy 

& Armstrong, 2005; Malacara, 2007; Whitehouse, 1997). 

Contact profilometers such as stylus based instruments can cover a large measurement range 

up to several millimetres in height with nanometre axial resolution. Yet they are not capable of 

performing in-line measurement due to slow measuring speed and non-immunity to 

manufacturing environment (Bhushan, 2000; Young et al., 1980). While optical techniques, 

based on either non-interferometric or interferometric principle, can provide damage-free 

measurements for ultra-precision surface with fine axial and lateral resolution and have the 

potential to be used in in-line surface metrology. There are several critical factors that determine 
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the performance of in-line surface inspection such as outstanding dynamic range, excellent 

signal-to-noise ratio, high measurement speed and flexible and easy integration into a production 

environment (Martin, 2010). Currently the instruments, whether commercially available or not, 

developed potentially for on-line/in-line surface inspection in terms of quality assurance mainly 

adopt techniques such as machine vision (Chin & Harlow, 1982), scatterometry (Stover, 1995), 

confocal microscopy (Petroll et al., 1993), focus variation (Bremen et al., 2012), and optical 

interferometry (Yatagai, 1994).  

Machine vision system is one of the most common optical methods for surface inspection 

(Leach & Sherlock, 2014; Shankar & Zhong, 2005). ISRA Vision reported a high-speed camera-

based inspection system for substrate surface. A well-aligned line-scan camera bank covers the 

complete product width with certain defined overlaps and the switchable LED illuminations at 

different positions make it capable of performing defects detection for different applications 

(ISRA-Vison, 2015). Nonetheless, it is not suitable for the metrological field where defects or 

fine structures are smaller than the diffraction limit of the instrument used. In this case, surface 

inspection using scatterometry can be a preferred solution due to its super-resolution breaking 

the diffraction limit (Ke et al., 2010; Leach & Sherlock, 2014). An enhanced Coherent Fourier 

Scatterometry (CFS) with signal-to-noise ratio is proposed for contamination detection in R2R 

production of Organic Light Emitting Display (OLED) and Organic Photovoltaic (OPV) devices 

(Pereira, 2015). The overall nanometre accuracy performance of CFS can be comparable to that 

of AFM and SEM measurements on the same sample (Kumar et al., 2014). Yet both of the two 

methods mentioned above are either only 2D image which is impossible to reconstruct for 3D 

information of defects, or just detection with no images of tested surface at all (Thonya et al., 

2003). 

Some companies such as Precitec, Nanofocus and Polytec offer chromatic confocal 

microscopy (CCM) solutions for real-time quality control of various engineering surfaces. A 

series of optical sensors developed by Precitec has been applied for contact-free measurement in 

industries such as Photovoltaics, glass, semiconductor and medicine. These sensors can be 

directly integrated into the in-line production process because of their high speed and the 

possibility to handle up to three encoder signals with a high measurement rate. The spot diameter 

of the optical probe is only few micrometres which enables the detection of small surface 

defects. Nanofocus also has been working at the CCM sensors which can be flexibly and easily 
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integrated into manufacturing machines. With more than one million measurements per second, 

the measurement sensors such as μsprint products offer a good solution for a broad range of 

applications from 3D form, topography and defect detection. The CCMs eliminate the scanning 

in height; however their vertical measurement ranges are restricted by the capability of its optical 

system to separate the broadband wavelength along the optical axis.  

Alicona offers a range of optical metrology products based on focus variation (FV) method 

(Triantaphyllou et al., 2015) enabling the measurement of functional parameters such as surface 

texture and roughness. Compared to most optical measurement techniques restricted by an angle 

of slope of 60°, FV technique is capable of measuring the angle of slopes bigger than 80°. 

Therefore, FV instruments are of great interest in the metrology of AM surfaces, where there is a 

requirement to perform the measurements on complex geometries with steep slopes as well as 

large vertical range. Regarding interferometry techniques, Heliotis developed a series of products 

(HeliInspect H3, H4, etc.) utilising the parallel optical coherence tomography principle (POCT) 

(Ducros et al., 2002) to be engineered for industrial applications requiring high throughput in 

harsh environment. Fast vertical scan speed (up to 50 mm/s), high-speed camera combing with 

in-pixel signal processing and special physical design make these systems meet the requirements 

of the most demanding 3D in-line inspection tasks such as measuring roughness, step height and 

defects. Additionally, an enhanced wavelength scanning interferometer (WSI) for detecting 

defects on PV films was proposed as well (Jiang et al., 2010; Muhamedsalih et al., 2014). 

Compared to conventional WSI it combines four new techniques, namely compensation of 

environmental noise by a built-in stabilisation system, wide wavelength scanning technique 

using acousto-optic tunable filter (AOTF), analysing the interferograms in a parallel manner 

using GPU technology (Muhamedsalih et al., 2013), and auto-focus function through a 

multiplexed reference interferometer along with a translation stage (Muhamedsalih et al., 2015). 

Yet for the moment FV, POCT and WSI system are still limited to some extent in that they 

require the sample surface to keep stationary when performing measurements. 

Compared to the above-mentioned interferometers, singe shot interferometry stands out 

because it eliminates the mechanical scanning along the optical axis and enables measurement of 

the surface in motion. “FlexCam”, one of such kind of systems developed by 4D Technology 

(George, 2014; Kimbrough, 2015), is implemented to detect defects for PV barrier films 

manufactured by R2R technology due to its anti-environmental disturbance and fast 
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measurement with 3D surface topography. It provides sub-nanometre vertical resolution and 

micrometre-scale lateral resolution for in-process roughness and defect quantification and 

enables real-time monitoring and control of roughness to less than 0.5 nm rms. However, the 

vertical measurement range of this system is limited to sub-microns (George, 2014), which is 

problematic when attempting to identify and classify features or defects with large vertical range 

(a few micrometres to a few tens micrometres). Line-scan dispersive interferometry is another 

promising technique for monitoring the manufacturing process. It has an extended axial 

measurement range without the 2π  phase ambiguity problem by spatially separating the 

broadband beam along the detector pixels of the spectrometer. Fast surface profiling by analysis 

of a single interferogram allows this system minimise the effect of external environmental 

disturbances. In the last decades it has been widely used in applications such as surface profile 

and thin-film thickness measurements (Debnath & Kothiyal, 2005; Malacara, 2007).  

1.3 Aim 

The aim of this research work is to investigate the potential for applying the line-scan 

dispersive interferometry (LSDI) in in-line metrology of functional surfaces or R2R surface 

inspection where only defects on film surfaces are concerned in terms of quality assurance. By 

combining the single shot interferometry technique with high speed CCD/CMOS camera and 

graphic processing unit (GPU) technology, the developed metrology devices shall be 

environmentally robust and realise high dynamic measurement ratio with a high signal-to-noise 

ratio to overcome the technology barriers of the current white light interferometry, and thus be 

potentially applied to monitor the samples in production lines. By using different types of 

interferometric objectives, the line-scan dispersive interferometer shall have the measurement 

capabilities for characterisation of surface profiles in large range (up to 6 mm) or defects with 

microscale sizes. 

1.4 Objectives 

 To investigate approaches for designing a single shot interferometry system for 

surface inspection to achieve vertical resolution in the nanometre range while 

maximising lateral range and resolution. 

 To develop and optimise efficient absolute phase measurement algorithms to improve 

the measuring accuracy and speed.  
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 To build compact prototypes equipped with different types of interferometric 

objectives able to measure surface profile instantly in the manufacturing environment. 

 To evaluate the performances of developed sensor systems to prove their feasibilities 

and reliabilities as metrology tools for in-line micro/nano scale surface profile 

measurement. 

 To calibrate the developed prototypes in terms of accuracy, resolution, measurable 

range and repeatability.  

1.5 Contribution 

This research project contained in this thesis has made the following contributions: 

 Development and demonstration of a single shot dispersive interferometry technique 

with extended lateral range by using cylindrical lens to observe the tested surface 

with line focus. It can achieve real-time surface inspection with a long profile up to 

5.885 mm and may potentially be used for characterisation of additively 

manufactured surface texture, surface form and surface blemish present on the 

functional surface. 

 Development and demonstration of an instantaneous line-scan dispersive 

interferometry using a 4X microscope objective to measure the smaller structure 

dimensions and features on engineering surface and detect defects present on the PV 

barrier films manufactured by R2R technology. 

 Demonstration of the efficiency and accuracy of the developed algorithms and further 

acceleration of computing process through data parallelism using GPU technology 

(based on FFT technique). 

1.6 Thesis organization 

This research work presents the development of the line-scan dispersive interferometry for 

in-line surface inspection with the aim of producing an environmentally robust, instantaneous 

metrology instrument capable of performing nanoscale measurements. The thesis is organised 

into eight chapters to present the overall aim of the research project. 

 Chapter 2 first presents a brief introduction about surface metrology and some of 

related terminologies used in the field. It also gives a description of various 

metrology techniques proposed for surface characterisation with emphasis on the 
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optical metrology techniques, which may be potentially applied in in-line surface 

measurement. 

 Chapter 3 shifts the emphasis to introduction of interferometry for precision surface 

metrology, including the interference principle and methodologies of various 

interferometry based instruments. Due to the particular interest in dispersive 

interferometry, its principles and advantages over other interferometers are discussed 

in some detail. 

 Chapter 4 presents the development strategy of the line scan dispersive interferometry 

in detail by dividing it into four parts, namely light source, interferometric objective, 

spectrometer and the console. Additionally, the alignment of interferometric objective 

and wavelength calibration are described due to the crucial influence on the system 

performance. 

 Chapter 5 describes the fringe analysis of the spectral interferogram in five steps. 

Two algorithms are presented to analyse the measurement data recorded by the 

developed metrology sensor. Subsequently the resolution of the algorithm and a 

parallel programming model for accelerating the computing process using GPU 

technology are discussed. 

 Chapter 6 reports a cylindrical lens-based interferometer prototype which aims at 

long profile measurement mainly in terms of surface form evaluation. The 

performance was evaluated by measuring the reference step samples with heights 

ranging from 100 nm to 200 μm. 

 Chapter 7 presents an appraisal of the other prototype using a 4X microscope 

objective in the optical probe head. It has potential to be used for R2R surface 

inspection where only defects on the film surface are concerned. Both step height 

samples and flexible PV films were measured to assess the system’s performance. 

 Chapter 8 gives the overall discussion of the developed LSDI systems and provides 

the conclusions and proposal for further investigation and improvement. 

1.7 Publications 

The work in this thesis has produced one peer reviewed journal paper, and six conference 

papers. A full publication list can be found in the ‘Publications and Awards’ section at the end of 

this thesis. 
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2 Surface Metrology 

2.1 Introduction  

Surface metrology is of great importance in manufacturing and optimising the performance 

of a workpiece. Roughness, waviness and form are three basic geometrical features used to 

evaluate an engineered surface. Among all various measurement processes, in-process 

techniques stand out because it offers not only assessment but also effective feedback. This 

chapter briefly introduces surface metrology and then presents a detailed overview of the recent 

trends in surface metrology with special emphasis on non-contact optical metrology techniques, 

which may potentially be used for the in-line retrieval of surface topographic information. 

Finally, a description of the requirements for in-line metrological sensors is made. 

2.2 Surface metrology  

Surface metrology refers to the measurement that describes the surface deviation between a 

structured surface and its ideal shape (Whitehouse, 2004). It also defined by Jiang et al. (2007) 

as, ‘the science of measuring small-scale geometrical features on surfaces: the topography of the 

surface.’ It specifically covers measurements such as surface texture, surface roughness, surface 

shape, surface finish, etc. 

Manufactured surfaces are allowed to be specially designed with a particular function and 

can be classified into two main categories, namely engineered surface and non-engineered 

surface (Stout & Blunt, 2001). The engineered surfaces are generally manufactured to provide 

functional properties such as bearing and sealing, or to have high fluid retention capabilities. The 

assessment of these surfaces is critical because a significant proportion of engineered component 

failures in practice are surface initiated due to surface defects resulting from the friction, 

corrosion and wear. In the past numerous metrological work had been conducted on the surfaces 

manufactured by processes such as turning, milling, grinding and polishing, which generate 

surface roughness ranging from several micrometres to sub-micrometres. With the evolution of 

manufacturing technology, surface metrology has shown its significant importance not only in 

traditional mechanical production, but also extension into semiconductor industry, 

optoelectronics industries and biomedical field where feature characterisation at nanometre scale 

is required (Lonardo et al., 2002). The significant challenges of surface topography consequently 

stimulate the development of modern metrological instrumentation. 
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Various metrological techniques for quality assurance of surfaces have been developed 

according to different applications and described in detail in scientific literatures by several 

authors (Grous, 2013; Mainsah & Chetwynd, 2013; Vorburger et al., 2007; Whitehouse, 1997). 

As mentioned in chapter 1, measurement techniques based on off-line approaches make the 

manufactured items suffer from a high scrap rate. This is especially true for the production of 

high value components where a high level of innovation is normally involved. Therefore, in-

process metrology for ensuring great accuracy and functionality of a component will 

significantly contribute to the manufacture of these products in a cost-effective and 

environmentally sustainable manner (Leach, 2014), because it not only allows the assessment of 

manufactured components but also offers valuable feedback to the control system for optimised 

manufacturing or post-process repairs.  

2.3 Surface characterisation  

A number of different frequency components related to the manufacturing process or the 

production technique are superimposed to form the structures on the surfaces (Mainsah & 

Chetwynd, 2013; Thomas, 1998). These different frequency components affect the performance 

of a workpiece in both functional and aesthetic aspects. Surface features are generally 

characterised along the vertical direction by height parameters and along the horizontal direction 

by spatial (wavelength) parameters (Sherrington & Smith, 1988). According to the spatial 

frequency, the frequency components for a surface profile are generally divided into three types 

of surface features, namely form, waviness and roughness (Blunt & Jiang, 2003; ISO, 1997; Raja 

et al., 2002; Texture, 1995). For areal surface characterisation, the concept of scale-limited 

surface is introduced. The scale-limited surface contains S-F surface and S-L surface (as shown 

in Figure 2.1), which are created by combination of S-filter, L-filter and F-operator (ISO, 2012).  

 S-filter, which defined as a filter that removes small scale lateral components from the 

surface resulting in the primary surface. 

 L-filter,  which is used to remove large-scale lateral components from the primary 

surface or S-F surface. 

 F-operator, which removes the form from the primary surface. 

     An S-F surface results from the use of an S-filter and an F-operator in combination on a 

surface, and an S-L surface by the use of an L-filter on an S-F surface.  
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Figure 2.1 Surface characterisation: (a) extracted (raw) surface, (b) primary surface, (c) S-F surface, (d) S-L 

surface. 

The separation and characterisation of the surface texture allow a direct assessment of the 

manufacturing process and prediction of the functional performance of the work piece (Davim, 

2010; Jiang & Whitehouse, 2012). Additionally, with the guiding information the manufacturing 

process can be modified to obtain the acceptable surface features. Figure 2.2 is a schematic 

representation of the procedure of surface assessment.  

 Select an instrument for measurement to acquire information of the surface topography. 

 Decompose the information into primary features (scale-limited surface) by filtration. 

 Characterise the surface by parameterisation. 

 Assess the function of the component based on the measurement and predict possible 

functional capabilities. 

 Use the gained information to modify the manufacturing process. 

(a) (b)

(c) (d)
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Figure 2.2 Procedure of surface assessment 

2.4 Measurement process types 

Surface characterisation can be performed at different conditions according to the 

requirements of applications. Vacharanukul and Mekid (2005) provided a classification for  the 

act of measurement during the manufacturing process in three groups, namely in-process, in-situ 

and post-process. 

       In -process 

In-process measurement refers to the act of measuring performed while the workpiece is 

being manufactured. It can be developed with the control system to provide real-time feedback 

information for compensation of manufacturing errors and is therefore the most challenging 

measurement process in that harsh factory environment, such as machining forces, heat loads, 

added difficulties of vibration and presence of lubricants or debris, needs to be dealt with. 

       In -situ 

In-situ measurement is that which can be conducted without removing the machined 

workpiece from the machine tool. It is also known as on-machine or on-line measurement. The 

manufacturing is actually halted during the measurement process. Compared to in-process 

measurement, it not only significantly relaxes the challenges for implementation due to a mild 
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assessment surroundings, but also still takes the advantages of not having to remove/refit the 

workpiece in terms of further modification. 

       Post-process 

Post-process measurement is an off-line metrology mode in high precision manufacturing. 

Measurement is performed after the manufacturing is completed and the workpiece is removed 

from the machine. Its advantages are reflected in the ultra-precision applications where the 

workpiece is required to be measured at a specific temperature, humidity, pressure as well as 

anti-vibration environment. The drawbacks of post-process measurement are its time-consuming 

nature and the unavoidable need to realign the workpiece on the machine tool for further 

alteration.  

2.5 Instrumentation for surface metrology 

Before the turn of the nineteenth century, assessment of the surface quality primarily relied 

on skilled and experienced workers using their senses of sight and touch. With the development 

of high-precision sensors and increasing ability to process large volumes of data using modern 

computers, instruments for surface metrology have been making great progress. As mentioned in 

previous section, modern metrology devices can be classified into contact and non-contact types 

depending on the nature of probes.  

2.5.1 Contact profilometers 

Stylus profilometry (Figure 2.3) and Scanning Probe Microscopes (SPMs, Figure 2.4) are 

generally grouped as contact profilometers due to the use of a tactile probe. The stylus-based 

instrument is the earliest form of profilometer developed for measuring surface topography. It 

traces a contacting stylus through a transducer (acting as a gauge) and measures the vertical 

variation of the stylus as it traverses across the surface of interest (Gauler, 1982). Stylus 

instruments have the benefit of a large measurement range up to several millimetres in height as 

well as a vertical resolution in nanoscale. The lateral resolution is determined by the radius of 

curvature of stylus tip and the slopes of the surface irregularities (Bennett & Dancy, 1981). Many 

commercially available products have been developed such as Talysurf PGI and Talyrond series 

(applied to surface form and roundness measurement, respectively) from Taylor Hobson 

Limited. SPMs came about with the invention of the Scanning Tunneling Microscope (STM) in 

1982 (Binnig & Rohrer, 1983), which has the Atomic Force Microscope (AFM) (Binnig et al., 
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1986) as a further extension for measuring the electrically non-conductive materials. In principle, 

the SPM has much in common with stylus instrument in that it has a similar lever with a fine tip 

to scan the measured surface. The main difference is that the parameters directly measured by 

STM/AFM is the charge density or atomic forces (Alvarez & Siqueiros, 2010), not the height 

data. A number of authors have described the principle and applications of the STM and AFM in 

detail in scientific literature (Braga & Ricci, 2004; Gèuntherodt & Wiesendanger, 1994; Schneir 

et al., 1989; Serry & Schmit, 2006). 

 

Figure 2.3 Schematic representation of stylus profilometer [Adapted from Lee & Cho, 2012] 

 

Figure 2.4 SPM: (a) AFM, (b) STM [Adapted from Geisse, 2009 and Chen et al., 2014, respectively]. 

(a) (b)
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Although having the advantages of high lateral/vertical resolution and large measurable 

range, stylus-based instruments have numerous drawbacks. Not only do the stylus tips have the 

chance to be damaged in harsh measurement environment, but also the tested sample, especially 

the soft and dedicate surface, may get scratched or even functionally damaged when it is 

traversed across by the stylus. Furthermore, the finite size of stylus tip makes it impossible to 

penetrate into all valleys of the true surface and introduces a non-linear distortion into the 

measured envelope as well (Lonardo, et al., 2002). As shown in Figure 2.5, the trajectory of the 

true contact point P is different from the nominal point V on the vertex of the stylus. 

V
P

 

Figure 2.5 Relationship between the true contact point P and the vertex of the stylus V  

SPMs are also not applicable to the metrology in manufacturing environment. Moreover, the 

STM further narrows its applications due to the requirement for a conductive tested surface and 

the image resolution is highly dependent on the tip geometry (Van Loenen et al., 1990). 

Meanwhile, measurements of surface topography based on contact profilometer are time- 

consuming because such instrument performs point by point scanning to acquire 2D mapping of 

the tested surface. In conclusion, all factors such as slow speed, destructive nature, finite size of 

stylus and sensitivity to environment restrict the contact profilometry to be applied to on/in-line 

surface metrology in manufacturing (Bhushan, 2000; Young, et al., 1980).  

2.5.2 Non-contact profilometers 

To overcome the above-mentioned limitations of contact profilometry, the metrological 

techniques based on optical phenomena are developed. By replacing the stylus with the light 

beam probe, optical metrology takes advantage of being non-contact and fast measurement speed 

with fine vertical and lateral resolution. Many reviews have been written regarding various 
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optical methods (Hocken et al., 2005; Whitehouse, 1997), offering a detailed list of categories 

such as polarization interferometry, speckle interferometry, heterodyne interferometry, white 

light interferometry, moiré and structured light methods, holographic methods, confocal 

microscopy, optical scattering, focus variation, etc. All these categories can be divided into two 

types, namely non-interferometric and interferometric techniques. The following sections give an 

overview of some main optical techniques for surface tomography. 

2.5.2.1 Optical interferometry 

In recent times, significant development in electronics, software and high performance 

computing has made optical interferometry a popular technique for metrological applications. 

Interferometry makes use of the interference principle of two beams originating from the same 

source but travel on different paths in the interferometric objective and provides nanoscale 

vertical resolution for precise surface metrology by analysing the captured interferogram.  

According to the light source used in the interferometer, interferometric techniques can be 

divided into two main groups, namely monochromatic interferometry (including single 

wavelength and multi-wavelength interferometry) and white light interferometry. 

Monochromatic interferometry, well developed in phase shifting interferometer, can achieve 

surface measurements with low noise and a high resolution of the level of angstrom. 

Nevertheless, it is limited to the measurement of relatively smooth surfaces due to the well-

known 2π  phase ambiguity problem.  

White light interferometry (WLI), using broadband illumination such as super-luminescent 

diodes and halogen lamps, has been used for determining the absolute distance between the 

testing surface and the reference surface without the 2π  phase ambiguity problem (Bowe & 

Toal, 1998; Tang et al., 2014; Zhu & Wang, 2012). Additionally, dependent on the different 

scanning methods used when performing measurement, subdivision of WLI can be made with 

three categories, namely vertical scanning interferometry (Scott et al., 2005), wavelength 

scanning interferometry (Gao et al., 2012) and dispersive interferometry (Malacara, 2007) such 

as LSDI in this thesis.  

Though optical interferometry takes advantage of accurate and non-contact measurement, it 

has a drawback of extreme sensitivity to environmental noise such as mechanical vibration, air 

turbulence and temperature drift (Adhikari, 2004). To solve this issue, the measurement data 

need to be taken instantly by using a high speed camera and fast scanning method. Additionally, 
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compensation of the environmental disturbances is also an effective method to stabilise the 

metrology device and then provide the nanometre measurement accuracy (Jiang, et al., 2010).  

Chapter 3 will go on to describe the basic principles of interferometry and various 

interferometric techniques developed for efficient surface characterisation, which provides a 

basis for investigation of the proposed metrology system.  

2.5.2.2 Machine vision 

Machine vision is one of the most common optical metrological techniques for surface 

inspection in terms of quality assurance in industry. The basic working principle of such 

imaging-based system is shown in Figure 2.6. It is comprised of four main parts, namely 

illumination system, imaging optical system, detector and computer system for real-time image 

view and data analysis. The tested surface is first illuminated by a light source and then the 

highlighted features within the field of view (FOV) are imaged by a group of optics, normally a 

microscope system (Harding, 2013). A high speed camera is then employed to receive the image 

of the region of interest (Logofătu et al., 2004). Finally the recorded grayscale images are 

binarized and might be smoothed through data processes such as averaging and filtering to 

characterise the surface features of interest. 

 

Figure 2.6 Machine vision system [Adapted from ISRA Vision, 2015] 
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Imaging optical system

Detector/Detector bank
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Appropriate illumination is crucial for surface inspection. Depending on the applications, 

various illumination schemes can be adopted in machine vision system, such as bright field 

transmission illumination for transparent or nearly transparent material, dark field preferred for 

glossy surfaces, diffuse illumination for low contrast surface irregularities and directional 

lighting for emphasising the topographical structures of the surface like scratches (Harding, 

2013). The optical system determines the resolution and FOV of ROI inspected for each 

measurement. A high speed camera is required and should be selected considering factors such 

as web speed and the minimum feature size on the tested surface. The commercial sprint series 

of CMOS-cameras from Basler offer line rates up to 140 KHz with 4K pixels and 10 μmpixel 

size. The data processing unit of the machine vision system is based on techniques such as 

reconfigurable hardware (FPGA) and is used to store and analyse the high throughput data. 

Currently the machine vision technique has been widely used in industry for applications 

such as die attach bond inspection, ball grid array inspection, solar & PV device inspection, 

metal surface inspection and print inspection. Kurada and Bradley (1997) gave a review of 

machine vision sensors for tool wear assessment. Luo et al. (1999) presented a colour machine 

vision system for identification of various types of damaged kernels in wheat. Various 

morphological and colour features were extracted from the captured images using a developed 

software and all average identification accuracies for various damaged kernels were up to 90%. 

Additionally, Blasco et al. (2003) unitised the machine vision technique for on-line estimation of 

the quality grade of fruit in terms of size, colour, stem location and external blemishes. The 

results showed that it had a good performance with repeatability in blemish detection and size 

estimation of 86% and 93% respectively. ISRA Vision (2015) has also developed vision-based 

system for efficient detecting surface and web defects on various R2R processes. 

However, the limitation of this technique reflects in only offering 2D captured images, 

which is impossible to reconstruct into a 3D surface topography and cannot obtain the depth 

information of the sample surface. Additionally, it is limited to be applied in the metrological 

field where the defects or fine structures are smaller than the diffraction limit of the instrument. 

