
University of Huddersfield Repository

Katz, Daniel S., Choi, Sou-Cheng T., Niemeyer, Kyle E., Hetherington, James, Löffler, Frank, 
Gunter, Dan, Idaszak, Ray, Brandt, Steven R., Miller, Mark A., Gesing, Sandra, Jones, Nick D., 
Weber, Nic, Marru, Suresh, Allen, Gabrielle D., Penzenstadler, Birgit, Venters, Colin, Davis, Ethan, 
Hwang, Lorraine, Todorov, Ilian, Patra, Abani and de Val-Borro, Miguel

Report on the 3rd Workshop on Sustainable Software for Science: Practice and Experiences 
(WSSSPE3)

Original Citation

Katz, Daniel S., Choi, Sou-Cheng T., Niemeyer, Kyle E., Hetherington, James, Löffler, Frank, 
Gunter, Dan, Idaszak, Ray, Brandt, Steven R., Miller, Mark A., Gesing, Sandra, Jones, Nick D., 
Weber, Nic, Marru, Suresh, Allen, Gabrielle D., Penzenstadler, Birgit, Venters, Colin, Davis, Ethan, 
Hwang, Lorraine, Todorov, Ilian, Patra, Abani and de Val-Borro, Miguel (2015) Report on the 3rd 
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3). In: 3rd 
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3), 28th - 29th 
September 2015, Boulder, CO, USA. (Unpublished) 

This version is available at http://eprints.hud.ac.uk/id/eprint/28865/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



REPORT ON THE THIRD WORKSHOP ON SUSTAINABLE SOFTWARE FOR
SCIENCE: PRACTICE AND EXPERIENCES (WSSSPE3)

DANIEL S. KATZ(1), SOU-CHENG T. CHOI(2), KYLE E. NIEMEYER(3), JAMES HETHERINGTON(4),
FRANK LÖFFLER(5), DAN GUNTER(6), RAY IDASZAK(7), STEVEN R. BRANDT(5), MARK A. MILLER(8),
SANDRA GESING(9), NICK D. JONES(10), NIC WEBER(11), SURESH MARRU(12), GABRIELLE ALLEN(13),

BIRGIT PENZENSTADLER(14), COLIN C. VENTERS(15), ETHAN DAVIS(16), LORRAINE HWANG(17),
ILIAN TODOROV(18), ABANI PATRA(19), MIGUEL DE VAL-BORRO(20)

Abstract. This report records and discusses the Third Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE3). The report includes a description of the keynote
presentation of the workshop, which served as an overview of sustainable scientific software. It also
summarizes a set of lightning talks in which speakers highlighted to-the-point lessons and challenges
pertaining to sustaining scientific software. The final and main contribution of the report is a
summary of the discussions, future steps, and future organization for a set of self-organized working
groups on topics including developing pathways to funding scientific software; constructing useful
common metrics for crediting software stakeholders; identifying principles for sustainable software
engineering design; reaching out to research software organizations around the world; and building
communities for software sustainability. For each group, we include a point of contact and a landing
page that can be used by those who want to join that group’s future activities. The main challenge
left by the workshop is to see if the groups will execute these activities that they have scheduled,
and how the WSSSPE community can encourage this to happen.

(1) Computation Institute, University of Chicago & Argonne National Laboratory, Chicago, IL, USA;
d.katz@ieee.org.

(2) NORC at the University of Chicago and Illinois Institute of Technology, Chicago, IL, USA; sctchoi@uchicago.edu.
(3) School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA;

kyle.niemeyer@oregonstate.edu.
(4) Research Software Development Group, University College London, UK; j.hetherington@ucl.ac.uk.
(5) Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA;

{knarf,sbrandt}@cct.lsu.edu.
(6) Lawrence Berkeley National Laboratory, Berkeley, USA; dkgunter@lbl.gov.
(7) RENCI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; rayi@renci.org.
(8) University of California, San Diego, CA, USA; mmiller@sdsc.edu.
(9) Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA; sandra.gesing@nd.edu.
(10) New Zealand eScience Infrastructure (NeSI), University of Auckland, Auckland, NZ; nick.jones@nesi.org.nz.
(11) University of Washington, Seattle, WA, USA; nmweber@uw.edu.
(12) Indiana University, Bloomington, IN, USA; smarru@iu.edu.
(13) National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL,

USA; gdallen@illinois.edu.
(14) College of Computer Engineering & Computer Science, California State University, Long Beach, CA, USA;

birgit.penzenstadler@csulb.edu.
(15) School of Computing and Engineering, University of Huddersfield, Huddersfield, UK; c.venters@hud.ac.uk.
(16) UCAR Unidata, Boulder, CO, USA; edavis@ucar.edu.
(17) University of California, Davis, CA, USA; ljhwang@ucdavis.edu.
(18) Science & Technology Facilities Council, UK; ilian.todorov@stfc.ac.uk.
(19) Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, USA; abani@buffalo.edu.
(20) Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA; valborro@princeton.edu.

1

ar
X

iv
:1

60
2.

02
29

6v
1 

 [
cs

.S
E

] 
 6

 F
eb

 2
01

6



2

1. Introduction

The Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3)1

was held on 28–29 September 2015 in Boulder, Colorado, USA. Previous events in the WSSSPE
series are WSSSPE12 [1, 2], held in conjunction with SC13; WSSSPE1.13, a focused workshop
organized jointly with the SciPy conference4; WSSSPE25 [3, 4], held in conjunction with SC14; and
WSSSPE2.16, a focused workshop organized again jointly with SciPy7.

Progress in scientific research is dependent on the quality and accessibility of software at all
levels. Hence it is critical to address challenges related to development, deployment, maintenance,
and overall sustainability of reusable software as well as education around software practices. These
challenges can be technological, policy based, organizational, and educational; and are of interest to
developers (the software community), users (science disciplines), software-engineering researchers,
and researchers studying the conduct of science (science of team science, science of organizations,
science of science and innovation policy, and social science communities). The WSSSPE1 workshop
engaged a broad scientific community to identify challenges and best practices in areas of interest
to creating sustainable scientific software. WSSSPE2 invited the community to propose and discuss
specific mechanisms to move towards an imagined future for software development and usage in
science and engineering. But WSSSPE2 did not have a good way to enact those mechanisms, or to
encourage the attendees to follow through on their intentions.

The WSSSPE3 workshop included multiple mechanisms for participation and encouraged team
building around solutions. WSSSPE3 strongly encouraged participation of early-career scientists,
postdoctoral researchers, graduate students, early-stage researchers, and those from underrepre-
sented groups, with funds provided to the conference organizers by the Moore Foundation, the
National Science Foundation (NSF), and the Software Sustainability Institute (SSI) to support the
travel of potential participants who would not otherwise be able to attend the workshop. These
funds allowed 16 additional people to attend and participate.

WSSSPE3 also included two professional event organizers/facilitators from Knowinnovation who
helped the organizing committee members plan the workshop agenda, and during the workshop,
they actively engaged participants with variously tools, activities, and reminders.

This report is based on collaborative notes taken during the workshop, which were linked from
the GitHub issues that represented the potential and actual working groups8. Overall, the report
discusses the organization work done before the workshop (§2); the keynote (§3); a series of lightning
talks (§4). The report also gives summaries of action plans proposed by the working groups (§5), and
some conclusions (§6). Lists of the organizing committee (Appendix A), the registered attendees
(Appendix B), and the travel award recipients (Appendix C) are compiled. Finally, the report
includes longer descriptions of the activities that occurred in each of the working groups that made
substantial progress (Appendices D–L).

2. Calls for Participation

WSSSPE3 was based on the work done in WSSSPE1 and WSSSPE2, but aimed at starting a
process to make progress in sustainable software, as the calls for participation said:

The WSSSPE1 workshop engaged the broad scientific community to identify
challenges and best practices in areas relevant to sustainable scientific software.
WSSSPE2 invited the community to propose and discuss specific mechanisms to
move towards an imagined future practice of software development and usage in

1http://wssspe.researchcomputing.org.uk/wssspe3/
2http://wssspe.researchcomputing.org.uk/wssspe1/
3http://wssspe.researchcomputing.org.uk/wssspe1-1/
4https://conference.scipy.org/scipy2014/participate/wssspe/
5http://wssspe.researchcomputing.org.uk/wssspe2/
6http://wssspe.researchcomputing.org.uk/wssspe2-1/
7http://scipy2015.scipy.org/ehome/115969/286469/
8https://github.com/issues?q=label%3A%22WSSSPE3+activity%22

http://wssspe.researchcomputing.org.uk/wssspe3/
http://wssspe.researchcomputing.org.uk/wssspe1/
http://wssspe.researchcomputing.org.uk/wssspe1-1/
https://conference.scipy.org/scipy2014/participate/wssspe/
http://wssspe.researchcomputing.org.uk/wssspe2/
http://wssspe.researchcomputing.org.uk/wssspe2-1/
http://scipy2015.scipy.org/ehome/115969/286469/
https://github.com/issues?q=label%3A%22WSSSPE3+activity%22


3

science and engineering. WSSSPE3 will organize self-directed teams that will col-
laborate prior to and during the workshop to create vision documents, proposals,
papers, and action plans that will help the scientific software community produce
software that is more sustainable, including developing sustainable career paths for
community members. These teams are intended to lead into working groups that
will be active after the workshop, if appropriate, working collaboratively to achieve
their goals, and seeking funding to do so if needed.

The first call for participation requested lightning talks, where each author could make a brief
statement about work that either had been done or was needed, with the goal of contributing to
the discussion of one or more working groups. There were 24 lightning talks submitted; after a
peer-review process, 16 were accepted, as discussed further in Section 4.

The first call also discussed the potential action topics that came out of WSSSPE2, and requested
additional suggestions. The combination of existing and new topics led to the following 18 potential
topics that were advertised in the subsequent calls for participation:

• Development and Community
– Writing a white paper/review paper about best practices in developing sustainable software
– Documenting successful models for funding specialist expertise in software collaborations
– Creating and curating catalogs for software tools that aid sustainability (perhaps catego-

rized by domain, programming languages, architectures, and/or functions, e.g., for code
testing, documentation)

– Documenting case studies for academia/industry interaction
– Determining effective strategies for refactoring/improving legacy scientific software
– Determining principles for engineering design for sustainable software
– Create a set of guidance giving examples of specific metrics for the success of scientific

software in use, why they are chosen, what they are useful to measure, and any chal-
lenges/pitfalls; then publish this as a white paper

• Training
– Writing a white paper on training for developing sustainable software, and coordinating

multiple ongoing training-oriented projects
– Developing curriculum for software sustainability, and ideas about where such curriculum

would be presented, such as a summer training institute
• Credit

– Hacking the credit and citation ecosystem (making it work, or work better, for software)
– Developing a taxonomy of contributorship/guidelines for including software contributions

in tenure review
– Documenting case studies of receiving credit for software contributions
– Developing a system of awards and recognitions to encourage sustainable software

• Publishing
– Developing a categorization of journals that publish software papers (building on existing

work), and case studies of alternative publishing mechanisms that have been shown to
improve software discoverability/reuse, e.g., popular blogs/websites

– Determining what journals that publish software paper should provide to their reviewers
(e.g., guidelines, mechanisms, metadata standards)

• Reproducibility and Testing
– Building a toolkit that could allow conference organizers to easily add a reproducibility

track
– Documenting best practices for code testing and code review

• Documentation
– Develop landing pages on the WSSSPE website (or elsewhere) that enable the community

to easily find up-to-date information on a WSSSPE topic (e.g., software credit, scientific
software metrics, testing scientific software).



4

3. Keynote

WSSSPE3 began with a keynote speech delivered by Professor Matthew Turk from the Depart-
ment of Astronomy, University of Illinois, titled Why Sustain Scientific Software?. Turk is a prolific
scientific software practitioner and has extensive experiences working on large collaborative projects
employing modern computing tools [5]. He also co-organizes and champions WSSSPE events.

In his keynote address, Turk recapped the course of development of WSSSPE workshops over the
past few years, alongside his career development from a postdoc to an academic. The first WSSSPE
workshop was at the Supercomputing conference (SC13) in 2013, but he observed that the notion
of sustainable scientific software drew in an audience beyond supercomputing. In the following
year, WSSSPE1.1 at SciPy had speakers talking about how software has been sustained inside the
scientific Python community. WSSSPE2 at SC14 had breakout group discussions coming up with
actionable items, and WSSSPE2.1 at SciPy 2015 was similar. Turk noted the different atmosphere
of the surrounding large conferences, despite similar WSSSPE participants.

WSSSPE3 left the traditional Supercomputing Conference environment this year, and in Turk’s
words, this change spoke to the fact that scientific software comes from many different types of
inquiries, deployment, strategies for maintenance, users, and ways of measuring the value of a piece
of software. It appeared to Turk that the supercomputing community generally adopts some top-
down approaches, whereas the SciPy community more often than not uses more bottom-up systems.
The essential messages perceived were also often bipolar: the supercomputing community thinks
that software is getting harder, with exascale computing and optimization issues in mind; but the
SciPy community thinks that software is becoming better, with emerging tools such as Jupyter and
productivity packages for research workflows. Admitting such comparisons are somewhat unfair
generalizations, Turk reminded the audience that the different approaches bring different types of
ideas to the table, and he welcomed WSSSPE3 being conducted outside existing preconceptions.

Returning to the topic of his talk, Turk invited the audience to picture scientific software as a
flower on a landscape under the Sun, which may represent a number of measurable factors such
as number of citations; growth of a community and number of contributors; amount of funding;
prestigious prizes awarded; stability of the community in terms of leadership transitions, serving
community needs, not breaking test suites, and performance on new architectures. But all these
metrics are strictly speaking proxies for the values and the impact scientific software bears. What
we can measure does not give us direct insight—it just gives us proxies of insight.

Turk then moved onto various different definitions of sustainability. His favorite one was “keeping
up with bug reports,” where even if no new features were added, the software remains sustainable.
Another definition of sustainability Turk mentioned was “adding of new features,” or “maintaining
the software for a long period of time” such as the cases of TEX or LATEX with community help. A
notion Turk heard often at supercomputing conferences was that sustainable software “continues
to work on new architectures.” Yet another metric was “people continuing to be able to learn how
to use and apply the software.” A funder Turk heard talked about sustainability as “continuing
to get funded.” Turk also recalled that Greg Wilson, among others, said in WSSSPE1.1 that his
view of sustainable software was software that “continued to give the same results over time.” A
last measure of sustainability Turk presented was “the ability to transition between different people
developing and using a piece of software.”

At WSSSPE1, several models were presented for ensuring sustainability. Turk considered that
a familiar one was a funded piece of software where an external agency provided funds to a group
who are not necessarily exclusively working on and developing the software, keeps it going, and
provides it to the scientific community. The model of productized software, in which a piece of
software has grown to the point that research groups or people are willing to support it with some
amount of funding, for instance, a subscription to use cloud services that deploy a piece of software,
or purchase of a piece of software. A final model Turk felt conflicted about is a volunteer model
that is traditional old-school—not modern-day open source—development.



5

Turk discussed whether productizing scientific software was synonymous with being sustainable
and self-sufficient. He thought it was not necessarily the case and furthermore, it could lead to a
divergence of interests between users and developers.

Turk reminded the audience that the volunteer model means unpaid labor. On this note, he
recommended Ashe Dryden’s blog post on the ethics of unpaid labor and the open source software
community9. Oftentimes, a person funded to work full time on a scientific project can spend a small
amount of time for working on a piece of software necessary for that project. However, researchers’
abilities to participate in that volunteer community are not always the same and may not always
be aligned with their research projects. From Turk’s experience, we cannot always rely on unpaid
labor and volunteer time to sustain a piece of software—this came down to the notions of the top-
down and the bottom-up approaches, i.e., the funded versus the grassroots. However, Turk pointed
out that bottom-up, volunteer-driven projects can be just as large-scale as a top-down software
development project.

Turk said that sustaining scientific software really meant to him conducting scientific inquiries,
often by some specific software, and sustaining the people we care about, our careers, and the future
of our fields. According to Turk, we all have an invested stake in sustaining scientific software.
Hence, having “sustained” projects can suffocate new projects, so we need to make sure we don’t
cause novel ideas and packages to suffer at the hands of the status quo.

Turk talked about possible reasons why we want to sustain scientific software: devotion to science
and interests in pursuing the next stage of research; fun and creative thrill in writing codes and
papers; usefulness with measurable impacts, for example, LINPACK and HDF groups providing
data storage to satellites, which goes beyond usefulness to necessity. Lastly, Turk presented his
wishlist of questions to be answered in the future:

• How do we ship a product on time when dealing with a mix of funding models and motivations
especially when we rely on volunteers?

• How do we know when it is time to end some software and move on? For example, should we
stop sustaining Python and switch to Julia and Javascript?

• How can productized software balance its future versus its past, or the emerging needs of the
customers versus the existing needs of the development community?

• How can we help avoid burnout and retain the joy in the communities?
• How can we reduce systemic bias, which goes back to Dryden’s blog post especially on how
ethics of unpaid labor disproportionately affect underrepresented communities?

