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ABSTRACT

Blood flow is an important measurement in the diagnosis of cardiovascular diseases –

the main cause of death globally. Cardiovascular diseases are often associated with

atherosclerosis, which is a condition that causes the narrowing of arteries due to a build-

up of lipids on the wall of the arterial vessels. Atherosclerosis occurring in the upper or

lower limbs (referred to as peripheral arterial diseases) may lead to heart attack, stroke

or severe health complications. Early detection of peripheral arterial diseases will enable

primary prevention, and thus a reduction in morbidity, mortality and associated

resources and financial costs.

Limitations and drawbacks in the current methods for peripheral arterial blood flow

measurement were primary factors in directing this research, which focuses on

developing a reliable, easy-to-use and low-cost, non-invasive blood flow metering

method that can replace or be an alternative option to current methods. This thesis

describes the design and development of a novel electromagnetic induction method that

can be used for peripheral arterial blood flow measurement non-invasively. In general

terms, an electromagnetic induction flow metering technique is desirable because it is

linear and insensitive to viscosity, temperature, conductivity and pressure loss.

Additionally, and unlike previous non-invasive electromagnetic blood flow meters, the

proposed method can be calibrated offline and is insensitive to velocity profile. The

latter is important in obtaining measurements with high accuracy as blood flow in

mammals is asymmetric.

A mathematical model was developed for the proposed electromagnetic induction

method based on the theory of “weight functions” by Shercliff and the “virtual current”

theory by Bevir. This model demonstrated that, for multiple flow channels within a

cross-sectional area bounded by a multi-electrode array and across which a uniform



magnetic field is applied, flow induced potentials, due to the flow interaction with the

magnetic field, can be predicted. From these flow induced potentials, the total

volumetric flow rate can be found, irrespective of the number, size and location of the

flow channels within the area bounded by the electrode array using a technique based on

the Discrete Fourier Transform method. This proposed method allows the venous and

arterial blood flow in a limb to be found.

Next, a finite element model was developed in COMSOL Multiphysics software to

validate the theoretical work. This was achieved by modelling multiple flow channels

within a cylindrical region and obtaining flow induced potentials, which were compared

with the theoretical values. From these induced potentials, the volumetric flow rate was

found, using the DFT method, and confirmed.

Finally, a practical model was designed and built which consisted of a physical

pipework model (simulating a human limb), an electromagnet and signal conditioning

and processing systems. Flow induced potential difference measurements were made

using this model and compared with the predicted theoretical values. Overall, a good

agreement was found between the theoretical results, computer simulations and

practical results. Based on this work and additional work that is suggested in this

research, a medical prototype non-invasive electromagnetic blood flow meter device

can be developed for clinical trials.
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1.1 Introduction

This thesis describes the research and development that has been undertaken in order to

develop a method based on electromagnetic (EM) induction for application in blood

flow rate measurement. The method allows the maximum blood flow rate in the major

arteries of a human (lower or upper) limb to be measured non-invasively, irrespective of

the  number  of  blood  vessels  at  the  site  of  measurement.  It  is  known  that  over  one

cardiac cycle the net blood flow rate in a limb is zero because the arterial and venous

blood flow rates are equal and opposite. However, the maximum arterial blood flow rate

can be found by taking blood flow rate measurements at different times over the cardiac

cycle and this will be discussed later in this chapter. A non-invasive method, built

around this idea, allows for a device to be applied to the living skin to perform the blood

flow measurement and does not require any surgical intervention. The method is based

on the application of Faraday’s law of induction, which states that an electromotive

force (emf) is induced in a conductor moving in a magnetic field.

EM induction was utilised invasively and non-invasively by several researchers, starting

with Kolin, in the application of blood flow measurement [1]. However, the method

described in this thesis aims to overcome the limitations of previous attempts and to

improve the accuracy of the measurement of blood flow rate. This method was

developed theoretically and then tested using Finite Element Analysis (FEA) modelling

software. Afterwards, a prototype device was built to demonstrate and test the method

experimentally in an artificial environment. A clinical device, built on this method, will

be of great importance in the study of cardiovascular diseases (CVD), particularly in the

diagnosis of peripheral arterial disease (PAD).

In this chapter, Section 1.2 presents an overview of the human circulatory system. It is

essential in understanding the physiology of blood and how it is transported via blood
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vessels to the organs and tissues of the human body. The subject of the human

circulatory system is vast. Accordingly, only the relevant information, that is important

to this research, is stated and explained.  Following this, in Section 1.3, the importance

of blood flow measurement in medical applications is discussed and particularly in the

areas of cardiovascular and renal diseases. Lastly, the aims and objectives of this

research and the thesis structure will be presented in Section 1.4 and Section 1.5,

respectively.

1.2 Overview of the Circulatory System

The circulatory  system (also  known as  the  cardiovascular  system)  is  one  of  the  major

systems in the human body alongside other systems such as the muscular, nervous,

respiratory,  digestive  systems  and  so  forth.  It  comprises  three  main  parts:  the  heart  –

which pumps the blood to all organs and tissues in the human body; the blood vessels –

which deliver blood from the heart to all organs and vice versa and the blood – which is

the travelling medium which carries O2, nutrients and other elements [2-4]. Figure 1.1

illustrates the circulatory system of the human body. The primary functions of the

system are performed via the blood (the carrier). These functions are:

· Transportation  of  O2, nutrition (glucose, vitamins and minerals) and hormones to

targeted cells

· CO2, waste and by-product removal by carrying them to specific organs for excretion

· Defensive and protective tasks, e.g. disease elimination by white-blood cells and

blood clotting to repair damaged vessels and stop bleeding

· Regulation of body temperature and pH balance, i.e. homeostasis
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1.2.1 The Heart and Cardiac Output

The heart is a muscle that pumps blood through the blood vessels in the human body [2,

3]. It is located between the lungs, slightly to the left of the body’s midline. The size of

the heart is approximately equal to the fist of the person. It weighs 250-300 g for

women and 300-350 g for men. Like skeletal muscles, the heart (cardiac muscle) can be

noticeably larger in athletes due to exercise. Exercise enlarges the cells in the heart

without any increase in their number. Moreover, the heart of athletes is trained for

efficient pumping of blood throughout the body. The heart has four chambers: two

receiving chambers – located in the upper part of the heart – called the left atrium and

the  right  atrium and  two pumping  chambers  –  located  in  the  lower  part  of  the  heart  –

known as the left and right ventricles.

Figure 1.1: The human circulatory system[5]
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The right atrium receives deoxygenated blood from organs and body tissues. Then, this

blood is sent to the right ventricle, which pumps the deoxygenated blood into the

pulmonary circuit, which transports blood between the heart and the lungs. This blood

moves via the pulmonary artery branches to the lungs. At the pulmonary capillaries,

exchange  of  gas  occurs,  i.e.  O2 enters  the  blood  and  CO2 leaves the blood. The

oxygenated blood that returns to the left atrium is then sent to the left ventricle. The

latter pumps the blood to the systemic circuit which distributes the blood between the

heart and all other organs and tissues. At the systemic capillaries, another exchange

occurs, in which O2 and nutrients leave the blood and CO2 and waste enter. This blood

is then sent back to the right ventricle and the whole process is repeated. The pulmonary

and systemic systems are presented in Figure 1.2.

Figure 1.2: The pulmonary and systemic systems [6]

The contraction of the heart starts at the atria (atrial systole), which results in a pressure

rise. This pressure causes the blood in the atria to be pumped to corresponding
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ventricles via the atrioventricular valves, i.e. the mitral and tricuspid valves as shown in

Figure  1.3.  The  atrial  systole  lasts  approximately  100  ms.  By  the  end  of  the  atrial

systole, the blood volume (known as end diastolic volume (EDV)) in each ventricle is

about 130 mL. As the contraction of the atria is completed, the right and left ventricles

contract (ventricular systole). The ventricular systole takes place in two stages. During

the first stage, known as isovolumetric contraction, no blood is ejected. However, the

pressure in the ventricles rises until the atrioventricular valves are closed. In the second

phase, known as ventricular ejection, the pressure in the ventricles is higher than the

pressure in the pulmonary artery and the aorta. Therefore, both right and left ventricles

pump equal amounts of blood (via the pulmonary semilunar and aortic semilunar

valves)  to  the  pulmonary  and  systemic  systems,  respectively.  The  total  blood  volume

ejected by each ventricle is known as stroke volume and it is in the range of 70-80 mL

in the normal human condition. This leaves a blood volume – known as end systolic

volume (ESV) – of about 50-60 mL in the ventricles. The ventricular systole lasts a

period of about 270 ms. The phase of the ventricular contraction is known as systole.

Figure 1.3: Human heart [6]
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When the ventricular systole starts, the atria enter a resting phase known as atrial

diastole in which they are filled with blood as shown in Figure 1.4. Once the phase of

the ventricular systole is completed, the ventricles enter also a relaxation phase known

as ventricular diastole which lasts 430 ms. The ventricles, during this time, are filled

with blood. Near the end of the relaxation period of the ventricles, the atrial contraction

starts and the atria systole starts again. The phase in which the ventricles are in

relaxation is known as diastole. One complete cycle of systole and diastole is known as

the cardiac cycle. The cardiac cycle lasts about 0.8 s for a resting heart (75 beats per

minute on average). The cardiac cycle can be correlated with the compound electrical

signal of the heart, i.e. the electrocardiograph (ECG) signal as shown in Figure 1.4. The

atrial systole and ventricular systole are represented by the P and QRS waves of the

ECG, respectively. The ventricular diastole is represented by the end of T wave of the

ECG signal.

Figure 1.4: Relationship between cardiac cycle and ECG
(x-axis is time in s and y-axis is amplitude in V) [7]

Figure 1.5 illustrates the correlation between the ECG signal and the cardiac cycle

events, particularly for the left ventricle (LV) which pumps blood to the systemic

system. It can be seen that during the period QRS of the ECG signal, the pressure in the

left  ventricle  (LVP)  rises  until  it  reaches  a  point  at  which  its  level  is  higher  than  the
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aortic pressure (AP). At this point, a rapid ejection of blood occurs from the left

ventricle to the systemic system via the aorta, and the arterial blood flow rises

substantially (Phase 3 in Figure 1.5). The point marked in blue in Figure 1.5

corresponds to the point at  which the maximum arterial  blood flow rate in the aorta is

reached. Figure 1.6 shows typical pressure and volume waveforms in human arteries. It

can be seen that the maximum flow rate is reached slightly before the maximum

pressure point.

Figure 1.5: The cardiac cycle showing the aortic pressure (AP), the left ventricle pressure (LVP),
the left atrium pressure (LAP), end and start left ventricle blood volume (LVEDV and LVESV) and
the ECG signal [8]

One of the most important measurements for the assessment of the heart is the cardiac

output (CO). It is given by the stroke volume multiplied by the heart rate (HR). The

stroke volume is the amount of blood ejected by one ventricle and the heart rate is the

number of heart beats per minute (bpm). Stroke volume is the difference between the
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EDV and ESV. Each can be measured by echocardiogram [2]. Normal stroke volume

for an adult at rest, who weighs 70 kg, is approximately 70 mL. However, this value

may  change  depending  on  the  condition  of  the  person.  The  heart  rate  for  a  resting

person is in the range of 60-100 bpm and, on average, it is about 75 bpm. Based on

these values, the range of the cardiac output can be between 4-8 L/m with an average

value of 5.25 L/m. In healthy athletes, the values of stroke volume and HR can increase

to 130 mL and 150 bpm, respectively. This means that the cardiac output can reach 19.5

L/m.

Figure 1.6: Typical blood flow rate and pressure waveforms in human arteries [9]

1.2.2 The Blood Composition and Characteristics

All the functions of the circulatory system are performed via the blood. The blood

consists  of  the  formed  elements  and  the  plasma.  The  formed  elements  are  red  blood

cells (RBC), white blood cells (WBC) and platelets [2]. The red blood cells – clinically

known as erythrocytes – transport oxygen. The percentage of RBC in a blood sample is

referred to as haematocrit. Normally, the mean haematocrit value in the blood ranges



Chapter 1
Introduction: The Importance of Blood Flow Measurement

10

between 42-52% (mean value 47%) for men and 37-47% (mean value 41%) for women.

The number of WBC (leukocytes) and platelets (thrombocytes) is very small (< 1%)

compared with the haematocrit level. WBCs protect the body from infection and

platelets help in blood clotting. The remaining percentage accounts for the plasma level,

i.e.  53%  for  men  and  59%  for  women.  The  plasma  is  about  93%  water  and  the

remaining percentage accounts for the other substances, i.e. proteins (mostly), nutrients,

lipids and hormones. Figure 1.7 shows the percentage levels of blood components in

normal and ill conditions (anaemia and polycythaemia). Note that the term “buffy coat”

refers to the white layer between the red blood cells (haematocrit) and the plasma in a

blood sample. This white layer contains white blood cells and platelets [10].

Figure 1.7: Composition of blood [11]

The blood distribution in the human body, at any instant in time, is as follows: 84% of

blood  is  in  the  systemic  circuit,  9% in  the  pulmonary  circuit  and  8% in  the  heart  [12,

13].  The  distribution  of  blood  in  the  systemic  circuit  alone  is  as  follows:  64%  of  the

blood  is  in  the  veins  and  venules;  13%  in  the  arteries  and  arterioles  and  7%  in  the

capillaries. It can be seen that at any instant, there is about 5 times more blood in the

veins than the arteries. In normal conditions, the weight of an individual’s blood



Chapter 1
Introduction: The Importance of Blood Flow Measurement

11

accounts for about 8% of the total, and the amount of blood in an average-size adult is

5-6 L for males and 4-5 L for females.

Other important properties of blood are its viscosity, temperature and pH. Blood has a

viscosity about 5 times that of water (8.94×10-4 Pa.s) and, hence, it is considered to be

viscous. The temperature of the blood is normally 38o C, which is slightly higher than

the temperature of the body. Lastly, the pH of blood ranges between 7.35 and 7.45 (7.4

mean value) in a healthy person which means the blood is basic.

1.2.3 The Blood Vessels

The blood vessels in the human body are classified into three categories: arteries, veins

and capillaries [2]. Blood is transported in the pulmonary and systemic circuits by

arteries and veins. Arteries carry oxygenated blood away from the heart to the body

tissues. They branch into smaller vessels called arterioles. Arterioles branch into the

capillaries for exchange of gas, nutrients and wastes. Blood low in oxygen is returned

back to the heart along the other side of the capillaries, the venules and veins. Blood

vessels have a lumen through which blood flows. The cross-section of arterial lumen is

nearly circular, whereas in veins, the shape of the cross section is irregular as illustrated

in Figure 1.8c. Arteries and arterioles have thick walls to withstand the high pressure of

blood coming from the ventricles. Their lumen is smaller than that of the vein to

maintain the pressure of blood flow. In contrast, veins and venules have thinner walls as

the blood returned to the heart is low in pressure. They also have larger lumen allowing

more blood to flow. Note that, during surgery, all blood vessels mentioned can be seen

apart from the capillaries as they are microscopic.

The velocity of blood in the veins is lower than the velocity of blood in the arteries. The

total arterial and venous flow rate is equal but opposite within the cross sectional area of
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a limb. The velocity in the arteries is higher but since they have a smaller diameter,

therefore, the net blood flow rate is zero. Nevertheless, the blood flow velocity in veins

is constant throughout the cardiac cycle – whereas the velocity in the major arteries

varies considerably (at maximum shortly after QRS event in Figure 1.4, and lower

during the rest of the cardiac cycle). The maximum arterial blood flow can be found by

taking two blood flow measurements over the cardiac cycle. One of the measurements is

obtained when the arterial  blood flow is at  minimum (between P and Q in Figure 1.4)

and  the  other  measurement  is  taken  when the  arterial  blood  flow is  at  maximum.  The

difference between those two measurements is equivalent to the maximum arterial

blood flow rate. This method is described mathematically in Section 3.6. Typical

velocities of blood in major arteries are given in Section 1.2.4.

Arteries and veins have three layers (tunics): the inner layer – tunica intima; the

intermediate layer – tunica media and the outer layer – tunica externa (Figure 1.8a&b).

These layers differ in structure, depending on the type of blood vessel and its location

within the human body. The tunica intima of arteries nearer to the heart has more elastic

fibres to allow arteries (referred to as elastic arteries) to expand and maintain pressure

gradient.

Arteries that are larger than 10 mm in diameter are usually elastic to withstand the high

pressure of blood and are located close to the heart. Arteries that are distant from the

heart have fewer elastic fibres in the tunica intima and more smooth muscles

(decreasing resistance to flow) in the tunica media. These arteries are called muscular

arteries and their diameter ranges between 0.1-10 mm. Muscular arteries can contract to

reduce blood flow during a haemorrhage (bleeding), also known as vasoconstriction.

The opposite can happen too, relaxing to let more blood flow which is known as

vasodilation. The tunica externa helps in holding the blood vessels in place. Arterioles
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have  lumen with  a  diameter  of  30 m or less. They can contract (vasoconstriction) orߤ

relax (vasodilation) depending on the amount of blood flow required. This process is

controlled via neural or chemical means. Figure 1.9 depicts the types of arteries and

arterioles.

Figure 1.8: Structure of blood vessels [14]

Figure 1.9: Types of arteries and arterioles [15]

Veins have thick tunica externa, especially the superficial veins, to hold them in place.

The pressure of blood in veins is low and therefore, veins have valves to prevent back
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flow by ensuring that blood flow is unidirectional. The diameter size of the veins ranges

between 0.05-3 cm. The size of post-capillary venules (connected to the other end of the

capillaries) is between 50-200 ,mߤ  which  pass  the  blood,  low  in  O2, to the muscular

venules. The muscular venules can contract or relax in a similar way to the muscular

arteries to control the blood flow. Then, the blood is passed to the veins to return to the

heart. Figure 1.10 illustrates the shape and structure of the veins and venules.

The oxygenated blood is pumped into the systemic arteries – starting from the aorta –

during the contraction of the left ventricle. The systemic arteries deliver the oxygenated

blood to all body organs and tissues. All major systemic arteries are illustrated in Figure

1.11. The axillary and the subsequent arteries supply blood high in O2 to the upper

limbs, i.e. the arms. The blood which is delivered to the lower limbs, i.e. the legs,

begins in the external iliac artery. The arteries in the upper and lower limbs are depicted

in Figure 1.12 and Figure 1.13. The normal diameters of the external iliac and femoral

arteries are 8-10 mm and 7-9 mm, respectively.
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Figure 1.10: Veins and venules [16]

Blood low in O2 (venous blood) returns from the organs and tissues to the right atrium

in the heart via the systemic veins (Figure 1.14). In the upper limbs (refer to Figure

1.15), blood enters the thorax through the subclavian veins – starting from the digital

veins in the fingers. It can be noted from Figure 1.15 that veins can be either superficial,

such as the brachial vein, or deep, such as the median cubital. In the lower limbs (Figure

1.16),  blood  from  the  legs  enters  the  abdominal  region  through  the  common  iliac  –

starting from the digital veins in the toes. The study of arteries and veins in the upper

and lower limbs is of great importance in the field of cardiovascular disease. Arteries

and veins in the upper or lower limbs can be infected by PAD and DVT, respectively.

These diseases are discussed greater detail in Section 1.3.
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Figure 1.11: Systemic arteries [17]
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Figure 1.12: Systemic arteries of upper limb [18]

Figure 1.13: Systemic arteries of lower limbs [19]
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Figure 1.14: Systemic veins [20]
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Figure 1.15: Veins of the upper limb[21]

Figure 1.16: Veins of the lower limb [22]
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1.2.4 Blood Flow and Pressure

Blood flow rate  refers  to  the  amount  of  blood  (volume)  per  unit  time.  The  SI  unit  of

blood flow rate is m3/s. Blood pressure is hydrostatic and it is defined as the force

exerted at a point on the wall of the blood vessels. The measurement of blood pressure

is typically taken from the blood pressure in the systemic circuit. It is often measured

using  the  brachial  artery  of  the  arm and  its  SI  unit  is  the  Pascal  (N/m2). However, in

medicine, the standard unit is millimetre of mercury (mmHg). Millimetre of mercury is

defined as the pressure exerted by a column of mercury one millimetre high at 0° C

under the acceleration of gravity and it is equal to about 133.3 Pa. The blood pressure

measurement is expressed as a ratio between the systolic and diastolic pressures.

Systolic and diastolic pressures are the pressure of blood during arterial systole and

diastole (ventricular contraction and relaxation), respectively. For an adult, blood

pressure is normally 120/80 mmHg. Note that blood flow and pressure in arteries are

pulsatile. Normal blood pressure for different blood vessels is depicted in Figure 1.17.

Figure 1.17: Normal pressure value of different blood vessels [23]
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The difference between the systolic and diastolic pressures is called the pulse pressure.

For a healthy adult, the pulse pressure should be 30-40 mmHg (120 minus 80). Any

long-lasting pulse pressure value at or above 100 mmHg is an indication of high

resistance to blood flow which can be caused by various conditions including

arteriosclerosis –  the narrowing of arteries due to a build-up known as plaque.

The blood flow rate and pressure can be affected by the following factors: (1) cardiac

output, (2) compliance, (3) volume of blood, (4) viscosity of blood and (5) blood vessel

length  and  diameter.  The  cardiac  output  is  the  product  of  the  stroke  volume  and  the

heart rate as explained in Section 1.2.1. Compliance determines how elastic the artery or

vein is in order to withstand an increased amount of blood. Low compliance leads to

high resistance to flow. This results in lower flow and higher blood pressure, which can

be an indication of vascular disease.

Flow of blood is caused by a pressure difference (gradient). The relationship between

the blood flow rate ܳ and the pressure difference ∆ܲ, i.e. ଶܲ − ଵܲ is given by

ܳ =
∆ܲ
ܴ

Eq. 1-1

where ܴ is the vascular resistance to flow (unit: Pa.s/m3). The vascular resistance ܴ

increases with an increase in the length of the blood vessel ݈ and blood viscosity :unit) ߟ

Pa.s), and decreases with the radius of the vessel The resistance to flow is .[24] ݎ

expressed mathematically by

ܴ =
݈ߟ8
ସݎߨ

Eq. 1-2

Eq. 1-2 is called Poiseuille’s law for resistance. Note that the radius is ݎ  raised  to  the

fourth  power  in  Eq.  1-2.  This  means  that  any  small  change  in  radius  will  have  a

significant effect on the resistance to flow. Combining Eq. 1-1 and Eq. 1-2 gives
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ܳ =
ସݎܲ∆ߨ

݈ߟ8ߨ
Eq. 1-3

Eq. 1-3 is called Poiseuille’s law for laminar flow. It can be observed that the flow rate

is directly proportional to pressure difference ∆ܲ and 4th order of the radius of the blood

vessel and is inversely proportional to the length of the vessel ݎ ݈ and blood viscosity .ߟ

The blood viscosity and vessel length vary gradually in the body. The radius of the

blood vessels can change substantially during vasoconstriction and vasodilation. Figure

1.18 shows graphs of the diameter, cross-sectional area, blood pressure and mean

velocity (over cardiac cycle) of the different blood vessels in the human body.

Figure 1.18: Diameter and cross-sectional area of vessels and blood pressure and mean velocity of
vessels [25]
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Table 1-1 shows typical values for the diameter of, and the peak velocity of blood in,

arteries in adults such as the aorta, the carotid, the brachial, the femoral and the popliteal

arteries [9, 26-32]. The proposed EM method for blood flow rate measurement in this

research aims to measure the blood flow rate in the peripheral arteries such as the

brachial artery in the upper limbs and the common femoral artery in the lower limbs.

Artery
Name Diameter (mm)

Peak velocity
(m/s)

Aorta 30 1.1
Carotid 5.5-7.5 0.9
Brachial 4-5 0.6
Femoral 8-10 1.1
Popliteal 5-5.3 0.7

Table 1-1: Diameter of, and peak of blood velocity in, the aorta, carotid, brachial, femoral and
popliteal artieres
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1.3 Importance of Blood Flow Measurement

1.3.1 Cardiovascular Diseases

Blood flow measurement is a method that correlates directly with the measurement of

O2 and nutrients supplied to organs or tissues in the human body. Blood pressure can

give an indication of abnormal pressure levels in a human limb. Abnormal pressure

levels indicate irregular blood flow. However, pressure methods do not provide

quantitative information on the amount of blood being delivered to an organ or tissue.

Measurement of blood flow rate is of significant importance in the study of the

circulatory system and cardio-vascular diseases. Measurement of the blood flow rate in

individual  blood  vessels  can  lead  to  detection  of  arterial  stenosis,  the  narrowing  of

arteries causing a reduction of blood flow to tissue as shown in Figure 1.19 [33, 34].

Arterial stenosis caused by atherosclerosis is primarily a disease of large- and medium-

size arteries, and is characterised by a build-up of lipids forming plaques which narrow

and eventually block the blood vessels causing damage to organs or tissues.

Atherosclerosis is associated with cardiovascular diseases – the main cause of death

globally.

CVDs affect the circulatory system, i.e. heart and blood vessels. Strokes and transient

ischemic attacks are caused by the blockage of arteries that supply blood to the brain.

Heart attack and angina are caused by the blockage of blood vessels in the heart.

Peripheral arterial diseases, which include pain during walking or exercising

(claudication), deficiency in wound healing and/or leg ulcers (limb ischemia), are

caused by blocked arteries in human limbs – mainly in the legs as shown in Figure 1.20

[35]. According to the World Health Organisation, 17 million people died in 2008 from

cardiovascular diseases [36].



Chapter 1
Introduction: The Importance of Blood Flow Measurement

25

Figure 1.19: Atherosclerosis: (a) build-up of calcified deposits and fat and (b) build-up of tissue
(another form of plaque) at the arterial wall [37]

Cardiovascular diseases are mainly caused by an unhealthy diet, lack of exercise,

smoking, high blood pressure and advanced age. Patients with both type I and II

diabetes  also  suffer  from  poor  blood  circulation  which  can  lead  to  PADs  [38].  High

blood glucose levels cause damage to blood vessels in the long term and this may lead

to an accumulation of plaque which obstructs the blood flow to organs and tissues.

Severe PADs can cause lower limb amputation due to gangrene and secondary

infection. Hence, blood flow rate is an important measurement in the fields of diabetes

and obesity research.

Peripheral Arterial Disease

The diagnosis of PADs is very important for the elderly, smokers and obese individuals

as they are at higher risk than young, healthy individuals. Patients who have PADs can

also be at increased risk of other CVDs such as stroke and heart attack [39]. In 2010, an

international research team reported that about 202 million people suffer from PADs

worldwide [40]. Nationwide, 1 in 5 men and 1 in 8 women aged between 50 and 75

suffer from PADs.
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Figure 1.20: Peripheral arterial disease (PAD) [41]

PADs usually affect the lower limbs; nevertheless, patients can have PAD in the upper

limbs. Severe PAD can lead to limb ischemia as stated earlier. In the UK, limb ischemia

costs the health service over £200 million per year. In many cases, for patients with

PADs,  symptoms do  not  appear,  as  they  depend on  the  severity  of  the  PAD.  Physical

examination is required by a doctor to verify the presence of PAD. In the case of PAD

in the upper limbs, a large pressure difference could be detected between the left and

right arms [42]. For the lower limbs, the diagnosis is performed by using the Ankle-

Brachial index (ABI) pressure test.

ABI is a test in which the pressure difference is taken between the arm and ankle using

a Doppler ultrasound probe in conjunction with a sphygmomanometer (cuff inflator).

The  test  is  performed  by  first  placing  the  sphygmomanometer  in  close  proximity  to

where the pressure measurement is to be taken by the ultrasound probe [43]. For the

brachial artery, the cuff is placed around the elbow (antecubital fossa) and for the

posterior tibial or dorsalis pedis arteries (located at the ankle), the cuff is placed slightly

above the ankle area as illustrated in Figure 1.21. The ultrasound probe is placed on the
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artery (satisfactory pulse signal) and ideally at an angle of 45o to  the  blood  vessel  of

interest for optimum frequency shift and signal amplitude. Then, the cuff is inflated

until the pulse of the artery disappears. Afterwards, the cuff is gradually deflated while

the probe is placed on the artery. Once the pulse is detected by the probe, this reading

correlates with the systolic pressure. This procedure is applied to both arms and legs.

The ABI index is the ratio between the systolic pressure values of the posterior tibial or

dorsalis pedis and the brachial arteries. Normally, this index value should be higher than

1 for patients with no sign of PAD. Any ABI value between 0.6 and 0.8 is an indication

of claudication and any value below 0.5 is a sign of severe PAD.

Figure 1.21: ABI test [44]

ABI is normally a reliable and useful test for determining PAD. Multiple blood pressure

measurements on each leg might also be needed using 3-4 pressure cuffs. However, in

elderly and diabetic patients, the sensitivity of ABI is significantly low [45]. Such

patients are required to have other tests such as duplex ultrasound, computed

tomography (CT) or magnetic resonance imaging (MRI). These tests can create an
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image of the blood vessels and the infected blood vessels can then be identified.

Moreover, the operator of the ultrasound must be experienced in using a Doppler

ultrasound probe to avoid false diagnosis. Additionally, the ABI test is lengthy and this

is one of the barriers limiting its use in primary care settings due to a shortage of staff

[46].

Blood flow is also an important measurement in dermatology research. Lack of blood

flow to a limb can cause damage to skin tissues.  Blood flow to the skin is  commonly

measured using laser Doppler ultrasound or laser speckle contrast imaging (LSCI) [47].

Moreover, the measurement of forearm blood flow is widely used in the study of the

response of drugs and mediators on the arterial blood flow [48].

Deep Vein Thrombosis

Deep vein thrombosis – also known as venous thrombosis – is blood clotting (or

blockage) in a deep vein as illustrated in Figure 1.22. It usually occurs in the deep veins

that are located between the muscles of the calf and thigh. DVT causes pain, paleness,

tenderness and swelling in the leg [49]. It may also lead to fatality when this blood clot

travels from the leg to the blood vessels in the lungs causing what is known as

pulmonary embolism, i.e. when blood is prevented from reaching the lungs [50]. In the

UK,  1  in  1000  people  have  DVT  and  in  the  US,  statistics  show  that  the  number  of

people affected by DVT is between 300,000 and 600,000 every year [50, 51].

There are several causes of DVT [52]:

· Immobility due to a surgical operation, paralysis, illness or a long journey during

which the person is mostly sitting still. In a normal healthy human, blood moves

continuously in the veins by muscle action during movements. When a patient is
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under anaesthetic or paralysed, muscles do not move as normal; this will slow the

blood flow and DVT may occur;

· Injury to a vein due to fractures, muscle injury or after major surgery;

· Increase in the oestrogen hormone caused by birth control pills or during pregnancy;

· Patients with chronic diseases such as heart or lung diseases or cancer are also at

high risk of DVT;

· Other factors are advanced age, obesity and a family history of DVT.

There are several methods used to diagnose DVT such as duplex ultrasound,

venography, impedance plethysmography, MRI and CT scan [53]. All these methods

rely on the visualisation and measurement of blood flow to identify DVT. These

techniques are described in Chapter 2.

Figure 1.22: Deep vein thrombosis [54]

1.3.2 Renal Disease

Renal disease is partial or full malfunction of the kidneys in the human body. There are

two types of renal disease: acute and chronic. Acute failure refers to the sudden

malfunction of the kidneys whereas, in chronic failure, the kidneys fail to work after a
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long-term period. End-stage renal disease (ESRD) is when the kidneys are no longer in

operation [55].  Patients with acute, chronic or end-stage renal disease require a routine

common process known haemodialysis. Haemodialysis – which replaces the function of

the kidneys - is the filtration of wastes and fluid from the blood by a dialysis machine

(dialyser) outside the body. In the UK, over 40,000 patients have renal disease and over

half of them require dialysis [56].

Figure 1.23: Vascular access fistula [57]

Haemodialysis requires an operation known as vascular access (VA) to improve

delivery of blood to the body. There are several methods used to perform vascular

access but the most common method is the arteriovenous fistula [58]. In this method,

surgery is carried out to connect an artery to a vein – usually the radial or brachial artery

to the cephalic or basilica veins in the arm as shown in Figure 1.23 [59]. This allows the

vein lumen to expand in size and the vessel wall to thicken. This enables the vein to

endure repeated puncture with large needles and to handle large amounts of blood flow,
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between 0.6 and 0.8 L/min. The vein usually takes 3-4 months to be ready (mature) for

haemodialysis.

Patients with renal disease and receiving haemodialysis are at very high risk of

cardiovascular disease. In fact, there is a 63% probability of death from cardiovascular

disease  in the first 5 years [58]. This probability increases to 71% for diabetic patients.

The vascular access must also be maintained and checked regularly for any stenosis or

thrombosis  as  it  is  one  of  the  frequent  causes  of  morbidity  and  mortality  [60].  Early

diagnosis  of  stenosis  or  thrombosis  allows  the  VA  to  be  repaired  before  starting

haemodialysis. In a recent study, it was shown that this can be done non-invasively by

using Doppler ultrasound to examine the brachial artery [61]. Abnormal blood flow in

the brachial artery is an indication that the VA requires repair. The Doppler ultrasound

method and limitations are explained in detail in Chapter 2. However, it is important to

note that the Doppler method may suffer from significant errors due to operator,

machine or patient-related mistakes. Blood vessels in dialysis patients are at more risk

of accumulating calcium build-up or calcified plaque which blocks ultrasound beams

resulting in velocity measurement error. Moreover, blood vessels in lower limbs such as

femoral arteries may also suffer from calcification preventing a non-invasive Doppler

ultrasound device from obtaining an accurate measurement of blood velocity [62].
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1.4 Aims and Objectives

The broad aim and objective of this thesis is to investigate current methods of blood

flow measurement, particularly non-invasive methods used in the diagnosis of

peripheral cardiovascular diseases. These methods will be addressed in terms of their

operation and clinical applications. Furthermore, their limitations and associated

drawbacks will also be highlighted. Based on this initial study, methodologies will be

proposed to develop and validate an alternative method for non-invasive blood flow rate

measurement which offers advantages such as portability, low cost, accuracy and ease

of use.

1.5 Structure of Thesis

The thesis is structured as follows. Chapter 2 surveys the literature for current methods

for mainly non-invasive blood flow measurement. It covers four methods: tomography

such as X-ray and magnetic resonance imaging, plethysmography, ultrasound and EM

induction. Each method is described in terms of its operation, design, clinical

application and any drawbacks or limitations. Notable theoretical work and

mathematical tools of some methods are also reviewed. These mathematical tools are

found to be useful for the current research. Lastly, the research aim and methodology

are stated based on literature findings.

Chapter 3 details the mathematical modelling of the proposed EM induction technique

for non-invasive blood flow measurement.  This mathematical model is an extension of

“virtual current” theory introduced by Bevir. Firstly, a mathematical model is provided

to obtain flow induced potentials at the boundary of a cross-sectional area which

contains one flow channel only. Subsequently, the theory is extended to obtain flow

induced potentials due to multiple flow channels in a cross-sectional area bounded by
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multiple electrodes. Lastly, the relationship between the DFT obtained from the flow

induced potentials, the total volumetric flow rate due to multiple flow channels and the

applied magnetic field is explained.

Chapter 4 describes the finite element (FE) modelling work performed in COMSOL

Multiphysics software to verify the mathematical model developed in Chapter 3. A 3D

computer  model  of  a  cross  section  with  multiple  flow channels  simulating  a  limb and

blood  vessels  (simulated  vascular  system  or  ‘SVS’)  is  presented.  The  design  of  an

electromagnet for generating the applied magnetic field is described. Then, the flow

induced potentials obtained from the FE model are compared with the theoretical model

in different test settings.

Chapters 5, 6 and 7 describe the practical model that was designed, built and tested to

implement the proposed EM induction technique described in Chapter 3. The aim was

to validate the mathematical model by comparing the results obtained from the

theoretical and practical models. The first part of Chapter 5 describes the mechanical

design of a physical simulated vascular system (SVS), its built-in electrode array and

the electromagnet. The dimensions and materials used to design the physical SVS are

presented. Detailed design of the electromagnet is provided including the physical size,

electrical power requirements and the number of turns for its coil to generate the desired

magnetic flux density. The second part of Chapter 5 describes the design of the power

supply of the electromagnet. Then, the AC signal conditioning system, used to filter and

amplify the flow signals before digitisation for further processing, is presented and

analysed. Lastly, the data acquisition device (DAQ), used to digitise and store the flow

induced  potentials,  and  the  associated  MATLAB program written  to  control  the  DAQ

device are presented.



Chapter 1
Introduction: The Importance of Blood Flow Measurement

34

The first part of Chapter  6 presents the last design element of the practical model

which is the signal processing system. The theory of phase sensitive detection (PSD)

technique and common methods for its implementation are first introduced. Then, the

implementation of PSD using a DFT method in MATLAB is provided, and finally, an

example  of  the  implementation  of  PSD  is  described.  The  second  part  of Chapter 6

presents the practical test results of bench testing the electromagnet and its AC power

supply and the AC signal conditioning system. This includes the test setups and

equipment used. Discussion of the results is also provided.

Chapter 7 describes and discusses the flow induced potential difference measurements

obtained from the practical model for varying numbers of flow channels and different

flow channel positions within a circular cross-sectional area bounded by an electrode

array. Comparison between the practical and theoretical results is also provided. Lastly,

the relationship between the DFT obtained from the flow induced potential distribution,

measured at the electrode array, and the total volumetric flow rate of blood flowing in

multiple channels is discussed and related to the theoretical work presented in

Chapter 3.

Chapter 8 concludes the research work and summarises the original work that

contributed to knowledge of EM blood flow rate measurement techniques.

Recommendations for further work are also proposed.
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1.6 Summary

An  overview  of  the  human  circulatory  system  was  provided  in  Section  1.2.  This

included basic physical and biological descriptions of the heart, blood vessels and the

blood. The heart is responsible for pumping blood into the pulmonary and systemic

systems. Blood travelling away from the heart through arteries carries oxygen and

nutrients to body tissues and organs. Blood travelling towards the heart through veins is

deoxygenated. This blood is then delivered via the heart to the pulmonary circuit to be

supplied with oxygen, and then sent back to the heart to be pumped to the systemic

system. Figures on cardiac output,  blood flow and pressure as well  as the diameter of

blood vessels for normal healthy adults were also provided in Section 1.2.4.

The importance of blood flow measurement in the diagnosis of CVD was discussed,

noting that CVDs are the main cause of death globally. In 2008, 17 million people died

from CVDs worldwide. CVDs are mainly associated with atherosclerosis – the

narrowing  of  arteries  due  to  a  build-up  of  lipids  on  the  arterial  wall  of  the  arteries.

Common CVDs are peripheral arterial disease and deep venous thrombosis. PAD is the

narrowing of arteries in the upper and lower limbs due to atherosclerosis. Patients with

diabetes, renal failure or obesity are at high risk of PAD. Severe PAD can lead to limb

ischemia and possibly heart attack or stroke. The common, routine diagnosis for PAD is

through  the  ABI  test  during  which  the  pressure  of  the  ankle  is  compared  with  the

pressure of the arm. However, this test may lead to false diagnosis in the elderly and

diabetic patients and is not an ideal method due to staff shortages since it is a time-

consuming process. Alternative methods for PAD diagnosis are duplex ultrasound, MRI

and arteriography.

DVT is a blood clot that forms on the wall of veins – usually in the leg. DVT can be a

life-threatening disease as the blood clot can break off and travel to the lungs causing
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pulmonary embolism. DVT also causes pain, paleness, tenderness and swelling in the

leg. In the UK, 1 in 1000 people suffer from DVT and US statistics show that between

300,000 and 600,000 people are diagnosed with DVT yearly. Common methods used

for the diagnosis of DVT are impedance plethysmography and duplex ultrasound.

Advanced screening techniques for DVT include MRI and venography.

Based on the above statistics and figures, it can be concluded that the study of

peripheral blood flow measurement is of great importance in clinical applications. The

availability of easy and reliable methods for early detection of, for example, stenosis in

the femoral and iliac arteries (i.e. PAD), will enable aggressive primary prevention and

thus, a reduction in incidences of associated morbidity and mortality with a consequent

reduction in the resources required to deal with the aftermath of health damage.

Additionally, methods that can obtain an accurate diagnosis quickly will encourage their

use in regular health check-ups by health centres and doctors for global health (DGH).

Finally, the structure of the thesis has been presented in the previous section, describing

the content of each chapter, starting from Chapter 2 which is the literature review and

finishing with Chapter 8 which is the conclusions and further work.
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2.1 Introduction

There are several methods for blood flow rate measurement that are in use today. The

methods are either based on tomography, plethysmography, ultrasound or EM

induction. The choice of method depends on the region of the body, where the blood

flow must be monitored, and whether an invasive or non-invasive method is required.

Generally non-invasive methods are preferred over invasive techniques as they do not

require surgical intervention. Hence, complications such as blood contamination can be

avoided. Current methods can be used for measuring:

· Cerebral blood flow rate

· Cardiac output and nearby blood vessels in the thorax and abdomen

· Peripheral blood flow rate

The primary focus here will be on the non-invasive technologies that are commonly

used for peripheral blood flow measurement. However, invasive methods based on

ultrasound and EM induction will also be studied.

Firstly, methods based on tomography are reviewed in Section 2.2, including

conventional X-ray, computerised tomography and magnetic resonance imaging. The

operation of these methods is described, followed by their clinical applications which

include blood flow measurement and lastly, their drawbacks. In a similar approach,

Section 2.3 reviews the principle of operation of blood flow measurements based on

plethysmography and particularly, electrical impedance plethysmographic devices.

Section 2.4 discusses ultrasound-based techniques used in blood flow measurement,

namely transit (invasive method) and Doppler (invasive and non-invasive). This section

also describes how imaging and flow rate measurement techniques are combined in a



Chapter 2
Methods of Blood Flow Measurement

40

duplex ultrasound device to view blood vessels and measure their corresponding blood

flow rate. Common artefacts and errors are then reviewed.

Lastly, Section 2.5 is a review of the invasive and non-invasive methods of blood flow

measurement using EM induction. Firstly, the theory behind the EM induction flow

meter is discussed including Faraday’s law of induction, the “weight function” approach

developed by Shercliff and the “virtual current” theory developed by Bevir. Moreover,

general analysis of the detected potential signals from the electrodes of EM flow meters

is discussed. This includes the signal conditioning and processing requirements. After

the literature review on the work that has been achieved in the area of blood flow

measurement, the research aims and methodologies are specified.

2.2 Tomography

Tomography (imaging) techniques such as X-ray radiography, MRI, computed

tomography and nuclear medicine scans such as positron-emission tomography (PET)

have a range of applications including diagnosis of cancer, broken bones and

cerebrovascular and cardiovascular diseases [63]. They can provide information on

blood flow rate in any part of the human body. These techniques have different

principles of operation as will be shown in the following sections.

2.2.1 X-ray Radiography

An X-ray beam is an EM wave generated in an X-ray tube. When a target is exposed to

directed X-ray beams (photons), the X-ray photons are passed through, scattered or

absorbed by the target, depending on the target density [64]. Bone is the densest among

soft tissues, fat and air and they all appear on an X-ray image (radiograph) as shades of

black, white or grey. Higher density materials absorb X-ray beams more efficiently.

Figure 2.1 shows types of tissues with different densities and how they would appear on
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an X-ray radiograph [65]. X-ray radiography is often used to identify the state of bone

structures, i.e. fractured or broken bones. In a traditional X-ray device, one X-ray

projection is performed. The patient is placed between the emitter (tube) and the

detector of the X-ray machine. The patient can be either in a sitting, standing or lying

position. Medical X-ray detectors distinguish between absorbed and passed X-ray

photons which then form an image. Targets that absorb X-ray photons appear on the

image with higher contrast.

Figure 2.1: Visibility of different types of tissues on a radiographic image [65]

X-ray radiography can also be used to visualise blood flow in the circulatory system.

This is referred to as X-ray angiography. For visualisation of blood flow, a special dye

(contrast agent) is injected in either the arterial (arteriography) or venous (venography)

system to view blood – causing the blood in arteries or veins to be more absorptive of

X-ray photons than other soft tissues. Any blockage in arteries or veins would appear in

different contrast as shown in Figure 2.2. In Figure 2.2(a) the arrow points at a blockage

in the coronary artery, and in Figure 2.2(b), the blockage has been removed.
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Figure 2.2: (a) Stenosed coronary artery (b) Same artery after stenosis is removed [66]

Arteriography and venography can be used to diagnose PAD and DVT. Traditional X-

ray methods only visualise blood flow. However, when combined with computer

technology, i.e. CT scan, measurement of blood flow rate and velocity can be obtained.

2.2.2 Computerised Tomography

CT is a more advanced radiographic system that combines X-ray and computer

technologies to produce detailed images of the target area as shown in Figure 2.3. CT

generates ionising radiation, i.e. photons with sufficient energy to ionise tissues through

which they pass. This allows the CT system to visualise, in greater depth, the different

types of tissues; it can differentiate between types of soft tissues (better contrast), unlike

traditional X-ray techniques [65]. CT systems perform multiple small projections in an

axial plane across the body, creating cross-sectional images, or “slices”, of the body.

These images are then combined by the computer to create very detailed 2D or 3D

images. CT is often used to diagnose bone structures, cancerous tumours,

cardiovascular (heart related) and cerebrovascular diseases. CT is not a common

procedure for PAD or DVT; however, it is used in certain cases if advanced diagnostic

testing is required. Similarly to traditional X-ray techniques, dye injection is also

required in CT for blood visualisation.

(a) (b)
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2.2.3 Magnetic Resonance Imaging

In an MRI system, the patient is exposed to a strong magnetic field. This magnetic field

arranges the hydrogen nuclei within the patient’s body in a certain direction [65]. The

magnetic flux density for the medical MRI system is usually between 0.2-2 T. A radio-

frequency (RF) pulse is then emitted at a section (axial slice) of the patient’s body. This

RF pulse excites the hydrogen nuclei and alters their alignment in the presence of the

external magnetic field. Thus, it changes the energy state of the nuclei from a low to a

high energy state. The RF frequency at which the nucleus changes its state from low to

high is known as Larmor frequency (resonant frequency) [67]. When the RF pulse is

stopped,  the  nuclei  return  to  their  original  alignment  and  release  the  high-state  RF

energy to revert to the initial low-energy state. This energy (signal) is picked up by RF

receiving coils and processed by computer software to determine what the examined

section is. Several signals are required for each body section in order to reconstruct an

image.  The above procedure is then repeated for another section of the patient’s body.

MRI is ideally used to examine soft tissues, i.e. to diagnose multiple sclerosis, brain

tumours, spinal infections, torn ligaments and strokes in their earliest stages [67]. For

(a) (b)
Figure 2.3: (a) CT scan of lower limb arteries. (b) CT scan of kidney and arteries at the pelvis
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blood flow measurement using MRI (also called MR angiography or MRA), a modified

process known as phase contrast MRI (PC-MRI) is applied to visualise moving fluids.

This process differentiates between the nuclear spins of the moving blood and spins of

surrounding stationary tissues [68]. PC-MRI is often used for cerebrovascular, heart,

aorta and pulmonary arteries. A contrast dye injection is also used in MRI for better

image quality [69]. Functional block diagrams of aforementioned imaging devices and

the type of electronics used are illustrated in this reference [70].

2.2.4 Disadvantages and Challenges

X-ray, CT and MRI devices are not used for routine check-ups and are often used for

advanced diagnostic tests, i.e. heart, brain, bones or cancer diagnosis. They require a

large space for installation and are expensive to buy and run; therefore, they are beyond

the means of most local health centres and doctors for global health [67]. Moreover, the

contrast dye injected for X-ray-based and MRI devices may have side effects on

patients such as diarrhoea, increased heart rate (which can be fatal), urticaria (itchy

rash), angioedema (swelling of deep layers of the skin), bronchospasm (constriction of

muscles in the wall of bronchioles), cardiovascular collapse (failure of the system to

maintain the supply of oxygen and nutrients to organs and tissues) and many other side

effects [69, 71]. Hospitals are usually prepared to deal with potentially fatal side effects;

however, such effects can put the patient’s life at risk in the future. In addition, for X-

ray-based systems, patients with partial  or full  renal disease are at  high risk of further

damaging the kidney function when using contrast dyes [72]. It is often recommended

that X-ray-based devices be avoided with patients who show severe reactions or have

advanced renal disease or diabetes.
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Furthermore, concerns about exposure to medical radiation have been raised [73]. CT

devices expose patients to relatively large amounts of radiation in comparison with

conventional X-ray techniques. Radiation has risks associated with cancer. During the

screening of asymptomatic patients more CT scans are obtained and this means that the

patient is exposed to larger amounts of radiation [74]. During MRI scans, measurements

take a long time to be obtained while the patient is inside the device which might cause

discomfort or claustrophobia. Finally, each one of these method suffer from “artefacts”

that affect either the accuracy or quality of the reconstructed images [75, 76].