2.5.2.3 Optical scatterometry  

Optical scatterometry is a non-destructive technique usually applied for characterisation of 

periodic features (Logofătu, et al., 2004) and surface roughness (Jean Bennett & Mattsson, 1989; 

Vorburger et al., 1993) by measuring and analysing the variations in the intensity of light 
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reflected from the tested surface. It is a simple apparatus which is composed of a laser or white 

light illumination device and a detection part, as shown in Figure 2.7. Depending on the surface 

types, the scattered light can be both specular (satisfying the law of reflection in geometric 

optics) and diffuse (the angle of reflection is not equal to the angle of incidence, including 

diffraction lights). Scatterometry does not measure the absolute value of surface parameter, 

while it is commonly employed to investigate the process change (Leach, 2014). 

Laser or white light 

source

Specular reflection

Diffuse reflection

D
etector

Tested surface
 

Figure 2.7 Principle of optical scatterometry 

Having many advantages such as being fast and relatively immune to environmental 

turbulence, contamination free, no Rayleigh limit and cost-effectiveness enables this technique to 

be widely used for in-process measurements such as defect detection and tool condition 

monitoring. Persson (1998) reported a scatterometry instrument with laser illumination used for 

evaluating the surface roughness in a grinding process. The measurement results of surface 

roughness (within the ranges of 0.09 μm  ≤ Ra ≤ 0.16μm  and 3.0 μm  ≤ Ra ≤ 3.4μm ) were of the 

same order as when a stylus instrument was used. EI Gawhary et al. (2011) carried out a 

theoretical analysis on a spatially coherent optical scatterometry, which was demonstrated to 

have an increase in the accuracy of the grating’s profile reconstruction compared to incoherence 

case. Moreover, an enhanced coherent Fourier scatterometry with signal-to-noise ratio (SNR) 

was presented for contamination detection in R2R production of OLED and organic-PV device 

(Pereira, 2015). Roy et al., (2014) showed that the SNR could be enhanced through partial 

blocking of the aperture and have discussed how this technique can be applied to detect the 

isolated particles down to size of diameter 100 nm on a wafer surface.  
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Though the optical scatterometry overcomes the limitation of low SNR and diffraction limit, 

it cannot offer real-time images of the inspected surface.  

2.5.2.4 Focus variation 

Focus variation is a method that tracks the focus variation of the objective to reconstruct the 

surface topography with full FOV by computing the sharpness at each position within the 

scanning measurement range (Helmli, 2011). The schema of a focus variation instrument is 

shown in Figure 2.8. The collimated beam is first brought to an objective and is focused onto the 

ROI of tested surface. All reflected rays then go back to the objective and are gathered by a 

camera through an imaging lens. The numerical aperture (NA) of objective determines the FOV 

or measurement ranges in the two orthogonal directions of the camera. The axial measurable 

range is dependent on the scanning range along the optical axis, which is affected by the working 

distance of the objective. Compared to other optical techniques, co-axial illumination is not the 

only choice for focus variation instrument but various illumination schemes can be used 

(Hiersemenzel et al., 2012). For example, a ring light illumination can greatly enhance the 

measurable slopes of the system up to 80° (Danzl et al., 2009). Additionally, the polariser and 

analyser showed in the schema can be used as filters to polarise the light, which is of great help 

for measurement of metallic surfaces with steep and flat surface elements (Leach, 2014).  

White 

light source

Measured surface

Camera

Objective

Piezo driver 

system

Analyser

Polariser

Imaging lens

 

Figure 2.8 Schema of a focus variation instrument [Adapted from Leach, 2014] 
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This technique can achieve measurement with vertical resolution as low as 10 nm and a high 

dynamic range, which is applicable to surfaces with complex structures and large discontinuities. 

Danazl et al. (2011) have demonstrated that the focus variation is a robust technique for 3D 

surface metrology with high resolution by evaluation of surface roughness, form measurement 

and engineering tools. The roughness results of focus variation instruments and tactile devices 

(offering reference) are comparable to each other with differences of a few nanometres, and then 

measurement repeatability is less than 100 nm when measuring standard hemi-spherical calottes. 

The assessments of steep surface flanks and welding spots using focus variation method further 

validated its ability of measuring slope of up to 80°. Focus variation instrument from Alicona 

was also applied as one of the characterisation methods to investigate the additive manufacturing 

process such as selective laser melting and electron beam melting (Triantaphyllou, et al., 2015).  

However, the focus variation technique is limited by the requirement of the mechanical 

scanning in height and thus cannot be employed for in-line metrology. Additionally, it is not 

applicable to transparent samples. 

2.5.2.5 Confocal microscopy  

Unlike the conventional microscope, confocal microscopy has two pinhole apertures as 

spatial filters. Figure 2.9 shows the principle of confocal microscopy. Monochromatic or white 

light source travels through a pinhole and converges on the sample surface. The reflected rays 

then return to a detector or a spectrometer. The other pinhole prior to the detector only allows the 

focused rays to transmit and to be received by the detector. Vertical scanning is required for 

monochromatic confocal microscopy to retrieve the height information of a point (Conchello et 

al., 1994) and scanning in two more directions (x,y) is required for reconstruction of the surface 

topography. While the chromatic type (CCM) achieves parallelisation of the depth scan without 

any mechanical scanning in that a series of focus points can be acquired along the optical axis by 

focusing the supercontinuum white light generated from a broadband light-source device (Shi et 

al., 2004). Each wavelength of the illumination corresponds to a focal plane along the optical 

axis. A spectrometer is then used to detect the wavelength (value) with respect to the pixel 

number. The depth measurement range of CCM is dependent on the capability of the optical 

system to separate the broadband wavelength along the vertical height direction. 
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Figure 2.9 Schema of confocal microscopy: (a) Monochromatic type, (b) Chromatic type (CCM). 

   Due to the compact arrangement of system, simple analysis of captured image and fast 

measurement speed (especially for CCM), confocal microscopy has great potential to be applied 

in in-process metrology. Tiziani and Uhde (1994) presented a chromatic confocal microscopy 

which has potential to be applied in measurements of moving objects. The colour impression was 

used for depth discrimination and three images were required for areal topography which 

significantly reduced the measurement throughput. Many CCM point sensors are already 

commercially available from company such as Precitec, Nanofocus and Micro-Epsilon. 

However, most of these metrology sensors require XY direction scanning to measure the surface 

topography. Ruprecht et al. (2004) presented a CCM sensor which eliminates one direction of 

scanning using a line focus, achieving the measurement with a height range of 0.7 mm along a 

line of 2.4 mm. Moreover, they also investigated the maximum parallelisation of the CCM 

through measuring an area in one shot using a colour camera. 

The confocal microscopy suffers from the same problems as other microscopy instruments 

such as vertical measurement range depending on the working distance of objective or the 

optical capability of wavelength separation in depth, lateral ranges determined by the 

magnification of objective and lateral resolution restricted by the diffraction limit of objective 

used if not camera-limited (Leach, 2014).  
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2.6 The requirements for in-line sensors 

As mentioned in section 2.4, in-situ or in-process metrology can avoid the errors caused by 

moving and re-positioning the workpiece during measurement process. Meanwhile, the ongoing 

evolution in modern manufacturing technologies such as R2R and AM technologies enable 

surfaces with increasingly large-area as well as complicated structures to be fabricated, which 

also pushes forward the in-line metrology technique in order to monitor the manufacturing 

process for ensuring great accuracy and functionality of a component. By using in-line optical 

sensors, the measurement efficiency and throughput time can be significantly improved. 

Therefore, the work in this thesis aims at devising of an approach with measurement resolution 

in nanometre scale, which is suitable for applications on production lines. The drawback of 

damaging the delicate features on the tested surface precludes stylus based instruments for this 

task without controversy. 

The requirement for an in-line probe is that first it should have reasonable measurement 

speed to match the production line. Secondly, the probing system must be environmentally 

robust to vibration and other turbulences to be effective for use in manufacturing surroundings. 

Additionally, it is supposed to be compact enough for integration into a machine. Optical probes 

based on techniques such as interferometry, confocal microscope, machine vision and 

scatterometry are preferred for in-line metrology because the non-contact nature can provide 

much faster measurement.  

In this thesis a single shot dispersive interferometry is investigated, which can measure a 

surface profile with nanometre resolution and repeatability without any mechanical scanning. 

Unlike single shot interferometry proposed by 4D Technology (George, 2014), it has a much 

larger axial measurement range to assess large vertical features or defects by spatially dispersing 

the interference beam along the camera pixels. Additionally, by utilising a cylindrical lens to 

observe the tested surface, a large lateral measurement range can be acquired; while using a 

microscope objective in the probe head, micro-scale lateral resolution is achieved for measuring 

the finer structure dimensions and features on the specimen. 

2.7 Summary  

This chapter has given the brief coverage to the historical development of surface metrology 

as well as the characterisation and measurement process. The current popular metrological 

techniques and instrumentation for carrying out surface metrology are presented in detail. The 
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contact methods are by far the most widely used for surface characterisation, which gather data 

by physical contact with the tested surface. Due to its point by point contact scanning nature, the 

measurement speed and chance to damage the precision surface contact methods are restricted in 

their applications to in-process metrology. The results from the stylus profilometry tend to be 

more used as a reference for evaluating other techniques in future.  

Optical methods are the most popular alternatives to contact techniques. By using an optical 

probe, they assess the tested surface in a non-contact manner without generating any damage. 

The principles of optical interferometry and non-interferometric techniques such as machine 

vision, scatterometry, focus variation and confocal microscopy are presented. Though optical 

instruments have many advantages over contact instruments, it should be noted that their 

performance will be affected by aberrations generated by imperfection of the optical components 

or misalignments of the optical system. The finite parameters of the microscope used also set 

limitations such as lateral resolution, measurable slope and maximum measurement range.  

An appropriate measurement technique for the surface metrology should be determined 

according to the function of the surface and the applications. Figure 2.10 shows the measurement 

ranges of different instruments as a reference. It can be seen that stylus profilometry has the 

largest vertical measurement range while the optical profilometry and AFM perform better in 

both vertical and lateral resolution. With respect to a method of in-line measurement, a single 

shot interferometry technique will be investigated in this thesis and its principle and 

implementation will be discussed in the next chapters.  

 

Figure 2.10 Measurement ranges for different instruments [Adapted from Jiang et al., 2007] 
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3 Interferometry  

3.1 Introduction 

As discussed in Chapter 2, optical interferometry benefits from fast and non-contact 

measurement and has great potential to be applied to in-line metrology. By utilising an optical 

probe the pressure on the tested surface is released and the measurement with nanoscale vertical 

resolution can be achieved by interpreting the interferogram. In this chapter, basic concepts of 

interference are presented and some main interferometry techniques for surface characterisation 

are discussed in detail. Dispersive interferometry is of particular interest due to its advantages 

over the alternative techniques.  

3.2 Interference principle 

Interference fringes were discovered in 1802 by Thomas Young through the famous double-

slit experiment. Subsequently, the first interferometry instrument was implemented by Albert A. 

Michelson in 1882. Some basic concepts concerning interference are presented in this section. 

The phenomenon of optical interference refers to the superposition of two or more 

electromagnetic waves originating from the same source, which generates the modulation in the 

distribution of light irradiance in the spatial domain. The bands of varying intensity are known as 

fringes, which can be classified into many categories such as Newton, Brewster and Fizeau. 

Accordingly, the fringe pattern may be presented as various shapes such as circles, parallel lines 

or anything in between, depending on the instrument or method by which they are created. 

Moreover, for the interferometers using the white light illumination, colourful fringes will be 

generated within the measurement FOV. Equation (3.1) mathematically describes the 

interference produced by the coherent superposition of two waves, which forms the basis for the 

field of interferometry and derives many and widely varying applications. 

          1 2 1 2, , , 2 , , cosI x y I x y I x y I x y I x y       (3.1)                          

where  ,I x y  is the intensity of the interference fringes and  ,x y  denotes the spatial 

coordinates of the interferogram.  1 ,I x y  and  2 ,I x y  are the intensities of the two beams with 

the same frequency and   is the phase difference between them. Therefore, it can be deduced 

from equation (3.1) that the intensity within a fringe pattern varies between two limits maxI  and 
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minI . In the case of complete coherence, the maximum and minimum intensities are simply 

expressed as                                  

 
       
       

1 2 1 2

1 2 1 2

, , 2 , ,

, , 2 , ,

max

min

I x y I x y I x y I x yI

I I x y I x y I x y I x y

            
  (3.2) 

The interference visibility (v ), an important concept for interferometry, is defined as the 

contrast of the fringe pattern. It can be theoretically calculated by                                         

 1 2

1 2

2
max min

max min

I II I
v

I I I I

     (3.3)            

The maximum fringe visibility will occur when the two interfering beams are of equal 

intensity ( 1 2I I ). However, it is a difficult task for the interferometer to achieve the maximum 

visibility because the specimen and the reference mirror have different reflectivities. In general, 

the value of v  is between 0 and 1. In order to obtain good fringe visibility, the irradiance of the 

two reflected beams should be balanced in practice. For a sample surface with low reflectivity, 

the visibility is more likely to be low. In this case, properly using the neutral density (ND) filters 

in the optical arrangement offers the most simple and effective solution to match the intensities 

of the two interference beams. 

Additionally, there are two types of coherence, namely spatial coherence and temporal 

coherence. Spatial coherence refers to a measure of the phase correlation between two points on 

the same wavefront (Shulman, 1970). It is associated with the size of the source. The 

overlapping of numbers of patterns of interference fringes produced by a broadband source will 

lead to a uniform illumination without fringes. Temporal coherence is a measure of phase 

correlation between two points at the same point but at different times (Hariharan, 2010). It is 

related to the spectral bandwidth. All interferometry techniques discussed in this thesis belong to 

the category of temporal coherence. 

The coherence length (cl ), another vital property in interferometry, can be used for 

qualifying the degree of temporal coherence. It is related inversely to the spectral bandwidth of 

the light and is defined as 
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2

cl

    (3.4) 

where   represents the central wavelength and  is the bandwidth of the light.  

Equation (3.4) shows that a narrower spectral bandwidth corresponds to a longer coherence 

length. For this reason the Fizeau interferometer employs the single-wavelength light 

illumination to produce fringes between the two unequal-path arms for measurement. 

Additionally, the spectral profile of the illumination system has influence on the coherence 

length and therefore a correction formula is expressed as                                                            

 * 2 /cl      (3.5) 

where *
cl  is the corrected coherence length and   is correction factor depending on the spectral 

profile. For the spectrum with Gaussian distribution, =2 ln 2/ 0.44    (Ohta et al., 2008). 

On the whole, interferometry is a technique which produces the interference fringes (or 

interferograms) and subsequently performs fringe analysis to determine a variation in a 

measurand using all the information such as fringe spacing, shape, deviation, rate of translation 

and colour depending on the specific application (Martin, 2010). The following sections will 

discuss some main interferometry techniques more specifically. 

3.3 Phase shifting interferometry 

3.3.1 Single wavelength interferometry  

Phase shifting interferometry (PSI) using monochromatic light source has been the most 

popular and preferred techniques for high precision surface metrology in controlled 

environments since the 1960s (Deck, 2001). It was proved that PSI has a high measurement 

resolution up to /1000 (  being the wavelength of light) peak-valley in optimum conditions 

(Cheng & Wyant, 1984; Kafri, 1989). The earliest reference to this technique can be traced back 

to Carré (1966). With the advancement in powerful computers, solid-state detector arrays and 

high precision piezoelectric transducers (PZT), the single wavelength technique has occupied an 

important position in modern optical metrology. It has many advantages such as high phase 

measurement accuracy, fast measurement speed, results independent of intensity variations 

across the pupil, phase obtained at fixed grid of points and good results with low contrast fringes 

(Cheng & Wyant, 1984).  
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The basic idea of PSI is to measure height variations by means of precisely determining 

phase angles in an interferogram (De Groot, 1995). In general, PSI electronically stores a 

sequence of interferograms with a precisely controlled phase change between them (Sykora & de 

Groot, 2011). There are many methods that can be used for phase shifting such as moving the 

reference mirror with a PZT, moving a diffraction grating, using a Bragg Cell, tilting a  glass 

plate, rotating a half-wave plate and using an acousto-optic or electro-optic modulator. For each 

recorded interferogram, the modulated intensity represented in equation (3.1) can be rewritten as                               

   0 1 cos ,  I I v x y    (3.6) 

where 0I  is the background intensity of the two beams, v  refers to the fringe visibility and 

 ,x y  is the phase. In the case of a n-step phase shifting, the following mathematical equation 

can be deduced                               
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  (3.7) 

After phase shifting, the original wavefront phase is recovered by analysis of the variations 

of irradiance as a function of reference phase shift (Schreiber & Bruning, 2006). The number of 

frames required depends on the phase extraction algorithm employed, the performance of the 

computer and the range of PZT actuators (if used). To determine the three unknowns in equation 

(3.6) at least three temporally phase shifted intensity patterns are required. Various popular phase 

extraction algorithms such as three-step algorithm, four-step algorithm, five-step algorithm and 

Carré algorithm, have been studied since the PSI technique came out (Carré, 1966; Hariharan et 

al., 1987; Schwider et al., 1983; Wyant et al., 1984).  

Sensitivity to external vibrations is probably the most serious impediment to wider use of 

PSI, which was proved through analysis by de Groot (1995). Environmental vibrations lead to 

incorrect phase shifts between data frames. The ways to avoid or mitigate the errors due to 

vibrations include retrieving frames effectively and fast (Deck, 1996), controlling the 
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environment, using common-path interferometers, measuring vibration and introducing vibration 

180 degrees out of phase to cancel vibration, and so on.  

In terms of the phase ambiguity problem due to the noise or 2π wrapping limitation of 

trigonometric functions, various phase unwrapping algorithms have been developed for PSI to 

solve this issue and achieve phase continuity (Charette & Hunter, 1996; Huntley, 1989). Yet the 

single wavelength PSI is still confined by the phase ambiguity problem when the optical path 

difference (OPD) jump between any adjacent pixels is greater than / 2 , where is the 

wavelength of the light used, and restricted to application for characterisation of the smooth 

surface with discontinuities not higher than / 4 . Use of multiple-wavelength interferometry (as 

discussed in next section) can mitigate this problem. Additionally, the utilisation of 

monochromatic wavelength restricts its applicability to ranges where only continuous fringes can 

be acquired (Ali, 2012). 

3.3.2 Two and multiple wavelength interferometry 

As discussed above, conventional single wavelength interferometry can offer excellent 

vertical resolution. However, it has difficulty in achieving accurate measurement for surfaces 

with high discontinuities. To overcome this issue, the two- or multiple- wavelength 

interferometry technique has been developed, which provides a way to extend the vertical 

measurement range by creating fringes at a longer synthesized wavelength. This method has the 

benefit of keeping the resolution constant, as it is in the single wavelength technique, while 

increasing the dynamic range of the measurement. The term two-wavelength interferometry was 

first mentioned by Polhemus (1973). A widely used definition of the effective wavelength (or 

synthetic wavelength) eff  for two-wavelength technique is expressed as                                                      

 1 2 1 2/eff        (3.8) 

where 1  and 2  are the two wavelengths used. 

Multiple-wavelength technique is an extension of two-wavelength, and have been developed 

to solve the problems of single wavelength interferometry as well (Decker et al., 2003). Multiple 

wavelengths include three, four or sometimes many wavelengths to produce a series of effective 

wavelengths enabling ultra-precision metrology over a wider range of surface. Much research 

into two- or multiple-wavelength interferometry for surface measurement has been carried out. 
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Cheng and Wyant (1984) proposed a two-wavelength phase shifting interferometry which 

achieved measurement repeatability better than 25 Å (angstrom) RMS for measuring a steep 

optical surface. It could possibly be applied to measurement of the steep aspheric or large 

deformation surfaces. Deck and Demarest (1993) developed a stable two-colour light-emitting-

diode source with a synthetic wavelength of 10.77 μm for their multi-wavelength interferometry, 

and achieved an unambiguous vertical measurable range greater than 2.5 μm with sub-angstrom 

measurement repeatability. Kumar et al. (2008) exploited a three-wavelength interferometry and 

used an 8-step algorithm to compensate phase shifting errors due to phase-step miscalibration.  

Study showed that the measurement dynamic range may not be limited by the effective 

wavelength calculated using equation (3.8). Instead, this wavelength can be increased several 

times through analytical methods if the fractional phases at the single and effective wavelengths 

are known. However, this technique suffers from longer calculation time and measurement noise 

(De Groot, 1995; Malacara, 2007). Since the two- or multiple-wavelength interferometry just 

extends the measurement range, this technique still suffers from 2π phase ambiguity when the 

OPD between two adjacent pixels exceeds half of the synthetic wavelength eff . It is also 

important to mention here that the depth of field (DOF) of the interferometric objective for PSI 

may set a limit to the vertical measurable range as well. With respect to the measurement time, 

two- or multiple-wavelength interferometry takes twice as much as single wavelength PSI when 

performing a measurement. There are two ways to reduce the required time for measurement. 

One is to capture the two- or multiple-wavelength superimposed interferograms in one frame and 

analyse it using the Fourier transform method (Onodera & Ishii, 1997). Another method is to 

utilise a colour CCD camera to record the interferogram (Pförtner & Schwider, 2001).  

3.4 Vertical scanning interferometry 

Broadband light source is widely used to further extend the measurement dynamic range. 

Vertical scanning interferometry (VSI), also known as white light scanning interferometry 

(WLSI) or coherence correlation interferometry (CCI), is not a new technique but has become 

extremely powerful with development of modern science. It differs from single wavelength PSI 

technique by using low-coherence white light, which consequently creates a new pattern of 

fringes due to the superposition of fringes for each individual wavelength (Malacara, 2007). 

Figure 3.1 shows the schematic diagram of VSI. Like other interferometers, the white light beam 

is split into two parts to travel along the two arms of the interferometer and are then brought 

https://en.wikipedia.org/wiki/%C3%85
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together to generate interference fringes within the range of coherence length. The camera 

captures a series of sequential frames during the vertical scanning of interferometric probe.  
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Figure 3.1 Schematic of vertical scanning interferometry 
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Figure 3.2 Localisation of coherence peak using VSI technique  
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The basic principle of VSI for retrieving the absolute distance of tested surface with respect 

to reference plane is to determine the locations of coherence peaks from the captured 

interferograms. As shown in Figure 3.2, the maximum fringe visibility occurs when the OPD 

between the reference arm and the measurement arm equals zero, whereas it falls quickly when 

the OPD increases. Surface topography can be acquired after tracking all coherence peaks within 

the field of view of the interferometric objective. 

VSI overcomes the limitation existing in PSI techniques and extends its metrological 

application to rough surfaces and structured surfaces with large discontinuities. Its axial 

measurable range is dependent on the working distance of the objective and the scanning range 

of the translation system. Since it was first proposed by Balasubramanian (1982), many studies 

have discussed various applications of this technique. Davidson employed the VSI technique to 

measure the profile of integrated circuits (Davidson et al., 1987) and Adi et al. (2008) used it to 

assess the surface roughness of micro-sized particles for dry powder inhalation. Santo Padula II  

(2009) demonstrated that the VSI technique is a robust, repeatable and precise approach to assess 

the defects present on the orbiter window. Many commercial products using VSI technique have 

been developed, such as Talysurf CCI 6000 from the Taylor Hobson Ltd. with a vertical 

resolution of 0.1 angstrom and NewView 7300 from the ZYGO Corporation with a vertical 

resolution smaller than 0.1 nm (Taylor-Hobson, 2005; ZYGO-Corporation, 2014). The vertical 

scanning range of these VSI instruments varies between a few micrometres to a few centimetres. 

The drawback of VSI technique is that a large amount of interferograms must be recorded 

and processed before the height distribution of the surface can be calculated. On one hand, the 

mechanical scanning required in height means that the VSI technique is limited to in-situ/off-line 

measurement, not applicable to the in-line metrological applications. On the other hand, the 

scanning range sets a limitation in measurement range and speed. Furthermore, the non-linearity 

errors due to the PZT hysteresis have an influence on the measurement accuracy as well (Kang et 

al., 1999), which makes an extra calibration and compensation process necessary for the 

instrument before use. Some other issues such as spiky errors and bat wings occuring at the edge 

of surface features, may need to be considered as well when using VSI (Gao et al., 2008; 

Harasaki & Wyant, 2000). Additionally, the adoption of the white light source and the finite size 

of the beamsplitter lead to dispersion problem and incorrect profiles, especially for Linnik and 

Michelson interferometric objectives (Pförtner & Schwider, 2001).  
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3.5 Wavelength scanning interferometry  

Wavelength scanning interferometry (WSI), proposed for the first time by Takeda and 

Yamamoto (1994), is an alternative to VSI and multi-wavelength interferometry. It takes 

advantage of shifting the phase by tuning wavelengths of the broadband light source without any 

mechanical scanning and obtaining good contrast of fringes even for dispersive media when 

compared to VSI (Malacara, 2007). Not only can WSI easily characterise the rough and smooth 

surfaces without 2π phase ambiguity, but it can also be extended to metrological applications 

such as film thickness measurement through separation of interference signals from the top and 

the bottom of film surface in frequency-domain (Gao, et al., 2012; Ghim & Kim, 2009). 

A wavelength tunable light source, an interferometric objective and a high speed camera in 

conjunction with the sophisticated computer are three critical parts of the WSI system. The NA 

of the objective used determines the lateral resolution of WSI and measurement FOV, and the 

camera speed along with the computing capability of data processing unit determines 

measurement time. Additionally, the wavelength tuning range and minimum tuning step have 

effect on the measurement accuracy and the maximum measurable range of the system, 

respectively. The vertical resolution or the minimum measurable height difference (h ) of WSI 

is expressed as (Malacara, 2007)                                                     

 min max

max min2( )h k

        (3.9)    

where max  and min  denote the maximum wavelength and minimum wavelength corresponding 

to the scanning range. The maximum measurable range (maxh ) is given by (Malacara, 2007)                                                     

 /max kh     (3.10)  

where k  is the minimum tuning step. According to equation (3.9), wider scanning range offers 

a high measurement resolution. However, it needs to be noted that chromatic aberrations 

produced by the optical system may increase as well due to the broader bandwidth used. The 

axial measurement capability is first restricted by the minimum tuning step, which is 

consequently dependent on the performance of wavelength-tuning device such as AOTF. 