4. Lightning Talks

The lightning talks were intended to give an opportunity for attendees to quickly highlight an
important issue or a potential solution.
(1) Benjamin Tovar and Douglas Thain: Freedom vs. Stability: Facilitating Research

Training While Supporting Scientific Research Benjamin Tovar presented a case study
of “The Cooperative Computing Lab” at the University of Notre Dame, which is a small group
of individuals whose main tasks are collaborating with people that have large-scale computing
problems, operating various parallel computer systems, conducting computer science research,
and developing open source software. One of the main challenges they face is finding a balance
between flexibility/training and stability/quality. Their current solution for ensuring the latter
was to add a software engineer (the presenter) to the existing team of faculty and students,
who now also serves as a “spring” between flexibility and stability.

(2) Birgit Penzenstadler, Colin Venters, Christoph Becker, Stefanie Betz, Ruzanna
Chitchyan, Letícia Duboc, Steve Easterbrook, Guillermo Rodriguez-Navas, and
Norbert Seyff: Manifesting the Ghost of the Future: Sustainability The concept
of sustainability has become a topic of interest in the field of computing, which is evidenced
by the increase in the number of events that focus on the topic. Nevertheless, it is not well

9http://www.ashedryden.com/blog/the-ethics-of-unpaid-labor-and-the-oss-community

http://www.ashedryden.com/blog/the-ethics-of-unpaid-labor-and-the-oss-community


6

understood yet. Birgit Penzenstadler argued that we often define sustainability too narrowly.
Instead, sustainability at its heart is a systemic concept and must be viewed from a range of
different dimensions including environmental, economic, individual, social, and technical. She
introduced the Karlskrona Manifesto on Software Design [6], which distills knowledge from a
broad range of related work on the topic of sustainability into a set of (mis-)perceptions and
principles. The manifesto does not proclaim that there is an easy, one-size-fits-all solution
around the corner, but rather points out that sustainability is a “wicked problem” and is
often misunderstood. Due to these misperceptions, even though sustainability’s importance is
increasingly recognized, many software systems are unsustainable. Even more alarming is that
most software systems’ broader impacts on sustainability are unknown. To change this, the
Karlskrona Manifesto proposes nine principles and commitments. These commitments are not
dogmatic laws, but rather commitments to rethink, to move beyond the silo mentality, and to
analyze in more depth. As such, they do not restrict, but rather open up a space for discussion.

(3) Abani Patra, Hossein Aghakhani, Nikolay Simakov, Matthew Jones, and Tevfik
Kosar: Integrating New Functionality Using Smart Interfaces to Improve Pro-
ductivity of Legacy Tools Abani Patra presented an example of how the community using
Titan2D, a geoflow simulation software, increased the productivity of their tools by improving
both code and data layout. The main obstacles in this change were the non-existence of a
common version control system for the source code, coupled with multiple versions of the same
code base, the fixed format of input files, that many input values were set as compilation flags,
and that the internal data layout was not suitable for modern technologies (e.g., vectorization,
accelerators). The approaches of the Titan2D developers included reinforcing the code struc-
ture using multiple layers of Python and C++ interfaces, and a redesign of the data layout to
be more suitable for modern CPUs and accelerators.

(4) Abigail Cabunoc Mayes, Bill Mills, Arliss Collins, and Kaitlin Thaney: Collabo-
rative Software Development as Sustainable Software: Lessons from Open Source
Abigail Cabunoc Mayes combines two properties of open source that, together, create a suitable
habitat for sustainable software. The first of the two properties, public, does not only mean
public code. It also includes public discussions, a public process of including contributions,
and an open license. The second property, participatory, stresses the importance of reaching
out to the community and helping potential new members by providing better documentation
and learning experiences, like code review and examples of good first bug reports. Together,
Abigail concluded, these two properties not only lead to higher quality, reusability, and ease of
understanding, but also eventually, to sustainability.

(5) Louise Kellogg and Lorraine Hwang: Advancing Earth Science through Best Prac-
tices in Open Source Software: Computational Infrastructure for Geodynamics
Lorraine Hwang presented experiences with the Computational Infrastructure for Geodynam-
ics (CIG), a community software with a worldwide user base. Like others, their main goals
include high usability, sustainability, and reproducibility. As a means to achieve these goals,
various communication channels have been developed, such as mailing lists, wikis, workshops,
hackathons, tutorials, and webinars. In order to contribute to the infrastructure, codes must
adhere to specified minimum standards with the desire that all codes are working toward target
standards. These include, e.g., the use of version control, certain coding styles, the presence
and nature of code tests and documentation, and certain user workflows.

(6) Lorraine Hwang, Joe Dumit, Alison Fish, Louise Kellogg, Mackenzie Smith, and
Laura Soito: Software Attribution for Geoscience Applications in the Computa-
tional Infrastructure for Geodynamics In a second talk, Lorraine Hwang mentioned a
variety of ways to cite efforts within the framework, including science papers, code papers, user
manuals, and the CIG website. An analysis of the resulting citations showed that 80% of papers
that use CIG codes mention the code name, and about the same number includes a citation.
Only about 20% acknowledge CIG. Within the same sample of papers, about one fifth use an
URL to cite codes (including non-CIG codes), and only about one eighth specify the version



7

used. Compared to other codes, CIG seems to be much better cited. In part, this is attributed
to the fact that CIG requires that donated software provide a citable paper specified in the
User Manual. The project is working on tools and methods to generate attribution information
automatically.

(7) Mike Hildreth, Jarek Nabrzyski, Da Huo, Peter Ivie, Haiyan Meng, Douglas Thain,
and Charles Vardeman: Data And Software Preservation for Open Science (DAS-
POS) DASPOS is an NSF-funded multi-disciplinary effort, located at Notre Dame and Chicago,
that links the high energy physics effort to other disciplines such as biology, astrophysics, and
digital curation. It includes physicists, digital librarians, as well as computer scientists, and
aims to achieve some commonality across disciplines. Examples are meta-data descriptions of
archived data, computational descriptions, descriptions of how data was processed, questions
such as whether computation replication can be automated, and what the impact of access
policies on the preservation infrastructure is. One of the products of this effort is a suite of
tools that deals with this preservation, and the questions was posed whether that software itself
is sustainable. Points that were brought up included the need for a user community depending
on a given software, and the need to provide added value for its users. An important method to
achieve this was to work with the user community from the start, and to budget that way. For
the specific example of the preservation software, this means that besides adding value to the
community, it needs to be transparent to their workflows, i.e., not requiring additional effort to
preserve “research objects.”

(8) James Hetherington, Jonathan Cooper, Robert Haines, Simon Hettrick, James
Spencer, Mark Stillwell, Mike Croucher, Christopher Woods, and Susheel Varma:
An update from UK Research Software Engineers James Hetherington started by listing
some of the problems research software faces, which include poor standard of verification and
low levels of reuse. For a long time, technical solutions to such technical problems were focus
of the eResearch community, including research software distributions, grids, middleware and
workflows. Some limited adoption can be seen today in research communities, but the main
problems have not been solved to a sufficient level. Hetherington hypothesized that instead
of technical solutions, social innovation is needed: a new role in the academic system focused
on research software that combines the best parts of a craftsperson and a scholar. However,
social innovation in centuries-old institutions is hard. Alternatives to such a new role would
have to include rewards for good research software, recognition of software as academic output,
and rejecting submissions based on irreproducible computational results. Some advantages of
research software engineering (RSE) groups include the possibility of training in reproducible
computational research, providing collaborations for researchers who do not want to serve as
programmers, and creating synergies with research computing platforms. The success of such a
group would be measured by the output and quality of the research software. Members could be
part of Research Computing or faculty. They would not be independent researchers, but would
have to have a research background. An attempt to form a community of RSE groups within the
UK has been underway for several years, including funding from the UK Research Council. An
open question is whether this approach can be adopted in other countries, including the USA.

(9) Dan Gunter, Sarah Poon, and Lavanya Ramakrishnan: Bringing the User into
Building Sustainable Software for Science Dan Gunter’s main question was, “What is
needed to develop sustainable software?”. Beyond the usual suspects of funding, proficient
developers, good design, and software engineering practices, Dan placed the users. He explained
this using a traditional software-development model starting from gathering requirements, and
reaching release through a design, development, and testing phase. The main deficiency with
this approach was pointed out to be the too-late interaction with users. Instead, an alternative
approach was proposed that, at first, skips the development phase and repeatedly goes through
requirement gathering, design and user interaction/learning phases, and only eventually starts
development once an agreement is reached, leading to an increased user satisfaction, higher
adoption, and eventually to sustained software.



8

(10) Dan Gunter, Adam Arkin, Rick Stevens, Robert Cottingham, Sergei Maslov, and
the KBase Project: Challenges of a Sustainable Software Platform for Predictive
Biology: Lessons Learned on the KBase Project Dan Gunter presented experiences
and lessons learned as part of KBase, an open software and data platform for addressing the
grand challenge of systems biology: predicting and designing biological function. KBase is a
unified system that integrates data and analytical tools for comparative functional genomics of
microbes, plants, and their communities. However, it is also a collaborative environment for
sharing methods and results, and placing those results in the context of knowledge in the field.
Being a large, multi-institutional project, one of the big challenges is to agree on standards to
enable a single, maintainable system. Working in isolation does not work (anymore) within this
field, and the community in the field also does not have standards for software engineering. This
is contrasted to computer science research, where software engineering standards shorten design
cycles, leading to more time for highly rewarded activities like publishing, performance studies,
graduating students, or protecting ideas before publication. Instead of this more traditional
approach, KBase uses a variation on the “Scrum” methodology. After picking projects and team
members, four to five teams work on projects for about two weeks before a one-week evaluation
by the executive committee. Based on their assessment new teams and projects might be chosen
before iteratively restarting the “agile” development cycle. This process is intentionally open
and documented.

(11) Yolanda Gil, Chris Duffy, Chris Mattmann, Erin Robinson, and Karan Venayag-
amoorthy: The Geoscience Paper of the Future Initiative: Training Scientists in
Best Practices of Software Sharing Erin Robinson presented an approach to overcome
some hurdles in scientific publishing: disconnects among experimental data, research software,
and publications. A current effort in the Geosciences is the “Geoscience Paper of the Future,”
which includes four elements. First, it forms a modern paper including text, data, and pointers
to supplementary materials. Second, it is reproducible, including data processing, workflow,
and visualization tools. Third, it is part of open science, which includes being publicly available
under open licenses, and providing meta-data. Last but not least, it uses digital scholarship
elements like persistent identifiers for software, data, and authors, and it cites both data and
software. OntoSoft is a tool for helping with this effort, providing software stewardship for the
Geosciences. As part of this initiative, a special issue of a journal in Geoscience areas is planned
to include only Geoscience papers of the future, with submissions open until the end of 2015.
In addition, training sessions are provided to geoscientists to learn best practices in software
and data sharing, provenance documentation, and scholarly publication.

(12) Neil Chue Hong: Building a Scientific Software Accreditation Framework Neil Chue
Hong presented a proposal to build a scientific software accreditation framework. One of the
aims of such a framework would be to measure how “good” a given piece of software is, and to
evaluate how this can be effectively measured in the first place. This can be compared to the
effort of the standardized, easy to read, and understandable nutritional labeling of food, which
only contain a small set of categories. However, such a framework for software would be more
difficult due to different existing community norms. The challenges such a framework faces
include that many measurements are subjective, that many metrics are too costly, and that
self-assessment needs to be encouraged. Possible categories would include availability, usability,
transferability, among others. Such a framework could enable both improvement of specific
software, as well as comparisons of similar software. An accreditation by such a framework
could then be part of software management plans, ensuring that software is accessible and
reusable throughout the proposed project and beyond.

(13) Jeffrey Carver: On the Need for Software Engineering Support for Sustainable
Scientific Software Carver argued that for scientific software to be truly sustainable, there
is a need for developers to use appropriate software engineering practices. His experience
interacting with scientific teams indicates that choosing and tailoring these practices is not
a trivial exercise. There is a general culture clash between software engineering and science



9

that hinders our ability to communicate and choose appropriate methods. In addition, many
experienced scientific software developers appear to be unaware of software engineering practices
that may be beneficial to them. The most appropriate software engineering practices are those
that are lightweight, properly tailored, and focus on the key software development problems
faced by scientists. In order to increase the use of software engineering in science, we need
more documented success stories. These successes need to be socialized within the scientific
community through workshops like the Software Engineering for Science workshop series10 and
the new Software Engineering track in Computing in Science and Engineering magazine.

(14) Matthias Bussonnier: User Data Collection in Open Source This talk highlighted an
attempt to solve the common problem for open source development: it is difficult to collect
information about how many people use particular software, how often, which version, which
parts of the software, or on which operating system. Current solutions include surveys, but
these have high uncertainties. A different approach is based on automatic “call-backs” that
collect these information at runtime and send it to a central place for analysis. Problems with
this approach include obtaining agreement from the user, legal issues, increased maintenance
(of servers), ethical questions, and also the lack of a common infrastructure. Some of these
problems are of a social nature and have to be solved as such, but the last problem (a missing
common infrastructure) is attacked by the sempervirens project [7], which is developing common
APIs and a library implementation for common, repeating tasks such as obtaining user consent.
Results are uploaded not directly to project servers, but to neutral third parties that only publish
aggregated statistics to projects.

(15) Alice Allen: We’re giving away the store! (Merchandise not included) Alice Allen
described the Astrophysics Source Code Library (ascl.net), an increasingly used way to obtain a
unique ID for astrophysics software that is indexed by indexing services and can be cited. ASCL
offers clones of existing infrastructure, provides server space and computing resources, shares
innovations, and permits moves elsewhere. Users provide a domain name, then control and
configure their site and use it as intended, gather their codes as they wish, share innovations,
and protect the provided computing environment.

(16) Stan Ahalt, Bruce Berriman, Maxine Brown, Jeffrey Carver, Neil Chue Hong, Alli-
son Fish, Ray Idaszak, Greg Newman, Dhabaleswar Panda, Abani Patra, Elbridge
Gerry Puckett, Chris Roland, Douglas Thain, Selcuk Uluagac, and Bo Zhang: Sci-
entific Software Success: Developing Metrics While Developing Community The
effort behind this talk given by Ray Idaszak started from a breakout group at an NSF SI2
workshop in 2015, and centers around building a framework for creating metrics for scientific
software. This framework would improve both the metrics and the software it evaluates, and
could also serve as a tool for building a community around the idea. With especially the
last-mentioned idea (building a community) in mind, a software “peer review group” would
be created, representing stakeholders who will self-review software created by their respective
communities, and will concurrently develop metrics. The whole project should be community-
governed, without a single institution overseeing the activities or infrastructure, with the hope
to evolving community-generated and adopted standards. The generation of metrics would
be tied to the actual evaluation of software, creating an incentive by improving the evaluated
software itself during this process. The framework code would provide infrastructure for the
creation of metrics and evaluation, and forums for generation of software success metrics. It
would also support code reviews of the evaluated software. An open question is whether it is
possible to fit the resulting metrics in a common template. So far, this is still in a design phase,
with a white paper at the CSESSP workshop 2015 and this talk, but the WSSSPE workshops
are seen as a forum for the community to assemble and act, and is planned to be used also in
the future to build this community and framework.

10http://www.SE4Science.org/workshops

http://www.SE4Science.org/workshops


10

5. Working Groups

5.1. White paper/journal paper about best practices in developing sustainable software.
Reviewing multiple past articles and talks at different meetings like WSSSPEx [2, 4, 8, 9, 10] and
analyzing and promoting sustainable scientific software makes it clear that there are several common
and recurring ideas that underpin success in developing sustainable software. However, outside of
a small community, this knowledge is not widely shared. This is especially true for the large
community of scientists who generate most of the software used by scientists but are not primarily
software developers. In this scenario, a clear and precise exposition of these best practices collected
from many sources and open collaboration among all in the community in a single source (e.g.,
journal paper, tutorial) that can be widely disseminated is necessary and likely to be very valuable.

5.1.1. Fit with related activities. The creation of such a “best practices” document will build upon
the range of activities and topics discussed at WSSSPE3 and associated prior meetings. We will
attempt to distill the emerging body of knowledge into this document. The large number of articles
from the NSF funded SI2 projects (SSE and SSI), “lightning talks”, “white papers,” and reports
from different workshops have created a large if somewhat diffuse source for this report.