2.3 Plethysmography

2.3.1 Principle of Operation

Plethysmography is the measurement of a change in volume ∆ܸ.  It  can  be  used  to

monitor blood flow rate ܳ by observing the change in the volume of a body part over

time, i.e.

ܳ =
∆ܸ
ݐ∆

Eq. 2-1

It was used to measure blood flow in the human arm for the first time over 100 years

ago [77]. Since then, it has been used in a variety of applications including the

measurement of cardiac output, peripheral blood flow, cerebral blood flow and

intrathoracic fluid volume [78]. Nowadays, it is mainly used in peripheral blood flow

rate measurement – referred to as venous occlusion plethysmography – for

cardiovascular research as other technologies such as tomographic methods superseded

plethysmography in the areas of cardiac output and cerebral blood flow. It is also

commonly used during intra-arterial drug administration in the forearms. For example,

it  is  used  for  the  assessment  of  drugs  and  hormones  on  blood  vessels  such  as  the
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brachial artery [79]. Another application for plethysmography is the diagnosis of deep

venous thrombosis [80].

Figure  2.4  shows  one  of  the  early  types  of  plethysmographic  devices  –  known  as

chamber plethysmography – to measure peripheral blood flow rate [80]. The chamber

section  in  Figure  2.4  senses  the  volume  change  of  the  leg  using  air-  or  water-filled

calibrated volumes which are attached to the chamber. Any change in the volume of the

leg will  affect  the air  or water volume. The venous occlusion cuff stops venous blood

from leaving the leg. However, it does not stop arterial blood flow. The cuff is usually

inflated to 50 mmHg (6.7 Kpa). Hence, the increase of volume in the leg corresponds

only to the arterial blood flow. If arterial blood flow is required to be measured in a

particular segment of the leg, then an arterial occlusion cuff is also placed, and usually

inflated to 180 mmHg (24 kPa). Figure 2.5 shows the graph obtained from this process.

The marker ‘on’ is when the venous occlusion cuff is inflated and the ‘off’ marker

indicates when the cuff is deflated. The interval between the ‘on’ and ‘off’ markers is

related to the arterial blood flow. When the cuff is released, venous flow leaves the leg

and the volume returns to normal as shown in A in Figure 2.5. If there is a blood clot in

the veins (venous thrombosis), the volume will take longer to return to normal as shown

in B in Figure 2.5.

Figure 2.4: Chamber-type plethysmography [80]
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Figure 2.5: Typical graph obtained from plethysmography. ,is the blood flow rate ࡲ the rate of ࢂࢊ
change of volume and is the time derivative [80] ࢚ࢊ

2.3.2 Impedance Plethysmography

Modern plethysmographic devices measure the change in electrical impedance of the

limb, resulting from additional blood volume entering the limb during the cardiac cycle.

A change in blood volume alters the resistivity of the limb and causes a change in the

measured impedance. This impedance change is then correlated to volume change and

thus, the flow rate can be found. Impedance plethysmographic (IPG) devices are more

desirable in comparison with chamber-type devices as they are simpler, more accurate

and easier to automate. IPG is an attractive method because it is non-invasive, safe and

relatively simple to use for monitoring blood flow [81]. Assuming a cylindrical limb

segment, the change of volume ∆ܸ is given by

∆ܸ = ௕ߩ ቆ
ଶܮ

ܼଶቇΔܼ Eq. 2-2

where ௕ߩ  is  the resistivity of blood (assumed to be 1.5 Ωm), is the shortest distance ܮ

between sensing electrodes (2-electrode or 4-electrode systems can be used), ܼ is the

initial impedance and Δܼ = (ܼଵ − ܼ) is the change in impedance, i.e. the initial value ܼ

subtracted from the new value ܼଵ [82]. A typical IPG device comprises two or four

electrodes and an electronic measurement system which obtains the impedances ܼ and

Δܼ. In the two-electrode system, both electrodes are used for driving in current and also
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sensing the potential difference which is proportional to impedance. However, this

method is inaccurate due to several problems. These problems are solved in the four-

electrode system, illustrated in Figure 2.6, in which current ଵ flows through the outerܫ

electrode to the body and back to the device, i.e. ଶ, and the other inner electrodes senseܫ

the potentials ଵܸ and ଶܸ.

The electronic measurement system then obtains the initial impedance ܼ and the

impedance change Δܼ. The electronic measurement system consists mainly of an

amplifier, a phase-sensitive detector and a voltage balancing circuit. Amplification is

required as the voltages sensed are very small. Phase-sensitive detection (PSD) is a

method in which the target voltage signal is detected in the presence of other noise

sources. The target signal has a unique frequency as the driving electrodes are excited

by an AC current source. This method can be implemented using analogue or digital

electronic solutions. In this research, PSD was used for measuring low-level voltages

and is further discussed, in detail, in Chapter 6. The voltage balancing circuit allows the

initial voltage, related to the initial impedance, and the voltage change, associated with

the change in impedance, to be distinguished and measured.
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Figure 2.6: Four-electrode electrical impedance plethysmography [82]

2.3.3 Drawbacks

There are several drawbacks related to IPG that might cause poor accuracy of

measurement. Firstly, it is assumed that arteries expand uniformly and this is not a valid

assumption in the case of diseased arteries. It is also assumed that the blood resistivity

௕ߩ  is constant. However, it has been shown that resistivity of blood decreases as

velocity increases [80]. Another problem is that elevated venous pressure can lead to

false  diagnosis  of  DVT [71].  The  reliability  of  IPG has  been  shown to  vary  from one

clinical study to another. In one study, the sensitivity of IPG to DVT – i.e. the ability to

identify patients with the disease – was found to be about 77% and the specificity – i.e.

the ability to identify patients without the disease – was 93% [83]. Another study tested

IPG on patients with acute DVT [84].  It was reported that the sensitivity and specificity

were  75%  and  45%,  respectively  with  an  overall  accuracy  of  57%,  which  is

significantly low. In both studies, Doppler ultrasound achieved significantly more

accurate measurements in comparison with IPG.
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2.4 Ultrasound

2.4.1 Physics of Ultrasound

Ultrasound waves are mechanical vibrations – which may be generated by a

piezoelectric transducer - that have frequencies above the human hearing range, i.e.

above 20 kHz. The piezoelectric transducer is a device that converts electrical energy

into mechanical energy and vice versa [85]. These vibrations create high and low

pressure areas which travel in a forward direction as sound. The material used in

making the transducer depends mainly on two factors: sensitivity and bandwidth.

Sensitivity defines the response of the transducer to a reflected signal (echo).

Transducers with high sensitivity generate higher signal strength (amplitude) from

echoes [86]. Bandwidth is the operating frequency range of the transducer. Imaging

transducers require wide bandwidth to attain high spatial resolution. Transducers used

for fluid velocity measurement require narrow bandwidth to increase selectivity of the

desired frequencies [87].  Common materials used are crystal quartz, polymers and

ceramics. Crystal quartz is characterised by high sensitivity and narrow bandwidth

whereas polymers have low sensitivity and high bandwidth. Ceramic transducers fall

between quartz and polymers in terms of sensitivity and bandwidth and are often used

in medical applications.

The frequency range often used in medical applications is between 500 kHz and 100

MHz.  When  ultrasound  waves  (acoustic  signals)  travel  into  the  tissues  of  the  body,

these waves will be absorbed, refracted, scattered or reflected. This is due to the

difference of acoustic impedance between the tissues. Acoustic impedance depends on

several factors such as density, speed of sound, absorption coefficient and homogeneity

of the tissues. When the acoustic impedance changes at the interface between two
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tissues, some of the sound waves are either reflected or refracted. Reflected signals are

received by the piezoelectric transducer and interpreted to an image. The strength of the

reflected signals depends on the difference between the acoustic impedance of the

tissues. Signals of large amplitude are reflected when the difference between the

acoustic impedance of the tissues is significant. The refracted signals might also reach

another tissue interface, and some of them will be reflected and so on until they are

totally attenuated as they reach deeper tissues.

The choice of ultrasound frequency range is dependent on the level of depth

(penetration through tissues) and the spatial resolution required. Low-frequency signals

have a longer wavelength than high-frequency signals. Low-frequency signals can

penetrate tissues further; however, constructed images will have low spatial resolution.

In contrast, high-frequency signals have a short range of penetration; however, they

provide higher spatial resolution. A trade-off must be made between depth and

resolution in order to obtain satisfactory images of the scanned area of the body.

Usually, for non-invasive imaging and flow rate measurement, a lower frequency range

is used, i.e. 1 to 5 MHz; for invasive and intravascular (within the vessel) imaging, a

frequency  range  of  5  to  50  MHz  is  used  and  for  cuff-type  probes  (mounted  around

blood vessels), a frequency range of 45 kHz and 20 MHz is utilised [85].

2.4.2 Principle of Operation

The principle of ultrasound operation is that the time taken for the transmitted ݐ

ultrasound wave (pulse mode) to be sent and reflected off an object is given by

ݐ = 2݀/ܿ Eq. 2-3

where ݀ is the distance between the transducer and the reflector, i.e. body tissue and ܿ is

the speed of sound in the tissues of the body [85]. The speed of sound in the tissues of
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the body (blood, water, muscle, etc) is approximately 1500 ± 100 m/s. If the transmitted

signal is a tone burst (burst mode) with a frequency ଴݂, the phase of the received signal

߶, measured with respect to the transmitted signal,  can also be used to measure the

distance ݀ between the transducer and the reflector as shown in the expression below

[85].

߶
ߨ2 =

2݀
ߣ = 2݀ ଴݂/ܿ Eq. 2-4

where is ߣ  the  wavelength.  Eq.  2-3  or  Eq.  2-4  is  used  to  determine  the  distance  (1D)

between the transducer and the tissue. Measuring several locations simultaneously can

create a 2D image of the tissue. This will be explained in detail in Section 2.4.4.

If the object (blood) is moving with respect to the transducer, the velocity of the object

ܸ can be measured in pulse mode or burst mode. In pulse mode, a single-cycle pulse is

transmitted followed by an ‘off’ period, whereas in burst mode, multiple-cycles are sent

successively and then followed by an ‘off’ period. The governing equation for velocity

measurement in the pulse mode is given below [85].

Δݐ
௔௩௚ݐ

= 2 ൬
ܸ
ܿ൰ Eq. 2-5

Δݐ is the difference in arrival times between two transducers placed on either side of the

blood vessel (refer to Figure 2.8). In other words, it is the time difference between the

time taken for a pulse to be sent from transducer 1 to 2 (ݐଵ) and the time taken for the

pulse to be sent from transducer 2 to 1 (ݐଶ) as illustrated in Figure 2.7. Both transducers

alternate in sending and receiving ultrasound waves. .௔௩௚ is the average arrival time, i.eݐ

ଶݐ) + .ଵ)/2ݐ
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Figure 2.7(a) Pulse mode: difference in arrival time ઢ࢚. (b) Burst mode: difference in phase ઢࣘ [85]

In burst mode, the phase difference Δ߶ between the transmitted and received signals

(transducer 1 to 2 and transducer 2 to 1) is related to the velocity of the flow stream ܸ as

shown below [85].

Δ߶
ߨ2 = 2 ൬

ܸ݀
൰ܿߣ cosߠ Eq. 2-6

where ݀ is the distance between both transducers, is the wavelength of the ultrasonic ߣ

frequency and is the angle between the flow direction and the ultrasound beam which ߠ

is  known  as  the  angle  of  insonation  as  shown  in  Figure  2.8.  Eq.  2-5  and  Eq.  2-6  are

known as the transit-time mode equations for velocity measurement. The transit-time

method is illustrated in Figure 2.8. This mode is only used in invasive blood flow

measurement as it requires two transducers placed at opposite side of the conduit

(vessel) of the moving fluid (blood). Note that for flow rate measurement, the

ultrasound beam must entirely cross the blood vessel.
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Figure 2.8: Transit-mode ultrasound (two methods): (a) transducers are on opposite sides (b)
transducers are on the same side [88]

2.4.3 Doppler Mode

Alternatively, the Doppler Effect can be utilised to determine the velocity of flow. The

Doppler Effect is the difference in frequency for an observer with respect to the source.

This  means,  when a  transmitted  tone  burst  is  emitted  at  a  given  frequency ଴݂, the red

blood cells in motion will reflect this burst at a different frequency [89]. This difference

or shift in frequency is proportional to the velocity of the red blood cells, i.e. the blood.

Stationary  tissues  will  reflect  the  ultrasound  signal  at  the  same  frequency  as  the

transmitted signal. The mathematical equation of Doppler mode is given by [85]

Δ݂
଴݂

= 2(ܸ/ܿ) cosߠ Eq. 2-8

Δ݂ is the difference in frequency between the original transmitted signal ଴݂ and the

frequency of the reflected signal ݂ᇱ. The angle is the angle of insonation as depicted ߠ

in Figure 2.9. Eq. 2-8 is often referred to as Doppler mode for velocity measurement.

Similarly to the transit-mode ultrasound, the Doppler mode is sensitive to the angle of
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insonation .ߠ  Ideally,  the  angle  should  be  zero;  however,  this  is  not  possible.  It  is

usually recommended that the angle should be between 45o and 60o to achieve accurate

velocity measurements [90]. The effect of the angle of insonation on the velocity

measurement is discussed in Section 2.4.6.

There are two methods of operation for Doppler mode: continuous-wave (CW) Doppler

and pulsed Doppler [85]. In CW Doppler, two transducers are used; one continuously

transmits ultrasound signals and the other one receives the reflected signals. Note that

both transducers can be placed on the same or opposite sides of the scanned area. The

sample volume (SV) is defined by the size, shape, angle and focus of the beam. These

settings are controlled by the technologist operating the Doppler device. Both modes are

illustrated in Figure 2.10. The smaller the SV, the more accurate the measurement of

velocity will be. In CW Doppler, the control of the SV area is limited and therefore, the

accuracy is poor compared to pulsed Doppler.

Figure 2.9: Doppler principle for blood velocity measurement [91]
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Figure 2.10: Doppler-mode ultrasound. (A)  Continuous-wave Doppler and (B) Pulse Doppler [88]

In pulsed Doppler, one transducer transmits and receives the ultrasound waves. The SV

is further controlled in pulsed Doppler by modifying the size (‘on’ time) of the pulses

and  also  the  time  between  sending  and  receiving  the  signals.  For  flow  rate

measurement, it is often better to use transit-time mode (refer to Section 2.4.2) as the

SV covers the whole cross section of the vessel. Doppler mode is more accurate in

measuring the velocity of the blood at a given point.

2.4.4 Ultrasound Imaging

Ultrasound imaging has numerous applications in medical research and clinical practice.

It is often used, for example in diagnostics related to the pelvis, cardiovascular

examination, ophthalmology and orthopaedics [92]. Ultrasound methods can be

categorised into two groups: non-invasive and invasive. Non-invasive ultrasound

methods are more desirable as they do not require surgery, and are safe to apply to the

skin of the patient. Current non-invasive medical ultrasound devices can perform either

imaging, flow measurement or both. Images created by ultrasound are referred to as

sonograms. The part of the ultrasound device which contains the piezoelectric

transducers is called the probe. Probes vary in size, shape and number of transducers

depending on the type of ultrasound device and the modes of operation (Figure 2.11).
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Figure 2.11: Different types of Doppler probe [93]

Notably, there are four modes for ultrasound imaging: A-mode, B-mode, M-mode and

Doppler mode [92]. A-mode (amplitude mode) ultrasound is a one-dimensional mode

and is  used  to  determine  the  depth  of  tissue  or  organ.  It  can  be  used,  for  example,  to

measure the depth of the eyeball. When acoustic signals are transmitted, a straight

tracing line is displayed on the screen. Once the signals arrive at a tissue interface, the

transducer receives the reflected signals and displays them as amplitude, as illustrated in

Figure 2.12.

Figure 2.12: A-mode Doppler ultrasound. Ep is the distance between the transmitter and the
surface from which the signal was reflected [94]
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B-mode (Brightness mode) is a method which uses an array of transducers in the probe.

The transducers are excited in sequence. The strength of the reflected signal is displayed

as a pixel with a brightness level on the screen. A large number of transducers increase

the number of spatial pixels and, therefore, the resolution of the image is improved.

B-mode creates a 2D image of the scanned area, and it is often the standard mode in

most medical ultrasound devices. In modern devices, B-mode images are often

refreshed on the screen at a frame rate of at least 20 frames per second to create real

time imaging of the scanned area.

Figure 2.13 shows a B-mode image of a carotid artery with atherosclerosis (see small

arrows on Figure 2.13). Tissues with high reflectivity are presented in white (inner layer

of the arterial wall of the carotid); low-reflective tissues are in grey, i.e. muscles, and

non-reflective tissues are in black (fluids). In the diagnosis of arterial stenosis in the

upper and lower limbs, a B-mode image can provide information on anatomy (course,

variants), vessel contour (stenosis), wall structure (calcification, plaque) and

perivascular structures (hematoma, abscess, muscles).

The M-mode also creates a 2D image of the scanned area; however, it also displays the

movement of structure such as heart valves as a waveform (a dynamic view is created if

the frame rate is high). Figure 2.14 illustrates the M-mode of mitral valve of the heart.
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Figure 2.13: B-mode image of stenosed carotid artery [95]

Figure 2.14: M-mode image of mitral valve [96]

Doppler mode allows the flow of blood to be measured and/or visualised. The principle

of operation is as described earlier in Section 2.4.3. Pulsed Doppler mode is often

combined with B-mode to show an image of the blood vessels and the blood flow

velocity. This combined mode of operation is known as duplex ultrasound [97].

Continuous-wave Doppler is not suitable for duplex ultrasound as it continually
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transmits ultrasound signals. A time interval between transmitted pulses is required in

order to determine at which depth the echoes originated.

In modern types of duplex ultrasound, the blood flow velocity is also viewed in colour

on the display screen. This mode of operation is known as colour Doppler. In colour

Doppler, the reflected ultrasound, due to blood flow velocity, is represented in colour,

and is overlaid on the B-mode image. The Doppler method can only determine the

velocity of the flow and not the flow rate. However, when it is combined with B-mode,

the diameter of the vessel can be found. Therefore, the cross-sectional area can be

determined and the flow rate can be calculated [89].

In Figure 2.15, a duplex scan of the femoral artery is shown. The red colour indicates

where the flow is moving away from the transducer; and the blue colour indicates where

the blood flows towards the transducer. The lower section of Figure 2.15 represents the

velocity  waveform of  the  pulsatile  arterial  blood  flow,  i.e.  velocity  (cm/s)  vs  time (s).

This is known as spectral Doppler. Note that, spectral Doppler only devices are

available and they only show results of the velocity of the blood in the blood vessel as

shown in the lower part of Figure 2.15. Duplex Doppler can be used to assess a variety

of  medical  conditions  such  as  carotid  occlusive  disease,  deep  vein  thrombosis  and

varicose (swollen and enlarged) veins. Additionally, Doppler ultrasound or duplex

Doppler is used to diagnose patients who are suspected to have stenosis such as

coronary heart disease (CHD) and PAD. It is an alternative (or additional) method to CT

scans and MRI which both require dye methods [98, 99].
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Figure 2.15: Duplex image of femoral artery[100]

Much information can be obtained from a duplex scan that can help with diagnosing

stenosis:

· B-mode image

· Spectral Doppler which shows peak velocity of blood flow

· Broadening of Doppler spectrum

· Colour map produced by Doppler

Commonly, the measurement of peak velocity is the determining factor in assessing the

severity of stenosis [101]. Spectral broadening refers to the presence of high-frequency

spikes  on  the  spectral  Doppler  which  are  due  to  turbulent  or  disturbed  flow  due  to

stenosis. In Figure 2.16(a) spectral Doppler is shown for a healthy femoral artery. It can

be observed that the outline of the waveform is smooth. On the other hand, Figure

2.16(b) shows the spectral Doppler for a femoral artery affected by stenosis. A range of

high-frequency spikes are superimposed on the waveform. However, spectral

broadening can also be caused by incorrect sample volume, determined by the setting of
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the ultrasound device. It can also be due to the presence of several velocities within the

sample volume [89]. Technologists operating either Doppler mode only or a duplex

ultrasound device must carefully configure the parameters/settings to avoid artefacts

which can lead to incorrect diagnosis of stenosis. Doppler artefacts and sources of error

are discussed later.

Figure 2.16: (a) Spectral Doppler of healthy artery and (b) spectral Doppler of stenosed artery[89]

2.4.5  Invasive Ultrasound

Invasive methods mean that surgical intervention is required to expose the blood vessel

of interest. A cuff-type (or clamp-type) ultrasound flow meter is placed around the

blood vessel. Alternatively, a catheter-type probe can be inserted into blood vessels via

a skin incision. The probe can then be moved to enter larger blood vessels. For blood

flow rate measurement, it is more desirable to use transit-time mode than Doppler mode

as the sample volume of the probe covers the entire flow cross section, unlike for the

Doppler method in which the sample volume is limited. However, for a local velocity

measurement, Doppler mode is often used as the sample volume can be controlled to

provide higher accuracy of velocity measurement at a given point. It is possible to use

Doppler to perform flow rate measurements; this would require careful shaping,



Chapter 2
Methods of Blood Flow Measurement

63

focusing and angling of the ultrasound beam to cover the cross section of the flow.

Figure 2.17 shows two types of ultrasound invasive probes: (A) pulsed Doppler and (B)

transit-time.

Figure 2.17: (A) cuff-type Doppler probe and (B) transit-time probe [88]

2.4.6 Artefacts and Drawbacks

Despite the fact that Doppler mode and duplex ultrasound are intensively used in

medical diagnosis and are accepted by health practitioners, there are several sources of

error associated with Doppler mode in ultrasound imaging and velocity measurement

devices. These errors can lead to false diagnosis of arterial stenosis. Errors can either be

caused by the technologist, Doppler device or the patient [101]. Errors made by the

technologist due to improper configuration of the Doppler device can add significant

error to the peak velocity measurement. As stated earlier, the peak velocity

measurement is often relied on for the diagnosis of the severity of stenosis. The device

parameters such as Doppler angle of insonation, placement and size of sample volume,

the pulse repetition frequency and gain setting play an important role in the accuracy of

the velocity measurement [90, 101, 102].
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Angle of Insonation

The uncertainty of the angle of insonation between the ultrasound beam and the

reflector can lead to a significant error in velocity measurement. According to Eq. 2-8,

the frequency change ∆݂ is proportional to the cosine of the angle of insonation It is .ߠ

recommended that the probe is angled at 60o or less to minimise the error. Angles above

60o, will introduce significant error in the velocity measurement [90]. Figure 2.18 shows

a  measurement  of  systolic  blood  peak  velocity  of  the  same  blood  vessel  but  at  two

different angles of insonation: 42o and 70o. The velocity measurement for the angles 42o

and 70o were 80 cm/s and 176 cm/s, respectively. It should be noted that the predicted

velocity has more than doubled in the second reading. Moreover, even if the probe is

angled at 60o or less, it is assumed that the velocity vectors of blood are parallel to the

wall of the blood vessel, but this is not necessarily correct. Red blood cells, which are

the main reflectors in the blood, can be in different positions,  and also they do not all

always travel at the same velocity. Moreover, the assumption that the velocity vector of

the red blood cells is parallel to the vessel wall becomes invalid when the vessel is

stenosed because it has been shown by Hoskin that the difference between the measured

angle of insonation .and the actual angle for a stenosed vessel can be up to 25° [103] ߠ

This angle difference can significantly affect the accuracy of the velocity measurement

in the stenosed vessel. Other factors that can invalidate this assumption are (1) vessel

branching, tortuosity and curvature and (2) blood flow pulsatility and turbulence [88].

Furthermore, the direction of blood flow has a significant impact on the received

Doppler signals as shown in Figure 2.19 [102]. In case A, the beam is more aligned to

the direction of flow than the beam in case B. Therefore, the amplitude of the Doppler

signal obtained from case A is higher. The amplitude of the signal is a direct

representation of the velocity of the blood flow. Hence, for the same blood vessel, two
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blood velocities can be measured depending on the alignment between the Doppler

beam and the direction of blood flow. In case C, the beam is almost at 90° with respect

to  blood  flow.  The  cosine  of  90o is zero and according to Eq. 2-8, the difference in

frequency is zero. Hence, in case C, the Doppler signal shows that the velocity is very

low.  Lastly in case D, the flow direction is away from the beam and hence, the

representation of the received Doppler signal shows a negative velocity.

Figure 2.18: Impact of angle of insonation on duplex image: (a) and measured velocity = 80 °42 = ࣂ
cm/s and (b) and measured velocity = 176 cm/s (by Teodorescu [90]) °70 = ࣂ
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Figure 2.19: Effect of direction of the ultrasound beam with respect to blood flow (by Deane [104])

Placement and size of the sample volume

The placement of the sample volume within the vessel under examination is a crucial

factor [101]. The technologist must ensure that the sample volume size is configured

suitably in order to be placed in the centre of the vessel. The sample volume must also

be placed as close as possible to the site of maximum stenosis to obtain a high-accuracy

velocity measurement. The error due to the placement of the sample volume depends

highly on the experience of the technologist. Insufficient training or lack of experience

can increase this error in the velocity measurement.

Pulse repetition frequency and gain settings

The maximum frequency, resulting from the combination of flow velocity and beam

angle, that can be measured by a Doppler device must be at least half the pulse

repetition frequency to avoid aliasing [102]. In signal processing, aliasing causes the

ultrasound system to measure a frequency that is different from the actual flow

frequency. The pulse repetition is determined by the depth of penetration and the sample

volume required. It must also be ensured that there is sufficient time between

transmitted pulses to allow the transducer to discriminate between the associated

reflected signals to eliminate any range ambiguity, i.e. the tissue by which the signal has
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been reflected. Hence, for scanning deep tissues, the pulse repetition must be reduced to

give sufficient time for the reflected signal to be detected. At the same time, the Doppler

frequency, resulting from the flow and angle of insonation, must not be higher than half

of the pulse repetition frequency. This puts a constraint on the maximum blood velocity

that can be measured at a given depth.

In duplex ultrasound, simultaneous modes of operation work together, i.e. B-mode,

Doppler mode and colour mode [102]. These operations use the same set of transducers,

but  utilise  different  types  of  information.  This  affects  the  frame  rate  of  the  B-mode

image, the colour resolution of the flow and the pulse repetition frequency. Improper

device settings may lead to poor resolution or incorrect velocity measurement. Figure

2.20 shows a velocity waveform (spectral Doppler) of arterial blood flow obtained using

Doppler ultrasound. In Figure 2.20(a), aliasing occurred due to the incorrect setting of

the pulse repetition frequency. It can be seen that negative velocities appeared. In Figure

2.20(b), the aliasing was corrected by adjusting the pulse repetition frequency.

The gain setting of the amplifier of the ultrasound system must be correctly selected to

ensure accuracy. Very low gain may cause the system to misread low-flow velocities

whereas high gain can generate random noise which can appear as spectral broadening

which is a sign of the presence of stenosis. Figure 2.21 illustrates the effect of high and

low gain setting of the Doppler device. The left-hand side of the spectral Doppler is as a

result of low gain setting and, on the right-hand side, the gain setting was increased. It

can be noted that, at high gain setting, the random noise significantly increased.
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Figure 2.20: (a) Aliasing occurring in Doppler ultrasound due to improper setting of the pulse
repetition frequency and (b) the same velocity waveform after correction of the aliasing (by Deane
[104])

Figure 2.21: Effect of low and high gain settings on spectral Doppler (by Lui [101])

Interobserver variability

The last significant error due to “human factors” is the difference in interpretation and

gathering of results among technologists and it is referred to as interobserver variability.

The error resulting from interobserver variability can be significant even if other sources

of error such as angle of insonation, placement of sample volume and gain are fixed. In
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one study [101], the impact of four factors on the velocity measurement were

investigated. They were:

· Interobserver variability

· Angle of insonation

· Placement of the sample volume

· Signal gain setting

In these tests, one parameter was tested at time and the others were fixed. Four

experienced technologist (14-20 years of experience) participated in this study. The tests

were  carried  out  in  an  artificial  environment.  The  flow  model  was  comprised  of  two

tubes (vessels): one was stenosed and one was not. These two tubes were inserted into

tissue-like material made of agar. The true peak velocity values were known during all

tests. In the interobserver variability test, the probe was fixed using a holder at angle of

insonation of 60°, the sample volume was placed in the centre of the blood vessel and

the gain was set to an ideal value. The four technologists used only the screen cursors

on the device display to obtain velocity measurements. The velocities measured for the

stenosed and unstenosed tubes from this test were between 9% and 14% higher than the

true velocity values. In the second test, the effect of the angling and positioning of the

sample volume was examined. The four technologists manually adjusted the angle and

position of the sample volume. For the unstenosed tube, the velocity measured was 7%

to 16% higher, whereas for the stenosed tube, the measurement was 7% to 28% higher

than the true velocity value. Finally, for the gain setting, three options were available:

low, high and ideal. The error percentage was similar for all technologists. For the high,

low and ideal gain values, the error in measurement was 19%, 12% and −10%,

respectively. This study shows how significant the error can be due to one source of
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error.  It  is  likely  that  the  error  will  be  more  significant  if  it  is  due  to  two  or  more

sources.

Device and Patients Errors

In addition to human error, Doppler or duplex Doppler devices result in errors

associated with sample volume shape, aperture size, beam steering, beam refraction,

system noise and the assumption of sound in blood and tissues [101]. Errors arising

from using a single speed value in all tissues, assumption of the speed of sound in blood

and the angle measurement of refraction can introduce an error of up to 8% [105].

Lastly, the errors associated with patients are: vessel morphology, patient motion and

most importantly, plaque calcification [101]. Plaque calcification is the build-up of

calcium on the walls of blood vessels.  It  is  formed from calcium deposits between the

wall and the atheromatous plaques. Calcified plaque blocks ultrasound signals and

prevents the measurement of blood flow velocity [106]. Calcified plaque is common in

the  femoral  arteries  of  dialysis  patients  [62].  Such  problems  can  prevent  the  use  of

ultrasound to perform a velocity measurement or obtain an accurate measurement of the

blood velocity [90].

2.5 Electromagnetic Induction

2.5.1 History of Electromagnetic Flow Metering

When a conducting object (solid or fluid) moves in a magnetic field, it experiences a

magnetic force. As a result, an electromotive force is induced in the conductor which is

directly proportional to the velocity of the object. This experiment was one of the first

that Faraday conducted in 1831 to demonstrate his law, which is known as Faraday’s

Law of Induction. There are many applications based on Faraday’s law of induction,
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including electrical motors, generators, transformers, inductors and EM induction flow

meters. EM flow metering falls within the area of Magnetohydrodynamics – the study

of fluid dynamics and electromagnetism.

In 1832, Faraday attempted to measure the velocity of the River Thames by placing two

gigantic electrodes on opposite sides of the river and using the Earth’s magnetic field.

This experiment was not successful due to spurious voltages arising from

electrochemical and thermoelectric effects. Many years later (1917), oceanographers

used this principle to measure the speed of ships by measuring the induced emf between

two electrodes due to the presence of magnetic fields emanating from the ships [107].

Williams [108] was the first to apply the principle described above to a closed conduit,

creating the first conventional EM flow meter. The measuring tube of the flow meter

was made of non-conducting material, to avoid a short circuit between the tube and the

conducting fluid. Two electrodes were placed normal to the direction of the magnetic

field (y-axis) and perpendicular to the direction of the flow (z-axis). The electrodes were

made of non-corrosive material and were in contact with the fluid through the tube wall

as shown in Figure 2.22. The magnetic field generated was uniform i.e. the magnitude

and direction of the magnetic field were the same throughout the cross-section of the

tube.

Williams concluded that for a uniform magnetic flux density the potential difference ,ܤ

ܷ measured between the two electrodes is directly proportional to the flow rate of the

conductive fluid ܳ. He also realised that the induced potential distribution would not be

uniform (refer to Figure 2.23a) due to the fact that the pipe is circular and the velocity of

the moving liquid in the centre of the pipe is higher than at the pipe wall. Thus, the
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induced emf in the centre of the pipe is greater than the induced emf at the pipe wall.

Therefore, circulating currents are created in the pipe cross section (Figure 2.23b).

Figure 2.22: Conventional EM flow meter

Figure 2.23: (a) Non-uniform induced potential in the flow cross section; (b) circulating currents
due to non-uniform induced potential distribution [107]

This would mean that the actual induced emf along the imaginary line connecting the

electrodes e1 and e2 is reduced by voltage drop due to ohmic resistance. Therefore, the

induced voltage is affected by the velocity distribution. However, Thürlemann proved

that for an axisymmetric velocity profile, i.e. one which has rotational symmetry about

the tube axis, the induced emf is proportional to the mean velocity of the conducting

liquid, as if it were travelling in a uniform manner in the cross-section of the pipe [109].

From Williams’s experiment, it was concluded that for an axisymmetric velocity profile

axis-ݔ -

Electrical potential

axis-ݖ - Flow Direction

axis – Magnetic flux density-ݕ

e1

e2
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and uniform magnetic field, the induced emf is directly proportional to the mean

velocity of the fluid, regardless of the velocity distribution and conductivity of the fluid.

Mathematically, this is given by

Δܷ = ܤ ∙ ݀ ∙ ݒ̅ Eq. 2-9

where ,is the magnetic flux density ܤ ݀ is the distance between the electrodes (the

diameter of the pipe) and is the mean velocity of the conducting liquid. The ݒ̅

relationship between the volumetric flow rate ܳ and velocity of a fluid in a cylindrical

conduit (assuming axisymmetric flow) is expressed as follows

ܳ = ݒ̅ ∙ ܣ Eq. 2-10

where ܳ is the flow rate, is ݒ  the  velocity  and is the cross-sectional area of the ܣ

conduit. The area of the circle is ଶ݀ߨ 4⁄  (݀ is the diameter of the cross-sectional area).

Hence, the flow rate of the fluid can be given by

ܳ = Δܷ ∙
݀ߨ
ܤ4

Eq. 2-11

In  1932,  Fabre  was  the  first  physiologist  to  propose  the  use  of  an  EM flow meter  for

non-invasive blood flow measurement.  A few years later,  an EM flow meter for blood

flow measurement was successfully implemented invasively for clinical use

independently by Kolin and Wetterer [110]. The EM flow probe consisted of an

electromagnet, sensing electrodes and input (power source) and output (voltmeter or

measuring equipment) as shown in Figure 2.24.
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Figure 2.24: Invasive EM blood flow probe (Kolin's method) [111]

Shercliff [107] presented a comprehensive theoretical foundation of EM flow metering

and soon after, the development of blood EM flow meters for invasive and non-invasive

use increased substantially. Mostly, the EM flow metering technique is attractive

because [112]:

· It is a linear device, i.e. Δܷ∝	ܳ

· It can detect forward or backward flow direction

· It is insensitive to viscosity, density, temperature, conductivity and pressure loss

· It is unaffected by velocity profile, provided the velocity profile is axisymmetric

2.5.2 Faraday’s Law of Induction

When a straight conducting bar moves through a uniform and static magnetic field with

a velocity ࢜ as shown in Figure 2.25, the charged particles of the conductor experience

a force called the Lorentz force [113] which is mathematically given by

ࡲ = ࢜ݍ × ࡮ Eq. 2-12
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where ,is the Lorentz force ࡲ is the electrical charge of the particle under the ݍ

influence of the force, and is the magnetic flux density. Note that the velocity ࡮ ࢜ and

the magnetic flux density are vectors with vector components of ࡮ ෝ࢞, ෝ࢟ and ො andࢠ × is

the cross product. The Lorentz force acts at right angles to the velocity of the

conducting bar ࢜ and the magnetic flux density This force causes a charge separation .࡮

between the positively and negatively charged particles (polarisation) of the conductor.

As a result, an electric field is produced within the conductor and the Lorentz forces ࡸࡱ

.on positive charges are in the negative y-direction (−ෝ࢟) ࡸࡱݍ
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Figure 2.25: Sliding conductor moving in a uniform and static magnetic field [114]

The charge separation continues until equilibrium is reached between the Lorentz force

and the electric force due to free charges ࡸࡱݍ that is ,࡯ࡱݍ

࡯ࡱݍ = ࢜)ݍ × or   (࡮ ࡯ࡱ = (࢜× (࡮ Eq. 2-13

From Figure 2.25, the electric field due to free charges can be found as follows ࡯ࡱ

࡯ࡱ = ࢜ × ࡮ = [௢ෝ࢞ݒ] × [(ොࢠ)௢ܤ] = ௢ܤ௢ݒ ෝ࢟ Eq. 2-14

where ௢ andݒ ௢ are the values of the velocityܤ ࢜ and the magnetic flux density Due .࡮

to the electrostatic field an electromotive force is generated ,࡯ࡱ ௘ܸ௠௙ . This
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electromotive force is equal to the integral of the electric field around the path of the ࡯ࡱ

conductor, and it is an application of Faraday’s law of induction [115], i.e.

௘ܸ௠௙ = න࡯ࡱ ∙ ݈݀ = න(࢜ × (࡮ ∙ ݈݀ Eq. 2-15

where ݈݀ is an incremental segment of the distance (path) between the positively and

negatively charged particles, and it is equal to

݈݀ = ෝ࢟ݕ݀ Eq. 2-16

Substituting Eq. 2-14 and Eq. 2-16 into Eq. 2-15 gives

௘ܸ௠௙ = න ௢ܤ௢ݒ) ෝ࢟) ∙ (ෝ࢟ݕ݀) = ௢ܤ௢ݒ
௟

଴
න ݕ݀
௟

଴
= ௢݈ܤ௢ݒ Eq. 2-17

where ݈ is  the  length  of  the  conductor.  This  emf  is  known  as  ‘motional’  emf  which

occurs due to the motion of the conductor in the static EM field of flux density It can .࡮

be observed that Eq. 2-9 and Eq. 2-17 are similar.

For varying magnetic flux density in the positive z-axis direction, that is (refer to Figure

2.25; however the magnetic field is now time-varying)

࡮ = ௢ܤ cos߱ݐ (ොࢠ) Eq. 2-18

The  total  emf  generated  is  the  sum  of  the  ‘motional’  emf ௠ܸ, which is given in

Eq.  2-15,  and  also,  ‘transformer’  emf ௧ܸ due to the time-varying (AC) magnetic field.

Using Faraday’s law of induction [114], the total emf ௘ܸ௠௙  can be represented

mathematically as

௘ܸ௠௙ = ௧ܸ + ௠ܸ = −ඵ
࡮߲
ݐ߲ ∙ ݏ݀ + න ࡯ࡱ ∙ ݈݀ Eq. 2-19

where డ࡮
డ௧

 is the rate of change of the magnetic field with time and ݏ݀ is an incremental

segment of the surface (area) bounded by the conductor and is given by
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ݏ݀ = ොࢠݕ݀ݔ݀ Eq. 2-20

The minus sign in the first right-hand side term of Eq. 2-19 is a consequence of Lenz’s

law. From Eq. 2-19, the rate of change of the magnetic field with time డ࡮
డ௧

 is given by

࡮߲
ݐ߲ = ௢ܤ߱− sin߱ݐ (ොࢠ) = ௢ܤ߱− sin߱ݐ ොࢠ Eq. 2-21

The electric field due to charge separation is found as follows ࡯ࡱ

࡯ࡱ = ࢜ × ࡮ = [௢ෝ࢞ݒ] × ௢ܤ] cos߱ݐ [(ොࢠ) = ௢ܤ௢ݒ cos߱ݐ ෝ࢟ Eq. 2-22

Substituting Eq. 2-21 and Eq. 2-22 into Eq. 2-19, gives

௘ܸ௠௙ = −ඵ ௢ܤ߱−) sin߱ࢠݐො)
௫,௟

଴,଴
∙ (ොࢠݕ݀ݔ݀) + න ௢ܤ௢ݒ) cos߱ݐ ෝ࢟) ∙ ෝ࢟ݕ݀

௟

଴

= ௢ܤ߱ sin߱ݐඵ (ݕ݀ݔ݀)
௫,௟

଴,଴
+ ௢ܤ௢ݒ cos߱ݐ න ݕ݀

௟

଴

= ௢ܤ݈ݔ߱ sin߱ݐ + ௢ܤ௢݈ݒ cos߱ݐ

Eq. 2-23

where is the shaded area enclosed by the sliding conductor (refer to Figure 2.25) as ݈ݔ

the sliding conductor moves at distance and it can be denoted as ,ݔ Hence, the total .ܣ

emf ௘ܸ௠௙  due to the movement of the conductor in the time-varying magnetic field is

given by

௘ܸ௠௙ = ௢ܤ௢݈ݒ cos߱ݐ + ௢ܤܣ߱ sin߱ݐ Eq. 2-24

Eq. 2-24 shows that for an applied time-varying (AC) magnetic flux density the total ,࡮

induced voltage in the conductor ௘ܸ௠௙  is  the  algebraic  sum  of  two  different  emf

components ௠ܸ and ௧ܸ. Only the motional emf ௠ܸ is  related  to  the  velocity  of  the

conductor. The transformer emf is 90o out of phase with the motional emf, and it is

proportional to the frequency of the supply voltage. From Eq. 2-18 and Eq. 2-24, it can

be seen that the motional emf ௠ܸ is in phase with the magnetic flux density .࡮
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2.5.3 The Mathematical Model of a Conventional EM Induction Flow Meter

For a conventional EM induction flow meter as described in Figure 2.22, the electric

current density ࢐ in the conducting fluid, in the presence of electric and magnetic fields,

is given by Ohm’s law [107]

࢐ = ࡱ)ߪ + ࢜ × (࡮ Eq. 2-25

where is the local fluid electrical conductivity. The electric field ߪ is the result of free ࡱ

charge distribution (electrostatic) and ࢜ × arises from forces on the charged particles ࡮

due to their motion in a magnetic field as explained in Section 2.5.2. From the theory of

electrostatics [116], the integral of the electric field around a path is zero, i.e.

රࡱ ∙ ݈݀ = 0 Eq. 2-26

Applying Stokes’ theorem [116] gives

ߘ × ࡱ = 0 Eq. 2-27

Hence, the curl of the electric field is zero and as a result, the electric field is given by ࡱ

the gradient of the electric potential ܷ. Mathematically, it is given by [116],

ࡱ = ܷߘ− Eq. 2-28

For a stationary magnetic field, the rate of change of charge density is zero, i.e.

ߩ߲ ⁄ݐ߲ = 0. As a result, the continuity equation for local current density becomes [116]

ߘ ∙ ࢐ = 0 Eq. 2-29
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Eq. 2-29 can be re-written using Eq. 2-25 and Eq. 2-28, as [117]

ߘ ∙ ࢐ = ߘ−)ߪ ∙ (ܷߘ + ߘߪ ∙ (࢜ × (࡮

(ଶܷߘ)ߪ = ߘߪ ∙ (࢜ (࡮×
Eq. 2-30

Assuming the conductivity in the flow cross-section is constant, then Eq. 2-30 can be ߪ

simplified to

ଶܷߘ = ߘ ∙ (࢜ × (࡮ Eq. 2-31

Eq.  2-31  is  the  general  partial  differential  equation  (Laplacian  equation)  of  the

conventional EM induction flow meter presented by Shercliff [107] for uniform fluid

conductivity. Solving this equation, by the application of the appropriate boundary

conditions, gives the electrical potential distribution ܷ due to the motion of the fluid ࢜

in the uniform magnetic field .࡮

2.5.4 Shercliff’s Weight Function

In conventional EM induction flow meters, it is assumed that the velocity profile is

axisymmetric with a mean velocity as used in Eq. 2-9. Eq. 2-9 does not hold true for ݒ̅

asymmetric velocity profiles and significant errors can result if Eq. 2-9 is used in such

flows. Shercliff [107] introduced the weight function ܹ which shows the contribution

of each point in the flow cross-section to the output signal measured between the two

electrodes for rectilinear asymmetric velocity profiles.

Figure 2.26 illustrates the weight function (given in Eq. 2-38) distribution plot. It can be

seen that the flow near the electrodes contributes more (value of 2) towards the flow

induced potential difference between the electrodes than flow at the tube wall (value of

0.5). Hence, if the flow is asymmetric, the induced emf can indicate an incorrect flow

rate. The weight function distribution is dependent entirely on the magnetic field flux
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density, shape of electrodes and tube geometry.  It is used to calculate the contribution

of flow at different points in the pipe cross-section towards the flow induced potential

difference between the electrodes. Note that the weight function can also be used with

axisymmetric velocity profiles.  However,  it  would be simplified to a constant value of

for) ߨ2  a  circular  cross-sectional  area)  and  when  applied  to  Eq.  2-40,  Eq.  2-9  will  be

obtained as will be shown later in this section.

Figure 2.26: Weight function plot for uniform magnetic flux density [107]

The flow cross section from Figure 2.22 is only redrawn in Figure 2.27. Electrodes e1

and e2 are point-like galvanic contacts in the x-direction placed normal to the direction

of the magnetic field which is in the y-direction and perpendicular to the direction of

flow which is in the z-direction.
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Figure 2.27: Flow cross-sectional area with two electrodes (Flow is out of the page)

For velocity ࢜ and magnetic flux density given by ࡮

࢜ = ࢏௫ݒ + ௬࢐ݒ + ௭࢑ݒ Eq. 2-32

࡮ = +࢏௫ܤ ௬࢐ܤ + ௭࢑ܤ Eq. 2-33

and assuming that the magnetic flux density and the mean velocity of the fluid ࡮ are ݒ̅

constant in the flow cross section, Eq 2-31 can be expressed as [107]

ଶܷߘ =
௭ݒ௬ܤ)߲ − (௬ݒ௭ܤ

ݔ߲ +
௫ݒ௭ܤ)߲ − (௭ݒ௫ܤ

ݕ߲ +
௬ݒ௫ܤ)߲ − (௫ݒ௬ܤ

ݖ߲ Eq. 2-34

The magnetic flux density components ௫ andܤ ௭ areܤ  assumed  to  be  zero.  Only  the

magnetic field component ௬ isܤ  considered  in  the  flow cross-section.  The  flow is  also

assumed to be rectilinear, i.e. ࢜ = and perpendicular to the magnetic field [௭ݒ,0,0]

component .௬ܤ
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As a result, Eq. 2-34 can be simplified to

ଶܷߘ = ܤ
ݒ߲
ݔ߲

Eq. 2-35

where the velocity component ௭ݒ = and the magnetic flux density component ݒ

௬ܤ = Note that the magnetic flux density is assumed to be constant. Eq. 2-35 is now .ܤ

a two-dimensional equation where, on the boundary (pipe wall) ݒ = 0 and ߲ܷ ⁄ݎ߲ = 0

at the pipe wall (ݎ = ܽ which is the radius of the flow cross section).

Shercliff introduced the concept of weight function ܹ to analyse the effects of velocity

profile (non-symmetrical flow) on the potential difference In other words, the .ܷ߂

weight function determines the contribution of flow at any point in the flow cross-

section to the total electric potential difference signal between the electrodes .ܷ߂

According  to  Shercliff  [107],  for  a  circular  pipe,  the  solution  to  Eq.  2-35  to  find  the

electrical potential difference between electrodes e1 and e2 is given by

ܷ߂ =
ܤ2
ܽߨ

ඵݔ)ݒ, ݕ݀ݔ݀(ݕ,ݔ)ܹ(ݕ Eq. 2-36

where ܽ is  the  radius  of  the  pipe, ,ݔ)ܹ is the contribution of the velocity (ݕ

component	(ݕ,ݔ)ݒ at a point in the flow cross section to the potential difference (ݕ,ݔ)

signal between the electrodes. In polar coordinates [118], Eq. 2-36 can be written as ܷ߂

ܷ߂ =
ܤ2
ܽߨ

ඵ ,ݎ)ݒ (ߠ

ଶగ,௔

଴,଴

,ݎ)ܹ ߠ݀	ݎ݀	ݎ(ߠ Eq. 2-37

The weight function in Cartesian ,ݔ)ܹ and polar (ݕ forms is given by (ߠ,ݎ)ܹ

,ݔ)ܹ (ݕ =
ܽଶ + ܽଶ(ݕଶ − (ଶݔ

ܽସ + ଶݕ) + ଶ)ଶݔ + 2ܽଶ(ݕଶ − (ଶݔ
(a) Eq. 2-38
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(ߠ,ݎ)ܹ =
ܽଶ + ܽଶݎଶ ݏ݋ܿ ߠ2

ܽସ + ସݎ + 2ܽଶݎଶ ݏ݋ܿ ߠ2
(b)

where and ݎ are the radial and angular coordinates, respectively. The weight function ߠ

,ݎ)ܹ ,ݎ)࢜	is the contribution of the velocity component (ߠ at (ߠ  a  point in the (ߠ,ݎ)

flow cross section to the potential difference signal between the electrodes. Note ܷ߂

that the angular coordinate is zero in the direction of the magnetic field (refer to ߠ

Figure 2.27). For an asymmetric flow, if the velocity profile is fully known then (ݕ,ݔ)ݒ

Eq. 2-36 and Eq. 2-38(a) could be used to predict the potential difference The .ܷ߂

graphical representation of Eq. 2-38 is Shercliff’s weight function plot (Figure 2.26).