Additionally, DOF of the probing objective also sets a limitation to the maximum measurable 

range, as expressed by                                                   
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 2 21 /DOF NA NA    (3.11) 

where NA  represents the numerical aperture of the objective and   is the wavelength used. 

When the measurement is performed, the sample should be placed within the DOF of the 

objective to resolve the details of the tested surface. Fringes still can be observed as the OPD 

between the tested surface and reference surface exceeds the DOF, the visibility of the fringes 

and the signal-to-noise of the interference output, however, is greatly decreased and eventually 

no interference exists when the OPD is greater than the coherence length. Overall, the maximum 

measurement range is related to maxh and DOF calculated by equation (3.10) and (3.11), 

respectively; and is determined by the smaller of the two values.  

As a matter of fact, the evolution of the WSI was directly related to the development of the 

tunable light source. In the early stage of WSI development, the narrow scanning range and the 

mode hopping problem existing in laser diodes limited the measurement accuracy to sub-

millimetre (Thiel et al., 1995). Yamamoto et al. (2001) proposed a high resolution WSI using 

titanium: sapphire laser with a scanning range up to 100 nm to enhance the measurement 

accuracy. Jiang et al. (2010) also presented a WSI system using an AOTF to scan the wavelength 

emitted from a halogen lamp, which achieved a wide scanning range up to 150 nm and a tuning 

step of 0.48 nm. 

As mentioned above, WSI produces phase shifting though altering the wavelength of a 

broadband light source, therefore the equation (3.6) can also be expressed as                                                   

  0 1 cos (2  ( ))I I v h k k     (3.12) 

where h  is the OPD between the two arms of the interferometer, k  is wave number and k  is 

its variation due to wavelength scanning. To obtain a height map of the sample surface with full 

FOV, a series of frames are captured by a two-dimensional camera during wavelength scanning. 

Figure 3.3 shows the signals of a step object using the WSI technique. To analyse the fringes and 

retrieve the phase information, various algorithms have been developed such as techniques based 

on the zero crossing technique (Kuwamura & Yamaguchi, 1997), fast Fourier transform (FFT) 

(Takeda & Yamamoto, 1994), convolution (Muhamedsalih et al., 2012) and Carré algorithm 

(Carré, 1966).  
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Figure 3.3 Signals of the step object with WSI technique 
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Figure 3.4 An enhanced WSI with an active servo system to eliminate the environmental noise [Adapted from 

Muhamedsalih, 2013] 
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The WSI technique has the same shortcoming as the VSI, which is that a large number of 

frames need to be captured for each areal measurement which may take a few seconds to record 

and process. Due to the sensitive nature of the method to the environmental noises such as 

mechanical vibration and air turbulence, implementation of a stabilisation system in WSI system 

is considered as an effective solution to minimise the environmental effects and achieve the high 

measurement accuracy. Jiang et al. (2010) proposed an enhanced WSI which introduced an 

active servo control system to monitor and compensate the environment noise, as shown in 

Figure 3.4. The additional interferometer, called as reference interferometer, uses a Super 

Luminescent Light Emitting Diode (SLED) light source with working wavelength of 830 nm. 

This reference interferometer is utilised as a feedback source for a close loop control system to 

stabilise the entire interferometry. Its output is detected by Silicon PIN detector and is fed into a 

PI controller which controls a piezo transducer’s movement to compensate for the vertical 

mechanical vibration (Muhamedsalih et al., 2013). Furthermore, by combining the technologies 

such as GPU and auto-focus kinematic stage, this improved WSI has been demonstrated for 

potentially used in on-line defect assessment on a R2R process (Muhamedsalih, et al., 2015). 

However, for the moment the WSI system still cannot perform in-process metrology because it 

requires the tested sample to keep still during the measurement process. 

3.6 Dispersive interferometry  

Dispersive interferometry, normally named spectrally resolved white light interferometry 

(SRWLI) or white light channelled spectrum interferometry (WLCSI) in other literatures 

(Malacara, 2007), is another interferometry technique that achieves phase shifting through 

wavelength variations without mechanical scanning. It has an advantage of fast measurement 

speed over the VSI and the WSI because of obtaining a surface profile in a single shot. All 

information of the measured profile with respect to the spectral bandwidth is registered in a 

single two-dimensional frame (spectral interferogram) by using a spectrometer. More 

specifically, unlike VSI and WSI techniques, the interference beam produced by the 

interferometric objective is spatially dispersed using a diffraction grating or prism before being 

focused onto the camera, in which way the channelled spectrum is obtained and the phase 

information is encoded as a function of wavenumber along the chromaticity axis of the camera. 

Normally the diffraction grating is preferred to be used because the prism struggles to achieve a 
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big diffraction angle and makes the whole system bulky as well. The details of spectrometer 

system will be further discussed in next chapter.  

White light source

Tested surface
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Frame grabber

Computer unit

 

Figure 3.5 Optical setup of dispersive interferometry [Adapted from Schwider and Zhou, 1994]  

Dispersive interferometry for use in surface metrology was first described by Schwider and 

Zhou (1994), which was based on a Fizeau system as shown in Figure 3.5. Since then, the 

technique has been reported by many researchers in the fields of surface profile measurement 

(Calatroni et al., 1996), absolute distance measurement (Hlubina, 2002; Joo & Kim, 2006) and 

thin-film thickness measurement (Debnath et al., 2006; Ghim & Kim, 2009) over the last two 

decades. Schnell and Dändliker (1996) extended the application of dispersive interferometry for 

absolute distance measurement to efficiently measure in-situ the effects of the dielectric thin-film 

coated on a sample. The experiment results showed the thickness of these layers can be 

accurately measured at a level of 10 nm provided that the refractive indices are known, and 

finally the correct mechanical distance to the top surface of the target can be obtained. In the 

case of film thickness measurement, it can be achieved using dispersive interferometry by 
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separating the signals from different layers in frequency domain (Zuluaga & Richards-Kortum, 

1999). However, this metrology application may suffer from the ghost frequency peaks from 

multiple reflections of many interfaces (Malacara, 2007). Therefore, Wojtkowski et al. (2002) 

suggested that dispersive interferometry in conjunction with PSI could be an effective approach 

to measure the film thickness without ambiguity. Debnath et al. (2006) presented a dispersive 

phase shifting interferometry with a windowed 8-step algorithm to rapidly and accurately 

measure the thickness of thin film ranging from 150 nm to a few micrometres.  

LS1, LS2 – light source

L1, L2, L3, L4, L5 – lenses

G – grating; RM – reference mirror

TS – translation stage; S – sample 

P – measurement point; E – etalon 

BS1, BS2 – beamsplitters; C1, C2 – cameras
 

Figure 3.6 Hyperspectral interferometer for single-shot 3D shape measurement [Adapted from Huntley et al., 

2010] 

In order to construct a surface topography of the sample surface, additional lateral scanning 

is commonly needed for a dispersive interferometer. To overcome the issue of just one line 

profile measurement, Huntley et al. (2010) presented a hyperspectral interferometry (HSI) to 

achieve single-shot 3D shape measurement with great immunity from the environmental 

disturbances, as shown in Figure 3.6. By using a hyperspectral imager the white light 

interferogram was split into a series of sub-interferograms with a narrow spectral band within the 



55 

  

 

broad spectral illumination envelope. Therefore, the measurement of two-dimensional optical 

path distributions can be obtained by analysing the hyperspectral images (Widjanarko et al., 

2012). The measurements of a planar sample and a step sample demonstrated the applicability of 

the HSI system to single-shot areal measurement (11 × 19 pixels) with an unambiguous depth 

measurable range of 350 µm and a depth measurement precision of 80 nm. However, this 

proposed system has a problem to be integrated into machines in the production line due to the 

large overall size. Moreover, further improvement needs to be made to achieve images across the 

full detector. 

Additionally, a spatially dispersed short-coherence interferometry (SDSCI) has been 

proposed and investigated for on-line surface profile measurement (Hassan et al., 2014), as 

shown in Figure 3.7. Unlike the SRWLI discussed above, it has a dispersive probe in the 

measurement arm, which is composed of a grating and a collimator. The tested surface is 

therefore observed by a spatially dispersed line beam and finally the produced spectral 

interferogram is analysed by a spectrometer. This novel technique can achieve profile 

measurement over large ranges; however, it suffers from the same 2π phase ambiguity problem 

as the PSI does and is generally used for characterisation of ultra-precision surfaces. 

 

Figure 3.7 Optical configuration of SDSCI system [Adapted from Hassan et al., 2014] 

As one of the variations of spectrally resolved interferometry, spectral domain optical 

coherence tomography (SDOCT) is widely employed in the biological field. It offers a fast 
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measurement technique for ophthalmic diagnosis and other biological tissues in vivo (Brezinski, 

2006; Nakamura et al., 2007; Yaqoob et al., 2009). For example, Grajciar et al. (2005) presented 

a parallel SDOCT with a long slit illumination on the sample which allows in vivo real time 

imaging of human eye structures. Yasuno et al. (2006) demonstrated a 3D SDOCT for in vivo 

dermatological investigation. It only required one-dimensional lateral scanning along the 

direction perpendicular to the measured profile through a Galvano mirror, as shown in Figure 

3.8. Iftimia et al. (2006) also developed a compact instrument by integration of SDOCT and line-

scanning laser ophthalmoscopy (LSLO). The SDOCT/LSLO hybrid instrument provides both 

bigger picture on global ocular health and high resolution detail of retinal cellular in the region 

of interest. The axial resolution of SDOCT, dependent on the bandwidth of the light source used, 

is generally in micrometre or sub-micrometre scale. Therefore, the SDOCT has limitation in 

metrology of ultra-precision surfaces in manufacturing process. 

 

VHG – volume holographic grating

L1, L2, L3, L4 – lenses; M –mirrors

CL – cylindrical lens; BS – beamsplitter
 

Figure 3.8 Optical setup of SDOCT [Adapted from Yasuno et al., 2006] 

3.7 Summary  

Optical interferometry is based on the analysis of the fringes generated by two beams with 

the same frequency. It can be classified into different groups depending on the coherence length 

of the light source used, such as single wavelength PSI and WLI. Generally the PSI in 

conjunction with a (single wavelength) light source with long coherence length offers 

outstanding axial resolution. Nevertheless, it is restricted to metrology of smooth surfaces or step 
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heights less than a quarter of a wavelength. The WLI techniques such as VSI, WSI and 

dispersive interferometry all belong to low-coherence interferometry. They benefit from the use 

of a broadband light source which removes the 2π phase ambiguity problem and have been 

widely used in applications such as inspection of the surfaces with large discontinuities and 

characterisation of internal surface and optical material with the development of the new light 

source, detectors and processing techniques.  

The interference signal of VSI and WSI is temporally localised which requires a large 

number of interferograms to be captured and thus introduces lots of environmental noises to the 

measurement. In addition, the tested sample needs to be kept still during each measurement 

process. Both of the above-mentioned drawbacks make it an issue when they are applied on a 

production line. Dispersive interferometry stands out because the single shot nature of the 

approach makes it immune to the environmental disturbances when the measurement is carried 

out on the shop floor, and therefore it has the potential to perform in-line surface inspection. 

Based on the overview of various interferometers, the environmental robust single shot 

dispersive interferometry is of particular interest and is practically investigated in this thesis.  

The next chapter details the development of the proposed line-scan dispersive interferometry 

part by part. 
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4 LSDI system development 

4.1 Introduction  

This chapter presents the development of the snapshot line-scan dispersive interferometer 

for in-line surface measurement. For those interferometric techniques requiring scanning to fulfil 

each measurement, whether mechanical scanning or wavelength scanning, they are restricted to 

in-situ or off-line applications where the sample surface keeps still. LSDI has the benefit of 

utilising single-shot measurement and has potential to perform in-line metrology of the surface in 

motion. One of the promising applications for this technique is to inspect flexible PV film 

products manufactured by R2R technology, as shown in Figure 4.1. This chapter details the 

system scheme of LSDI, alignment issues and wavelength calibration. 

 

Figure 4.1 Schematic representation of employing the LSDI metrology system on a production line 

4.2 System scheme 

The basic configuration of the proposed LSDI is shown in Figure 4.2. It is comprised of four 

main parts, namely the light source, optical probe, spectrometer and console. The light source 

with broadband spectrum provides the white light illumination for the metrology device. An 

interferometric objective serves as the optical probe and observes the tested surface without 

Flexible PV films

LSDI
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physical contact. Optical probe is the determinant of the resolving ability for the metrology 

sensor. When the OPD between the two arms of interferometric objective is within the scope of 

coherence length, numbers of fringes occur. The spectrometer is then used to spatially disperse 

the interference beam along the rows (or columns) of the CCD pixels, generating a two-

dimensional spectral interferogram. Finally the recorded channelled spectrum is interpreted by 

the computing unit of the console and the evaluation result of a surface profile can be acquired. 

 

 

Figure 4.2 Block diagram of the LSDI system 

4.2.1 Light source 

The illumination scheme is dependent on the type of the tested surface. In general 

monochromatic illumination is used for smooth optical surfaces, while broadband chromatic 

illumination is applicable to objects with larger discontinuities, roughness and heights (Malacara, 
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2007).  For the proposed LSDI, a continuum broadband illumination scheme is required due to 

the dispersion measurement principle. Selecting an appropriate light source for metrology device 

various factors should be considered such as centre wavelength, bandwidth, spectral shape, 

power and stability (Drexler & Fujimoto, 2008). For the dispersive interferometry, the axial 

measurement resolution is related to the optical bandwidth of the light source used, as given in 

equation (3.9). High power light source is desired to acquire enough exposure on the sensor 

especially when a high speed camera is used. For a diffraction-limited optical instrument, 

relative shorter centre wavelength can offer better lateral resolution. Nevertheless, there is a 

trade-off especially for systems such as SDOCT applied in the field of biology. This is because 

shorter wavelengths are more highly scattered in biological tissue, which then results in less 

imaging penetration (Boppart, 2003).  

We selected a light source working in visible wavelength region (normally from 400 to 

700 nm), which is highlighted in electromagnetic spectrum in Figure 4.3.  

 

Figure 4.3 Typical electromagnetic spectrum with visible light highlighted 

More specifically, a halogen lamp from Philips is utilised to generate white light 

illumination for LSDI and the designed light source device is shown in Figure 4.4. This device is 

a standalone system and connects with the interferometer using a flexible multi-mode fibre. The 

relatively low-cost halogen lamp has enough power with an output of 150 Watts and can be 

easily replaced. A plano-convex spherical lens collimates the emitted white light and then a fibre 

coupling lens (F810SMA-635, Thorlabs) focuses the light into the multi-mode fibre (both ends 

using SMA-connector). The intensity of the light source can be adjusted using a lighting 

transformer. A cooling fan is also installed in the circuit to prevent the device from overheating. 
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By using a spectrometer from Thorlabs Inc. (CCS100), the spectral distribution of the light 

source can be obtained and shown as Figure 4.5.         

 

Figure 4.4 Light source device 

 

Figure 4.5 Spectral distribution of the developed light source device 

4.2.2 Interferometric objective 

Interferometric measurement requires an optical objective, in which two or more beams 

originating from the same source but traveling along different paths, are brought to interfere 
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(Hariharan, 2010). This interferometric objective serving as the optical probe can be generally 

classified into four types for different applications, namely Linnik, Michelson, Mirau, and 

Fizeau. The way in which the beam is split into reference and measurement beams distinguishes 

these objectives. Schemas of these four interferometric objectives are shown in Figure 4.6.  

 

Figure 4.6 Schemas of interferometric objectives: (a) Linnik, (b) Michelson, (c) Mirau and (d) Fizeau. 

Within all of the interferometers except Fizeau, there is a cone of light incident upon the 

tested surface and the corresponding reference mirror is placed at the best focus of the objective. 

Interference fringes with best contrast can be acquired when the tested surface coincides with the 

focal plane, where the OPD between the reference arm and the measurement arm is nearly zero. 

The Michelson interferometer is historically important for its use by Michelson and Morley 

(1887) to provide experimental evidence against the theory of the luminiferous aether. For this 
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configuration the beamsplitter is set between the objective lens and the tested surface. On the one 

hand, it takes advantage of keeping balance of optical aberrations introduced by imperfect optics, 

which it is difficult to achieve for the Linnik interferometer. On the other hand, this 

configuration limits its application in objectives having low-magnification and long working 

distance. In case of the further optimization of the Michelson configuration, Kühnhold et al. 

(2013) proposed a correction system with three additional single lenses set at both entrance and 

exit of the beamsplitter to solve the dispersion problem caused by beamsplitter. In general the 

commercially available interferometric objectives with a magnification lower than 5X are based 

on Michelson configuration, such as the products from Nikon and Polytec. 

Regarding the Mirau interferometric objective, it is a common path system with compact 

size. To achieve the interference across the full field of view of the objective, the reference 

reflective spot must be larger or equal to the objective’s FOV. The reference spot (or reflective 

mirror) is inserted between the objective and beamsplitter, which consequently leads to the 

central obscuration in the system. Mirau objective is commercially available at a mid-

magnification between 10X and 50X. For magnifications higher than 50X, the short working 

distance may not allow enough space for inserting a beamsplitter plate. The Linnik system solves 

this problem of working distance and is normally used with a high-magnification objective. 

Unfortunately, Linnik configuration is sensitive to mechanical influences and difficult to align. 

The two objective lenses of Linnik need to be well matched with a beamsplitter to assure that a 

wavefront with minimum aberration and maximum fringe contrast is provided (Malacara, 2007). 

Any tilt of the objectives or beamsplitter with respect to the optical axis need to be avoided. 

Compared to the three objectives mentioned above, Fizeau interferometer is an unequal path 

system. It therefore requires a light source with a long coherence length and is normally used in 

single wavelength interferometry. It is a common path interferometer just as Mirau configuration 

but its reference surface can be spherical or flat according to different applications such as 

testing of flat surface, concave (convex) surface, optical lens and system. Commercial Fizeau 

interferometers have been available for many years and are still under development and 

optimisation to meet the high demands from the modern precision optical manufacturing. For 

instance, Kimbrough et al. (2008) used a pixelated polarisation mask spatial carrier phase 

shifting technique in conjunction with a high coherence source to significantly reduce the 

vibration sensitivity of Fizeau interferometer. Sykora and de Groot (2011) reported on a Fizeau-
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type interferometer optimised for light-efficient, single-frame carrier fringe acquisition for 

instantaneous metrology at high lateral resolution. 

Several systemic factors, including level of magnification, optical resolution, measurable 

slope and measurable height range, need to be considered to determine a proper objective for 

particular measurement. The best selection of objective will allow the smallest lateral features, 

the maximum height range and maximum slopes to be measured (Malacara, 2007). A high 

numerical aperture provides finer optical resolution and bigger measurable slope. The objective 

lens should have sufficient working distance for not coming into contact with the tested sample 

to prevent damages of the functional surfaces (Niehues et al., 2012).  

As mentioned by Deck and Evans (2005), Fizeau interferometer is in general used in the 

spatial frequency range from 0.5 to 10 1mm and the other three objectives can be applied to 

measure finer scale deviations from 1 to 1000 1mm . Considering the aim of our project, 

Michelson interferometric objective is preferentially utilised due to relatively easy alignment and 

good performance in balancing optical aberrations.  

4.2.3 Spectrometer 

The spectrometer plays an important role in LSDI system. The basic components of a 

spectrometer are a slit, a collimator, a grating, an imaging focal lens and a detector. Different 

from WSI using an acoustic-optic tunable filter for wavelength scanning, LSDI employs a 

grating or dispersive prism to separate a series of constituent monochromatic interferograms 

which encode the phase as a function of wavenumber along the chromaticity axis of the camera 

(Debnath & Kothiyal, 2006; Tang, et al., 2014). For a diffraction grating with spacing d , if a 

plane wave is incident with an angle of i , the diffraction angle is m  at the order m , then the 

fundamental grating equation giving the relationship between the angles i  and m  for a incident 

beam (wavelength  ) can be expressed as 

  sin sini mm d      (4.1) 

Due to the relatively higher diffraction efficiency, defined as the ratio between the energy 

flow in the corresponding order and the energy flow in the incident order (Popov, 2012), the 

diffracted light in first order is selected to be gathered by the camera for spectral analysis.  
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Figure 4.7 Diffraction of light using a grating 

The optimal incident angle i  is determined by investigating the linearity of the diffraction 

angle for the bandwidth being diffracted, as shown in Figure 4.7. Suppose the bandwidth 

received by the CCD camera has a wavelength range from 550 nm to 680 nm and the grating 

used has a groove density of 1200 groove/mm, then the diffraction angles with respect to the 

incident angles from 0  to 90  can be calculated using equation (4.1). Figure 4.8(a) shows the 

surface mesh result which represents the relationship between the incident angle and diffraction 

angle at the given bandwidth. Figure 4.8(b) specifically shows the linearity analysis of the 

diffraction angle with respect to the broadband wavelength at an incident angle of 10 (referred 

to as D-W curve). By fitting the D-W curves at different incident angles (from 0  to 90 ), it was 

found that the minimal standard deviation of the linearity errors could be obtained when the 

incident angle is equal to 49  (see Figure 4.8(c)). It means that the optimal angle between the 

optical axis and the diffraction grating is 41 , where the spectrum received by the camera almost 

linearly spreads along the chromaticity axis of the pixels.  
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Figure 4.8 Investigation of the optimal incident angle: (a) Surface mesh result, (b) D-W curve at the incident 

angle of i =10°, (c) Standard deviation of linearity errors with respect to incident angle. 

Therefore, by selecting suitable optical parameters (e.g., the grating spacing and focal length 

of imaging lens) as well as properly setting the relative position between the components (such 

as the camera location and the grating orientation), the camera is able to observe the desired 

spectral bandwidth with good linearity of the diffraction angles and relatively high intensity or 

good fringes when performing measurements.  

Additionally, some other crucial issues need to be carefully considered to build an 

applicable spectrometer, which are discussed in the following subsections.  

D
if

fr
a

ct
io

n
 a

n
g

le
 (
 )

(a)

540 560 580 600 620 640 660 680
28

30

32

34

36

38

40

 

 

Original data
Linear fitting

Wavelength (nm)

D
if

fr
a

ct
io

n
 a

n
g

le
 (
 )

(b)

  =   

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f 
li

n
e

a
ri

ty
 e

rr
o

rs

Incident angle ( )
(c)



67 

  

 

4.2.3.1 Optical bench  

Though there are various optical bench configurations, they are classified into four typical 

categories in this thesis, namely crossed Czerny-Turner, unfolded Czerny-Turner, concave-

holographic configuration and lens-based configuration (see Figure 4.9). The former three 

configurations utilise mirrors to collimate and focus the beam and are widely adopted in 

commercial products, while the transmissive lens-based one is mostly used by many researchers 

in surface metrology field (Pavlícek & Häusler, 2005; Schwider & Zhou, 1994; Zhu & Wang, 

2012).  
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Figure 4.9 Typical optical bench configurations for a spectrometer: (a) crossed Czerny-Turner, (b) unfolded 

Czerny-Turner, (c) concave-holographic configuration, (d) lens-based configuration [(a) & (b) adapted from 

B&W Tek Inc. and Photonics, respectively]. 

Each of these optical benches has advantages and drawbacks and a perfect decision should 

be made by consideration of the applications. The crossed Czerny-Turner configuration offers a 

compact spectrometer design and a flattened spectral field may be produced by optimising the 

geometry of the configuration (Mohammadi & Eslami, 2010). The unfolded Czerny-Turner 

optical bench then cost-effectively mitigates the issue of high level of stray light. However, the 

off-axis configuration brings significant optical aberrations, especially the notable astigmatism 

which is its proportional to the square of the off-axis angle (Lerner & Thevenon, 1988; Lerner, 

2006). Therefore, the aspheric mirrors are required in the modern Czerny-Turner spectrometer. 

The concave-holographic configuration makes the spectrometer even more compact because the 

grating and imaging elements are the same component. Yet all these reflective configurations 

suffer more from the thermal/mechanical instability compared to transmissive spectrometer 

(Lewis & Edwards, 2001).  

In the case of LSDI system, we built an on-axis lens-based spectrometer to minimize the off-

axis aberrations and obtain good quality of spectral lines at the focal plane.               

4.2.3.2 The grating 

The diffraction grating is one of the most important optical elements directly determining 

the performance of the spectrometer and is generally grouped into two main types, namely 
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reflective gratings and transmission gratings. Reflective gratings are of a particular interest to 

make a compact LSDI system. The surface relief grating pattern of the reflective type can be 

either mechanically ruled on a plane substrate using a ruling machine (ruled grating), or 

holographically formed on different substrates such as plane, spherical and toroidal by 

interfering two ultraviolet beams (holographic grating) (Cotel et al., 2014; Lewis & Edwards, 

2001).  

Ruled gratings can be manufactured at low cost and normally have higher diffraction 

efficiency than holographic ones at each diffraction order. The disadvantage of ruled gratings is 

the stray light and ghost problem due to periodic errors, spacing errors and surface irregularities 

resulting from the fabrication, which is proportional to the square of order and groove density 

(Lerner, 2006). Holographic gratings presents up to over a 10 times reduction in stray light 

compared to ruled gratings. Therefore, holographic grating is preferentially selected for our 

system especially with high groove densities of up to 1200 groove/mm.  

4.2.3.3 The detector 

To begin with, the spectrometer is not an independent system outside the whole LSDI 

system. Any design of the spectrometer should match and serve the target theme of performing 

in-line metrology. An area-array CCD/CMOS camera with high speed is required for the 

developed LSDI to achieve surface profile measurement on a production line. The current 

camera technology provides micro-scale pixel size which is always smaller than the image size 

of the entrance slit and consequently the spectral resolution will be not limited by the pixel size. 

The trade-off between the lateral resolution and the amount of time to read out the data is 

considered more to determine the pixel size (or pixel density) of the detector for the metrology 

device.  