5.1.2. Discussion. Core questions that will need to be explored are in reproducibility, reliability,
usability, extensibility, knowledge management, as well as continuity (transitions between people).
Answers to these questions will guide us on how a software tool becomes part of the core workflow
of well identified users (stakeholders) relating to tool success and hence sustainability. Ideas that
may need to be explored include:

• Requirements engineering to create tools with immediate uptake;
• When should software “die”?
• Catering to disruptive developments in environment (e.g., new hardware, new methodology);
• Dimensions of sustainability: economic, technical, environmental and obsolescence.
Sustainability requires community participation in code development and/or a wide adoption of

software. The larger the community base is using a piece of software, the better are the funding
possibilities and thus also the sustainability options. Additionally developer commitment to an
application is essential and experience shows that software packages with an evangelist imposing
strong inspiration and discipline are more likely to achieve sustainability. While a single person can
push sustainability to a certain level, open source software also needs sustained commitment from
the developer community. Such sustained commitments include diverse tasks and roles, which can
be fulfilled by diverse developers with different knowledge levels. Besides developing software and
appropriate software management with measures for extensibility and scalability of the software,
active (expertise) support for users via a user forum with a quick turnaround is crucial. The barrier
to entry for the community as users as well as developers has to be as low as possible.

For additional information about the discussion, see Appendix D.

5.1.3. Plans. The creation of a document on best practices needs a large and diverse community
involved. We have enlisted over ten contributors from the attendees at the WSSSPE3 and those
on the mailing list. The primary mechanism for developing this document will be to examine and
analyze the success of several well known community scientific software and organizations supporting
scientific software. We will attempt then to abstract general principles and best practices. Some
of the tools identified for such analysis are the general purpose PETSc toolkit for linear system
solution, NWChem for computational chemistry and the CIG (Computational Infrastructure for
Geodynamics) organization dedicated to supporting an ensemble of related tools for the geodynamics
community. We also established a timeline and a rough outline (see Appendix D) for the report.
Timeline:

• 28 Dec: Introduction and scope finished
• 06 Jan: Sections assigned
• 31 Jan: Analyzing funding possibilities for survey



11

• 31 Jan: First versions of section
• 15 Feb: Distribution to WSSSPE community
• 31 Mar: Final version of white paper
• 30 Apr: Submission of peer-reviewed paper?

5.1.4. Landing Page. The landing page with instructions, timeline and the white paper is here:
https://drive.google.com/drive/folders/0B7KZv1TRi06fbnFkZjQ0ZEJKckk. Discussions can be
also continued in https://github.com/WSSSPE/meetings/issues/42.

5.2. Funding Research Programmer Expertise. Research Software Engineers (RSEs)—those
who contribute to science and scholarship through software development—are an important part
of the team needed to deliver 21st century research. However, existing academic structures and
systems of funding do not effectively fund and sustain these skills. The resulting high levels of
turnover and inappropriate incentives are significant contributing factors to low levels of reliability
and readability observed in scientific software. Moreover, the absence of skilled and experienced
developers retards progress in key projects, and at times causes important projects to fail completely.

Effective development of software for advanced research requires that researchers work closely
with scientific software developers who understand the research domain sufficiently to build mean-
ingful software at a reasonable pace. This requires a collaborative approach—where developers
who are fully engaged or invested in the research context are co-developing software with domain
academics.

5.2.1. Fit with related activities. The solution we envision entails creating an environment where
software developers are a stable part of a research team. Such an environment mitigates the risk of
losing a key developer at a critical moment in a projects lifetime, and provides the benefits of building
a store of institutional knowledge about specific projects as well as about software development for
today’s research. Our vision is to find a way to promote a university/research institute environment
where software developers are stable components of research project teams.

One strategy to promote stability is implementing a mechanism for developers to obtain academic
credit for software development work. With such a mechanism in place, traditional academic funding
models and career tracks could properly sustain individuals for whom software development is their
primary contribution to research. A contributing factor to the problem with the current academic
reward system is the devastating effect on an academic publication record resulting from time in
industry; such postings often develop exactly the skills that research software engineers need, yet
returns to university positions following an industry role are penalized by the current structures.
Retention of senior developers is hard, because these people are high in demand by the economy.
However, people who have a PhD in science and enter industry, may desire to return for diverse
reasons, and should be welcomed back.

While developing new mechanisms in the current academic reward system is a worthy aspirational
goal, such a dramatic change in this structure does not seem likely in a time scale relevant to this
working group. Accordingly, our working party sought alternative solutions that may be achievable
within the context of existing academic structures. The group felt that developing dedicated research
software engineering roles within the university, and finding stable funding for those individuals is
the most promising mechanism for creating a stable software development staff.

Measures of impact and success for research programming groups, as well as for individual research
software engineers, will be required in order to make the case to the university for continued funding.
Research software engineers will not be measured by publications, we hope, but by other metrics.
Middle-author publications are common for RSEs. Most RSEs welcome co-authorship on papers
where the PIs think that the contribution deserves it.

5.2.2. Discussion. It is hard for an individual PI in a university or college to support dedicated
research software engineering resources, as the need and funding for these activities are intermittent
within a research cycle. To sustain this capacity, therefore, it is necessary to aggregate this work
across multiple research groups.

https://drive.google.com/drive/folders/0B7KZv1TRi06fbnFkZjQ0ZEJKckk
https://github.com/WSSSPE/meetings/issues/42


12

One solution is to fund dedicated software engineering roles for major research software projects
at national laboratories or other non-educational institutions. This solution is in place and working
well for many well-used scientific codebases. However, this strategy has limited application, as much
of the body of software is created and maintained in research universities. Therefore, we argue
that research institutions should develop hybrid academic-technical tracks for this capacity, where
employees in this track work with more than one PI, rather than the traditional RA role within
a single group. This could be coordinated centrally, as a core facility, perhaps within research
computing organizations which have traditionally supported university cyberinfrastructure, library
organizations, or research offices. Alternatively, these groups could be organizationally closer to
research groups, sitting within academic departments. The most effective model will vary from
institution to institution, but the mandate and ways of working should be similar.

Having convinced ourselves that this would be a positive innovation, we were then faced with the
specific question of how to fund the initiation of this activity. A self-sustaining research software
group will support itself through collaborations with PIs in the normal grant process, with PIs
choosing to fund some amount of research software engineering effort through grants in the usual
way. However, to bootstrap such a function to a level where it has sufficient reputation and client
base to be self-sustaining will generally require seed investment.

This might come from universities themselves (this was the model that led to the creation of the
group in University College London), but more likely, seed funding needs to come from research
councils (as with the Research Software Engineering Fellowship provided by the UK Engineering and
Physical Sciences Research Council). We therefore recommend that funding organizations consider
how they might provide such seed funding.

Success, appropriately measured, will help make the case to such funding bodies for further
investment. One might expect that metrics such as improved productivity, software adoption rates,
and grant success rates would be sufficient arguments in favor of such a model. However, useful
measurement of code cleanliness, and the resulting productivity gains, is an unsolved problem in
empirical software engineering. To measure “what did not go wrong” because of an intervention is
particularly hard.

We finally noted that the institutional case for such groups is made easier by having successful
examples to point to. In the UK, a collective effort to identify the research software engineering
community, with individuals clearly stating “I am a research software engineer,” has been important
to the campaign. It will be useful to the global effort to similarly identify emerging research software
organizations, and also, importantly, to identify longer-running research software groups, which have
in some cases had a long running sui-generis existence, but which now can be identified as part
of a wider solution. There remains the problem of how to “sell” the value of this investment to
investigators within a university. This is an issue best addressed by the individual organizations
that embark on the plan.

For more details on the discussion, see Appendix E.

5.2.3. Plans. The first step in moving this strategy forward is to gather a list of groups that self-
identify as research software engineering groups, and to reach out to other organizations to see if
there may be a widespread community of RSEs who do not identify themselves as such at this time.
We will collect information about the organizational models under which these groups function, and
how they are funded. For example, how many research universities currently fund people in the
RSE track, whether they bear the RSE moniker or not. Are these developers paid by the university
or through a program supported by research grants/individual PIs? How did they bootstrap the
developer track to get this started? How successful is the university in getting investigators to pay
for fractional RSEs? We will author a report describing our findings, should funding be available
to conduct the investigation.

5.2.4. Landing Page. A list of known UK research software engineering groups is available at http://
www.rse.ac.uk/groups, and a list for the rest of the world is at http://www.rse.ac.uk/international.
To add another group to the list, please make a pull request as requested on either of these pages.

http://www.rse.ac.uk/groups
http://www.rse.ac.uk/groups
http://www.rse.ac.uk/international


13

5.3. Transition Pathways to Sustainable Software: Industry & Academic Collaboration.
Most scientific software is produced as a part of grant-funded research projects typically sponsored
by federal governments. If we are interested in the sustainability of scientific software, then we need
to understand what exactly happens when that sponsorship ends. More than likely, the project
and its resulting software will need to undergo some kind of transition in funding and consequently
governance.

At WSSSPE3 our group was interested in better understanding successful pathways for scientific
software to “transition” from grant-funded research projects to industry sponsorship. (This may
be an initially awkward phrase—some software projects will begin their life being sponsored by
industry, or result in collaboration between industry and academia. In such cases, there is still a
need to understand how IP and how maintenance of the software is sustained over time.)

5.3.1. Fit with related activities. Most previous research and discussion of industry and academic
collaboration, sharing, and funding of research software has focused on the impact of such arrange-
ments. Examples of these types of reports are:

• REF Impact Case Studies: http://impact.ref.ac.uk/CaseStudies/
• Background of projects funded in the UK: http://gtr.rcuk.ac.uk/
• Dowling Review from the UK: addresses complexity of work between these two communities:
http://www.raeng.org.uk/policy/dowling-review

• Pathway to Impact – UK report: two pages of grant proposals are asked to forecast what impact
they might have (including environmental, academic, economic).

5.3.2. Discussion. Although sustainability transitions are often studied under the broad umbrella of
“technology transfer,” we believe there are likely to be a number of different ways in which a pathway
from initial production to long-term maintenance and secure funding is achieved. In short, industry
sponsorship and/or direct participation is an important aspect of sustaining scientific software, but
our current understanding of these transitions focuses narrowly on commercial successes or failures
of those collaborations.

In looking at existing literature that addresses industry transitions, many reports (such as those
listed above) focus on benefits that accrue to the private sector, or to a government that originally
sponsored the research project. This literature does not address the impact that these transitions
have on the accessibility or usability of the software, or the impact that these transitions have on
the career of the researchers involved.

For more detail on the group’s discussion, see Appendix F.

5.3.3. Plans. Plans for carrying forward are currently unclear—this project would require sustained
attention and effort from our team, and at least some amount of funding in order for us to be involved
for extended periods of time.

The broad goals that we would like to accomplish are:
(1) To complete a set of case studies which look at successful and unsuccessful transitions between

academic researchers and industry
(2) To create a generalizable framework, which might allow for a broader study of different transition

pathways (other than between academia and industry)
The main plan for the group going forward is the creation of a white paper on the topic of

sustainability transitions.

5.3.4. Landing Page. Transitions Pathways discussions can be posted at https://github.com/
WSSSPE/meetings/issues/46 or an email be sent to Nic Weber11 to find out more about the group’s
efforts and how to participate.

11email: nmweber@uw.edu

http://impact.ref.ac.uk/CaseStudies/
http://gtr.rcuk.ac.uk/
http://www.raeng.org.uk/policy/dowling-review
https://github.com/WSSSPE/meetings/issues/46
https://github.com/WSSSPE/meetings/issues/46
mailto:nmweber@uw.edu


14

5.4. Legacy Software. This group met only briefly, for one period on the first day. They discussed
that it is difficult to define legacy code because there is so much stigma associated with the term.
At some point there will be more difficulty and resources wasted trying to keep legacy software
supported, but it will eventually be too expensive compared to how much it would be to just
rebuild the software or kill it. Most of the group members were not able to attend on the second
day, and those who were able to attend joined other groups.

5.5. Principles for Software Engineering Design for Sustainable Software. Principles for
software engineering form the basis of methods, techniques, methodologies and tools [11]. However,
there is often a mismatch between software engineering theory and practice particularly in the
fields of computational science and engineering, which can lead to the development of unsustainable
software [12, 13]. Understanding and applying software engineering principles is essential in order
to create and maintain sustainable software [14].

5.5.1. Fit with related activities. The group discussion focused on identifying existing principles of
software engineering design that could be adopted by the computational science and engineering
communities.

5.5.2. Discussion. Software engineering principles form the foundation of methods, techniques,
methodologies, and tools. Consisting of members from different backgrounds, including quantum
chemistry, epidemiology, computer science, software engineering, and microscopy, this group dis-
cussed the principles of software engineering design for sustainable software (starting with principles
from the Karlskrona Manifesto on Sustainability Design [15], Tate [16], and the Software Engineering
Body of Knowledge (SWEBOK) [17]) and their application in various domains including quantum
chemistry and epidemiology. The group examined the principles and took a retrospective analysis
of what the developers did in practice against how the principles could have made a difference, and
asked, what do the principles mean for computational scientific and engineering software, and how
do the principles relate to non-functional requirements? It appeared that the sustainable software
engineering principles should be mapped to two core quality attributes that underpin technically
sustainable software: extensibility, the software’s ability to be extended and the effort level required
to implement the extension; and maintainability: the effort required to locate and fix an error in
operational software.

For more information about the discussion, see Appendix G.

5.5.3. Plans. The next steps in this endeavor are to (1) Systematically analyze a number of example
systems from different scientific domains with regards to the identified principles, to (2) Identify
the commonalities and gaps in applying those principles to different scientific systems, and to (3)
Propose a set of guidelines on the principles and examine how they exemplarily apply to scientific
software systems. Preliminary work will be carried out through undergraduate or post-graduate
student projects.

5.5.4. Landing Page. In the absence of a landing page, the Principles for Software Engineering
Design for Sustainable Software working group requests an email be sent to Birgit Penzenstadler12
and Colin C. Venters13 to find out more about the group’s efforts and how to participate.

5.6. Useful Metrics for Scientific Software. Metrics for scientific software are important for
many purposes, including tenure and promotion, scientific impact, discovery, reducing duplication,
serving as a basis for potential industrial interest in adopting software, prioritizing development and
support towards strategic objectives, and making a case for new or continued funding. However,
there is no commonly-used standard for collecting or presenting metrics, nor is it known if there is
a common set of metrics for scientific software. It is imperative that scientific software stakeholders
understand that it is useful to collect metrics.

12email: birgit.penzenstadler@csulb.edu
13email:c.venters@hud.ac.uk

mailto:birgit.penzenstadler@csulb.edu
mailto:c.venters@hud.ac.uk


15

5.6.1. Fit with related activities. The group discussion focused on identifying existing frameworks
and activities for scientific software metrics. The group identified the following related activities:

• Computational Infrastructure for Geodynamics: Software Development Best Practices14
• WSSSPE3 Breakout Session: How can we measure the impact of a piece of code on research,
and its value to the community?15

• 2015 NSF SI2 PI Workshop Breakout Session on Framing Success Metrics16
• 2015 NSF SI2 PI Workshop Breakout Session on Software Metrics17
• NSF Workshop on Software and Data Citation Breakout Group on Useful Metrics18
• U.K. Software Sustainability Institute Software Evaluation Guide19
• U.K. Software Sustainability Institute Blog post: The five stars of research software20
• Minimal information for reusable scientific software21
• EPSRC-funded Equipment Data Search Site22
• Canarie Research Software: Software to accelerate discovery23
• Canarie Research Software: Research Software Platform Registry24
• BlackDuck Open HUB25

• Innovation Policy Platform26

5.6.2. Discussion. The group discussion began by agreeing on the common purpose of creating a
set of guidance giving examples of specific metrics for the success of scientific software in use, why
they were chosen, what they are useful to measure, and any challenges and pitfalls; then publish
this as a white paper. The group discussed many questions related to useful metrics for scientific
software including addressing if there is a common set of metrics that can be filtered in some way, can
metrics be fit into a common template, which metrics would be the most useful for each stakeholder,
which metrics are the most helpful and how would we assess this, how are metrics monitored, and
many more. A more complete bulleted list of these questions can be found in Appendix H. Next,
a roadmap for how to proceed was discussed including creating a set of milestones and tasks.
The idea was put forth for the group to interact with the organizing committee of the 2016 NSF
Software Infrastructure for Sustained Innovation (SI2) PI workshop in order to send a software
metrics survey to all SI2 and related awardees as a targeted and relevant set of stakeholders. The
five solicitations for software elements released under the NSF SI2 program all included metrics
as a required component with submitters requested to include “a list of tangible metrics, with end
user involvement, to be used to measure the success of the software element developed, . . . ”. These
metrics are then reported as part of annual reports to NSF by the projects. Although neither the
proposal text describing the metrics nor the reported metric results are publicly available, there is
reason to believe that the community will be willing to provide this information through a survey
mechanism. This survey would be created by one of the student group members. Similarly, it
was suggested that a software metrics survey be sent to the UK SFTF (Software For The Future,
led by the Engineering and Physical Sciences Research Council) and TRDF (Tools and Resources
Development Fund, led by the Biotechnology and Biological Sciences Research Council) software

14https://geodynamics.org/cig/dev/best-practices/
15https://docs.google.com/document/d/1cgUDH3RxrfsLotWhKKOrXUnaYFhrtjcV1TDRkFtwQKI/edit
16https://docs.google.com/document/d/10yj7MYEjvrg__t522XR41ogASYMp647-l-BpFTsqEV4/
17https://docs.google.com/document/d/1uDim5bw8rBuubmtaUrz5Eh35NxzDgivmmdXhVzDs3tc/edit
18https://docs.google.com/presentation/d/1PPLVL6uoOmisqnHTlwhsVKJBTFFK1IVzvr8FdEEIvAE/
19http://www.software.ac.uk/software-evaluation-guide
20http://www.software.ac.uk/blog/2013-04-09-five-stars-research-software
21http://figshare.com/articles/Minimal_information_for_reusable_scientific_software/1112528
22http://equipment.data.ac.uk/
23http://www.canarie.ca/software/
24https://science.canarie.ca/researchmiddleware/platforms/list/main.html
25https://www.openhub.net/
26https://www.innovationpolicyplatform.org/frontpage

https://geodynamics.org/cig/dev/best-practices/
https://docs.google.com/document/d/1cgUDH3RxrfsLotWhKKOrXUnaYFhrtjcV1TDRkFtwQKI/edit
https://docs.google.com/document/d/10yj7MYEjvrg__t522XR41ogASYMp647-l-BpFTsqEV4/
https://docs.google.com/document/d/1uDim5bw8rBuubmtaUrz5Eh35NxzDgivmmdXhVzDs3tc/edit
https://docs.google.com/presentation/d/1PPLVL6uoOmisqnHTlwhsVKJBTFFK1IVzvr8FdEEIvAE/
http://www.software.ac.uk/software-evaluation-guide
http://www.software.ac.uk/blog/2013-04-09-five-stars-research-software
http://figshare.com/articles/Minimal_information_for_reusable_scientific_software/1112528
http://equipment.data.ac.uk/
http://www.canarie.ca/software/
https://science.canarie.ca/researchmiddleware/platforms/list/main.html
https://www.openhub.net/
https://www.innovationpolicyplatform.org/frontpage


16

projects to ask them what metrics would be useful to report. The remainder of the discussion
focused mainly on the creation of a white paper on this topic. This resulted in a paper outline
and writing assignments with the goal of publishing in venues including WSSSPE4, IEEE CiSE
(Institute of Electrical and Electronic Engineers Computing in Science and Engineering magazine),
or JORS (Journal of Open Research Software). More information about the group discussion is
available in Appendix H.