For an axisymmetric flow, i.e. (ߠ,ݎ)ݒ = the weight function ,(ݎ)ݒ ,ݎ)ܹ (ߠ = (ݎ)ܹ

which is given by

(ݎ)ܹ = න ,ݎ)ܹ ߠ݀(ߠ
ଶగ

଴
= ߨ2 Eq. 2-39

Substituting Eq. 2-39 into Eq. 2-37, gives

ܷ߂ =
ܤ2
ܽߨ ∙ නߨ2 ݎ݀	ݎ(ݎ)ݒ

௔

଴
= 2ܽ ∙ ݒ ∙ ܤ Eq. 2-40

The induced voltage due to the motion of the conductive fluid in the magnetic flux

density in Eq. 2-40 is identical to Eq. 2-9 for an axisymmetric flow.

This analysis is for a conventional EM flow meter with two electrodes. However, it has

been extended successfully by several authors by adding additional electrodes to

improve the accuracy of mean velocity and volumetric flow rate measurements and to

reduce sensitivity to asymmetric velocity profiles [119, 120]. In the design of an EM

flow meter by Leeungculsatien and Lucas, the number of electrodes was increased to 16

to reconstruct the axial velocity profile in multiphase flow [121]. This was performed
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by finding the local axial velocity distribution using a tomographic approach based on

an extension of Shercliff’s weight function method. This is discussed in Section 2.5.6.

2.5.5 Virtual Current Theory

From Shercliff’s work, intensive research has been carried out to develop an EM

induction flow meter that is insensitive to velocity profiles for clinical and industrial

use. Bevir [122] extended the work of Shercliff to a 3D model, and introduced the

weight vector using the concept of virtual current density ࢃ ࢐࢜. Bevir showed that for a

conductive fluid flow (with a velocity distribution) moving in a magnetic field, the

induced emf between the two electrodes e1 and e2 (refer to Figure 2.27) is given by

ܷ߂ = න ࢜ ߬݀	ࢃ∙
ఛ

Eq. 2-41

where ࢜ is the velocity vector, i.e. ࢜ = ௫ݒ] ௬ݒ, ,[௭ݒ, is the weight vector and ࢃ ߬ is the

volume of the moving fluid. The weight vector .is similar to the weight function, i.e ࢃ

it measures the contribution of each point in the flow cross-section towards the

measured induced potential difference and is given by ܷ߂

ࢃ = ࡮ × ࢐࢜ Eq. 2-42

where B is the magnetic flux density and ࢐࢜ is the virtual current density. The virtual

current density is the result of an imaginary unit current entering one electrode and

leaving another in the absence of the magnetic field and flow, i.e.

ߘ ∙ ࢐࢜ = 0 Eq. 2-43

From Ohm’s law and assuming uniform conductivity	ߪ,

࢐࢜ = ߶ߘ Eq. 2-44
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where is the virtual potential gradient. Combining Eq. 2-43 and Eq. 2-44 gives the ߶ߘ

equation for the virtual potential which is Laplace’s equation,

߶ଶߘ = 0 Eq. 2-45

Once Eq. 2-45 is solved by applying the appropriate boundary conditions and the virtual

potential ߶ = is obtained, the virtual current density (ߠ,ݎ)߶ ࢐࢜ can be found using

Eq. 2-44 as follows:

࢐࢜ = ൤ ௥݆
݆ఏ
൨ = ൦

߲߶
ݎ߲

1
ݎ
߲߶
ߠ߲

൪ Eq. 2-46

The virtual current does not exist in practice, and it is affected only by the following

factors:

· The conductivity, isotropy and homogeneity of the flowing medium if not uniform

· The shape, size and position of the electrodes within the flow cross section

· The geometry of the flow cross-section

The weight vector can also be considered as the medium interaction model, which is the

third element required in any tomographic technique in addition to excitation source and

external measurements [123]. Bevir indicated that if the magnetic field is uniform and

point-like electrodes are in use, then the flow near the electrodes has greater weight

(contributes more towards the output signal) than the flow in the other parts of the flow

cross-section; this observation is similar to Shercliff’s conclusion. Therefore, the flow

induced emf will be sensitive to the velocity profile. This was also confirmed by Wyatt

[124] when he imposed a water flow in various parts of the flow cross-section of a flow

meter, and some results showed up to 100% error in the measured induced emf.
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When a rectilinear flow, i.e. ࢜ = [0, ௭], and uniform and transverse magnetic fluxݒ,0

density in the negative y-direction, i.e. ࡮ = ௢ܤ−,0] , 0] are assumed, the only non-zero

component of the weight vector is ௭ܹ [125] ( ௭݆ = 0) and it is given by

௭ܹ = ௢ܤ ௥݆ ݏ݋ܿ ߠ − ௢݆ఏܤ ݊݅ݏ ߠ Eq. 2-47

Hence, Eq. 2-41 can be simplified from a 3D to a 2D problem and can be expressed as:

ܷ߂ = ඵ ,ݎ)ݒ(ߠ,ݎ)ܹ (ߠ

ଶగ,௔

଴,଴

ߠ݀	ݎ݀	ݎ Eq. 2-48

where (ߠ,ݎ)ܹ = ௭ܹ and (ߠ,ݎ)ݒ = ௭. When the flow has an axisymmetricݒ

distribution, i.e. (ߠ,ݎ) = Eq. 2-48 can be written as , (ݎ)ݒ

ܷ߂ = නߨ2 ܹᇱ(ݎ)(ݎ)ݒ	ݎ	ݎ݀
௔

଴
Eq. 2-49

where ܹᇱ(ݎ) is known as the axisymmetric weight function [125] and it is given by

ܹᇱ(ݎ) =
1

ߨ2
න ߠ݀	(ߠ,ݎ)ܹ
ଶగ

଴
Eq. 2-50

Eq. 2-48 is applicable to any geometry of flow cross-section and electrodes and

Eq.  2-49  is  the  condition  of  the  weight  vector for axisymmetric rectilinear flow so ࢃ

that the flow signal is directly proportional to flow rate [125].  Bevir stated that the

solution to Eq. 2-50 is constant for any axisymmetric velocity profile. For point-like

electrodes and circular cross-section as depicted in Figure 2.27, the axisymmetric

weight function ܹᇱ(ݎ) is given by

ܹᇱ(ݎ) =
ܤ2
ܽߨ

Eq. 2-51

Combining Eq. 2-49 and Eq. 2-51 yields the exact equation, Eq. 2-40, suggested by

Shercliff. This shows that weight function and virtual current theory lead to the same
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conclusion. The weight vector method is a powerful technique which enables the

prediction of flow contribution to the output signal even for point-like electrodes as long

as the flow is rectilinear [126]. It has also been successfully used with asymmetric

velocity profiles when large electrodes are used (assuming rectilinear flow) [126]. Such

prediction  analysis  is  known  as  ‘dry  calibration’,  and  it  is  very  useful  in  relating  the

flow induced potential to the flow rate even if the flow is not axisymmetric.

The uniformity of the weight vector, i.e. insensitive to velocity profile, can be improved

in a number of ways [127]:

· Modification of the magnetic field distribution and optimisation of the coil design

[128]

· Use of relatively large electrodes as Bevir suggested [126]

· Use of a multi-electrode system instead of a single pair [129]

2.5.6 Multi-electrode Electromagnetic Flow Meters

One of the methods considered as a design for an EM flow meter that is insensitive to

velocity profile distribution was a model using multiple electrode pairs. In industrial

conventional EM flow meters (two electrodes), it is strongly recommended that a

straight  pipe  of  a  length  5-10  times  its  diameter  be  installed  upstream  from  the  flow

meter to ensure that the flow has an axisymmetric velocity profile. In other words, the

straight pipe keeps the flow meter away from pipe bends or valves which can distort the

velocity profile. Otherwise, significant error can occur in the measurement readings

[129].  Engl  [130]  showed  mathematically  that  for  a  flow -along the z (rectilinear) ࢠ࢜

axis in the pipe cross-section and a uniform magnetic field in the negative y-direction,

the mean velocity of the flow ௭ഥݒ  in the cross section is found by integrating the flow



Chapter 2
Methods of Blood Flow Measurement

88

induced potential distribution at the boundary of the cross-section (circular surface) of

the non-conducting pipe wall as follows

௭ഥݒ =
1
ߨ
න

1
ܤ

ଶగ

଴
ܷ(߮) cos߮݀߮ Eq. 2-52

where ܷ(߮) is the potential at the boundary of the flow cross-section at angle ߮. Horner

utilised this equation and developed a mathematical model using Fourier series to

estimate the mean velocity using an ܰ-electrode sensor array [119]. He also used two

magnetic field projections to improve the measured data. His results showed that for

2-electrode and 4-electrode systems, the relative error in the mean velocity of the flow

in the cross-section was large. However, when 8-electrode and 16-electrode systems

were used, the error was significantly reduced and the latter system had a relative error

in the velocity for distorted velocity profiles of less than 10%.

From Horner’s multi-electrode system design, Xu [120] developed a chord

measurement method and used a rotating magnetic field. The induced potentials from

different magnetic field projections were fused (data fusion) to estimate the mean

velocity in the flow cross-section for asymmetric velocity profiles. Horner and Xu used

the multi-electrode system only to improve the accuracy of the mean velocity

measurement in a single phase measurement. The major drawback of their devices is

that they cannot determine the local axial velocity profile which is essential in

identifying the flow rate of a particular phase in multiphase measurements where the

local volume of fraction distribution of that phase is also known [131].

This  drawback  was  one  of  the  main  thrusts  of  recent  research  work  in  the  Systems

Engineering group1 of the University of Huddersfield. Significant progress has been

1 The  author  is  a  member  of  this  research  group  and  was  led  by  Prof.  Gary  Lucas  at  the  time  of  this
research
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made by the research group in the development of techniques (combining EM induction

flow metering and tomographic techniques) to determine the local axial velocity profile

of the conducting phase in both single phase and multiphase pipe flow. Flow meters

have been constructed, each comprising an array of 16 electrodes equally spaced around

the internal pipe diameter. A magnetic field was applied across the electrode array

normal to the axial flow direction and ܰ independent flow induced potential difference

measurements were made between pairs of electrodes. By the use of a matrix inversion

technique [131], it was found possible to determine the local axial flow velocity, to an

accuracy of better than ±5%,  in  each  of ܰ sub-regions (pixels) into which the region

bounded by the electrodes was divided. In one particular flow meter design [132], the

flow cross section was divided into 7 sub-regions (݅ is the sub-region index) as shown in

Figure 2.28. Seven potential difference measurements were made between electrode

pairs  e6-e4, e7-e3, e8-e2, e9-e1, e10-e16, e11-e15 and  e12-e14.  For  a  single  phase  flow  of

conducting liquid, the local volumetric flow rate in the ݅௧௛ sub-region was given by

ܳ௜ = ௜ whereܣ௜ݒ ௜ andݒ ௜ respectively represent the relevant sub-region velocity andܣ

cross-sectional area. For multiphase flow, the measured sub-region velocity was the

mean velocity of the conducting continuous phase in that sub-region. For such

multiphase flows, accurate sub-region velocity measurements were made, even when

the local mixture conductivity varied by as much as 5 to 1 in the flow cross section.

The knowledge, experience and results obtained from the industrial research work,

described above, were a major inspiration to the work presented in this thesis. It

encouraged the author to investigate the possibility of using a multi-electrode EM

method for the application of non-invasive blood flow measurement. Many of the

techniques developed in the industrial research work can also potentially be applied to
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the blood flow measurement method developed in this thesis, and this is discussed in

detail in the Further Work (Section 8.3.1)

Figure 2.28: Flow cross-section divided into regions and bounded by 16 electrodes [132]

2.5.7 Invasive Electromagnetic Blood Flow Meters

Invasive EM blood flow meters must be inserted into the human body, and this can be

achieved by using one of three methods [127]. The first method – and least desirable –

is by cutting the blood vessel and inserting a cannula flow meter. This requires surgical

intervention and may lead to complications such as blood contamination. The second

method is by using Kolin’s [1] approach, in which the flow probe is attached around the

blood  vessel.  This  is  more  favourable  than  the  first  method;  however,  it  is  usually

performed in surgery. The last method involves the use of a catheter-type flow meter,

which is inserted first into the skin by incision into small blood vessels, and then into

the major ones. The catheter-type flow meter is also named after the inventor Mills –

Mills’ catheter-tip velometer – who was the first to utilise a catheter with EM flow

meters [133]. Kolin’s EM induction and Doppler ultrasound probes are the most

common techniques used for blood flow rate measurement invasively [134].
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Cannula Flow Meters

A cannula flow meter consists of a non-conducting insulated tube, electromagnet and

two point-like electrodes attached at the opposite sides of the flow cross section of the

non-conducting tube. Figure 2.29 shows a medical cannula flow meter device which can

be inserted between two ends of a blood vessel that has been cut out as illustrated in

Figure 2.30. Cannula flow meters come in different sizes depending on the diameter of

the blood vessel under examination. As stated earlier in Section 2.5.5, for an

axisymmetric velocity profile and uniform magnetic field, the blood flow rate is

proportional to the flow induced potential difference measured between the electrodes.

Designs of cannula flow meter have achieved a measurement accuracy of ±1% of the

true flow rate when a uniform magnetic field was applied and the velocity profile was

axisymmetric.

However, the velocity profile in the circulatory system of mammals is known to be non-

axisymmetric  [135].  The  point-like  electrodes  are  sensitive  to  velocity  profile  as

demonstrated by Shercliff and discussed in Section 2.5.4. Moreover, short-end flow

meters, such as cannula flow meters, cannot ensure that the velocity profile is

axisymmetric as observed by Bevir [126].  Larger electrodes were successfully used in

an attempt to reduce the flow meter sensitivity to velocity profile. This would, however

increase the impedance of electrode/electrolyte interface and therefore, it would require

a signal conditioning system with large input impedance to avoid any attenuation in the

measured flow induced potential difference signal.
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Figure 2.29: Cannula blood flow meter by Nycotron [112]

Figure 2.30: Cannula flow meter inserted between two ends of an artery that has been cut out

It was noted by Wyatt [127] that haematocrit level – the percentage of red blood cells in

a blood sample – can affect the sensitivity of invasive EM blood flow meters to velocity

profiles. Wyatt found that for haematocrit level change from 0-66%, the blood flow rate

value of cannula flow meters which were tested altered by 4% for a laminar flow.

However, this percentage change was much increased when the flow was turbulent. He

concluded that the haematocrit level can affect invasive flow meters in a number of

ways:

· It  can  change  the  source  impedance  of  the  flow meter.  It  must  be  ensured  that  the

input impedance of the measurement system is high enough in comparison with the
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source impedance to avoid any signal loss. This can be achieved by a careful design

of the interfacing measurement circuit.

· It can make the blood anisotropic. However, it was found that the blood isotropy has

minimal effect on the flow meter sensitivity to velocity profile.

· It can change the blood viscosity and that changes the velocity profile. The

sensitivity to velocity profile due to viscosity can be overcome by reducing the

sensitivity  of  the  flow  meter  to  asymmetric  velocity  profiles  by  using  one  of  the

methods described in Section 2.5.5.

· It can affect the conductivity relationship between the vessel wall and the blood. The

effect from this conductivity relationship is more related to perivascular flow

metering probes which are discussed in the next section.

Perivascular Flow Meters

Perivascular flow meters are based on Kolin’s blood flow meter design [110]. The flow

meter probe comprises an electromagnet and two electrodes, attached at the outer

surface  of  the  probe,  in  addition  to  its  signal  conditioning  and  power  systems.

Perivascular probes come in different shapes and sizes depending on the blood vessels

which  with  they  are  to  be  used.  There  are  several  types  of  probe  such  as  cuff-type,

‘clothespin’ type and clip-type as illustrated in Figure 2.31. The placement of the probe

around the blood vessel is critical as it should be placed so that the blood flow is

perpendicular to the magnetic field. Some cuff-type probes have a slot closure which

improves the uniformity of the magnetic field distribution across the blood vessel. The

non-uniformity of the magnetic field can cause the flow meter to be sensitive even to

axisymmetric velocity profiles. In some other probe designs, the magnetic field near the

electrodes is modified (shaped) using pieces of permalloy in an attempt to make the

magnetic field as uniform as possible [127].
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Perivascular probes are also sensitive to asymmetric velocity profiles. Asymmetric

blood flow can occur near the heart valves and large arterial branches. It can also be

caused by diseased blood vessels, i.e. partially blocked by plaque.  They are also

affected by several factors even if the magnetic field is uniform and the flow profile is

axisymmetric and these factors include [125, 136, 137]:

· The ratio between the conductivity of the blood ଵ and the vesselߪ ଶߪ

· The ratio between the inner and outer radii, ଵ andݎ ଶ of the vesselݎ

If the conductivity of the blood vessel and blood is similar, the velocity profile is

axisymmetric (which is unlikely) and the weight function is uniform, i.e.

ܹᇱ(ݎ) = constant, then the flow signal is independent of the velocity profile, i.e.

insensitive to the velocity profile. However, if the conductivity of the vessel is higher or

lower than the blood, then the flow meter will give either a lower or higher flow reading

than the actual measurement, correspondingly. However, it was found that the majority

of errors arise from the inner and outer diameter of the blood vessel. It was

Figure 2.31: (a) & (b) cuff-type flow meters. (c) ‘clothespin’ probe

(b)

(a)

(c)
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experimentally found that ratios between inner and outer diameters, of ݀ଵ ݀ଶ = 0.8⁄  and

݀ଵ ݀ଶ = 0.9⁄  can  cause  an  error  of  9% and 5%,  respectively  [136].  The  effects  of  the

vessel wall can be reduced by ensuring that the vessel is clean (adventitia removed),

uniform and that the probe is well-fitted around the vessel.

Nevertheless, perivascular EM flow probes are considered the ‘gold standard’ to

measure the blood flow rate and cardiac output [9]. Wyatt stated that in in vivo2 acute

experiments, he found that the difference between the induced flow signal measured by

a cannula flow meter and properly installed cuff-type flow meter is no more than  5%

[127]. They have been successfully applied to arteries such as the aorta, carotid,

femoral, coronary, renal, splenic and hepatic [9]. A flow induced potential of 144 Vߤ

was measured in a human aorta which corresponded to a mean velocity of 0.16 m/s over

the cardiac cycle. The probe used for this experiment had a coil that generated a

magnetic flux density of 30 mT [110]. Both cannula flow meters and perivascular

probes can be ‘dry’ calibrated using a weight vector approach, and also in vivo by

injecting blood from an external source.

Mills’ Catheter-tip Velometer

The last type of invasive method for blood flow measurement is Mills’ catheter-tip

velometer [133]. Catheters have been used long before the implementation of EM flow

metering methods for blood flow measurement. Examples for the use of catheters

include [138]:

· Administration of drugs, gases and fluids into the human body

· Chest fluid and urine drainage

· Measurement of blood pressure in a particular vein or artery

2 In vivo: inside the body of a living organism.
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Catheters are inserted through the skin into small veins or arteries, and then into the

main designated ones. Mills’ catheter-tipped velometer is illustrated in Figure 2.32.

Mills’ probe is made of nylon and has a diameter of 3 mm. The length of the coil is 4

times the diameter and the electrodes are placed at the surface of the catheter,

approximately at the mid-point of the length of the coil. The probe also has a tube used

for pressure measurement. The distance between the tip and the electrodes improves the

flow  profile  [127].  The  blood  flows  alongside  the  surface  of  the  probe  rather  than

through it.

Figure 2.32: Mill's Catheter-tip Velometer [112]

The flow induced potential difference resulting from the flow passing through the

magnetic field near the electrodes is directly proportional to the mean velocity of the

blood, assuming an axisymmetric velocity profile. For this assumption to be acceptable,

usually Mills’ probes are used in large arteries or veins. The main difference between

Mills’ probe and the other flow meters is that it provides information about the blood

mean velocity even if the vessel diameter is unknown. However if the diameter of the

vessel is known, obtained by means of radiography, or if several velocity measurements

are taken across the vessel, then the flow rate can be determined.
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Unlike, Kolin’s-type probes, the Mills’ probe is insensitive to the vessel wall;

nevertheless, it can be affected by the haematocrit level in the blood as this changes the

blood conductivity, viscosity or source impedance as discussed earlier. Catheter-type

probes have been used in the study of cardiovascular haemodynamics and for other

clinical purposes [127].

Perivascular and catheter-type probes must be carefully designed with minimum heat

dissipation in order to avoid any thermal risks. For this reason, there are other designs of

probe  which  do  not  contain  an  invasive  electromagnet  which  is  the  only  source  of

power dissipation. In such designs, the magnetic field is applied externally by an

electromagnet placed outside the body. However, other problems associated with the

direction of the magnetic field with respect to blood flow and the sensing electrodes are

introduced by these designs. These problems may lead to significant error in the

measured flow induced potential difference signal [127].

2.5.8 Non-invasive Electromagnetic Blood Flow Meters

Installation of a cannula flow meter between two ends of a cut blood vessel or

perivascular EM flow meter around the blood vessel is a complex surgical procedure.

Hence, such flow meters can only be used by surgeons. Similarly, catheter-type probes

can only be used by qualified physicians. Moreover, these flow meters can only be

applied to one artery at a time, and therefore, the total blood flow in a limb cannot be

found. The total arterial blood flow in the limb is an important diagnostic measurement

for detecting PAD [139].

Non-invasive EM flow metering is a method whereby the total blood flow in a region,

or to a peripheral (arm or leg), is monitored without any surgical intervention. Fabre

proposed the idea of non-invasive blood flow measurement using the principle of EM
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induction. However, the first non-invasive blood flow measurement using EM induction

was achieved by Togawa et al. [140]. They demonstrated the principle by placing an

entire rabbit in 1 T of magnetic flux density and observing induced potentials due to the

blood flow. A few years later, they performed an experiment in vitro3 in  which  a

rectangular block made of starch gel (carbohydrate) was placed in the air gap of a

35  mm of  an  electromagnet.  The  magnetic  flux  density  in  the  air  gap  was  0.1  T.  The

centre of the block had a tube through which liquid was pumped. Electrodes were

placed at the opposite sides of the block to sense flow induced potentials.

Following this experiment, they carried out in vivo tests on living dogs to measure the

blood flow in the femoral artery (in the thighs). Needle electrodes were inserted in the

hypodermis (lowermost layer of the skin) and at the opposite sides of the femoral artery.

It was observed that the potential difference detected by the electrodes was due to the

arterial flow. Furthermore, the blood flow in the veins had a negligible effect on the

measured signal. The measured signal from the non-invasive method was compared to

the signal measured from an invasive EM cuff-type flow meter applied to the same

artery. A linear relationship was observed from both signals. However, this device was

not a true non-invasive method as needles were inserted in the skin.

Another significant step towards developing a non-invasive blood flow monitor was

made by Boccalon et al. [141]. A theoretical model of a limb (calf) was developed using

Maxwell’s equations to relate flow induced potentials to blood flow. This model was

used to calibrate the blood flow meter (dry calibration). It allowed the contribution

towards the total flow signal of each artery (anterior tibial, posterior tibial, peroneal)

within the calf to be found. Boccalon et al. also stated that his model did not account for

the  bones  (fibula  and  tibia)  within  the  calf.   When  it  was  tested  and  compared  to  a

3 In vitro means performed outside the living body (artificial environment).
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physical model without the bones’ influence, the difference between both models was

less than 3%. When the physical model was modified to include the effects of the bones,

the flow voltage measured across the model increased by a factor of 35.

Reasons for this voltage increase are not clear, especially given that it has been noted

that the conductivity of bones is negligible when compared to muscles and fat. It is

possible that this change in the flow induced signal was due to an asymmetric velocity

profile and the effect of point-like electrodes as described by Shercliff and Bevir

(Sections 2.5.4 and 2.5.5). The effect of flow in different parts of the cross section was

not demonstrated. Nevertheless, a calibration factor was obtained for the measurement

site (calf). This was used to correct the results of flow induced potential differences

obtained from in vivo tests.

Boccalon performed extensive in vitro and in vivo tests  to  assess  the  effects  of  the

following factors on the measured flow induced signal:

· Blood chemical composition

· Haematocrit level change

· Venous blood flow

The blood electrolyte composition (Na+ and K+) was modified in vitro so that its effect

on the flow induced potential difference signal could be observed. The effects of

different concentrations of Na+ and  K+ were negligible. Variation in the haematocrit

level altered the amplitude of the flow potential signal. When the haematocrit level

changed from 45% to 29%, the flow induced potential signal increased. Several factors

can be changed simultaneously due to the haematocrit level in the blood as explained in

Section 2.5.7. Conductivity was the only factor claimed as a reason for the flow

potential difference percentage change. However, two-electrode measurements can be
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sensitive to a distorted velocity profile which can be caused by the haematocrit level

change [127]. Furthermore, if the input impedance of the electronic measurement

system is low, the flow induced potential signal would be affected as a change in the

haematocrit level alters the source impedance. When this flow induced potential

difference was compared to the flow induced potential difference obtained from the

invasive method (Kolin’s method), a correction factor of up to 10% was required.

Lastly, the impact of venous blood flow in the measurement site (calf) was investigated.

The effect can be removed from the flow signal by averaging or by using a pressure cuff

to  convert  the  pulsatile  flow  (due  to  aspiration  of  the  right  ventricle  of  the  heart)  to

continuous flow. Boccalon used his instrument clinically on 1200 patients to identify

peripheral arterial disease of the lower limbs. The instrument consisted of a horseshoe

permanent magnet, amplifier, computer processor and chart recorder. It was used to

provide information about the pulsatile arterial blood flow rate. This information was

analysed alongside data from Doppler velocity measurements, arterial blood pressure

and treadmill tests to diagnose the patient.

Kanai et al. developed a non-invasive blood flow meter to be applied to arteries close to

the surface of the skin (transcutaneous) [142]. The electrodes are applied on one side of

an artery as shown in Figure 2.33. This device was tested on cubital arteries at the

elbow joint. The theoretical model, given in Eq. 2-53, was developed for the device

based on the assumptions that the magnetic field is uniform over the cross section of the

blood vessel and the blood flow is an axisymmetric laminar flow.

஺ܷ஻ =
௫ܤ4
ߨ ܳ௦ ൬

ଵߪ
ଵߪ) + ଶ)(݀ଶߪ + ଶ)൰ݏ

Eq. 2-53

where ஺ܷ஻ is the potential difference between electrodes A and B, ଵ andߪ ଶ areߪ  the

conductivities of the blood and tissues, respectively, is half the distance between the ݏ
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electrodes and ݀ is the distance between the centre of the vessel and the skin (depth of

the vessel). From Eq. 2-53, it can be noted that the flow induced potential difference is

affected by the depth of the vessel ݀. The depth of the vessel varies from one patient to

another depending on the body weight and size. The flow meter was used in vivo to

measure the blood flow rate of 10 mL/s in cubital arteries at a depth of 3 cm.

Figure 2.33: Analytical model by Kanai et al. for a non-invasive blood flow measurement [142]

There are several drawbacks which arise out of the work of Boccalon et al. and Kanai et

al. Boccalon et al. stated that an analytical model is required for each region of the

human body to obtain its calibration factor. This seems to be impractical as the size of

an arm or leg differs from one person to another. A poor calibration factor leads to

significant errors when the flow induced potential differences are translated to flow rate.

Hence, a mathematical model must be developed independently of the measurement

site.  Moreover, a two-electrode measurement is sensitive to velocity profile which can

lead to significant error in the flow rate measurement as discussed before. The use of a

multi-electrode system will  reduce the sensitivity of the flow meter to velocity profile

and the accuracy of flow rate reading will be improved noticeably as Horner

demonstrated in his work (Section 2.5.6).
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Moreover, based on the recent work carried out by the University of Huddersfield

Systems Engineering research group [143], with a 16-electrode measurement system, it

is possible to reconstruct the velocity profile in the flow cross-section. This would

enable the location of the arteries within the flow cross section to be determined. In

addition, the flow rate in each artery could also be found. Modelling of a multi-electrode

EM flow metering method for a flow cross section with multiple flow channels using

the virtual current theory does not exist in literature. The flow meter developed by

Kanai  can  only  measure  the  blood  flow  in  the  cubital  arteries.  If  the ݀ parameter is

unknown, the measurement of the flow signal will be highly affected by errors. The

development of an EM blood flow monitor that can be applied to the upper or lower

limbs to aid in the diagnosis of PADs is one of the main aims of this research. Such a

device should require minimal calibration and should be relatively insensitive to, or

independent of, the velocity profile resulting from the distribution of blood velocity in

the vessels within the measurement region, i.e. the cross section of a limb.

2.5.9 Electronics Requirements for Signal Conditioning and Processing

All industrial and medical EM flow meters operate on the principle of EM induction.

The fundamental design structure of such devices is similar. Any EM flow meter

consists of an electromagnet, transducers (electrodes), input and output systems. The

input system is the power supply unit of the electromagnet, which can be either DC or

AC. The output system conditions the measured total voltage signal from the electrodes,

processes the signal and then stores or displays the results. It mainly consists of signal

conditioning and signal processing sub-systems. The signal conditioning sub-system

performs the following functions: (1) impedance transformation, (2) amplification and

(3) filtering of unwanted signals. The signal processing sub-system discriminates the
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flow signal from unwanted signals, if they have the same frequency, by methods that

will be described later in this section.

Early designs of EM flow meters used permanent magnets or DC-powered

electromagnets for the generation of a uniform magnetic field. This meant that the flow

signal was in the form of a DC potential difference. However, polarisation normally

occurs at the surface of the electrodes due to electrochemical effects between the

electrodes and the conductive fluid, blood vessel wall or skin surface [9]. Polarisation

also creates a DC potential which is hard to differentiate from the DC flow potential

difference. Moreover, the DC flow induced signal is typically very small and requires

significant amplification by a direct-coupled amplifier. The amplitude of the DC offset

due to polarisation is usually much larger than the flow induced voltage signal and

therefore, it causes the amplifier to saturate (exceeds its dynamic operating range).

For these reasons, DC-powered electromagnets (or permanent magnets) are not

desirable. Alternating current (AC) methods overcome this problem as the detected flow

induced signal becomes an AC potential difference and any DC offsets can be

minimised considerably by using an AC-coupled amplifier [127]. The AC-coupled

amplifier combines a high-pass filter and an amplifier. The alternating current can be

sinusoidal, square-wave or trapezoidal. Each one of these excitation source methods has

certain advantages over the others as will be described below.

Normally, the physiological potential difference signal Δܷ measured by a two-electrode

or multi-electrode AC flow metering system is mathematically given by

Δܷ = ݇ଵݒܤ + ݇ଶ
ܤ݀
ݐ݀ + ෍ߝ(௧) + ෍݁(௧) + ݁௡ Eq. 2-54
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The first term of the right-hand side of Eq. 2-54 is the flow induced potential. ݇ଵ is the

calibration factor of the device which is related to the geometry of the flow cross

section, and the size and shape of electrodes. and ܤ are the mean values of magnetic ݒ

flux density and the conductive liquid velocity, respectively.

From Faraday’s law of induction, a transformer emf is induced in any conducting loop

in the presence of a time-varying magnetic field as was shown in Section 2.5.2. The

conductive liquid (blood), the electrodes and the connecting cables form a conductive

loop. Therefore, this transformer emf superimposes on the flow induced voltage signal,

and it is given by the term ݇ଶ ܤ݀ ⁄ݐ݀ .  For  a  sinusoidal  AC  magnetic  field,  the

transformer emf has a similar frequency ߱ and waveform to the flow induced signal. It

is also proportional to the excitation frequency of the electromagnet, unlike the flow

induced  signal.  The  transformer  emf  can  be  minimised  by  careful  design  of  the

electrodes and the cabling. The cables connecting the electrodes should always be

positioned in parallel with the plane of the magnetic field. However, in practical

devices, this is hard to achieve and therefore, there will always be some magnetic flux

cutting the cabling loops. Additionally, twisted-pair cables reduce the transformer emf

as this minimises the area of the cable loops that the magnetic flux can get into and

there is also a cancelling effect as induced potentials are in opposite directions.

Yet, the transformer emf is not usually fully eliminated using the methods suggested

above  and  other  methods  must  be  utilised  to  ensure  the  transformer  emf  does  not

interfere with the flow induced signal measurement. One method for removing the

transformer emf from the measured signal is by sensing it at the electrodes using a

“pickup” coil [124]. Then, the signal from the “pickup” coil is used to subtract the

transformer emf from the total signal at the input of the amplifier.
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Alternatively (or additionally), a PSD method can be utilised to distinguish the induced

emf from the transformer emf for a sinusoidal AC excitation as they are out of phase by

90° from each other as seen in Eq. 2-24. In other words, if the excitation current is a

cosine wave, then the waveform of the magnetic field will also be a cosine wave. The

flow induced signal is in phase with the magnetic field, and consequently it will have

the same phase as the current [127, 144, 145]. However, the transformer emf will be a

sine wave. Note that sine and cosine waves are sinusoids of different phases. The PSD

allows  the  flow  induced  signal  to  be  separated  from  the  transformer  emf.  This  is  a

method whereby the measured signal is multiplied by a reference signal. The reference

signal is in phase with the flow induced signal. Then, the resultant output is averaged

over  time.  As  a  result,  the  output  is  a  DC  value  which  corresponds  to  the  root  mean

square (RMS) value of the AC flow induced signal. This method has been implemented

in EM flow metering using analogue and digital electronics [146-149].

In this research, a PSD method was utilised to discriminate the flow induced signal from

the transformer emf. There are two schemes that are available in the literature to

perform  PSD.  The  first  scheme  is  as  briefly  described  above  and  the  other  scheme

relates to the use of Discrete Fourier Transform (DFT) [150]. This method has not been

implemented before in the application of EM blood flow metering. It requires a high-

speed data acquisition device to sample the total measured signal and the reference

signal. The reference signal can be the coil current as it is in phase with the magnetic

field. The DFT is applied to both signals to obtain their magnitude and phase.

Subsequently, the in-phase component, i.e. the flow induced voltage signal, can be

determined. This method is described in greater detail in Chapter 6.

There is another method used to discriminate between the sinusoidal flow signal and the

transformer emf, which involves sampling using gating electronics [151]. This method
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also relies on the fact that the transformer emf is 90° out of phase with the flow signal.

When the transformer emf is at zero-crossing point, the flow induced signal is at

maximum (negative or positive). If a portion of the total measured signal is sampled at

the zero-crossing point of the transformer emf, this portion of the signal is only related

to the liquid flow. This method can be implemented using an amplifier that is controlled

by a timing circuit. In the literature such an amplifier is called a ‘gated’ amplifier and is

controlled by a control circuit which uses the excitation signal of the electromagnet as a

reference signal to generate the timing sequence for sampling [151, 152]. Note that this

method can also be achieved by using microcontrollers or DAQ devices and a numerical

software  such  as  MATLAB.  Both  methods,  i.e.  the  PSD  and  sampling  rely  on  phase

integrity from the input of the measuring system to its output to ensure accurate

extraction of the flow induced voltage signals.

The transformer emf is sinusoidal if the electromagnet excitation signal is a sine wave.

However, if the power source of the electromagnet is a square waveform, the

transformer emf appears as a voltage spike (transient) with a time constant ߬ = ܮ ܴ⁄

(where is the inductance of the electromagnet and ܮ ܴ is  the  DC  resistance  of  the

electromagnet coil) as illustrated in Figure 2.34. Such a flow meter is referred to as a

square-wave EM flow meter. This voltage spike appears when the polarity of the

excitation signal changes (ܮ ௗ௜
ௗ௧

). Thus, the flow induced voltage signal is measured after

the voltage spike transient has died away. This can be achieved by a time-delay

insertion during the sampling of the flow induced voltage signal. This requires the ‘on’

period of the magnetic field to be long enough to allow the transient to pass and then,

the flow induced signal is recorded. However, this means that the excitation frequency

has to be low. The advantages of the square-wave excitation are (1) the process of

discrimination of the flow signal from the transformer emf is simple in comparison with
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the sinusoidal excitation and (2) the inductive impedance is also much lower (function

of frequency) which means that more current can be supplied to the electromagnet for

the same voltage source, and this results in the generation of a stronger magnetic field.

However, low frequency signals are more sensitive to RF and mains interferences and

usually have a poor signal to noise (SNR) ratio. Furthermore, low frequency excitation

means that the electronics in the signal conditioning sub-system have a slower transient

response and therefore, take significant amount of time to reach a steady-state value.

In terms of power efficiency, the square-wave excitation is more efficient than the sine-

wave excitation. In the square-wave flow meter, the electromagnet is seen as a resistive

(DC)  load  and  therefore,  the  total  power  consumed  is  due  to  copper  losses .i.e ,(ଶRܫ) 

active power. However, in the sine-wave flow meters, the electromagnet is seen as

inductive load, and therefore the power consumed is the vector sum of the active power

(copper loss) and reactive power due to the reactance of the electromagnet, which is

mainly inductance in the case of an electromagnet. Nevertheless, this reactive power can

be reduced significantly using a technique known as Power Factor Correction (PFC).

Figure 2.34: (a) Excitation voltage of the electromagnet (b) Measured voltage signal containing the
flow induced potential difference and the transformer emf.
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PFC refers to a method that can be used to reduce the reactive power withdrawn from

the power supply [153]. This is achieved by placing a capacitor in parallel with the

inductive load. The value of the capacitor is determined by setting the reactance of the

electromagnet (ܺ௅) equal to the reactance of the capacitor (ܺ஼), i.e. ܺ௅ = ܺ஼ . It is found

to be a useful technique as it lowers the current requirement for the power source of the

electromagnet.

The term in (௧)ߝ∑  Eq.  2-54  accounts  for  the  sum  of  transformer  emfs  that  are  of  the

same waveform as the flow induced signal; however, they are not 90o out of phase as

will be explained below. The sources of these emfs can be from:

· The coupling between the electromagnet coil and the electrode leads

· Magnetic flux getting into tissues, the interface between the electrode and the

electrolyte or/and the input measurement system.

The impedance elements in those sources, i.e. tissues, electrode/electrolyte interface and

the input measurement system will alter the phase relationship between the transformer

and motional emfs, so that it is no longer 90° out of phase. This means that some of the

transformer emfs generated by those sources will be in phase with the flow induced

signal and therefore, they cannot be fully distinguished from the flow induced voltage

signal using PSD.  However, with proper magnetic and electrostatic shielding methods

[154, 155], the use of cavity electrodes [127] and transformer emf nulling (calibrating

the device when there is no flow) [127], these sources of error can be reduced to a

minimum. Note that these emfs are not significant for square-wave flow meters as they

will appear as voltage spikes (refer to Figure 2.34) and will elapse after a time period of

about 5߬ approximately where ߬ = ܮ ܴ⁄ .
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The next error term, ∑݁(௧), is due to mains interference, DC offset and biopotentials.

Mains interference refers to the 50 Hz frequency component and its harmonics, i.e.

100 Hz and 150 Hz [156]. Polarisation occurs at the interface between the electrode and

skin, vessel wall or conductive liquid. As a result, a DC offset is generated which can be

in the range of a few hundreds of millivolts. Biopotentials include electrocardiogram

(ECG)  signals,  i.e.  heart  potential  (0.01  Hz  to  3.5  Hz)  and  electromyogram  (EMG)

signals, i.e. muscle potentials (2 Hz to 500 Hz) [157]. All these error components, if not

minimised, can reduce the SNR and make the flow induced signal difficult to measure.

Moreover, the amplifier of the measurement system has a very large gain because the

flow induced signals are usually in the microvolt range. If these error signals are not

minimised, they will be amplified and can cause the amplifier to exceed its dynamic

operating range (saturation).

Normally, these error signals appear at the input of the measurement system as common

mode. Hence, it is necessary that the input of the amplifier of the measurement system

should have a high common mode rejection ratio (CMRR) to reject these potentials

efficiently. These potentials can also become differential due to the imbalance of the

impedance of the electrodes and associated cables. Unwanted differential potential can

be eliminated by the use of differential RC filters. The polarisation offset is a potential

at DC, i.e. 0 Hz, and can be eliminated by using high-pass filters. Using the sine-wave

excitation for the electromagnet allows a specific frequency to be selected, avoiding

mains frequency and its harmonics. This frequency can be discriminated from all other

unwanted signals by the PSD method described above. Hence, the SNR of the flow

induced voltage signals will be high. This is an advantage of the sine-wave excitation

over the square-wave method.
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The last term, ݁௡,  in  Eq.  2-54  is  associated  with  the  internal  ‘intrinsic’  noise  of  the

electronics. All electronic components such as resistors, reactances, amplifiers and

transistors generate noise. The noise source can either be modelled as voltage or current

noise. There are 4 main types of noise: (1) thermal (Johnson noise), (2) shot noise, (3)

flicker noise and (4) Burst ‘popcorn’ noise [158]. Thermal noise is associated with the

thermal movement of charge carriers. It is normally considered to be white noise, i.e. its

power spectral density is constant throughout the frequency spectrum. The shot, flicker

and  burst  noises  are  associated  with  amplifiers,  i.e.  transistors,  PN  junctions  and  the

fabrication process. Datasheets of amplifiers usually state the value of two parameters,

i.e. the input-referred voltage and current to model the total noise generated in the

amplifier. These noise levels vary at different frequencies and bandwidths.

Noise analysis can be simplified if the dominant noise sources are determined. The total

voltage noise of a circuit is the square root of the sum of all noises. This total noise can

be critical in high-gain and/or high-frequency analogue circuits. It is important to be

aware of this error to ensure that the flow induced potential signals have good SNR.

Careful design and selection of components reduces the effect of the noise associated

with electronic components.

2.6 Research Aims and Methodology

The aim of this research is to design and develop a non-invasive, EM induction

technique that can be used for measuring the total blood flow rate in blood vessels

within a cross-sectional area of an upper or lower limb.  The limb is to be inserted into a

circular multi-electrode array across which a uniform magnetic field is applied. Flow

induced potentials measured by the electrodes are then related to the total volumetric

flow rate due to the blood flow in a single blood vessel or in multiple blood vessels. The
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technique is intended to overcome the previously encountered problems noted in the

literature for EM flow meters such as sensitivity to asymmetric velocity profiles at the

measurement site and the need for frequent calibration. The development of a robust

mathematical model for this method will also allow the device, built using this method,

to be calibrated offline (‘dry’ calibration).

This device should also be low cost due to its simple design and thus, it could be

available in health centres and clinics to be used by General Practitioners, nurses,

physiotherapists and podiatrists in various applications including the diagnosis of PAD

and DVT. The methodologies that will be used to achieve the objectives are listed

below.

1. To develop a mathematical model using the “virtual current” theory for a cross-

sectional area with multiple flow channels (multiple blood vessels) bounded by a

multi-electrode system and across which a uniform magnetic field is applied. This

model will allow the measurement of the total instantaneous volumetric blood flow

rate in all major blood vessels at the position of the electrode array. This total flow

rate measurement will be independent of the size and location of the flow channels

within the cross-sectional area bounded by the electrode array.

2. To develop a finite element (FE) model to simulate a cross-sectional area with

multiple flow channels. The FE model will consist of an electromagnet to generate

a uniform magnetic field across a geometric model which will consist of one or

multiple tubes, simulating blood vessels. From the FE model, flow induced

potential differences will be obtained. These potential differences will be compared

with the those obtained from the mathematical  model developed in 1.  The aim of

this work is to validate the developed mathematical model.
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3. To design a practical experiment in order to validate the mathematical model

developed in 1. This work comprises the design of a physical pipe model

(mechanical system) that has multiple flow channel and an electromagnet – with its

power supply – to generate a uniform magnetic field. Signal conditioning and

processing systems will be designed to allow measurement of low level and noisy

flow induced potential differences.

4. To perform flow tests on the practical SVS model and obtain flow induced potential

differences related to water flow imposed in the channels within the SVS. The flow

rate will be varied in the channels and their location will be changed with respect to

the magnetic field direction. The flow induced potential differences obtained from

the practical experiment will be quantitatively compared with the flow potential

differences obtained from the mathematical model developed in 1 above.
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2.7 Summary

MRI and X-ray devices were discussed in terms of their operation, clinical applications

and drawbacks. MRI and X-ray-based devices are advanced screening instruments that

are usually used for advanced diagnostic tests and not for routine check-ups. They are

not available in many health centres and hospitals as they require a large space for

installation, they are expensive to buy and operate, and must be operated by experienced

radiologists for accurate diagnosis. The injected dye in MRI and X-ray devices may

cause bad reactions in patients. Additionally, MRI may cause discomfort for patients as

it is performed in an enclosed space. Impedance plethysmography has been used in the

past for cardiac output and peripheral blood flow measurements. However, currently it

has more limited application due to its poor accuracy compared with other medical

devices such as duplex ultrasound and nowadays it is often only used for DVT

diagnosis. Clinical studies described in Section 2.3.3 showed that IPG can have an

accuracy of 58% which is significantly poor and may lead to false diagnosis.

Currently for the diagnosis of PAD and DVT diseases, the most common device used is

the duplex ultrasound. Ultrasound waves are any vibrations generated with a frequency

above the human hearing range, i.e. 20 kHz. The Doppler method is used for image

reconstruction of targets and also measurement of blood velocity if required. Despite its

acceptance by health practitioners for use in clinical applications, the duplex ultrasound

has its drawbacks and limitations. From a duplex ultrasound scan, the peak velocity

measurement  is  the  most  relied  upon  for  estimating  the  severity  of  stenosis.  This

measurement can be affected by errors that are caused by the technologist operating the

Doppler device, the device itself or the patient. Errors arising from the technologist can

be due to the angle of insonation, improper placement and size of sample volume, pulse

repetition frequency, gain setting and interobserver variability. In a stenosed artery, it
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was found that an error of up to 28% can be caused by the technologist. Errors from the

Doppler  device  itself,  including  the  sample  volume  shape,  the  system  noise  and  the

assumption that the sound velocity is constant in all tissues, can cause an error of up to

8%. Hence, all the error sources noted above can limit the accuracy of duplex

ultrasound and may lead to false diagnosis. Moreover, dialysis patients are more likely

to suffer from plaque calcification. Such a condition prevents ultrasound beams from

penetrating the wall of the blood vessel to allow the velocity measurement to be taken.

Thus, the duplex ultrasound device is not the ideal device for PAD or DVT diagnosis in

dialysis patients.

EM flow meters were successfully used invasively for blood flow measurements in

different blood vessels.  The EM flow metering method is attractive because it is a

linear technique, insensitive to viscosity, density, temperature and pressure loss, and is

unaffected by the velocity profile given that the velocity distribution is axisymmetric.

There are three types of invasive EM blood flow meters; cannula flow meters,

perivascular and intravascular probes. Cannula flow meters are inserted between two

ends of a blood vessel that has been cut out, and it is the least favourable method as it

may cause health complications in patients. Perivascular probes are cuff- or clip-type

probes that are mounted around a blood vessel and are considered the ‘gold standard’

for invasive blood flow rate measurement. Intravascular devices are catheter-type

probes that are inserted via the skin, and then into the desired blood vessel.

A review of previous and current methods in the use of invasive EM blood flow meters

provided an insight into the problems encountered during the design and operation of

EM flow meters for blood flow rate measurement. It was found that, in all designs of

blood flow meters noted in the literature, a conventional-type EM flow metering method

was implemented, i.e. using two point-like electrodes. EM flow meters with point-like
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electrodes are sensitive to asymmetric velocity profiles. Such sensitivity can lead to an

error of 100% in the measured flow induced emf. Thus, it is important to design EM

flow meters that are independent of velocity profile.

It was found that the velocity profile in the circulatory system of mammals is non-

axisymmetric. Moreover, cannula flow meters are short-end devices, and Bevir

observed that in such structures, the velocity profile cannot be ensured to be

axisymmetric. The haematocrit level in the blood was also found to affect EM flow

meters in a number of ways. A higher level of haematocrit level increases the source

impedance and therefore, the front-end of the measurement system must have high input

impedance to avoid any signal loss. Moreover, an increase in haematocrit level

increases the viscosity, and that distorts the velocity profile and, as a result, will affect

the accuracy of the conventional-type EM flow meter. Other problems were noted in

perivascular and catheter-tipped probes including heat dissipation and improper

placement of the probe around or in the vessel. Nevertheless, perivascular and catheter-

tip probes were used intensively by several authors in clinical applications, and a high

accuracy of measurement was achieved.