4.2.3.4 Spectral resolution  

The spectral resolution is defined as the ability of the instrument to separate two close 

spectral lines. There are a number of factors that determine the spectral resolution such as slit 

width, image quality of the optics, pixel size of the detector and resolving power of the grating 

(Lewis & Edwards, 2001). One practical equation given by B&W Tek, Inc. to calculate the 

spectral resolution   is expressed as  
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    (4.2) 

where   is the spectral range of the spectrometer, SW  represents the slit width, RF is the 

resolution factor, N  is the pixel number in the chromaticity axis and PW  denotes the pixel size. 

The finite spectral resolution affects the vertical measurable range of the LSDI system, which is 

discussed in detail in chapter 6.  

4.2.4 Console  

The console is designed to control the LSDI system in terms of data processing and 

capturing sequence of the CCD. For the in-line surface inspection, the camera is triggered in a 

continuous mode with the frame rate meeting the requirements of lateral sampling interval and 

web moving speed. The measurement data produced by the LSDI is recorded by the high-speed 

camera and then transferred to the console to analyse the fringe pattern and evaluate the sample 

surface. Moreover, analysis of all pixels in one frame can be accelerated using GPUs with 

CUDA (Compute Unified Device Architecture) programming model. By generating thousands to 

millions of threads (in our case equal the pixel number in the lateral profile direction), data 

parallelism can improve measurement speed and increase the potential to present real-time 

surface profiles. 

4.3 Alignment of interferometric objective 

The alignment of the interferometric objective is crucially important for the overall 

performance of LSDI. To obtain the high quality image or best visibility of fringes on the 

camera, the entrance surface of the beamsplitter should be perpendicular to the optical axis and 

the position of the reference mirror needs to be set at the best focus of the objective. As 

mentioned in the introduction section, two prototypes using different objective lenses 

(cylindrical lens and microscope objective, respectively) were investigated in this project. In this 

section, take cylindrical lens-based LSDI as an example, first simulation has been carried out 

using optical software ZEMAX to better understand the effect of alignment errors as well as 

offer the instructions for conducting assembly of the interferometer. Then a practical alignment 

strategy of the interferometric objective is briefly presented. 
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4.3.1 Simulation of cylindrical lens-based LSDI 

ZEMAX is a multi-function software which can model, analyse, and assist in the design of 

optical systems. For accurate simulation purposes, the cylindrical lens-based LSDI system is 

modelled in sequential mode of ZEMAX using real data of optical components provided by the 

manufacturers (see Appendix A.1). With the aid of multi-configuration function in the software, 

the 3D layout of the cylindrical lens-based LSDI is shown in Figure 4.10. 

 

Figure 4.10 3D layout of LSDI model in ZEMAX. 1, white light source; 2 & 11, collimator; 3, iris diaphragm; 

4 & 6, beamsplitter; 5, cylindrical lens; 7, reference mirror; 8, tested surface; 9, tube lens; 10, slit; 12, grating; 

13, imaging lens; 14, camera. 

For an ideal optical system without any aberrations and misalignments from optical 

components, the beams from the two arms of the interferometer are expected to travel back along 

the same paths and finally the interference beam is perfectly reconstructed with symmetric 

spherical wavefront. However, even if all lenses had already been optimised individually there 

are still some popular residual aberrations, such as spherical aberration, coma and astigmatism 
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which may be even magnified when being integrated together in the optical system. Figure 4.11 

shows comparison of the spot diagrams between the systems with and without aberrations.  

 

Figure 4.11 Comparison of the spot diagrams between system with and without aberrations (CYL: cylindrical 

lens, SPL: spherical lens) 

 

Figure 4.12 Misalignments: (a) tilt of the cylindrical lens, (b) tilt of the beamsplitter. CL, cylindrical lens; BS, 

beamsplitter; RM, reference mirror; TS, tested surface. 

As illustrated above, the LSDI system is built with the off-the-shelf components and thus 

there are few freedoms for optimisation of the whole system. In this section, the aberrations 

resulting from the optical lenses are classified into system errors for particularly investigating the 

alignment errors. Compared to the optical aberrations which can normally be balanced between 
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the two arms of the interferometer, alignment errors are relatively significant for introducing 

additional OPDs and do have an influence on the accuracy of measurement results. There are 

mainly two kinds of misalignments, namely tilts and offsets of the optical components. Tilt 

errors are of particular interest in our simulation, as shown in Figure 4.12.  

 

 

Figure 4.13 Simulations regarding the tilts of optical components: (a) spot diagram results by tilt ing the 

cylindrical lens, (b) interferogram results through tilting the beamsplitter. 

Figure 4.13 (a) indicates that tilts of the cylindrical lens lead to the deformation of the line 

focusing beam on the tested surface. More specifically, tilts about X axis and Y axis make the 
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focusing beams asymmetrical and tilt along the Z axis only rotates the direction of measuring 

beam. In this case, no extra fringes generate because the OPD between the two arms of the 

interferometer remains the same. However, tilts of the beamsplitter or reference mirror will lead 

to a tilt of the optical axis and thus the light beam will no longer travel along the same path, in 

which case straight fringes with equal intervals are generated on the image plane (Figure 4.13 

(b)). The simulated interferograms show that the OPD is sensitive to the tilts of the beamsplitter, 

therefore attention should be paid to beamsplitter cube when carrying out alignments. Likewise, 

tilts of the reference mirror will generate the similar effect on the interferograms as the 

beamsplitter does. 

4.3.2 Alignment strategy 

The simulation shows that the OPD is sensitive to the tilts due to the optical axis deviation. 

For the developed interferometric objective of LSDI, the beamsplitter and the reference mirror 

are both fixed on the kinematic mounts which offer tip/tilt angle adjustments. A collimated laser 

beam with small aperture was used to evaluate the tilt errors of the beamsplitter through 

measuring the heights of two split beams at a distance. Adjusting the tip/tilt buttons of the mount 

until these two heights are equal, this will ensure the beamsplitter is well aligned and its entrance 

surface shall be perpendicular to the primary optical axis. 

After the objective and the beamsplitter are aligned, the position of the reference mirror 

needs to be accurately set at the best focus as well. There are four steps to achieve this and the 

methodology is shown in Figure 4.14. First, the reference mirror is moved to a few or tens of 

microns away from the focal plane of the objective, where almost the smallest image spot 

impinges on the mirror surface. Second, a photodiode power meter (PPM, available at Thorlabs, 

Inc.) was placed at the focus of the tube lens. The maximum output of energy can be received by 

the PPM sensor through properly adjusting the tip/tilt of the reference mirror, where the optical 

axis is supposed to be perpendicular to the mirror surface. Third, a standard sample with nano-

scale step heights is placed underneath the objective in the measurement arm, and the PPM is 

replaced with a CCD camera. Blocking the reference arm and adjusting the sample in terms of 

tip/tilt and position along the optical axis until a sharp image of these small step features are 

observed on the camera. Last, the reference mirror is brought to focus and zero fringes occur 

when the OPD between the two arms of the interferometer becomes zero. Once at this position 

the adjustment buttons are locked and the reference mirror is supposed to be well aligned. 
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Figure 4.14 Alignment of the reference mirror in an interferometric objective 

4.4 Calibration of chromaticity axis of camera 

4.4.1 Light source for calibration 

The interference beam generated by the LSDI probe is spatially decomposed along the rows 

(or columns) of the CCD pixels. The grating equation (4.1) shows that the relationship between 

the dispersed wavelength and pixel number is not linear. In order to validate the spectrum 

obtained by the camera, it is necessary to perform wavelength calibration. It means 

experimentally calibrating the exact relationship between the pixel number and the specific 

wavelength. In general the chromaticity axis of the camera is calibrated with a cadmium spectral 

lamp (Debnath & Kothiyal, 2005), which emits four spectral lines and are assigned to 

corresponding pixels on the camera, as shown in Figure 4.15(a). The wavelengths of the rest of 

the pixels (see Figure 4.15(b)) are then given by Hartmann’s formula defined as (Malacara, 

2007)                                                         

  0 0/C d d      (4.3)   

where 0 , C , and 0d  are constants. Through using three pairs of (, d ) from a reference light 

source, the values of three unknown constants can be determined. Therefore the relationship 

between wavelength   and pixel number d along the chromaticity can be acquired by 

substituting the calculated constants in equation (4.3). 
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Figure 4.15 Calibration of chromaticity axis of camera: (a) spectrum of cadmium lamp on the camera, (b) 

calculated wavelength for each pixel. 

With regard to a CCD array spectrometer, the collection of many partial spectra from the 

light source is required to perform the task of wavelength calibration over an extended 

wavelength range (Gaigalas et al., 2009). However, there are only four spectral lines available 

within the range from 470 nm to 645 nm for a cadmium lamp. This means a certain angle of 

grating and position of camera are required to receive at least three of those four reference 

spectral lines, which consequently restricts the system’s performance. Therefore, a reference 

irradiance source with continuum spectrum is designed for calibration of the proposed LSDI, as 

shown in Figure 4.16.  
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Figure 4.16 Schematic diagram of the developed light source device for wavelength calibration 

This illumination system is comprised of a white light laser source (WhiteLase™ micro), an 

AOTF and a Fiberport collimator (PAF-X-15-B). WhiteLase™ micro is an ultra-compact super 

continuum source based on a mode-locked fibre laser, which possesses an output power of more 

than 200 mW and covers a broad bandwidth at least 450 nm to 2000 nm. The AOTF works at the 

wavelength range from 420 nm to 700 nm and has a resolution (Full width at half maximum-

FWHM) higher than 0.3 nm (@ 560 nm). The selected collimator has an effective focal length of 

15.4 mm and NA of 0.16. After the broadband incident light passes through the AOTF, a specific 

wavelength with high accuracy is then selected by controlling the propagation velocity and 

frequency of the acoustic wave. The selected wavelength is determined by                                                              

   1

a an v f      (4.4) 

where n  is the birefringence of the crystal used as the diffractive material,   is a parameter 

depending on the design of the AOTF, andav , af  are the propagation velocity and frequency of 

the acoustic wave, respectively. 

4.4.2 Calibration equation 

Taking advantage of the continuum spectrum of the developed calibration light source, a 

series of experimental data points (wavelength, pixel number) can be acquired by exposing the 

reference spectrum onto the camera and therefore more accurate calibration can be achieved. In 

the experiment, every selected wavelength   is first measured using a commercial spectrometer 

(traced by a laser diode with wavelength of 650 nm) and then brought to illuminate the LSDI 

system to record the spectral line on the camera, as shown in Figure 4.17. Finally a data matrix 

,( )M p registering the information of wavelength with respect to pixel number can be obtained. 
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Instead of using equation (4.3), a second-order polynomial presented by Ocean Optics is used to 

represent the relationship between pixel number and wavelength, as shown in equation (4.5).                                                                   

 2
p Ap Bp C      (4.5) 

where p  is the wavelength of pixel p , C  is the wavelength of pixel 0, B  is the 1st order 

coefficient (nm/pixel) and A is the 2nd order coefficient (nm/ 2pixel ). The values for A, B and C 

are calculated through a least squares equation using all the collected experimental data.  

 

Figure 4.17 Wavelength calibration using commercial spectrometer: (a) wavelength validation using CCS100, 

Thorlabs Inc., (b) the corresponding spectral line on the camera. 

Figure 4.18 depicts wavelength calibration using equation (4.3) and (4.5), respectively. To 

make a better visualisation, an appropriate amount of offset is added to separate the plots (Figure 

4.18(b)). It turned out that the two calibration results are in agreement with each other, however, 

(a)

(b)
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the latter method is more accurate due to the close alignment with all spectral lines obtained in 

the experiment. 

 

Figure 4.18 Calibration of chromaticity axis of camera: (a) calibrated curves using equation (4.3) and (4.5), 

(b) calibrated results with an appropriate amount of offset. 

4.5 Summary 

Four main parts of the LSDI are functionally combined together to enable the instantaneous 

measurement in a single shot. The illumination system was designed using a halogen bulb along 

with collimators and a multi-mode fibre was employed to transfer the broadband white light to 

the interferometer. Due to the large NA (0.39) and core diameter (400 µm) of the selected fibre, 
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enough output of luminous intensity and a larger FOV on the observed surface can be obtained. 

By making trade-offs between the various factors according to the requirements of our practical 

applications, the Michelson interferometric objective and the lens-based spectrometer 

configuration are determined for the proposed LSDI.  

Regarding the alignment of the interferometric objective, tilts of the beamsplitter and 

reference mirror with respect to the optical axis make the beams impinging on the two arms of 

the interferometer travel along different paths and consequently introduce additional 

unpredictable OPD into the system. Simulations using ZEMAX demonstrated that the effects 

from tilts are more significant than the errors caused by the apochromatic objective itself. 

Therefore, good alignment of these two optical elements is essential for obtaining the reliable 

and accurate measurement.  

The white-light interferogram corresponding to a surface profile is captured by the camera 

with the phase information encoded as a function of wavenumber along the chromaticity axis. 

Calibrating the chromaticity axis of the camera is therefore an indispensable procedure before 

the LSDI is used for surface measurement. The next chapter focuses on the techniques for 

interpretation of the spectral interferogram. 
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5 Data processing 

5.1 Introduction 

Data processing of the captured spectral interferogram is performed to evaluate the surface 

profile. Through analysing the interference fringes with high resolution algorithms, the height 

information of the surface profile can be accurately retrieved. This chapter provides a brief 

introduction to the fringe pattern obtained using the LSDI probe and gives the detailed processes 

of fringe analysis. The algorithms based on FFT and Carré techniques are both developed to 

calculate the phase variation. The mathematical description of the developed algorithms and the 

resolution capability are presented. Finally the data parallelism is concisely introduced for 

investigating the potential to accelerate the measurement speed to the level required for the in-

line surface metrology. 

5.2 Fringe pattern 

The fringes observed by the detector are basically channelled spectrum. This spectral 

interferogram comprises of a series of constituent monochromatic interferograms which are 

spectrally decomposed by a spectrometer and encode the phase as a function of wavenumber 

along the chromaticity axis. It is a two-dimensional image recorded by an area-array camera, 

with one axis (horizontal) being used to provide the phase information, and the other (vertical) 

giving the length information of the measured surface profile (Hart et al., 1998). The depth 

information can be extracted after all the pixels in the spectral interferogram are analysed. 

 

 

Figure 5.1 Fringe pattern for a step object using LSDI 
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Figure 5.1 shows the fringe pattern of a step sample using LSDI. The OPDs between the 

tested surface and the reference plane produce different numbers of fringes along the profile 

direction. Each row signal along the chromaticity axis represents the height information of a 

point, and the absolute distance between each tested point and the corresponding reference point 

can be determined by calculating either the phase slope due to wavelength shifting or the fringe 

frequency. Therefore, by analysing a series of row signals the height map of a one-dimensional 

profile can be acquired. Since the proposed technique performs absolute distance measurement 

with respect to the reference point, the height direction can be positive or negative depending on 

whether the tested surface is above or below the virtual reference plane during the measurement. 

Combining temporal phase shifting technique could give more accurate results, which at the 

same time can determine the sign of the measured height to overcome the height ambiguity 

problem. Yet the phase shifting method is limited when measuring a surface in motion. 

Figure 5.2 shows the flowchart of the developed algorithms for interpreting the spectral 

interferogram. The initial data required for analysis include a spectral interferogram 

(measurement information), a reference interferogram (background information) and the 

calibrated wavelength matrix across the chromaticity axis (dispersion information). All this 

information is processed with five main steps, namely background removing, wavelength 

calibration, coordinate transformation, phase calculation and acquisition of height map of a one-

dimensional profile. The following section will go on to present the details of each step. 
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3. Experimental wavelength matrix
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Figure 5.2 Flowchart of the developed algorithms 
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5.3 Fringe Analysis 

5.3.1 Background removing 

The recorded interferogram contains a background intensity variation which results from the 

spectral distribution of the light source and the spectral response of the camera. The low 

frequency components due to the background intensity are systematically existing in the 

interferogram and may lead to wrong analysis results in the frequency domain such as incorrect 

localisation of the peak position. Therefore, it is necessary to remove the background signals 

before calculating the phase variation. 

An interference signal was selected from the channelled spectrum to give a further 

illustration, as shown in Figure 5.3. Figure 5.3(a) shows the original signal containing the 

background intensity variation, which is apparently modulated by a low frequency signal. After 

performing FFT, the Fourier transform spectrum of the selected signal is shown in Figure 5.3 (b). 

It shows that there is an undesired peak close to the desired peak, which may be an issue for 

accurately localising the peak for phase calculation.  
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Figure 5.3 Interference signal with background intensity variation: (a) original signal, (b) corresponding 

Fourier transform spectrum with an undesired peak. 

 

Figure 5.4 Background signal extracted from the spectral interferogram and its filtered curve 

To remove the background, the measurement arm of the interferometer is blocked and then a 

reference frame without the interference effect can be captured. The corresponding background 

signal for the interference signal in Figure 5.3(a) is shown in Figure 5.4. It is filtered by a 

Gaussian filter with a cut-off of 0.25 mm and then divided by the interference signal (Reolon et 

al., 2006). Finally the corrected signal without background intensity can be obtained, as shown in 

Figure 5.5(a). The corresponding Fourier transform spectrum is depicted in Figure 5.5(b), which 

shows the undesired peak was removed compared with Figure 5.3(b). All row signals obtained 
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from the interferogram need to perform background removing using the corresponding (same 

row) background signals. 

The spectral intensity recorded at the output of the interferometer can then be rewritten as                                              

      , ; , ; / , ;Interf BackgI x y I x y I x y     (5.1)   

where  , ;I x y   is the intensity without background intensity variation,  , ;InterfI x y  and 

 , ;BackgI x y   represent the interference signal and background signal, respectively.  

  

 

Figure 5.5 Interference signal after removing the background (a) corrected signal, (b) Fourier transform 

spectrum of the corrected signal. 
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5.3.2 Wavelength calibration 

The interference beam obtained by the LSDI probe is dispersed by a spectrometer with the 

horizontal direction of the 2D detector as the chromaticity axis. The interferogram delivers 

spectral fringes in chromatic-spatial coordinates (Malacara, 2007). The dispersed wavelength 

along the chromaticity axis is actually not linearly related to the pixel number and consequently 

the procedure of wavelength calibration is a necessity. For calibrating the chromaticity axis, each 

pixel is accurately assigned a specific wavelength through using the known spectral lines on the 

camera and other polynomial fitted values. Section 4.4 illustrated the calibration method for the 

developed LSDI. During this procedure, more than 30 groups of experiment data (spectral lines) 

were recorded to calculate the values for A, B and C in equation (4.5) using least squares 

equation. The calibration results, varying with the optical configurations of the spectrometers, 

will be given in chapter 6 and chapter 7. For an assembled LSDI system, wavelength calibration 

is only required when it is used for the first time. 

5.3.3 Coordinate transformation 

The original signal obtained is a curve of irradiance with respect to wavelength   (or pixel 

number). However, the phase variation extracted from the channelled spectrum is linearly related 

to the wavenumber k ( 1/k  ). Therefore the coordinate transformation needs to be conducted 

to convert the original sinusoidal signals along each row to wavenumber related curves. After the 

initial transformation, the same number of data points as the previous signal is generated with 

uneven spacing across the wavenumber axis. Resampling is then performed to obtain data points 

in equal intervals through an elaborate interpolation scheme such as cubic spline interpolation, 

which was also utilised by other researchers (Choma et al., 2003; Dorrer et al., 2000; Kumar et 

al., 2010). Figure 5.6 shows the implementation of coordinate transformation using Matlab.  

After coordinate transformation, each interference signal in the spectral interferogram is 

reconstructed with even k spacing as expressed in equation (5.2), which is prepared for the 

Fourier transform process.                        

      , ; , ; , ;   [ ( , ; )]I x y k a x y k b x y k cos x y k    (5.2) 

where  , ;I x y k  is the interference signal with respect to wavenumber k without background, 

 , ;a x y k and  , ;  b x y k represents the DC background intensity and fringe visibility, respectively; 



87 

  

 

and the phase ( , ; )x y k  is defined by the following formula                    

      1
0 0, ; 4 , 4 ,x y k h x y k h x y            (5.3) 

where the  ,h x y  represents the surface elevation, 0  is the initial phase.  

 

 

Figure 5.6 Coordinate transformation: (a) original signal – wavelength related curve, (b) signal after 

coordinate transformation and resampling– wavenumber related curve with equal k spacing. 
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5.3.4 Phase calculation 

The resolution of measurement depends on the algorithm used for calculating the phase 

variation from the interference fringes. The more accurate determination of the phase variation 

the higher resolution is achieved. Many algorithms have been developed to extract the phase, 

including techniques based on FFT (Takeda et al., 1982), Carré phase shifting (Malacara & 

Servin, 2005), convolution (Sainz et al., 1990) and Hilbert transform (Debnath & Kothiyal, 

2006), etc.  

This section presents two developed algorithms for the proposed system to calculate the 

phase slope. The first algorithm is an FFT based algorithm, which is widely used because it is 

effective, accurate and insensitive to intensity noise (Jiang, et al., 2010; Muhamedsalih, et al., 

2012). The sinusoidal interference signal is processed through FFT and inverse FFT, in which 

way the desired phase information can be separated from the DC component and the unwanted 

conjugate term. The second one uses Carré phase shifting to calculate the phase slope in a single 

interferogram without any extra multi-frames (Muhamedsalih et al., 2012). It has the benefit of 

high precision and independence of the amount of phase shift. 

5.3.4.1 FFT based algorithm  

This method was first proposed by Takeda et al. (1982) to analyse the fringe pattern for 

computer-based topography and interferometry and was verified by experiments in terms of 

accuracy and sensitivity. As illustrated above, the height information of a point is registered in a 

sinusoidal signal and can be retrieved by determining the phase variation over the dispersed 

wavelength range. As an illustration, the corrected interference signal after the background 

removing and coordinate transformation (see Figure 5.6(b)) is analysed using FFT based 

algorithm. 

First the mathematical expression of spectral intensity  , ;I x y k  can be written in another 

form as    

            , ; , ;1 1
, ; , ; , ; , ;

2 2
i x y k i x y kI x y k a x y k b x y k e b x y k e      (5.4) 

let                                                          

    1
, ; , ;  exp[  ( , ; )]

2
c x y k b x y k i x y k   (5.5) 



89 

  

 

then                            

        *, ; , ; , ; , ;I x y k a x y k c x y k c x y k     (5.6) 

where * denotes a complex conjugate.  

The Fourier transform is applied to equation (5.6) to acquire the spectrum ( , ;I x y f ) in 

frequency domain, which is expressed in equation (5.7) and shown in Figure 5.7.       

        *
0 0, ; , ; , ; , ;I x y f A x y f C x y f f C x y f f       (5.7) 

where the capital letters denote the Fourier spectra, f and 0f  are the spatial frequency and spatial-

carrier frequency related to the initial phase, respectively.  

 

Figure 5.7 Fourier transform spectrum 

There are three terms in the Fourier domain, namely DC term related to the light intensity in 

each spectral signal and two other components related to the phase shift linearly related to the 

wavenumber across the chromaticity axis. To extract the phase information, the unwanted DC (

 , ;A x y f ) and one of the phase conjugate terms ( *
0, ;C x y f f ) are filtered out by selecting a 

suitable filtration window and replacing their values with zeros. Finally only  0, ;C x y f f  is 

kept for the further processes, as shown in Figure 5.8. 
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Figure 5.8 Fourier transform spectrum after filtrated out the DC and the phase conjugate term 

Then the inverse fast Fourier transform (IFFT) is performed on the desired term 

 0, ;C x y f f  to reconstruct the  , ;c x y k . Taking the natural logarithm of the IFFT result, the 

phase  , ;x y k of each sample point is extracted as the imaginary part of equation (5.8).           

      1 1
{ , ;  [  ( , ; )]}   , ;   , ;
2 2

ln b x y k exp i x y k ln b x y k i x y k        (5.8) 

However, the phase obtained from the exponential term of equation (5.8) is wrapped into the 

range [ , ]  , as shown in Figure 5.9. To correct this discontinuities phase distribution, the 

absolute phase difference between two adjacent points needs to be compared using an 

appropriate criterion to determine the phase offsets (Takeda, et al., 1982). More specifically, if 

the phase jump between two adjacent points ( 1, i i   ) is larger than 0.9  2 , then addition or 

subtraction of a 2  phase jump should be performed every time according to the direction of the 

phase difference. The phase offset 1_ ioffset    is expressed as  

 1
1

1

1

0           0
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i
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i ii
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offset if
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After detecting all the _ ioffset   (see Figure 5.10), the continuous phase 1_ iunwrapping    

is then obtained by equation (5.10) and shown in Figure 5.11 (blue line).                                       

 1 1 1_ _i i iunwrapping offset        (5.10)     

 

Figure 5.9 Wrapped phase distribution with discontinuities (FFT algorithm) 

 

 

Figure 5.10 The offset phase distribution for correcting the discontinuities 

 

1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64

x 10
-3

-4

-3

-2

-1

0

1

2

3

4

Wavenumber (nm-1)

W
ra

pp
ed

 p
ha

se
 (r

ad
.)

1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64

x 10
-3

0

5

10

15

20

25

30

35

Wavenumber (nm-1)

O
ffs

et
 p

ha
se

 (r
ad

.)



92 

  

 

 

Figure 5.11 Unwrapped phase distribution and its LS fitted curve (FFT algorithm) 

The unwrapped phase should be continuous without discontinuities and linearly related to 

the wavenumber. However, both ends of this obtained phase distribution suffer from the 

nonlinear deviations due to the effect from the selected window for filtration- spectral leakage 

(Harris, 1978). It will generate errors over the measurement surface profile and therefore limit 

the measurement resolution. Two steps can be adopted to overcome this issue and accurately 

retrieve the phase information. The first step is cropping the distorted data at both ends and 

keeping the middle part for phase calculation. It is a simple way to reduce the measurement 

error. The second step is fitting the selected part of the phase curve. In the developed algorithm, 

least squares (LS) approach is utilised to fit the unwrapped phase with eliminating the noise 

appearing in the distribution and accurately calculating the phase slope (see the red curve in 

Figure 5.11).  