5.6.3. Plans. The main plan for the group going forward is the creation of a white paper on the
topic of useful metrics for scientific software. The authoring of this white paper would happen in
parallel with the creation of a survey by the group with the survey results to be incorporated in the
white paper. The timeline for completion of the white paper is approximately one year targeting
venues discussed in the previous section.

5.6.4. Landing Page. In lieu of a landing page, the Useful Metrics for Scientific Software working
group requests an email be sent to Gabrielle Allen27 to find out more about the group’s efforts and
how to participate.

5.7. Training. This group explored a rapidly growing array of training that is seen to contribute
to sustainable software. The offerings are diverse, providing training that is more or less directly
relevant to sustainable software. While research institutions support professional development for
research staff, the skills taught which might impact on sustainable software are limited at best, often
lacking a clear and coherent development pathway. Bringing together those involved in leading
relevant initiatives on a regular basis could helpfully coordinate this growing array of training
opportunities.

5.7.1. Fit with related activities. Three existing venues for discussion of related events are identified:
• Working towards Sustainable Software for Science: Practice and Experiences (WSSSPE) work-
shops [18]

• International Workshop on Software Engineering for High Performance Computing in Compu-
tational Science and Engineering (SEHPCCSE) [19]

• Workshop on Software Engineering for Sustainable Systems [20]

5.7.2. Discussion. Some next steps were identified to quickly test whether there is interest in estab-
lishing a community committed to increasing the degree of coordination across training projects.
See Appendix I for more details about the discussion.

5.7.3. Plans. The main plan for the group is to convene a discussion to explore bringing together
regular meetings of those involved in leading relevant training projects.

5.7.4. Landing Page. The Training working group requests an email be sent to Nick Jones28 to find
out more about the group’s efforts and how to participate.

5.8. Software Credit Working Group. Modern scientific and engineering research often relies
considerably on software, but currently no standard mechanism exists for citing software or receiving
credit for developing software akin to receiving credit via citations for writing papers. Ensuring
that developers of such scientific software receive credit for their efforts will encourage additional
creation and maintenance. Standardizing software citations offers one route to establishing such a
citation and credit mechanism. Software is currently eligible for DOI assignment, but DOI metadata
fields are not well tuned for software compared to publications. Some software providers apply for
DOIs but it is still not widely adopted. Also, there is no mechanism to cite software dependencies
within software in the same way papers cite supporting prior work.

27email: gdallen@illinois.edu
28email: nick.jones@nesi.org.nz

mailto:gdallen@illinois.edu
mailto:nick.jones@nesi.org.nz


17

5.8.1. Fit with related activities. Publishing Software Working Group (§5.9): publishing a software
paper offers one existing mechanism for receiving credit, and further developing new publishing
concepts for software will strengthen our activities.

A number of groups external to WSSSPE (although with some overlapping members) are also
focused on aspects of software credit, including the FORCE11 Software Citation Working Group
(see plans for coordination below). In addition, a Software Credit workshop29 convened in London
on October 19, following the conclusion of WSSSPE3. See Appendix J for more detailed discussion
of related activities.

5.8.2. Discussion. The group discussed a number of topics related to software credit, including a
contributorship taxonomy, software citation metadata, standards for citing software in publications,
and increasing the value of software in academic promotion and tenure reviews. Although initial
discussions both prior to and during WSSSPE3 focused on contribution taxonomy and dividing
credit, discussing as an example the Entertainment Identifier Registry [21] used in the entertainment
industry, the group decided to prioritize software citation. This decision was motivated by the idea
that standardizing citations for software would introduce some initial credit for developers, and later
the quantification of credit could be refined based on concepts such as transitive credit [22, 23].

The majority of the remaining discussion focused on standardizing (1) the metadata necessary for
software to be cited and (2) the mechanism for citing software in publications. Moreover, discussions
also oriented around the indexing of software citations necessary for establishing a software citation
network either integrated with the existing paper citation ecosystem or complementary to it. See
Appendix J for a more detailed summary of the working group’s discussion on these topics.

5.8.3. Plans. The group already merged with the FORCE11 Software Citation Working Group
(SCWG), and their efforts will focus (over the next six to nine months) on developing a document
describing principles for software citation. Following the publication of that document, the group
will focus on outreach to key groups (e.g., journals, publishers, indexers, professional societies).
Longer-term plans include working with indexers to ensure that software citations are indexed
and pursuing an open/community indexer; these activities may be organized by future FORCE11
working groups.

5.8.4. Landing Page. Since near-term efforts will be shifting to the FORCE11-SCWG, we direct
interested readers to that group’s existing landing page30 and GitHub repository31.

5.9. Publishing Software Working Group Discussion. This working group explored the value
of executable papers (papers whose content includes the code needed to produce their own results),
and other forms of publishing which include dynamic electronic content. Transitioning to this type
of publication offers possibilities of addressing, or partially addressing, sustainability concerns such
as reproducibility, software credit, and best practices.

5.9.1. Fit with related activities.
• Reproducibility: Part of the purpose of these executable paper venues is to (at least partially)
address the reproducibility issue by making papers recompute their own results.

• Software Credit (§5.8): Since these forms of publishing must make their sources explicit in
order to execute, they should be easier to trace even if appropriately worded credit for software
is not provided. In addition, they make it possible to provide or define additional metadata to
make the tracing of credit clearer. Finally, attributions could be added to citations to identify
whether a paper extends a result, verifies it, contradicts it, etc.

29London Software Credit workshop: http://www.software.ac.uk/software-credit
30FORCE11-SCWG landing page, https://www.force11.org/group/software-citation-working-group
31FORCE11-SCWG GitHub page, https://github.com/force11/force11-scwg

http://www.software.ac.uk/software-credit
https://www.force11.org/group/software-citation-working-group
https://github.com/force11/force11-scwg


18

• Best Practices (§5.1): Because an executable paper showcases the code, and the code itself
is subject to the review process, authors are more likely to pay attention to coding practices.
In addition, because the paper must explain what the code does, better documentation is more
likely to be achieved.

5.9.2. Discussion. The group felt that the best way to encourage the use of these new publishing
concepts would be to create and curate a list of publishing venues that support them. The Software
Sustainability Institute agreed to host this list.

See Appendix K for more details about the discussion.

5.9.3. Plans. The plan is to create and curate a web page describing executable papers, their value,
and a list of what publishers support them. We expect the page to be available in early January of
2016 on the Software Sustainability Institute’s website.

5.9.4. Landing Page. The aforementioned page will be published on the Software Sustainability
Institute website: http://www.software.ac.uk.

5.10. Building Sustainable User Communities for Scientific Software. User communities
are the lifeblood of sustainable scientific software. The user community includes the developers,
both internal and external, of the software; direct users of the software; other software projects
that depend on the software; and any other groups that create or consume data that is specific
to the software. Together these groups provide both the reason for sustaining the software and,
collectively, the requirements that drive its continued evolution and improvement.

5.10.1. Fit with related activities. There are a number of activities already in progress that are
targeted at improving the user community for open-source software, including Mozilla Science’s
“Working Open Project Guide” [24] and “UK Collaborative Computational Projects” (CCP:
http://www.ccp.ac.uk), or books such as “Art of Community” by Jono Bacon [25].

5.10.2. Discussion. Discussion revolved around a few questions: what are the benefits of having
a “community” for software sustainability; what practices and circumstances may lead to having
and maintaining a community; how can funding help or hinder this process; and perhaps most
importantly, how can best practices be described and distilled into a document that can help new
projects.

Everyone agreed on a few points: software must not only offer value, but there must be some
support for users; and funding can help pay for that support, in addition to the usual funding for
software development. Openness is generally a virtue. An evangelist, either in the form of a single
person or some domain-specific group of users, is often the key factor.

Additional details on the group’s discussion can be found in Appendix L.

5.10.3. Plans. The most important next steps is a “Best Practice” document, which would describe
what successful projects with engaged communities look like, how to replicate this type of project,
and look at the end of life of a community project. Another next step would be better training to
increase recognition of need for science software projects to focus on building and supporting their
user communities.

5.10.4. Landing Page. This group does not have a landing page yet. Please send requests to join
and contribute by writing to both Dan Gunter32 and Ethan Davis33.

32email: dkgunter@lbl.gov
33email: edavis@ucar.edu

http://www.software.ac.uk
mailto:dkgunter@lbl.gov
mailto:edavis@ucar.edu


19

6. Conclusions

In WSSSPE3, we attempted to take what we learned from WSSSPE1 and WSSSPE2 in how we
can collaboratively build a workshop agenda and turn that into an ongoing community activity.
The success or failure of these efforts will only become apparent over time.

The workshop had two components, presentations and working groups. The presentations, in the
first half day of the workshop, included an inspirational keynote and a set of lightning talks. We
used lightning talks for two reasons: first, the need of some participants to have a slot on the agenda
to justify their attendance; and second, as a way to get new ideas across to all the attendees. We
broke with the tradition of requiring the lightning talk submitters to self-publish their papers, and
instead used a common peer-review platform34, choosing to publish their slides on the workshop
website instead.

The working groups met for a small part of the first half day and all of the second day, with the
exception of some short periods for the groups to report back to the collected workshop attendees.
Each group determined a set of activities that the members could do to advance sustainable software
in a particular area.

The results of these group sessions made it clear that there are many interlinked challenges in
sustainable software, and that while these challenges can be addressed, doing so is difficult because
they generally are not the full-time job of any of the attendees. As was the case in WSSSPE2
as well, the participants were willing to dedicate their time to the groups while they were at the
meeting, but afterwards, they went back to their (paid) jobs.

We need to determine how to tie the WSSSPE breakout activities to people’s jobs, so that
they feel that continuing them is a higher priority than it is now, perhaps through funding the
participants, or through funding coordinators for each activity, or perhaps by getting the workshop
participants to agree to a specific schedule of activities during the workshop as we have tried to do
in WSSSPE3. It remains to be seen, however, if the participants will meet the schedules they set.

The overall challenge left to the sustainable software community is perhaps one of organization:
how to combine the small partial efforts of a large number of people to impact a much larger
number of people: those who develop and use scientific software. While WSSSPE might help focus
the actions of the groups, something more is needed to incentivize the wider community, which is a
generalization of the sustainable software problem itself.

Acknowledgments

Work by Katz was supported by the National Science Foundation while working at the Foun-
dation. Any opinion, finding, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Choi’s work was supported in part by the National Science Foundation research grant DMS-1522687
and a WSSSPE3 travel award. She thanks the encouragement and discussion with Fred Hickernell.
Hetherington was funded by the Software Sustainability Institute, RCUK grants EP/H043160/1
and EP/N006410/1. Work by Gunter was supported by the Office of Science, Office of Biologi-
cal and Environmental Research, of the U.S. Department of Energy (DOE) under Award Numbers
DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-AC02-98CH10886, as
part of the DOE Systems Biology Knowledgebase and by the Office of Science, Office of Advanced
Scientific Computing Research (ASCR) of the U.S. Department of Energy under Contract Number
DE-AC02-05CH11231 as part of the Template Interfaces for Agile Parallel Data-Intensive Science
(TIGRES) project.

34http://easychair.org

http://easychair.org


20

Appendix A. Organizing Committee

The following is the list of organizers of WSSSPE3.
Daniel S. Katz University of Chicago & Argonne National Laboratory, USA
Gabrielle Allen University of Illinois Urbana-Champaign, USA
Neil Chue Hong Software Sustainability Institute. University of Edinburgh, UK
Sou-Cheng (Terrya) Choi NORC at the University of Chicago & Illinois Institute of Technology, USA
Sandra Gesing University of Notre Dame, USA
Lorraine Hwang University of California, Davis, USA
Manish Parashar Rutgers University, USA
Erin Robinson Foundation for Earth Science, USA (local organizer)
Matthew Turk University of Illinois Urbana-Champaign, USA
Colin C. Venters University of Huddersfield, UK

Appendix B. Attendees

The following is a list of participants registered for the WSSSPE3 workshop.
Alice Allen Astrophysics Source Code Library
Gabrielle Allen NCSA
Janine Aquino UCAR/NCAR Earth Observing Laboratory
Steven Brandt Louisiana State University
Jed Brown CU Boulder
Matthias Bussonnier UC Berkeley
Jeffrey Carver University of Alabama
Emily Chen NCSA
Sou-Cheng Choi NORC at the University of Chicago & Illinois Institute of Technology
Nancy Collins NCAR
Ethan Davis UCAR Unidata
Davide DelVento NCAR/CISL
Yuhan Ding Illinois Institute of Technology
Tim Dunne KnowInnovation
Ward Fisher UCAR/Unidata
Sandra Gesing University of Notre Dame
Josh Greenberg Sloan Foundation
Dan Gunter LBNL
Ted Habermann The HDF Group
James Hetherington University College London
Neil Chue Hong Software Sustainability Institute
Elisabeth Huffer Lingua Logica/NASA
Lorraine Hwang UC Davis - CIG
Raymond Idaszak RENCI; University of North Carolina at Chapel Hill
Elizabeth Jessup University of Colorado Boulder
Nick Jones New Zealand eScience Infrastructure (NeSI)
Daniel Katz U Chicago & Argonne
Iain Larmour EPSRC (UK)
Frank Löffler Louisiana State University
Suresh Marru Indiana University
Ryan May UCAR/Unidata
Abigail Cabunoc Mayes Mozilla Foundation
Jeff McWhirter Geode Systems
Constantinos Michailidis Knowinnovation
Don Middleton NCAR
Mark Miller SDSC
Pate Motter University of Colorado
Jaroslaw Nabrzyski University of Notre Dame
Patrick Nichols National Center for Atmospheric Research
Kyle Niemeyer Oregon State University
Laura Owen NCSA
Abani Patra Univ at Buffalo
Grace Peng National Center for Atmospheric Research
Birgit Penzenstadler California State University Long Beach
Lindsay Powers The HDF Group
Bernie Randles UCLA
Erin Robinson Foundation for Earth Science
Daniel Sellars CANARIE Inc



21

Nikolay Simakov SUNY University at Buffalo
Ian Taylor Cardiff University
Ilian Todorov Science & Technology Facilities Council, UK
Benjamin Tovar University of Notre Dame
Gregory Tucker University of Colorado at Boulder
Matthew Turk NCSA
Colin Venters University of Huddersfield
Alexander Vyushkov University of Notre Dame
Fraser Watson National Solar Observatory
Nic Weber University of Washington
Daniel Ziskin NCAR - ACOM

Appendix C. Travel Award Recipients

The following is the list of travel award recipients for the WSSSPE3 workshop.
Alice Allen Astrophysics Source Code Library
Steven Brandt Louisiana State University
Jeffrey Carver University of Alabama
Emily Chen NCSA, University of Illinois
Sou-Cheng Choi NORC at the University of Chicago & Illinois Institute of Technology
Yuhan Ding Illinois Institute of Technology
Lorraine Hwang CIG, UC Davis
Ray Idaszak RENCI, University of North Carolina at Chapel Hill
Frank Löffler Louisiana State University
Abigail Cabunoc Mayes Mozilla Science Lab
Pate Motter University of Colorado
Kyle Niemeyer Oregon State University
Birgit Penzenstadler California State University Long Beach
Bernadette Randles UCLA
Ilian Todorov STFC Daresbury Laboratory
Nic Weber University of Washington iSchool

Appendix D. Best Practices Group Discussion

Sandra Gesing35 will serve as the point of contact for this working group, and be responsible for
ensuring timely progress of the planned actions.