The most notable attempt to develop a non-invasive EM flow meter for peripheral blood

flow measurement was by Boccalon et al. However, there are several issues associated

with the flow meter method that was designed. Firstly, the design was based on a

conventional-type EM flow meter which has been found to be sensitive to asymmetric

velocity profile resulting from blood velocity in vessels positioned in different locations

in the measurement region and also due to the asymmetry of blood flow in the blood

vessels themselves. Moreover, an analytical model was required for each region of the

human body to obtain its calibration factor which seems to be cumbersome and
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impractical. There was no example in the literature of a non-invasive EM flow meter

that is insensitive to velocity profile.

According to the literature, there are three methods that can significantly reduce the

effect of velocity profile: (1) use of relatively larger electrodes, (2) optimisation of the

magnetic field distribution by enhancing coil design, and (3) use of a multi-electrode

system. Based on the work by Engl, Horner developed multi-electrode EM flow meters

and showed that, for a 16-electrode system, the error in the velocity measurement for

distorted (asymmetric) velocity profile was less than 10%. Recent research work in the

Systems Engineering group of the University of Huddersfield achieved a tomographic

EM flow metering technique to determine the axial velocity within a flow cross-

sectional area bounded by 16 electrodes. It is possible to adapt this research progress to

develop an EM flow metering method that can be used for non-invasive blood flow rate

measurements. Additionally, the mathematical modelling techniques developed by

Shercliff and Bevir, i.e. the weight vector and virtual current density, are powerful

techniques that can be used to model, calibrate and predict flow contribution in various

regions within the flow cross-section to the output signal in EM flow meters.

Following the literature review, the research aims and methodology have been described

and are given in the previous section. The research work started with developing the

mathematical model for the non-invasive EM flow metering method (Chapter 3). This

mathematical model was then validated using computer simulation and this is described

in Chapter 4. The remaining chapters cover the design and execution of the practical

experiment which aimed at validating the mathematical model in practice. The practical

experiment also identified the main subsystems that are required to build a medical

device based on the proposed EM induction method.
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3.1 Introduction

This chapter presents a mathematical model of the proposed EM induction method. For

a given location of single or multiple flow channels (blood vessels) within a region (a

limb), the flow rate in the channels and the magnetic flux density generated across, the

mathematical model calculates the flow induced potentials at the boundary of the cross-

sectional area of the region. From these flow induced potentials, the total volumetric

flow rate for all the flow channels can be found irrespective of the number, location and

size of the flow channels. This mathematical model is an extension of the virtual current

theory introduced by Bevir (refer to Section 2.5.5). This chapter also discusses a method

that can be used to determine the contribution of the arterial and venous blood flow to

the total flow rate measurement.

Firstly, the virtual current theory is applied to find the weight function distribution for a

full circular and conductive flow cross section, and this is presented in Section 3.2.

Then, in Section 3.3, this weight function is modified for a conductive cross-sectional

area with a single flow channel. Afterwards, in Section 3.4, the potential difference

equation is determined for two electrodes, and then extended for a multi-electrode array.

A single flow channel model describes a simple case of a human limb cross-section

with  a  single  blood  vessel.  In Section 3.5, the flow induced potential equation is

extended for multiple flow channels, and a method is shown to find the total volumetric

flow rate for flow channels located within a cross-sectional area bounded by the multi-

electrode array. This total volumetric flow rate measurement is independent of the

number, size and location of the flow channels. In Section 3.6 a method is described to

enable the measurement of the arterial and venous blood flow independently over a

cardiac cycle.
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3.2 Weight Function Distribution for a Full Circular Pipe

Consider a full circular conductive cross sectional area with radius ܴ as  illustrated  in

Figure 3.1. Assume the magnetic field is in the negative y-direction, i.e. ܤ = ௢ܤ− ෝ࢟, and

that a unit current ௜௡ is injected at an angle ofܫ ߰௜௡ and the unit current ௢௨௧ leaves theܫ

circumference of the pipe at an angle of ߰௢௨௧.

yinI

outI

x

B

inY
outY

R

Figure 3.1: Flow in a full circular pipe with radius ࡾ

In the absence of the magnetic field and flow, the virtual current density ࢐࢜ is given by

[122]

ߘ ∙ ࢐࢜ = 0 Eq. 3-1

Assuming uniform conductivity the virtual current density is related to the virtual ,ߪ

potential gradient by the following equation ߶ߘ

࢐࢜ = ߶ߘ Eq. 3-2

Substituting Eq. 3-2 into Eq. 3-1 gives the equation for the virtual potential ߶ which is

Laplace’s equation, i.e.

߶ଶߘ = 0 Eq. 3-3
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The equations stated above were previously discussed in Section 2.5.5 and stated here

for convenience. Laplace’s equation in Eq. 3-3 is a classic problem encountered in

many fields of engineering. It can be used to describe the steady-state of temperature,

potential, stress or flow distributions [159]. The general solution is obtained using the

method of separation of variables and is provided in the literature [160, 161]. The

general solution for the virtual potential ߶ in polar coordinates ,ݎ) takes the form (ߠ

(ߠ,ݎ)߶ = ଴ܥ + ෍ݎ௡
ஶ

௡ୀଵ

௡ܣ) ݏ݋ܿ ߠ݊ + ௡ܤ ݊݅ݏ (ߠ݊ Eq. 3-4

where ଴ is an arbitrary constant, andܥ ௡ andܣ ௡ are found by applying appropriateܤ

boundary conditions.

3.2.1 Boundary Condition Assuming Dirac 1D Delta Function

The boundary condition applied was the Neumann boundary condition using Dirac delta

function4 [162]. Referring to Figure 3.1, the Neumann boundary condition (பథ
ப௥
ቚ
௥ୀோ

) at

the circumference in polar coordinates using Dirac function .and for a unit radius, i.e ߜ

ܴ = 1 (using polar coordinates), can be written as follows

࢐࢜ ∙ ௥ୀோ|࢔ =
߲߶
ฬ௥ୀோݎ߲

= ߠ)ߜ − ߰௢௨௧)− ߠ)ߜ − ߰௜௡) Eq. 3-5

where is a unit vector of the circumferential surface, and ࢔ is ߜ  the  delta  function

(impulse response) which is applied to express a unit current entering a surface at an

angle ߰௜௡ and leaving at an angle of ߰௢௨௧. The angles of ߰௜௡ and ߰௢௨௧, in practice, refer

to the locations of the electrodes across which the potential difference is measured.

4 I am grateful to Dr. Laszlo Kollar and Prof. Gary Lucas for their work in the mathematical modelling of
the EM Induction blood flow meter system using the virtual current theory.
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To include the effect of the radius ܴ, consider two circular pipes with different radii, ܴଵ

and ܴଶ as shown in Figure 3.2. Assume a pipe with a unit length so that the problem can

be simplified to a two-dimensional one. Referring to Figure 3.2, the unit current ௫ܫ

passing through the length ݀ଵ inside the section of the pipe with radius ܴଵ is the same as

the unit current passing through the length ݀ଶ inside the pipe section with radius ܴଶ, if

the ratio of ݀ଵ/ܴଵ is equal to the ratio ݀ଶ/ܴଶ. Mathematically, this can be written as

݀ଵ
ܴଵ

=
݀ଶ
ܴଶ
			→ 			

݀ଵ
݀ଶ

=
ܴଵ
ܴଶ

Eq. 3-6

Hence, the current ௫ in both cross sections is given byܫ

௫ܫ = ݆ଵ݀ଵ = ݆ଶ݀ଶ Eq. 3-7

2d

2R

xI1=xI xI xI
1d

1R

Figure 3.2: Two circular cross sections with different radii ࡾ

From Eq. 3-6 and Eq. 3-7, the ratio of the virtual current densities ݆ଵ and ݆ଶ, in the two

pipes can be expressed as

݆ଶ
݆ଵ

=
݀ଵ
݀ଶ

=
ܴଵ
ܴଶ

Eq. 3-8

According to Eq. 3-8, it can be noted that the virtual current density is proportional to

1/ܴ. Hence, the boundary condition in Eq. 3-5 at the circumference, where the

electrode is placed on a surface with curvature 1/ܴ, is modified as follows



Chapter 3
Theory of the Novel Non-invasive Electromagnetic Induction Blood Flow Measurement

122

࢐࢜ ∙ ௥ୀோ|࢔ =
߲߶
ฬ௥ୀோݎ߲

=
1
ܴ ߠ)ߜ) − ߰௢௨௧) − ߠ)ߜ − ߰௜௡)) Eq. 3-9

Eq. 3-9 is the boundary condition that will be applied to find the solution to Laplace’s

equation given in Eq. 3-3 to find the virtual potential Note that for a given size .(ߠ,ݎ)߶

pipe and uniform conductivity, the virtual current density distribution will be the same

regardless of the actual fluid conductivity. Therefore, for this analysis which follows, it

is satisfactory to assume that ߪ = 1.

3.2.2 Solution to Laplace’s Equation to Obtain the Virtual Potential

Applying the boundary condition in Eq. 3-9 to the general solution of Laplace’s

equation, i.e. Eq. 3-4 gives the following

∂߶
∂r
ฬ
௥ୀோ

= ෍ܴ݊௡ିଵ
ஶ

௡ୀଵ

௡ܣ) cos ߠ݊ + ௡ܤ sin݊ߠ) =
1
ܴ

ߠ)ߜ) − ߰௢௨௧) − ߠ)ߜ − ߰௜௡)) Eq. 3-10

Multiplying both sides in Eq. 3-10 by cos݉ߠ and integrating with respect to from 0 ߠ

to 2ߨ gives

=
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Eq. 3-11

From the orthogonality of trigonometric functions, i.e.
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Eq. 3-12
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0dsincos
2

0

=ò
p

xnxmx Eq. 3-13

Equation 3-11 can be simplified to

ܴ݊௡ିଵܣߨ௡ =
1
ܴ

(cos݊߰௢௨௧ − cos݊߰௜௡) Eq. 3-14

By rearranging Eq. 3-14, the value for ௡ is given byܣ

௡ܣ =
cos݊߰௢௨௧ − cos݊߰௜௡

ܴ݊௡ߨ
Eq. 3-15

Similarly, multiplying both sides in Eq. 3-10 by sin݉ߠ and integrating with respect to

gives ߨfrom 0 to 2 ߠ
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Eq. 3-16

From the orthogonality of trigonometric functions, i.e.

1,
0

dsinsin
2

0

³
î
í
ì

¹
=

==ò nm
nm
nm

xnxmx mn

p
pd

p

Eq. 3-17

and also Eq. 3-13, Eq. 3-16 can be simplified to

ܴ݊௡ିଵܤߨ௡ =
1
ܴ

(sin݊߰௢௨௧ − sin݊߰௜௡) Eq. 3-18

By rearranging Eq. 3-18, the value for ௡ is given byܤ

௡ܤ =
sin݊߰௢௨௧ − sin݊߰௜௡

ܴ݊௡ߨ
Eq. 3-19
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Since ଴ is an arbitrary constant and the virtual current densityܥ ࢐࢜ is the derivative of the

virtual potential ߶ thus, the .଴ term will not appear, i.eܥ ଴ܥ = 0 in Eq. 3-4.

Next, substituting Eq. 3-15 and Eq. 3-19 into Eq. 3-4, the solution to the Neumann

boundary value problem is obtained as follows

,ݎ)߶ (ߠ = ෍
1
ߨ݊

ஶ

௡ୀଵ

ቀ
ݎ
ܴቁ

௡
(cos݊߰௢௨௧ cos݊ߠ − cos݊߰௜௡ cos݊ߠ

+ sin݊߰௢௨௧ sin݊ߠ − sin݊߰௜௡ sin݊ߠ)

Eq. 3-20

Using trigonometric identities, Eq. 3-20 can be simplified to

(ߠ,ݎ)߶ =
1
෍ߨ

1
݊

ஶ

௡ୀଵ

ቀ
ݎ
ܴቁ

௡
(cos݊(߰௢௨௧ − (ߠ − cos݊(߰௜௡ − ((ߠ Eq. 3-21

3.2.3 Virtual Current Density and Weight Function

The solution to the virtual current density ࢐࢜ is obtained from the virtual potential

equation given in Eq. 3-21 thus; the virtual current density ࢐࢜ can be found from

calculating the derivatives of the virtual potential ߶ as follows

࢐࢜ = ൤ ௥݆
݆ఏ
൨ = ൦

߲߶
ݎ߲

1
ݎ
߲߶
ߠ߲

൪

=

⎣
⎢
⎢
⎢
⎢
⎡ 1
෍ቀߨܴ

ݎ
ܴቁ

௡ିଵ
(cos݊(߰௢௨௧ − (ߠ − cos݊(߰௜௡ − ((ߠ

ஶ

௡ୀଵ

1
෍ቀߨܴ

ݎ
ܴቁ

௡ିଵ
(sin݊(߰௢௨௧ − (ߠ − sin݊(߰௜௡ − ((ߠ

ஶ

௡ୀଵ ⎦
⎥
⎥
⎥
⎥
⎤

Eq. 3-22

The local weight function is defined as [122] ࢃ

ࢃ = ࡮ × ࢐࢜ Eq. 3-23
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Assuming a uniform and transverse magnetic flux density in the negative y-direction,

i.e. ࡮ = ௢ܤ−,0] , 0], the weight vector simplifies to a 2D problem and since ௭݆ = 0, the

only non-zero component is ௭ܹ (Bevir’s conclusion [125]) which is given by

௭ܹ = ௢ܤ ௥݆ ݏ݋ܿ ߠ − ௢݆ఏܤ ݊݅ݏ ߠ Eq. 3-24

Substituting the virtual current density ࢐࢜ (Eq. 3-22) into the weight function expression

in Eq. 3-24 gives the following

௭ܹ =
଴ܤ
෍ቀߨܴ

ݎ
ܴቁ

௡ିଵ
[cos	݊(߰௢௨௧ − (ߠ cosߠ − cos݊(߰௜௡ − (ߠ cosߠ

ஶ

௡ୀଵ

− (sin݊(߰௢௨௧ − (ߠ sinߠ − sin݊(߰௜௡ − (ߠ sinߠ)]

Eq. 3-25

Simplifying Eq. 3-25 using trigonometric identities gives the following local weight

function distribution for a circular pipe full of conductive fluid.

௭ܹ =
଴ܤ
෍ቀߨܴ

ݎ
ܴቁ

௡ିଵ
[(cos(݊߰௢௨௧ − (݊ − (ߠ(1 − cos(݊߰௜௡ − (݊ − [(ߠ(1

ஶ

௡ୀଵ

Eq. 3-26

The  angles  of ߰௜௡ and ߰௢௨௧ in  practice  correspond  to  the  angular  position  of  the

electrodes across which the potential difference is measured as will be shown below.

3.3 Weight Function for a Region with a Single Flow Channel

Consider a full circular conductive medium with radius ܴ including a small flow

channel (tube) with a unit depth as shown in Figure 3.3. The flow channel has a radius

of ℎ, its centre is located at polar coordinates (ݎ௚, θ௚), and a conductive fluid with the

same conductivity as the conductive medium flows inside it. This models a simple

cross-section of a human limb that includes one blood vessel. Assume a uniform

magnetic field in the negative y-direction, and that a unit current is injected at an angle

of ߰௜௡ and that unit current leaves the circumference of the medium at an angle of ߰௢௨௧.

The weight function distribution obtained in Eq. 3-26 can be modified by setting the
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angle at which the current leaves to zero, i.e. ߰௢௨௧ = 0 (which can be considered to be

the reference point), the radial coordinate to the radial coordinate of the channel ݎ ,௚ݎ

i.e. ݎ = ௚, and the angular coordinateݎ to the angular coordinate of the channel ߠ .௚, i.eߠ

ߠ = ௚. As a result, Eq. 3-26 can be written asߠ

௭ܹ(ݎ௚,ߠ௚) =
଴ܤ
෍ቀߨܴ

௚ݎ
ܴቁ

௡ିଵஶ

௡ୀଵ

ൣcos((݊ − −((௚ߠ(1 cos(݊߰௜௡ − (݊ − ௚)൧ߠ(1 Eq. 3-27

Figure 3.3: Flow in a small channel within a medium cross section

3.4 The Flow Induced Potential for a Single Flow Channel

Referring to Figure 3.3, assuming a rectilinear flow and uniform magnetic field (to

simplify Bevir’s equation Eq. 2-43 from a 3D to a 2D problem) , the potential difference

between two points  where  a  current  enters  at  point  B (at  angle  of ߰௜௡) and leaves the

medium at A (at angle of ߰௢௨௧ = 0) is given by

Δ ஺ܷ஻ = න ࢃ ∙ ࢜
ஐ

݀Ω Eq. 3-28

where Ω is  the  volume  of  the  flowing  medium.  For  a  small  channel, ∫ ࢃ ∙ ࢜ஐ ݀Ω

approximates to ࢃ ∙ ࢜ multiplied by the cross-sectional area of the flow channel

(assuming a unit depth), i.e. ℎଶ (whereߨ ℎ is  the  radius  of  the  flow  channel),  at  the
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position  of  the  channel  since  the  velocity  is  zero  everywhere  else.  Assuming  that  the

flow velocity (or mean velocity) in the channel is constant and its direction is

perpendicular to the xy-plane, i.e. ࢜ = ො, and assuming also a unit depth, thenࢠ௚ݒ

Eq. 3-28 can be written in the form

Δ ஺ܷ஻ = ௭ܹݒ௚ߨℎଶ = ௭ܹܳ௚ Eq. 3-29

where ܳ௚ (equal  to (ℎଶߨ௚ݒ   is  the  volumetric  flow  rate  of  the  fluid  flowing  in  the

channel. Substituting the weight function ௭ܹ(ݎ௚,ߠ௚) given in Eq. 3-27 into Eq. 3-29

leads to the following equation

Δ ஺ܷ஻ =
ܳ௚ܤ଴
ߨܴ ෍ቀ

௚ݎ
ܴቁ

௡ିଵ
[൫cos(݊ − ௚൯ߠ(1 − cos(݊߰௜௡ − (݊ − [(௚ߠ(1

ஶ

௡ୀଵ

Eq. 3-30

Using trigonometric identities, Eq. 3-30 can be written as

Δ ஺ܷ஻ = −
ܳ௚ܤ଴
ߨܴ

෍ ቀ
௚ݎ
ܴ
ቁ
௡ିଵ

cos ቀ(݊ − ௚ቁߠ(1
ஶ

௡ୀଵ

+
ܳ௚ܤ଴
ߨܴ

෍ ቀ
௚ݎ
ܴ
ቁ
௡ିଵஶ

௡ୀଵ

ቂcos(݊߰௜௡) cos ቀ(݊ − +௚ቁߠ(1 sin(݊߰௜௡) sin ቀ(݊ − ௚ቁቃߠ(1

Eq. 3-31

It can be noted that the first term on the r.h.s of Eq. 3-31 is independent of ߰௜௡. This

term is, in fact, a DC offset ௢ܷ௙௙  as was also seen in the practical experimentation. For

multiple electrodes, as shown in Figure 3.4 (different injection angle of current ߰௜௡ for

each ݆th electrode), Eq. 3-31 can take the form of the following equation

௝ܷ = ௢ܷ௙௙ + 2݇ଵܳ௚ܤ଴෍ቀ
௚ݎ
ܴቁ

௡ିଵஶ

௡ୀଵ

ቂcos൫݊߰௝൯ cosቀ(݊ − ௚ቁߠ(1

+ sin൫݊߰௝൯ sin ቀ(݊ − ௚ቁቃߠ(1

Eq. 3-32

where:
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݇ଵ =
1

ߨ2ܴ
Eq. 3-33

The index ݆ refers to the ݆th electrode in which the current is injected (Figure 3.4). The

angle ߰௝ in  Eq.  3-32  corresponds  to ߰௜௡,  and  it  is  the  angle  at  which  the  current  is

injected. The potential difference ௝ܷ is between the ݆th electrode (where current enters)

and electrode e5 where current leaves the cross-section of the medium.

Figure 3.4: Cross-sectional area with 16 electrodes
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In the theory developed in this chapter, the reference electrode that was considered is at

angular position ߰௢௨௧ = 0° (see Figure 3.3). However, any of the sixteen electrode

positions e1 to  e16 (Figure 3.4) can be selected as the reference electrode and the

distribution of the electrical potential is still defined by Eq. 3-32 and Eq. 3-33. The

choice of the reference electrode only affects the value of ௢ܷ௙௙  in Eq. 3-32. In the

computer simulations and practical work, described later in the thesis, electrode e5 was

actually chosen as the reference electrode. As will be seen in Section 3.5, the value of

௢ܷ௙௙  is not important in the modelling work undertaken in this research.

As a final point, the potential differences defined by Eq. 3-32 and Eq. 3-33 are between

the reference electrode (point A) and the ݆௧௛  electrode  (point  B),  i.e. Δ ஺ܷ஻. For the

computer model and the practical work, the relevant “sense” of the potential difference

measurement was not Δ ஺ܷ஻ but Δܷ஻஺ where Δܷ஻஺ = −Δ ஺ܷ஻. The sign of the value ݇ଵ

depends on the direction of the magnetic flux density ଴, the direction of the fluid flowܤ

ܳ௚ and the relevant “sense” of the potential difference measurement, Δ ஺ܷ஻ or Δܷ஻஺ as

shown in Table 3-1.

Condition ࢑૚ Value Notes
࡮ +y, ઢ࡮࡭ࢁ and ࢍࡽ +z negative
࡮ +y, ઢ࡮࡭ࢁ and ࢍࡽ −z positive
࡮ +y, ઢ࡭࡮ࢁ  and ࢍࡽ +z positive Used in the FE model
࡮ +y, ઢ࡭࡮ࢁ  and ࢍࡽ −z negative
࡮ −y, ઢ࡮࡭ࢁ and ࢍࡽ +z positive Used in the theoretical model
࡮ −y, ઢ࡮࡭ࢁ and ࢍࡽ −z negative
࡮ −y, ઢ࡭࡮ࢁ  and ࢍࡽ +z negative
࡮ −y, ઢ࡭࡮ࢁ  and ࢍࡽ −z positive Used in the practical model
Table 3-1: The value of ࢑૚ depending on the direction of the magnetic field density ૙, the fluid࡮
flow and the relevant “sense” of the potential difference ࢍࡽ ઢ࡮࡭ࢁ or ઢ࡭࡮ࢁ
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3.5 The Total Volumetric Flow Rate for Multiple Channels

For multiple channels in a circular region in which a conductive fluid is flowing in each

channel, the potential distribution for 16 electrodes placed 22.5o apart (Figure 3.4) ௝ܷ

(݆ = 1 to 16), based on the principle of superposition [113], is given by

௝ܷ = ௢ܷ௙௙ + ෍ 2݇ଵܳ௚ܤ଴

ீ

௚ୀଵ

෍ቀ
௚ݎ
ܴቁ

௡ିଵஶ

௡ୀଵ

ቂcos൫݊߰௝൯ cosቀ(݊ − ௚ቁߠ(1

+ sin൫݊߰௝൯ sin ቀ(݊ − ௚ቁቃߠ(1

Eq. 3-35

where ௝ܷ is the potential at the ݆௧௛  electrode and is the number of flow channels. Note ܩ

that ௝ܷ is dependent upon the volumetric flow rate ܳ௚ in each channel. If the DFT of the

potential distribution ௝ܷ is taken5, the ݉௧௛ term (݉ = 1, 2, 3 …) of the DFT series, i.e.

ܺ(݉) is given by

ܺ(݉) = ෍݇ଵܤ଴ܳ௚ ቀ
௚ݎ
ܴቁ

௠ିଵ
ൣcos(݉ − ௚ߠ(1 − ݆ sin(݉ − ௚൧ߠ(1

ீ

௚ୀଵ

Eq. 3-36

For ݉ = 1, i.e. the DFT term corresponds to the fundamental frequency ܺ(1) of the

series ௝ܷ. By finding the modulus |ܺ(1)| of the DFT component ܺ(1), the expression in

Eq. 3-36 can be simplified to the following

|ܺ(1)| = ෍݇ଵܤ଴ܳ௚

ீ

௚ୀଵ

Eq. 3-37

|ܺ(1)| is the modulus of the fundamental DFT component ܺ(1). The values of ݇ଵ and

଴ are constant. Hence, Eq. 3-37 can be arranged to have the formܤ

5 In the following chapters the electric potentials ௝ܷ  obtained from multiple electrodes are referred to as
“flow induced potentials” and also “boundary potentials”.
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෍ܳ௚

ீ

௚ୀଵ

=
|ܺ(1)|
݇ଵܤ଴

Eq. 3-38

where the left hand side of Eq. 3-38 represents the total volumetric flow rate ்ܳ.

Therefore, it is clear that the total volumetric flow rate can be obtained in practice from

the modulus |ܺ(1)| of the DFT component ܺ(1) of the measured flow induced

boundary potential distribution. This result can also be inferred from the literature [119,

130]. From Eq. 3-38, it can be shown that

|ܺ(1)| = ݇ଵ்ܳܤ଴ Eq. 3-39

Hence, the modulus |ܺ(1)| of the DFT component ܺ(1)  of the flow induced boundary

potential distribution is directly proportional to the total volumetric flow rate ்ܳ and the

magnetic flux density .଴ܤ  From  Eq.  3-39,  the  unit  of  the  constant  factor ݇ଵ  can  be

derived and it is m-1 (see Appendix A for unit derivation). The equation of the boundary

flow potential distribution ௝ܷ (Eq. 3-35) and the total volumetric flow rate ்ܳ (Eq. 3-38)

were validated in simulation using Finite Element Analysis (FEA) modelling (described

in Chapter 4) and, in practice, by building a physical model of pipework which included

small flow channels and a 16-electrode array (described in Chapters 5, 6 and 7).

3.6 Arterial and Venous Blood Flow over a Cardiac Cycle

At a cross-sectional area of a real human limb, blood flows towards the end of the limb

through arteries with a total volumetric flow ்ܳ,஺ and away from the end via the veins

with a total volumetric flow rate ்ܳ,௏. However, ்ܳ,௏ remains essentially constant over

the cardiac cycle whilst ்ܳ,஺ varies greatly as described in Chapter 1. Hence, the total

blood flow rate over a cardiac cycle is zero. Figure 3.5 shows quantitatively the venous,

arterial and total blood rates over a cardiac cycle. The total arterial blood flow rate ்ܳ,஺

can be measured as follows:
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· Firstly by measuring the total volumetric flow rate during the cardiac cycle when

no arterial blood flows, i.e. at time ଵ as shown in Figure 3.5, the total flow rate inݐ

the veins ்ܳ,௏ at the relevant limb section is measured. Note that ்ܳ,௏ is

numerically negative because it is in the opposite direction to the arterial blood

flow.

· Next take another measurement at time ଶ which is during the part of the cardiacݐ

cycle when the peak arterial blood flow rate occurs. This flow rate corresponds to

෨்ܳ,஺,௠௔௫ in Figure 3.5.

· Assuming ்ܳ,௏ is constant throughout the cardiac cycle, the total maximum arterial

blood flow ்ܳ,஺,௠௔௫ is given by

்ܳ,஺,௠௔௫ 	= ෨்ܳ,஺,௠௔௫ − ்ܳ,௏ Eq. 3-40

Using Eq. 3-40, the maximum arterial blood flow in a human limb can be determined.

max,,ATQ

max,,
~

ATQ

VTQ ,
1t

2t

Figure 3.5: Peak arterial blood flow rate maximum total arterial blood flow rate ,࡭,ࢀ෩ࡽ and the  ࡭,ࢀࡽ
venous blood flow rate ࢂ,ࢀࡽ
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3.7 Summary

Virtual current theory was applied to a circular cross-section and that resulted in the

virtual potential ߶  equation, which is a Laplace’s equation (Eq. 3-3). This equation was

solved by using the appropriate boundary condition which was given in Eq. 3-9. The

solution of the virtual current density ࢐࢜,  i.e.  Eq.  3-2,  was  found  by  calculating  the

derivatives of the virtual potential ߶  equation given in Eq. 3-21, and it was expressed in

Eq. 3-22. Assuming a uniform and transverse magnetic flux density in the negative

y-direction, i.e. ࡮ = ௢ܤ−,0] , 0], the weight vector was ࢃ  simplified  to  2D,  and  the

only non-zero component was ௭ܹ.  The  solution  of  the  virtual  current  density ࢐࢜ was

then used to find the weight function ௭ܹ which was presented in Eq. 3-26. This weight

function was then modified and extended for a circular medium with a single channel.

Assuming the velocity in the flow channel within the medium is constant, the flow

potential difference equation between two electrodes at the boundary of a medium

including a single channel was derived, and it was given in Eq. 3-31. This equation was

then extended for 16 electrodes placed at the boundary of the medium and 22.5o apart

from each other as shown in Eq. 3-32 and Eq. 3-33. Then, for multiple channels in the

medium bounded by 16 electrodes, the flow induced potential difference for each

electrode could be found using Eq. 3-35. Hence, for a number of flow channels of

different sizes and in different locations within the medium, the flow induced potentials

at the boundary could be predicted given that the radial and angular coordinates (ݎ௚ and

௚) of, and the flow rateߠ ܳ௚ in, the flow channels are known. It was also shown that by

applying the DFT on Eq. 3-35, the DFT components of the boundary potential

distribution ௝ܷ are given by Eq. 3-36. The modulus |ܺ(1)| of the DFT component ܺ(1)

was found to be directly proportional to the total volumetric flow rate ்ܳ of all flow
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channels and the magnetic flux density ௢, irrespective of the number, size and locationܤ

of the flow channels within the medium as shown in Eq. 3-37.

In the next chapter, an FE model was created to verify the mathematical relationship

given in Eq. 3-35. The simulation work involved FE modelling of a conductive cylinder

which contained two tubes in which a conductive fluid was flowing in either one or both

of them. The location of the tubes was varied within the cross-section of the cylinder. A

uniform magnetic field was generated across the flow cross-section and the flow

induced potentials were collected at the location of the electrodes at the boundary of the

cross-section as shown in Figure 3.4. The flow induced potential differences were

compared to the mathematical model in Eq. 3-35 for a given total volumetric flow rate

்ܳ and  magnetic  flux  density ௢. Then, the relationship between the termܤ |ܺ(1)|,

obtained from the DFT of the boundary potential distribution, and the total flow rate ்ܳ

was investigated. The FEA simulation is discussed in detail in Chapter 4.
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4.1 Introduction

This chapter describes the computer modelling of the proposed EM method (described

in Sections 3.4 and 3.5) which could be used to obtain the total flow rate ்ܳ of one flow

channel or more (several blood vessels) within a cross-section (upper or lower human

limb) across which a uniform magnetic field ଴ is applied. The computer modelling wasܤ

performed using the Finite Element (FE) method. The simulated model consisted of a

conductive cylindrical region that had one or two flow channels and a Helmholtz coil to

generate a uniform magnetic field across the flow channels. Water flow (conductive

fluid) was imposed in either one or both flow channels. Water was used instead of blood

so that the FE model would agree with the practical experiment described in Chapter 7.

Note that typical blood conductivity is 0.7 S/m whereas the conductivity of water in

Northern England is around 0.013 S/m [163]. This cylindrical region was given the

name Simulated Vascular System (SVS).

For each test setup of the FE model, i.e. different number and location of, and the water

flow rate in, the flow channels, 16 electrical potentials ௝ܷ, generated by the interaction

of water flowing (z-component of the velocity vector ࢜)  in  the  flow channels  and  the

magnetic field (y-component of -were collected at the boundary of the cross ,(࡮

sectional area of the cylindrical region where the electrodes are located as shown in

Figure 3.4. The reference potential was chosen to be the potential at electrode e5 and the

potential differences were determined with respect to this electrode, i.e. ௝ܷ − ହܷ (݆ = 1

to 16). Note that the reference electrode can be arbitrarily set as discussed in

Section 3.4. The flow potential differences obtained from the FE model were compared

with the flow potential differences obtained from the mathematical model given in

Eq. 3-35 for the same value of the magnetic field, the flow rate and the number, size and

location of the flow channels.
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The DFT was then applied to the flow potential  differences obtained from the FE and

theoretical models for each test. Afterwards, the modulus |ܺ(1)| of the DFT component

ܺ(1), corresponding to the fundamental frequency of the boundary potential

distribution, was found for both models. Then, the constant factor ݇ଵ in

Eq. 3-33 was calculated for both models and compared.

The overall system of the FE model had two coupled EM phenomena that required

modelling: (1) the magnetic field generated due to the current flowing through the

Helmholtz coil and (2) the electrical potentials generated by the interaction of water and

the magnetic field. The governing equations for both phenomena are a set of partial

differential equations (PDEs) based on Maxwell’s equations [164]. These PDEs are

described in Section 4.4 and were solved using the FE method. The FE method was

applied using COMSOL Multiphysics 3.5a software. The purpose of the simulation was

to validate the relationship between the total volumetric flow rate ்ܳ and the modulus

of the DFT component |ܺ(1)| as described in Section 3.5. Moreover, the effect of the

number, size and location of the flow channels on the flow induced boundary potential

distribution was investigated.

The  layout  of  this  chapter  is  as  follows:  an  overview  of  COMSOL  Multiphysics

software is given in Section 4.2.  Afterwards,  the  design  of  the  SVS  model  and  the

Helmholtz coil are presented in Section 4.3. The governing equations of the model built

in COMSOL Multiphysics and the modelling settings are defined in Section 4.4 and

Section 4.5, respectively. The results of the magnetic field density distribution across

the  SVS  model,  obtained  from  solving  the  overall  model  in  COMSOL,  are  given  in

Section 4.6. Then, in Section 4.7, the flow induced potential differences obtained from

the SVS FE model are compared with the mathematical model given in Eq. 3-35 for the
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same flow configuration. Finally, the DFT analysis of the flow induced potential

differences is described and analysed in Section 4.8.

4.2 COMSOL Multiphysics Software

COMSOL Multiphysics software is designed to solve multiple physics problems

simultaneously, in either 2D or 3D [165]. It has a wide range of application areas such

as acoustics, bioscience, electromagnetics and fluid dynamics. It also offers specific

add-on modules which include methods to solve particular science and engineering

problems. The modules include AC/DC, heat transfer and RF. The AC/DC module

(known as the AC/DC interface)  can solve EM problems including electrostatics,

magnetostatics, DC and AC current flow and AC electromagnetics [166]. All these

problems are solved in COMSOL using the differential form of Maxwell’s equations.

COMSOL  Multiphysics  utilises  the  FE  method  to  solve  these  equations  with  the

appropriate  boundary  conditions  being  set  by  the  user.  The  types  of  studies  that  the

module can perform are stationary analysis, frequency domain, time domain and small

signal analysis.

COMSOL Multiphysics works as follows: (1) the AC/DC interface is selected, then (2)

a 2D or 3D model is created, (3) the materials of the model and sources (currents,

voltages) are set, (4) the meshing procedure is applied to the model, (5) an appropriate

solver is selected and executed (usually COMSOL automatically selects the solver type,

depending on the AC/DC interface) and (6) the results are displayed.
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4.3 Model Geometry

4.3.1 Simulated Vascular System

The Simulated Vascular System (SVS) COMSOL model consisted of a conductive

cylindrical region of 40 mm in diameter and 20 mm in length. This region crudely

simulated a lump of muscle and fat tissues in a human limb. The cross sectional

dimensions  of  the  SVS COMSOL model  were  chosen  to  be  the  same as  the  practical

SVS  system  which  is  discussed  in  Chapter  5.  The  COMSOL  SVS  cylindrical  region

was also surrounded by a 5 mm annulus (also 20 mm long) which represented a layer of

static water as illustrated in Figure 4.1(b). This annulus modelled wet, conductive skin

(skin  with  applied  electrolyte  gel).  Hence,  the  overall  diameter  of  the  SVS COMSOL

model was 50 mm. Note that the length of the SVS COMSOL model was chosen to be

20 mm, unlike the length of the SVS practical model which was 200 mm as will be

shown in Chapter 5, in order to reduce simulation time. When the model is smaller,

COMSOL will take less computational time to work out the solution to the PDEs. This

length factor did not affect the results of the flow induced potential differences obtained

as the only area of interest was the cross sectional area, where the imposed water flow

in the tubes intersects with the magnetic field.

At the boundary of the area where the water flow intersected with the applied magnetic

field, 16 electric potentials were collected starting from electrode e1 (at  0°)  and  at

rotational intervals of 22.5° up to electrode e16, as shown in Figure 4.1(a). In the

practical experiment, these measurement points were electrodes that are in contact with

the static layer of water. The SVS COMSOL model had two tubes ‘a’ and ‘b’ of 10 mm

in diameter and 20 mm in length. Both tubes were offset from the centre by ±10 mm.

Water flow was either imposed in tube ‘a’ only, ‘b’ only or both. Moreover, each tube
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could be positioned at different angles with respect to e1. In Figure 4.1(a), tubes ‘a’ and

‘b’ are at 0° and 180° with respect to electrode e1, respectively. The other tube positions

will be described in detail in Section 4.7. Figure 4.1(b) shows the COMSOL 3D model

of the SVS.

4.3.2 Helmholtz Coil

A Helmholtz coil is a pair of two identical solenoid electromagnets separated by a

distance  equal  to  their  radius  as  shown  in  Figure  4.2.  When  the  coil  is  excited,  the

magnetic field generated in the region bounded by the two solenoids is near uniform.

This magnetic field is  directly proportional to the number of turns of the coils and the

applied current. A Helmholtz coil is used in a wide range of applications due to its

simple design and the fact that it can easily be mathematically modelled to determine its

magnetic flux density [167, 168]. The applications include magnetic sensor calibration,

electromagnetic compatibility (EMC) testing, EM flow metering and bio-magnetic

studies. The magnetic field generated can be static or time-varying, depending on the

excitation source, i.e. DC or AC.

COMSOL 3D Model of SVS

20mm

(a) (b)

Figure 4.1: (a) SVS dimensions and electrode locations at which the electric potential
measurements are taken (b) COMSOL 3D model
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Both coils in the Helmholtz coil were designed to have a radius of 80 mm and a square

cross-section of 20 mm as illustrated in Figure 4.3. The design and modelling of the

Helmholtz coil is provided in the ‘COMSOL AC/DC Module Model Library Handbook

Version 3.5a’ [169]. Note that, in the practical experiment described in Chapter 5, a

C-shaped silicon-steel core electromagnet was built with an air-gap of 80 mm into

which the SVS pipe was inserted. The reason for this was that an electromagnet with a

metal core (higher permeability -generates stronger magnetic flux density than an air (ߤ

core electromagnet (ܤ = Both the steel-core electromagnet in the practical .(ܪߤ

experiment and the Helmholtz coil in the COMSOL simulation give a near-uniform

magnetic field (in the y-direction) across the electrode array of the SVS. In COMSOL,

it was easier to generate a uniform magnetic field using the Helmholtz coil by

specifying the current density flowing in the coils at a given point in time. Figure 4.3

and Figure 4.4 show the SVS inserted between the coils.

Figure 4.2: (a) Helmholtz coil (b) uniform magnetic field in the region bound by both solenoids
[170]

(a) (b)
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Figure 4.3: Helmholtz coil dimensions

Figure 4.4: COMSOL 3D model of the Helmholtz coil and the SVS

Finally, the whole FE model was enclosed by a spherical computing domain of radius

0.15 m as shown in Figure 4.5. The computing domain is the exterior computing

boundary domain where the conditions correspond to zero magnetic flux density. The

magnetic boundary of the domain was set to magnetic insulation and its electric

boundary was set to ground. Note that the magnetic field density ଴ direction in theܤ

model was set to be in the positive y-direction whereas, in Eq. 3-35, the magnetic field

Isometric view

Top view

Side view

Coil 1

Coil 2

160mm

80
m

m 80mm

Ø50mm

y

x

C1

C2

z

20mm
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is in the negative y-direction. The effect of changing the direction of the magnetic field

is explained in Section 3.4.

Figure 4.5: The Helmholtz coil and the SVS enclosed by a spherical computing domain

4.4 Governing Equations of the COMSOL FE Model

The local current density ࢐ (unit: A/m2) for a conductive fluid in the presence of an EM

field in a state of equilibrium, as described in Chapter 3, is given by

࢐ = ࡱ)ߪ + ࢜ × (࡮ Eq. 4-1

where ,is the local fluid conductivity ߪ ࡱ is the local electric field due to the force that

charges exerted on one another and ࢜ × ࡮ is the local electric field generated by the

moving charges through the magnetic field. For fluids with constant conductivity,

Eq. 4-1 is simplified so that the distribution of the potential ܷ in the flow cross-section

can be obtained by solving the following partial differential equation

∇ଶܷ = ∇ ∙ (࢜ × (࡮ Eq. 4-2

In  conjunction  with  Eq.  4-1  and  Eq.  4-2,  COMSOL  uses  the  magnetostatics  form  of

Maxwell’s equations to add modelling constraints (stationary magnetic field, i.e. steady

current) which are [165, 169]

Computing domain
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∇ ∙ ࡮ = 0 Eq. 4-3

∇ ∙ ࢐ = 0 Eq. 4-4

Eq. 4-3 states that the magnetic field lines have no sources or sinks and Eq. 4-4

indicates that the net charge density ߩ߲) is constant, i.e. steady current ߩ ⁄ݐ߲ = 0). The

Helmholtz coil represents another case in magnetostatics where the current applied to

the coils is steady (steady flow of charge). Hence, the equations governing the magnetic

field  generation  in  the  Helmholtz  coil  are  also  Eq.  4-3  and  Eq.  4-4  as  well  as  the

equation stated below

∇ × ࡮ = ࢌ଴࢐ߤ Eq. 4-5

where ଴ isߤ  the  permeability  of  vacuum and is ࢌ࢐  the  total  current  density  due  to  free

charges. Alternatively, the governing Maxwell’s equation in terms of the magnetic field

intensity is

∇ × ࡴ = ࢌ࢐ Eq. 4-6

where ࢌ࢐ is the free current density. Eq. 4-5 can be written as the curl of the magnetic

vector potential as follows [171] ,࡭

࡮ = ∇× ࡭ Eq. 4-7

The ratio between the magnetic flux density and the magnetic field intensity ࡮ is the ࡴ

permeability of vacuum ,଴ (for a Helmholtz coil). Thusߤ

ࡴ = ࡮଴ିଵߤ Eq. 4-8

From Eq. 4-6 to Eq. 4-8, and assuming static currents and fields,

∇ × ଴ߤ)
ିଵ∇ × (࡭ = ࢌ࢐ Eq. 4-9

Eq.  4-9  is  the  domain  equation  that  COMSOL  Multiphysics  uses  to  solve  this

magnetostatic problem [171]. The current density is known as the external applied ࢌ࢐
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current density ࢋ࢐ in COMSOL Multiphysics and is defined by the user. Note that the

current density in the coil is given by

݆ =
ܫܰ
ܣ

Eq. 4-10

where ݆ is the current density, ܰ is the number of turns, is the current and ܫ is the ܣ

cross-sectional area of the coil (m2).

4.5 Physics Settings of the Model, Mesh Generation and Solver Type

There were several parameters that it was necessary to set for the SVS model and the

Helmholtz coil in COMSOL Multiphysics. These parameters included, the conductivity

of the water and Helmholtz coil, the relative permeability of the materials, the external

current density (݆௘) applied to the Helmholtz coil and the velocity of water in the flow

channels. These parameters were configured from “Sub-domain Settings” in the

“Physics” drop-down menu in the main toolbar of COMSOL Multiphysics software.

The  COMSOL  SVS  model  was  set  to  the  conductivity  of  water  which  is  0.013  S/m

(typical conductivity value in Northern England). The material of the Helmholtz coil

was  set  to  copper  which  has  a  conductivity  of 5.998 × 10଻ S/m.  The  relative

permeability of the SVS and Helmholtz coil was set to 1. The external applied current

density (݆௘) of the Helmholtz coil was set to −3.3389 × 10଺ A/m2. For this value,

COMSOL generated a magnetic flux density in the y direction of approximately 1 mT

(10 gauss) across the SVS model. The negative sign sets the magnetic field direction in

the positive y-direction. The water flow velocity was set to 50 m/s. This value is

artificially high in comparison to the peak velocity of blood flow in arteries which is

around 1 m/s as shown in Section 1.2.4. However, in the practical SVS system

described in Chapter 5, the magnetic flux density value was 42.5 mT and the flow
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induced electric potentials are directly proportional to the product of the flow velocity ݒ

and the magnetic flux density Hence, the magnitude of the flow induced potentials .ܤ

obtained from the FE will be approximately similar in magnitude to the flow induced

potentials which are obtained from the practical experiment.

Once all the parameters were set, the meshing process was applied to the model. The

aim was to predefine the mesh settings to achieve a good balance between accuracy and

required CPU time. The finer the mesh, the more accurate the results would be.

However, a finer mesh requires more CPU time. In the region of the SVS, including the

flow channels and the static layer of water, the mesh settings were entered manually.

There were two settings which had to be predefined: “Maximum element size” and

“Element growth rate6”, and they were set to 0.08 and 1.2, respectively. The mesh

settings for the Helmholtz coil and the computing domain were set to “Coarse” which is

a predefined mesh size that is automatically set by COMSOL Multiphysics.

The  mesh  of  the  SVS  region  was  finer  than  the  mesh  of  the  Helmholtz  coil  and  the

computing domain as it was the region of interest. These settings showed a good

balance between CPU time and spatial resolution. Figure 4.6 shows the mesh of the

complete model.  The solver selected was the SPOOLES direct solver which is one of

the linear system solvers provided by COMSOL Multiphysics. This solver supports

multithreading and error checking. The results obtained from solving the model in

COMSOL are the magnetic flux density generated across, and the flow induced electric

potentials at the boundary of, the SVS cross-section. The magnetic flux density was

expected to be uniform and in the order of 1 mT.

6 Element growth rate determines how fast the elements should grow from small to large over a domain
(COMSOL User’s Guide Manual 2013).
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Figure 4.6: The mesh of the 3D COMSOL FE model.

4.6 Magnetic Flux Density Distribution of the Helmholtz coil

The magnetic flux density plot of the Helmholtz coil model is shown in Figure 4.7 and

Figure 4.8. The colour bar indicates the magnetic flux density value and the red arrows

indicate the direction of the magnetic field. It can be seen that the magnetic flux density

across the SVS is uniform (straight red arrows where the SVS is). The magnetic flux

density was approximately 1 mT (10 gauss) in the region of the SVS. The y-component

of the magnetic flux density is the component that is perpendicular to the flow direction

(z-component). Figure 4.9 show the magnetic flux density in the cross section of the

SVS in x-y plane where z = 0. It can be seen from Figure 4.10 that the variation in the

magnetic flux density within the cross section of the SVS, i.e. between −0.02 to 0.02 m

is very small. In fact the variation in that area is between 0.9891 and 1.006 mT which is

only 0.4%. Hence, it is clear that the magnetic field is approximately uniform across the

SVS model.
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Figure 4.8: Subdomain: colour scale magnetic flux density, y component (T). Arrow: magnetic field
direction. Note that x, y and z axes are in metres.

Figure 4.7: Subdomain: colour scale magnetic flux density, y component (T). Arrow: magnetic field
direction. Note that x, y and z axes are in metres.
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Figure 4.9: Subdomain: colour scale magnetic flux density, y component (T). Arrow: magnetic field
direction. Note that x, y and z axes are in metres.

Figure 4.10: Magnetic flux density, y component (T) across the SVS model. Note that x axis is in
metres.
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4.7 SVS Flow Induced Potential Difference Measurement Results

4.7.1 Test Setups

The flow induced potentials ௝ܷ were collected at the boundary of the SVS region, where

the electrode points are, as shown in Figure 4.1(a). Three main tests were performed:

1. Water flow imposed through tube ‘a’ only

2. Water flow imposed through tube ‘b’ only

3. Water flow imposed through tubes ‘a’ and ‘b’ simultaneously

For  each  test,  tube  ‘a’  or  ‘b’  (or  both)  was  rotated  by  steps  of  22.5°  clockwise  with

respect to electrode point e1.  For  example,  tube  ‘a’  was  first  at  0°  with  respect  to

electrode point e1 and the model was solved and the flow induced potentials were

collected. Then, it was rotated by another 22.5° and so on. Tube ‘a’ was rotated until it

was at 135° with respect to electrode e1.  Figure  4.11  shows  tube  ‘a’  at  different

positions with respect to electrode e1.