5.3.4.2 Carré algorithm 

The phase shifting algorithms are widely used for phase retrieval with high measurement 

resolution and accuracy. Carré algorithm is one of the phase shifting techniques using unknown 

and constant phase step. The principle of Carré algorithm has been described in many scientific 

papers (Carré, 1966; Malacara & Servin, 2005; Qian, 2001). Moreover, much work were also 

carried out to optimise Carré algorithm in terms of the accuracy and optimal phase step (Kemao 

et al., 2000; Van Wingerden et al., 1991). With the Carré technique the phase   can be extracted 
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by modulating and registering the fringe intensity at four equally shifted positions 

( 3 ,  ,  ,  3 )     , which can be expressed as                        

 
[ ( ) ( )][( ) ( )]

( ) ( )
2 3 1 4 2 3 1 4

2 3 1 4

3 I I I I I I I I
tan

I I I I
            (5.11) 

where 1I , 2I , 3I  and 4I  are the intensity values at four equally shifted positions, 2 is the phase 

amount for each shifting step.  

There are four main steps to compute the phase using Carré algorithm. The signal in Figure 

5.6(b) is again used as an illustration. First FFT is applied to the selected signal and the peak 

position of  0, ;C x y f f  is localised in the Fourier domain, in which way the integer number of 

the interference cycles can be estimated. Secondly, assuming that the phase shifting step is 

determined as                                                           

  2 6
N

D    (5.12) 

where N represents the total data points contained in the selected signal and D is the integer 

number of the interference cycles. Thirdly, unlike the FFT algorithm using IFFT to reconstruct 

the term related to the phase shifting, Carré equation (5.11) is adopted to calculate the phase 

value. Figure 5.12 shows the four data points designated to solve an ‘initial’ phase value. This 

process is repeated by shifting the calculation to the next adjacent pixel each time and finally a 

wrapped phase similar to Figure 5.9 is obtained, as shown in Figure 5.13.  

 

Figure 5.12 Spectral signal with shifted phases 

1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64

x 10
-3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Wavenumber (nm-1)

In
te

ns
ity

 (W
/m

2 )   
  
     Initial phase  Final phase



94 

  

 

 

Figure 5.13 Wrapped phase distribution with discontinuities (Carré algorithm) 

 

 

Figure 5.14 Unwrapped phase distribution and its LS fitted curve (Carré algorithm) 

The fourth step is performing phase unwrapping to achieve continuous phase distribution by 

detecting the phase offsets as illustrated above. The unwrapped phase distribution is depicted in 

Figure 5.14. Compared to the FFT based algorithm, there is no distortion at both ends of the 

phase distribution. Likewise, by combining the LS fitting approach, the developed algorithm can 
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5.3.5 Height map of a one-dimensional profile 

After the phase calculation, phase slope S of the unwrapped phase curve can be easily 

determined using the equation below                                   

   / ( )e s e sS k kk
        (5.13) 

where   represents the phase difference corresponding to wavenumber shift k , e  and s  are 

the phases corresponding to the wavenumber of ek  and sk , respectively. The phase slope is 

related to the absolute OPD between the tested surface and reference plane. By using the phase 

slope obtained from equation (5.13), the height value (h ) can be calculated as                       

       11
 4 44 e s e s

Sh k k k                 (5.14) 

For the developed metrology devices in this research work, vertical axis of the spectral 

interferogram represents one-dimension of lateral resolution and each row signal registers the 

height information of one point. After processing all row signals in one single frame, the height 

map of a surface profile can be acquired.  

The Matlab scripts for surface profile measurement (both FFT and Carré algorithm) are 

given in Appendix B. 

5.4 Resolution of the algorithm 

For a metrology system, the measurement precision can be affected by such factors as 

aberrations of the optical system, quantisation of the detector signal, nonlinear phase shifter, 

environmental disturbances and algorithms’ computing resolution (Creath, 1988). The overall 

performance of measurement resolution is determined by the combined effect from all error 

sources. Resolution of the algorithm is investigated in this section. Both algorithms illustrated 

above can achieve highly accurate measurement, e.g., the measurement precision using Carré 

algorithm is less than /100 for a well-calibrated interferometry instrument (Creath, 1988).  

Detailed analysis about resolutions of the algorithms will not be discussed in this thesis in 

every aspect. The following mathematical description based on the equation for height value 

calculation is used to evaluate the measurement precision. As expressed in equation (5.14), the 

measurement resolution of the algorithm is determined by the phase variation and the 

corresponding wavenumber shift. The absolute error transfer function can be express as  



96 

  

 

    / * / *h h h k k             (5.15)         

with                                      

  2 n

n

F
P

     (5.16) 

and                                              

  e s

n

k k
k P    (5.17)              

where the h  represents the height resolution and   denotes the partial differential operation; 

  and k  are the phase resolution and spectral resolution, respectively; nF  is the integer 

number of fringe cycles for the interference signal,   is the remaining fraction of fringe cycles 

and nP  refers to the pixel number covered by the whole signal. Finally, equation (5.15) can be 

written as                                  

 
     22 2

n n

n e s n e s

F F
h

P k k P k k

        (5.18)  

Compared to the number of fringe cycles, 2
nP  is normally a much bigger number and thus 

the second term of equation (5.18) can be ignored.  The height resolution is therefore given by                                                 

 
   

2
n

n e s

F
h

P k k

     (5.19) 

Suppose the fringes number of interference signal is 3.5 and the wavenumber spreads along 

the CCD pixels ( 640nP  ) with a range of 0.3 1μm , then the height resolution can be calculated 

as 9 nm. The obtained resolution varies with the fringes number (nF  ), which means that each 

row signal of the interferogram (or each point in surface profile) has a different resolution.  

By accurately determining the phase slope, both the developed algorithms are effective for 

metrologcial applications with high accuracy. The FFT algorithm has better performance than 

the Carré algorithm in terms of insensitivity to intensity noise and processing speed, while Carré 

technique takes advantage of eliminating the spectral leakage problem. It was found that the 

measurement difference between the two algorithms is only 18 nm on average by measuring a 

standard step sample with height of 4.707 µm, which is shown in detail in section 6.7. 
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5.5 Investigation of data parallelism using GPU 

In-line surface metrology requires a matching measurement speed with the moving samples. 

The measurement time for a single frame contains times for image capturing and data 

processing. The processing time is particularly crucial for the overall performance of LSDI in 

terms of measurement speed. Based on the Matlab implementation of two algorithms, the 

sequential execution is performed using a quad-core AMD Phenom™ II  processor with a clock 

rate of 2.5 GHz. Table 5.1 shows the processing times for two types of frames with different 

resolutions (pixels) using different algorithms (FFT & Carré, Matlab codes). It shows that the 

minimum time to interpret a spectral interferogram in sequential mode is 475 milliseconds (ms) 

in the case of 480 x 640 resolution. Considering that the camera used in this project has a 

capturing speed of 4.8 ms per frame, the processing time requires a further enhancement. Data 

parallelism using GPUs is investigated for this purpose.  

 

Table 5.1 Processing time for different frame size using different types of algorithms 

Frame size 

Processing time for a single frame - Matlab codes  
(Unit: ms) 

FFT algorithm Carré algorithm 

Pixels: 480 x 640 475.5 1384.1 

Pixels: 960 x 1280 1610.2 6592.1 

 

5.5.1 GPU and CUDA overview 

With the challenging requirements for high-quality real time graphics, the programmable 

GPU has been developed into a powerful processor with tremendous computational power as 

well as high memory bandwidth (NVIDIA, 2015). The floating-point operation per second for 

CPU and GPU is depicted in Figure 5.15. It shows that Geforce 780 Ti has a theoretical 

computing power up to 5350 GFLOP/s, which is almost 7 times faster than the Intel CPU (Ivy 

Bridge). The GPUs has a dominant advantage over CPUs in the powerful computing capability 

because many-core trajectories in the GPUs are used to process the data in a parallel manner. 

The performance of data parallelism will be enhanced by increasing the number of processor 

cores. In conclusion, GPUs provide an attractive solution for data parallelism.  
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Figure 5.15 Floating point operation per second for the CPU and GPU [adapted from NVIDA, 2015] 

A parallel programming model called CUDA was created by NVIDIA in 2006 to provide a 

platform for scaling the data parallelism to many-core GPUs in various computation applications 

(NVIDIA, 2015). A CUDA program contains both host code and device code that are 

sequentially executed on the CPU and the GPU. The device code is composed with standard 

ANSI C extended with the keywords to designate data-parallel functions (kernels) and their 

associated structures (Kirk & Wen-mei, 2012; Ryoo et al., 2008). The general execution of a 

CUDA program is illustrated in Figure 5.16. It starts from the host execution and the kernel 

function will be launched with the execution of numerous threads on a device. More specifically, 

the construction inside a kernel is depicted as the thread hierarchy in Figure 5.17. The threads are 

grouped into blocks, which are logically aggregated into a grid (De Donno et al., 2010). Figure 

5.17 illustrates the memory allocation as well. For every thread, it has a private local memory as 

well as a shared memory accessed by all threads within a block. Additionally, all threads 

launched by a kernel have access to the global memory and two read-only memories: the 

constant and texture memory spaces (NVIDIA, 2015). The global memory is off-chip and 

requires a certain latency time, therefore an optimal design of kernels should minimise the 

number of global memory reads (De Donno, et al., 2010). 
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Figure 5.16 General execution of a CUDA program [adapted from Kirk & Wen-mei, 2012]              
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Figure 5.17 Thread hierarchy and Memory hierarchy [adapted from Muhamedsalih, 2013] 
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5.5.2 Data parallelism implementation for LSDI 

To achieve real-time measurement on a production line, not only the capturing speed but 

also the computing speed is critical for this application. The frame rate of camera is limited by 

the current technologies in the field such as semiconductor, while the computing speed is 

influenced by the complexity of the algorithm. In order to obtain the surface profile from the 

obtained fringe pattern, the fringe analysis presented in section 5.3 should be applied to each row 

signal. Assuming the record spectral interferogram has a resolution of 480 x 640 (Height x 

Width) and the direction of tested profile is along the frame height, then the data processing 

needs to be executed 480 times in a sequential manner. The processing time could not be 

improved significantly even by compiling the algorithms with the C++ programing language 

(more than 300 ms). 

Therefore, analysis of all pixels in one frame using GPU with CUDA C programming model 

was investigated. By generating thousands to millions of threads, data parallelism has great 

potential to accelerate the process time for the developed LSDI.  

Start

End

Preparatory tasks:

1. Data arrangement

2. Allocate memory space 

3. Load data into device

4. Thread organisation

Host

Remove Background Height calculation

Phase extractionFFT

Phase unwrapping

Filtration Inverse FFT

Coordinate transformation

Device

<<<>>> ()

 

Figure 5.18 The CUDA program structure of FFT algorithm 
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The FFT algorithm was selected for parallel programming and the CUDA structure is 

illustrated in Figure 5.18. By equipping an GPU (GeForce GTX 285) available in our laboratory 

to the same computer using for execution of Matlab program, the developed CUDA program was 

tested to investigate the acceleration of the computing process. The processing time took the 

average value of 100 execution cycles for the same program, which then gives the results of 125 

ms for a single frame with resolution of 480 x 640 and 453 ms for 960 x 1280, as shown in Table 

5.2. It shows that an acceleration factor approximately 4 is achieved when processing a single 

frame using GPU. Enhanced algorithms, optimal organisation of threads and updated hardware 

(GPUs and CPUs) will further enhance the acceleration factor. Though data parallelism using 

GPUs can improve the processing time for each interferogram, its advantage compared to the 

sequential analysis will be reflected better when an image with higher resolution (large data 

points) is processed or many frames are analysed at the same time. 

 

Table 5.2 Parallel programming performance (based on FFT algorithm) 

Frame size Pixels: 480 x 640 Pixels: 960 x 1280 

Matlab processing time (ms) 475.5 1610.2 

CUDA C processing time (ms) 125 453 

Acceleration factor 3.8 3.6 

 

5.6 Summary 

This chapter introduces the fringe pattern obtained by the LSDI probe, which registers the 

height information into a 2D spectral interferogram. The algorithm used to interpret the captured 

interferogram is divided into five steps, namely background removing, wavelength calibration, 

coordinate transformation, phase extraction and height calculation. The first two steps are only 

performed when the metrology sensor is used for the first time, unless a new light source with a 

different spectral distribution is used for system illumination. 

Both of the two algorithms using FFT method and Carré method, distinguishing from each 

other in phase extraction, can provide accurate measurement result. FFT algorithm is shown to 

be insensitive to intensity noise and can perform precise measurement even when the visibility of 

fringes is low. Carré algorithm can overcome the spectral leakage problem existing in the FFT 

method. The computing speed is influenced by the complexity of the algorithms. Carré algorithm 
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is relatively slower than FFT algorithm because many loops in terms of phase shifting needs to 

be performed to extract the phase variation from each row signal. The measurement times for a 

single frame using Matlab codes are 475.5 ms and 1384.1 ms corresponding to the FFT method 

and the Carré method in the case of 480 x 640 resolution.  

The computing speed can be further improved by replacing the sequential analysis mode 

with data parallelism mode. Utilisation of GPU can be an effective way to accelerate the 

execution time of arithmetic calculation with floating point operation. The test results show that 

the execution time for a single interferogram can be accelerated with a factor of approximately 4. 

The enhanced data processing consequently shows the great potential for the LSDI to be 

qualified for in-line surface inspection.  

Considering the overall performance of the algorithms and the high measurement speed 

required by in-line metrology, the measurement results in the next two chapters will be given 

using FFT algorithm.  
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6 Optical apparatus 1: Cylindrical lens based LSDI 

6.1 Introduction 

Based on the fundamental principle of LSDI illustrated in chapter 4, two optical systems 

utilising different objectives have been developed. This chapter reports a cylindrical lens based 

LSDI (hereinafter referred to as cylindrical-LSDI), which observes the tested surface through a 

line focus. The optical schematic diagram is shown in Figure 6.1. The measurable length of the 

surface profile (or lateral measurement range), determined by several factors such as the NA of 

the illumination system and the size of sensor for receiving the image, is up to 5.885 mm. The 

basic methodology is briefly reviewed and the measurement operations are introduced. Then the 

initial prototype is described along with several key issues. Finally the performance of the 

metrology device is evaluated using a flat artefact and step samples. This cylindrical-LSDI 

device aims at long surface profile measurement in production lines and may potentially be used 

for characterisation of additively manufactured surface textures, surface form and blemishes 

present on the functional surface. 

 

Figure 6.1 Schematic diagram of cylindrical lens based LSDI 
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6.2 Methodology of long profile measurement 

The white light beam generated by the light source device is coupled into a multi-mode 

optical fibre and then collimated by a collimator. An achromatic cylindrical lens is employed to 

construct the Michelson interferometric probe. Therefore, a line-shape probing beam is generated 

on the tested object enabling a long surface profile to be sampled in each measurement. A local 

coordinate system is defined with x axis parallel to the line illumination along the measured 

profile (vertical), y axis perpendicular to the line focus (horizontal), and z axis representing the 

propagation direction of light (optical axis). The beams on both reference plane and tested 

surface are thus focused on the y-z plane without any effect on the x-z plane. Figure 6.2 shows 

the perspectives of the proposed system on y-z plane and x-z plane. 

Interference occurs when two light beams reflected from the reference arm and the 

measurement arm are brought together and the interference beam is focused by a spherical tube 

lens. Instead of being directly received by a camera, the interference signal is introduced to the 

spectrometer and dispersed by a holographic grating. The direction of the slit is set to be parallel 

to the columns of CCD pixels (x axis), so that the dispersion axis is along the rows (y axis). The 

spectral interferogram recorded by the detector therefore registers the height information in two-

dimension, namely lateral information in x direction and chromaticity information in y direction. 

The 2D surface profile, mathematically represented as height information with lateral 

displacement along x direction, can be acquired by processing a single frame without any 

mechanical scanning.  

C1 BS CL
Tested 

surface CL BS TL C2 G IL CCD

(a)

(b)

BSBS

On-axis rays

 

Figure 6.2 Perspectives of the optical setup: (a) y-z plane (horizontal), (b) x-z plane (vertical). C1, collimator 

1; BS, beamsplitter; CL, cylindrical lens; TL, tube lens; C2, collimator 2; G, grating; IL, imaging lens. 
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When a scanning is applied in y direction, translating the tested sample with a linear 

motorized stage, in-line surface inspection can be simulated and the metrology can be extended 

to the areal surface topography. The sampling interval along the direction perpendicular to the 

measured surface profile is determined by the capturing time of a single frame and the scanning 

speed. Additionally, it should be noted that in this experimental study the acquired surface 

topography is constructed by numbers of independent surface profiles. Due to the non-linearity 

errors of the stage, it is generally not accurate to parameterise the constructed surface area and 

make a comparison with the results by an areal measurement technique. 

6.3 Measurement procedure 

The measurement procedure of LSDI is simple. If  the optical metrology system is first used, 

preparations are required in terms of background issue, wavelength calibration and calibration of 

lateral measurement ranges for different objectives. For a well aligned LSDI system, wavelength 

calibration as presented in chapter 4 only needs to be carried out once. Likewise, only one frame 

without interference effect is required to remove the background for an encapsulated setup. The 

data matrix extracted from the background frame is saved and directly called by the algorithms 

for each measurement. Lateral measurable ranges of the equipped objectives can be calibrated 

using the standard artefact, which will be presented in detail in the section 6.6. 

When performing measurements, the tested sample is placed underneath the objective. By 

manually translating the linear stage, the sample can closely be brought to the focal plane. 

Adjusting the tip/tilt of the sample mount, zero fringes can be viewed on the camera when the 

tested surface plane coincides with the virtual reference plane. However, it was demonstrated by 

reduplicative experiments that better results were achieved when up to three fringes exist across 

the full measurement field. Therefore, a certain OPD is introduced between the two arms of the 

interferometer to generate several fringes in the spectral interferogram. At this position the 

frames are captured and then analysed by an appropriate algorithm. Actually, the shape of the 

fringe pattern generally provides information about the structures on the tested surface, e.g., the 

fringe numbers are apparently different for the two surfaces of a step height (see Figure 5.1). 

When the lateral scanning in y direction is available and the working mode of the camera is set to 

continuous capturing, fast inspection of the sample surface in motion can be achieved.  
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6.4 Validation of the experimental setup 

6.4.1 Experimental conditions 

An experimental setup was first built to verify the measurement methodology before the 

prototype design. The commercially available optical components, as shown in Table 6.1, were 

used to establish the optical setup. The CCD camera used has a maximum resolution of 480 x 

640 pixels and can record the interferogram with a frame rate of 208 fps in normal working 

conditions. It means that only 4.8 milliseconds are required to capture one frame corresponding 

to the height information of a surface profile. Two types of sample surfaces, namely step height 

surface and flat surface, had been measured using this optical setup. Apart from the surface 

profile measurement, in-line surface inspection was simulated as well by translating the tested 

samples. Suppose the measured sample on a production line moves at a constant speed v in the 

direction perpendicular to the measured profiles and the frame rate of the CCD camera is f  fps, 

then the real-time surface inspection has a sampling interval y  as follows                                         

 /y f    (6.1) 

For the established instantaneous measurement system, a surface profile with length up to 

5.45 mm was finally imaged on the camera with 220 rows, which means the lateral sampling 

resolution is 24.8 μm in the profile direction. The scanning speed of the tested sample was set as 

1.5 mm/s to achieve characterisation of surface features with a size of around 7.2 μm in y 

direction. The wavenumber k spreads along the chromaticity axis in a range of 1.571μm  to 1.82

1μm . The FFT algorithm was used to process the spectral interferogram in this validation 

procedure. A total of 694 frames (corresponding to 694 profiles) have been captured to construct 

the surface topography of the tested surface, which represents a scanning length of 4.99 mm. The 

constructed surface maps by LSDI are provided in the following experiments as the  simulation 

results of the in-line surface inspection. 

Moreover, the corresponding results of the same measurement area using the commercial 

instrument Talysurf CCI 3000 (a Coherence Correlation interferometer from Taylor Hobson) 

were also provided for reference. The 5X and 20X interferometric objective of CCI offer 

measurement areas of 3.6mm x 3.6 mm and 0.9 mm x 0.9 mm, respectively. 
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Table 6.1 Details of the off-the-shelf components used in experimental setup 

Components Model Suppliers  Main parameters 

Collimator 1 ACY254-030-A-ML 
Thorlas, Inc. 

f = 30 mm, Ø1" Achromatic doublet 

Cylindrical lens ACY254-075-A-ML f = 75 mm, Ø1" Achromatic doublet 

Tube lens RMS4X 
  

Olympus 
f=45 mm, NA=0.1, Achromat Objectives 

Collimator 2 AC254-050-A-ML 

Thorlas, Inc. 

f=50 mm, Ø1" Achromatic Doublet 

Diffraction grating GH25-12V 
Visible Reflective Holographic Grating, 
1200/mm, 25 mm x 25 mm x 6 mm 

Imaging lens AC254-045-A-ML f=45 mm, Ø1" Achromatic Doublet 

Optical fibre M28L02  Core diameter Ø400 µm, 0.39 NA 

Camera ICL-B0620 Imperx 
Resolution 480 x 640, 7.4 µm pixel size, 
208 fps.  

   

6.4.2 Measurement of step heights samples 

Two reference step height samples were measured to assess the performance of the 

established system, and both profile and constructed surface map results were provided for 

surface evaluation. The first standard sample from Wyko has a single step calibrated with a 

height of 9.759 µm. Figure 6.3 shows the recorded fringe pattern of the tested surface. Figure 6.4 

and Figure 6.5 depict the measurement results acquired by the LSDI setup and Talysurf CCI, 

respectively.  

 

Figure 6.3 Spectral interferogram of the 9.759 µm step sample (a)
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Figure 6.4 Cross-sectional profile results of 9.759 µm step sample: (a) the LSDI result, (b) the CCI result. 

 

Figure 6.5 Measured surface maps of the 9.759 µm step sample: (a) the LSDI result, (b) the CCI result. 
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 As discussed in previous sections, LSDI produces surface profile results in each 

measurement, as shown in Figure 6.4 (a). By mechanically translating the sample, a surface map 

in Figure 6.5(a) was constructed. The surface irregularities along the y axis result from the 

scanning errors and have no effect on the evaluation of the surface profile. For the CCI 

instrument, it offers areal measurement for each measurement (see Figure 6.5(b)). Figure 6.4(b) 

shows one of the cross-sectional profiles of the  surface map.  

The second reference sample (see Figure 6.6) was manufactured by Rubert & Co. Ltd., 

which has four grooves with different heights and widths. The fringe pattern of the 30 µm step 

height is shown in Figure 6.7. The distorted fringes also provide information about the surface 

finish of the sample, which is obviously not good as the first standard sample. The iris 

diaphragm in the built setup was adjusted to crop the low-visibility fringes at both edges of the 

spectral interferogram to avoid measurement errors. Therefore, the sampling length on the tested 

surface was reduced to 4.44 mm (corresponding to 180 pixels). The measurement results of the 

30 µm step height using both the LSDI and CCI are depicted in Figure 6.8 and Figure 6.9. 

 

Figure 6.6 Step heights sample from Rubert & Co. Ltd. 

 

Figure 6.7 Spectral interferogram of the 30 µm step sample 

Step height-H (um) 1000 500 200 30

Width-w (mm) 3 2 2 0.5

(a)
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Figure 6.8 Cross-sectional profile results of 30 µm step sample: (a) the LSDI result, (b) the CCI result. 

 

Figure 6.9 Measured surface map of the 30 µm step sample: (a) the LSDI result, (b) the CCI result. 
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For these two measured step samples, the mean values of the cross-sectional profiles in the 

interest of region were calculated and listed in Table 6.2. 

Table 6.2 Measurement results of two step heights samples 

 
Measurement samples 

Mean value of one of the 
cross-sectional profiles (µm) 

Mean value of the surface 
area-3.6mm x 3.6mm (µm)                

LSDI CCI LSDI CCI 

9.759 µm step sample  9.741 9.795 9.785 9.792 

30 µm step sample 29.791 29.810 29.797 29.738 

 

The relative errors of the measurements can be calculated by                                       

  100%m t
r

t

h h
e

h

    (6.2) 

where th  represents the reference value, mh  denotes the measured value and re  is the relative 

error. To approximately evaluate the measurement accuracy, the re values for the above-

mentioned measurements were calculated assuming that the height values provided by the 

Talysurf CCI were the reference values, as shown in the Table 6.3. Different materials and 

manufacturing processes generate different surface properties and may affect the measurement 

results, which is one of the reasons why the Rubert electroformed reference sample has a 

relatively higher relative error than that of the Wyko sample.  

Table 6.3 Relative errors of measurement 

 Wyko sample (9.759 µm) Rubert sample (30 µm) 

th  (µm) 9.792 29.738 

mh  (µm) 9.785 29.797 

Relative errors re  0.07% 0.2% 

 

On the whole, the measurement results obtained from the experimental setup closely align 

with the calibrated specifications given by the manufacturer as well as the measurement results 

by the commercial instrument CCI 3000, which verifies that cylindrical-LSDI has sufficient 
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resolution to inspect the surface over a large range. The following section will further 

demonstrate the experimental system in terms of detecting the defects on a flat mirror surface. 

6.4.3 Inspection of the flat surface 

In this section, inspection of a protected gold mirror surface (PF10-03-M01, Thorlabs) using 

the bench LSDI is presented. The measured mirror has a flatness less than  /10 (@ 633 nm), 

which was approximately validated through the peak-valley (PV) value of the surface profile 

measured by LSDI. As shown in Figure 6.10, the PV value is 35 nm and falls within the scope of 

the given flatness.   

  

Figure 6.10 Surface profile measurement of the mirror surface 

When an artificial scratch present on the mirror is within the FOV of the optical probe of 

LSDI, it can be detected with the deformed fringe pattern across the spectral interferogram, as 

shown in Figure 6.11. 