D.1. Group Members.
• Abani Patra – University at Buffalo
• Sandra Gesing – University of Notre Dame
• Neil Chue Hong – Software Sustainability Institute
• Gregory Tucker – University of Colorado at Boulder
• Birgit Penzenstadler – California State University Long Beach
• Abigail Cabunoc Mayes – Mozilla Foundation
• Frank Löffler – Louisiana State University
• Colin C. Venters – University of Huddersfield
• Lorraine Hwang – UC Davis
• Sou-Cheng Choi – NORC at the University of Chicago & Illinois Institute of Technology
• Suresh Marru – Indiana University
• Don Middleton – NCAR
• Daniel S. Katz – University of Chicago & Argonne National Laboratory
• Kyle Niemeyer – Oregon State University
• Jeffrey Carver – University of Alabama
• Dan Gunter – LBNL
• Alexander Konovalov – University of St Andrews
• Tom Crick – Cardiff Metropolitan University

35email: sandra.gesing@nd.edu

mailto:sandra.gesing@nd.edu


22

D.2. Summary of Discussion. Core questions that will need to be explored are in reliability,
reproducibility, usability, extensibility, knowledge management, and continuity (transitions between
people). Answers to these will guide us on how a software tool becomes part of the core workflow
of well identified users (stakeholders) relating to tool success and hence sustainability. Ideas that
may need to be explored include:

• Requirements engineering to create tools with immediate uptake;
• When should software “die”?
• Catering to disruptive developments in environment, e.g., new hardware, new methodology;
• Dimensions of sustainability: economic, technical, environmental, and obsolescence.
Sustainability requires community participation in code development and/or a wide adoption of

software. The larger the community base is using a piece of software, the better are the funding
possibilities and thus also the sustainability options. Additionally, the developers’ commitment to
an application is essential and experience shows that software packages with an evangelist imposing
strong inspiration and discipline are more likely to achieve sustainability. While a single person can
push sustainability to a certain level, open source software also needs sustained commitment from
the developer community. Such sustained commitments include diverse tasks and roles, which can
be fulfilled by diverse developers with different knowledge levels. Besides developing software and
appropriate software management with measures for extensibility and scalability of the software,
active (expertise) support for users via a user forum with a quick turnaround is crucial. The barrier
to entry for the community as users as well as developers has to be as low as possible.

D.3. Description of Opportunity, Challenges, and Obstacles. There is an opportunity to
collaborate on a white paper, which will be revisited regularly for further improvements, to enhance
knowledge of the state of best practices, resulting in a peer-reviewed paper. We would like to reach
a wide community by doing this. But these are also the challenges and obstacles – to get everyone
to contribute to the paper and to reach the community.
White Paper Outline:
(1) Introduction and Scope of White Paper
(2) Related Work
(3) Case Studies

(a) PETSc
(b) NWChem
(c) CIG

(4) Community Related Practices
(a) Findings
(b) Recommendations

(5) Governance and management
(a) Findings
(b) Recommendations

(6) Funding Related
(a) Findings
(b) Recommendations

(7) Metrics for sustainability
(8) Tools
(9) Conclusions

D.4. Key Next Steps. The key next steps are to write an introduction, reach out to the co-
authors, and to agree on the scope of the white paper.

D.5. Plan for Future Organization. Sandra Gesing and Abani Patra are the main editors and
will organize the overall communication and the paper. Sections will be assigned to diverse co-
authors.



23

D.6. What Else is Needed? At the moment we do not see any further requirements.

D.7. Key Milestones and Responsible Parties.
• 28 Dec: Introduction and scope finished (Abani Patra/Sandra Gesing)
• 06 Jan: Sections assigned (Abani Patra/Sandra Gesing)
• 31 Jan: Analyzing funding possibilities for survey
• 31 Jan: First version of each section
• 15 Feb: Distribution to the WSSSPE community
• 31 Mar: Final version of the white paper
• 30 Apr: Submission to a peer-reviewed journal?

D.8. Description of Funding Needed. We might need funding for a journal publication (open-
access options).

Appendix E. Funding Research Programmer Expertise Group Discussion

James Hetherington36 will serve as the point of contact for this working group, and be responsible
for ensuring timely progress of the planned actions.

E.1. Group Members. The group at WSSSPE:
• Don Middleton – National Center for Atmospheric Research
• Joshua Greenberg – Alfred P. Sloan Foundation
• James Hetherington – University College London
• Lindsay Powers – The HDF Group
• Mark A. Miller – San Diego Supercomputer Center
• Dan Sellars – CANARIE
This was further enhanced by additional discussions at the following GCE15 conference:
• Lorraine Hwang – UC Davis
• Simon Trigger – BioTeam, Inc.
• Nancy Wilkins-Diehr – San Diego Supercomputer Center
• Alexander Vyushkov – University of Notre Dame
• Sandra Gesing – University of Notre Dame
• Ali Swanson – University of Oxford

E.2. Summary of Discussion. In addition to the points noted in the main discussion (§5.2), we
also discussed the following:

“Are you an RSE or a RA?” is not properly a binary question. Most of us sit at different points
on that spectrum, and move along it during our careers (usually from RA to RSE—examples of
movement in the other direction from readers would be welcomed). Either way, the label “Research
Software Engineer” is now starting to have some power. Many scientists do not want to be writing
code; some do, to varying degrees. These groups can usefully support each other.

What is the power of the label? How can we get the word out about RSE support using the
label?

Will research science developers be required in the long run? One issue that came up was
whether the need for developers was a time bounded one; is it the case that the new generation of
computer and software savvy scientists will be so comfortable in developing their own code that the
professional developers will not be needed? And this brings up the flip side question, “Do scientists
really want to be writing code?”

We also had a little discussion about how to make a career path for research developers. It need
not be solely an academic enterprise, but in the past tenure has often been problematic for people
of this class.

36email: j.hetherington@ucl.ac.uk

mailto:j.hetherington@ucl.ac.uk


24

Skills and resources may vary between teams. To help resolve this, maintaining high levels of
communication between groups will be valuable. In the United Kingdom (UK), there are plans to
permit resource sharing between institutional RSE groups. Perhaps there are circumstances under
which an RSE skill exchange could be arranged, either formally or informally.

Collaborative funding can be crucial to RSE groups, to ensure that research leadership remains
with the domain scientists. As an example, at NCAR, university partnerships are required for
submission of proposals, so collaboration is an essential part of grant submission, and this will tend
to bring developers and scientists together. The UCL group also follows this approach, with all bids
requiring an academic collaborator.

Domain scientists and developers are funded together in a single proposal. Another example of a
success is the development of semantics and linked data in support of ocean sciences. An EarthCube-
funded project pairs domain scientists with RSEs and has been successful; the semantics attached
have increased data use and discovery significantly.

An alternative approach has been the provision of programming expertise as part of national
compute services. The US XSEDE project’s Extended Collaboration Support Services (ECSS)
is a set of developers who are paid with XSEDE funding, and are on “permanent” staff. When
PIs request allocations on XSEDE resources, there is a finite pool of developer time that can be
awarded, typically for one year only, and at partial effort, typically 20 percent or so. The finite
time allowed provides motivation for the scientist and the scientist’s group to work closely with
the developer and to become educated in what the developer is doing, so they can sustain the
effort once the ECSS period is over. This funding mechanism can be highly efficient for scientific
problems, because the developer pool assembled by the research providers are, by definition, expert
in the characteristics of their specific resource, and can very quickly assess the scientist’s needs, and
what it will take to implement software that meets the user’s needs. However, it does not develop
capacity within institutions, and since XSEDE is a time-bounded program, it should not be relied
upon as a long-term solution to acquiring this type of capacity.

The UK allows this kind of collaboration to support the creation of scientific software for the
large supercomputing resource (ARCHER). However, while the support can come from the staff of
the Edinburgh Parallel Computing Centre, who hosts the computer, this “embedded CSE” resource
also funds the programming coming from local groups. This has been very helpful in providing
funding to establish local groups. These groups work best when they develop good collaborations
with national cyberinfrastructure pools. When an organization assembles a developer pool, diversity
is developed and skills can be transferred.

We would like to see these models applied outside high performance computing. Most scientific
software is not destined to run on national cyberinfrastructure, but needs similar support. The
argument regarding making better use of expensive hardware through software improvements has
been useful politically, (and many RSE groups are cited in organizations which host clusters for this
reason), but the time has come to make the case that software itself is a critical cyberinfrastructure,
and, with a much longer shelf-life than hardware, is itself a capital investment.

The CANARIE group (Canada) accepts proposals for providing services to broad communities,
integrating people who are doing things that are complementary. The goal is to make the available
stack more robust and richer for everyone. They offer short cycles of funding for creating some useful
functionality that shows a diversity of input and draws from across disciplines as a key metric, If
this metric is met successfully, then more funding may follow. This can apply within or across
institutions.

There can be problems communicating across cultural barriers, with domain scientists seeing
developers as “other”. Both collaboration and tools to fund, encourage, or motivate collaboration
are extremely important.

We think support from non-governmental organizations will be important if RSE groups will
become established. The Sloan Foundation is currently funding data science engineers, who work
in the context of other software developers at the University of Washington. These scientists work
in the e-Science Studio/Data Science Studio, and they help a group of graduate students in solving



25

their problems in data science and data management. During Fall and Spring, a 10-week incubator
program allows students to work two days a week on a data-intensive science project. Some fraction
of the developer time is dedicated to the developers’ personal interests as well as instruction.

The goal for Sloan is to obtain success stories and demonstrable value of the presence of data
scientists on university staff. These stories are the basis for arguments to the host organization.
This is an effort to create awareness of the value of research scientist developers. Embedding with
scientists, and adding spare capacity is critical to making the innovation possible. This model
is essentially to argue for permanent budget lines to support data scientists as part of university
staff hires, just as with core facilities. This could become a fee-for-service model requested by
grant funding, just as DNA sequencing is for core facilities, if it becomes apparent that this gives
competitive advantage to a university’s research effort.

One model that has been helpful in finding funding for RSE groups is the use of funds left over
on research grants when RAs have left prematurely – PIs like this arrangement as it is hard to find
good staff for short-term positions, so having a pool of research programming staff on hand resolves
this problem. We recommend that funders give explicit guidance to grant holders and institutions
that such an arrangement is favorable. Framework agreements permitting this to go ahead without
checking back every time with funders and/or grant panels would further smooth this. (This also
provides more stable jobs for those who hold these skills, but arguments about making life nicer for
postdocs will not help persuade funders or PIs!)

There is some question about the most effective duration and percentage of full time for a pro-
grammer’s work on a project. At least three months is necessary for the programmer to read into
the science (RSEs must not become so disengaged from research that they do not have time to read
a few papers – this will result in code which does not meet scientific needs), but too long could
result in an RSE losing their flexibility, becoming so engaged in one project that when that project
ends, they find it hard to transfer. For this reason, we recommend that 40% is ideal; two projects
per developer, with some time for training and infrastructure work. Having two developers per
project seems to be ideal, in the sense that software development is enhanced by two pairs of eyes.

There is, as yet, no clear answer as to the scale of aggregation needed to make such a program
work. A university wide program allows enough scale to be robust to fluctuations of funding within
one field. But a specialization focus on developers to support, for example, physical or biological
sciences may be preferable, if the customer base is large enough. The desire to aggregate enough
work to make it sustainable, and the need to have domain-relevant research programming skills, are
in tension.

In the UK, another source of funding for research software is the Collaborative Computational
Projects (CCPs): domain specific communities put forward proposals that are a priority of the
community as a whole, for example, biosimulation or plasma physics. These bodies act as custodians
of community codes, and a central team also provides software engineering support.

However this area develops, the need for funding for software as a cyberinfrastructure component
is clear. Funding that permits code to be refactored, tidied, and optimized is rare; this is often
done “on the sly” in a scientifically focused grant. The UK EPSRC’s “software for the future” call,
which really permits explicit investment in software as an infrastructure, is so oversubscribed as to
have a 4% success rate; the demand is clear!

One opportunity is the idea of co-design, where infrastructural libraries are developed alongside
the scientific codes that will call them. However, collaboration is hard to foster here; as incentive
structures are still focused on short-term papers. This can cause infrastructure developers to focus
more on publications in their areas of mathematics and computer science, the domain developers
on the shorter-term needs of their own fields. Genuine collaborative co-construction is harder to
foster.

It can be more difficult to help leading domain scientists see the value of engineering effort than
those in their teams who are forced to work with difficult-to-use or unreliable software tools, as
they do not see the pain. Perhaps a version of “software carpentry” targeted at those PIs who are
awarded or apply for software-intensive grants could be valuable here.



26

RSEs provide a useful contribution to their universities’ teaching missions, as well as research, as
they are well placed to deliver the research programming training that many scientists now need.
In the longer term, with programming skills taught to all through their careers, we hope specialist
scientific developers will be less needed.

E.3. Key Next Steps. We will seek to identify and approach existing research programming
organizations, to get their permission to list them on a list of research software groups. Casual
conversation during the meeting made it clear that although the title is not widely used in the US,
this position is not rare. We spoke with several individuals who, at distinct universities, had RSEs
(in effect if not in name) who were funded under differing models.

We will also look for examples of groups which have successfully become self- sustaining following
initial seed funding.

In this respect, information gathering via a survey and subsequent analysis could be very useful.
We would need to assemble a list of targeted individuals. (What positions and ranks are likely to
know and care enough to respond?) Perhaps the Science Gateway Institute has already acquired
information that could be helpful to advance this issue, and/or craft a proper survey and suggest
target individuals.

E.4. Plan for Future Organization and Future Needs. The UK RSE community will provide
initial facilities to host this list, and continue to work to spread the initiative, but local leadership
in the US is needed if this campaign is to succeed. This will require an initial gathering of identified
research software organizations in the US to this end.

E.5. Description of Funding Needed. Financial support for an initial conference that brings
together research software groups to form an organization and create a resource sharing structure
would help to further this campaign. Funding to conduct and analyze a survey could also be quite
useful as knowing where we stand today, and what models are in use could fuel the ideas for further
development of developers in this category.

In the longer term, funding organizations, especially non-governmental organizations with the
capability to effect innovation through seed funding, could provide support to nucleate the creation
of research software groups. As noted above, Sloan has already initiated one such program, and
collaboration with Sloan or at least study of their methods and success or failure could be extremely
useful in approaching universities and other institutions in funding this development track. It seems
clear that if the value proposition can be made to university administrators, this track could flourish
with buy-in at the administrative level.

Appendix F. Transition Pathways to Sustainable Software: Industry & Academic
Collaboration Working Group Discussion

Nic Weber37 will serve as the point of contact for this working group.

F.1. Group Members.
• Nic Weber – University of Washington
• Suresh Marru – Indiana University
• Jeffrey Carver – University of Alabama
• Davide DelVento – NCAR/CISL
• Steven Brandt – Louisiana State University

37email: nmweber@uw.edu

mailto:nmweber@uw.edu


27

F.2. Summary of Discussion. The group’s initial broad question was, “What makes for successful
transitions of scientific software from academia to industry?” There are a number of potential
funding transitions that may occur:

• A project could be refunded, and development or maintenance of the software continue as
planned.

• A project might locate a new source of funding in which case the software may be further
developed or simply maintained as before.

• The project could transition to a community supported model whereby the software’s
ownership, maintenance, and stewardship become similar to peer-production models in open-
source (e.g., see Howison [26]).

• The project could receive some form of industry sponsorship in which case ownership of the
intellectual property, licensing, maintenance activities, hosting, etc. may change significantly.

• The project could gain attention from a industry use case who would potentially make in-kind
contributions by having paid staff contribute to the software.

We characterized each of the above potential changes in funding as “transition pathways” to
sustainable software (see similar work by Geels and Schot [27]).

Our work at WSSSPE3 included the following three activities (described in more detail below):
(1) brainstorming goals for this type of research, (2) imagining potential outcomes of completing
a set of case studies on this topic, and (3) generating a set of working definitions for some of the
broad concepts we are describing.

First, we discussed the goals of this research, attempting to answer the question What is the
goal of doing research on transition pathways? A number of research questions arose: Can we
identify collaborations that have occurred and try to understand which were successful, which were
unsuccessful, and what factors contributed to these successes/failures? Can we determine what each
partner wants to get out of such a collaboration? For example, why would industry be interested in
collaborating with academia? Or why would academia be interested in collaborating with industry?
How could we design a study that focused on the impact of the software in undergoing this type of
transition?