For every new position for tube ‘a’, 16 flow induced potential differences were

obtained, i.e. e1-e5, e2-e5, e3-e5 … e16-e5. Moreover, two flow velocities were used for ݒ

each tube position, ݒ = 25 m/s  and ݒ = 50 m/s.  Tube  ‘a’  is  10  mm  in  diameter  and

hence, for these two velocities, the corresponding flow rate in tube ‘a’ would be

்ܳ = 1.96×10-3 m3/s and ்ܳ = 3.93×10-3 m3/s. Similarly, tube ‘b’ was positioned firstly

at 180o with respect to e1 and it was rotated by steps of 22.5° until it was at 292.5° with

respect to e1. At each position, the flow induced potentials were collected for the same

flow rates in the tube ‘a’ test. Figure 4.12 shows the positions of tube ‘b’ with respect to

electrode e1.
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Figure 4.11: Tube 'a' at different positions with respect to electrode e1

Lastly,  water flow was imposed through both tubes ‘a’ and ‘b’,  starting with tubes ‘a’

and ‘b’ positioned at 0° and 180° with respect to electrode e1, respectively. Then, both

tubes were rotated in steps of 22.5°. The water flow velocity was 12.5 m/s in each tube

for a total flow rate of 1.96×10-3 m3/s, and 25 m/s for a total flow rate of 3.93×10-3 m3/s

(maintaining the same total volumetric flow rate as in the other two tests). Figure 4.13

shows all positions of both tubes ‘a’ and ‘b’ with respect to electrode e1. Note that the

magnetic flux density in all the tests was the same – approximately 1 mT.
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Figure 4.12: Tube 'b' at different positions with respect to electrode e1

Figure 4.13: Tubes 'a' and 'b' at different positions with respect to electrode e1
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4.7.2 Flow Induced Potential Difference Measurement Results

The flow induced potential measurements ௝ܷ at the boundary of the SVS were collected

for each tube/s location and flow rate, as described in Section 4.7.1. These flow induced

potentials were referenced to the potential at electrode e5 (reference electrode), i.e.

௝ܷ − ହܷ to obtain flow induced potential differences. Then these potential differences

were compared with the flow induced potential differences obtained from the

mathematical model given in Eq. 3-32 and Eq. 3-33 in Chapter 3. The same flow rate

and magnetic flux density values were used in the FE and the mathematical models. For

example, to obtain the flow induced potential differences using Eq. 3-32 and Eq. 3-33

for tube ‘a’ only located at 0o with respect to electrode e1 as shown in Figure 4.11, the

steps are as follow:

· Setting  the  values  of ௚ݎ = 10  mm, ௚ߠ = 0°  (polar  coordinates  of  tube  ‘a’  with

respect to electrode e1)

· Setting the magnetic flux density ௢ܤ = 1  mT,  the  flow  rate  in  the  channel

ܳ௚ = 1.96×10-3 m3/s and ݇ଵ = ଵ
ଶగோ

 where ܴ = 25 mm

· Then,  finding  the  value  of ௝ܷ where ݆ = 1  to  16  (the  number  of  electrodes)  by

changing the angle value of ߰௜௡ from 0° to 337.5° in steps of 22.5°, i.e. for

electrode e1, ߰௜௡ = 0°, for electrode e2, ߰௜௡ =22.5° and so on.

· Lastly, referencing all 16 potentials ௝ܷ to the potential ହܷ, i.e. ௝ܷ − ହܷ
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Test 1: Water Flow Imposed in Tube ‘a’

Figure 4.14 depicts the contour plot of the electrical potential distribution for tube ‘a’,

positioned at 0° with respect to electrode e1 for  two  different  flow  rates,  i.e.

1.96×10-3 m3/s and 3.93×10-3 m3/s. Contour plots were only performed in the COMSOL

FE model. The magnetic flux density ௢ was in the positive y-direction and the waterܤ

flow was in the positive z-direction (out of the page). Hence, the Lorentz force ࢜ ࡮×

was in the negative x-direction, represented by the blue arrows in Figure 4.14

(Fleming’s right-hand rule). If the magnetic field is changed to be in the negative

y-direction or the flow is changed to be in the negative z-direction, the Lorentz force

will then to be in the positive x-direction (mutually perpendicular vectors). For all the

other tests, the direction of the Lorentz force was the same as the direction of the

magnetic field and the water flow was not changed.

The flow induced potential differences ௝ܷ (݆ = 1 to 16) for tube ‘a’ located at  0° with

respect to electrode e1 obtained from the FE and theoretical models are plotted in Figure

4.15. It can be noted that there is very good agreement between the flow induced

potential difference distribution of the FE model and the theoretical model. However,

there was a slight difference between the results for both models due to numerical errors

in  the  COMSOL FE model  which  is  dependent  on  the  FE solver  type  and  mesh  size.

However, the results were very similar and satisfactory.
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Figure 4.14: Electrical potential distribution for tube 'a' positioned at 0° with respect to e1 for flow
rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right). The blue arrows indicate the direction of
Lorentz force.

Figure 4.15: Induced potential difference measurements for tube 'a' positioned at 0° with respect to
e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Tube ‘a’ was then rotated by 22.5° with respect to electrode e1. Figure 4.16 shows the

contour plot of the electrical potentials for the low and high flow rates. The flow

induced potential differences obtained from the FE and theoretical models for this test

are presented in Figure 4.17.
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Figure 4.16: Electrical potential distribution for tube 'a' positioned at 22.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)

Figure 4.17: Induced potential difference measurements for tube 'a' positioned at 22.5° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

It can be noted from Figure 4.17 that for the same tube position, the profile of the flow

induced potential difference distribution for both flow rates was identical. However, the

amplitude of the flow induced potential differences for the high flow rate was greater

(double the value) than the amplitude of the flow induced potential differences for the

low flow rate. This was expected as the flow induced potentials are directly proportional

to the flow rate and the high flow rate is twice greater than the low flow rate. Moreover,
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the tube position within the cross section of the SVS had an effect on the profile of the

flow induced potential difference distribution when comparing Figure 4.17 with Figure

4.15.

Overall,  Figure  4.17  shows  that  there  is  good  agreement  between  the  COMSOL  and

theoretical models for tube ‘a’ located at 22.5° with respect to e1 for the given flow rate

and magnetic flux density. The following plots show the remaining contour plots and

flow induced potential difference distribution for the other positions of tube ‘a’ within

the cross section of the SVS. Similar observations can be made in terms of the effects of

the flow rate on the amplitude of the flow induced potential differences and the location

of  the  tube  on  the  profile  of  the  flow  induced  potential  difference  distribution.  The

results obtained from the FE and theoretical models for tube ‘a’ for different flow rate

and location within the cross-sectional area of the SVS showed very good agreement

which validate the mathematical expression proposed in Eq. 3-32 and Eq. 3-33.

Figure 4.18: Electrical potential distribution for tube 'a' positioned at 45° with respect to e1 for flow
rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.19: Induced potential difference measurements for tube 'a' positioned at 45° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.20: Electrical potential distribution for tube 'a' positioned at 67.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.21: Induced potential difference measurements for tube 'a' positioned at 67.5° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.22: Electrical potential distribution for tube 'a' positioned at 90° with respect to e1 for flow
rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.23: Induced potential difference measurements for tube 'a' positioned at 90o with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.24: Electrical potential distribution for tube 'a' positioned at 112.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.25: Induced PD measurements for tube 'a' positioned at 112.5° with respect to e1 for flow
rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s
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given electrode. Hence, the amplitude of the flow induced potential differences obtained

from the high flow rate test was greater (double the value) than the amplitude of the

flow induced potential differences obtained from the low flow rate test. Lastly, the

profile of the induced potential difference distribution was dependent on the location of

the tube within the cross section bounded by the electrodes. It can be observed that the

flow induced potential difference distribution for tube ‘b’ located at 180° with respect to

electrode e1 (Figure 4.27) is different from the flow induced potential distribution for

the tube when it was located at 202.5° with respect to electrode e1 (Figure 4.29) for the

same flow rate value.

 The following plots of the flow induced potential distribution for tube ‘b’ show that

there is good agreement between the COMOSL FE model and the theoretical model

given in Eq. 3-32 and Eq. 3-33, and this validates the proposed mathematical model.

Figure 4.26: Electrical potential distribution for tube 'b' positioned at 180° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.27: Induced potential difference measurements for tube 'b' positioned at 180° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.28: Electrical potential distribution for tube 'b' positioned at 202.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.29: Induced potential difference measurements for tube 'b' positioned at 202.5° with
respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.30: Electrical potential distribution for tube 'b' positioned at 225° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

2

4
x 10-5 p.d. Measurements for Tube b at 202.5o (QT =1.96*10-3 m3/s)

A
m

pl
itu

de
(V

)

Electrode number

COMSOL
Theory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-2

0
2
4
6
8

x 10-5 p.d. Measurements for Tube b at 202.5o (QT =3.93*10-3 m3/s)

A
m

pl
itu

de
(V

)

Electrode number

COMSOL
Theory



Chapter 4
Finite Element Modelling of the Non-invasive Electromagnetic Induction Method

165

Figure 4.31: Induced potential difference measurements for tube 'b' positioned at 225° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.32: Electrical potential distribution for tube 'b' positioned at 247.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.33: Induced potential difference measurements for tube 'b' positioned at 247.5° with
respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.34: Electrical potential distribution for tube 'b' positioned at 270° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.35: Induced potential difference measurements for tube 'b' positioned at 270° with respect
to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.36: Electrical potential distribution for tube 'b' positioned at 292.5° with respect to e1 for
flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.37: Induced potential difference measurements for tube 'b' positioned at 292.5° with
respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s
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together. For example, the flow induced potential difference ଵܷ − ହܷ at electrode e1 due

to  the  water  flow  in  both  tubes  ‘a’  and  ‘b’  is  the  sum  of  the  flow  induced  potential

difference ଵܷ௔ − ହܷ (flow in tube ‘a’ only) and ଵܷ௕ − ହܷ (flow in tube ‘b’ only).  The

theoretical flow induced potential differences, presented in Figure 4.39, are due to flow

in both tubes ‘a’ and ‘b’. It can be seen, in Figure 4.39, that there is very good

agreement between the flow induced potential differences from the FE and the

theoretical models. This demonstrates an important point, that the overall flow induced

potential distribution for multiple flow sources, such as the system being investigated

here, is obtained by summing the flow induced potentials from the individual flow

sources.

Similarly to the previous tests, when the location of the tubes was altered, as shown in

Figure 4.40, the profile of the flow induced potential distribution was changed

(comparing Figure 4.39 with Figure 4.41) leading to the conclusion that the profile of

the flow induced potential distribution is dependent on the location of the tubes within

the cross section bounded by the electrodes. Moreover, a higher or lower flow rate

would only increase or decrease the amplitude of the flow induced potentials given that

the location of the tubes remains the same.

Figure 4.38: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 0° and 180° with
respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.39: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 0° and
180° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.40: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 22.5° and 202.5°
with respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model
only)
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Figure 4.41: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 22.5°
and 202.5° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.42: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 45° and 225° with
respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.43: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 45° and
225° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.44: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 67.5° and 247.5°
with respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model
only)
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Figure 4.45: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 67.5°
and 247.5° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.46: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 90° and 270° with
respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model only)
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Figure 4.47: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 90° and
270° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s

Figure 4.48: Electrical potential distribution for tubes ‘a’ and 'b' positioned at 112.5° and 292.5°
with respect to e1 for flow rates of 1.96×10-3 m3/s (left) and 3.93×10-3 m3/s (right) (COMOSL model
only)
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Figure 4.49: Induced potential difference measurements for tubes ‘a’ and 'b' positioned at 112.5°
and 292.5° with respect to e1 for flow rate values of 1.96×10-3 m3/s and 3.93×10-3 m3/s
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4.8 Discrete Fourier Transform of the Flow Induced Potential

Differences

The DFT was applied to the 16 flow induced potential difference measurements ௝ܷ − ହܷ

obtained from the COMSOL FE and theoretical models for each test described above.

Then, the modulus |ܺ(1)| of  the  DFT  component ܺ(1) was calculated. The modulus

|ܺ(1)| is proportional to the total volumetric flow rate ்ܳ and the peak magnetic flux

density ଴ within the boundary of the cylinder, where the electrical potentials wereܤ

measured, as demonstrated mathematically in Eq. 3-39 (Section 3.5). For convenience,

the relationship between the modulus	|ܺ(1)|, the total flow rate ்ܳ and the peak

magnetic flux density ଴ is stated here, being given byܤ

|ܺ(1)| = ݇ଵ்ܳܤ଴ Eq. 4-11

where ݇ଵ is a calibration factor. Note that from the theoretical model, the calibration

value ݇ଵ can be also calculated using Eq. 3-33, i.e.

݇ଵ =
1

ߨ2ܴ
Eq. 4-12

where ܴ is the radius of the cross section bounded by the electrodes and it is 25 mm for

the current model under investigation. Hence, the calibration factor ݇ଵ = 6.37 m-1. This

value can also be obtained if |ܺ(1)| and the total flow rate ்ܳ are  known for  a  given

magnetic flux density ଴. Hence, from the flow induced potential differences obtainedܤ

from  the  COMSOL  FE,  the  calibration  value ݇ଵ will be calculated. The calibration

factor ݇ଵ should be a constant value regardless of the number of, the position of and the

flow  rates  in,  the  flow  channels.  Table  4-1  and  Table  4-2  present  the 	|ܺ(1)| value

calculated from the potential difference distribution obtained from the FE and

theoretical models for the total flow rates 1.96×10-3 m3/s and 3.93×10-3 m3/s,

respectively. The peak magnetic flux density .଴ was 1 mTܤ
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#Test Position of tubes ‘a’ and ‘b’ COMSOL Model Theoretical Model
(Eq. 3-39)

,m3/s 3-10×1.96 = ࢀࡽ ૙࡮ = ૚	܂ܕ
(ࢂࣆ) |(૚)ࢄ| ࢑૚

(m-1)
|(૚)ࢄ|
(ࢂࣆ)

࢑૚
(m-1)

1 ‘a’ at 0o 11.81 6.02 12.48 6.37
2 ‘a’ at 22.5o 11.78 6.00 12.48 6.37
3 ‘a’ at 45o 12.15 6.19 12.48 6.37
4 ‘a’ at 67.5o 12.10 6.16 12.48 6.37
5 ‘a’ at 90o 12.11 6.17 12.48 6.37
6 ‘a’ at 112.5o 11.90 6.06 12.48 6.37
7 ‘b’ at 180o 12.11 6.17 12.48 6.37
8 ‘b’ at 202.5o 11.87 6.05 12.48 6.37
9 ‘b’ at 225o 12.50 6.36 12.48 6.37

10 ‘b’ at 247.5o 12.12 6.17 12.48 6.37
11 ‘b’ at 270o 12.05 6.14 12.48 6.37
12 ‘b’ at 292.5o 11.85 6.04 12.48 6.37
13 ‘a’ and b’ at 0o and 180o 11.77 6.00 12.48 6.37
14 ‘a’ and b’ at 22.5o and 202.5o 11.84 6.03 12.48 6.37
15 ‘a’ and b’ at 45o and 225o 11.95 6.09 12.48 6.37
16 ‘a’ and b’ at 67.5o and 247.5o 12.09 6.16 12.48 6.37
17 ‘a’ and b’ at 90o and 270o 11.92 6.07 12.48 6.37
18 ‘a’ and b’ at 112.5o and 292.5o 11.83 6.03 12.48 6.37

Avg 12.00 6.14 12.48 6.37
Table 4-1: and |(૚)ࢄ| ࢑૚ values obtained from the FE and theoretical models for the low flow rate
tests, i.e. m3/s 3-10×1.96 = ࢀࡽ
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Figure 4.50: Comparison of ࢑૚ values obtained from the FE and theoretical models for the low flow
rate tests, i.e. m3/s 3-10×1.96 = ࢀࡽ
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#Test Position of tubes a and b COMSOL Model Theoretical Model
(Eq. 3-39)

,m3/s 3-10×3.93 = ࢀࡽ ૙࡮ = ૚	܂ܕ
(ࢂࣆ) |(૚)ࢄ| ࢑૚

(m-1)
|(૚)ࢄ|
(ࢂࣆ)

࢑૚
(m-1)

1 ‘a’ at 0o 23.57 6.00 25.03 6.37
2 ‘a’ at 22.5o 23.55 6.00 25.03 6.37
3 ‘a’ at 45o 24.25 6.17 25.03 6.37
4 ‘a’ at 67.5o 24.19 6.16 25.03 6.37
5 ‘a’ at 90o 24.19 6.16 25.03 6.37
6 ‘a’ at 112.5o 23.79 6.06 25.03 6.37
7 ‘b’ at 180o 24.20 6.16 25.03 6.37
8 ‘b’ at 202.5o 23.71 6.04 25.03 6.37
9 ‘b’ at 225o 24.97 6.36 25.03 6.37

10 ‘b’ at 247.5o 24.21 6.17 25.03 6.37
11 ‘b’ at 270o 24.10 6.14 25.03 6.37
12 ‘b’ at 292.5o 23.65 6.02 25.03 6.37
13 ‘a’ and b’ at 0o and 180o 23.50 5.99 25.03 6.37
14 ‘a’ and b’ at 22.5o and 202.5o 23.67 6.03 25.03 6.37
15 ‘a’ and b’ at 45o and 225o 23.87 6.08 25.03 6.37
16 ‘a’ and b’ at 67.5o and 247.5o 24.16 6.15 25.03 6.37
17 ‘a’ and b’ at 90o and 270o 23.83 6.07 25.03 6.37
18 ‘a’ and b’ at 112.5o and 292.5o 23.68 6.03 25.03 6.37

Avg 24.00 6.10 25.03 6.37
Table 4-2: and |(૚)ࢄ| ࢑૚ values obtained from the FE and theoretical models for the high flow rate
tests, i.e. m3/s 3-10×3.93 = ࢀࡽ



Chapter 4
Finite Element Modelling of the Non-invasive Electromagnetic Induction Method

180

Figure 4.51: Comparison of ࢑૚ values obtained from the FE and theoretical models for the high
flow  rate tests, i.e. m3/s 3-10×3.93 = ࢀࡽ
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4.9 Discussion

The flow induced potential differences obtained from the COMSOL FE and theoretical

models showed good agreement. It can be concluded that the theoretical model (given in

Eq. 3-32 and Eq. 3.33) – used to obtain the induced potential differences due to flow in

a number of channels – has been verified and validated using COMSOL Multiphysics

software. The results showed that the amplitude of the flow induced potential difference

measurements are directly proportional to the total volumetric flow rate ்ܳ in the flow

channels. Moreover, the profile of the induced potential difference distribution is

dependent on the number and location of the flow channels within the cross-sectional

area bounded by the electrodes.

Tables 4-1 and 4-2 show the modulus |ܺ(1)| of the DFT component ܺ(1) and the

calibration factor ݇ଵ values obtained from the FE and theoretical models for all low and

high flow rate tests described in Section 4.7, i.e. ்ܳ = 1.96×10-3 m3/s and

்ܳ = 3.93×10-3 m3/s. The magnetic flux density value used was 1 mT in all tests. From

Table 4-2, it can be seen that the mean value of the modulus |ܺ(1)| for  the  FE  and

theoretical models is 25 V forߤ ்ܳ = 3.93×10-3 m3/s which is twice the mean value of

|ܺ(1)|,  in  Table  4.1,  for ்ܳ = 1.96×10-3 m3/s, i.e. 12.5 V. This confirms the linearߤ

relationship between |ܺ(1)| and ்ܳ for a given value of the magnetic flux density .଴ܤ

It can be seen from Tables 4-1 and 4-2 that the ݇ଵ  value obtained from the FE model

for the low and high flow rates varied from one test to another. This variation caused a

difference between the theoretical and FE ݇ଵ values as shown in Figure 4.50 and Figure

4.51. The percentage difference between the FE and theoretical ݇ଵ values for the low

flow rate tests was 4.26% on average with a standard deviation of 1.46%. For the high

flow rate tests, the percentage difference between the FE and theoretical ݇ଵ values was
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4.36% on average with a standard deviation of 1.48%. The cause of the variation in the

FE ݇ଵ values  was  due  to  numerical  errors  in  the  COMSOL  modelling.  For  a  few  test

cases, when the mesh size was reduced to investigate if the mesh size has an effect on

the accuracy of the results (i.e. the number of mesh element was increased), the

agreement of the flow induced potential measurements with the theoretical model was

improved. However, it was decided not to reduce the mesh size in the FE modelling for

the majority of the conditions considered since the results were satisfactory as they

stood and also, reducing mesh size would increase the computational time required to

solve the FE model. Nevertheless, both percentages, i.e. 4.26% and 4.36%, are small

and give a solid indication that there is good agreement between the FE and theoretical

models.

Henceforward, the total flow rate for any imposed flow criteria in the SVS cross-section

can be determined, once the flow induced potential difference measurements ௝ܷ are

collected for a known magnetic flux density, using the calibration factor ݇ଵ. The

calibration factor value can be either the value obtained from the theoretical model or

FE model as the percentage difference is small and will not affect the accuracy of the

total flow rate measurement significantly. For example, another test was performed in

COMSOL in which water flow was imposed in tube ‘a’ only. Tube ‘a’ was located at

45o with respect to electrode e1 and the water velocity was set  in COMSOL to 35 m/s

instead of 25 m/s or 50 m/s. Hence, the reference volumetric flow rate is 2.75 ×10-3

m3/s, given that the diameter of tube ‘a’ is 10 mm. When the DFT was applied to the 16

flow induced potential difference measurements, obtained from this test, the modulus

|ܺ(1)| of the DFT component ܺ(1) was  17 .Vߤ  For  the  same  magnetic  flux  density

଴ܤ = 1 mT and by using the theoretical calibration factor ݇ଵ = 6.37 m-1, the total

volumetric flow rate ்ܳ is given by
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்ܳ =
|ܺ(1)|
݇ଵܤ଴

=
17	μV

(6.37	mିଵ)(1	mT) = 2.67 × 10ିଷ	mଷ/s

It can be seen that the error between the actual flow rate value (2.75 ×10-3 m3/s) and the

predicted value is 2.9%. In the practical experiment (Chapter 7), the SVS model had

similar dimensions to the COMOSL model. Hence, the calibration factor ݇ଵ obtained

practically would be very close to the values, obtained from the FE and theoretical

models, stated above. In fact, the value of ݇ଵ obtained  from  the  physical  SVS  model

was 6.25 m-1 (Section 7.4) compared with ݇ଵ = 6.10 m-1
, obtained from the FE model,

and ݇ଵ = 6.37 m-1, obtained from the theoretical model, which were given in Table 4-2.

It can be seen that there is better agreement between the practical and theoretical ݇ଵ

values, i.e. 6.25 m-1 and 6.37 m-1 than the practical and the FE ݇ଵ values, which is

expected as the practical model is not subjected to FE modelling error. However, the

practical value of ݇ଵ was also affected by noise as will be discussed in Chapter 7.

In the practical experiment, the flow induced potential difference measurements were

measured via the signal conditioning system, and then, signal processing techniques

were applied, i.e. PSD and DFT, to obtain the modulus |ܺ(1)| of the DFT component

ܺ(1). The calibration factor ݇ଵ value was found by imposing a known water flow rate

through the practical SVS model. The mechanical design of the SVS and the necessary

signal conditioning and processing systems are explained in the following chapters.

The COMSOL model has informed some design decisions for the practical experiment.

Firstly, the dimensions of the physical model were similar to the COMSOL model, i.e.

the diameter of the cross-sectional area and the flow channels were 50 mm and 10 mm,

respectively.  Moreover,  in  the  simulation  work,  for  a  water  velocity  of  50 m/s and

magnetic field density of 1 mT, the flow induced potential differences were in the range
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of 10 to 100 V. For the practical experiment, it was decided to use very low waterߤ

velocity of around 1 m/s as this is  in the same range as the blood flow velocity in the

human body (Refer to Section 1.2.4). Therefore, the magnetic field density was aimed

to be increased to 50 mT, in order to obtain similar values for the flow induced potential

differences. Such values can be measured by the analogue front-end circuitry. The

magnetic field in the COMSOL model was generated using a HelmHoltz coil, but it was

more practical to use an electromagnet that has a ferromagnetic core in order to generate

a stronger magnetic field.

4.10 Summary

The  FE  model  was  created  in  COMSOL  Multiphysics  3.5  and  used  to  verify  the

theoretical work provided in Chapter 3. According to Eq. 3-32 and Eq. 3-33, the flow

induced potentials due to flow in multiple channels can be predicted for given radial and

angular  coordinates  of,  and  the  flow  rate  in,  the  flow  channels.  Moreover,  Eq.  3-37

indicates that the term |ܺ(1)|, obtained by applying the DFT to the flow induced

potential differences, is directly proportional to the total volumetric flow rate ்ܳ of all

flow channels  and the peak magnetic flux density ,଴ܤ  regardless  of  the  number  and

location of the flow channels within the cross-sectional area of the medium. The aim

from the FE model was to verify the theoretical model of the proposed multi-electrode

EM induction flow measurement method.

The FE model consisted of a conductive cylindrical region that had multiple flow

channels  (one  and  two  flow  channels)  and  a  Helmholtz  coil  to  generate  a  uniform

magnetic field across the flow channels. This simulated a basic model of a human limb

including two blood vessels. Water flow was imposed in these flow channels with

conductivity similar to the conductivity of water in North England which is 0.013 S/m.
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This is approximately 54 times lower than the conductivity of blood, and this value was

used, in particular, because water was used for the practical experiments (to be

described in Chapter 7) which had similar conductivity, as will be explained in the next

chapter.

Flow induced potential differences were obtained from the FE model for different test

setups, i.e. different numbers and locations of, and the total flow rates in, the flow

channels. Then, these induced potential differences were compared with the flow

induced potential difference measurements which were obtained from the mathematical

model given in Eq. 3-32 and Eq. 3-33 for flow channels of the same geometry and flow

rates and magnetic flux density of the same value. Good agreement was found between

the  results  of  both  models  as  discussed  in  Section  4.7.  Subsequently,  the  DFT  was

applied to the flow induced potential difference measurements obtained from both

models, and it was confirmed that the modulus |ܺ(1)| of the fundamental DFT

component ܺ(1) is directly proportional to the total volumetric flow rate ்ܳ in all of the

flow channels, irrespective of their number, location and flow rate value. The value of

the calibration factor ݇ଵ obtained from the theoretical model was 6.37 m-1, and from the

FE model, it was 6.14 m-1 for a total flow rate of ்ܳ = 1.96×10-3 m3/s. The percentage

difference between the theoretical and FE values for ݇ଵ was only 3.67%. For a total

flow rate of ்ܳ = 3.93×10-3 m3/s, the value ݇ଵ obtained from the FE model, it was

6.10 m-1, resulting in a percentage difference of 4.33%. Both percentages are small,

indicating that the theoretical model agrees to a high degree of accuracy with the FE

model. This validates the proposed EM method described in Eq. 3-32, Eq. 3-33 and

Eq. 3-39.
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In the next chapters, the physical SVS model, built in the laboratory, is explained. The

objective was to validate the theoretical model in practice, which is a very important

step. The practical work will also help in understanding the hardware and software

requirements to build a medical device based on this EM method.
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5.1 Introduction

The first part of this chapter addresses the mechanical design of the SVS and AC-

excited electromagnet. The mechanical design of the SVS, previously described in the

FE modelling, is presented in Section 5.2. It had similar physical dimensions to the FE

model in terms of the diameter of the cross-sectional area of the medium and the

number and size of the flow channels included. It is a pipe model designed to simulate

two blood vessels and a lump of muscle and fat tissues. An array of 16 electrodes was

embedded within the SVS to measure the flow induced potentials due to the interaction

between flowing water (simulating blood) through the SVS and a uniform magnetic

field generated by an electromagnet. The design of the electromagnet is discussed in

Section 5.3 which includes the selection of the core material, the number of turns of the

coil and the required coil current to generate a uniform magnetic field of sufficient

magnetic flux density to be applied across the physical SVS. Section 5.4 discusses the

decision behind running the AC-excited electromagnet at frequency 30 Hz instead of 50

Hz which was used initially.  This is followed by a discussion of the design of the flow

test rig, in Section 5.5, which was used to conduct the experimental tests.

The second part  of this chapter focuses on the design of the power supply of the AC-

excited electromagnet and the AC signal conditioning system. The AC electromagnet –

referred to in Section 5.3 – required a sophisticated power supply design in order to be

supplied with the required coil current to generate the desired magnetic flux density at

50 Hz or 30 Hz. The electromagnet is an inductive load, similar to an AC motor, which

cannot be connected directly to an AC voltage supply due to its inrush current.

Inductive loads can draw current several times more than the steady-state current when

they are first turned on. This can be a serious issue which may lead to power surge or
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fire risk as the coil of the electromagnet is rated at a peak current of 10 A, and the

excessive heat due to the high inrush current can burn out the insulation between the

coil windings, causing a short circuit. In Section 5.6, the design of the 50 Hz supply is

discussed first in Section 5.6.1  as it was initially used in an attempt to measure flow

induced potential differences at the electrode array of the SVS due to water flow. Then,

the design of the 30 Hz power supply, which replaced the 50 Hz power supply and was

used for all the flow induced potential difference measurement tests described in

Chapter 7, is explained in Section 5.6.2.

The design of the AC signal conditioning system is described in Section 5.7. During the

flow induced potential difference measurement tests, the flow induced potential

differences detected by the electrodes were in the range of 10-185	ߤV. These voltage

signals  were  too  small  for  direct  analogue  to  digital  (AD)  conversion  and  hence,  they

required voltage amplification. They also had a large DC offset due to electrode

polarisation and were affected by electromagnetic interference (EMI), i.e. mains and

radio-frequency. Thus, the implementation of filters was necessary. Moreover, the

electrodes were high-impedance sources and therefore, impedance transformation was

essential to avoid loading the electrodes [172]. Loading occurs when the output of the

first circuit (electrode) has higher impedance than the input of the second circuit

(measuring circuit). As a result, a current is drawn from the first circuit causing the

actual voltage amplitude to drop. For these reasons, an AC signal conditioning circuit

was designed to overcome the above issues.

There are 16 electrodes embedded within the SVS and each electrode reading was

measured with respect to the reference electrode e5 (electrode e5 was  chosen  as  the

reference electrode). Each measurement required signal conditioning to be suitable for
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the AD conversion. It was more practical to design an analogue multiplexer circuit, so

that only one signal conditioning circuit is needed. The analogue multiplexer which was

used had 16 analogue switches which were all connected to one single output. It also

had a 4-bit binary control input which can be set digitally to select the electrode that is

required to be measured as will be shown in Section 5.8. The analogue multiplexing is

usually implemented in systems in which many electrodes (transducers) are used such

as electrical impedance tomographic (EIT) systems [173, 174].

MATLAB software was used to perform the signal analysis and processing on the flow

induced potential difference measurements. The signal conditioning circuit was

interfaced with the PC via a National Instruments (NI) PCI-6254 data acquisition device

which is presented in Section 5.9. The NI PCI-6254 is an optimised DAQ device for

accurate voltage measurement at fast sampling rates [175]. A program code was written

in MATLAB for the PCI-6254 DAQ to control the switching of the analogue

multiplexer  and  to  sample  the  output  of  the  signal  conditioning  circuit  every  time the

selection switch of the multiplexer was changed and this is discussed in Section 5.10.

5.2 The Simulated Vascular System

The physical SVS was designed and built to model a simplified human limb that has

two blood vessels. Porous ceramic was used to model the human tissue, muscles and fat

because, when it is saturated in water, it has significant electrical conductivity. This is

important as it allows the flow induced potentials to be measured at the boundary of the

SVS system. The blood vessels were simulated by holes drilled into the porous ceramic.

In  addition  to  its  porosity,  ceramic  material  was  chosen  due  to  its  high  resistance  to

corrosion, good rigidity and dimensional stability [176].
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The porous ceramic used was 40 mm in diameter, 200 mm in length. It had two holes of

10 mm in diameter drilled along its length and offset from its axis as shown in Figure

5.1, Figure 5.2 and Figure 5.3.

Figure 5.1: SVS ceramic cylinder Figure 5.2: Ceramic cylinder dimensions in mm.

Figure 5.3: Ceramic cylinder dimensions in mm.
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The ceramic cylinder is fragile because it is highly brittle and therefore, it was contained

within a plastic housing (Figure 5.4) which was machined from Delrin material. Delrin

is a non-conducting, non-magnetic material with a relative permeability of 1. The

housing had a length of 240 mm and external and internal diameters of 75 mm and

50 mm, respectively (refer to Figure 5.5). The top part of the housing can be unscrewed

to place the ceramic cylinder inside as illustrated in Figure 5.6.

The diameter of the porous ceramic is 40 mm and the inner diameter of the Delrin

housing is 50 mm; thus, when the porous ceramic was placed inside, there was a gap of

5  mm  as  shown  in  Figure  5.6.  This  gap  is  filled  with  water  when  water  is  flowing

through the SVS, and it simulates wet skin (electrolyte applied to a skin). The electrodes

of the SVS are in contact with this layer of water.

Figure 5.4: The Delrin housing and the
electrode array

Figure 5.5: Delrin housing dimensions in mm
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Figure 5.6: Porous ceramic inserted into the Delrin housing

The Delrin housing had 16 electrode housings which were machined at angular intervals

of 22.5° and each housing had a diameter of 5 mm. The electrodes used were 316L

stainless steel M5 10mm-long bolts. 316L stainless steel has a very low relative

permeability, i.e. it is non-magnetic. Non-magnetic electrodes are used in the SVS in

order to avoid any localised fluctuations in the magnetic field. If magnetic electrodes

were used, then this would affect the local magnetic flux density distribution and hence,

its overall uniformity. This would invalidate the mathematical modelling as it is

assumed throughout that the magnetic flux density is uniform. 316L stainless steel ܤ

also has a high resistance to corrosion when immersed in water due to its low carbon

property. The head of each electrode bolt was tapped in order to attach an M3 screw to

it. This allowed wires to be connected to the electrodes via solder tags as illustrated in

Figure 5.7.
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Other external parts were machined from Delrin (Figure 5.8) in order to fix the ceramic

cylinder firmly inside the Delrin housing and connect the water supply to the SVS. Two

of the parts presented in Figure 5.8(a) were made, to be placed at the top and bottom of

the Delrin housing, and 4 of the parts shown in Figure 5.8(b) were made to be placed in

the top and bottom holes which were used to connect the water supply to the SVS via

reinforced PVC hoses.

The complete system is shown in Figure 5.9 which shows the Delrin housing, the

porous ceramic and the external fittings, which were placed at the top and bottom of the

SVS.  Figure  5.10  shows  the  SVS  system  and  the  electrode  cable.  Two  metal  ‘T’

connector hose fittings were also used; one was to connect the water supply (water tap)

to both tubes at the top of the SVS and the other was to connect the ends of the tubes of

the SVS to the water drain as illustrated in Figure 5.11. Therefore, the water was

flowing in the same direction in both tubes from the top to bottom of the SVS. Figure

5.11 illustrates the SVS system, the hosing and necessary connectors. In the setup

shown, the water flows through both tubes ‘a’ and ‘b’ normally. However, to impose

water in one of the tubes only, the other tube was sealed temporarily using a cork.

(a)
(b)

Figure 5.7: (a) Tapped M5 and M3 screws; (b) solder tag attached to the electrode.
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(a)

(b)

Figure 5.8: (a) Delrin disc placed at the top and bottom of the Delrin housing; (b) fittings used to
connect the water supply to the SVS via PVC hoses
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Figure 5.9: Complete SVS designed in SolidWorks (dimensions in mm)
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Figure 5.10: SVS system and the electrode array and its cable

Figure 5.11: Flow test rig setup (without the electromagnet)
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5.3 The AC-powered Electromagnet

It was necessary to generate a uniform magnetic field across the electrode array of the

SVS pipe model. An electromagnet was chosen for this application as it was more

suitable in practical terms in comparison to the Helmholtz coil because it is able to

generate a stronger magnetic field for the same amount of current due to its

ferromagnetic core. The electromagnet design consisted of two parts: (1) the

ferromagnetic core and (2) the coil. The ferromagnetic core had a high permeability to

increase the strength of the magnetic field and the number of turns of the coil windings

depended on the required magnetic flux density .଴ valueܤ

5.3.1 The Electromagnetic Core Design

The SVS had an external diameter of 75 mm (outer diameter of the Delrin housing) and

the protrusion of the electrodes was about 3 mm. Therefore, a C-shaped ferromagnetic

core was manufactured to have an air gap of 80 mm × 80 mm. The ferromagnetic core

was manufactured from laminated silicon steel sheets of 0.3 mm in thickness (M4

lamination  grade)  to  minimise  power  losses  due  to  eddy currents.  This  type  of  silicon

steel has relative permeability ௥ ofߤ  around  40,000.  The  mean  length  of  the  core  was

0.8 m and its cross-sectional area was 6400 mm2. The density of silicon steel is around

7670 kgm-3[177] and therefore, the mass (mass=density×area×length) of the core was

39 kg approximately. Figure 5.12 depicts the 3D model of the silicon steel core

designed in SolidWorks and Figure 5.13 shows the practical build. It is important to

note that the silicon steel which was used has a magnetic saturation point of 1.5 T,

which means that, after this point, any increase in the coil current ଴ or the number ofܫ

turns ܰ will not result in an increase in the magnetic flux density ଴. The operatingܤ

temperature range of this core is between −55° C and 300° C.
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Figure 5.12: Dimensions of the silicon steel core

Figure 5.13: The practical build of the silicon steel core
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5.3.2 The Electromagnet Coil Design

Based on the computer FE modelling work (Chapter 4), a magnetic flux density of ܤ

50 mT (500 gauss) generated in the air gap of the electromagnet is sufficient to induce a

potential difference of 260 V between electrodes e1 andߤ  e9 for  a  flow  rate  of

118×10-6 m3/s. Voltages down to 10 V are detectable using a carefully designed signalߤ

conditioning system which is explained in depth in Section 5.7. To achieve a peak

magnetic flux ଴ of 50 mT, the number of coil turnsܤ ܰ, the peak supply voltage ଴ܸ and

peak coil current .଴ were calculated using the magnetic circuit theory [153]ܫ

The peak magnetic flux density ଴ in the air gap of the electromagnet can be describedܤ

in terms of the peak supply voltage ଴ܸ, the peak current ଴, the reluctance of the air gapܫ

ℛ௚ (the reluctance of the core is negligible), the area of the air gap ௚ and the frequencyܣ

of the supply voltage ݂ as shown below

଴ܤ =
1
௚ܣ

ඨ ଴ܸܫ଴
ℛ௚݂ߨ2

Eq. 5-1

The derivation of Eq. 5-1 is provided in Appendix B. Another important equation is the

relationship between the inductance of the electromagnet the number of turns of the ,ܮ

coil ܰ and the reluctance of the air gap ℛ௚ (reluctance of the core is negligible) [153]

which is given by

ܮ =
ܰଶ

ℛ௚

Eq. 5-2

Practical electromagnets suffer from leakage and fringing fluxes (at the air gap) unlike

an ideal electromagnet (refer to Figure 5.14). This means that the magnetic flux density

଴ inܤ  the  air  gap  of  the  core  would  be  less  than  that  predicted  theoretically.  The  total
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magnetic flux produced by the electromagnet is the sum of the magnetic useful, fringing

and leakage fluxes. For this electromagnet, the total magnetic flux is produced at the

centre of the coil and the useful magnetic flux is generated in the air gap of the core.

This useful magnetic field is near uniform as will be seen in Section 6.8.

The leakage and fringing fluxes can be modelled as reluctance ℛ௅ in parallel with the

air gap reluctance ℛ௚ as  shown  in  Figure  5.15.  They  can  be  accounted  for  by

introducing a factor ݇ in Eq. 5-1 and Eq. 5-2; hence, these equations can be written as,

଴ܤ =
1
௚ܣ

ඨ ଴ܸܫ଴
ℛ௚݂݇ߨ2

Eq. 5-3

ܮ =
ܰଶ݇
ℛ௚

Eq. 5-4

where ݇ is the ratio between the calculated air gap reluctance ℛ௚ and the actual air gap

reluctance ℛ஺. This means that the actual reluctance of the air gap ℛ஺ is less than the

calculated reluctance ℛ௚ by a factor of ݇. In other words, the actual inductance of the

electromagnet is higher than the calculated inductance by the factor ݇ as the inductance

of the magnetic circuit is inversely proportional to the reluctance of the air gap of the ܮ

core (reluctance of the core is negligible) as shown in Eq. 5-2.

The factor ݇ can be found experimentally (or using FE tools) by finding the inductance

for a given number of turns ܮ ܰ and then calculating the actual and the theoretical air

gap reluctances ℛ஺ and ℛ௚, respectively, using Eq. 5-2. For this electromagnet ݇ was

measured to be 10.7. The calculations that were performed to determine the number of

turns ܰ and the current required for the coil to generate a peak magnetic flux ௣ of 0.05ܤ

T in the core air gap are shown below.
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Figure 5.14: The ideal electromagnet

Figure 5.15: The practical electromagnet

The reluctance of the core air gap ℛ௚ was determined to be equal to 9.95 M At/Wb. The

area  of  the  core  air  gap  was  6400  mm2. For a peak supply voltage ଴ܸ of 340 V (240

Vrms) and a frequency ݂ of 50 Hz, the required peak current ଴ can be determined usingܫ

Eq. 5-3 as follows,

଴ܫ =
௚ଶℛ௚ܣ଴ଶܤ(݂݇ߨ2)

଴ܸ
=

ଶ(6.4(0.05)(50)(10.7)ߨ2 × 10ିଷ)ଶ(9.95 × 10଺)
340 ≈ ܣ	10

The reactance of the electromagnet ܺ௅ was calculated as follows
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ܺ௅ = ଴ܸ

଴ܫ
=

340
10 ≈ 34Ω

The inductance was found from ܮ

ܮ =
ܺ௅

݂ߨ2 =
34

(50)ߨ2 ≈ 110mH

Finally, the number of turns of the coil ܰ was calculated using Eq. 5-4 as follows

ܰ = ඨܮℛ௚

݇ = ඨ(110 × 10ିଷ)(9.95 × 10଺)
݇ ≈ 320	turns

The coil was wound on the side of the core and opposite the core air gap.

The wire selected for the coil was multi-stranded (170 strands) enamelled copper wire.

Multi-stranded  wire  had  to  be  used  in  order  for  the  wire  to  be  flexible  enough  to  be

wound around the core. Each strand had a diameter of 0.14 mm and the 170 strands in

total created a cross sectional area of 2.62 mm2 (diameter of 1.83 mm) which is the

same cross-sectional area as 15 SWG wire gauge (13 AWG). The 15 SWG wire gauge

is rated at a peak current of 10 A (7 Arms). For 320 turns, the total length and weight of

the wire used were approximately 102 m and 2.2 kg, respectively. The coil windings

were wound on the core in 6 layers and each layer was insulated with high-temperature

silicone polyimide tape to hold the windings in place. Figure 5.16 and Figure 5.17 show

the electromagnet under construction and the finished unit.
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Figure 5.16: The AC electromagnet under construction.

Figure 5.17: The complete AC electromagnet

5.4 Operating Frequency of the Electromagnet

Initially, the electromagnet was built to operate at mains supply voltage and frequency

(240 V and 50 Hz); however, it was found at a later stage that this operating frequency

would  not  be  ideal  for  the  operation  of  the  practical  system  due  to  50  Hz  mains

interference. The flow induced potential differences, resulting from the interaction

between the uniform magnetic field generated by the electromagnet and water flow at
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the electrode array of the SVS, also had the same frequency and it was difficult to

distinguish the flow potentials from the mains noise.

Fluorescent lights, motors or power cables induce and/or radiate noise at mains

frequency which can enter an electric/electrical system in number of ways including

capacitive and inductive coupling [154]. This noise was coupling to the voltage

measurement electronics of the signal conditioning system. It was also detected by the

electrodes embedded within the SVS. Using electrostatic shielding (Faraday’s cage)

would have reduced this noise, but this method would not work if the noise was

magnetically induced [155]. Magnetic shielding would be required to reduce the

magnetically induced noise.

The alternative solution was to operate the electromagnet at 30 Hz which meant that the

flow induced potential differences had a unique frequency. This enabled the signal

conditioning and processing systems to detect these potential differences accurately.

The peak magnetic flux density ଴ would be the same forܤ ଴ܸ = 340 V at  50 Hz as the

peak for ଴ܸ =  200  V at  30  Hz since  both  settings  give  a  peak  coil  current = ଴ܫ  10  A.

Moreover, the inductive impedance is directly proportional to the frequency of the

voltage supply, i.e. ܺ௅ = Hence, lowering the frequency of the supply voltage .ܮ݂ߨ2

decreases the impedance ܺ௅ allowing more current to flow, but when the voltage is also

reduced, the current can be maintained in the circuit. This is explained in depth in

Section 5.6.

5.5 The Complete SVS Test Rig

The SVS pipe model was inserted into the core air gap of the electromagnet and it was

ensured that the embedded electrode array was at the centre of the air gap as illustrated
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in Figure 5.18. The electromagnet was placed flat down on a wooden stand. The stand

was also drilled so that the SVS could be fitted in and held firmly. The water supply

was connected to the SVS via the reinforced PVC hoses, and some additional pipe

fittings were used as explained earlier in Section 5.2.

The total flow rate of a fluid in a circular pipe section ܳ is given by

ܳ =
ߨ
4 ݒ ∙ ݀

ଶ Eq. 5-5

where is the fluid flow velocity and ݒ ݀ is the diameter of the circular pipe. The total

water flow rate ܳ௪ through both SVS tubes was measured to be around

210 × 10ି଺  m3/s  (12.44  L/min).  Using  Eq.  5-5,  the  water  flow  velocity  through  each

tube ,௪ was calculated as follows (each tube has a diameter of 10 mm)ݒ

௪ݒ =
1
2 ×

4ܳ௪
ଶ݀ߨ =

2(210 × 10ି଺)
10)ߨ × 10ିଷ)ଶ = 1.34	m/s

The SVS was connected directly to a water tap and since there was no water flow

stabiliser the flow rate could vary slightly from one test to another. However, a

reference measurement was taken immediately before the start of each test. This

measurement was performed by finding the time it took for the water flow through the

SVS  to  fill  a  2  L  calibrated  bucket.  Then,  the  flow  rate  was  found  by  dividing  the

volume of water in the bucket by the total time. The PVC hose connecting the bottom of

the SVS to the water drain was easy to insert in the calibrated bucket.
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Figure 5.18: The flow test rig, the SVS and AC electromagnet

5.6 Electromagnet Power Supply Design

5.6.1 Operating the Electromagnet at 50 Hz

The electromagnet was initially powered by mains power supply in an attempt to

measure the flow induced potentials detected by the electrode array before switching to

the 30 Hz power supply. The electromagnet was connected to the mains power supply

via a variable AC transformer (variac). This allowed the voltage across the

electromagnet to be increased gradually to avoid inrush current associated with

inductive  loads  as  explained  in  Section  5.1.  The  setup  of  the  electromagnet  and  the

power supply is shown in Figure 5.19. A power analyser (PA) was used to monitor the

voltage, current and the active and reactive powers supplied to the electromagnet.
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L

Figure 5.19: Electromagnet setup for 50 Hz operation

Power in AC Circuits

The electromagnet is an inductive load which has a very small resistance. The total

current .drawn from the mains supply to the electromagnet is a complex number, i.e ்ܫ

்ܫ = ோܫ − ௅ܫ݆ Eq. 5-6

 The real part of the current ோ (load current) is drawn due to the effective resistanceܫ

ܴ௘௙௙  in the electromagnet. The effective resistance is different from the DC resistance

due to effects related to time-varying voltage and current, in other words, radiation

losses, eddy currents and hysteresis losses [153]. The imaginary part of the current ௅ܫ݆

(magnetising current) is the current necessary for the electromagnet to generate the

required magnetic flux density in the air gap of the electromagnet. The total power

delivered from the mains supply to the electromagnet is known as the apparent power ܵ

(unit: VA), and is given by the magnitude product of the voltage supply ܸ and the total

current as shown in the following equation [153] ்ܫ

ܵ = ்ܫܸ Eq. 5-7
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For a pure inductive load, the total current lags the voltage by 90°. However, the

electromagnet has a very small resistance and therefore, the total current would lag ்ܫ

the voltage by an angle that is slightly less than 90°.  The  power  consumed due  to  the

effective resistance ܴ௘௙௙  is called the real (or active) power ܲ (unit:  watt)  and  it  is

expressed mathematically as

ܲ = ்ܫܸ cosߠ Eq. 5-8

where is the angle at which the total current ߠ lags the supply voltage ்ܫ ܸ and cosߠ is

called the power factor (PF) of the electric circuit. From Eq. 5-7 and Eq. 5-8, the PF is

the ratio between the real power ܲ and the apparent power ܵ, i.e.