 

Figure 6.11 A detective mirror and the corresponding fringe pattern 
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Figure 6.12 shows the surface inspection results in terms of the scratch. The dramatic drop 

in the surface profile indicates the location of the defect on the tested surface. The acquired 

measurement results of the defective mirror further demonstrated that the LSDI has potential to 

be applied to surface inspection on production lines where only defects on the workpieces are 

concerned in terms of process control. 

    

  

Figure 6.12 Surface inspection results of the defective mirror with a scratch: (a) cross-sectional profile, (b) 

measured surface map. 
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6.5 Prototype implementation 

6.5.1 Key points of design 

The methodology of LSDI has been verified by establishing an experimental setup on the 

optical table and measuring three typical samples, which offers a good basis for the prototype 

design. Though a good performance of the bench setup has been achieved, several key points of 

design still need to be clarified before implementation of the proof-of-concept prototype. First of 

all, it is important to mention that for the bench setup the illuminated line beam on the measured 

surface was finally imaged on the camera within 220 pixels (total number: 480), which means a 

low pixel utilisation as well as a low lateral sampling resolution along the surface profile (24.8 

µm). It may be an issue when the smaller defects or structure features need to be characterised. 

In order to improve the lateral resolution, the optical system of the interferometer has been 

optimised such as adjusting the focal lengths of some optics components to acquire a sufficient 

magnification on the camera. More specifically, a tube lens with a longer focal length (75 mm) 

has been used and the focal lengths of both doublets in the spectrometer part are set as 60 mm. 

After the adjustment, the interference beam can cover the full frame of the camera. The 

calibration of the FOV of the metrology system will be presented in section 6.6.1. 

Secondly, attention should be paid to the location of the slit because the structures on the 

sample may not be well resolved unless the slit is properly placed. The slit is used in the 

spectrometer to block the light that is redundant for measurement and its ideal position should be 

the focal plane of the tube lens. However, due to the different magnifications between x axis and 

y axis of the cylindrical lens, optical aberrations and alignment errors, the interference beam is 

focused by the tube lens with slightly different magnifications in the tangential plane and sagittal 

plane of the optical system. The optical software ZEMAX was used to study this issue, as 

illustrated in Figure 6.13. In simulation, several detectors were set after the tube lens at different 

positions. The shape of rays density in the spot diagram roughly shows that the best focal plane 

in x axis and y axis are not at the same position. For a further demonstration, the simulated Root-

Mean-Square (RMS) spot size along x and y directions at different defocus positions were record 

(see Appendix A.2) and depicted in Figure 6.14. The simulation results show that the spot sizes 

in x axis are always bigger than the corresponding sizes in y axis and there is a certain deviation 

between the focal planes in these two orthogonal directions. Since the LSDI measures the surface 
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profile along x axis, the slit should be set at the tangential focal plane of the optical system to 

resolve the features on the sample surface. 

 

Figure 6.13 Study of spot shape using ZEMAX simulation 

 

Figure 6.14 Different spot sizes in x and y axis 

Thirdly, alignment errors may produce great influence on the overall performance of the 

system. Excepting that the interferometric objective should be properly aligned as illustrated in 

chapter 4, alignments of the optical components in spectrometer are also crucial. As the 

simulation shown in Figure 6.15, the location error of collimator 2 makes the beam unparallel 

and impinged upon the grating with an angle with respect to the normal axis of the grooves, 
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which consequently results in the distortions of spectral lines on the camera. The experimental 

result of three distorted spectral lines captured by the camera (see Figure 6.16) is in accordance 

with the simulation result in Figure 6.15. Actually, replacing this spherical collimator with a 

cylindrical lens to collimate the light only in the sagittal plane can also effectively improve the 

lateral resolution along the profile direction. However, it suffers from the same problem as the 

misalignment of the collimator (distorted imaging on the camera), which on the whole makes it 

not a good solution at all.  

Additionally, misalignments such as inaccurate tip/tilt of the camera and the relative 

distance between camera and imaging lens will lead to either low fringe visibility (Figure 

6.17(a)) or overlapping of the spectral lines (Figure 6.17(b)). Maximum fringe visibility in the 

full FOV of the optical probe and sharp image of spectral lines are two criteria for a good 

alignment of the camera. As shown in Figure 6.17(c), the two spectral lines in Figure 6.17(b) are 

well separated by properly adjusting the position of the camera. 

 

 

Figure 6.15 Effect resulting from the misalignment of the collimator 
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Figure 6.16 Distorted spectral lines observed in experiment due to the misalignment of collimator 2 

 

 

Figure 6.17 Effect resulting from the misalignment of the camera: (a) low fringe visibility, (b) overlapping of 

the spectral lines, (c) well-separated spectral lines. 

6.5.2 Initial prototype 

The initial prototype of LSDI was designed and shown in Figure 6.18. A multi-mode fibre 

with NA of 0.39 is used to transfer the light from the illumination device to the interferometric 

system. A triplet fibre collimator (NA=0.25), producing beam quality superior to aspheric lens 

collimators, is selected for beam collimation. The diaphragm iris placed before the cylindrical 

(a)
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lens allows the light beam to pass through with a diameter of 8 mm. As discussed in chapter 4, 

the optimal angle between the diffraction grating and optical axis is set around 41  to acquire 

the nearly linear distribution of spectrum on the camera. All the optical components were 

properly arranged to achieve a compact configuration and finally the prototype has a size of 468 

mm x 140 mm x 91 mm (length x width x height). Table 6.4 details the main commercial 

components used by the prototype. 

 

Figure 6.18 Initial prototype of cylindrical-LSDI 

There are two main parts which comprise the prototype, namely the interferometric part and 

the spectrometer part. The interferometric part works as the optical probe head to observe the 

tested surface and the spectrometer part spatially disperses the interference signals into a series 

of constituent monochromatic interferograms. Four mounting holes were made on the prototype 

base, making it is convenient to be embedded into an industrial machine. After wavelength 
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calibration wavenumber k spreads along the chromaticity axis in a range of 1.59
1μm
 to 1.78

1μm
, which corresponds to a wavelength span of 562.01 nm to 628.24 nm. The calibration data 

are given in Appendix A.3. Figure 6.19 depicts the calibration of chromaticity axis of camera 

using the method illustrated in section 4.4.  

Table 6.4 Off -the-shelf components used for prototype design (cylindrical – LSDI) 

Components Model Suppliers  Main parameters 

Optical fibre M75L02 

Thorlabs, 
Inc. 

Core diameter Ø200 µm, 0.39 NA 

Collimator 1 TC25FC-633 
FC/PC Triplet collimator, f=24.98,  mm, 
NA=0.25, clear aperture Ø12.5mm 

Cylindrical lens ACY254-075-A f = 75 mm, Ø1" Achromatic doublet 

Tube lens AC254-075-A-ML f=100 mm, Ø1" Achromatic Doublet 

Collimator 2 AC254-060-A-ML f=60 mm, Ø1" Achromatic Doublet 

Diffraction grating GH25-12V 
Visible Reflective Holographic Grating, 
1200/mm, 25 mm x 25 mm x 6 mm 

Imaging lens AC254-060-A-ML f=60 mm, Ø1" Achromatic Doublet 

Camera ICL-B0620 Imperx 
Resolution 480 x 640, 7.4 um pixel size, 
208 fps 

 

 

Figure 6.19 Calibration of chromaticity axis of camera for cylindrical-LSDI prototype 
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6.6 System performance  

The performance of a metrology device is determined by many factors such as optical 

arrangement, detector, algorithm and environment condition. All developed metrological 

instruments need to be carefully calibrated before they are used for surface characterisation, 

especially for the workpiece that functionally relies on micro/nano scale and ultra-precision 

structured surfaces. Meanwhile, these calibrated optical specifications provide the reference for 

selecting the suitable instruments or configurations for various metrological applications.  

6.6.1 Lateral range and resolution 

The lateral resolution, also known as optical resolution, quantifies the ability of a 3D 

metrology instrument to resolve two close radiating points on the surface (Yoshizawa, 2009). In 

the case of the optical probing head using a cylindrical lens, there is no focusing effect in x axis 

(surface profile direction) due to its imaging property. Therefore, the resolution along x axis is 

determined by the geometric imaging characteristic of the system, which is equal to the lateral 

sampling resolution along the surface profile.  

The lateral range of the system varies with the objectives used. Unlike the areal 

measurement instrument, the lateral range (or FOV) of the LSDI is normally given in the 

direction of the tested surface profile. It is defined as the length of surface profile observed by 

the objective. As mentioned in previous sections, the effective sampling length on the specimen 

is dependent on several factors such as the NA of the illumination system, the diameter of the iris 

diaphragm, the size of sensor for receiving the image and the overall magnification produced by 

all optics in the optical system. Actually, the developed optical apparatus generates an image on 

a sensor plane with a size bigger than the sensor size in the vertical direction (3.552 mm), which 

provides the room for the camera to be adjusted to receive the image section with best fringe 

quality. The exact lateral range of cylindrical-LSDI can be calibrated by first determining the 

lateral sampling resolution, also known as CCD pixelation presentation.                        

One of the methods to determine the CCD pixelation presentation on the sample along the 

measured profile direction is employing a target with standard scales, such as the USAF target 

shown in Figure 6.20. This target is comprised of white and black bars which are categorised 

into different groups on the resolution target according to the precisely defined widths and 

spacings. The black bars are the reflective surface while the white ones are transparent. By 

recording the reflected beam from the lithographically imprinted structures on the target and 
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analysing the obtained intensity modulation, the CCD pixelation presentation can then be 

determined.  

 

Figure 6.20 USAF target: (a) the image of the USAF test target, (b) size chart of group 0. 

The intensity change was measured along the vertical lines of the group 0. Figure 6.21(a) 

shows the image of one measured profile. It was found that the line beam generated by the 

cylindrical lens covered the measurement range on the target from element 2 to element 3. By 

analysing the intensity modulation in Figure 21(b), it can be obtained that 5 bars in element 2 are 

covered by 182 pixels, therefore the CCD pixelation presentation (dP ) or lateral resolution can 

be calculated by                                    

  446.4 μm / 182 / 5 12.26 μmdP     (6.3) 

This means each pixel along x axis represents 12.26 μm on the tested surface. Then the 

lateral range ( LYR ) in x axis can be obtained by 

 480 12.26 μm 5.885 mmLY p dR N P       (6.4) 

where pN  represents the number of CCD pixels along x axis. 

 

USAF 1951 
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Figure 6.21 Determination of the CCD pixelation: (a) image of the USAF target captured by camera, (b) 

corresponding intensity modulation. 

6.6.2 Axial measurement range 

According to the measurement technique used, the axial measurement range is generally 

determined by factors such as depth of field, coherence length, scanning range and the working 

distance of the objective. In the case of the dispersive interferometer, the axial measurement 

range is however determined by the finite spectrometer resolution. The maximum measurement 

range can be estimated when the fringe period becomes less than 2 pixels wide. The theoretical 

maximum axial measurable range (MZ ) can be given by (Kumar, et al., 2010)                                                   
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where 0   is the centre wavelength and  is the spectrometer resolution. For the developed 

prototype, the received spectrum has a 66.2 nm bandwidth (centred at 0  = 596 nm) spreading 

along the 640 horizontal pixels, which then provides a per pixel bandwidth of  = 0.1 nm. The 

maximum measurement range MZ  is therefore calculated as 885 μm  using equation (6.5). The 

calculation shows that the LSDI technique greatly extends the axial measurement range 

compared to other white light interferometers and is capable of performing profile measurement 

even when the height variation of the features on tested surface well exceeds DOF.  

 

 

Figure 6.22 Measurement result of a reference sample with 200 µm step height: (a) spectral interferogram, 

(b) surface profile result. 
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Practically, the theoretical calculation MZ  may not be achieved due to the influence of 

many factors such as bandwidth of the spectral lines, residual aberrations from the optical 

components, system noise and alignment errors. Even so, we still succeeded to measure a sample 

with a step height of 200 µm (from Rubert & Co. Ltd.). The measured average height is 196.57 

µm, as shown in Figure 6.22. From the captured spectral interferogram, it can be observed that 

the step surfaces are well resolved. The areas marked within red rectangles in the interferogram 

generate measurement errors due to the irregularity of interference fringes from the surface edge. 

However, these errors have no influence on the evaluation of LSDI’s axial measurement ability. 

Calibration of the axial measurement range will be further investigated by using a set of 

artefacts. 

6.6.3 Angular measurement range 

There is a limitation that exists in almost all interferometers, which is measuring surfaces 

with gradient (Kaplonek & Lukianowicz, 2012). The sloped surface cannot be measured if the 

light reflected from the slope is not gathered by the objective (Malacara, 2007). The maximum 

measurable slope ( , also known as maximum acceptable surface gradient) depends on the NA 

of the objective. If the angle of the measured surface exceeds half of the angular aperture of the 

objective ( ), no light beam can be detected (see Figure 6.23).  

Measured surface

Objective

 

Figure 6.23 Schema of the maximum measurable slope 
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The following formula is therefore used to theoretically evaluate the maximum measurable 

slope.                                              

  /arcsin NA n     (6.6) 

The term n represents the refractive index, which approximately equals 1.0 because our 

prototype performs measurement in the air. Suppose the entrance pupil of the beam is 6 mm and 

the cylindrical lens used has a focal length of 75 mm, then the measurable slope is calculated as 

o 2.3 . However, it is not a limitation under all  circumstances because the surface finish has an 

influence on the measurable slope as well. For a tested sample with rough surface, the maximum 

measurable slope can be higher than the theoretical value because the light can travel back to the 

objective through diffuse reflection (Kumar, et al., 2010; Malacara, 2007).  

Four concave mirrors with λ/4 (@ 633 nm) surface irregularity were measured to 

experimentally assess the slope measurement ability of cylindrical-LSDI (Figure 6.24 and Figure 

6.25). As shown in Figure 6.24, the concave surface with a radius of curvature (RC) of 610 mm 

can be accurately measured. However, when the RC is less than a certain value, the effective 

fringes for measurement are not available in the full field of view due to the focus effect from the 

spherical sample surface. In this case, there is no longer a planar-wavefront received on the slit 

plane after the line measured beam is reflected by the concave mirror and passes through the 

cylindrical lens and the tube lens. Therefore measurement errors in the measured profiles are 

produced, which means the lateral measurable range of cylindrical-LSDI decreases. Figure 6.25 

shows the surface map results obtained by translating the samples along y axis. The maximum 

angle  limits the measurable scanning range in y axis. All the obtained results show that the 

developed LSDI prototype has certain angular measurement ability dependent on the NA of the 

objective used. To handle the inevitable limitation in measuring the surface slope, however, a 

priori information is required for the surface features to be measured before the metrology 

device is applied to inspection of samples with high slopes such as solder ball grid array and 

steel ball bearing in terms of quality assurance. 
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Figure 6.24 Profile results of the concave mirrors using cylindrical-LSDI 

 

Figure 6.25 Surface map results of the concave mirrors: (a) RC=76.2 mm, (b) RC=100 mm, (c) RC=300 mm, 

(d) RC=610 mm. 
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Additionally, there are two solutions for measuring a sample with the higher slope surfaces, 

namely rotating the instrument and using an objective with a higher NA. There is a trade-off to 

be made when selecting one of them for measurement. Rotating the instrument is capable to 

measure the surface with various slopes; however, a complicated and bulky mechanical rotation 

system needs to be involved. Adopting an objective with higher NA can enhance the angular 

measurement ability while it suffers from the high cost and small lateral measurement range, 

which makes it more dependent on data stitching techniques for fully characterising a surface.  

Another feasible way, introducing dual-optical wedges into interferometric objective, is 

proposed for consideration of mitigating the problem of measuring a high slope surface. Figure 

6.26 shows the working principle of the rotatable dual wedges. By giving a relative rotation 

angle between the two wedges, the incident light can acquire a deviation angle ( ), which can 

be expressed by                                                       

    2 1  / 2n cos      (6.7) 

where n represents the refractive index of the optical wedge,   is the wedge angle and   is the 

relative rotation angle between two wedges. Therefore, the dual-optical wedges can work as a 

simple rotation system by generating different deviation angles for slope surface measurements. 

As shown in Figure 6.27, in order to balance the OPD, two pairs of dual-optical wedges are 

inserted into both measurement arm and reference arm of the interferometer. 

 

Figure 6.26 Beam deviations by rotating two optical wedges with different angles 
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Figure 6.27 Introducing two pairs of dual-optical wedges into interferometric objective.  : Relative rotation 

angle between two optical wedges. 

When inspecting the samples with high slopes, the dual wedges in the measurement arm can 

be rotated with an angle to allow the probing beam to regain the acceptable surface gradient for 

measurement. The wedges in the reference arm are kept a relative angle of o180  at all times. 

Suppose the wedge angle  is o10 , n is equal to 1.52 and o0  , the deviation angle is 

calculated as o10.4 . Therefore, it is possible for this system to cover the angular measurement 

range up to o o (10.4    2.3 )  . The method has the benefit of increasing the measurable angle by 

simply rotating the wedges. However, it still cannot overcome the limitation in measuring the 

high slopes. Additionally, except the simulation illustrated above, further investigation is 

required since the wedges inserted in the optical system bring extra issues such as chromatic 

aberrations, alignment endeavour and data stitching.  

6.6.4 Measurement noise 

Measurement noise is defined as a combination of the internal noise of the instrument, 

environmental noise and the noise resulting from the scanning during the measurement (Giusca 

& Leach, 2013). In general there are two methods for assessment of measurement noise. The 

first one is measuring a standard flat artefact with precise surface quality and making a 

comparison with the certified value. The other method is to isolate the noise from the surface 

roughness using a subtraction technique or averaging technique (Giusca & Leach, 2013). In this 

         (b)              
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section, the subtraction technique is adopted for estimating the measurement noise of cylindrical-

LSDI.  

 

Figure 6.28 Subtraction technique for estimating the measurement noise of cylindrical-LSDI: (a) five profiles 

with surface roughness, (b) four new profiles after removing the intrinsic roughness. 

A standard flat artefact is employed for this purpose, which has a RMS height of the scale 

limited surface qS  equal to 4 nm (see Appendix C.1). This sample was measured using 

cylindrical-LSDI prototype at the same position for five times and the profile results are shown 

in Figure 6.28(a). Then the first measurement was subtracted from the second one, and the 

second from the third and so on until four new measurement noise profiles were obtained (see 

Figure 6.28(b)). The RMS heights (  qR ) of the four new profiles were calculated by equation 

(6.8). Finally the measurement noises can be obtained using equation (6.9) and the standard 

deviation of these measurements is given in equation (6.10). The calculations show that the 

developed LSDI prototype has an average measurement noise of 6.287 nm with an associated 

standard deviation of 0.007 nm, as shown in Table 6.5. Considering the calibration was carried 
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out in the normal optics laboratory, this estimated measurement noise is acceptable for this initial 

prototype. 
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Table 6.5 Measurement noise estimation of cylindrical- LSDI 

noiseM  (nm) Average noiseM  (nm) Standard deviation  (nm) 

6.278 6.294 6.291 6.288 6.287 0.007 

         

6.7 Measurement results 

In order to confirm the performance of the cylindrical-LSDI prototype in terms of profile 

measurement, two step samples with height values of 4.707 µm and 100 nm have been 

measured, respectively. 

6.7.1 Case 1: Standard step sample (4.707 µm) 

In this case-study, a 4.707 µm standard step sample was measured by both LSDI prototype 

and CCI 3000. The measurement results by CCI are shown in Appendix C.2. Assuming that the 

average height is determined by the difference between the mean line values of the upper and 

lower profiles, and then the step height is calculated with an average value of 4.699 µm by CCI. 

Both FFT algorithm and Carré algorithm discussed in chapter 5 were used to analyse the 

interferogram captured by cylindrical-LSDI to evaluate their performance, as shown in Figure 

6.29(a). The surface profile results show a good agreement (18 nm difference on average) 

between the Carré algorithm and the FFT algorithm, which gives the average height as 4.663 µm 

and 4.645 µm, respectively. The spiky errors, resulting from the irregularity of interference 

signals at the surface edge, have no influence on the measurement of other pixels because each 

point is analysed individually and independently. On the whole, the LSDI results align with the 
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CCI result acceptably. In addition, Figure 6.29(b) shows the surface map result by translating the 

sample.    

 

 

Figure 6.29 Measurement results for 4.707 µm standard step height sample: (a) surface profiles using FFT 

algorithm and Carré algorithm, respectively, (b) constructed surface map through scanning. 
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3000 measured the step sample using a 5X objective, which provides the measurement area of 

3.6 mm x 3.6 mm. Therefore just 5 step surfaces can be covered by the probe of CCI for each 

measurement. The first four step height values corresponding to LSDI results are 94 nm, 95 nm, 

103 nm and 99 nm, as shown in Appendix C.3. For the surface map result in Figure 6.30(b), the 

surface irregularity in y axis results from the scanning error and does not affect the performance 

of profile measurement because every profile is measured independently. 

 

 

Figure 6.30 Measurement results for 100 nm step height sample: (a) surface profile using FFT algorithm, (b) 

constructed surface map through scanning. 
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6.8 Summary 

This chapter introduces a cylindrical-LSDI which obtains a long surface profile in a single 

shot by analysing the channelled spectrum without any mechanical scanning. Since there is no 

focusing effect in x axis, the optical probe using cylindrical lens greatly extends the lateral 

measurement range when used to observe the tested surface.  

A built experimental setup first validated the methodology of LSDI by accurately measuring 

the step samples and detecting defects present on a flat mirror, which offers the basis for the 

prototype design. After that, a compact prototype has been developed with improvement of the 

lateral resolution of the interferometric system. Other alignment issues in terms of the collimator 

and camera are discussed as well to achieve good fringe visibility and high quality image of 

spectral lines.  

By using a USAF test target the lateral resolution and the measurement range along the 

surface profile direction were calibrated as 12.26 µm and 5.885 mm, respectively. As for the 

axial measurement range of LSDI, it is determined by the spectrometer resolution, not limited by 

DOF as with other instruments such as WSI. With a theoretical axial measurement range of 885 

µm, the 200 µm step height can be well resolved in the spectral interferogram and accurately 

calculated by analysing the fringe pattern.  

Like other interferometers, the angular measurement capability is determined by the NA of 

the objective. In order to measure a sample with higher slope, using an objective with high NA 

and rotating the instrument to regain the acceptable surface gradient are two applicable solutions. 

Another method, introducing two pairs of dual-optical wedges into interferometric objective to 

mitigate the measurement problem of high slope surface, is simulated using ZEMAX and 

discussed with theoretical calculation. It is a simple method at a low cost. However, further 

investigation needs to be carried out to validate the applicability.  

The performance of the cylindrical-LSDI prototype was verified by measuring two step 

samples with height values of 4.707 µm and 100 nm, respectively. The spiky errors in the 

measured profile and the surface irregularity of the surface map (along the scanning direction) 

have no influence on the system performance because each point and each profile are processed 

individually. The obtained profile results closely align with the calibrated specifications given by 

the manufacturer as well as the measurement results by the other commercial instrument, which 

confirms that cylindrical-LSDI may potentially be applied to in-line surface inspection in terms 
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of quality control. Implementation of this prototype offers an attractive solution to improve 

manufacturing processing and reliability for products in ultra-high-precision engineering. 

Moreover, benefiting from the long profile measurement, the cylindrical-LSDI sensor can 

also achieve large area measurement by rotating the cylindrical lens when it is used for in-situ 

metrology applications. 
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7 Optical apparatus 2: Microscope based LSDI  

7.1 Introduction  

Though the cylindrical-LSDI can achieve long profile measurement, it will be struggling to 

resolve smaller structure dimensions and features on tested surface in few micro- or submicro-

scale. This chapter presents the second optical apparatus of LSDI which employs a microscope 

objective to inspect the tested sample, as shown in Figure 7.1. Interferometric microscopes with 

different magnifications are commercially available, enabling the microscope based LSDI 

(referred to as microscope-LSDI) to be a versatile instrument for characterisation of surface 

structures with various scales in a wide range. An initial prototype was developed using a 4X 

interferometric objective with a lateral resolution of approximately 4 µm along the surface 

profile direction. The performance evaluation through measuring two step samples and an Al2O3 

coated polyethylene naphthalate (PEN) film is presented. Investigation of the effect from 

environmental disturbances is performed as well. The accurate experimental results provide the 

basis for in-line metrology for production lines such as R2R surface inspection where only 

defects on the film surface are concerned in terms of quality assurance.   

 

Figure 7.1 Schematic diagram of microscope based LSDI 
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7.2 Surface profile measurement with high lateral resolution 

The white light illumination for the system is still provided by the light source device 

illustrated in chapter 4. The tested surface is observed through a 4X Michelson interferometric 

objective. The interference beam is focused by a spherical tube lens and split into two parts by a 

pellicle beamsplitter. The reflected part is received by camera 1 which provides real-time image 

of the tested surface and then benefits the measurement with additional information. The 

transmitted part first passes through a slit to block the light redundant for measurement, then a 

narrow line of light which represents an interference signal of a surface profile is selected and 

diffracted by the grating before finally being received on camera 2. The direction of the slit is 

also set to be parallel to the columns of camera pixels in this optical apparatus to provide the 

dispersion axis along the rows. Likewise, the height information of the profile is registered in a 

two-dimensional spectral interferogram with lateral information in the vertical direction and the 

chromaticity axis in the horizontal direction. A surface profile can be measured in a single shot 

and a surface map, constructed by numbers of individual profiles, can be acquired by laterally 

translating the sample.  

The operation and data capturing for the microscope-LSDI are similar to cylindrical-LSDI. 

7.3 Prototype design 

The off -the-shelf optical components shown in Table 7.1 were used for the prototype design. 

Excepting the alignment issues discussed in chapter 6, several general concerns especially for 

utilisation of microscope are presented in this section as well. 

 

Table 7.1 Off -the-shelf components used for prototype design (microscope- LSDI) 

Components Model Suppliers  Main parameters 

Collimator 1 TC25FC-633 

Thorlabs, 
Inc. 