Next, we imagined potential outcomes of research on this topic, involving a set of case studies
that look at successful and unsuccessful transitions of researchers between academia and industry.
This might address each of the transition types (as described below). Successful transitions are
described as those that lead to either weak or strong sustainability (also defined below). In addition,
the results from this research might help create a generalizable framework that might allow for the
study of different transition pathways (other than academia to industry).

Finally, we created some general definitions for these concepts; we characterize transitions in
the following ways:

• Handoff model: academia initially writes the software, industry (for-profit or nonprofit) then
takes over the project.

• Co-Production Model: industry and academia interact throughout development of the project.
• Sponsorship Model: academia writes and maintains the software; industry contributes funding
for the development/maintenance of software. In this example, industry is also likely a user of
the software.

• Spinoff model: transition to a for-profit or non-profit company owned by or in collaboration
with original developers.

We characterized sustainability in the following ways:

• Weak Sustainability: Software continues to be accessible, useful, and usable.
• Strong Sustainability: Software meets criteria above, but is also able to be reused for further
innovation (i.e., issued non-restrictive open-source license).

We refer readers to Becker et al. [6] for an extended discussion of weak versus strong sustainability.



28

F.3. Description of Opportunity, Challenges, and Obstacles. The opportunity is to create
a catalog of success/failure for current and future software projects to be prepared for transitions
and achieve sustainability of the software.

The obstacle is more superficial, in finding a champion to gather such information. It will be a
challenge to keep this information and surveys updated. With changing rapidly changing industry
landscapes, an obsolete survey could be of less or no use.

F.4. Key Next Steps. Identify projects that are collaborative, perhaps by reviewing funded
projects from programs specifically geared towards industry academic collaborations.

Develop a systematic process for conducting case studies (what kind of data are being gathered
about each case)

F.5. Plan for Future Organization. No concrete plans have been made at this point. If the
community can rally behind this topic, some momentum could be built. Those interested should
post at https://github.com/WSSSPE/meetings/issues/46

F.6. What Else is Needed? Nothing at the moment.

F.7. Key Milestones and Responsible Parties. A key portion of this effort will require focused
surveys of projects which have succeeded and failed in transition. Both these categories will yield
good learning on what works and what does not work. The group has identified what needs to be
studied further, but has not identified responsible parties to conduct them.

Community members could help in gathering data by means of interviews, historical documents
or documentation, and surveys.

An example of data collection is:
• Origin: Where did project start?
• People involved: How many people in original project were involved in transition/collaboration?
• Specs on software
• Language
• Size
• Hardness (age)
• Lead-up to Transition: How long was project in development before it began transition?
• Motivation for Transition: Why was transition initiated? By whom?

F.8. Description of Funding Needed. Concrete funding needs were not discussed in this working
group but a general impression was that some seed funding would motivate members of this group
or others in community to launch a survey effort.

Appendix G. Engineering Design Group Discussion

Birgit Penzenstadler38 and Colin C. Venters39 will serve as the points of contact for this working
group, and be responsible for ensuring timely progress of the planned actions.

G.1. Group Members.
• Birgit Penzenstadler – California State University, CA, USA
• Colin C. Venters – University of Huddersfield, Huddersfield, UK
• Matthias Bussonnier – UC Berkeley, CA, USA
• Jeff McWhirter – Geode Systems
• Patrick Nichols – National Center for Atmospheric Research, CO, USA
• Ilian Todorov – Science & Technology Facilities Council, UK
• Ian Taylor – Cardiff University, UK
• Alexander Vyushkov – University of Notre Dame, IN, USA

38email: birgit.penzenstadler@csulb.edu
39email: c.venters@hud.ac.uk

https://github.com/WSSSPE/meetings/issues/46
mailto:birgit.penzenstadler@csulb.edu
mailto:c.venters@hud.ac.uk


29

G.2. Summary of Discussion. This group was comprised of members from different backgrounds,
including quantum chemistry, epidemiology, microscopy, computer science, and software engineer-
ing. Each participant was invited to give their perspective on the topic area and what they thought
were the crucial points for discussion. There was a general consensus that there was a need for relat-
ing principles to practice for the computational science and engineering community. Furthermore,
various members of the group expressed their interest in tools and best practices for facilitating the
maintenance and evolution of scientific software systems. It was agreed to identify principles from
software engineering and from sustainability design and, based on those lists, discuss what each
of those would mean applied to specific example systems from the expert domains of some of the
group members. The group identified a number of software engineering principles drawn from the
Software Engineering Body of Knowledge (SWEBOK) [17].

Software design principles include abstraction, coupling and cohesion, decomposition and modu-
larization, encapsulation and information hiding, separation of interface and implementation, suffi-
ciency completeness and primitiveness, and separation of concerns. Similarly, user interface design
principles include learnability, user familiarity, consistency, minimal surprise, recoverability, user
guidance, and user diversity. The sustainability design principles were drawn from the Karlskrona
Manifesto on Sustainability Design [6]. The manifesto states that sustainability is systemic, multi-
dimensional, and interdisciplinary; transcends the system’s purpose; applies to both a system and
its wider contexts; requires action on multiple levels; requires multiple timescales; changing design
to take into account long-term effects does not automatically imply sacrifices; system visibility is a
precondition for and enabler of sustainability design. A number of sustainable software engineering
principles proposed by Tate [16] were also considered including: continual refinement of product and
project practices; a working product at all times; continual emphasis on design; and value defect
prevention over defect detection.

This congregated list is an initial collection of principles that could be extended by adding from
further related work form separate disciplines within the field of software engineering, including
requirements engineering, software architecture, and testing. The group identified two example
systems to discuss the application of the principles. The first one was a quantum chemistry system
that allows the analysis of the characteristics and capabilities of molecules and solids. The second
one was a modeling system for malaria that permitted biologists to analyze a range of datasets
across geography, biology, and epidemiology, and add their own datasets. The group then examined
the principles and took a retrospective analysis of what the developers did in practice against how
the principles could have made a difference. This raised the question, what do the principles mean
for computational scientific and engineering software? Similarly, how do the principles relate to
non-functional requirements? It was suggested that at the very minimum, that sustainable software
engineering principles should be mapped to two core quality attributes that underpin technically
sustainable software:

• Extensibility: the software’s ability to be extended and the level of effort required to implement
the extension;

• Maintainability: the effort required to locate and fix an error in operational software.
These fundamental building blocks could then be extended to include other quality attributes such
as portability, reusability, scalability, usability, and energy efficiency etc. Nevertheless, this raises
the question of what metrics and measures are suitable to demonstrate the sustainability of the
software. In addition, what do the five dimensions of sustainability mean for scientific software, i.e.,
environmental, economic, social, technical and individual?

G.3. Description of Opportunity, Challenges, and Obstacles. The opportunity was iden-
tified to distill existing software engineering and sustainability design knowledge into “bite sized”
chunks for the Computational Science and Engineering Community. In addition, two primary chal-
lenges were identified:

• Mapping of the principles to best practices.
• Demonstrating the return on investment of those best practices.



30

G.4. Key Next Steps. In order to achieve the following three goals: (1) a systematic analysis of a
number of example systems from different scientific domains with regards to the identified principles,
(2) the identification of the commonalities and gaps in applying the principles to different scientific
systems, and (3) a proposal of a set of guidelines on the principles, the following next steps were
discussed.

G.5. Plan for Future Organization. The following plan for future organization was discussed:
• Identify suitable undergraduate or post-graduate students.
• Design and pilot study.
• Organize coordinating online calls via Google Hangout.

G.6. What Else is Needed?
• Ethics committee review panel approval required for data collection.

G.7. Key Milestones and Responsible Parties. The following key milestones were discussed
as a roadmap for the set of guidelines on software engineering principles:

• Oct/Nov 2015: Study design and interview guideline
• Jan/Feb 2016: Interviews conducted and transcribed
• Mar/Apr 2016: Analysis complete
• May 2016: Report written

G.8. Description of Funding Needed. Specific funding was not discussed in this working group.
However, this is a open topic that can be discussed in relation to emerging funding calls from
National agencies or grant proposal initiatives.

Appendix H. Metrics Working Group Discussion

Gabrielle Allen40 will serve as the point of contact for this working group.

H.1. Group Members.
• Gabrielle Allen – University of Illinois at Urbana-Champaign
• Emily Chen – University of Illinois at Urbana-Champaign
• Neil Chue Hong – U.K. Software Sustainability Institute
• Ray Idaszak – RENCI, University of North Carolina at Chapel Hill
• Iain Larmou – Engineering and Physical Sciences Research Council
• Bernie Randles – University of California, Los Angeles
• Dan Sellars – Canarie
• Fraser Watson – National Solar Observatory

H.2. Summary of Discussion. The group discussion began by agreeing on the common purpose
of creating a set of guidance giving examples of specific metrics for the success of scientific software
in use, why they were chosen, what they are useful to measure, and any challenges and pitfalls;
then publish this as a white paper. The group discussed many questions related to useful metrics
for scientific software as follows:

• Is there a common set of metrics, that can be filtered in some way
– Does this create a large cost

• Can we fit metrics into a common template (i.e., for collection, for description)
• Which would be the most useful ones

– Which ones would be most useful for each stakeholder
• Which ones are the most helpful, and how would we assess this
• How do you monitor

– Self-checking - if monitoring is done in the open, then people will call out cheats
• Should this be published with the software metadata
40email: gdallen@illinois.edu

mailto:gdallen@illinois.edu


31

– This would make it easier for public to see the metadata
– However, there is no commonly-used standard (DOAP is a good standard but not widely

adopted)
– The Open Directory Project (ODP) metadata is available for UK infrastructure

• Intersection of most useful and easiest to collect should be explored
• How can students/curricula be used as part of a solution
• Number of users could be affected by other metrics including, e.g., accessibility
• Assume metrics are collected properly, but guidance should be provided none-the-less
• Continuum for each metric

– Ideal situation is the absolute minimum, so that people can decide on their own what the
cost versus usefulness tipping point is

• Maturity plays a part
– Consider different metrics brackets for different maturity levels

• What are we using metrics for
– What software should I use if I have a choice
– Where should funders place funding for best impact (e.g., funding two-star software versus

three-star) and where there are gaps
– How to promote reduction of code proliferation
– Metrics used for software panels to provide information
– Metrics used for finding problems in their systems

• Can we use metrics to help people identify the best codes as part of a community effort
Next, a roadmap for how to proceed was discussed including creating a set of milestones and tasks
as follows:

• Can we create a roadmap and milestones for this activity
• Need to come up with a set of tasks
• Go to NSF Software Infrastructure for Sustained Innovation (SI2) projects asking them what
metrics they defined, and how useful they were
– Milestone: Create report which assesses the metrics that SI2 projects used

∗ Ask SI2 PIs to say what metrics they said they would use (copied from proposal)
∗ Ask SI2 PIs what numbers they reported
∗ Ask SI2 PIs what they would have changed
∗ A UIUC student on the project will work on this

– Tentatively aim for March 2016
• Do something similar for UK SFTF and TRDF software projects to ask them what would be
useful metrics to report; also eCSE projects
– Compare these to understand if there were any implications for including metrics

• Collaboratively create plan and documentation for doing this
– Give some examples from group members projects, and aim to build out some of the

measurement continuum
– Road-test at the WSSSPE4 meeting

• Collect the various frameworks together and do a comparison summary
The idea was put forth for the group to interact with the organizing committee of the 2016 NSF
Software Infrastructure for Sustained Innovation (SI2) PI workshop in order to email out a software
metrics survey to all SI2 and related awardees as a targeted and relevant set of stakeholders. This
survey would be created by one of the student group members. Similarly, it was suggested that a
software metrics survey be sent to the UK SFTF and TRDF software projects to ask them what
metrics would be useful to report. The remainder of the discussion focused mainly on the creation
of a white paper on this topic. This resulted in a paper outline and writing assignments with the
goal of publishing in venues including WSSSPE4, IEEE CISE, or JORS.

H.3. Description of Opportunity, Challenges, and Obstacles. The following opportunities,
challenges, and obstacles were discussed:



32

• Metrics are important for:
– Tenure and promotion
– Scientific impact
– Discovery
– Reducing duplication
– Basis for potential industrial interest in adopting software
– Make case for funding

• No commonly used standard for collecting or presenting metrics
• We do not know if there is a common set of metrics
• We have to persuade projects that it is useful to collect metrics

H.4. Key Next Steps. The following next steps were discussed:
• Skype phone call to coordinate shortly after the conclusion of the WSSSPE3 workshop
• Get started on IRB at University of Illinois Urbana-Champaign in anticipation of SI2 project
survey (may need more thought into survey)

• Get started on white paper and associated survey

H.5. Plan for Future Organization. The following plan for future organization was discussed:
• Our group has created a white paper outline with sections assigned to the above individuals;
see timeline below.

• Organize coordinating phone calls.

H.6. What Else is Needed? The following list of what else is needed was discussed:
• IRB approval/exemption needed for surveys, collecting data
• Coordination with 2016 NSF SI2 PI workshop organizing committee to possibly piggyback on
this event to offer survey to attendees in advance

• Coordination (mail communication, info page, etc.) via WSSSPE GitHub or other means?

H.7. Key Milestones and Responsible Parties. The following items were discussed as a
roadmap for the production of a white paper:
(1) October – November 2015: IRB paperwork as appropriate completed (Gabrielle Allen and

Emily Chen)
(2) October – December 2015: Draft white paper sections 1-3 (the paper outline has initial writing

assignments)
(3) October – December 2015: Run surveys and collect information

(a) Piggyback on planning for 2016 NSF SI2 PIs meeting to be held Feb 16-17, 2016
(4) January – February 2016: Analyze results of data collection from projects
(5) March – April 2016: Draft sections 4-7 of the white paper
(6) May 2016: Draft section 8-9 of the white paper
(7) May – June 2016: Get initial feedback from members of the community and revise
(8) Est. July 2016: By the time of next CFP for WSSSPE, to have a complete draft of the white

paper
(9) Est. Sept – Oct 2016: Responses to white paper to be submitted to WSSSPE4

H.8. Description of Funding Needed. Funding needs were not discussed in this working group
and it was thought that this could potentially be revisited down the road.

Appendix I. Training Working Group Discussion

Nick Jones41 will serve as the point of contact for this working group, and be responsible for
ensuring timely progress of the planned actions.

41email: nick.jones@nesi.org.nz

mailto:nick.jones@nesi.org.nz


33

I.1. Group Members.
• Nick Jones – New Zealand eScience Infrastructure
• Iain Larmour – Engineering & Physical Sciences Research Council, UK
• Erin Robinson – Foundation for Earth Science

I.2. Summary of Discussion. While little training focuses specifically on sustainable software, a
variety of training activities could increase researcher awareness of and engagement with software
professionals and software engineering practices. Research Software Engineers are being recognized
as critical contributors to high quality research; the pathway to acquire and master the relevant
skills is not yet clear; equally those skills required by researchers in general are also not commonly
understood nor routinely developed.

The group’s discussion explored a rapidly growing array of training that is seen to contribute
to sustainable software. The offerings are diverse, including: self-paced online modules focused
around specific tools; single and multiple day training workshops that raise awareness of a tool
chain to support collaborative and shared software development within a research workflow; block
courses specializing on particular methods, technologies, and applications; academic programs at
undergraduate and masters levels; doctoral training programs that in part contain requisite skills
training activities.

While some of this training focuses on applying software engineering practices within the context
of research, meeting the values and goals of research are less often incorporated as explicit learning
outcomes. With software (and similarly, data) often being the only tangible artifact of a research
method or protocol, the dependency between software applications and the quality of research
adds complexity to the learner’s journey. In recognition of the longer term investment required
by researchers to integrate such skills into their research practices, many activities are focusing on
emotionally engaging researchers and cohorts, to build a sense of shared purpose beyond the obvious
goal of technical skill acquisition.

In reviewing current training activities, the group identified a variety of perspectives seen as
useful in positioning activities in ways to better communicate why and when best to apply each
activity. Training can be categorized on a variety of spectra, with content and delivery ranging
across them, for example: programming to research; basic to advanced; technical to emotional;
informal to formal; and self-paced to participative. A few attempts have been made to situate a
cross section of training activities within such dimensions, creating easier means of communicating
the value of any specific opportunity and the pathways across opportunities over time.

Evaluation of training delivery and outcomes is seen as a weakness common to most non-academic
training activities. Opportunities for measuring success in delivering training start simply with
collecting a Net Promoter Score, which lets those delivering training know whether attendees are
likely to recommend the training to others. In looking at the longer term outcomes for the learner,
frameworks such as Bloom’s taxonomy and Kirkpatrick’s evaluation model offer possible approaches.

In this latter case of formal evaluation, ownership of evaluation as a component of career de-
velopment for any researcher appears mostly absent. While academic research institutions have
professional development centers to support research staff, the skills taught which might impact on
sustainable software are limited at best, and lack a clear and coherent development pathway.