PF =
ܲ
ܵ

Eq. 5-9

When  the  PF  is  1,  the  load  is  purely  resistive  and  when  it  is  0,  the  load  is  purely

inductive.  This  gives  an  indication  of  how resistive  or  inductive  the  load  is.  For  most

loads the is usually between 0 and 1. The real power ܨܲ ܲ is also given in terms of the

total current and effective resistance ்ܫ ܴ௘௙௙  as follows

ܲ = ଶܴ௘௙௙்ܫ Eq. 5-10

The power associated with the inductive (reactive) element of the electromagnet is

called the reactive power ܳ௅  (unit: VAr) and is calculated as follows

ܳ௅ = ܵ sinߠ Eq. 5-11

or

ܳ௅ = ଶܺ௅்ܫ Eq. 5-12

where ܺ௅ is the reactance of the inductor. This reactive power is drawn during the

positive AC half cycle and returned to the power supply during the negative AC half
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cycle, and therefore, the net flow of power is zero. In other words, the reactive power is

not dissipated at the load (electromagnet) and it only travels back and forth between the

power supply and the load. Capacitors are also reactive elements and therefore, they

draw reactive power ܳ஼  from, and return it to, the power supply. Eq. 5-11 and Eq. 5-12

also apply to capacitors. However, the reactance of the capacitor ܺ஼  is given by

ܺ஼ =
1

ܥ݂ߨ2
Eq. 5-13

where ݂ is the frequency of the supply voltage and is the capacitance. The difference ܥ

between a capacitor and inductor is that the current leads the voltage by 90° in the

capacitor, whereas in the inductor the current lags the voltage by 90°.

All three powers are related by the Pythagorean Theorem [153] (Figure 5.20), that is,

ܵଶ = ܲଶ + ܳଶ Eq. 5-14

Figure 5.20: (a) Power diagram for inductive loads
                      (b) Power diagram for capacitive loads

Power Factor Correction

PFC refers to a method by which a capacitor is placed in parallel (refer to Figure 5.21)

with the inductive load in order to bring the PF to unity. This has the advantage of

reducing the total current drawn from the ்ܫ  power  supply.  The  implication  of  having

the total current reduced is that the power requirements for the power supply and the ்ܫ
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variable transformer can be minimal and this is beneficial in terms of the physical size

and cost of equipment.

effR

L

TI

CI

sI

Figure 5.21: Placing a capacitor in parallel with the electromagnet for PFC

In Figure 5.21, the total current is ்ܫ  the algebraic sum of the current flowing through

the capacitor ஼ܫ  and the current following through the inductive load ௦ܫ = ோܫ − ௅ܫ݆

(Kirchhoff’s current law).

Thus,

்ܫ = ஼ܫ݆ + ோܫ − ௅ܫ݆ = ோܫ + ஼ܫ)݆ − (௅ܫ Eq. 5-15

If ஼ܫ = ௅ܫ  then,

்ܫ = ோܫ + ݆(0) = ோܫ < 0° Eq. 5-16

It can be seen that the total current is now in phase with the supply voltage, and as far ்ܫ

as the power supply is concerned the load looks ‘resistive’. All the power supplied to

the load is absorbed, achieving maximum efficiency. By setting ܺ஼ = ܺ௅  (to  get ஼ܫ =

௅), the capacitor and the inductive part of the load are at resonance. The resonanceܫ

frequency ߱଴ is given by
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߱଴ = ଵ
√௅஼

   or ଴݂ = ଵ
ଶగ√௅஼ Eq. 5-17

A parallel circuit, at resonance, theoretically has an infinite impedance looking at its ܥܮ

input terminals. The total impedance of the parallel .network , i.e ܥܮ ்ܼ, is presented in

the following equation

்ܼ =
ܼ஼ܼ௅
ܼ஼ + ܼ௅

Eq. 5-18

where ܼ஼ = −݆ܺ஼  and ܼ௅ = ݆ܺ௅ . Hence, Eq. 5-18 can be written as

்ܼ =
ܮ݆߱−

߱ଶܥܮ − 1
Eq. 5-19

when the frequency of the power supply ߱ (or is equal to the resonant frequency (݂ߨ2

߱଴, i.e. ߱ଶܥܮ = 1, the total impedance is infinity.

Note that the peak current ଴ flowing between the capacitor and the electromagnet coilܫ

is not at minimum and is given by

଴ܫ = ଴ܸ

ܺ௅
Eq. 5-20

Calculation of the PFC Capacitor

The reactance of the electromagnet ܺ௅ was calculated previously in Section 5.3.2 to be

34 Ω at 50 Hz. The capacitance value should be selected so that the reactance of the ܥ

capacitor ܺ஼  is equal to the reactance of the electromagnet ܺ௅, i.e. ܺ஼ = ܺ௅ , at the same

operating frequency to implement the PFC. The value of the capacitance is calculated ܥ

as follows:

ܺ஼ =
1

ܥ݂ߨ2 = 34	Ω
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For a frequency ݂ of 50 Hz,

ܥ =
1

஼݂ܺߨ2
=

1
(34)(50)ߨ2 ≈ Fߤ	94

When the electromagnet was tested in the laboratory using the same setup as shown in

Figure 5.19, the voltage supply was 242 V, and for a current of 7.07 A (10 Apk), the

reactance of the electromagnet was

ܺ௅ =
ܸ
ܫ =

242
7.07 = 34.23	Ω

Therefore, the capacitance value was slightly less as shown below:

ܥ =
1

஼݂ܺߨ2
=

1
(34.23)(50)ߨ2 ≈ Fߤ	93

when the capacitor (rated at 13 A) was placed in parallel with the electromagnet, the

total current drawn from the ்ܫ  mains  supply  was  629  mA which  means  that  the  total

required current was reduced by 91%. The PF was also increased to 0.5 from 0.05.

When the capacitor was not placed in parallel with the electromagnet, the AC variable

transformer had to be rated at 8 A (rms value) at least, whereas with the capacitor

inserted, the AC variable transformer was replaced with another transformer rated at

1 A.

5.6.2 Operating the Electromagnet at 30 Hz

It was discussed in Section 5.4 how the electromagnet was operated at 30 Hz for the

practical setup to avoid mains interference affecting the flow rate measurement

experiments (see Section 5.4 for details). The electromagnet was operated previously at

50 Hz, which is the frequency of the mains supply, and for a 30 Hz operation, a new
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design of power supply was required. The reactance of the electromagnet at 30 Hz

would change as it is dependent on the frequency. The new reactance was

ܺ௅ = ܮ݂ߨ2 = 110)(30)ߨ2 × 10ିଷ) ≈ 20.7Ω

For a peak current of 10 A (to maintain the desired magnetic flux density the voltage ,(ܤ

across the electromagnet should be,

଴ܸ = ଴ܺ௅ܫ = (10)(20.7) = 207	V

For the PFC, the capacitance value was also changed to ܥ

ܥ =
1

௅݂ܺߨ2
=

1
(20.7)(30)ߨ2 ≈ Fߤ	260

The new power supply was comprised of a Topward 8105 function generator, an

LPA05A  power  amplifier  and  a 1: 5 custom-made step-up transformer. Figure 5.22

shows the new power supply, the PFC capacitor and the electromagnet RL model.

Figure 5.22: Electromagnet setup for 30 Hz operation

The function generator has a frequency range of 0.1 Hz to 2 MHz, an AC peak output

voltage  of  2.5  V  to  10  V and an AC output peak current of 1.4 A [178]. The power

amplifier has an AC peak input voltage of ±4 V, an AC output voltage of ±40 V and a

maximum AC output peak current of 5 A [179]. The ratio of the step-up transformer

was selected by finding the ratio between the peak voltage required across the
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electromagnet ଴ܸ, which is 207 V, and the peak voltage of the power amplifier, which is

40 V. The result is 5.2; however, experimentally, it was found that a voltage of about

200 V was required to achieve a peak current of 10 A in the coil of the electromagnet.

The peak current rating of the primary of the transformer is the same as the current

rating of the power amplifier which is 5 A. The calculations for the peak current rating

of the secondary of the transformer are detailed below.

From the transformer theory [153] and referring to Figure 5.23,

+

-

+

-
pE sE

pN sN

pI sI

Figure 5.23: Iron-core transformer

The ratio between the magnitude of the induced voltages of the primary ௣ and theܧ

secondary ௦ is equal to the ratio between the number of turns of the primaryܧ ௣ܰ and the

number of turns of the secondary ௦ܰ  and is given by

௣ܧ
௦ܧ

= ௣ܰ

௦ܰ

Eq. 5-21

Moreover, the ratio between the primary and the secondary currents of the transformer

is the ratio between the number of turns of the secondary and the number of turns of the

primary i.e.

௣ܫ
௦ܫ

= ௦ܰ

௣ܰ

Eq. 5-22

From Eq. 5-21 and Eq. 5-22, the following relationship can be deduced, i.e.
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௣ܧ
௦ܧ

=
௦ܫ
௣ܫ

Eq. 5-23

From Eq.  5-23,  it  can  be  seen  that  if  the  primary  voltage  is  amplified  by  a  factor,  the

maximum output current of the secondary would be reduced by the same factor. Hence,

for a voltage ratio of 1:5, the current ratio would be 5:1. The primary peak current was

5 A and therefore, the secondary peak current was 1 A, and this is the maximum current

that  can  be  drawn  from  the  power  supply  –  avoiding  the  risk  of  damaging  the  power

amplifier.

5.7 AC Signal Conditioning System Design

The flow induced voltage signal detected between each electrode and electrode e5

consisted  of  4  components:  (1)  a  small  flow  induced  potential  difference  (2)  a

transformer induced voltage (3) a large DC offset due to electrode polarisation and (4)

radio-frequency and mains interference. The small flow induced potential differences

required amplification for suitable AD conversion. The transformer induced voltage

arises from the electrode loop which is formed by the electrode, the cable and the

conductive fluid, in the presence of a changing magnetic field [180].

The flow induced potential differences are proportional to the magnetic field strength,

whereas the transformer voltages are proportional to the time derivative of the magnetic

field as shown in Eq. 2-19 in Section 2.5.2. The separation between the flow induced

potential differences and the transformer induced voltage was achieved by using a phase

sensitive detection method [181] which is explained in detail in Chapter 6. This was

necessary as the transformer induced voltage was the largest (dominant) of the total

voltage signal components (typically a few mV) measured by the electrodes, and it was

not possible to determine the flow induced potential differences without using this
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method. However, the transformer induced voltages were initially attenuated by using

twisted-pair cables and aligning the electrode cables at the electrode array in such a way

that they were parallel to the magnetic field in the electromagnet air gap. This meant

that any electrode loop was not cut by the time-varying magnetic field by a large angle.

The advantage of minimising the transformer voltages lay in avoiding a compromise of

the gain value of the signal conditioning system in order to ensure that the system did

not exceed its operational dynamic range.

Polarisation occurs due to ion-electron exchange between electrodes and water, which is

a weak electrolyte. The result of polarisation is the presence of a large DC offset in the

voltage signals picked up by the electrodes. Large DC offsets would limit the gain that

can be set in the amplifier circuit to amplify the very small flow induced potential

differences. High gain amplification is essential for accurate flow rate measurements as

the flow induced potential difference signals were in the V range. Radio-frequency andߤ

mains interference often exist in any environment where fluorescent lighting, electronic

equipment and electrical machines are present and should preferably be attenuated to

ensure  a  high  signal  to  noise  ratio.  Each  of  these  components  (apart  from  the

transformer induced voltages) was addressed by the AC signal conditioning circuit

described below. Note that these issues are often encountered in electrode-based

systems such as the medical instrumentation developed for Electrocardiography and

Electroencephalography. Following detailed analysis of previous literature and

application notes for such medical devices as well as datasheets supplied by

semiconductor manufacturers [111, 157, 182-185], the following novel AC signal

conditioning circuit was designed.
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5.7.1 Description of the AC Signal Conditioning Circuit

The schematic diagram of the AC signal conditioning circuit is illustrated in Figure

5.24. It is comprised of the radio frequency interference (RFI) suppression filter, the 1st-

stage AC-coupled instrumentation amplifier, the 2nd-stage inverting amplifier and the

“right-leg” drive amplifier. Each part of the signal conditioning system is explained

independently in the following sections. Note that all amplifiers were powered by a

±15 V dual DC power supply.

Figure 5.24: AC signal conditioning circuit

5.7.2 RFI Suppression Filter

The RFI filter is a low-pass filter (Figure 5.25) that attenuates common and differential

RF signals which may be superimposed on the voltage signals detected by the

electrodes.  These  RF  signals  normally  range  from  535  kHz  (AM  radio)  to  2-3  GHz

(mobile phones and WIFI).  The purpose of the RFI filter is to attenuate any strong RF

signals that could be detected by the electrodes. The INA128 instrumentation amplifier
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(IA),  which  is  used  in  this  circuit  design  and  other  modern  instrumentation  amplifiers

are very efficient at attenuating common-mode frequencies from dc to 100 Hz; hence,

they are attractive to be used for low frequency measurements as they can reject 50/60

Hz – the common source of noise in low frequency measurements. However, their

performance starts to degrade significantly for higher frequencies. Moreover, they

cannot reject RF signals that are not common to their inputs. The absence of the RFI

filter at the instrumentation amplifier input may cause the amplifier to rectify the RF

signals  (become  DC  voltage),  and  this  leads  to  a  DC  offset  error  at  the  output  of  the

amplifier [186, 187].

Figure 5.25: RFI differential filter

The  RFI  filter  shown  in  Figure  5.25  has  differential  (differential  signal  applied)  and

common-mode (common signal applied) bandwidths. The passive networks ܴଵܥଵ and

ܴଶܥଶ provide AC common-mode rejection and the capacitor ଷ adds a differentialܥ

signal rejection capability. The −3 dB common-mode bandwidth is shown in the

following equation,

௖݂௢௠ =
1

ܥܴߨ2
Eq. 5-24

where ܴ is  the  value  of ܴଵ and ܴଶ and is ܥ  the  value  of ଵ andܥ ଶ. Theܥ −3 dB

differential bandwidth ௗ݂௜௙௙  is given by
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ௗ݂௜௙௙ =
1

ଷܥ2)ܴߨ2 + (ܥ
Eq. 5-25

The ܴଵܥଵ and ܴଶܥଶ networks should be as closely matched as possible since any

mismatch reduces the high common-mode rejection ratio of the IA. However, the

capacitor ,ଷܥ shown in Figure 5.25, reduces any AC common-mode rejection errors

(common-mode signal becomes differential) from ଵ andܥ ଶ mismatching. As a designܥ

guideline, it is recommended that ଷ is set to be 10 times larger thanܥ ଵ andܥ ଶ as thisܥ

would reduce the AC common-mode error arising from ଵ andܥ .ଶ mismatch [187]ܥ

The component values used for the RFI filter were as follow; the resistors ܴଵ and ܴଶ

were set to 100 kΩ, the capacitors ଵ andܥ .ଶ were set to 68 pF and C3 was set to 1.5 nFܥ

Using Eq. 5-24 and Eq. 5-25, the −3 dB common-mode and differential cut-off

frequencies are 23.4 kHz and 517 Hz, respectively. These two −3 dB frequencies are

confirmed in simulation as shown in Figure 5.26 and Figure 5.27. All circuit simulation

work, performed in this research, is performed using TI-TINA 9 SPICE software [188].
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Figure 5.26: Frequency response of the RFI filter for a common--mode signal at the inputs

It can be seen in Figure 5.26 that the RFI filter attenuates considerably RF common-

mode  signals  and  that  is  important  for  the  proper  operation  of  the  IA  as  explained

above.  Figure  5.27  shows  the  frequency  response  of  the  RFI  filter  for  a  differential

signal in simulation. If a differential RF signal above 517 Hz is present at either one of

the electrodes connected to the signal conditioning, it will be attenuated significantly by

the RFI filter.
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Figure 5.27: Frequency response of the RFI filter for a differential signal at the inputs

Note that Figure 5.27 shows that at 30 Hz, there is a phase lag of 3.32o between the

output and the input of the filter. This is a critical point as the flow induced potential

difference at each electrode (with respect to e5) is at 30 Hz (differential signal), and in

order to effectively distinguish it from the transformer induced voltage using the PSD

technique (explained in Chapter 6), the AC signal conditioning circuit should not

introduce any phase lead or lag from its input to output otherwise, error in the flow

induced potential difference measurements will occur. Nevertheless, the overall phase

lead or lag from input to output of the signal conditioning circuit was measured and

then, compensated for in the PSD software which is explained in the next chapter.

5.7.3 1st-stage AC-coupled Instrumentation Amplifier

There are two important advantages of using an IA: (1) it has very high input impedance

(≈1GΩ)  and  (2)  it  has  very  high  CMRR  (≈100 dB) at low frequencies, i.e. dc to
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100 Hz. The INA128 instrumentation amplifier that was used for this circuit has a very

low offset  voltage  (50 V) and low temperature drift (0.5ߤ (°V/Cߤ  [189].  The   gain  of

IA, ூ஺, was limited to 10 due to the high DC offsetܩ ଴ܷ which can be several orders of

magnitude higher than the amplitude of the AC signal measured by the electrodes (flow

and transformer induced voltages and EMI). Once the DC offset is removed via the

AC-coupling technique (DC rejection, see below) of the IA, the voltage signal ௝ܷ,௙ is

amplified by a gain of 100 provided by the 2nd-stage inverting amplifier to achieve an

overall gain of 1000. The gain of the IA (INA128) was set by the gain resistors ܴீଵ and

ܴீଶ (Figure 5.28).

The value of each resistor was 2.8 kΩ with a tolerance of 1%. The total resistance was

therefore, 5.6 kΩ. According to the IA datasheet [189], the gain equation is given by

ூ஺ܩ = 1 +
50	kΩ

ܴீଵ + ܴீଶ
Eq. 5-26

Thus,  for  the  given  resistor  values,  the  total  gain  of  the  IA  was  9.93.  The  reason  for

splitting the gain resistor ܴீ  into two equal resistors ܴீଵ and ܴீଶ was to obtain the

common-mode signal at the inputs of the IA, which is necessary for the implementation

of the “right-leg” drive amplifier circuit.
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Figure 5.28: AC-coupled instrumentation amplifier

The AC-coupling was implemented by introducing an active low-pass filter in the

feedback to the reference pin of the IA. The low-pass filter consisted of an RC low-pass

network ܴଷܥସ and FET-input op-amp OPA2137A. The OPA2137A is a dual op-amp

that is suitable for applications such as active filters [190]. The other op-amp was used

for the final gain stage (x100) of the signal conditioning circuit. The –3 dB frequency of

the low pass filter is given by

௅݂௉ =
1

ସܥଷܴߨ2
Eq. 5-27

For the resistor value ܴଷ of  82  kΩ and the capacitor value ସ ofܥ  1 F, theߤ −3 dB

frequency is 1.94 Hz. The low-pass filter removes the higher frequencies from the

output of the IA and passes and inverts the amplified DC offset ூ஺ܩ ଴ܷ. The AC-coupled

IA, in principle, is a high-pass filter with a −3 dB frequency given in Eq. 5-27. The

transfer function of the low-pass filter is given in Eq. 5-28.
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(ݏ)ܲܮ =
1
߬ଵݏ

Eq. 5-28

where ߬ଵ is the time constant and is equal to ܴଷܥସ. The closed loop transfer function of

IA with the feedback low-pass filter is [191]

(ݏ)ܲܪ =
ூ஺ܩ

1 + (ݏ)ܲܮூ஺ܩ
Eq. 5-29

Substituting Eq. 5-28 into Eq. 5-29 gives

(ݏ)ܲܪ =
ݏூ஺߬ଵܩ

1 + ݏூ஺߬ଵܩ
Eq. 5-30

Eq.  5-30  represents  a  high  pass  transfer  function  with  a  gain  of ூ஺ andܩ −3 dB

frequency that is given in Eq. 5-27. The frequency response of the transfer function in

Eq. 5-30, in simulation, is shown in Figure 5.29. Referring to Figure 5.29, the −3 dB

frequency of the IA filter is 1.94 Hz which appears as 17 dB due to the gain ூ஺ of 20ܩ

dB (gain of 10). The phase shift between the input and the output of the AC-coupled

instrumentation amplifier (1st stage)  at  30  Hz  is −177.08°. However, the AC-coupled

instrumentation amplifier (Figure 5.28) is followed by an inverting amplifier (Figure

5.31),  so  the  overall  effect  of  the  1st-stage  amplifier  and  the  2nd-stage amplifier is a

phase lead of 2.92° (−177.08° +180°).

The AC-coupling could be implemented by placing two RC high-pass networks at the

inputs of the IA. However, this would lower the input impedance and degrade the

CMRR of the IA due to impedance imbalance caused by mismatched components. A

1% mismatch  for  two 1  MΩ resistors can already create a −60 dB loss  in  the  CMRR

[192].

Both the RFI suppression filter (low-pass filter) and the overall 2-stage amplifier (high-

pass filter) form a band-pass filter as shown in the simulation of the frequency response
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in Figure 5.30. The lower −3 dB frequency is 1.94 Hz and the higher −3 dB frequency

is 517 Hz. The phase integrity between the inputs of the AC signal conditioning circuit

and the output is critical for the PSD technique (Chapter 6) to work effectively.

However, phase lag and lead are introduced by the low-pass and the high-pass filters,

respectively. In simulation, the RFI filter caused a phase lag of 3.32o (refer to Figure

5.27) and the 2-stage amplifier caused a phase lead of 2.92o (refer to Figure 5.29). Thus,

the net effect of the phase lag of the RFI filter (−3.32°, see Section 5.7.2) and the phase

lead of 2-stage amplifier (2.92°) is a phase lag of 0.4° between the input of the RFI

circuit and the output of 2-stage amplifier when they are connected in series.

In the practical circuit (refer to Section 6.9), this phase shift was measured as 2.4°

(leading) due to component tolerances; however, it was compensated for in the PSD

software as explained in Section 6.6. Note that Figure 5.30 shows the frequency

response between the input and output of the RFI and 1st-stage AC-coupled amplifier

circuits  only,  thus;  the  phase  of  the  output  of  IA  is −180.4o at  30  Hz.  When  it  is

inverted by 180o due to the 2nd-stage inverting amplifier, the phase becomes −0.4o.
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Figure 5.29: Frequency response of the 1st-stage AC-coupled instrumentation amplifier

Figure 5.30: Frequency response of the RFI filter and the 1st-stage amplifier
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5.7.4 2nd-stage Gain Inverting Amplifier

In Figure 5.24, the 2nd-stage gain inverting amplifier (also shown in Figure 5.31) boosts

the measured signal by a factor of 100. The gain is set by R6 = 1 kΩ and R7 = 100 kΩ.

Hence,  the  overall  gain  of  the  signal  conditioning  circuit,  including  both  1st-stage and

2nd-stage amplifiers, was about 1000 approximately.

6R

7R

Figure 5.31: 2nd-stage inverting amplifier

5.7.5 “Right-leg Drive” Inverting Amplifier

The  CMRR  of  the  signal  conditioning  circuit  is  a  measurement  that  shows  how  the

AC-coupled instrumentation amplifier (or any differential amplifier) effectively rejects

a signal that  is  common to both its  inputs.  It  is  defined as the ratio of the differential-

mode gain ௗ to the common-mode gainܣ ௖௠ and is often expressed in dB as shown inܣ

Eq. 5-31.

ܴܴܯܥ = 20 logଵ଴
ௗܣ

|௖௠ܣ|
Eq. 5-31

All  the  CMRR  tests  in  this  section  were  performed  in  simulation  using  TINA-TI  9

software (Refer to Appendix C) by applying 50 Hz at both inputs (common-mode) of

the AC-coupled instrumentation amplifier to simulate mains interference – the main

source of noise at low frequency measurements. The flow induced potential differences
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are not affected by the CMRR of the AC-coupled amplifier as they are differential

signals. Referring to Figure 5.24, assuming that the impedances of the ݆௧௛  electrode ௝ܼ

and the reference electrode ܼହ are matched, and the RC networks of the RFI filter are

also identical, the CMRR of the circuit would be around 106 dB at 50 Hz as shown in

Figure 5.32. Note that on the Gain vs Frequency plot in Figure 5.32, the −86 dB gain

measurement at 50 Hz, at the output of the IA, is after 20 dB gain (gain of 10); thus the

input referred CMRR is 86 dB plus 20 dB which gives 106 dB. The CMRR value was

also confirmed by comparing it to the INA128 datasheet [189].

For unbalanced source impedances ௝ܼ (impedance  of  the ݆௧௛  electrode) and ܼହ

(impedance of electrode e5), the output of the AC-coupled instrumentation amplifier,

ூܷ஺, with a finite CMRR, gain of ூ஺ and input impedanceܩ ܼ௜௡, is given by [111]

ூܷ஺ = ூ஺ܩ ௝ܷ,௙ +
ூ஺ܩ ௖ܷ௢௠

ܴܴܯܥ + ூ஺ܩ ௖ܷ௢௠ ቆ1−
ܼ௜௡

ܼ௜௡ + ௝ܼ − ܼହ
ቇ

Eq. 5-32

where ௖ܷ௢௠ is the common-mode voltage, i.e. RF and mains interference. Unbalanced

source impedances in the range of 5 kΩ to  10  kΩ are common in electrode-based

systems [111]. For a 1% mismatch between the RC networks of the RFI filter alone, the

CMRR drops to 94 dB (74 dB on graph) at 50 Hz, as shown in Figure 5.33. In practice,

there is always a mismatch in electrode impedances, cable impedances and the RC

networks, which are connected to the inputs of the AC-coupled instrumentation

amplifier. This results in a significant impedance imbalance which leads to common-

mode to differential-mode signal conversion. Therefore, in practice, the CMRR will be

much lower than 94 dB. In medical instrumentation design, the Emergency Care

Research Institute (ECRI) recommends that CMRR should be 100 dB and higher at 50
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Hz and the input impedance of the measuring circuit should be higher than 100 MΩ for

accurate low measurement systems [111, 193].

Figure 5.32: CMRR vs frequency of INA128 for matched source impedances (࢐ࢆ and (૞ࢆ
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Figure 5.33: CMRR vs frequency of INA128 when there is a 1% mismatch between the RC
networks of the RFI filter

There  are  several  ways  to  improve  the  CMRR  of  the  system:  (1)  precision  RC

components, (2) Faraday shielding and (3) noise cancellation using the “Right-Leg

Drive” (RLD) inverting amplifier [194]. RLD is a technique by which the common-

mode voltage is sensed, phase inverted and amplified by an inverting amplifier (ARLD in

Figure 5.34). Then, the inverted signal is fed back to the source to reduce the common-

mode interference. The higher the gain of the amplifier ARLD, the higher the CMRR.

However, a very high gain can result in instability issues in the overall circuit [195].

The RLD method is used in ECG medical devices in which the output of the RLD

amplifier is connected to the right leg of the patient under examination, and hence its

name [85].

In some other medical literature, this method is referred to as body potential driver

(BPD). This method, in principle, is similar to the active noise cancellation technique



Chapter 5
Design and Construction of the Practical Simulated Vascular System, the Electromagnet
and its Power Supply and the Signal Conditioning System

233

implemented in high quality audio headphones using Digital Signal Processing (DSP)

[196]. The noise in the surroundings is sensed by a built-in microphone in the headset.

This noise is then phase inverted and added to the combined noise and audio signals to

attenuate the noise signal only. Note that this active noise cancellation method can also

be implemented in industrial EM flow meters for EM interference reduction. A common

technique used in the installation of EM flow meters in industry is to add grounding

rings near the EM flow meter to minimise noise and ensure that the fluid and sensors

are at the same potential [197]. Grounding the fluid is sometimes not sufficient in

minimising noise, especially mains interference, as was experimentally observed by the

author. It was also found that grounding the reference electrode should not be done as

the voltage measurement of each electrode should be made differentially with respect to

the reference electrode to eliminate common-mode noise interference effectively.

The schematic diagram of the RLD amplifier is shown in Figure 5.34. The midpoint of

the averaging gain resistors RG1 and  RG2 (refer  to  Figure  5.24)  is  the  common-mode

voltage. This midpoint is connected to a voltage follower VF to avoid any loading

effects which may affect the gain of the AC-coupled instrumentation amplifier. The

output of the VF is connected to the inverting amplifier ARLD.
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Figure 5.34: Right-leg drive inverting amplifier

The gain of ARLD was set  by the resistors ܴி = 100 kΩ and ܴ௜ = 1 kΩ, using the gain

equation of the inverting amplifier which is

஺ೃಽವܩ = −
ܴி
ܴ௜

Eq. 5-33

Hence, the gain is 100. For a balanced impedance at the inputs of the IA, the CMRR of

the  IA  at  50  Hz  (frequency  of  the  common-mode  signal)  in  simulation,  with  the

amplifier ARLD set to a gain of 100, is 146 dB (126 dB on graph) as shown in Figure

5.35. The CMRR is also shown for different ARLD gains, i.e. 1, 10, 100 and 1000. The

CMRR  simulation  test  setup  for  the  AC-coupled  IA,  with  and  without  the  RLD

amplifier, is shown in Appendix C.

Figure  5.36  shows  the  CMRR  for  different  ARLD gains for imbalanced impedance of

10% at the input of the IA (one input of the IA has 10% impedance higher than the
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other). The CMRR of the IA at 50 Hz, with ARLD gain set to 100, is 108 dB (88 dB in

Figure 5.36). In the practical system, the input resistors at the IA are accurate to 1%;

however, this test showed that even if the imbalance in impedance is 10% – accounting

for impedance imbalance in source impedance, electrodes and cables – the CMRR of

the IA remained above 100 dB. Note that, in the practical experiments (in Section 7.3),

the output of the “right-leg drive” inverting amplifier was connected to the metal ‘T’

connectors shown in Figure 5.18. These connectors are electrically conductive, in

contact with the water and near the electrode array where the measurements were taken.

Figure 5.37 shows the complete practical AC signal conditioning circuit, built using

stripboard.

Figure 5.35: CMRR vs frequency of INA128 for different gains ARLD without any impedance
imbalance
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Figure 5.36: CMRR vs frequency of INA128 at different gains ARLD for imbalanced source
impedance

Figure 5.37: The practical AC signal conditioning system

5.7.6 Simulation Tests for the AC Signal Conditioning Circuit

The AC signal conditioning circuit was tested for its frequency, transient and normal

responses in TINA-TI 9 software [188]. All schematic diagrams for the test setups are

provided in Appendix C. Figure 5.38 shows the frequency response of the overall circuit
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in simulation. At 30 Hz (operating frequency of the electromagnet), the gain of the

overall circuit was 59.89 dB (≈987) and the output led the input by 0.4°.

For the transient response, a step input of 200 mV was applied to the circuit. This test

was useful in determining the delay time required for the circuit before sampling its

output  via  the  ADC.  This  test  simulated  the  switching  of  the  electrodes  via  the  16:1

multiplexer circuit. When the switch is changed, there will be some DC offset applied to

the input of the signal conditioning circuit, which is due to electrode polarisation, in

addition to the flow induced voltage. It can be seen in Figure 5.39 that for 200 mV DC

offset, the circuit takes about 0.5 s to reach its steady-state value. It was experimentally

found that the maximum DC offset on the electrodes was about 150 mV.

Finally, the circuit was tested for its normal operation, i.e. after the transient response

has elapsed. The test simulated a flow-induced peak voltage of 100 V at a frequency ofߤ

30 Hz at electrode ej with a DC offset of 250 mV and a flow induced voltage of 50 Vߤ

peak at electrode e5 at the same frequency, but with DC offset of 100 mV as shown in

Figure 5.40. Moreover, a common-mode noise of 50 mV at 50 Hz (500 times greater

than the flow induced potential difference which is 50 V) was added to both electrodesߤ

(see Appendix C: Normal Test Operation Circuit). Hence, the dominant voltage signal

at electrodes ej and e5 was the 50 Hz noise signal as shown in Figure 5.41.
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Figure 5.38: Frequency response of the AC signal conditioning circuit.

Figure 5.39: Transient response of the AC signal conditioning circuit to a step change in input
voltage V(STEP) at t = 0
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Figure 5.40: 100ࣆV flow induced voltage with a DC offset of 250 mV at ej and 50 V flow inducedࣆ
voltage with a DC offset of 100 mV at e5

The source (water) impedance was modelled as a resistor of 100 kΩ in parallel with a

capacitor of 47 nF, i.e. impedance with some parasitic capacitance, and its impedance

was imbalanced by 10%. The cable and RFI filter impedance was imbalanced by 1%.

However, due to the high CMRR of the signal conditioning circuit due to the IA and the

“right-leg drive” amplifier, this common-mode noise was significantly rejected. The

output voltage of the circuit is given in Figure 5.42 which was around 49.45 mV at 30

Hz after amplification by 987. This was expected because the potential difference

between electrodes ej and  e5 was  50 V. This example shows the great advantage ofߤ

using the IA and the “right-leg drive” amplifier as they both greatly reduced the 50 Hz

common-mode noise. The testing of the physical circuit is presented in Section 6.9

which also showed the same results approximately.
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Figure 5.41: Common-mode 50 Hz noise is the dominant voltage signal on electrodes ej and e5

Figure 5.42: The output voltage of the circuit which was 49.45 mV after an amplification of 987.

5.8 16:1 Analogue Multiplexer Circuit

All 15 electrodes ej (where ݆ is 1 to 16 apart from 5) had to be measured with respect to

the reference electrode e5.  The  use  of  an  analogue  multiplexer  circuit  allowed  all

electrodes to be measured using one AC signal conditioning circuit instead of 15

circuits. Hence, the complexity of the measuring system was reduced. The analogue

multiplexer used was a DG406 IC by Intersil [198]. It has 16 equally matched analogue

switches, features very low on-resistance (<100 Ω)  and  handles  voltage  signals  up  to
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30 Vpk-pk when operated by a ±15 V power supply. Figure 5.43 illustrates the functional

diagram of the analogue multiplexer. The switching of the inputs is performed via the

4-bit logic input of the IC; A0,  A1,  A2 and  A3. The logic sequence is generated by

MATLAB software and sent to the multiplexer via the NI PCI-6254 DAQ device.

Figure 5.43: Functional diagram of the multiplexer circuit [198]

The  transient  response  of  the  AC  signal  conditioning  circuit  (Figure  5.39)  shows  that

the circuit reaches its steady-state value after 0.5 s. Hence, every time one switch of the

multiplexer is selected, there must be a delay of 0.5 s before the voltage measurement is

taken. For 15 measurements and for a sampling period of 1 s for each electrode, the total

time for all voltage measurements is 22.5 s. This time can be reduced significantly by

improving the transient response time of the AC circuit and increasing the sampling

frequency (reducing the sampling time) of the DAQ device. However, the response time

was satisfactory for the practical experimentation.
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5.9 NI PCI-6254 Data Acquisition Device

The output of the AC signal conditioning circuit was digitised via the NI PCI-6254

DAQ device. This DAQ device features 16-bit resolution, 32 analogue inputs and 48

digital  I/O  lines.  The  A/D  subsystem  of  the  DAQ  device  can  be  set  to  a  sampling

frequency of 1 MHz for a multichannel scan or 1.25 MHz for a single channel scan. The

input voltage range of the A/D subsystem is ±10 V and can be configured as either

bipolar (positive and negative voltages) or unipolar (positive only). The smallest voltage

difference Vmin that can be measured for a given input voltage range and resolution is

given by

௠ܸ௜௡ = ାܸ − ܸି
2௡್೔೟ೞ

Eq. 5-34

where ାܸ and ܸି  are the limits of the input voltage range and ݊௕௜௧௦  is the resolution of

the A/D. Thus, for an input range of ±10V, the smallest voltage difference that the A/D

sub-system can measure is 305 V. The smallest flow induced voltage afterߤ

amplification is around 10 mV which is 33 times larger than the smallest voltage

difference ௠ܸ௜௡ .

The sampling frequency ௦݂  of  the  A/D sub-system was  set  to  1024 Hz which  satisfies

the Nyquist condition which states that the sampling frequency must be at least twice

the frequency of interest (30 Hz) to avoid anti-aliasing [199]. The acquisition time was

set to 1 second to obtain ܰ = 1024 samples.  For ௦݂  = 1024 Hz and ܰ = 1024, the Fast

Fourier  Transform of  a  sampled  signal  will  have  a  frequency  resolution  (݂݀)  of  1  Hz.

The ݂݀ equation is given by

݂݀ = ௦݂

ܰ
Eq. 5-35
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Fast Fourier Transform (FFT) was required to perform the DFT on the measured

potential difference signals ௝ܷ,௙ to obtain the real (Re) and imaginary (Im) parts. This

was necessary for the implementation of the digital PSD technique in software which is

described in Chapter 6.

Two analogue inputs (Channels 0-1) and five digital outputs (Channels 0-4) were used

from the NI PCI-6254. Analogue inputs 0 and 1 were connected to the outputs of the

AC signal conditioning circuit and the peak coil current measurement ,଴ circuitܫ

respectively. Digital outputs 0-4 were used to send the switching sequence to the logic

control input (EN, A0, A1, A2, A4) of the analogue multiplexer circuit. The control of the

NI PCI-6254 DAQ device was performed via MATLAB software using its Data

Acquisition Toolbox.

5.10 MATLAB Program for NI PCI-6254

MATLAB 2013b was utilised for two tasks in this project. The first task was to

configure the NI PCI-6254 card to sample the voltages picked up by the electrodes and

the coil current ଴ of the electromagnet. It was also used to control the switchingܫ

sequence of the logic input of the multiplexer circuit so that all electrodes would be

sampled sequentially. The program flowchart of the first task is shown in Figure 5.44.

The functions used to configure the NI PCI-6254 card are available in Data Acquisition

Toolbox Documentation [200]. The second task was to implement the PSD method

which is explained in Chapter 6.
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Figure 5.44: Task 1 MATLAB program source code.
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5.11 The Complete Measurement System

Figure 5.45 shows the overall block diagram of the complete measurement system. The

electrodes are interfaced to the AC signal conditioning circuit via the analogue

multiplexer circuit. The AC signal conditioning circuit is represented by the RFI filter

and amplifier block (inside the red rectangle). Note that the reference electrode e5

bypassed the multiplexer circuit as each potential difference measurement is taken with

respect to e5. The output of the AC signal conditioning circuit is connected to the NI

PCI-6254. The control of the NI PCI-6254 device and the signal processing is

performed  on  the  PC  using  MATLAB  2013b  software.  Refer  to  Appendix  D  for  an

image of the complete SVS flow test rig, and the AC signal conditioning circuit.

Figure 5.45: The overall voltage measurement system

5.12 Summary

The first task in completing the practical experiment setup for testing the proposed EM

induction method was to construct the physical SVS model and the electromagnet for

the generation of the magnetic field across the flow channels in the SVS. The

mechanical  design  of  the  SVS  consisted  of  a  porous  ceramic  cylinder  and  plastic

housing which had an embedded 16-electrode array. The ceramic cylinder, which was

40 mm in diameter,  had two flow channels and each channel was 10 mm in diameter.
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The porous material itself modelled a lump of conductive tissues such as muscles and

fat when saturated sufficiently in water. The plastic housing – in which the porous

ceramic was inserted – had a length of 240 mm and external and internal diameters of

75 mm and 50 mm, respectively. The 16-electrode array was embedded in the plastic

housing and had a diameter equal to the internal diameter of the housing, i.e. 50 mm.

The electromagnet was comprised of a C-shaped silicon steel core - with an air-gap of

80 mm in length – and 320 turns of multi-stranded enamelled copper coil. It was

designed to be powered by a 30 Hz AC power supply and could be operated at a peak

current of up to 10 A. At the maximum peak current rating, the voltage is 200 V and the

peak magnetic flux density was calculated to be 0.05 T. The electromagnet was tested

independently and the results are provided in Chapter 6. In the next chapter, the design

of the power supply for the electromagnet is presented. The signal conditioning system

for measuring flow induced potential differences is also presented.

The 30 Hz AC power supply of the electromagnet consisted of a function generator,

power amplifier, 1:5 transformer and PFC capacitor. The function generator was set to

generate an output of ±4 V at up to a 1 A at a frequency of 30 Hz. The power amplifier

boosted the voltage and current to ±40 V and 5 A. The 1:5 transformer stepped up the

voltage by a factor of 5, i.e. ±40 V and as a result, the maximum current that could be

drawn from the power supply was 1 A. The PFC capacitor, which was placed in parallel

with the electromagnet to reduce the current drawn from the power supply to minimum,

had a value of 260 F. It will be shown in the bench testing, explained in Chapter 6, thatߤ

by using the PFC capacitor, only 475 mA was drawn from the power supply for the coil

current of the electromagnet to reach a peak current of 10 A which is the value of

current required to achieve a magnetic field density of 0.05 T.
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The flow induced potentials generated in the fluid were very small in amplitude, had a

large DC offset due to polarisation and were severely contaminated with EMI, i.e.

mains and RF. A signal conditioning system was designed to overcome these problems

which consisted of an RFI suppression filter, 1st-stage gain AC-coupled instrumentation

amplifier, 2nd-stage gain inverting amplifier and the RLD inverting amplifier. The RFI

suppression filter was designed to eliminate any relatively high amplitude RF signals

that may cause the IA to malfunction. The AC-coupling of the IA reduced the large DC

offset presented in the flow induced potential differences. The 1st-stage was also set to a

low gain  of  10  to  ensure  that  the  DC offset  does  not  saturate  the  amplifier.  The  RLD

amplifier performed common-mode noise cancellation by phase inverting the common-

mode signal and then feeding back its output to the SVS ‘T’ metal connectors which

were in contact with the water. A 2nd-stage amplifier provided additional gain of 100 to

amplify the flow induced potentials to a voltage level that was suitable for the AD

conversion in the DAQ device.

The 16-electrode array was interfaced to the signal conditioning system via a 16:1

analogue multiplexer which was digitally controlled to switch between the electrodes.

This approach simplified the design of the signal conditioning system substantially. The

multiplexer switching and the sampling and recording of the flow induced voltage

signals were performed via the NI PCI-6254 DAQ device which was controlled by a

program written in MATLAB software.
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6.1 Introduction

The first part of this chapter addresses the design of the signal conditioning system – the

last necessary part of the practical system – using a digital implementation of the PSD

method. PSD is a technique by which the amplitude and the phase of a very small AC

signal can be measured accurately in the presence of significant sources of noise [201].

This is achieved by exciting a system using a reference signal (the frequency and phase

are known), and comparing the total measured output of the system to the reference

signal. Then the signal that has the same frequency and the required phase, which is

buried in the total measured signal, can be extracted using simple mathematical

operations, i.e. multiplication and averaging.

The  implementation  of  PSD  can  be  found  in  lock-in  amplifiers  which  are  used  to

perform precise signal measurements in a wide range of applications including optical

spectroscopy, magnetometry and electrical impedance tomography [173, 202-204].

Lock-in amplifiers are the main component in electronic instruments such as sub-

milliohm digital ohmmeters, spectrum and network analysers and noise measurement

units [205, 206]. PSD can be implemented using analogue or digital electronics which

are discussed later on.

The PSD method was essential to separate the flow induced potential differences (in-

phase component with the magnetic field) from the transformer induced voltages

(quadrature component, i.e. 90° out of phase) which have the same frequency but differ

in phase as was explained in Section 2.5.2. The PSD method had been suggested and

used previously in EM flow metering and this was discussed in the literature review

(Section 2.5.9). In these methods the coil current was measured using a shunt resistor

and used as a reference signal to separate the flow induced potential differences from

the transformer voltage signals. The coil current is in phase with the flow induced
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potentials, whereas it is 90o out of phase with the transformer signal [127, 144-146,

148].

The last part of this chapter describes the tests that were carried out to verify the

operation of the electromagnet and its power supply and the AC signal conditioning

system. This was an important step in preventing any unexpected behaviour or results

during the water flow tests. The magnetic field generated in the air gap was measured in

terms of its magnitude and direction. For the proposed EM method, the magnetic field

has  to  be  essentially  uniform with  a  constant  value  of  magnetic  flux  density ଴ at theܤ

cross-section area where induced voltage measurements are taken (refer to Eq. 3-39).

For the signal conditioning circuitry, it was necessary to test the system for its responses

in  transient  and  normal  operation.  Moreover,  the  gain  and  the  phase  of  the  signal

conditioning circuitry at the frequency of the flow induced potential difference, i.e. 30

Hz,  had  to  be  measured.  The  gain  value  was  used  to  find  the  actual  amplitude  of  the

flow induced potential differences after amplification. Any phase shift between the

input and the output of the signal conditioning had to be measured and compensated for

in the digital PSD software to ensure accurate measurements of the flow induced

potential differences as explained in Section 6.6.

Moreover, the additional noise detected by the electrodes was also investigated to

determine the source of this noise and its frequencies. This was done by performing

spectral analysis on the potential difference between electrodes e1 and  e5. Since all

electrodes are very close to one another, the noise is expected to be very similar on the

other electrodes.

The  layout  of  this  chapter  is  as  follows:  the  basic  principle  of  operation  of  the  digital

and analogue PSD methods is introduced in Section 6.2. Then, Section 6.3 describes
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mathematically the digital PSD technique used in the present study for detecting the

flow induced voltages. The digital PSD was designed in software using MATLAB and

this is explained in Section 6.4. The MATLAB program was tested using simulated in-

phase, quadrature and noise signals which were generated in MATLAB and the results

are presented and discussed in Section 6.5. The PSD method depends highly on the

phase integrity of the measurement system and any errors in the phase will  reduce the

accuracy of the flow induced voltage measurements. The effect of the error in the phase

is highlighted in Section 6.6. During the practical experimentation, it was observed that

there was some in-phase noise which can lead to significant error in the flow induced

voltage measurements. This problem had to be overcome to allow accurate flow rate

measurement and this is explained in Section 6.7.

In Section 6.8, the test setup and results for the electromagnet and its AC power supply

are presented. The test setup for the AC signal conditioning system and the results are

presented in Section 6.9. Lastly, the electrical noise investigation is provided in Section

6.10. When all the systems were fully tested, they were connected together to be used to

measure the flow induced potential differences that are generated in the SVS and these

results are covered in Chapter 7.
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6.2 Background Theory of Phase Sensitive Detection

6.2.1 Basic Principle of Analogue PSD.

A conventional lock-in amplifier consists of a PSD unit and a low-pass filter. A system

under test is usually excited by a reference signal with a frequency (ݐ)ݎ ௥݂  as shown in

Figure 6.1 [207].

)()()( tntstm +=

)(tr

)(ts

Figure 6.1: Block diagram of system arrangement to utilise a lock-in amplifier

The output response of the system is (ݐ)݉  the  sum  of  the  signal  of  interest and (ݐ)ݏ

sources of noise such as ambient noise, RF interference and mains harmonics. The (ݐ)݊

signal of interest is (ݐ)ݏ  a  complex  signal  with  real  and  imaginary  components  which

has the same frequency as the frequency of the reference signal The target signal .(ݐ)ݎ

is in phase with the reference signal (ݐ)ݏ̅ If the reference signal .(ݐ)ݎ is in phase (ݐ)ݎ

with the real part of then the output (ݐ)ݏ will (ݐ)ݏ̅  be  proportional  to  the  real  part  of

However, if the reference signal .(ݐ)ݏ is (ݐ)ݎ  in phase with the imaginary part  of (ݐ)ݏ

then the output will be proportional to the imaginary part of (ݐ)ݏ̅ (ݐ)ݏ

The total signal is fed to the PSD unit which multiplies it by the reference signal (ݐ)݉

The output of the PSD is then low-pass filtered, i.e. averaged. When the portion of .(ݐ)ݎ

the measured signal is in phase with the reference signal, the resultant output (ݐ)݉

voltage of the low-pass filter is the mean value (2/ߨ)  of  the  amplitude  of  the  target
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signal .(ݐ)ݏ  When the  portion  of  the  signal  is  out  of  phase  (can  be  in  quadrature),  the

output of the low-pass filter is close to zero. Mathematically, the output of the lock-in

amplifier is given by (ݐ)ݕ

(ݐ)ݕ =
1
ܶ
න (ݐ)݉ ∙ (ݐ)ݎ
்

଴
ݐ݀

Eq. 6-1

where ܶ is the averaging time. The lock-in amplifier can be considered an extremely

narrow band-pass filter with a centre frequency selected by the frequency of the

reference  signal.  However,  the  amplifier  will  only  pass  the  portion  of  the  signal  at  its

input that is in phase with the reference signal.

Square Wave Reference Signal

In an analogue design, the multiplication (or mixing) is achieved by using a switching

multiplier [207] as shown in Figure 6.2. The reference voltage signal is a square (ݐ)ݎ

wave of ±1 and has the same frequency as the target signal The phase between the .(ݐ)ݏ

target signal and the reference can either be in phase or in quadrature, depending (ݐ)ݏ

on whether it is necessary to measure the real or imaginary component of The .(ݐ)ݏ

switching multiplier is often called a ‘synchronous rectifier’.