FC/PC Triplet collimator, f=24.98 mm, 
NA=0.25 

Tube lens 
AC254-250-A-
ML 

f=250 mm, Ø1" Achromatic Doublet 

Collimator 2 
AC254-075-A-
ML 

f=75 mm, Ø1" Achromatic Doublet 

Diffraction grating GH25-12V 
Visible Reflective Holographic 
Grating, 1200/mm, 25 mm x 25 mm x 
6 mm 

Imaging lens 
AC254-075-A-
ML 

f=75 mm, Ø1" Achromatic Doublet 
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Optical fibre M76L02 Core diameter Ø400 µm, 0.39 NA 

Interferometric objective A-IOB-004X 
Polytec 

 
Michelson type, 30 mm working 
distance, NA=0.1 

Camera 1 
CMLN-13S2M-
CS 

Point Grey 
Resolution 960 x 1280, 3.75 µm pixel 
size, 18 fps.  

Camera 2 ICL-B0620 Imperx 
Resolution 480 x 640, 7.4 µm pixel 
size, 208 fps. 

 

7.3.1 Microscope objective 

There are two types of microscope objectives, namely finite objectives and infinity corrected 

objectives, as shown in Figure 7.2. For many years, microscope objectives with a fixed tube 

length were manufactured. The tube length was standardised by the Royal Microscopical Society 

as 160 mm during the nineteenth century (Heavens, 1989). For a microscope optical system 

using the finite objective, the mismatching in the tube length will impair the image quality due to 

introduction of spherical aberrations. Additionally, the insertion of optical accessories such as a 

prism, a polarizer or a fluorescence illuminator in the convergence optical path will generate 

ghost images as well as lengthen the tube length. Though compensation can be made using other 

optical components, it leads to the changes of the system magnification and light transmission. 

(a)

(b)

Finite microscope 

objective Eyepiece
Intermediate

image plane

Infinity-corrected microscope 

objective Tube lens EyepieceIntermediate 

image plane

 

Figure 7.2 Typical microscope optical systems: (a) using finite microscope objective, (b) using infinity-

corrected microscope objective. 
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The infinity-corrected objectives are designed to project the image of the specimen to 

infinity. It allows the optical accessories to be inserted into the parallel optical path between tube 

lens and objective without producing focus artifacts and optical aberrations (Murphy, 2002). A 

tube lens is required to bring the image at infinity into focus at the intermediate image plane 

(Rost & Oldfield, 2000). As the optical apparatus shown in Figure 7.1, a beamsplitter is set 

between the tube lens and the objective. Therefore, the infinity-corrected type of objective is 

employed in microscope-LSDI for inserting the beamsplitter with minimal effect to the optical 

system.  

7.3.2 Tube lens 

For the developed system, a spherical tube lens is used to generate the intermediate image 

on the slit plane. Subsequently, this image is observed by the spectrometer of LSDI. For the tube 

lens two aspects should be considered in terms of focal length (TLf ) and position with respect to 

objective (D), as shown in Figure 7.3. 

The magnification ( objectiveM ) produced by an infinity-corrected objective is calculated by 

dividing TLf  by the focal length of objective ( MSf ). For the 4X interferometric objective used in 

our system,  MSf  equals 50 mm and therefore TLf  can be calculated as 200 mm (minimal value) 

to match the magnification of the objective. Additionally, it is suggested that the optimal focal 

length of the tube lens should be set between 200 and 250 millimetres, because a longer TLf  can 

generate a smaller off-axis angle and thus system artifacts can be reduced (Abramowitz et al., 

2015). Moreover, for consideration of a bigger image desired on the sensor plane, the TLf  for the 

developed microscope-LSDI is finally determined as 250 mm, which makes the actual 

magnification objectiveM  equal to 5. 

The space (D) between the objective and the tube lens (see Figure 7.3) is dependent on the 

dimensions of extra optical components to be inserted, such as the beamsplitter in the optical 

system of LSDI. The minimum space should allow the beamsplitter to be fitted in. However, 

there is an upper limit for this space. If the tube lens is set too far from the objective, some the 

off-axis rays may not be collected by the tube lens as well as the following optics. In this case, 

the so-called vignetting phenomenon occurs, which makes the image on the camera suffer from 
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darkened or blurred edges. Actually, the microscope-LSDI developed in this research work is 

unlikely to suffer from vignetting because of the demand of designing a compact prototype. 

Image plane

Tube lens

Microscope 

objective

Tested surface

Focal length of 

tube lens

Distance between tube 

lens and microscope

Focal length of 

objective

 

Figure 7.3 Dimension specifications of an infinity microscope system 

7.3.3 FOV of the interferometric objective 

Since the microscope-LSDI has a higher lateral resolution than the cylindrical-LSDI, the 

FOV of the objective (lateral measurement range) would be much smaller if the same camera is 

employed. Investigating the spot size in the optical system can acquire the theoretical FOV of 

LSDI, as shown in Figure 7.4.  

 

S1 S2 S3 S4

C1 BS MS
Tested 

surface MS BS TL C2 G IL CCD

On-axis rays Off-axis rays

 

Figure 7.4 Perspective of the optical setup. S1-S4, spot image; C1, collimator 1; BS, beamsplitter; MS, 

microscope TL, tube lens; C2, collimator 2; G, grating; IL, imaging lens. 
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According to the geometrical optics theory, the sizes of the spot images shown in Figure 7.4 

can be expressed by 

 
1 2

2 3 4
 ,     ,   

1 2 3
MS TL IL

C MS C

f f fS S S

S f S f S f

         (7.1)    

where S1, S2, S3 and S4 represent the spot sizes at different focal planes, 1Cf , MSf , TLf , 2Cf  

and ILf  are the focal lengths corresponding to collimator 1, microscope, tube lens, collimator 2 

and imaging lens. The spot image S4 received by camera is one of factors to determine the 

system’s FOV, which can be calculated through multiplying the spot image S1 by the system 

magnification. Therefore the spot image S4 can be obtained by                                        

 
1 2

4 1TL IL

C C

f f
S S

f f
     (7.2) 

The equation (7.2) shows that increasing S1, which is equal to the core diameter of the fibre, 

can produce a larger image on the image plane. Since the spot size S1 and all focal lengths of 

optics are given in Table 7.1, the spot size (S4) received on the CCD plane can be calculated as 

4.003 mm along the measured profile direction, which is larger than the corresponding sensor 

size in height ( 480 7.4  μm  3.552  mmcameraS    ). It means that all pixels on the sensor are used 

for measurement. In this case, the FOV of the objective can be theoretically calculated by            

 
 480 7.4     μm 710  μm

5
camera

objective

SFOV M
     (7.3) 

The exact FOV of the developed microscope-LSDI will be experimentally calibrated and 

presented in section 7.4. 

7.3.4 Initial prototype 

By following a similar design concept to the cylindrical lens prototype, the microscope-

LSDI has been developed with an overall dimension of 498 mm x 140 mm x 91 mm (length x 

width x height), as shown in Figure 7.5. An extra small CCD camera is equipped at one of the 

branches of the optical system to present real-time image of the tested surface and contribute to 

search the small surface features within measurement FOV in particular metrology applications. 

It was shown that the developed system covers a range of 1.49 
1μm

 to 1.62 
1μm

 for 



141 

  

 

wavenumber k after performing the calibration of the chromaticity axis (Figure 7.6), which 

corresponds to a wavelength  span of 616.56 nm to 670.02 nm. The calibration data are given 

in Appendix A.4. 

 

Figure 7.5 Initial prototype of microscope-LSDI 

 

Figure 7.6 Calibration of chromaticity axis of camera for microscope-LSDI prototype 
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7.4 System features  

7.4.1 Lateral range and resolution 

A positive target (a microscope slide with 50μm vacuum sputtered divisions, see Figure 7.7) 

was used to determine the CCD pixelation presentation dP  on the sample along the measured 

profile direction, which can consequently calculate the lateral measurement range/FOV of the 

system. Figure 7.8 shows the image of the target using a 4X objective and the curve representing 

relationship between divisions and pixelation (only showing 265 pixels). It was found that a 

length of 50 µm is covered by every 34 pixels, which means each pixel along the vertical 

direction represents 1.47 µm on the tested surface. Then the lateral measurement range along x 

axis can be calculated as 705.6 µm by equation (6.4), which represents the effective length of 

surface profile tested by the objective for each measurement. The calibrated FOV closely aligns 

with the theoretical calculation in equation (7.3). 

     

Figure 7.7 Microscope slide R1L3S1P under magnification [adapted from Thorlabs, Inc.] 

 

Figure 7.8 Determination of the CCD pixelation: (a) image of the stage micrometre using 4X objective, (b) 

relationship between divisions and pixelation. 
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Lateral resolution of the microscope-LSDI is limited by two factors, namely optical 

resolution and pixel-limited resolution. The optical resolution varies with the NA of the 

objective. Systems with a low magnification objective may suffer from the camera-limited issue. 

Practically, determination of the lateral period limit using a sinusoidal artefact can be used to 

evaluate the lateral resolution for a 3D optical interferometer (Giusca & Leach, 2013). In this 

thesis Rayleigh criterion expressed in equation (7.4) is applied to theoretically calculate a useful 

approximation to understand the expected behaviour in terms of lateral resolution.                                           

 0.61
Rayleigh NA

    (7.4) 

This resolution is not a constant value because broadband illumination is used for measurement. 

For the 4X objective with the NA of 0.1, the theoretical optical resolution calculated at the 

maximum wavelength 670.02 nm is 4.087 µm. Compared to the calculated pixelation result 

(1.47 µm), it shows that the lateral resolution of the developed system is restricted by the 

diffraction limit, not pixel-limited. 

7.4.2 Axial measurement range 

The wavelength calibration shows that the chromaticity axis covers the spectrum with a 

bandwidth of 53.5 nm (centred at 0  = 596 nm), which provides a per pixel bandwidth of   = 

0.08 nm. Therefore, the theoretical maximum axial measurement range of microscope-LSDI is 

calculated as 1.29 mm by equation (6.5). Experimentally, a micro fluid chip with a step height of 

100 µm was measured using the designed prototype. The step can be well resolved and the 

measured average height is 101.479 µm. The LSDI measurement results are shown in Figure 7.9. 

 

Figure 7.9 Results for micro fluid chip-100 µm step height: (a) measured surface, (b) cross-sectional profile. 
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7.4.3 Angular measurement range 

The angular measurement range for microscope-LSDI is assessed by theoretical calculation 

using equation (6.6). For the interferometric objective with the NA of 0.1, the maximum 

measurable surface slope can therefore be calculated as 5.7   for samples with well-polished 

surfaces. Likewise, a sample with higher slopes (> 5.7  ) still may be characterised if it is 

manufactured with a rough surface. 

7.4.4 Measurement noise 

To evaluate the measurement noise of the microscope-LSDI prototype, the same flat sample 

and technique described in section 6.6.4 were adopted. The measured profiles with roughness 

components are depicted in Figure 7.10(a), which have a maximum PV value of 55.36 nm over 

the evaluated length of 705.6 µm. Figure 7.10(b) shows the four new profiles after isolating the 

roughness and the measurement noise can be obtained by measuring the   qR  values of these scale 

limited profiles, as listed in Table 7.2. The calculations show that the developed prototype has a 

average measurement noise of 3.095 nm with an associated standard deviation of 0.03 nm, which 

is acceptable because the calibration was carried out in the normal optics laboratory.  

 

Figure 7.10 Subtraction technique for estimating the measurement noise of microscope-LSDI: (a) five profiles 

with surface roughness, (b) four new profiles after removing the intrinsic roughness. 
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Table 7.2 Measurement noise evaluation of microscope-LSDI 

noiseM  (nm) Average noiseM  (nm) Standard deviation   (nm) 

3.061 3.129 3.075 3.116 3.095 0.03 

     

7.5 Application 1: Evaluation of step height samples 

Evaluation of step height samples is one of the most popular applications for the developed 

metrology system. Two step height samples with height values of 100 nm and 500 nm were 

measured to confirm the performance of microscope-LSDI prototype.  

First, to verify a good precision of the metrology system, a standard sample from NPL 

(National Physical Laboratory) with step heights of 100 nm was measured and the results are 

shown in Figure 7.11. The corresponding measurement results obtained by CCI 3000 at almost 

the same area are provided in Appendix C.4 as the traceable reference (measured average height: 

103.5 nm). The surface profile acquired by microscope-LSDI has an average height of 104.9 nm, 

which is in good agreement with the result by CCI. The measurement results demonstrate that 

the developed prototype has nano-scale resolution enabling precise surface metrology in terms of 

quality assurance. 

By keeping the sample still and measuring the same profile on the sample many times in 

quick succession, the measurement repeatability can be evaluated using equation (6.10). Other 

three of metrological characteristics, namely amplification coefficient, linearity error and 

perpendicularity of the axes, require a series of measurements of a range of artefacts with various 

heights and will be investigated as the future work for system calibration. 

Another sample manufactured by Rubert & Co. Ltd. with step height of 500 nm was 

measured as well. The measurement results by CCI 3000 and microscope-LSDI were obtained 

with a consistence between them, which are shown in Appendix C.5 and Figure 7.12. The height 

values of one measured profile listed in Table 7.3 show that there is around 20 nm difference 

between the step surfaces of the sample (1H  versus 2H ), which may result from the 

manufacturing errors or damage sustained after a prolonged period of use. However, it has no 

influence on the assessment of the LSDI’s performance. 
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Figure 7.11 Measurement results for 100 nm standard step height sample: (a) surface profile using FFT 

algorithm, (b) constructed surface map through scanning. 

 

Table 7.3 Measured average heights of 500 nm step height 

Average step height values 
(CCI 3000) 

Average step height values 
(Microscope-LSDI) 

1H  2H  1H  2H  

449.8 nm 463.11 nm 462.1 nm 486.6 nm 
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Figure 7.12 Measurement results for 500 nm reference step height sample: (a) surface profile using FFT 

algorithm, (b) constructed surface map through scanning. 

7.6 Application 2: In-line defect detection for PEN film surface 

R2R technology has been adopted to fabricate multi-layer flexible devices for achieving a 

reduction in production costs and throughput time. Such flexible PV films technology is widely 
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used in integrated field through offering particular design option and extends its applications to 

Building-Integrated-Photovoltaic products (Elrawemi, et al., 2013; Schwager, 2012). Figure 7.13 

shows schematic of the flexible PV Module. In order to maintain high performance and a long 

lifespan, an effective barrier is required to protect the active elements from environmental 

degradation due to water and oxygen ingress. It has been proved that a thin coating of 

Aluminium oxide (Al 2O3) by atomic layer deposition (ALD) is an effective transparent barrier 

film for providing the environmental protection for the PV cells because of its uniformity and 

pinhole-free morphology (Ali et al., 2015; Carcia, et al., 2006; Cimalla et al., 2014; Hegedus et 

al., 2010). 

 

Figure 7.13 Schematic of the flexible PV Module [adapted from Flisom, Switzerland] 

However, some function-affecting defects are inevitably generated during the manufacturing 

processes of multi-layer film products. Actually, one of the biggest challenges faced by industry 

when using R2R is characterisation of surface roughness, defects, and other imperfections due to 

their great influence on functional performance. It has been demonstrated that defects especially 

present on the barrier film during Al 2O3 ALD process are significant in the deterioration of the 

PV module efficiency and lifespan. Some work has been carried out on the correlation of water 

vapour transmission rate (WVTR) and the significant defects (different types and sizes) present 

on the barrier substrate using areal surface metrology (Blunt et al., 2013). WVTR is a parameter 

used to represent the passage of water vapour through the films and can be measured using a 

standard MOCON test. It was found that defects on the Al 2O3 barrier film correlating with high 
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WVTR can be classified into four main types, namely pit holes, particulate debris, delamination 

and surface relief (Elrawemi et al., 2014; Rebeggiani, 2013). Figure 7.14 shows some main 

defects present on the PEN film substrate using AFM. 

 

Figure 7.14 Main defects present on the PEN film substrate by AFM [Adapted from Elrawemi, 2015] 

Therefore, surface inspection needs to be performed during the R2R manufacturing process 

in order to detect these significant defects and finally guarantee that the barriers are in good 

condition. As discussed in chapter 1, defect assessment can be performed using many techniques 
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such as optical microscopy, scanning electron microscopy and optical interferometry. However, 

the key challenge of in-line metrology requires inspection of the foil surface with a sufficient 

resolution as well as at a production speed, which makes the microscope-LSDI a good solution 

for defect assessment due to its advantage of single shot measurement. This section will present 

detection of the defects on a multi-layer PEN film using the developed microscope-LSDI 

prototype.  

 

Figure 7.15 Structure of the PEN film by Environmental Scanning Electron Microscopy (ESEM) [Adapted 

from Elrawemi, 2015] 

The PEN film sample, manufactured by the Centre for Process Innovation (CPI), is 

composed of three layers, namely a PEN substrate layer (120-123 µm), a planarization layer (2-3 

µm) for planarising the pits and spikes features on the PEN substrate and lastly an ALD barrier 
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(40 nm) for prevention of moisture and oxygen ingress. Figure 7.15 clearly shows the structure 

of the PEN film sample by Environmental Scanning Electron Microscopy.  

The defects on the PEN film sample can also be observed by camera 1 equipped in the 

developed metrology system, as shown in Figure 7.16. In order to better understand the 

performance of the developed LSDI, two areas with some significant defects have been selected 

for inspection. The raw results acquired by Talysurf CCI 3000 (a) and LSDI (b) are shown in 

Figure 7.17 and Figure 7.18 without any data post-processing such as surface levelling and 

filtering. The measrued surface map shown in Figure 7.17(b) and Figure 7.18(b) are generated by 

numbers of profiles which represents a scanning length of 2.31 mm. The surface topography 

results shown in Figure 7.17 and Figure 7.18 have different forms which mainly result from the 

different surface tensions generated when fixing the film sample in the two separate 

measurements. The acquired results demonstrate that LSDI is capable of detecting most of the 

defects detectable by CCI and that the relative positions between the detected defects are well 

matched. To further validate the performance of microscope-LSDI, surface levelling and form 

removing were performed on the raw data in Figure 7.17. Seven film function-affecting defects 

were selected and labelled for investigation in terms of the size and the location, as shown in 

Figure 7.19. 

 

 

Figure 7.16 Images of defects observed by camera 1 in microscope-LSDI prototype 

Pit type defect Delamination
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Figure 7.17 Surface map of defects on the area 1 of the barrier film surface (raw results without data post-

processing): (a) CCI result, (b) LSDI result. 

 

Figure 7.18 Surface map of defects on the area 2 of the barrier film surface (raw results without data post-

processing): (a) CCI result, (b) LSDI result. 

The sizes of the defects were determined by measuring length and width along the vertical 

axis, x, and the horizontal axis, y, respectively. The position of defect 1 was set as a reference 

point (see Figure 7.19(b)) to acquire the relative positions of other 6 defects. Then the defect 

specifications for both LSDI and CCI are obtained and listed in Table 7.4. The sizes and 

positions of the defects correlate well between the CCI measurement of the sample and the 

measurement performed using LSDI. Considering the effect from experimental conditions such 

as different fixed modes of the sample, different measuring principles (profile measurement 
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versus areal measurement) and scanning errors from the linear translation stage, the 

measurement differences of the sizes and the relative positions are tolerated and do not affect the 

assessment of LSDI’s performance because only successful defect detection is concerned for this 

measurement.  

 

Figure 7.19 2D view of defects on the Al2O3 ALD barrier film surface (performed data processes such as form 

removing and levelling): (a) CCI result, (b) LSDI result. 

Table 7.4 Defects specifications (size, location) 

 Size width length (mm) Position (x, y) (mm) 

CCI LSDI CCI LSDI 

Defect 1  0.170.17 0.170.16 Reference point (0, 0) 

Defect 2 0.030.04 0.030.04 (0.20, 0.62) (0.21, 0.61) 

Defect 3 0.050.03 0.050.03 (0.34, 1.30) (0.36, 1.29) 

Defect 4 0.040.03 0.040.03 (0.19, 1.91) (0.24, 1.90) 

Defect 5 0.120.14 0.120.14 (0.20, 1.25) (0.23, 1.24) 

Defect 6 0.080.05 0.080.06 (0.04, 1.37) (0.07, 1.36) 

Defect 7 0.100.09 0.100.09 (-0.10, 1.68) (-0.05, 1.68) 

 

The results above verified that the proposed LSDI has a good performance for defect 

assessment. Requiring only one shot for a surface profile makes it an environmentally robust 

metrology sensor with instantaneous measurement. The limitation of this system, when 
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considering the challenge of in-line metrology in high speed production lines, has been 

determined to be the camera speed and computing speed. In theory, the microscope-LSDI can 

inspect moving samples with a speed of 1.2 m/min by using a camera capable of capturing 2000 

frames per second to detect the defects with size large than 10 µm. Furthermore, utilisation of 

updated GPUs will achieve data parallelism and then surface profiles can be presented in real-

time. Overall, the developed prototype may potentially be suitable for rapid in-line metrology for 

defects detection on flexible PV film surfaces. 

7.7 Investigation of the effect from environmental disturbances 

In general, environmental disturbances such as vibration and air turbulence can cause 

variations of the OPD between the two arms of the interferometer, and subsequently produce 

measurement errors if they exceed the measurement resolution (Muhamedsalih, 2013). In this 

section, the effect of environmental disturbances to the LSDI’s performance is approximately 

evaluated by artificially introducing vibration and air turbulence. Figure 7.20 shows the 

interference patterns of the same row captured at certain time interval. Due to the environmental 

disturbances the numbers of fringe cycles of the signals have changed. However, it does not 

mean that the measured profile will be greatly affected. Because close variations of fringe cycles 

will be applied to all row signals within the whole frame if a fast camera is used, an offset of 

approximately the same magnitude is generated in the absolute distances for every point along 

the surface profile with respect to the reference plane.  

 

Figure 7.20 Interference signals affected by the environmental disturbances 
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The same surface profile on the standard flat artefact (4  nmqS  ) was measured 20 times 

under each different environmental condition such as no additional environmental noise, air 

turbulence applied, vibration applied and the combination of vibration and air turbulence. The 

vibrations generated by all these environment disturbances have a frequency within the range of 

20-200 Hz.  

The measurement noises were calculated using a subtraction technique to investigate the 

environmental effect to the measurements, as shown in Figure 7.21 and Table 7.5. The Mean 

values of measurement noises corresponding to the environmental conditions mentioned above 

are 3.294 nm, 3.549 nm, 4.569 nm, 5.4370 nm, respectively. The nanoscale variations of 

measurement noises are acceptable for defects inspection in terms of quality assurance.  

Actually, since the CCD camera used in the developed sensor has a frame rate of 208 fps, it 

can achieve minimised effects resulting from the external perturbations and environmental noises 

provided that the disturbance frequency in the manufacturing shop is less than 200 Hz. The 

obtained results in this investigation will vary with the frequencies of the environmental noise 

and the camera capturing speed. Enhancement of the camera speed will shorten the capturing 

time of each interferogram and can further reduce the environmental effect to the system. It also 

means that the developed LSDI sensor is capable of enduring a higher level of environmental 

disturbance as well as keeping high measurement accuracy. On the whole, the developed 

instantaneous LSDI system is environmentally robust to carry out real time measurement on 

most of the shop floor.  

 

Figure 7.21 Measurement noise curves under different environmental conditions. Red line, almost no 

environmental noise; Black line, air turbulence applied; Green line, vibration applied; Blue line, vibration & 

air turbulence applied. 
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Table 7.5 Measurement noises under different environmental conditions 

 
Average noiseM  (nm) 

Standard deviation 
(nm) 

No environmental disturbances 3.294 0.1331 

Air turbulence applied 3.549 0.1485 

Vibration applied 4.569 0.9360 

Vibration & Air turbulence applied 5.370 1.7184 

 

By combining the 20 measured profiles obtained under different experimental conditions 

into surface maps, the results in Figure 7.22 can be acquired. It can be observed that surface 

irregularities with waviness of different frequencies are generated due to changes of OPDs in the 

construction direction. These waviness frequencies are also dependent on the frequencies of the 

applied disturbances and the capturing speed of camera. For the developed LSDI, surface 

irregularities do not affect the surface profile measurement because each profile is processed 

individually using a single frame. 

 

Figure 7.22 Surface maps constructed by 20 surface profiles: (a) almost no environmental noise, (b) vibration 

applied, (c) air turbulence applied, (d) vibration & air turbulence applied. 
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7.8 Summary 

This chapter presents a microscope-LSDI which aims at characterisation of surface features 

and defects in micro-scale (diffraction-limited resolution: 4 µm). The initial developed prototype 

has a theoretical axial measurement range of 1.29 mm and angular measureable range of  5.7   

for polished surface. A measurement noise of 3.095 nm for the developed microscope-LSDI is 

acceptable since the calibration was conducted in normal optics laboratory. The lateral 

measurable range was calibrated as 705.6 µm for the 4X interferometric objective using a 

microscope slide with 50 µm vacuum sputtered divisions, which is in good agreement with the 

theoretical calculation. 

Two step height samples were inspected using the developed prototype to evaluate the 

system’s performance. The measurement results acquired using both LSDI and commercial 

instrument CCI align with each other acceptably. The measurement of 100 nm step sample 

demonstrated that the developed LSDI has nano-scale measurement repeatability enabling 

precise surface metrology for quality assurance.  

Defects produced during R2R manufacturing processes are significant in the deterioration of 

the performance and lifespan of such film products. Therefore, implementation of the LSDI to 

detect the defects present on the PEN film is presented in detail. The measurement results 

verified that LSDI is capable of detecting most of the defects detectable by CCI, and the sizes 

and locations between the detected defects are well matched. By combining a high speed camera 

with GPUs and multi-core processor computing technology, the required time for frame grabbing 

and data processing can be further reduced, enabling this system to be qualified for real-time 

surface inspection. On the whole, the proposed system offers an attractive solution for quality 

assurance in R2R manufacturing processes and will consequently enhance the performance as 

well as the yield of the PV film products. 