Coordination of these training projects will depend on buy-in from a broad range of training
program and activity leaders, suggesting a key opportunity lies in identifying and bringing together
these people on a regular basis.

I.3. Description of Opportunity, Challenges, and Obstacles. Software skills are needed by
an increasing array of researchers and fields. The training arc is not well-defined, with a some-
times baffling array of training opportunities responding to various facets of skill deficit and need.
Given this current complexity, coordination across training projects would create common frames
of reference, communicating and integrating activities to better serve the needs of researchers.



34

Building this community could lift the maturity of training projects and capabilities, enabling
more advanced approaches to address key gaps in evaluation, career development, and a lift in the
standard of research practices.

In aiming at these opportunities, it will be necessary to find the means to support those involved
in leading training activities to allocate time to coordination activities, which will often sit beyond
their current scope of responsibility.

These activities are also distributed globally, with no single country or region offering a compre-
hensive set of capabilities and initiatives. Any coordination activity will therefore need to raise the
profile of the opportunity gap with relevant research funders and policy makers.

I.4. Key Next Steps. The goal of the following next steps is to quickly test whether there is
interest in establishing a community committed to increasing the degree of coordination across
training projects.
(1) Hold a virtual meeting by December 2015, to bring together a broader group of interest in this

topic, with specific goals to:
(a) Identify programs with existing activities aimed at integrating across training projects.
(b) Identify training projects with an interest in participating in coordination efforts.
(c) Identify funding opportunities to bring together training program and project leaders to

identify shared goals for future coordination of activities.
(d) Agree on a communications plan to qualify whether programs, projects, and funders are

interested in engaging and committing to ongoing activities.
(2) Review progress within 3 months, to establish next steps, if any.

I.5. Plan for Future Organization. Continue to track progress by posting comments to
WSSSPE3 issue.

I.6. What Else is Needed? If the group moves from early-stage formation into working towards
shared goals, expertise will likely be required in pedagogy and training evaluation.

I.7. Key Milestones and Responsible Parties.
(1) October through December, Nick Jones and Erin Robinson to draft WSSSPE3 report back.
(2) Before February 2016, Nick Jones and Erin Robinson to call a meeting of the broader group,

to review key next steps.
(3) Second quarter 2016 – if willing parties are identified, draft workshop proposal and identify a

relevant forum, including future WSSSPE events.

I.8. Description of Funding Needed. Workshop/RCN travel funding to bring together key pro-
gram, project, and funder representatives from across North America, EU, UK, Australasia. In
addition, funding to support work on better defining the landscape of training activities, the useful
perspectives in communicating the value of the varied training projects, and the possible pathways
through training activities over time.

Appendix J. Software Credit Working Group Discussion

Kyle Niemeyer42 will serve as the point of contact for this working group, and be responsible for
ensuring timely progress of the planned actions.

42email: kyle.niemeyer@oregonstate.edu

mailto:kyle.niemeyer@oregonstate.edu


35

J.1. Group Members.
• Alice Allen – Astrophysics Source Code Library
• Sou-Cheng Choi – NORC at University of Chicago, Illinois Institute of Technology
• James Hetherington – University College London
• Lorraine Hwang – University of California, Davis
• Daniel S. Katz – University of Chicago, Argonne National Laboratory
• Frank Löffler – Louisiana State University
• Abigail Cabunoc Mayes – Mozilla Science Lab
• Kyle E. Niemeyer – Oregon State University
• Grace Peng – National Center for Atmospheric Research
• Ilian Todorov – Science & Technology Facilities Council, UK

J.2. Summary of Discussion. The following section summarizes the working group’s discussion
based on contributions prior to the meeting [28] and the collaborative notes taken during the
meeting [29]. Please refer to the original sources for the unedited discussions if necessary.

Initial discussions focused on both various mechanisms for, and the philosophical approach be-
hind, crediting software in scientific papers. These began with proposals for various ways to credit
software (or other research products including data) that contributed more significantly than a
generic citation, including:

• A hierarchy of citations, with a “substantial” citation category to indicate software or data that
played a more significant role in the research;

• Transitive credit [22, 23], which assigns contriponents (contributors and components) various
weights depending on their level of importance;

• Project CRediT [30], which assigns roles to paper authors based on their specific contributions;
and

• Mozilla Science Lab’s recently introduced Contributorship Badges for Science [31], which pro-
vide a badge—associated with an ORCID [32]—that recognizes author contributions using the
taxonomy outlined in Project CRediT.

However, as of this writing, only Project CRediT roles [33, 34] and Contributorship Badges [31]
have been implemented for published papers, and both of these only provide a single “Software”
or “Computation” category associated with software. In addition, neither of these options allows
for the citation of software itself, but only provide an author contribution related to software. The
discussion quickly focused on transitive credit as a more quantitative measure of allocating credit to
both authors and software, although there were some concerns about authors overestimating their
own contributions compared to prior work.

The discussion then evolved into philosophical questions about the importance or reliance of a
particular work on prior science, materials, or software—in other words, whether there is a difference
between depending on prior scientific advances and depending on certain software (or experimental
equipment). Multiple contributors converged on the conclusion that unique capabilities require
some additional credit. The—albeit limited—consensus was that if a particular study relied on the
unique capabilities of software, data, or an experimental apparatus, then the authors or developers
that created this capability should be credited somehow.

The group also agreed on the fact that additional data was required to support the assertion
that software was not being sufficiently cited in the literature. In particular, this issue seemed to
be field-dependent. For example, as shown by a study of Howison and Bullard [35], in the field
of biology, the most-cited papers appear to be those describing scientific software. However, this
may not—and likely is not—the case in other fields, nor is it clear whether developers of scientific
software, even in the case of the biology field, are receiving sufficient credit for their efforts.

In the breakout sessions on the first day of WSSSPE3, the group discussed and deliberated
over the Entertainment Identifier Registry (EIDR) [21] as a potential model for scientific software.
That system assigns unique Digital Object Identifiers (DOIs)—the same system used for scientific
publications—to all content (e.g., movies, television shows) and contributors, along with relevant



36

metadata. One important use of the EIDR system is to track rights and credits for contributors
to entertainment works in order to distribute revenues—similar to the proposed transitive credit
concept.

The group also discussed separating quantitative measures (e.g., number of citations) from the
value of a work in order to give credit, moving towards qualitative or anecdotal evidence of value.
Other topics that were brought up included a form of PageRank [36] for citations, based on number
of mentions, and using market penetration or adoption rate in a community as a metric, although
it was not clear how this would be measured. Finally, the concept a software tool’s uniqueness
or indispensability to a community was mentioned, with value being characterized by a particular
piece of software either offering unique capabilities or doing something better, faster, or with less
computational requirements than other offerings.

On the second day of WSSSPE3, the group decided to put aside the taxonomy of contributions
and focus on software citations to ensure developers receive credit (regardless of contribution).
Eventually, once software citations are standardized, the goal would be to return to establishing dif-
ferent roles/contributions for this credit. Following this decision, the group identified two necessary
actions to move forward:
(1) standardizing a citation file or some other form of metadata associated with software, and
(2) standardizing the way to cite software (used directly) in papers.
For both of these actions, a number of ongoing efforts were identified and discussed.

J.2.1. Software Citation Metadata. At a minimum, the metadata required for software citation
includes:

• Name of software,
• DOI for software,
• Contributors, in the form of names and ORCIDs,
• Software dependencies, in the form of DOIs, and
• Other people and artifacts that would be cited or acknowledged in a paper.

This information would then be contained in a citation file, e.g., as part of the GitHub repository.
The group also discussed similar efforts such as CodeMeta43, an attempt to codify minimal metadata
schemes in JSON and XML for scientific software and code, and implementing transitive credit via
JSON-LD [22]. Some questions arose about how this information would be stored for closed-source
software.

As one mechanism for constructing accurate contributor lists from existing project contributors,
the group discussed associating GitHub accounts—as well as accounts on Bitbucket, CodePlex, and
other repositories for open-source scientific software—with ORCID accounts. However, a (quick)
response from GitHub (via Arfon Smith) indicated that this might not be possible in the near
future: “GitHub doesn’t have any plans to allow ORCID accounts to be associated with GitHub
user accounts.”

J.2.2. Citing Software in Publications. Although far from a standard practice, examples of citing
software in publications can be found in various scientific communities—notably, representative
samples can be found in astronomy [37] and biology [35]. The group recommended collecting similar
examples from other communities, and then developing a software citation principles document in
concert with the FORCE11 Software Citation Working Group (see §J.5 for more details), following
the model of the FORCE11 Data Citation Principles document [38].

The group further discussed briefly whether software used directly in a publication—whether
to perform simulation or analysis, or as a dependency for newly developed software—should be
distinguished from other references due to the dependence of the study on these research artifacts.
Suggestions included a separate list of citations (with DOIs) for software and other research objects
that serve this sort of “vital” role. Similar recommendations were made by the credit breakout
group at WSSSPE2 [4].

43CodeMeta: https://github.com/codemeta/codemeta

https://github.com/codemeta/codemeta


37

Finally, although a discrete task from software citations, significant discussion focused on ensuring
software citations are indexed in the same manner as publications, allowing the construction of a
corresponding software citation network. Currently, software releases can receive citable DOIs via
Zenodo [39] and figshare [40]; however, these citations are not processed by indexers such as Web
of Science, Scopus, or Google Scholar. Thus, either in parallel or following the primary task, the
group will need to reach out to these organizations. Initial conversations with Elsevier/Scopus via
Michael Taylor during WSSSPE3 clarified that Scopus is not yet DataCite DOI aware, and also
does not yet have an internal identifier for software or data (but needs/plans to add this support).
Taylor said they prefer a “software article” with the usual article metadata (e.g., authors, citations),
and mentioned Zenodo as an example – this proposal seemed to align with our group’s discussions.
Taylor also mentioned another benefit of the software and associated DOI on GitHub: in addition to
a citation, one could obtain statistics on usage/downloads/forks, which happens to be what Depsy44

is beginning to try to do.

J.3. Description of Opportunity, Challenges, and Obstacles. There currently is no standard
mechanism for citing software or receiving credit for software (akin to citations for publications).
Software is eligible for DOI assignment, but DOI metadata fields are not well tuned or standardized
for software (vs. publications). Some software providers apply for DOIs, but this is not widely
adopted. Also, there is no mechanism to cite software dependencies within software.

Major obstacles include the fact that indexers (e.g., Scopus, Web of Science, Google Scholar)
do not currently support software/data document types or DataCite DOIs. Therefore, even with
universal association of scientific software with DOIs and standardized practices for citing software
in publications, software citations will not be indexed in the same manner as traditional publications.

Although this working group’s discussions at WSSSPE3 did not focus much on the topic of tenure
and professional advancement, the group recognized that there is no standard policy—generally even
within a single university—for software products to be included in promotion and tenure dossiers.
Thus, it may be difficult to encourage valuing software contributions across the United States or
United Kingdom and globally; furthermore, stakeholders are typically not tenured and thus may
not be influential enough to change the status quo. However, as discussed in Section 5.2, this is
changing for Research Software Engineers, at least in the UK.

J.4. Key Next Steps.
(1) Hold virtual meeting to determine group members responsible/willing to work on the following

tasks, to be organized within one month of the workshop.
(2) Compile best practices of software citation across multiple disciplines, including journals and

communities of interest/practice in the research world, to begin by December 2015.
(3) Compile examples of including other products in promotion and tenure dossier, to begin by

December 2015.
(4) Draft the Software Citation Principles document (including citation metadata file), by April

2016.
(5) Publish/release the Software Citation Principles document, by August 2016.
(6) Reach out to journals, publishers, teachers/educators, indexers, and professional societies—

likely through meetings with key groups, to begin by September 2016.

J.5. Plan for Future Organization. The WSSSPE breakout group plans to join efforts related
to citing software with the FORCE11 Software Citation Working Group (FORCE11-SCWG)45; Kyle
Niemeyer formally requested the merging of these groups following the meeting. However, some
future plans of the WSSSPE group fall outside the scope of FORCE11-SCWG, which covers software
citation practices. These activities include working with indexers such as Web of Science and Scopus
to index software citations archived on, e.g., Zenodo or figshare, and pursuing the development of

44Depsy: https://depsy.org
45FORCE11 Software Citation Working Group, https://www.force11.org/group/software-citation-working-group

https://depsy.org
https://www.force11.org/group/software-citation-working-group


38

an open indexing service; such plans will be pursued either separately or through the formation of
follow-on FORCE11 working groups.

The group will primarily communicate electronically, with Kyle Niemeyer responsible for ensuring
regular progress.

J.6. What Else is Needed? The near-term actions of the group, focused mainly on software
citation, do not require any additional resources. However, connections with publishers and indexers
will be needed to pursue related activities, although the FORCE11-SCWG may satisfy this need;
in addition, some members of the group already reached out to relevant contacts. Funding may be
needed to organize meetings or for group members to attend relevant meetings, as discussed further
below.

J.7. Key Milestones and Responsible Parties. Following the meeting, Kyle Niemeyer formally
requested the merging of software citation activities with FORCE11-SCWG. Within a month of
the meeting, Niemeyer will organize a virtual meeting of the group and manage the division of
responsibilities for compiling existing practices of software citation and including software/products
in promotion and tenure dossiers. Building off of these efforts, the next major milestone is drafting
the Software Citation Principles document in collaboration with the SCWG, targeted for April 2016.
While the existing directors of the SCWG, Arfon Smith and Dan Katz, lead the efforts of that group
towards the Software Citation Principles document, Kyle will help coordinate contributions from
the WSSSPE group members.

J.8. Description of Funding Needed. Some funding would be useful to support primarily travel
to conferences for group meetings (e.g., FORCE201646), and to hold meetings to bring together both
group members and key stakeholders (e.g., journals, publishers, professional societies, indexers). In
addition, funding would be desired to support group members’ time to perform work towards the
key steps described previously.

Appendix K. Publishing Software Working Group Discussion

Steven R. Brandt47 will serve as the point of contact for this working group.

K.1. Group Members.
• Steven R. Brandt – Louisiana State University
• Daniel Gunter – LBNL
• Yuhan Ding – Illinois Institute of Technology
• Neil Chue Hong – Software Sustainability Institute

K.2. Summary of Discussion. A tentative first cut at the list containing executable papers
identified the following:

• ACM Transactions on Mathematical Software (TOMS): provides the additional step of having
reviewers validate the code which was submitted with the publication.

• The Mathematica Journal: publishes Mathematica notebooks (with equations, figures, etc.)
directly.

• O’Reilly Media: announced that it plans to make IPython Notebooks a first-class authoring
environment for their publishing program alongside their existing mechanisms.

• Nature: offers a list of notebooks published alongside more traditional articles, and is looking
at ways to make these documents more official. There are, in fact, a number of journals that
offer “electronic supplements” to the more traditionally published static articles.

• IPython: maintained a list of “reproducible academic publications” [41].
• KBase: offers narratives built on IPython or Jupyter notebooks for assembling publications
that are reproducible, and can be commented or annotated.

46FORCE2016, https://www.force11.org/meetings/force2016
47email: sbrandt@cct.lsu.edu

https://www.force11.org/meetings/force2016
mailto:sbrandt@cct.lsu.edu


39

The group also discussed future possibilities for a new publication format that might provide
advantages:

• Journals could be built around an existing, widely used framework thereby reducing the burden
of studying code on the part of reviewers (common bits of infrastructure which are not relevant
to the science would be automatically excluded).

• Journals might be encouraged to use more metadata, making them easier to mine for various
analytical purposes.

• The Research Ideas and Outcomes (RIO) journal is an effort to publish fragmentary results
that can subsequently be combined into a single content item.

• Papers could be made more understandable. Each equation or technical term could be linked
to a document/tutorial explaining its origin and/or derivation.

• So many options for publication currently exist that good science may be getting lost in the
noise. Would some sort of “upvote” mechanism be of value?

• Some sort of Replicated Computation Results badge could be made available to publications
that have undergone greater scrutiny (this is already done by TOMS).

K.3. Description of Opportunity, Challenges, and Obstacles. The opportunity is to collect
a list of executable papers and shine a light on the experiments and development efforts currently
underway.

The only obstacle to this is the difficulty in finding and identifying such publications. The
Software Sustainability Institute was able to do something similar for publications about software by
making a public page on the Software Sustainability Institute’s website (http://www.software.ac.uk)
containing a catalog of these publications and enlisting the help of the community to grow the list.

K.4. Key Next Steps. Create the first version of the web page to be displayed on the Software
Sustainability Institute’s website: http://www.software.ac.uk. We expect the page to be live in
early January of 2016.

An ongoing effort to update the page should follow.

K.5. Plan for Future Organization. None at this time.

K.6. What Else is Needed? Nothing else at this time.

K.7. Key Milestones and Responsible Parties. Steven R. Brandt has created a first version of
the page, and it is in the process of being posted on the Software Sustainability Institute’s website:
http://www.software.ac.uk. Neil Chue Hong will take responsibility for the page once it is up.

K.8. Description of Funding Needed. None.