)()()( tntstm +=

)(tr

)( ts

Figure 6.2: Analogue lock-in amplifier
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When the target signal buried in the measured signal ,(ݐ)ݏ is positive (positive ,(ݐ)݉

half cycle), it is multiplied by +1, and when it is negative (negative half cycle), it is

multiplied by −1,  resulting  in  a  full  wave  rectified  version  of  the  target  signal.  This

rectified signal is low-pass filtered to obtain the mean value of the target signal. Figure

6.3  illustrates  the  operation  of  the  PSD  when  the  target  signal  is  in  phase  with  the

reference  signal.  The  target  signal  is  a  sinusoidal  signal  with  amplitude  of  1  V  and

frequency of 1 Hz. The reference signal is a unit square wave with the same phase (ݐ)ݎ

and frequency as the target signal The product of the target signal .(ݐ)ݏ and the (ݐ)ݏ

reference signal .results in a rectified signal as shown in the 3rd plot in Figure 6.3 (ݐ)ݎ

The mean value of the rectified signal is 0.637 V (2/ߨ).

Figure 6.3: Operation of the PSD when the target signal is in phase with the reference signal

When the measured signal has a different frequency or phase to the reference (ݐ)݉

signal, the rectified output signal has a mean value close to zero. The unwanted signal in
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Figure 6.4 has a frequency of 10 Hz. The reference signal is the same as in Figure 6.3.

The product of both signals gives a rectified signal whose mean value is zero.

The cut-off frequency ௖݂  of the low-pass filter in Figure 6.2 is given by,

௖݂ =
1

ܥܴߨ2
Eq. 6-2

The time constant of the filter (߬௅௉ = (ܥܴ  is  the  averaging  time ܶ. The longer the

averaging time, the more the unwanted frequencies are attenuated. Moreover, the higher

the order of the low-pass filter is, the better the filtering of the unwanted frequencies

becomes.

Figure 6.4: Operation of the PSD when the signal measured is out of phase with the reference signal

Both the real and imaginary components can be measured simultaneously by adding

another PSD unit (multiplier) and low-pass filter as shown in Figure 6.5. The reference

signal has to be shifted by 90° before being multiplied by the measured signal (ݐ)ݎ
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to detect the quadrature component, which is 90° out of phase with the in-phase (ݐ)݉

component.

Reference
Channel

Measured Signal

Reference Signal

Signal
Channel

LP Filter

LP Filter

90°

In-phase
component

Quadrature
component

)(tm

)(tr

Figure 6.5: Analogue PSD to obtain real and imaginary part of the target signal

Sinusoidal Reference Signal

Using a square wave as a reference signal is common in analogue lock-in amplifiers as

it is simple to design in practical terms. However, there is a disadvantage in using a

square wave, which is its limited response to the odd harmonics [207]. The nth odd

harmonic is only attenuated by a factor of n when using a square wave. This causes an

additional DC output voltage after filtering which is not related to the amplitude of the

target  signal.  In  Figure  6.6,  the  unwanted  signal  frequency  was  set  to  3  Hz.  It  can  be

seen that when the amplitude of the square wave reference signal is +1, the average

value of the sine wave is not zero (two peaks and one trough). Hence, the additional DC

voltage corresponds to the area under the extra peak.

There are two solutions to this problem: (1) adding notch filters to attenuate mains

harmonics, i.e. 50 Hz, 100 Hz and 150 Hz or (2) using a sinusoidal reference signal

instead of a square wave. For a sinusoidal input signal which is given by (ݐ)ܸ
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(ݐ)ܸ = ܣ ݐ߱)݊݅ݏ + ߶) Eq. 6-3

The reference signal is also sinusoidal and is given by

(ݐ)ݎ = (ݐ଴߱)݊݅ݏ Eq. 6-4

When the frequency of the input signal ߱ is not equal to the reference frequency ߱଴, the

product of both signals is given by

(ݐ)ݎ(ݐ)ܸ =
ܣ
2

−߱)]ݏ݋ܿ) ߱଴)ݐ + ߶] − ߱)]ݏ݋ܿ + ߱଴)ݐ + ߶]) Eq. 6-5

Figure 6.6: The unwanted signal is an odd harmonic of the reference signal, i.e. 3 Hz

The mean value of Eq. 6-5 is  zero [208].  When the frequency of the input signal ߱ is

equal to the reference frequency ߱଴, the resultant product is given by

(ݐ)ݎ(ݐ)ܸ =
ܣ
2 −[߶]ݏ݋ܿ) ݐ2߱଴]ݏ݋ܿ + ߶]) Eq. 6-6

When the signal in Eq. 6.6 is averaged, the only component left is 	஺
ଶ
  which corresponds

to half of the input signal amplitude. Any noise signal that oscillates at a different
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frequency from ߱଴ is averaged to zero, and any noise signal that oscillates at the same

frequency but with time-dependant phase is also averaged to zero. In Figure 7.7, the

input and the reference signals have the same frequency, i.e. 1 Hz, and therefore the

amplitude of the output after filtering is 0.5 V (	஺
ଶ
 ). In Figure 7.8, the input signal is the

3rd odd harmonic (3 Hz) of the reference signal (1 Hz). It can be seen that the mean

value of the product of both signals is zero.

Figure 6.7: The input signal is in-phase with the sinusoidal reference signal and hence the output is
0.5 of the input signal.
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Figure 6.8: The input signal is the 3rd harmonic of the reference signal and therefore, the resultant
output is zero.

6.2.2 Principles of Digital PSD

Analogue lock-in amplifiers suffer from: (1) component tolerances (2) temperature drift

and (3) gain and phase non-linearity in op amps [209]. These problems can cause an

error in the frequency or phase accuracy of the reference signal. As a result of such an

error, an additional DC voltage appears at the output of the lock-in amplifier which is

not  related  to  the  amplitude  of  the  target  signal.  Therefore,  complex  and  expensive

design is required to achieve high accuracy. Digital lock-in amplifiers do not suffer

from these problems. They can also operate at very low frequency, and do not suffer

from 1/݂ noise [210].

There  are  two  main  schemes  that  are  used  for  digital  PSD  [150].  The  first  method  is

based  on  the  same  principle  as  the  analogue  PSD  described  in  Section  7.2.1.  The

measured signal is digitised and then, it is multiplied by internally generated in-phase
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and quadrature reference signals to obtain the real and imaginary parts of the signal of

interest, respectively. In the second method, the DFT is used to obtain the amplitude and

phase of the target signal which is buried in the measured signal (ݐ)ݏ Then, the .(ݐ)݉

reference signal is used to determine the in-phase and quadrature components of (ݐ)ݎ

the target signal	(ݐ)ݏ.  Note  that  multiplying  the  signal by a sinusoidal reference (ݐ)݉

signal of a certain frequency (ݐ)ݎ ݂ to  obtain  the  amplitude  and  phase  (real  and

imaginary parts) of the target signal is similar to applying the DFT on the ,(ݐ)ݏ

measured signal for that specific frequency.

The time-continuous signal shown in Eq. 6-1, which is the average of the product (ݐ)ݕ

of the two periodic signals, i.e. the output measured signal NB: the target signal ] (ݐ)݉

is buried in the signal (ݐ)ݏ and the reference signal [(ݐ)݉ in a digitised form, is ,(ݐ)ݎ

given by

ܻ =
1
ܰ෍݉(݊ܶ) ∙ (ܶ݊)ݎ

ேିଵ

௡ୀ଴

Eq. 6-7

where ܰ is the number of samples and ܶ is the sampling period given by

ܶ = ܰ	ݐ݀ Eq. 6-8

 In Eq. 6-8, is the sampling interval and is the reciprocal of the sampling frequency ݐ݀

௦݂ , i.e.

௦݂ =
1
ݐ݀

Eq. 6-9

Eq. 6-7 can be simplified to the following equation,

ܻ =
1
ܰ෍݉(݊) ∙ (݊)ݎ

ேିଵ

௡ୀ଴

Eq. 6-10
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If the in-phase and quadrature components (real and imaginary parts) of the target signal

which is buried in the  measured signal ,(݊)ݏ ݉(݊), are to be found, then for the in-

phase component, the reference signal ௜(݊) (real part component) is given by [202]ݎ

(݊)௜ݎ = ݏ݋ܿ ଶగ௙௡
௙ೞ

Eq. 6-11

where ݂ is the frequency of the target signal buried in the input signal For the .(ݐ)݉

quadrature component (imaginary part) of the target signal the reference signal ,(݊)ݏ

௤(݊) is given byݎ

(݊)௤ݎ = ݊݅ݏ ଶగ௙௡
௙ೞ

Eq. 6-12

Euler’s formula states that any complex number can be written in a discrete form as,

ݖ = ܽ + ݆ܾ = ݏ݋ܿ)|ݖ|
݂݊ߨ2

௦݂
+ ݆ ݊݅ݏ

݂݊ߨ2
௦݂

) = ௝݁ݎ
ଶగ௙௡
௙ೞ 	

ݖ = ܽ − ݆ܾ = ݏ݋ܿ)|ݖ|
݂݊ߨ2

௦݂
− ݆ ݊݅ݏ

݂݊ߨ2
௦݂

) = ௝ି݁ݎ
ଶగ௙௡
௙ೞ

Eq. 6-13

From  Eq.  6-10  to  Eq.  6-13,  the  discrete  form  of  the  complex  number  related  to  the

sinusoidal target signal assuming) (݊)ݏ ݎ = 1) is given by

ܻ =
1
ܰ෍݉(݊) ∙ ݁ି௝

ଶగ௙௡
௙ೞ

ேିଵ

௡ୀ଴

Eq. 6-14

Now, the DFT of a time series ௛ isݔ  a  series  of ܰ complex numbers ܺ(݇) (݇ =  0,  1,

2,…etc) which are defined by the following expression:

ܺ(݇) =
1
ܰ෍ ௛ݔ ∙ ݁

ି௝ଶగ௞௛ே

ேିଵ

௛ୀ଴

Eq. 6-15

where ݇ = 0, 1, 2, …, ܰ −1. Values for ܺ(݇) exist only for frequencies ௞݂  where ௞݂  is

defined as
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௞݂ =
݇
ܶ

Eq. 6-16

where ݇ = 0, 1, 2, …, ܰ. However, unique values for ܺ(݇) only exist from 0 Hz to the

Nyquist frequency, i.e. for

0 ≤ ௞݂ ≤ ൬
ܰ
2൰

1
ܶ

Eq. 6-17

that is for ݇ = 0,  1,  2,  …, ܰ/2.  It  can be noted that Eq. 6-14 and Eq. 6-15 are almost

identical. In Eq. 6-14, a complex number at the frequency of the signal of interest only

is obtained whereas, in Eq. 6-15 complex numbers for all frequencies up to the Nyquist

frequency are obtained.

The complex number ܺ(݇) in Eq. 6-15 at the frequency ௞݂  of interest consists of real

and imaginary components, i.e. ܺ(݇) = ܽ௞ + ݆ܾ௞ . The amplitude and the phase ݎ of ߠ

the target signal are given by the following equations:

ݎ = ඥܽ௞ଶ + ܾ௞ଶ Eq. 6-18

ߠ = ଵି݊ܽݐ
ܾ௞
ܽ௞

Eq. 6-19

where the phase is the angle between ߠ ܺ(݇) and the positive real axis (Re) as

illustrated in Figure 6.9 (i.e.  it  is  the argument of ܺ(݇)). Physically, the phase angle ߠ

also represents the phase angle between the sampled signal of interest ௛ and a cosineݔ

wave at the same frequency. By taking the DFT of the sampled signal of interest ,௛ݔ

(e.g. the potential difference between an electrode and the reference electrode), and by

taking  the  DFT of  a  sampled  reference  signal ௛, (e.g. a voltage corresponding to theܤ

phase of the applied magnetic field), the phase of both ௛ andݔ ௛ with respect to theܤ

same cosine wave can be determined. Hence, the phase relationship between ௛ andݔ ௛ܤ
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is readily determined, enabling the “in-phase” and “quadrature” component of ௛ withݔ

respect to .௛ to be easily determinedܤ

r
q

)(kX

ka

kb

Figure 6.9: Complex number presented on an Argand diagram (࢑)ࢄ

For  this  research,  the  second  digital  PSD  method  was  used  as  the  DFT  provides

in-phase and quadrature information for all frequencies, including the target frequency,

up to the Nyquist frequency. The frequency components obtained by the DFT also

included the main sources of noise superimposed on the measured signal. Additionally,

it was more efficient to implement DFT in MATLAB 2013b using its Signal Processing

Toolbox. However, in terms of processing power, memory and speed, using DFT

requires more computational resources than using the standard PSD technique. This

factor could be considered for future developments of this work.

6.3 Digital PSD Implementation in the Present Study

In Section 6.2.2, it was concluded that when the DFT is applied to a signal, the real and

imaginary components of the signal can be obtained and therefore, the amplitude and

the phase of the signal can be determined. The purpose of digital PSD using the DFT is

to distinguish the flow induced potential difference from the transformer voltage as the

flow induced potential difference is in phase with the magnetic field and the transformer

voltage is 90° out of phase with the magnetic field (refer to Section 2.5.2). Moreover,

applying the DFT shows all the frequency components, including the 30 Hz component,
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up to the Nyquist frequency. Hence, it provides information on what other frequencies

are present in the measured signal and could help in eliminating them if found to be an

issue.

Suppose that the electromagnet of the flow test rig, shown in Figure 5.18, is operated at

30 Hz and there is water flow in the SVS. Furthermore, suppose a voltage ௝ܷ,௙ (݆ = 1 to

16 and where ݂ represents the flow condition), between any of the electrodes ej and the

reference electrode e5, and a voltage corresponding to the phase of the magnetic field

density ଴ (the coil currentܤ ଴ is in phase with the magnetic field) are measured. Whenܫ

the DFT is applied to the voltage signals and the DFT components are extracted at

30 Hz, the phase angles ߶௝,௙  and ߰௝,௙  are determined using Eq. 6-19 where ߶௝,௙  is  the

phase angle which the voltage signal ௝ܷ,௙ makes  with  the  positive  real  axis  (ܴ݁) and

߰௝,௙  is the phase angle which the magnetic field ଴ makes with the positive real axis, asܤ

illustrated in Figure 6.10.

0B

fjU,

fj,f

fj,y

Figure 6.10: The induced voltage and the magnetic field density ࢌ,࢐ࢁ ૙ lead the positive real axis࡮
by and ࢌ,࢐ࣘ respectively ,ࢌ,࢐࣒

Thus, subtracting the phase angle ߰௝,௙ from ߶௝,௙  gives .௝,௙, i.eߠ

௝,௙ߠ = ߶௝,௙ − ߰௝,௙ Eq. 6-20
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where ௝,௙ isߠ  the phase angle by which the voltage signal ௝ܷ,௙ leads the magnetic field

଴ as depicted in Figure 6.11 (in Figure 6.11, the magnetic field density vector isܤ

assumed to coincide with the positive real axis).

0B

fjU,

fj,q
TjU ,

Figure 6.11: The voltage signal leads the magnetic field by ࢐ࣂ

The amplitude of the voltage signal ௝ܷ,௙, i.e. ௝ܷ,் can  also  be  obtained  according  to

Eq. 6-18 (NB: ௝ܷ,் = ห ௝ܷ,௙ห). The in-phase component ௝ܷ,௙,௜௡ of the voltage signal ௝ܷ,௙ is

given by

௝ܷ,௙,௜௡ = ௝ܷ,் ݏ݋ܿ ௝,௙ߠ Eq. 6-21

The quadrature component ௝ܷ,௙,௤ (90o out of phase with the voltage signal ௝ܷ,௙,௜௡) is

given by

௝ܷ,௙,௤ = ௝ܷ,் ݊݅ݏ ௝,௙ߠ Eq. 6-22

The in-phase component ௝ܷ,௙,௜௡  is the flow induced potential difference component of

௝ܷ,௙ that is in phase with the magnetic field and ௝ܷ,௙,௤  is the transformer voltage

component of ௝ܷ,௙  that is in quadrature with the magnetic field as shown in Figure 6.12.

Note that using Eq. 6-21 and Eq. 6-22:

· If ௝ܷ,௙,௜௡  is positive, this component is in-phase with the magnetic field, as shown in

Figure 6.12, and if it is negative, it is 180° out of phase with the magnetic field.
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· If ௝ܷ,௙,௤  is positive, then it leads the magnetic field by 90°, as shown in Figure 6.12

and if it is negative, then it lags the magnetic field by 90°.

· The  correct  sign  of  the ௝ܷ,௙,௜௡  and ௝ܷ,௙,௤  components is automatically given by

Eq. 6-21 and Eq. 6-22 so the quadrant in which the phasor ௝ܷ,௙ lies relative to the

magnetic field does not have to be considered.

0B

TjU ,

fjU,

fj,q

infjU ,,

qfjU ,,

Figure 6.12: The in-phase and quadrature components of ࢐ࢁ

Figure  6.13  shows  a  block  diagram  of  the  implementation  of  the  digital  PSD.  The

voltage signal ௝ܷ,௙ between electrode ej and electrode e5 (under flow condition ݂) and

the voltage corresponding to the coil current ଴ areܫ  sampled  simultaneously  by  the  NI

PCI-6254  DAQ  device  (two  ADC  channels).  Both  signals  are  sampled  after  being

conditioned (the signal conditioning system is not shown). The DFT is then applied and

the real and imaginary components (ܽ + ݆ܾ)  of  the  voltage ௝ܷ,௙ and coil current ଴ܫ

signals are obtained at the operating frequency. After that, the real and imaginary terms

are converted to a polar form (ܽ + ݆ܾ → ݎ < Then, the phase angle .(ߠ ௝,௙ is foundߠ

which is the difference between the phase angle of the induced voltage signal ߶௝,௙  and

the phase angle of the coil current ߰௝,௙ 	(which is also the phase angle of the magnetic

field density ଴). Finally, Eq. 6-21 and 7-22 are applied to obtain the in-phaseܤ

component ௝ܷ,௙,௜௡  and the quadrature component ௝ܷ,௙,௤. Only the in-phase component is
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of interest and this is recorded accordingly. The analogue multiplexer then switches to

the next electrode and the same process is repeated.

)(, tU fj

)(0 tI

)(, nU fj

)(0 nI

jba +
jba+

q<r

fjTjU ,, f<

jI y<0

fjfjfj ,,, yfq -=
fjjTU ,, cosq

fjjTU ,, sinq

infjU ,,

qfjU ,,

Figure 6.13: Block diagram of the digital PSD used

6.4 Implementation of the Digital PSD Method in MATLAB

The MATLAB program, explained in Section 5.10, records all 15 voltage

measurements ௝ܷ,௙ (݆=1  to  16  apart  from  5)  from  the  electrode  array  via  the  NI  PCI-

6254 DAQ device and the multiplexed AC signal conditioning circuit. For each voltage

measurement ௝ܷ,௙, the coil current ଴ is also sampled to be used as a reference signal forܫ

the digital PSD method. The DFT is applied to both the measured voltage difference

௝ܷ,௙ and the measured coil current ଴ to obtain their real and imaginary terms at theܫ

operating frequency. Then, the flow induced voltage ௝ܷ,௙,௜௡ for each electrode is found

by finding the phase angle between the measured voltage ௝ܷ,௙ and the coil current .଴, i.eܫ

.௝,௙, as described above. Figure 6.14 shows the flowchart of the MATLAB programߠ



Chapter 6
Design of the Signal Processing System and Bench Testing

268

Figure 6.14: Flowchart of MATLAB program which explains the applied digital PSD
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6.5 Results for Testing the Digital PSD & Discussion

The digital PSD implemented in MATLAB as described in the previous section was

tested offline by generating a simulated voltage signal ௝ܷ,௙ in MATALB that consisted

of an in-phase voltage component ௝ܷ,௙,௜௡ (flow induced voltage), quadrature voltage

component ௝ܷ,௙,௤  (transformer voltage) and random noise ௡ܷ. The in-phase flow

induced voltage ௝ܷ,௙,௜௡ was  set  to  a  peak  voltage  of  100  mV,  the  transformer  (or

quadrature) voltage ௝ܷ,௙,௤  was set to a peak voltage of 5 V and the random noise ௡ܷ had

a peak voltage of 300 mV. The frequency of the flow induced voltage and the

transformer voltage was set to 30 Hz which is the same operating frequency as the one

used in the practical experiment. Note that the quadrature voltage component is 50 times

greater than the in-phase component. The random noise was created using the

MATLAB built-in function randn(n). The selected peak voltages of the signals were

similar to the voltage levels observed in the practical experiment after amplification by

the AC signal conditioning circuit. The flow induced voltage ௝ܷ,௙,௜௡ was given by

௝ܷ,௙,௜௡(ݐ) = 0.1 cosቀ2ݐ(30)ߨ + ቂ(80°) గ
ଵ଼଴°

ቃቁ Eq. 6-23

where the phase shift of 80° means that the in-phase component ௝ܷ,௙,௜௡ is  leading  the

real positive axis (Re). The quadrature voltage component was given by

௝ܷ,௙,௤(ݐ) = 5 cos ቀ2ݐ(30)ߨ + ቂ(170°) గ
ଵ଼଴°

ቃቁ Eq. 6-24

The quadrature voltage ௝ܷ,௙,௤ leads the real positive axis by 170° and leads the in-phase

voltage component ௝ܷ,௙,௜௡ by 90° (170°−80°) which means that it is in quadrature with

the in-phase component. The combined voltage signal ௝ܷ,௙, which is the sum of the in-

phase, quadrature and the random noise components, is given by
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௝ܷ,௙ = ௝ܷ,௜௡ + ௝ܷ,௤ + ௡ܷ Eq. 6-25

The coil current ଴, which was used as the reference signal (in-phase with the magneticܫ

field ଴ and the flow induced voltageܤ ௝ܷ,௙,௜௡  ) is assumed to be given by

଴ܫ = 2 cos ቀ2ݐ(30)ߨ + ቂ(80°) గ
ଵ଼଴°

ቃቁ Eq. 6-26

This reference signal was used to determine the in-phase and quadrature voltage

components as was described in Section 6.3.

To generate the signals given in Equations 7-23 to 7-26 in MATLAB, the number of

samples of each signal ܰ and the acquisition time ܶ had to be set.  These settings were

chosen to have the same values as those used in the MATLAB data acquisition program

which  was  used  to  control  the  analogue  multiplexer  –  the  front-end  of  the  AC  signal

conditioning circuit – and the NI PCI-6264 device as described in Section 6.6. The

number of samples ܰ was 1024 and the sampling frequency was 1024 Hz. The reason

behind the selection of these two values is explained in Section 5.9. Figure 6.15 presents

the in-phase voltage component ௝ܷ,௙,௜௡  (blue trace), the quadrature voltage signal ௝ܷ,௙,௤

(red trace) and the noise voltage, separately. Figure 6.16 shows the combined signal of

these three components, i.e. ௝ܷ,௙ and also shows the reference coil current signal ଴. Itܫ

can be seen that the in-phase component ௝ܷ,௙,௜௡  is buried completely in the total voltage

signal ௝ܷ,௙ and the PSD method is required to extract it. Using the approach explained in

the previous section, the DFT was applied to the total voltage signal ௝ܷ,௙ and the coil

current signal ଴. It can be seen from Figure 6.17 and Figure 6.18 that there are real andܫ

imaginary components at 30 Hz corresponding to the total voltage ௝ܷ,௙ and coil current

଴ signals. The amplitudes of the real and imaginary components of the DFT of the totalܫ

voltage and coil current signals are shown in Figure 6.17 and Figure 6.18, respectively.
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Figure 6.15: The simulated flow induced voltage, transformer voltage and noise signals

Figure 6.16: The combined total voltage and the coil current ࢌ,࢐ࢁ ૙ࡵ
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Figure 6.17: DFT result for at the target frequency 30 Hz ࢌ,࢐ࢁ

Figure 6.18: DFT results for ૙ at the target frequency 30 Hzࡵ
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From the amplitude values obtained from Figure 6.17 and Figure 6.18, the total voltage

and coil current signals in complex form are given by

௝ܷ,௙ = −4.96 + ݆511.56m = 4.99 < 174.11° Eq. 6-27

଴ܫ = 164.83m + ݆1.99 = 2.00 < 85.26° Eq. 6-28

From Eq. 6-27, the total voltage signal ௝ܷ,௙ has an amplitude of ௝ܷ,் = 4.99 V and leads

the positive real axis by ߶௝,௙ = 174.11o and from Eq. 6-28, the coil current ଴ leads theܫ

positive real axis by ߰௝,௙ = 85.26° (the amplitude of the current is not important). Both

signals are presented on an Argand diagram as illustrated in Figure 6.19.

0I

fjU, fj,f
fj ,yTjU ,

Figure 6.19: The total voltage signal and the coil current phasors

Hence, the phase angle ௝,௙ between the total voltage signalߠ ௝ܷ,௙ and the coil current ଴ܫ

is 88.85° as shown in Figure 6.20.
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°= 85.88, fjq
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Figure 6.20: The phase angle between the total voltage and coil current signals ࢌ,࢐ࣂ
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Using Eq. 6-21, the amplitude of the in-phase voltage signal can be determined as

shown below.

௝ܷ,௙,௜௡ = 4.99 cos(88.85°) = 100.15	mܸ Eq. 6-29

Similarly, using Eq. 6-22, the amplitude of the quadrature voltage signal is equal to

௝ܷ,௙,௤ = 4.99 sin(88.85°) = 4.99	ܸ Eq. 6-30

From Eq. 6-29, it  can be seen that the amplitude of the in-phase component is  almost

equal to the actual value which is 100 mV. There is only 0.002% error between the two

values and that is considerably low. Similarly, the quadrature voltage obtained from the

PSD was 4.99 V and the actual value is  5 V. The results showed that the digital  PSD

method is valid and accurate. If the noise level was higher, ensemble averaging may be

required [211]. Note that in the practical experiment, only the in-phase voltage

component was of interest which was the flow induced voltage; the quadrature voltage

value was not taken into account.

6.6 Effect of Error in the Phase Angle Measurement of the PSD

It  was  stated  in  Section  5.7.1  that  the  output  signal  of  the  signal  conditioning  circuit

leads the input signal by 2.4° and this phase lead must be compensated for in the PSD

method.  The  effect  of  not  considering  this  phase  error  is  significant  and  can  lead  to  a

large error in the flow induced voltage measurement. Figure 6.21 shows the amplitude

of the in-phase voltage component ௝ܷ,௙,௜௡ for values of ௝,௙ between 84° and 90°. Theߠ

correct value of ௝ܷ,௙,௜௡  is at ௝,௙ = 88.85° and it can be seen that for a small change inߠ

the angle, a large error occurs in the measurement of ௝ܷ,௙,௜௡ . For example, at

௝,௙ = 86.55°, which is a decrease of 2.3°, the amplitude ofߠ ௝ܷ,௙,௜௡  is 300 mV and that is

three times the value of the actual amplitude. Hence, the phase integrity of the system is

highly important. The phase lead introduced by the signal conditioning system is
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compensated for by subtracting 2.4° (ߠ௘௥௥௢௥) from the value of ,௝,௙ once it is measuredߠ

i.e.

௝,௙ߠ − ௘௥௥௢௥ߠ Eq. 6-31

Figure 6.21: Effect of the variation in on the amplitude of the in-phase component ࢌ,࢐ࣂ ࢔࢏,ࢌ,࢐ࢁ
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electrodes were measured. Then, the digital PSD technique, described in Section 6.3,

was applied to each set and the in-phase voltage component was determined. When

there was no flow, the in-phase voltage component was due to noise only, i.e. 	 ௝ܷ,௡௙,௜௡

(݂݊: no flow) and during flow, the in-phase component ௝ܷ,௜௡ was  the  sum of  the  flow

induced voltage 	 ௝ܷ,௙,௜௡ and the in-phase noise 	 ௝ܷ,௡௙,௜௡, which was assumed to have the

same  voltage  as  it  did  during  the  no-flow  condition  given  that  the  two  sets  of

measurements were made successively and within a short time of each other. Hence, the

in-phase voltage component related to flow 	 ௝ܷ,௙,௜௡ was found by subtracting the in-

phase noise 	 ௝ܷ,௡௙,௜௡ from the in-phase voltage component during flow ௝ܷ,௜௡, i.e.

	 ௝ܷ,௙,௜௡ = 	 ௝ܷ,௜௡ −	 ௝ܷ,௡௙.௜௡ Eq. 6-32

6.8 Bench Testing of the AC-excited Electromagnet

The  aim  of  this  experiment  was  to  measure  the  magnetic  flux  density  distribution

(magnitude and direction) in the air gap of the electromagnet where the electrode array

of the SVS is located. This is crucial as the magnetic field must be near uniform for the

theoretical work described in Chapter 3 to be valid. When the magnetic field is near

uniform  it  can  be  assumed  that  it  has  a  constant  value ଴ as given in Eq. 3-32 andܤ

Eq.  3-39.   In  addition  to  measuring  the  magnetic  field  density,  the  voltage  across  the

electromagnet coil ଴ܸ, the transformer voltage, the coil current ଴ andܫ  the  input  real

power were also monitored by using power analysers. According to the transformer

circuit theory, the transformer voltage is 180° out of phase with the supply voltage

(Lenz’s law) – the transformer emf is equal to the rate of change of the magnetic field

but opposes the source that caused it (Section 2.5.2). Moreover, the current in the coil

lags the supply voltage by a phase angle very close to 90o (inductive load with a small

resistance).
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6.8.1 Test Setup

The schematic diagram of the setup is illustrated in Figure 6.22. Equipment that were

used are: (1) Two GPM-8212 power analysers, (2) 4-channel Agilent oscilloscope

DSOX2014X and (3) GM07 Gauss meter. The supply voltage ௦ܸ across  the

electromagnet and the supply current .௦ were monitored by the power analyser PA1ܫ

The coil current (between the capacitor and electromagnet) was monitored by the power

analyser PA2. The transformer induced voltage was monitored by placing a search coil

(made of several wire turns) on the electromagnet. The time-varying magnetic flux

induces a voltage in the search coil which is proportional to the rate of change of flux

with respect to time (݂݁݉ = ܰ ௗథ
ௗ௧

). As discussed in Section 5.6, the signal generator

was  set  to  a ±4 V, 30 Hz sinusoidal voltage signal and hence, the power amplifier

output was ±40 V at the same frequency. The transformer stepped up the ±40 V signal

to around ±200 V.

Figure 6.22: Electromagnet test setup
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The  Gauss  meter,  which  had  an  axial  probe,  was  used  to  sense  the  amplitude  and

direction of the magnetic flux density This enabled the measurement of the magnetic .ܤ

field which is applied to the cross section of the physical SVS. The magnetic field

magnitude and direction were measured at x  = 0, y = −40 to +40 mm and z = −40 to

+40 mm as shown in the shaded square area in Figure 6.23.  This YZ plane (x = 0) was

the area of interest as it is orthogonal to the water flow in the SVS. Referring to Figure

6.24, at every intersection point (shown in red) between y and z, the magnitude and

direction  of  the  magnetic  flux  density  was  measured  to  confirm the  uniformity  of  the

magnetic field. It can be seen in Figure 6.24 that the flow channels of the SVS are

located within the magnetic field generated in the air gap.

Figure 6.23: Measurement of the magnetic field distribution in the shaded area where the SVS
channels are orthogonal to the magnetic field as shown in Figure 8.3
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Figure 6.24: Measuring the magnitude and direction of the magnetic field at each intersection
point. Note that x = 0, y = -40 to +40 mm and z = =40 to +40 mm.

Figure 6.25: Test setup for measuring the magnitude and direction of the magnetic flux density

To perform the magnetic field magnitude and direction measurements, the

electromagnet was placed upright on the bench for ease of access, as shown in Figure

6.25, and the following procedure was followed:
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· Two grid systems were created using a plain sheet of A4 paper to be used as a

reference guide for moving the Gauss meter probe correctly within the air gap. The

first grid system was 80 mm×80 mm with an interval of 10 mm separating each

grid line; the other grid system was a 120 mm×120 mm grid system, which also

had an interval of 10 mm between the grid lines (refer to Figure 6.25)

· The 80 mm× 80 mm grid system was placed in the XZ plane of the bottom surface

of  the  core  air  gap  while  the  120  mm×120 mm grid system was placed on the

bench  in  front  of  the  air  gap  of  the  electromagnet,  and  also  in  the  XZ  plane  as

shown in Figure 6.25.

· The probe holder allowed the probe to be rotated at a known angle and moved up or

down at intervals of 10 mm in the y direction. Rotating the probe enables the

direction of the magnetic field at the location of the probe to be determined

because, as described below, when the probe’s Hall Effect sensor was aligned with

the local magnetic field, a maximum reading from the probe for the local magnetic

flux density was obtained. The point representing the coordinates x = 0, z = 0 and

y = 0 was marked as the centre of the air gap for both grid systems.

· For the measurements of the magnitude and direction of the magnetic field, the

probe was moved in steps of 10 mm horizontally and vertically in the Y and Z

directions at x = 0. At each step change, the probe was turned to the angle at which

the highest magnetic flux density value was obtained, and then the measured

magnetic flux magnitude and probe angle were recorded in a table together with the

position of the measurement. The Hall-effect sensor of the probe had to be facing

the flux lines to measure the magnitude of the magnetic flux density.
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6.8.2 Results & Discussion

At the operating frequency of 30 Hz, the supply current ௦ required for the coil currentܫ

to reach a peak current ଴ of 10 A was 475 mA (rms value) and the peak voltage acrossܫ

the coil ଴ܸ was 200 V. It  can be seen that there is  a significant advantage in using the

power-factor correction capacitor. Instead of drawing a peak current of 10 A from the

power supply, only 475 mA was required. However, the peak current ଴ between theܫ

capacitor and the coil was 10 A because they are at resonance at 30 Hz as described in

Section 5.6. The total input power ௜ܲ௡ recorded by PA1 was 62 W which means that the

effective resistance ܴ௘௙௙  of the electromagnet was 1.24 Ω

(ܴ௘௙௙ = ௜ܲ௡ ௖௢௜௟ଶܫ = 62/7.07ଶ⁄ ). This is because varying voltages and currents

introduce effects that are not present in DC circuits such as radiation losses, eddy

currents and hysteresis losses as stated in Section 5.6 [153]. Note that the DC resistance

of the coil was 0.9 Ω.

Figure 6.26 shows the waveform of the voltage across the coil, the quadrature voltage

and the coil current. It can be seen that the quadrature voltage was 180° out of phase

with the voltage across the coil, which was expected according to Lenz’s law.

Moreover, the coil current lags the voltage across the coil and this phase lag was

measured to be 86° which was also expected as the electromagnet is not a pure

inductive load and has some resistance, and therefore, the phase lag would not be 90°.
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Figure 6.26: The supply voltage across the coil, the quadrature voltage and the coil current

The results of measuring the magnitude and direction of the flux lines of the magnetic

field  distribution  in  the  YZ  plane  at  x = 0, according to Figure 6.24, is presented in

Figure 6.27. The flow channels of the SVS are also displayed on Figure 6.27 to give an

indication of how uniform the magnetic field is across the channels. It can be seen that

the magnitude and direction of the magnetic flux density is almost uniform. The average

rms value of the magnetic flux density between ݖ = −20 mm to ݖ = +20 m, y = −20 to

+20 and at x = 0 (where the porous ceramic is located) was 301 Gauss (rms value) and

the standard deviation value was 4.3 Gauss. Hence, the magnetic field density ଴ acrossܤ

the flow channels is near uniform  and can be assumed that it has a constant value ଴ asܤ

given in Eq. 3-32 and Eq. 3-39.
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Figure 6.27: Vector plot of the magnetic flux density (RMS) in YZ plane at x = 0 mm

Theoretically (referring to Section 5.3.2), the rms magnetic flux was calculated to be

353 Gauss (500 Gauss peak). The reason for this decrease was due to the fringing

effects as explained in Section 5.3.2 which increased the effective area of the air gap .௚ܣ

Theoretically, for the physical air gap area ௚ܣ = 6400 mm2, peak current ଴ܫ = 10 A and

peak voltage ଴ܸ = 201 V, the peak magnetic flux density ଴ value calculated was 500ܤ

gauss. However, in the practical electromagnet, the measured peak magnetic flux

density value was 425 gauss (301 gauss rms), and by using the equations in Section 5.3,

the calculated effective area of the air gap ௚ܣ is 7500 mm2.

6.9 Bench Testing of the AC Signal Conditioning System

The AC signal conditioning circuit was tested for its transient and frequency responses

and its normal operation. The transient response determines the time required for the

output to reach its steady state value after power up. The frequency response shows the

gain and phase information for a range of frequencies. It was important to measure the
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gain and the phase of the system (input voltage with respect to the output voltage) at the

frequency of the flow induced potential  differences which is 30 Hz. The gain value of

the signal conditioning system had to be accurately measured in order to determine the

actual value of the flow induced potential differences after amplification. Moreover, any

phase error between the input and the output voltage signals introduced by the

conditioning system had to be measured and then compensated for in the PSD

MATLAB software. This would ensure that the PSD determines the flow induced

voltage potential differences accurately as the PSD depends on the phase relationship

between the total measured voltage and the coil current (the reference signal). If this

error is not compensated for, the in-phase flow induced potential measurements would

suffer from an error in amplitude, and that reduces the accuracy of the total flow rate

measurement.

6.9.1 Test Setup

The only equipment needed for this test was the DSOX2014X oscilloscope. The built-in

function generator of the oscilloscope was connected to the inputs of the AC signal

conditioning circuit, i.e. ௝ܷ and ହܷ (refer to Figure 6.28). The output ( ௢ܸ௨௧) of the circuit

was monitored on the oscilloscope. The test setup depicted in Figure 6.28 was used to

perform the normal operation, the transient response and the frequency response tests.
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Figure 6.28: Test setup for the AC signal conditioning circuit

6.9.2 Results & Discussion

For the transient response, the circuit was tested at power-up condition with DC offsets

of 0 V, 100 mV and 200 mV present in the voltage signal ௝ܷ. A step change of 100 mV

or 200 mV simulated the case when the analogue multiplexer switches its input to

connect to another electrode. All electrodes suffer from the DC offset in the range of

100 mV to 200 mV (observed in the practical experiment) due to polarisation which is

explained in Section 2.5.9.  It is important to determine the transient period of the signal

conditioning  system  for  different  DC  offset  values  (electrodes  have  different  DC

offsets) to find the longest possible period that can occur. Then, based on the longest

period that could occur, a time delay can be introduced in the MATLAB program which

controls  the  NI  PCI-6254 DAQ device.  This  time delay  ensures  that  the  DAQ device

samples the output of the signal conditioning system after the transient period of signal

conditioning system has elapsed.

Figure 6.29 shows the transient response of the circuit at power-up condition with zero

DC offset. Both voltage inputs of the circuit were grounded. It was found that the output

takes about 0.4 s (4.35 s − 3.92 s) to reach the steady-state value which is 0 V. Figure

6.30  shows  the  transient  response  of  the  circuit  when  100  mV  DC  and  200  mV  DC
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offsets were applied, respectively. For the 100 mV DC offset, the circuit took about

0.6 s (2.39 s – 1.8 s) to reach the steady-state value and 0.7 s when the DC offset was

changed to 200 mV.

In  MATLAB  program  1  (Section  6.6),  a  time  delay  of  1  s  was  added  between  the

switching to another electrode (via the multiplexer) and the start of the data sampling

process  to  avoid  the  transient  period  of  the  AC  signal  conditioning  circuit,  and  this

value was found to be appropriate for testing the SVS for the flow conditions as

described in Chapter 7.

Figure 6.29: Transient response of the circuit at power-up state.
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Figure 6.30: Transient response of the AC signal conditioning circuit for 100mV and 200 mV DC
offsets

For the frequency response, the input signal ௝ܷ was set to a peak voltage of 10 mV and

the output voltage was measured for a range of frequencies from 0.1 Hz to 12 kHz. The

frequency response (gain and phase vs frequency) of the circuit is shown in Figure 6.31

and Figure 6.32. It was found that, at 30 Hz, the gain of the circuit is 59.81 dB,

corresponding to an actual gain of 978, and the output voltage led the input voltage by

2.4°. Consequently, during the flow measurements described in Chapter 7, the flow

induced voltages detected by the electrodes will be amplified by a factor of 978, and for

the PSD method, the 2.4° phase error has to be compensated for to reduce the error in

amplitude of the flow induced potential differences as explained in Section 6.6.

Finally, Figure 6.33 shows the input and output voltage waveforms of the circuit after

the transient period (the normal operation). The input voltage ௝ܷ applied (blue trace) had
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voltage (red trace) was amplified by a gain of 978, i.e. 9.78 V, and as stated earlier,

there was a phase shift of 2.4° between the input and output voltages. Note that the DC

offset did not appear on the output voltage as it was removed by the high-pass filter

effect of the signal conditioning circuit, as described in Section 5.7.3.

Figure 6.31: Gain vs frequency response of the AC signal conditioning circuit [X refers to
frequency and Y refers to phase angle]
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Figure 6.32: Phase vs frequency response of the AC signal conditioning circuit [x refers to
frequency, y refers to phase angle]

Figure 6.33: Normal operation of the AC signal conditioning circuit
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6.10 Electrodes Electrical Noise Investigation

Before the flow induced potential difference measurements were obtained, the sources

of voltage noise that were buried in the potential difference signals detected by the

electrodes were examined. This helped in understanding the dominant source of voltage

noise  in  the  signals  picked  up  by  the  electrodes.  The  noise  analysis  was  done  by

performing a spectral analysis on the potential difference measured between electrodes

e1 and e5. It could have been performed with any other electrode pair as they are all very

close to each other and the noise between the other pairs would be very similar.

The potential difference between electrodes e1 and  e5 was  measured  by  the  AC signal

conditioning system and then sampled by the NI PCI-6254 DAQ. The potential

difference measurement was then divided by the gain of the signal conditioning system

which is 978. The spectral analysis was performed using NI Signal Express 2013

software. The sources of noise were first analysed while the electromagnet was

switched  off,  and  then  it  was  switched  on  and  any  differences  in  the  spectrum  were

observed. Figure 6.34 shows the spectrum of the potential difference measured between

electrodes e1 and e5 when the electromagnet was off and the water valve was shut.
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Figure 6.34: Spectral analysis of the potential measurement between electrodes e1 and e5 when the
AC power supply of the electromagnet was off and the water supply was shut off.

It can be seen from Figure 6.34 that the mains frequency component and its harmonics

were present in the voltage signal but were at a very minimal level. The 50 Hz

component was −116 dB (refer to Figure 6.34) which meant that the amplitude of the

50 Hz component was 1.6 V (measured with respect to the reference level of theߤ

spectrum analyser which is 1 V, i.e. 0 dB). The harmonics of the mains frequency were
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measured and the spectral analysis of the voltage signal was obtained as shown in

Figure 6.35.

Figure 6.35: Spectrum analysis of the potential measurement between electrodes e1 and e5 when the
AC power supply of the electromagnet was on.
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electrodes was in the mV range (voltage signals from other electrodes were also

examined) whereas the flow induced potential differences were in the ,V range.  Henceߤ

this demonstrate that the digital PSD method (see Section 6.3) was vital in order to be

able to distinguish between the flow induced and transformer induced potential

differences.

It can also be seen that the 150 Hz component increased from −120 dB (Figure 6.34) to

−100 dB (Figure 6.35) which is a voltage gain increase of 10. This was due to the

signal  generator  that  is  part  of  the  power  supply  of  the  electromagnet.  This  signal

generator has a transformer in its power supply and it runs from the mains. The 150 Hz

noise is predominantly caused by the hysteresis of the transformer core and it couples

magnetically to systems. It could have coupled to the electrode array, AC signal

conditioning system or any cables in between. However, this 150 Hz component can be

detected and removed when the digital PSD method is applied.
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6.11 Summary

The voltage signals picked up by the electrodes after being conditioned by the AC

signal conditioning circuit are the sum of two induced voltages: motional and

transformer. The motional induced voltage is due to the fluid flow in the magnetic field

and this is the desired voltage. The transformer induced voltage is the unwanted voltage

which is caused by the cable loops in the presence of the sinusoidal (time-varying)

magnetic field. The PSD technique was essential in order to distinguish the flow

induced potential differences (in-phase component) from the transformer voltages

(quadrature component). For accurately measuring a signal from a system using a PSD

method, the system must be excited by a reference signal with a known frequency. One

method  of  applying  the  PSD  is  to  multiply  the  output  of  the  system  by  the  reference

signal and then the resultant signal is passed to a low-pass filter function to obtain the

mean value of the target signal. This method can be implemented using analogue or

digital electronics as described in Section 6.2. Alternative implementation is to apply

the DFT to the measured voltage signals, detected by the electrodes, and the reference

signal to obtain their amplitude and phase. Then, once the phase difference between the

total voltage and reference signals is found, the in-phase and quadrature components

can be determined. This latter method was utilised for the practical SVS system and it

was implemented in MATLAB. All electrode signals and the coil current were sampled

by the data acquisition device and then the MATLAB-based PSD was applied. The

program developed in MATLAB was also tested using simulated flow, transformer and

noise signals to verify its function before usage in the practical experiment and the

results obtained from the test were correct and as predicted. It was found that any small

error in the phase angle between the measured voltage and the reference signal can

cause a significant error in the amplitude of the in-phase component, as discussed in
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Section 6.7, which is the component that is necessary to measure. The phase lead

introduced by the signal conditioning circuit which is 2.4° is compensated for in the

digital  PSD  MATLAB  software  by  subtracting  this  value  from  the  phase  angle

measured between the voltage signal and the coil current.

The AC-excited electromagnet and its power supply and the signal conditioning system

were tested on the bench, to verify their operation before obtaining the flow induced

potential differences. The electromagnet, described in Section 5.3, and its power supply

(refer to Section 5.6.2) were tested to ensure that the magnetic field, generated in the air

gap, was uniform across the SVS flow channels. The mean magnetic field density value

was 301 Gauss (rms value) and the standard deviation was 4.3 Gauss. The flux lines of

the magnetic field were also found to be in a constant direction as shown in Figure 6.27.

Hence, fluctuations in the magnetic flux density were minimal and so, the magnetic

field was near uniform. The peak voltage across the coil of the electromagnet was 200 V

and the peak coil current was 10 A as was predicted. Note that, the current drawn from

the power supply was 475 mA (rms) and the power consumption was 62 W. The reason

for this power consumption was the effective resistance ܴ௘௙௙  of the electromagnet

which is caused by radiation losses, eddy currents and hysteresis losses.

The AC signal conditioning circuit was tested for its transient and frequency responses.

The transient response test showed the time the circuit takes from power up to reach its

steady-state value. The test also demonstrated that when the multiplexer switches to

another electrode, a delay must be inserted before starting to sample the output of the

circuit. This ensures that the output signal is sampled when the circuit has reached its

steady-state value.  This time delay was chosen to be 1 s which was found satisfactory

for the operation of the circuit. The frequency response test provided the gain and phase

values of the circuit at 30 Hz – the frequency of the flow induced voltages. The gain of
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the circuit  at  30 Hz was 978 and the output signal of the circuit  led the input by 2.4°.

This phase was compensated for in the digital PSD method to prevent any phase error

from affecting the accuracy of the flow induced potential difference measurements as

explained in Section 6.6.

Lastly, the electrical noise detected by the electrodes was investigated and it was found

that it is very crucial to have the signal processing system to be able to separate the flow

induced potential difference from the transformer voltage as the latter has the same

frequency and is few magnitudes larger than the flow induced potential difference.
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7.1 Introduction

This chapter discusses the flow induced potential difference measurements obtained

from the  practical  experiments.  The  SVS flow rig,  shown in  Section  5.5,  was  used  to

conduct several flow rate measurement tests. Each test had different settings, i.e.

different  numbers  and  locations  of  the  flow  channels  and  different  flow  rate  values  –

similar to the FE simulations that were performed in Chapter 4. For each flow rate test,

flow induced potential differences and other unwanted signal (noise and transformer

induced voltages) were detected by the electrodes and then conditioned (using the AC

signal conditioning system) and processed (using the digital PSD method) to obtain the

required flow induced potential differences. Afterwards, these flow induced potential

difference measurements were compared to the flow induced potential difference

measurements obtained from the theoretical model given in Eq. 3-32 and Eq. 3-33 (refer

to Section 3.4) for given number and location of, and the flow rate in, the flow channels

and the peak magnetic flux density ଴. The aim was to compare the results of the flowܤ

induced potential difference measurements obtained from the practical experiment with

the flow induced potential difference measurements obtained from the proposed

theoretical model described in Eq. 3-32 and Eq. 3-33. This is very similar to the FE

simulations carried out in Chapter 4 in which the flow induced potential difference

measurements obtained from the FE model were compared with the flow induced

potential measurements obtained from theoretical model.