Lastly the effect from the environmental disturbances is investigated as well. The analysis 

results shows the developed LSDI is capable of minimising the effect of external perturbations 

and environmental noise and is environmentally robust for use on the shop floor by performing 

instantaneous measurement in a single shot. 
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8 Conclusion and Future Work  

8.1 Discussion 

With the development of advanced manufacturing technologies such as R2R and AM 

techniques, ultra-precision surfaces are enabled to be fabricated with increasingly large areas and 

complicated structures. Process control is a necessity during manufacturing processes for 

ensuring great performance of a work piece. For this purpose, applicable metrological techniques 

which meet the demands of modern manufacturing need to be developed to characterise the 

functional surface of workpiece. The costly trial-and-error approach is not capable of matching 

the ongoing evolution in advanced manufacturing in terms of cost-effectiveness as well as high 

product yield. This is a driving factor for the development of in-line metrology which can be 

utilised on production lines to guarantee the high performance of the products. Metrology 

performed in manufacturing environment requires the measurement systems to be 

environmentally robust, fast, reliable and easily integrated into machine. The line-scan dispersive 

interferometry investigated in this thesis offers a promising solution for in-line metrology. This 

technique can obtain a surface profile in a single shot without any mechanical scanning in depth 

direction, enabling instantaneous measurement on the shop floor with minimal effects from the 

environmental disturbances.  

In principle, the developed metrology device is comprised of four main parts, namely light 

source, interferometric objective, spectrometer and data processing unit. The light device is a 

separate entity, which provides the broadband low-coherence white light for the interferometer. 

The interferometric objective works as the optical probe to observe the tested surface with a 

specific FOV. There is a trade-off to be made between the measurement range and lateral 

resolution according to the requirements of the metrological application. The Michelson type of 

interferometric objective has a good balance of the optical aberrations between the two arms of 

the interferometer and is simple to align. The spectrometer is used to spatially disperse the 

interference beam along the chromaticity axis of the CCD camera, in which way an extended 

axial measurement range is achieved without the 2π  phase ambiguity problem. The axial 

measurable range of LSDI technique has an overwhelming advantage over conventional 

interferometry. The higher spectral resolution is achieved by the spectrometer, the larger a 

measurable range can be acquired in depth. The optimal angle of the diffraction grating with 



159 

  

 

respect to the optical axis can be determined when a nearly linear distribution of spectrum on the 

camera is acquired. The data processing unit interprets each spectral interferogram using 

algorithms with nano-scale resolution to acquire the height information of a surface profile. 

Additionally, the measurement speed can be further accelerated through using a high speed 

camera for data capturing and GPUs for data parallelism. 

In practice, alignment of the optical components has significant influence on the system’s 

performance. For instance, improper position of the camera may result in low fringe visibility 

and the overlap of two adjacent spectral lines. The optical software ZEMAX is employed to 

simulate the LSDI system in terms of various alignment errors, which provides a good basis for 

assembly of the optical apparatuses. The simulations show that the tip/tilt of beamsplitter in the 

interferometric objective changes the OPD of the interferometer due to the optical axis deviation, 

and large offset of the collimator along the optical axis affects the collimation quality which 

consequently causes distortion of spectral lines on the camera.  

Two developed optical apparatuses, different in the interferometric objectives used, can be 

used for different applications. The cylindrical-LSDI has an advantage of long profile 

measurement, which is effective for large range metrology of the functional surface on a 

production line and is suitable for surface inspection in terms of surface textures, forms and 

blemishes with sizes of tens of micrometres. However, the lateral resolution of cylindrical-LSDI 

becomes an issue for consideration of the enhancement for applications where the smaller 

structure dimensions and features on the tested surface need to be resolved. Then  the second 

prototype, microscope-LSDI, has a higher lateral resolution using a 4X objective as the optical 

probe and aims at characterisation of surface roughness, defects with size of few micrometres 

and other imperfections of ultra-precision surfaces. One of the most promising applications for 

the microscope-LSDI is to detect the defects present on the R2R film surface for quality control. 

By properly arranging the optics, both of the optical apparatuses can achieve the axial 

measurable range up to a few millimetres, which is a difficult task for other interferometric 

techniques such as PSI and WSI. 

8.2 Conclusion 

The aim of this project is to investigate the potential for using line-scan dispersive 

interferometry for in-line metrology in manufacturing environments in terms of quality 

assurance. Two proof-of-concept prototypes, having different performances in lateral 
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measurement range and resolution and being used in different metrological tasks, have been 

developed for this purpose. Both of them perform surface profile measurement without 

mechanical scanning.  

One of the achievements in this thesis is development and demonstration of a single shot 

cylindrical-LSDI with long profile measurement capability. Due to the geometrical imaging 

characteristics of the cylinder, the tested surface is observed by a focused line beam. Therefore, 

implementation of the cylindrical-LSDI offers one possible solution to achieve large-scale 

measurement of the additively manufactured products. Through a series of measurements of a 

range of reference samples, the system’s performance has been experimentally evaluated. For 

instance, the lateral measurable range of the cylindrical prototype was calibrated as 5.885 mm 

using a USAF target. A 200 μm  step height and four spherical mirrors were used to evaluate the 

axial and angular measurable range, respectively. On the whole, the cylindrical-LSDI was 

demonstrated with good measurement accuracy by successfully measuring step samples ranging 

100 nm to 200 μm  with measurement results closely aligning with the commercial instrument 

CCI 3000.  

The second contribution is development and demonstration of an instantaneous microscope-

LSDI (using a 4X interferometric objective of Michelson type) to provide micro-scale lateral 

resolution for precise surface characterisation and defect detection. For this optical apparatus, 

real-time image of tested surface can be displayed as well using an extra camera in one of the 

branches of the optical arrangement. Likewise, experimental investigations were performed to 

evaluate the actual capability of the microscope-LSDI using different samples for surface profile 

measurements. In addition to the popular application of measuring step samples, implementation 

of the microscope-LSDI to detect the defects present on the Al2O3 barrier film surface was 

investigated in particular. By detecting most of the defects detectable by CCI as well as good 

agreements between measurement results in terms of sizes and relative positions, the metrology 

device offers an attractive solution for quality assurance in R2R manufacturing process.  

The third contribution in this thesis is development of the efficient and accurate algorithms 

to analyse the spectral interferogram. The measurement results obtained by the two algorithms 

(FFT algorithm and the Carré algorithm) are in good agreement with each other. Since the FFT 

algorithm has a faster computing speed, it is an optimal option for the in-line metrology 

applications where instantaneous measurement is required in terms of processing speed to 
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achieve presentation of the surface profile in real-time. Additionally, further acceleration of 

computing process through data parallelism using GPU technology (based on FFT technique) 

was demonstrated in this research project.  

On the whole, the developed metrology sensors were demonstrated with good performances 

in the measurement accuracy and speed. The process time is only 125 ms for a single 

interferogram and can be improved further by updating the algorithm and hardwares of the 

computer. The measurement noises of cylindrical-LSDI and microscope-LSDI are given as 6.287 

nm over the evaluated length of 5.885 mm and 3.095 nm over 705.6 µm, respectively. 

Considering the calibrations were performed in the normal optics laboratory, the obtained results 

are acceptable for these two initial prototypes at this research stage. Additionally, the 

environmentally robust feature of the LSDI technique was investigated experimentally as well. 

Performing profile measurement in a single shot without any mechanical scanning allows the 

LSDI technique to minimise the effect from the external vibration and air turbulence.  

The outcome of the research work illustrated in this thesis is to validate the feasibility of 

using LSDI technique for in-line metrology of functional surface for quality control. 

Improvements however can be made in several aspects to enhance the LSDI’s performance such 

as measurement speed, accuracy and device size, which will be presented in the following 

section as future work.  

8.3 Future work 

Future work can be carried out for further improvement that will enable enhanced metrology 

systems in terms of compactness, accuracy and data acquisition and analysis speed. The main 

aim is to implement the LSDI device for nano-scale in-line surface metrology on the shop floor.  

 The LSDI device is to be optimised in terms of both axial resolution and lateral resolution 

to allow for in-line metrology of surface roughness and additive manufacturing products. 

The prototypes currently have been developed using the objectives with magnification of 

4X and fixed focal length of 75 mm, respectively. To make the metrology system 

versatile across various applications, implementation of prototypes equipped with various 

magnifications of interferometric objectives is to be investigated to enable surface profile 

measurements with different FOVs, resolutions and angular measurable ranges. By 

choosing an objective with high magnification, the lateral resolution can be improved 

directly. For improvement of axial resolution, optimisation of the metrology device in 
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terms of accurate algorithms, precise alignments and minimal measurement noise needs 

to be investigated. More specifically, by using a 20X Mirau type objective in microscope-

LSDI the lateral resolution can be raised to 0.9 μm  in sub-micrometre level and the 

angular measurement ability theoretically allows the surface slope with angle up to 23.6  

to be tested. The enhanced system may potentially to be used for characterisation of the 

precise surface after post-process. Likewise, by using cylindrical lenses with short focal 

lengths in Linnik configuration, the angular measurable range can increase as well. 

Combined with the advantage of long profile measurement, it may generate a great deal 

of interest in applying the technique for large-scale metrology of freeform surface or AM 

products with high slopes.  

 Improve the measurement speed by accelerating capturing time and computing time, in 

both hardware and software aspects. A fast CMOS camera can be a solution for reducing 

the capturing time for each interferogram, which also makes the metrology device even 

more environmentally robust. At the same time, an essential issue needs to be considered 

to match the high speed camera. Achieving high frame rate will however shorten the 

exposure time, which may lead to a high measurement noise or low fringes visibility. 

Therefore, the efficiency of the optical apparatus is required to be enhanced to provide a 

high power output on the sensor. Moreover, use of a high power light source is also a 

good alternative enabling the camera to receive the sufficient light. As for the computing 

time, updating the hardware (GPUs and computer processor), developing efficient 

algorithms and optimally organising the blocks and threads in GPUs are to be 

investigated for acceleration of analysis time. 

 Miniaturisation of this fast line-sensor to be embedded in processing machines free of 

large space occupation. Building the optical device using folding mirrors, developing a 

spectrometer on a single chip and completely separating the current bulky spectrometer 

from the optical probe are three techniques to be investigated to make the whole sensor 

more compact.  

 A set of artefacts and calibration schemes to be manufactured and/or designed to test the 

key aspects of the proof-of-concept prototypes in terms of vertical range/resolution, 

lateral range/resolution, angular measurable range, uncertainty, repeatability, sensitivity 

etc. A series of measurements need to be performed using these artefacts to validate the 
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potential of finalised prototypes for various metrology applications in manufacturing 

environments. 

 Investigate the automation of the metrology system to implement the prototype on a real 

production line. Currently all measurements are carried out off-line in the optics 

laboratory. The frame acquisition and data analysis were conducted separately by 

clicking the corresponding buttons in camera software and mathematical software such as 

Matlab and Microsoft Visual studio. A user friendly piece of software needs to be 

developed by combining the capturing and analysis processes together to complete each 

measurement with only one click. Additionally, presentation of the tested surface profile 

in friendly graphical user interface will be investigated as well. 

 Furthermore, considering further enhancement of measurement efficiency, the methods to 

allow the spectrometer to realise surface topography in a single shot or the objective 

(such as the lens array) to observe multiple profiles on the tested surface at the same time 

will be investigated as well. 
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Appendix A (Experimental data) 

A.1 Simulation of cylindrical-LSDI system 

The cylindrical-LSDI was modelled using ZEMAX with two configurations and the 

simulations in terms of alignment errors have been carried out. 
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A.2 Investigation of spot sizes in both x and y direction 

The RMS spot sizes in both tangential plane and sagittal plane were investigated using 

ZEMAX simulation. By setting a series of detectors after the tube lens along the optical axis, the 

recorded spot sizes are listed in the table below.  

 

Distance between tube lens 
and detector (mm) 

RMS Spot size - x axis (mm) RMS Spot size - y axis (mm) 

10 2.48 2.02 
20 2.09 1.71 
30 1.70 1.41 
40 1.31 1.11 
50 0.932 0.803 
60 0.548 0.501 
65 0.358 0.352 
67 0.283 0.295 
69 0.211 0.239 
71 0.143 0.186 
73 0.094 0.142 
75 0.095 0.112 
77 0.16 0.113 

79 0.213 0.143 
81 0.286 0.189 
83 0.360 0.242 
85 0.436 0.298 
90 0.627 0.445 
100 1.01 0.746 
110 1.39 1.05 
120 1.78 1.36 
130 2.17 1.66 
140 2.56 1.97 
150 2.95 2.27 
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A.3 Wavelength calibration data for cylindrical-LSDI 

By using the built light source device (see Figure 4.16) and the commercial spectrometer 

CCS100, the relationships between the spectral lines and pixel numbers are listed in the table 

below. After the quadratic least squares fitting, the coefficients for equation (4.5) can be obtained 

as 

A = 1.3743e-006; 

B = -0.10453; 

C = 628.23; 

Pixel number Wavelength (nm) 

 

Pixel number Wavelength (nm) 

631 562.8862 303 596.8806 
621 563.8248 296 597.5880 
615 564.6463 288 598.4134 
607 565.2331 272 599.9464 
591 566.9939 244 603.0132 
573 568.8727 234 604.0750 
561 570.1647 224 604.9009 
551 571.1045 211 606.4349 
538 572.5144 197 607.8512 
526 573.9247 186 608.7954 
515 575.1002 180 609.5037 
499 576.6346 167 610.9203 
491 577.5693 154 612.2191 
479 578.5101 144 613.2818 
471 579.4511 127 615.0532 
459 580.7451 118 615.9981 
451 581.2158 106 617.2974 
421 584.5110 95 618.3605 
417 584.8641 93 618.7149 
408 585.8060 80 619.8964 
397 586.9834 73 620.7234 
384 588.3965 54 622.6140 
375 589.3388 52 622.9686 
363 590.5167 45 623.7958 
355 591.4592 34 624.8595 
345 592.4018 27 625.4504 
335 593.3115 20 626.1596 
320 594.9945 11 627.2234 
311 595.9375 5 627.8145 
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A.4 Wavelength calibration data for microscope-LSDI 

Likewise, for the microscope-LSDI the relationships between the spectral lines and pixel 

numbers are listed in the table below. The coefficients for equation (4.5) after the quadratic least 

squares fitting are shown as follows. 

A = 9.9998e-007; 

B = -0.08417; 

C = 670.1; 

 

Pixel number Wavelength (nm)  Pixel number Wavelength (nm) 

6 669.5758  391 637.3921 
22 668.2741 409 635.8546 
7 669.3391 427 634.3173 
51 665.9072 445 632.8983 
126 659.5168 470 630.6518 
144 658.0967 486 629.3513 
161 656.5583 496 628.5238 
193 653.9549 508 627.5780 
216 651.9433 517 626.7506 
236 650.2868 531 625.6868 
253 648.8669 549 624.2685 
331 642.3600 564 622.9686 
263 648.0387 574 622.1414 
280 646.6189 589 620.8416 
292 645.5542 632 617.2974 
313 643.8979 604 619.6601 
321 643.1881 618 618.4787 
348 640.9405 624 618.0061 
374 638.6931 638 616.8249 
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Appendix B (MATLAB scripts) 

B.1 FFT based algorithm 

clc 
clear; 
  
pxs=1;                
pxe=480;             % px represents the surface profile direction 
pys=1; 
pye=640;             % py represents the chromaticity axis 
pxl=pxe-pxs+1;  
pyl=pye-pys+1; 
% wavelength distribution 
% A=1.8204E-007;     % Coefficients for 4x microscope-LSDI 
% B=0.04153; 
% C=616.56; 
A = 1.3743e-006; 
B = -0.10453; 
C = 628.34;          % Coefficients for cylindrical-LSDI 
 
index=1; 
for py=(1:pyl) 
    lamda(1,index)=A*py^2+B*py+C; 
    index=index+1; 
end 
% Interpolation step in chromaticity axis 
sampleX(1:pye)=double(lamda(1:pye)); 
sample1_X(1:pye)= 1./sampleX; 
step = (sample1_X(2)-sample1_X(1)); 
interSampleX = sample1_X(1):step:sample1_X(end); 
% Open background data matrix 
fileID = fopen('BackGround.bin'); 
BG=fread(fileID,[480 640],'double'); 
fclose(fileID); 
% Read the captured interferogram 
aoriginal=imread('D:\measurement\FrameLink\30stepheight.bmp'); 
bdouble(1:pxl,1:pyl)=aoriginal(pxs:pxe,pys:pye); 
  
for px=1:pxl 
% Background removing 
Backgound_f=double(BG(px,1:pye)); 
Signal_f=double(bdouble(px,1:pye)); 
sampleYt1=Signal_f./Backgound_f; 
% Interpolation/Coordinate transform 
interSampleYt1 = interp1(sample1_X,sampleYt1,interSampleX, 'spline'); 
% Performing FFT to the interference signal    
FFTlength=size(interSampleX,2); 
fftResult=(1/FFTlength)*fft(interSampleYt1);       
R=abs(fftResult); 
fftFilter(1:length(fftResult))=0;          % Filtering out the unwanted DC 
and phase conjugate  
R(1:2)=0; 
R(round(length(R)/2):length(R))=0; 
[MaxPeak LocPeak]=max(R); 
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    if (LocPeak > 6) 
    LowCutFreq=5; 
    HighCutFreq=10; 
    else 
    LowCutFreq=2; 
    HighCutFreq=4; 
    end 
fftFilter=fftResult;  
fftFilter(1:(LocPeak-LowCutFreq))=0;  
fftFilter((LocPeak+HighCutFreq):length(fftResult))=0;  
ifftFilter=ifft(fftFilter);    % Performing inverse FFT    
phase=imag(log(ifftFilter));   % Extracting the phase from the imaginary  
  
    phase_set(1)=0;    
for j=1:length(phase)-1        % Constructing the Phase_set function  
    if abs(phase(j+1)-phase(j)) >(2*pi*0.9)        
       phase_set(j+1)=phase_set(j)+ 2*pi; 
    else 
    phase_set(j+1)=phase_set(j); 
    end 
end 
phase_final=phase + phase_set; % Adding the Phase_set to the determined phase  
    
% Linear Fitting using least square approach 
C=0; 
D=0; 
E=0; 
F=0; 
FrameNumber=FFTlength; 
CutPhaseStart=60; 
CutPhaseEnd=FrameNumber-(CutPhaseStart-1); 
N=length(phase_final(CutPhaseStart:CutPhaseEnd)); % Cropping the data at both 
ends 
for(i=CutPhaseStart:CutPhaseEnd) 
      C=C+i; 
      D=D+phase_final(i); 
      E=E+(i*i); 
      F=F+(phase_final(i)*i); 
end 
slop=(F-(1/N)*D*C)/(E-(1/N)*(C^2)); 
DC=((1/N)*D)-((slop/N)*C); 
  
for i=1:FrameNumber 
    PhaseFit(i)=DC+(slop*i);  % Continuous phase after Linear fitting 
end 
PhaseShift=PhaseFit(length(PhaseFit))-PhaseFit(1); % Calculating the phase 
variation 
% Calculating the height  
Height(px)=(PhaseShift)*(1/(4*pi*(interSampleX(1)-interSampleX(FFTlength))));     
  
data=Height/1000; % Transferring the data to um scale 
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B.2 Carré algorithm 

clc 
clear; 
  
pxs=1;                
pxe=480;             % px represents the surface profile direction 
pys=1; 
pye=640;             % py represents the chromaticity axis 
pxl=pxe-pxs+1;  
pyl=pye-pys+1; 
% wavelength distribution 
% A=1.8204E-007;     % Coefficients for 4x microscope-LSDI 
% B=0.04153; 
% C=616.56; 
A = 1.3743e-006; 
B = -0.10453; 
C = 628.34;          % Coefficients for cylindrical-LSDI 
index=1; 
for py=(1:pyl) 
    lamda(1,index)=A*py^2+B*py+C; 
    index=index+1; 
end 
% Interpolation step in chromaticity axis 
sampleX(1:pye)=double(lamda(1:pye)); 
sample1_X(1:pye)= 1./sampleX; 
step = (sample1_X(2)-sample1_X(1)); 
interSampleX = sample1_X(1):step:sample1_X(end); 
% Open background data matrix 
fileID = fopen('BackGround.bin'); 
BG=fread(fileID,[480 640],'double'); 
fclose(fileID); 
% Read the captured interferogram 
aoriginal=imread('D:\measurement\FrameLink\30stepheight.bmp'); 
bdouble(1:pxl,1:pyl)=aoriginal(pxs:pxe,pys:pye); 
for px=1:pxl 
% Background removing 
Backgound_f=double(BG(px,1:pye)); 
Signal_f=double(bdouble(px,1:pye)); 
sampleYt1=Signal_f./Backgound_f; 
% Interpolation/Coordinate transformation 
interSampleYt1 = interp1(sample1_X,sampleYt1,interSampleX, 'spline'); 
% Removing the DC 
v=mean(interSampleYt1); 
interSampleYt1=interSampleYt1-v; 
% Performing FFT to the interference signal    
FFTlength=size(interSampleX,2); 
fftResult=(1/FFTlength)*fft(interSampleYt1);     
R=abs(fftResult);              
R(1:2)=0; 
R(round(length(R)/2):length(R))=0; 
[MaxPeak LocPeak]=max(R); 
shift=round((FFTlength/LocPeak)/6);   % Calculating the shift value 
 if mod(shift,2)~=0 
    shift=shift+1; 
end 
QuadIndexS=1+shift+(shift/2); 
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QuadIndexE=FFTlength-(2*shift)+(shift/2);    
counter=0; 
PhaseAll=0; 
for i=QuadIndexS:QuadIndexE 
I1=interSampleYt1(1+counter); 
I2=interSampleYt1(1+shift+counter); 
I3=interSampleYt1(1+2*shift+counter); 
I4=interSampleYt1(1+3*shift+counter);  
%-- Carre algorithm--------------- 
a=(3*(I2-I3))-(I1-I4); 
b=(I2-I3)+(I1-I4); 
c=(I2+I3)-(I1+I4); 
num1=(a*b); 
den=c; 
phase=atan((sqrt(abs(num1)/den^2))); 
num=(I2-I3); 
phase=PhaseUnwraping(num,den,phase); 
%-- End of Carre algorithm ------- 
counter=counter+1; 
PhaseAll(counter)=phase; 
end           
phase_set(1)=0;         
for i=1:length(PhaseAll)-1                     % Constructing the Phase_set 
function set function  
    if (PhaseAll(i+1)-PhaseAll(i)) <(-2*pi*0.9)        
       phase_set(i+1)=phase_set(i)+(2*pi); 
    elseif (PhaseAll(i+1)-PhaseAll(i)) >(2*pi*0.9)  
        phase_set(i+1)=phase_set(i)-(2*pi); 
    else 
    phase_set(i+1)=phase_set(i); 
end 
end 
phase_final=PhaseAll + phase_set;   % Adding the Phase_set to the phase  
% Linear Fitting using least square approach 
C=0; 
D=0; 
E=0; 
F=0; 
FFTlength2=length(phase_final); 
for k=1:FFTlength2  
    C=C+k; 
    D=D+phase_final(k); 
    E=E+(k*k); 
    F=F+(phase_final(k)*k); 
end 
slop=(F-(1/FFTlength2)*D*C)/(E-(1/FFTlength2)*(C^2));  
DC=((1/FFTlength2)*D)-((slop/FFTlength2)*C);  
for n=1:FFTlength2   
    PhaseFit(n)=DC+(slop*n);          % Continuous phase after Linear fitting 
end 
Phasediff=PhaseFit(FFTlength2)-PhaseFit(1); % Calculating the phase variation 
% Calculating the height  
Height(px)=(Phasediff)*(1/(4*pi*(interSampleX(1)-interSampleX(FFTlength2))));     
end 
data=Height/1000;    % Transferring the data to um scale 
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Appendix C (Measurement results) 

C.1 Measurement results of the standard flat artefact 

The standard flat artefact was measured using Talysurf CCI 3000 which is an advanced 3D 

optical metrology tool achieving 0.01 nm vertical resolution over a full 100 µm scan range. The 

objective lens used for this measurement task is 5X magnification with 0.13 NA and 3.6 mm x 

3.6 mm measurement range. The measurement results including the areal surface texture 

parameters and one cross-sectional profile are shown as follows. 

  

2D view of the measured surface/ Areal surface texture parameters 
 
 

 

Cross-sectional profile result 
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AMPLITUDE PARAMETERS  

Sa(um) 0.002 

Sq(um) 0.004 

Ssk -199.939 

Sku 6.553E+04 

Sp(um) 0.335 

Sv(um) 1.794 

Sz(um) 2.130 

HYBRID PARAMETERS  

Sdq 0.001 

Ssc(1/um) 8.433E-05 
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C.2 Measurement results of the 4.707 μm standard step heights 

The measurement results of the 4.707 μm standard step height using CCI 3000 are shown as 

follows. The average height value is calcualted as 4.699 µm (5X objective). 

 

 

4.707 μm  step sample: (a) measured surface map, (b) cross-sectional profile result. 
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C.3 Measurement results of the 100 nm diamond-turned step sample 

The measurement results of the 100 nm diamond-turned step sample using CCI 3000 are 

shown as follows. The measured average heights are calculated as 99 nm, 103 nm, 95 nm and 94 

nm from the left to right (5X objective). 

 

100 nm diamond-turned step sample: (a) measured surface map, (b) cross-sectional profile result. 
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C.4 Measurement results of the 100 nm standard step height 

The measurement results of the 100 nm standard step sample using CCI 3000 are shown as 

follows. The measured average height is calculated as 103.5 nm (5X objective). 

 

 

   100 nm standard step sample: (a) measured surface map, (b) cross-sectional profile result. 
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C.5 Measurement results of the 500 nm reference step sample 

The measurement results of the 500 nm reference step sample using CCI 3000 are shown as 

follows (20X objective). The measured average heights are calculated as 449.8 nm (H1) and 

463.11 nm (H2), respectively. 

 

 

500 nm step sample: (a) measured surface map, (b) cross-sectional profile result. 
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