Appendix L. User Community Working Group Discussion

Point of contact: Dan Gunter48 and Ethan Davis49.

L.1. Group Members.
• Ethan Davis – UCAR Unidata
• Dan Gunter – Lawrence Berkeley National Lab
• Liz Jessup – University of Colorado
• Mark Miller – University of California, San Diego
• Lindsey Powers – The HDF Group
• Daniel Ziskin – NCAR Atmospheric Chemistry Observations and Modeling (ACOM) Labora-
tory

48email: dkgunter@lbl.gov
49email: edavis@ucar.edu

http://www.software.ac.uk
http://www.software.ac.uk
http://www.software.ac.uk
mailto:dkgunter@lbl.gov
mailto:edavis@ucar.edu


40

L.2. Summary of Discussion. Discussion revolved around a few questions: what is the benefit of
having a “community” for software sustainability, what practices and circumstances lead to having
and maintaining a community, how can funding help or hinder this process, and perhaps most
importantly, how can best practices be described and distilled into a document that can help new
projects.

The benefits of having a community that were brought up were considered largely obvious. In
addition to having advocates for the software, and a possible source of “free” contributions to the
codebase, the community becomes a good source for requirements, feedback, and metrics. The
software community can also act as “cheerleaders” who convince funders or other potential users to
fund/use the software, and thus help sustain the software.

Practices and circumstances that lead to a community are first, that the software offers value.
But in addition to this, a community will be much more likely to form if they receive (expert)
support when they have questions. Additional contributing factors are good usability (not always
needed), and an open development process such as IPython developer meetings on YouTube. It was
also pointed out that an evangelist for the project, not necessarily but often one of the developers,
can often make a big difference.

Funding can help the process by encouraging both value to the community and high-quality user
support. Only providing funding for the software development may create good software, but with
less likelihood to have a real community. It was discussed that federal laboratories are a good
incubator for software communities, and that a general facility like EarthCube is too dispersed to
really make a community. Also, domain-specific groups within laboratories or universities might
provide as an incubator for software communities.

In describing best practices, the group discussed the different modes for starting a scientific
software project: building on an existing product that needs improving, recognizing an unsatisfied
need of an existing community, or creating a new solution to a need not yet recognized by the
community. The group also thought that the existing books on software communities would need
to be evaluated in light of differences between science software projects and general open-source
software (OSS) projects in terms of scale, science, acknowledgement and credit, and funding models.

L.3. Description of Opportunity, Challenges, and Obstacles. The main opportunity is to
increase awareness among scientific software developers and project managers of the importance of
developing a community around their project. While this message is fairly well understood in the
open source community, the scientific community can be more focused on the science a software
project is supporting rather than the software project itself.

As with many of the issues relevant to the sustainability of science software, the main challenge
here will be changing the culture and expectations around scientific software.

L.4. Key Next Steps. The most important next steps is a “Best Practice” document, which would
describe what successful projects with engaged communities look like, how to replicate this type
of project, and look at end-of-life on a community project. Inputs to this document would include
a software community survey of highly functioning communities such as R Open Science, Python
SciPy, OPeNDAP, and Unidata, with analysis of factors that feed into their success. Also references
like the “Art of Community” could be adapted and summarized for the science software community.

More specifically, the group would like to take the following steps:
• Survey successful science software projects
• Survey community members from the surveyed projects
• Distill the survey results and document best practices around community engagement
• Look for ways to raise awareness
Another next step would be increasing recognition of need for science software projects to focus

on building and supporting their user communities. Good software engineering practices are not
enough, and popular training like Software Carpentry does not currently address this issue head-on.



41

L.5. Plan for Future Organization. No definite plans were agreed upon for future organization.
The major ideas discussed were coordinating with another group or adapting some existing text.

Collaboration within the framework of an existing organization seems a good initial path. Mozilla
Science maintains a “Working Open Project Guide” [24], the introduction of which states:

Working openly with contributors enables your community to learn how to build
and collaborate together. This document is a guideline on how to work openly and
involve others in your projects with Mozilla. We want to help you engage your
community in a way that encourages contributors and builds other leaders.

Another idea is to form a group that could adapt existing commercial-oriented guidelines for the
world of scientific software and top-down funding structures. For example, to distill the “Art of
Community” by Jono Bacon [25] for scientific software.

L.6. What Else is Needed? The group had many points of agreement, but there is not currently a
dedicated core group of people who have committed to producing the key milestones. Coordination
via phone or online would be necessary to build this “community” of contributors.

L.7. Key Milestones and Responsible Parties. The key milestones for the group’s activities
align closely with the Key Next Steps above:

• Complete and write up a survey of project members, and community members, for successful
science software projects

• Distill the survey results and document best practices around community engagement

L.8. Description of Funding Needed. With a small amount of seed funding, it is possible that
members of this group or other parties could spend the time necessary to devise a survey of existing
projects and deploy this, probably by traveling to meetings and workshops for the various software
communities.

References
[1] Katz DS, Allen G, Chue Hong N, Parashar M, Proctor D. First Workshop on on Sustainable Software for Science:

Practice and Experiences (WSSSPE): Submission and Peer-Review Process, and Results. arXiv; 2013. 1311.3523.
http://arxiv.org/abs/1311.3523.

[2] Katz DS, Choi SCT, Lapp H, Maheshwari K, Löffler F, Turk M, et al. Summary of the First Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE1). Journal of Open Research Software.
2014;2(1). http://dx.doi.org/10.5334/jors.an.

[3] Katz DS, Allen G, Chue Hong N, Cranston K, Parashar M, Proctor D, et al. Second Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE2): Submission, Peer-Review and Sorting Process, and
Results. arXiv; 2014. 1411.3464. http://arxiv.org/abs/1411.3464.

[4] Katz DS, Choi SCT, Wilkins-Diehr N, Chue Hong N, Venters CC, Howison J, et al. Report on the Second
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). Journal of Open Research
Software. 2016;Accepted. Available at http://arxiv.org/abs/1507.01715.

[5] Turk MJ, Smith BD, Oishi JS, Skory S, Skillman SW, Abel T, et al. yt: A Multi-code Analysis Toolkit for
Astrophysical Simulation Data. ApJS. 2011 Jan;192:9.

[6] Becker C, Chitchyan R, Duboc L, Easterbrook S, Mahaux M, Penzenstadler B, et al. The Karlskrona manifesto
for sustainability design. arXiv; 2014. 1410.6968. http://arxiv.org/abs/1410.6968.

[7] Sempervirens;. Accessed: 2015-11-07. https://github.com/njsmith/sempervirens.
[8] Heroux MA, Willenbring JM. Barely sufficient software engineering: 10 practices to improve your CSE software.

In: Software Engineering for Computational Science and Engineering, 2009. SECSE ’09. ICSE Workshop on;
2009. p. 15–21.

[9] Blatt M. DUNE as an Example of Sustainable Open Source Scientific Software Development. arXiv; 2013.
1309.1783. http://arxiv.org/abs/1309.1783.

[10] Ahern S, Brugger E, Whitlock B, Meredith JS, Biagas K, Miller MC, et al. VisIt: Experiences with Sustainable
Software. arXiv; 2013. 1309.1796. http://arxiv.org/abs/1309.1796.

[11] Vliet Hv. Software Engineering: Principles and Practice. 3rd ed. Wiley Publishing; 2008.
[12] Merali Z. Computational science:...Error..why scientific programming does not compute. Nature. 2010;467:775–

777.
[13] Hettrick S, et al.. UK Research Software Survey 2014; 2014. Available from: http://dx.doi.org/10.5281/zenodo.

14809.

http://arxiv.org/abs/1311.3523
http://dx.doi.org/10.5334/jors.an
http://arxiv.org/abs/1411.3464
http://arxiv.org/abs/1507.01715
http://arxiv.org/abs/1410.6968
https://github.com/njsmith/sempervirens
http://arxiv.org/abs/1309.1783
http://arxiv.org/abs/1309.1796
http://dx.doi.org/10.5281/zenodo.14809
http://dx.doi.org/10.5281/zenodo.14809


42

[14] Becker C, Betz S, Chitchyan R, Duboc L, Easterbrook SM, Penzenstadler B, et al. Requirements: The Key to
Sustainability. Software, IEEE. 2016 Jan;33(1):56–65.

[15] Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, et al. Sustainability Design and
Software: The Karlskrona Manifesto. In: Proc. 2015 Int’l Conf. Software Eng. (ICSE’15),; 2015. .

[16] Tate K. Sustainable Software Development: An Agile Perspective. Addison-Wesley Professional; 2005.
[17] Pierre Bourque REF. SWEBOK, version 3.0: Guide to the Software Engineering Body of Knowledge. IEEE

Press; 2014.
[18] Working towards Sustainable Software for Science: Practice and Experiences;. Accessed: 2015-12-03. http://

wssspe.researchcomputing.org.uk/.
[19] International Workshop on Software Engineering for High Performance Computing in Computational Science

and Engineering;. Accessed: 2015-12-03. http://se4science.org/workshops/.
[20] Workshop on Software Engineering for Sustainable Systems;. Accessed: 2015-12-03. http://sustainabilitydesign.

org/initiatives/se4susy/.
[21] Entertainment Identifier Registry;. Accessed: 2015-10-28. http://eidr.org.
[22] Katz DS, Smith AM. Implementing Transitive Credit with JSON-LD. arXiv; 2014. 1407.5117. http://arxiv.org/

abs/1407.5117.
[23] Katz DS. Transitive Credit as a Means to Address Social and Technological Concerns Stemming from Citation

and Attribution of Digital Products. Journal of Open Research Software. 2014 Sep;2(1):e20.
[24] Mayes AC, zee moz, Collins A, Niemeyer K, Jabbari A. Leadership-Training: “Working Open” Guide - WSSSPE3

version; 2015. Available from: http://dx.doi.org/10.5281/zenodo.33748.
[25] Bacon J. The Art of Community. Building the New Age of Participation.; 2009.
[26] Howison J. Sustaining scientific infrastructures: transitioning from grants to peer production (work-in-progress).

In: iConference 2015 Proceedings; 2015. http://hdl.handle.net/2142/73439.
[27] Geels FW, Schot J. Typology of sociotechnical transition pathways. Research Policy. 2007;36(3):399–417.
[28] WSSSPE3 Software Credit Working Group. WSSSPE3 Software Credit Working Group GitHub Issues; 2015.

Accessed: 2015-10-1. https://github.com/WSSSPE/meetings/issues/51.
[29] WSSSPE3 Software Credit Working Group. WSSSPE3 Software Credit Working Group

Collaborative Notes; 2015. Accessed: 2015-10-1. https://docs.google.com/document/d/
1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA.

[30] CASRAI. Project Credit;. Accessed: 2015-03-31. http://credit.casrai.org.
[31] Mayes AC. Contributorship Badges; 2015. Accessed: 2015-10-26. https://www.mozillascience.org/projects/

contributorship-badges.
[32] Open Researcher and Contributor ID (ORCID);. Accessed: 2015-03-31. http://orcid.org/.
[33] McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, et al. CRH Engagement of the Locus

Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron. 2015 Aug;87(3):605–620.
[34] Lin IC, Okun M, Carandini M, Harris KD. The Nature of Shared Cortical Variability. Neuron. 2015

Aug;87(3):644–656.
[35] Howison J, Bullard J. Software in the scientific literature: Problems with seeing, finding, and using software

mentioned in the biology literature. Journal of the Association for Information Science and Technology. 2015;In
press, available at http://dx.doi.org/10.1002/asi.23538.

[36] Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN
Systems. 1998;30(1–7):107–117.

[37] SIG SP. Astronomy software citation examples and ideas; 2015. Accessed: 2015-10-29. https://docs.google.com/
document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0.

[38] Data Citation Synthesis Group. Martone M, editor. Joint Declaration of Data Citation Principles. San Diego
CA: FORCE11; 2014. Accessed: 2015-10-28. https://www.force11.org/group/joint-declaration-data-citation-
principles-final.

[39] Zenodo;. Accessed: 2015-10-28. https://zenodo.org.
[40] figshare;. Accessed: 2014-02-03. https://figshare.com.
[41] IPython. A gallery of interesting IPython Notebooks; 2015. Accessed: 2015-10-28. https://github.com/ipython/

ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications.

http://wssspe.researchcomputing.org.uk/
http://wssspe.researchcomputing.org.uk/
http://se4science.org/workshops/
http://sustainabilitydesign.org/initiatives/se4susy/
http://sustainabilitydesign.org/initiatives/se4susy/
http://eidr.org
http://arxiv.org/abs/1407.5117
http://arxiv.org/abs/1407.5117
http://dx.doi.org/10.5281/zenodo.33748
http://hdl.handle.net/2142/73439
https://github.com/WSSSPE/meetings/issues/51
https://docs.google.com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA
https://docs.google.com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA
http://credit.casrai.org
https://www.mozillascience.org/projects/contributorship-badges
https://www.mozillascience.org/projects/contributorship-badges
http://orcid.org/
http://dx.doi.org/10.1002/asi.23538
https://docs.google.com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0
https://docs.google.com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://zenodo.org
https://figshare.com
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications

	1. Introduction
	2. Calls for Participation
	3. Keynote
	4. Lightning Talks
	5. Working Groups
	5.1. White paper/journal paper about best practices in developing sustainable software
	5.2. Funding Research Programmer Expertise
	5.3. Transition Pathways to Sustainable Software: Industry & Academic Collaboration
	5.4. Legacy Software
	5.5. Principles for Software Engineering Design for Sustainable Software
	5.6. Useful Metrics for Scientific Software
	5.7. Training
	5.8. Software Credit Working Group
	5.9. Publishing Software Working Group Discussion
	5.10. Building Sustainable User Communities for Scientific Software

	6. Conclusions
	Acknowledgments
	Appendix A. Organizing Committee
	Appendix B. Attendees
	Appendix C. Travel Award Recipients
	Appendix D. Best Practices Group Discussion
	D.1. Group Members
	D.2. Summary of Discussion
	D.3. Description of Opportunity, Challenges, and Obstacles
	D.4. Key Next Steps
	D.5. Plan for Future Organization
	D.6. What Else is Needed?
	D.7. Key Milestones and Responsible Parties
	D.8. Description of Funding Needed

	Appendix E. Funding Research Programmer Expertise Group Discussion
	E.1. Group Members
	E.2. Summary of Discussion
	E.3. Key Next Steps
	E.4. Plan for Future Organization and Future Needs
	E.5. Description of Funding Needed

	Appendix F. Transition Pathways to Sustainable Software: Industry & Academic Collaboration Working Group Discussion
	F.1. Group Members
	F.2. Summary of Discussion
	F.3. Description of Opportunity, Challenges, and Obstacles
	F.4. Key Next Steps
	F.5. Plan for Future Organization
	F.6. What Else is Needed?
	F.7. Key Milestones and Responsible Parties
	F.8. Description of Funding Needed

	Appendix G. Engineering Design Group Discussion
	G.1. Group Members
	G.2. Summary of Discussion
	G.3. Description of Opportunity, Challenges, and Obstacles
	G.4. Key Next Steps
	G.5. Plan for Future Organization
	G.6. What Else is Needed?
	G.7. Key Milestones and Responsible Parties
	G.8. Description of Funding Needed

	Appendix H. Metrics Working Group Discussion
	H.1. Group Members
	H.2. Summary of Discussion
	H.3. Description of Opportunity, Challenges, and Obstacles
	H.4. Key Next Steps
	H.5. Plan for Future Organization
	H.6. What Else is Needed?
	H.7. Key Milestones and Responsible Parties
	H.8. Description of Funding Needed

	Appendix I. Training Working Group Discussion
	I.1. Group Members
	I.2. Summary of Discussion
	I.3. Description of Opportunity, Challenges, and Obstacles
	I.4. Key Next Steps
	I.5. Plan for Future Organization
	I.6. What Else is Needed?
	I.7. Key Milestones and Responsible Parties
	I.8. Description of Funding Needed

	Appendix J. Software Credit Working Group Discussion
	J.1. Group Members
	J.2. Summary of Discussion
	J.3. Description of Opportunity, Challenges, and Obstacles
	J.4. Key Next Steps
	J.5. Plan for Future Organization
	J.6. What Else is Needed?
	J.7. Key Milestones and Responsible Parties
	J.8. Description of Funding Needed

	Appendix K. Publishing Software Working Group Discussion
	K.1. Group Members
	K.2. Summary of Discussion
	K.3. Description of Opportunity, Challenges, and Obstacles
	K.4. Key Next Steps
	K.5. Plan for Future Organization
	K.6. What Else is Needed?
	K.7. Key Milestones and Responsible Parties
	K.8. Description of Funding Needed

	Appendix L. User Community Working Group Discussion
	L.1. Group Members
	L.2. Summary of Discussion
	L.3. Description of Opportunity, Challenges, and Obstacles
	L.4. Key Next Steps
	L.5. Plan for Future Organization
	L.6. What Else is Needed?
	L.7. Key Milestones and Responsible Parties
	L.8. Description of Funding Needed

	References