The practical induced potential difference measurements were obtained from tests

performed for different positions of the SVS tubes ‘a’ and ‘b’.  For each position,  two

water flow rates were used, i.e. 117×10-6 m3/s and 195×10-6 m3/s (average values).

These two flow rates were obtained when the valve of the water supply was either half
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or fully open. In these tests, water flow was imposed through either tube ‘a’ only, tube

‘b’ only or in both tubes. These tests showed the effects of: (i) the flow rate, and (ii) the

number and location of the flow channels, within the area bounded by the electrode

array, on the flow induced potential differences.

Next, the DFT was applied to the 16 flow induced potential difference measurements ௝ܷ

(݆ =1 to 16 and ହܷ = 0) obtained from each test. Note that when DFT is performed on

16 samples, only 8 DFT values are unique. The modulus of ܺ(1), i.e.|ܺ(1)| is

proportional to the total flow rate ்ܳ and the peak magnetic flux density ଴ as wasܤ

shown in Eq. 3-39. For convenience the relationship between the modulus of the

fundamental component of the DFT |ܺ(1)|, the total flow rate ்ܳ and the magnetic flux

density .଴ is stated belowܤ

|ܺ(1)| ଴ܤ்ܳ	∝ Eq. 7-1

Hence,

|ܺ(1)| = ݇ଵ்ܳܤ଴ Eq. 7-2

where ݇ଵ is a calibration factor which was determined from the flow tests discussed in

this chapter. Then, the practical calibration value ݇ଵ was compared to the value obtained

from the theoretical model which can be calculated using Eq. 3-33. The theoretical,

practical and FE calibration factor ݇ଵ values should be the same as the factor depends

only on the radius of the electrode array which is 25 mm.



Chapter 7
Flow Induced Potential Difference Measurements from the Practical SVS Model and
their Analysis

300

7.2 Test Setup

The SVS flow cross section (including the electrode array) is shown in Figure 7.1. All

electrodes were connected to the multiplexer circuit which is the front-end of the AC

signal conditioning circuit as shown in Figure 5.45. For each flow rate test, the potential

difference ௝ܷ,௙ between each electrode ej and electrode e5 was obtained via the AC

signal conditioning circuit (refer to Figure 5.24). Each potential difference ௝ܷ,௙ was

sampled by the NI PCI-6254 DAQ device. The coil current ଴ was also sampled by theܫ

DAQ device during the measurement of ௝ܷ,௙. It was necessary to use the coil current as

the reference signal in the PSD software to extract the in-phase flow induced potential

difference ௝ܷ,௙,௜௡7 from the potential difference ௝ܷ,௙ as described in Section 6.3. The

PSD method was applied to all potential differences ௝ܷ,௙ to obtain 16 flow induced

potential differences, i.e. e1-e5,  e2-e5,  e3-e5,  …,  e16-e5. This process was performed for

each flow rate measurement test. Note that, the 16 flow induced potential difference

measurements, shown later in this chapter, were obtained by averaging 10 samples to

provide more accurate results.

7 The in-phase potential difference ௝ܷ,௙,௜௡is equivalent to ௝ܷ  in the mathematical modelling in Chapter 3
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Figure 7.1: Cross section of the SVS and the electrode array

Three sets of flow tests were performed for: (i) tube ‘a’, (ii) tube ‘b’ and (iii) both tubes

as follows:

(i) Flow induced potential distribution measurements were obtained from water

flowing through tube ‘a’ only for low and high flow rates. For each flow rate, tube

‘a’ was positioned at 0°, 22.5° and 45° anti-clockwise with respect to electrode e1

as depicted in Figure 7.2.

Figure 7.2: Three different test setups for tube 'a' at 0°,  22.5° and 45° with respect to electrode e1



Chapter 7
Flow Induced Potential Difference Measurements from the Practical SVS Model and
their Analysis

302

(ii) Next, flow induced potential distribution measurements were obtained from

water flowing through tube ‘b’ only for low and high flow rates. For each flow

rate, tube ‘b’ was positioned at 180°, 202.5° and 225° with respect to electrode

e1 as illustrated in Figure 7.3.

Figure 7.3: Three different test setups for tube 'b' at 180°,  202.5° and 225° with respect to electrode
e1

(iii) Finally, flow induced potential distribution measurements were obtained from

water flowing through both tubes ‘a’ and ‘b’ simultaneously for low and high

flow rates.  For each flow rate,  both tubes were positioned at  0°,  22.5° and 45°

for tube ‘a’ and 180°, 202.5° and 225° for tube ‘b’ with respect to electrode e1 as

shown in Figure 7.4.

Figure 7.4: Three different test setups for tubes 'a' and ‘b’ at 0°-180°, 22.5°-202.5° and 45°-225°
with respect to electrode e1
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The positions of the tubes in the three test cases shown above were chosen to be similar

to the FE COMSOL test cases so that the results from both models could be compared.

Moreover, it was easier to rotate the electromagnet at the angles specified above

because the electrodes are 22.5° apart from each other and were used as a guide.

In the practical experiment, because it was necessary for the SVS pipe model to be

firmly fixed to its base, the electromagnet was rotated around the SVS unit rather than

rotating the SVS. Tubes ‘a’ and ‘b’ were rotated “virtually” without the need for

physically moving the SVS pipe model. This operation was performed by rotating the

electromagnet by an angle clockwise and that is equivalent to rotating tubes ‘a’ and ߠ

‘b’ by the same angle anti-clockwise. In other words, rotating the electromagnet by a

number of steps ݊ of  a  given  angle where ߠ  the  angle is measured with respect to ߠ

electrode e1 (refer to Figure 7.5) is equal to rotating the tubes by the same angle in the

opposite  direction.  However,  this  is  only  valid  if  the  current  index  number  of  the

electrodes ݆ is changed according to the number of steps ݊, i.e. ݆ᇱ = ݆ + ݊ where ݆ᇱ is

the new indexing number of the electrodes. Note that, if the value ݆ + ݊ is greater than

16 then the electrode number ݆ᇱ = (݆ + ݊) − 16.

The angle of rotation of the tubes was chosen to be 22.5° as the electrodes are placed ߠ

at this angle apart, and it was easy to rotate the electromagnet in such steps. For

example, suppose tubes ‘a’ and ‘b’ are needed to be rotated by 22.5° anti-clockwise,

with respect to the electrode array and the magnetic field so that their position changes

from that shown in Figure 7.1 to that shown in Figure 7.5(A). This can, in effect, be

accomplished by rotating the magnetic field shown in Figure 7.5(B) one step (݊ = 1) of

angle .i.e ,ߠ ߠ = 1 × 22.5°, clockwise and by changing the electrode index to
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݆ᇱ = ݆ + 1 as  illustrated  in  red  in  Figure  7.5(B).  The  reference  electrode  is  always

electrode e5 so the new reference potential is at ݆ᇱ = 5 which is electrode e4 physically.

Figure 7.5: Rotating the electromagnet by 22.5° clockwise and changing the indexing ࢐ to ࢐ᇱ as
shown in B is equivalent to rotating both tubes by 22.5° anti-clockwise with respect to electrode e1
as shown in A. The electrode numbers shown in black are ࢐ and the electrode numbers in red are ࢐ᇱ

7.3 Flow Induced Boundary Potential Results

The flow induced potential differences obtained from the practical experiments

(described in Section 7.3), were compared with the flow induced potential differences

obtained from the mathematical model given in Eq. 3-32 and Eq. 3-33 for the same

value of the magnetic field, the flow rate and the number, size and location of the flow

channels. The procedure that was used to find the flow induced potential differences

mathematically is explained in Section 4.7.2. The value of ݇ଵ, using Eq. 3-33, was

always 6.37 m-1 when calculating the flow potential differences.

7.3.1 Test 1: Water Flow Imposed in Tube ‘a’

In these tests, tube ‘b’ was blocked and the water was flowed through tube ‘a’ only.

Tube ‘a’ was virtually rotated by rotating the electromagnet by 22.5° then 45° with
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respect to electrode e1. The indexing ݆ of  the  electrode  array  was  also  changed

accordingly when the electromagnet was rotated. The first position of tube ‘a’ was at 0°

as  shown in  Figure  7.6.  The  water  flow through tube  ‘a’  only  was  measured  to  be  on

average 120×10-6 m3/s for the low flow rate and 190×10-6 m3/s for the high flow rate.
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Figure 7.6: Tube 'a' positioned at 0° with respect to electrode e1 (no change in indexing was
required)

Figure 7.7 shows a comparison between the flow induced potential difference

measurements obtained from the practical experiment and the flow induced potential

differences obtained from the theoretical model (Eq. 3-32 and Eq. 3-33) for the low and

high flow rates. It can be observed that for both low and high flow rates, the profile of

the potential distribution is very similar. The only difference is that the amplitude of the

potential difference measurements is higher for the greater flow rate and this is expected

as the flow rate is directly proportional to the flow induced potential differences. There

was a percentage difference in the amplitude of the potential differences obtained from

the practical experiment and theoretical model. This difference was mainly due to noise

that was in-phase with the flow induced potential differences and is discussed in
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Section 7.4 (refer also to Section 6.7). The magnitude of the largest measured induced

potential difference measurement was 116 V between electrode e1 and e5 for the lowߤ

flow rate, whereas for the high flow rate, the largest measured magnitude was 172 .Vߤ

Figure 7.7: Practical and theoretical flow induced potential difference measurements for tube ‘a’
located at 0° with respect to electrode e1 for flow rates of 120×10-6 m3/s and 190×10-6 m3/s

In the next test, the electromagnet was rotated by 22.5° clockwise, and the indexing of

the electrode array ݆ was  changed  to ݆ᇱ = ݆ + 1 or ݆ᇱ = (݆ + 1)− 16, if ݆ + 1 was

greater than 16 as shown in Figure 7.8(B). This is equivalent to rotating tube ‘a’ by

22.5° as illustrated in Figure 7.8(A). The electrode numbers shown in black are ݆ and

the electrode numbers in red are ݆ᇱ. The low and high water flow rates were on average

118×10-6 m3/s and 170×10-6 m3/s, respectively. The practical and theoretical flow

induced potential difference measurements for this test are presented in Figure 7.9. It

can be noted that in Figure 7.9, the potential distribution was different to the results in
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Figure 7.7 for relatively similar flow rate values. This was due to the change of position

of tube ‘a’ by 22.5° with respect to electrode e1.
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Figure 7.8: (A) Rotating tube ‘a’ by 22.5° anti-clockwise is equivalent to (B) rotating the
electromagnet by 22.5° clockwise with respect to electrode e1 and changing the electrode indexing
number from ࢐ to ࢐ᇱ. The electrode numbers shown in black are ࢐ and the electrode numbers in red
are ࢐ᇱ
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Figure 7.9: Practical and theoretical flow induced potential difference measurements for tube 'a'
located at 22.5o with respect to electrode e1 for flow rates of 118×10-6 m3/s and 170×10-6 m3/s

The next test involved changing the position of tube ‘a’ by 45° with respect to electrode

e1 as shown in Figure 7.10(A). The electromagnet was rotated by 45° clockwise and the

indexing of the electrode array ݆ was changed to ݆ᇱ = ݆ + 2 or ݆ᇱ = (݆ + 2) − 16, if

݆ + 2 was greater than 16 as shown in Figure 7.10(B). The reference electrode was

physical electrode e3 (virtual electrode e5) and the low and high water flow rate values

were 120×10-6 m3/s and 190×10-6 m3/s, respectively. The flow induced potential

difference measurement results are presented in Figure 7.11. Again, the boundary

potential distribution changed due to the position change of tube ‘a’.
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Figure 7.10: (A) Rotating tube ‘a’ by 45o anti-clockwise is equivalent to (B) rotating the
electromagnet by 45o clockwise with respect to electrode e1 and changing the electrode indexing
number from ࢐ to ࢐ᇱ. The electrode numbers shown in black are ࢐ and the electrode numbers in red
are ࢐ᇱ

Figure 7.11: Practical and theoretical flow induced potential difference measurements for tube 'a'
located at 45o with respect to electrode e1 for flow rates of 120×10-6 m3/s and 190×10-6 m3/s
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7.3.2 Test 2: Water Flow through Tube ‘b’

In the following tests, tube ‘a’ was blocked and water flow was only imposed in tube

‘b’. Tube ‘b’ was positioned at 180°, 202.5° and 225° with respect to electrode e1. For

each position, two flow rates were used, similar to the tests described in Section 4.7. In

the first test, tube ‘b’ was at 180° with respect to electrode e1 as illustrated in Figure

7.12. The magnetic field and the indexing of the electrode were not changed. The water

low and high flow rates were, on average, 110×10-6 m3/s and 210×10-6 m3/s. The

practical and theoretical results (using Eq. 3-32 and Eq. 3-33 in Section 3.4) for the flow

induced potential difference measurements are shown in Figure 7.13.

Figure 7.12: Tube 'b' at 180o with respect to electrode e1
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Figure 7.13: Practical and theoretical flow induced potential difference measurements for tube 'b'
located at 180o with respect to electrode e1 for flow rates of 110×10-6 m3/s and 210×10-6 m3/s

There is good agreement between the practical and theoretical flow induced potential

difference measurements. However, the practical results were affected by noise which

caused a slight difference between the practical and theoretical results. Similar to the

tests  performed  for  tube  ‘a’,  the  flow  rate  value  only  changed  the  amplitude  of  the

induced potential difference measurements. The position of tube ‘b’ had an effect on the

boundary potential distribution and it was a different profile when compared to the tests

for tube ‘a’ in Section 7.3.1.
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16 as illustrated in Figure 7.14. The water flow rates used were, on average,

118×10-6 m3/s and 190×10-6 m3/s.

Figure 7.14: (A) Rotating tube ‘b’ by 22.5° anti-clockwise to position it at 202.5° with respect to
electrode e1 is equivalent to (B) rotating the electromagnet by 22.5° clockwise and changing the
electrode indexing number from ࢐ to ࢐ᇱ. The electrodes numbers shown in black are ࢐ and the
electrode numbers in red are ࢐ᇱ
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The corresponding practical flow induced potential difference measurements in

comparison with the measurements obtained from the theoretical model are shown in

Figure 7.15. The new position of tube ‘b’ had an effect on the boundary potential

distribution. It can be observed that for every new location, the profile of the induced

potential difference measurements has a different distribution.

Figure 7.15: Practical and theoretical flow induced potential difference measurements for tube 'b'
at 202.5o with respect to electrode e1 for flow rates of 118×10-6 m3/s and 190×10-6 m3/s

Lastly, the electromagnet was rotated by another 22.5° clockwise to give the virtual

position  of  tube  ‘b’  to  be  at  225°  with  respect  to  electrode  e1 as illustrated in Figure

7.16(A). The electromagnet was rotated by 45° clockwise, thus the indexing of the

electrode array was changed to ݆ᇱ = ݆ + 2 or ݆ᇱ = (݆ + 2)− 16, if ݆ + 2 was greater

than 16 as shown in Figure 7.16(B). The flow rates used were 110×10-6 m3/s and

190×10-6 m3/s. The corresponding practical and theoretical flow induced potential

difference measurements are presented in Figure 7.17. There was good agreement
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between the practical and the theoretical results. The new position of tube ‘b’ changed

the boundary potential distribution as expected. The amplitude of the induced potential

difference measurements obtained from the low flow rate was smaller than the

amplitude of the induced potential measurements obtained from the high flow rate test

as predicted.

Figure 7.16: (A) Rotating tube ‘b’ by 45° clockwise to position it at 225° with respect to electrode e1
is equivalent to (B) rotating the electromagnet by 45° anti-clockwise and changing the electrode
indexing number from ࢐ to ࢐ᇱ. The electrode numbers shown in black are ࢐ and the electrode
numbers in red are ࢐ᇱ
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Figure 7.17: Practical and theoretical flow induced potential difference measurements for tube 'b'
at 225° with respect to electrode e1 for flow rates of 110×10-6 m3/s and 190×10-6 m3/s

7.3.3 Test 3: Water Flow through Tubes ‘a’ and ‘b’

In the final test setup, both tubes ‘a’ and ‘b’ were used. Firstly, tubes ‘a’ and ‘b’ were

positioned at 0° and 180° with respect to electrode e1 as shown in Figure 7.18. The low

and high water flow rate values for the total flow in both tubes were 118×10-6 m3/s and

200×10-6 m3/s. The corresponding flow induced potential difference measurements

obtained from the practical experiment and the theoretical model are presented in Figure

7.19. In Figure 7.19, the induced potential distribution is the result of the flow in the

both tubes. The value of the total flow rate has no effect on the shape of the potential

distribution as was observed in the previous tests (Sections 7.3.1 and 7.3.2). However,

higher potential amplitudes were associated with greater flow rate.
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Figure 7.18: Tubes 'a' and 'b' at 0° and 180° with respect to electrode e1

Figure 7.19: Practical and theoretical flow induced potential difference measurements for tubes 'a'
and 'b' located at 0° and 180° with respect to electrode e1 for flow rates of 118×10-6 m3/s and
200×10-6 m3/s
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Tubes ‘a’ and ‘b’ were then positioned virtually at 22.5° and 202.5° with respect to

electrode e1 as illustrated in Figure 7.20(A). The position of the electromagnet and the

indexing number of the electrode array were changed accordingly as illustrated in

Figure 7.20(B). The recorded total water flow rate values were 112×10-6 m3/s and

201×10-6 m3/s for the low and high flow rates. The flow induced potential difference

measurements for both flow rates obtained from the practical experiment and the

theoretical model are shown in Figure 7.21.

Figure 7.20: (A) Rotating tubes ‘a’ and ‘b’ by 22.5° clockwise is equivalent to (B) rotating the
electromagnet by 22.5° anti-clockwise and changing the electrode indexing number from ࢐ to ࢐ᇱ.
The electrode numbers shown in black are ࢐ and the electrode numbers in red are ࢐ᇱ. Tubes 'a' and
'b' are virtually at 22.5° and 202.5° with respect to electrode e1.
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Figure 7.21: Practical and theoretical flow induced potential difference measurements for tubes 'a'
and 'b' located at 22.5o and 202.5o with respect to electrode e1 for flow rates of 112×10-6 m3/s and
201×10-6 m3/s

Finally, tubes ‘a’ and ‘b’ were positioned at 45° and 225° with respect to electrode e1 as

shown in Figure 7.22(A). The total flow rates recorded were 118×10-6 m3/s and

201×10-6 m3/s and the corresponding flow induced potential difference measurements

for both flow rates are shown in Figure 7.23. It can be observed from the results

obtained  for  tubes  ‘a’  and  ‘b’  at  all  three  different  positions  that  if  only  the  flow rate

values change then, the shape of the flow induced potential distribution stays the same.

The only difference is that the amplitude of the flow induced potential differences for

high flow rates is greater than the amplitude of the flow induced potential differences

obtained for the low flow rates. However, changing the position of the tubes alters the

shape of the flow induced potential distribution.
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Figure 7.22: (A) Rotating tubes ‘a’ and ‘b’ by 45° clockwise is equivalent to (B) rotating the
electromagnet by 45° anti-clockwise and changing the electrode indexing number from ࢐ to ࢐ᇱ. The
electrode numbers shown in black are ࢐ and the electrodes number in red are ࢐ᇱ. Tubes 'a' and 'b'
are virtually at 45° and 225° with respect to electrode e1.

Figure 7.23: Practical and theoretical flow induced potential measurements for tubes 'a' and 'b'
located at 45° and 225° with respect to electrode e1 for flow rates of 118×10-6 m3/s and 201×10-6 m3/s
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7.4 Analysis of the Flow Induced Potential Distributions

The DFT was applied to the flow induced potential distributions obtained from each test

described in Section 7.3. As stated previously in Sections 4.8 and 7.1, only the DFT

component at the fundamental frequency, i.e. ܺ(1), is of interest because the modulus

of ܺ(1), i.e.	|ܺ(1)|, is predicted to be proportional to the total flow rate ்ܳ and the peak

magnetic flux density ଴ regardlessܤ  of  the  size,  position  and  number  of  flow  tubes

present within the cross-sectional area bounded by the electrode array (Eq. 3-39 in

Section 3.5).

For the tests performed in Section 7.3 (Tests 1, 2 and 3), the value of the total flow rate

்ܳ and the peak magnetic flux ଴ wereܤ  known.  The  DFT  was  applied  to  the  flow

induced potential distributions obtained from the practical experiment for each test. The

aim was to find the modulus |ܺ(1)| of the DFT harmonic component ܺ(1) from each

practical test, and then divide it by ଴ to calculate the calibration factor ofܤ்ܳ ݇ଵ which

should be a constant value. The theoretical ݇ଵ value is 6.37 m-1, calculated using Eq. 3-

33. The two values of ݇ଵ obtained from the theoretical and practical models should be

equal, theoretically (for a given ்ܳ and ଴). Onceܤ ݇ଵ is determined for the current

geometry of the flow cross section of the SVS, any unknown total flow rate ்ܳ can be

determined by measuring the flow induced potential distributions, obtaining its DFT

and then applying Eq. 3-39.

Table 7-1 shows the theoretical and practical values for the modulus	|ܺ(1)|	of the DFT

component ܺ(1) and the calibration factor ݇ଵ for the low flow rate tests (the average

value of the total flow rate for the low flow rate tests was 116×10 -6 m3/s). The peak

magnetic flux density ଴ wasܤ  425  gauss  (42.5  mT)  for  the  tests  for  tubes  ‘a’  and  ‘b’.
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The calibration factor ݇ଵ value obtained from the practical experiments and theoretical

݇ଵ value (Eq. 3-33) were plotted side by side in Figure 7.24.

It can be noted from the percentage difference graph in Figure 7.24 that the percentage

difference between the practical and the theoretical ݇ଵ values varied from one test to

another. The percentage difference between the practical and the theoretical ݇ଵ values

for the low flow rate tests was 3.74% on average with a standard deviation of 2.10%.

The highest percentage difference was 6.77% for test 8, which was for a water flow in

both tubes ‘a’ and ‘b’ positioned at 22.5° and 202.5°, respectively. However, the mean

value of ݇ଵ, obtained for the entire set of the practical tests, was 6.42 m-1, whereas, the

theoretical ݇ଵ value, obtained from Eq. 3-33, was 6.37 m-1. Hence, the percentage

difference between both values was only 0.8%. The cause of the differences in the

practical results was due to the in-phase electrical noise affecting the measurements of

the flow induced potential differences which will be explained in detail in the next

section.

Table 7-2 shows the practical and theoretical values for the modulus |ܺ(1)|  of the DFT

component ܺ(1)	and the calibration factor ݇ଵ for the high flow rate tests (the average

total flow rate for the high flow rate tests was 194×10-6 m3/s) and again, the peak

magnetic flux density ଴ was 425 gauss. The percentage difference between theܤ

practical and theoretical ݇ଵ values for the high flow rate tests was 4.71% on average

with a standard deviation of 4.46%. The highest percentage difference between the

theoretical and practical ݇ଵ values was 12.43% (refer to Figure 7.25). This percentage

difference was obtained from test 3 (refer to Table 7-2), which was for tube ‘a’ only

positioned at 45° with respect to electrode e1. Nevertheless, when the mean value of ݇ଵ,
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obtained from the practical tests, i.e. 6.08 m-1
, is compared with the theoretical ݇ଵ value,

i.e. 6.37 m-1, the percentage difference is only 4.6%.

By inspecting the values for	|ܺ(1)| in Table 7-1 and Table 7-2, it can be noted that the

values of |ܺ(1)| for the high flow rate tests in Table 7-2 are greater than the values in

Table 7-1 for the low flow rate which was predicted,  since the value	|ܺ(1)| is directly

proportional to the total flow rate ்ܳ.

#Test Position of tubes
a and b

Practical
|(૚)ࢄ|
(ࢂࣆ)

Theoretical
(Eq. 3-39)

|(૚)ࢄ|
(ࢂࣆ)

ࢀࡽ
(m3/s)
×10-6

Practical
࢑૚

Theoretical
࢑૚

1 ‘a’ at 0° 31.24 32.49 120 6.13 6.37

2 ‘a’ at 22.5° 32.80 31.95 118 6.54 6.37

3 ‘a’ at 45° 32.58 32.49 120 6.39 6.37

4 ‘b’ at 180° 30.46 29.78 110 6.52 6.37

5 ‘b’ at 202.5° 34.19 31.95 118 6.82 6.37

6 ‘b’ at 225° 28.88 29.78 110 6.18 6.37

7 ‘a’ and b’ at 0°
and 180° 33.76 31.95 118 6.73 6.37

8 ‘a’ and b’ at 22.5°
and 202.5° 28.34 30.32 112 5.95 6.37

9 ‘a’ and b’ at
45° and 225° 32.72 31.95 118 6.53 6.37

Avg 31.66 31.40 116 6.42 6.37
Table 7-1: Values of and |(૚)ࢄ| ࢑૚ obtained from practical and theoretical models for the low flow
rate tests (average 6-10×116 =ࢀࡽ m3/s)
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Figure 7.24: Comparison between values of ࢑૚ obtained from the practical and theoretical models
for the low flow rate tests (average 6-10×116 =ࢀࡽ m3/s)

#Test Position of
tubes a and b

Practical
|(૚)ࢄ|
(ࢂࣆ)

Theoretical
(Eq. 3-39)

|(૚)ࢄ|
(ࢂࣆ)

ࢀࡽ
(m3/s)
×10-6

Practical
࢑૚

Theoretical
࢑૚

1 ‘a’ at 0° 45.71 51.44 190 5.66 6.37
2 ‘a’ at 22.5o 46.07 46.02 170 6.38 6.37
3 ‘a’ at 45° 45.42 51.44 190 5.62 6.37
4 ‘b’ at 180° 56.56 56.85 210 6.34 6.37
5 ‘b’ at 202.5° 50.73 51.44 190 6.28 6.37
6 ‘b’ at 225° 47.80 51.44 190 5.92 6.37

7 ‘a’ and b’ at 0°
and 180° 52.46 54.15 200 6.17 6.37

8 ‘a’ and b’ at
22.5° and 202.5° 52.26 54.42 201 6.12 6.37

9 ‘a’ and b’ at
45° and 225° 53.54 54.42 201 6.27 6.37

Avg 50.06 52.40 194 6.08 6.37
Table 7-2: Values of and |(૚)ࢄ| ࢑૚ obtained from the practical and theoretical models for the high
flow rate tests (average 6-10×194 =ࢀࡽ m3/s)
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Figure 7.25: Comparison between values of ࢑૚ obtained from the practical and theoretical models
for the high flow rate tests (average (m3/s 6-10×194 =ࢀࡽ

7.5 Discussion

It can be concluded from tests (i), (ii) and (iii), given in Sections 7.3.1, 7.3.2 and 7.3.3,

that the shape of the boundary induced potential distribution changes due to a change in

the position and number of the flow tubes within the cross-sectional area bounded by

the electrode array. However, the shape of the potential distribution does not change for

a change in the flow rate value. For single or multiple tubes in a fixed position, the flow

rate value only changes the amplitude of the flow induced potential difference

measurements, the higher the flow rate value, the greater the amplitude of the flow

induced potential differences. This is due to the linearity of the system, i.e. the

amplitude of the flow induced potential differences is directly proportional to the flow

rate. Moreover, the flow induced potential differences obtained from the theoretical

model (Eq. 3-32 and Eq. 3-33) and the practical experiments, presented in Section 7.3,
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showed very good agreement. It can be seen that, when single or multiple tubes were in

the same position, the induced potential differences from both the theoretical model and

the practical experiment were similar. However, there was a difference in amplitude

between the flow induced potential differences obtained from the practical experiment

in comparison with the results obtained from the theoretical model. The main reason for

this difference was voltage noise affecting the practical experiment which will be

explained later in this section.

When comparing the flow induced potential difference measurements obtained from the

COMSOL FE model (Section 4.7)  with the practical results (Section 7.3), it can be

noted that, for a tube or tubes in the same position, the shape of the distribution of the

flow induced potential difference measurements is very similar and the only difference

is the amplitude level of the potential difference because the flow rate and magnetic flux

density values used in the COMSOL modelling and the practical experiment were

different.

For example, the shape of the flow induced potential difference boundary distribution in

Figure 4.17, obtained from the COMSOL FE model for tube ‘a’ positioned at 22.5o with

respect to electrode e1, is similar to the shape of the distribution for the practical test

shown in Figure 7.9 which gives the results for tube ‘a’ at the same position. The only

difference was the amplitude of the flow potential differences between Figure 4.17 and

Figure 7.9, and this was because the flow rate and magnetic flux density values were

different. In the COMSOL FE model, the low and high flow rate values were

1.96×10-3 m3/s and 3.93×10-3 m3/s respectively, and the peak magnetic flux density

଴ܤ = 1 mT. However, in the practical test, the low and high flow rates were

118×10-6 m3/s and 170×10-6 m3/s respectively, and the peak magnetic flux density ଴ܤ
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was 42.5 mT. This also applies to the other results obtained from the COMSOL FE

model (Section 4.7) and the practical experiments in this chapter. This confirms the

agreement between the theoretical model, the COMSOL simulations and practical

experiments for the same geometry and tube locations within the flow cross-section.

The sensitivity of the shape of the boundary potential distribution to the number and

location of the flow channels shows the possibility for further improving this EM flow

metering technique to determine the location of the flow tubes as well by using

tomographic and iterative methods. The tomographic method could be applied using the

velocity reconstruction techniques explained in the reference [121] and described in

Section 2.5.6. This velocity reconstruction technique could be extended, as will be

explained in Section 8.3.1, and used to give an estimate of the peak arterial blood flow

rate ܳ௚ in, and the radial and angular coordinates ௚ andݎ ௚ of, theߠ ݃௧௛ artery for each of

the arteries crossing the plane of the 16-electrode array using the 16 flow induced ܩ

potential difference values obtained from the electrodes.

In the practical experiment, the potential difference measured between each electrode

and the reference electrode consisted of various components and the main ones of which

were:  (1)  DC  offset  due  to  polarisation,  (2)  flow  induced  potential  difference,  (3)

transformer induced voltage and (4) mains and RF interference. The DC offset and

mains and RF interference were reduced substantially when passed through the AC

signal conditioning system. The signal conditioning system is a band-pass filter with

cut-off frequencies of 1.94 Hz and 519 Hz. The high-pass filtering, provided by the AC-

coupling of the IA, removed the DC offset and the RFI low-pass filter attenuated any

RF signal above 23.4 kHz. The system also had high CMRR which was around 97 dB
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(83 dB without the right-leg drive circuit) and that played an important role in

eliminating the common-mode signals.

The electrode cables were also twisted and screened which prevented any magnetic flux

passing through the cable loops resulting in induced voltage error. Additionally, the

digital PSD required the DFT to be applied to the total measured voltage signals which

are detected up by the electrodes, as explained in Section 6.4. Then, the 30 Hz

frequency component was extracted which consisted of the flow induced and

transformer potential difference components. This was effectively an additional method

of filtering as all unwanted frequencies, including mains and RF signals, were

eliminated.  The  digital  PSD  was  then  applied  on  the  30  Hz  frequency  component  to

separate its in-phase component, which is the flow induced potential difference (in-

phase  component  with  the  coil  current),  from the  quadrature  component,  which  is  the

transformer potential difference.

However, the flow induced potential difference was still affected by an in-phase noise.

This in-phase noise was sometimes of the amplitude of several hundreds of microvolts

which is greater than the highest measured value of flow induced potential differences

during all tests, i.e. 185 V. An investigation was carried out to identify the source ofߤ

this in-phase noise. It was found that the leads carrying current to the electromagnet coil

were inductively coupling to the measurement system including the electronic circuit

which measures the coil current to be used for the digital PSD. The coil current and the

signal conditioning circuits were electrostatically shielded only. The induced voltage

from this magnetic coupling was at the operating frequency of 30 Hz, but was not

necessarily in quadrature with the coil current (voltage is induced in networks of

different impedance) and therefore, the PSD technique (Section 6.3) could not
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distinguish it as a quadrature voltage, resulting in noise that was in-phase with the flow

induced potential differences. This problem is highlighted in the EM flow metering

literature and also reviewed in Section 2.5.9 [127, 144, 145]. Moreover, if this

magnetically-coupled 30 Hz noise affects the coil current phase (noise induced in the

coil current measurement circuit), this would increase the in-phase noise as explained in

Section  6.6.  This  is  due  to  the  sensitivity  of  the  PSD method to  the  phase  error  in  the

angle ௝,௙ between the total measured voltageߠ ௝ܷ,௙ during flow and the reference coil

current .଴ܫ

This problem was overcome in the practical experiment by obtaining the total in-phase

induced potential differences during flow and no-flow conditions as explained in

Section 6.7. Then, the in-phase induced potential difference measurements obtained

from the no-flow condition were subtracted from the potential difference measurements

obtained during flow and the result was the in-phase flow induced potential difference

measurements without the in-phase noise. The results from this problem were

considerably worse for the low flow induced potential differences which were of the

order of a few microvolts. This problem would ideally have been solved by

magnetically shielding the induced voltage and coil current measurement systems, and

also ensuring that the power supply for the electromagnet and its cables were at a

reasonable distance from the measurement system. Magnetically shielding the

electrodes’ cables would also improve the magnetic shielding of the overall system.

These optimisations were not implemented due to time constraints. The flow induced

potential difference measurements and the calibration factor ݇ଵ obtained from the

practical experiments were nevertheless satisfactory overall.
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By inspecting Table 7-1 and Table 7-2 in Section 7.4, it can be concluded that the value

of the practical calibration factor ݇ଵ for all the test scenarios was nearly constant – very

close to the theoretical counterpart values – regardless of the number of flow tubes, their

position and the flow rate values used. According to Eq. 3-33, the calibration factor

value ݇ଵ depends on the radius ܴ of the cross-sectional area bounded by the electrode

array. For the geometry of the flow cross section used in the theoretical modelling,

COMSOL simulation and the practical experiment, the radius was 25 mm.

Using Eq. 3-33, this gives a theoretical ݇ଵ value of 6.37 m-1. The average value of ݇ଵ

obtained from the practical experiment (averaging the mean values from the low flow

and high flow tests in Table 7-1 and Table 7-2) was 6.25 m-1;  and from the COMSOL

FE  model,  it  was  6.14  m-1. The percentage difference between the theoretical and FE

݇ଵ	values is 3.70%, whereas the difference between the theoretical and the practical

݇ଵ	values is 1.90%. Both percentages are small and demonstrate that there is a good

agreement between the theoretical model, COMSOL FE model and the practical

experiment.

The practical calibration ݇ଵ	value of 6.25 m-1 can  be  used  to  determine  any  flow  rate

once the flow induced potential differences are obtained and the modulus |ܺ(1)| of the

fundamental DFT component ܺ(1) is  found.  For  example,  if  the  unknown  flow  rate

through tube ‘b’ is 210×10-6 m3/s (similar to Test 4 in Table 7-2), the modulus |ܺ(1)|	of

the DFT component ܺ(1) of the measured flow induced potential differences is

56.56 V and the peak magnetic fluxߤ ଴ is 42.5 mT. By using the practical value forܤ ݇ଵ,

i.e. 6.25 m-1, the predicted total flow rate is given by

்ܳ =
|ܺ(1)|
݇ଵܤ଴

=
56.56	μV

(6.25	mିଵ)(42.5	mT) = 212.93 × 10ି଺	mଷ/s	
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The difference between this flow rate value and the actual total flow rate is therefore

1.39%. If the actual flow rate is 190×10-6 m3/s (test 5 in Table 9-2), the predicted total

flow rate ்ܳ can be obtained using the practical ݇ଵ equal to 6.25 m-1

்ܳ =
|ܺ(1)|
݇ଵܤ௉

=
50.73	μV

(6.25	mିଵ)(42.5	mT) = 190.98 × 10ି଺	mଷ/s

The error in this case is only 0.51%. Both percentage differences 1.39% and 0.51% are

small and acceptable for practical blood flow monitoring applications. If the practical

calibration factor was not determined and only the theoretical ݇ଵ value was available

from the theoretical model, i.e. ݇ଵ = 6.37 m-1, then using this value for the above two

conditions would predict flow rate values of 209×10-6 m3/s and 187.40×10-6 m3/s and

these values correspond to errors of 0.50% and 1.38%, respectively, when compared to

the actual flow rates. It can be concluded that using the theoretical calibration factor

instead of the practical value also gives the flow rate values with high accuracy. This

means that this proposed EM blood flow metering method can be calibrated offline if

nothing more than the radius of the electrode array is known. This is a very important

feature because human limbs vary in size and yet, by knowing only the radius of the

electrode array that is fitted, the calibration factor ݇ଵ can be calculated.

For  the  first  prototype  of  this  method  to  be  tested  in  clinical  trials,  several  sizes  of

electrode array can be made for different sizes of human limbs. The calibration value ݇ଵ

can be calculated for each electrode array. Then, one suitable electrode array will be

fitted around a limb across which a uniform magnetic field is applied. Afterwards, the

flow induced potential differences due to the arterial flow only are obtained (refer to

Section 3.6). Lastly, the modulus |ܺ(1)| of the DFT component is determined and by

using the calculated calibration factor ݇ଵ, the total arterial blood flow rate ்ܳ in the
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human limb can be calculated. Alternatively, instead of having different electrode

arrays, the electrode array size can be adjusted and its diameter value can then be

entered in the software for the flow rate calculations.

Based on the results obtained from the theoretical, COMSOL FE and practical models,

it can be stated that the EM induction technique developed has been verified. This

technique can measure the total volumetric flow rate for multiple tubes within the cross-

sectional area bounded by the electrode array in the presence of a uniform magnetic

field.

7.6 Summary

The practical experiment of the SVS flow test rig was executed to obtain flow induced

potential difference measurements resulting from water flow in the SVS channels at

various positions in the presence of the generated magnetic field. The aim was to

compare these flow potential differences with the counterpart measurements obtained

from the mathematical model given in Eq. 3-32 and Eq. 3-33. Furthermore, the modulus

|ܺ(1)| of  the  DFT  component ܺ(1), obtained from the flow induced potential

differences, was found from the practical experiment and also the calibration factor ݇ଵ

value. These values were also compared with the counterparts obtained from the

theoretical model (Eq. 3-39 and Eq. 3-33).

Three sets of tests were performed: water flow imposed in tube ‘a’ only, tube ‘b’ only

and then both of the tubes. For each set of tests, the tube or tubes were rotated to three

different  positons:  (i)  tube  ‘a’  was  positioned  at  0°,  22.5°  and  45°  with  respect  to

electrode e1 (Section 7.3.1), (ii) tube ‘b’ was positioned at 180°, 202.5° and 225° with

respect to electrode e1 (Section 7.3.2) and lastly, (iii) both tubes ‘a’ and ‘b’ were
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positioned at 0°-180°, 22.5°-202.5° and 45°-225° with respect to e1 (Section 7.3.3). Two

flow rate values were used for each positon of the tubes, which were, on average,

116×10-6 m3/s and 194×10-6 m3/s.

The voltage signals sensed by the 16 electrodes were passed to the signal conditioning

system to amplify the signals so that they were suitable for AD conversion and also to

remove  any  DC  offset  on  the  voltage  signals,  due  to  polarisation,  and  mains  and  RF

interference. The voltage signals starting from electrode e1 were then sampled by the

DAQ device sequentially and during each signal measurement, the coil current was also

sampled to be used as the reference signal in the MATLAB-based PSD software. Then,

the PSD was applied for each voltage signal to determine the portion of the voltage

signal that is in-phase with the coil current, which is the flow induced potential

difference. The flow induced potential differences, obtained from the practical

experiment, were affected by an in-phase voltage noise mainly caused by the magnetic

coupling of the electromagnet cables of the coil current to the signal conditioning

circuitry. To remove this in-phase noise, potential difference measurements were made

during  no-flow  and  flow  conditions  to  determine  the  in-phase  noise.  This  was  a

temporary solution; however, ideally, magnetic shielding should be in place to protect

the measuring system from noise due to magnetic coupling.

It was found, from the flow induced potential difference results in Section 7.3, that the

amplitude of the flow induced potential differences is directly proportional to the flow

rate value. A higher flow rate value results in greater amplitude of the flow induced

potential differences. The flow induced potential differences measured were observed to

be from 10 V for a flow rate of 116×10-6 m3/s and from 10ߤ	V to 90ߤ V forߤ	V to 185ߤ

the flow rate value 194×10-6 m3/s. It was noted that the shape of the boundary potential
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distribution is sensitive to the number and position of the of the flow channels within

the cross-sectional area bounded by the electrodes.

The DFT was applied on all the flow potential differences obtained from the practical

flow tests. The modulus |ܺ(1)| of the fundamental DFT component ܺ(1) and the

calibration factor ݇ଵ for all tests were tabulated in Table 7-1 for the low flow rate tests,

116×10-6 m3/s on average, and Table 7-2, for the high flow rate tests, 194×10-6 m3/s on

average, as shown in Section 7.4. The counterpart theoretical values of the modulus

|ܺ(1)| of the DFT component ܺ(1) and the calibration factor ݇ଵ, calculated using

Eq. 3-39 and Eq. 3-33, were also included for comparison. It was noted from the results,

that |ܺ(1)| values for the higher flow rate tests were greater and that was predicted,

since the value |ܺ(1)| is directly proportional to the total flow rate. The practical

calibration factor ݇ଵ obtained  was  6.25  m-1 on average and the theoretical value was

6.37 m-1 (using Eq. 3-33) and thus, the percentage difference was only 1.90%. Hence,

the proposed EM method can be calibrated offline, and only the radius ܴ of  the

electrode array is required to find the calibration factor ݇ଵ.

In conclusion, it was shown that the flow boundary potential distribution, for a number

of flow channels within the cross-sectional area bounded by the electrodes, can be

predicted using Eq. 3-32 and Eq. 3-33 – given that the radial and angular coordinates of,

and flow rates in, the flow channels are known. The practical results in Section 7.3

confirmed that the theoretical model can predict the boundary potential distribution for

any flow scenario. This is the first major outcome of the practical experiment.

Moreover, it was shown (Section 7.4) that when the DFT is applied to the flow potential

differences, the modulus |ܺ(1)| of the fundamental DFT component ܺ(1), is directly

proportional to the total volumetric flow rate ்ܳ. This confirmed the mathematical
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model given in Eq. 3-39 which shows that the total volumetric flow rate, within a cross

sectional area bounded by the electrode array, can be estimated by only finding |ܺ(1)|

and knowing the magnetic field density ଴ and the calibration factorܤ ݇ଵ, irrespective of

the number and location of the flow channels. This is the second and most important

outcome of this research as it confirms the main research objective which is to find a

method that can be used to estimate the total volumetric flow rate of a conductive fluid

flowing in multiple flow channels. These flow channels are located within the cross-

sectional area that is bounded by the electrode array. The method was found to give a

flow rate measurement with high accuracy (see Section 7.4). The use of 16-electrode

system makes it insensitive to velocity profiles, unlike previous attempts, and this was

proven  when water  flow was  imposed  in  a  single  channel  (tube  ‘a’  or  ‘b’)  only.   The

method also can be calibrated offline as the calibration factor ݇ଵ is only required which

can be calculated mathematically using Eq. 3-33. For the aforementioned outcomes, this

method has a potential application in non-invasive blood flow metering. The Further

Work (Section 8.3) includes the next phases required to take this research idea towards

clinical applications.
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8.1 Conclusions

Blood flow rate measurement has a variety of important applications in the areas of

cardiology, diabetes and dermatology. It is an important measurement in the diagnosis

of cardiovascular diseases such as peripheral vascular disease and deep vein thrombosis.

Blood flow measurement can be performed using both invasive and non-invasive

techniques. Invasive methods are the least favourable as they require surgical

intervention. Advanced screening techniques such as MRI, arteriography and

venography are not often used for routine or regular tests as they are expensive, bulky

and require highly experienced operators. A common method for non-invasive blood

flow diagnosis is duplex ultrasound. This method is widely accepted by health

practitioners, and has proved its use in clinical applications. However, it has been

shown in Section 2.4.6 that ultrasound suffers from several drawbacks including the

appearance of artefacts and, in some cases, it is not possible to use. Primary health care

providers are also not in favour of using the ABI test when staff availability is limited as
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it  is  a  time-consuming  process.  It  may  also  lead  to  false  diagnosis  of  elderly  and

diabetic patients as discussed in Section 1.3.1.

The research work in this thesis has proposed an alternative novel non-invasive method

based  on  EM  induction  for  blood  flow  rate  measurement.  It  comprises  a  ring  of  16

electrodes into which a limb is inserted and across which a magnetic field is applied. It

is shown in this thesis that this method can determine the total volumetric flow rate in a

cross section regardless of the number of tubes (blood vessels) or their location within

the cross-sectional area bounded by the electrodes. Generally the EM flow metering

technique is attractive because it is linear, i.e. the amplitude of the flow induced

potential differences is directly proportional to the flow rate, and insensitive to

viscosity, density, temperature and pressure loss. Additionally, this proposed method,

unlike conventional EM blood flow meters, is insensitive to spatial distribution of

velocity and can be calibrated offline. It can potentially be implemented to create a non-

invasive, portable and low cost blood flow monitor for use in clinical applications.

The research work undertaken in this thesis has included a mathematical model for this

proposed method (Chapter 3) by extending the virtual current theory for multiple flow

channels within a cross-sectional area bounded by multiple electrodes. Firstly, it was

shown how, for a number of flow channels within the cross-sectional area bounded by

the electrodes, the potential distribution can be calculated in terms of the radial ௚ andݎ

angular ௚ coordinates of, and flow ratesߠ ܳ௚ in,  the  flow  channels  and  the  peak

magnetic flux density ଴. Then, it was shown that the modulusܤ |ܺ(1)| of  the  DFT

component ܺ(1) of the boundary flow induced potential distribution ௝ܷ is proportional

to the total volumetric flow rate ்ܳ and the peak magnetic flux density ଴, irrespectiveܤ

of  the  number,  size  and  location  of  the  flow  channels.  It  was  also  shown  that  the
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calibration factor ݇ଵ relating |ܺ(1)| to ்ܳ depends only on the radius of the electrode

array (surrounding the limb) which simplifies the calibration process significantly as it

allows offline calibration.

An  FE  model  of  the  SVS  was  developed  using  COMSOL  Multiphysics  (Chapter  4)

software in order to validate the theoretical model (Eq. 3-32, Eq. 3-33 and Eq.3-39) of

the proposed EM method. Minimal computational errors were encountered in the FE

model due to the selected meshing size, chosen to save simulation time. The FE model

consisted of a conductive cylindrical region with flow channels and a Helmholtz coil to

generate a uniform magnetic field across the conductive cylindrical region. Flow

induced potential difference measurements were obtained for a variety of test

conditions, i.e. different numbers and locations of the flow channels and different flow

rate values. The potential difference measurements obtained from the FE model and the

theoretical model for the same test setup showed very good agreement with each other.

It was concluded that the shape of the boundary potential distribution is sensitive to the

number, size and location of the flow channels. However, it was demonstrated that the

modulus |ܺ(1)| of  the  DFT component ܺ(1) of the boundary potential distribution is

proportional to the total volumetric flow rate ்ܳ and the peak magnetic flux density ,଴ܤ

regardless of the number, size and location of the flow channels.

Lastly, a physical model was designed and built to demonstrate the proposed EM

method, and also to compare the measured potential differences with the potential

differences obtained from the theoretical model described above. The physical model

(known as the SVS) consisted of pipework with similar geometry to the FE model (i.e.

two flow channels and a 16-electrode array). It also used an AC-powered electromagnet

and signal conditioning and processing systems. This model simulated a human limb

with two blood vessels. Water flow could be imposed in one or both flow channels. The
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magnetic field across the electrode array was generated by the AC-powered

electromagnet at an operating frequency of 30 Hz. This frequency was selected to avoid

the effects of mains interference and to improve accuracy in measuring the flow induced

potential differences at 30 Hz. A PFC was utilised in the design of the power supply of

the electromagnet to minimise the supply current requirement. The current required

from the power supply was only 475 mA (rms value ) to generate a peak current of 10 A

in the coil of the electromagnet. With this coil current a spatially uniform AC magnetic

field with a peak magnetic flux density of 42.5 mT was generated in the air gap of the

electromagnet.

The 16-electrode system was interfaced to an AC signal conditioning system by an

analogue multiplexer, which reduced the number of channels required for the signal

conditioning system. Screened and twisted cables were used for connecting the

electrodes to the multiplexer to minimise mains interference and RFI. The purpose of

the AC signal conditioning system was to amplify the measured flow induced potential

differences and to filter out unwanted noise components. All potentials sensed by the

electrodes were measured with respect to electrode e5 (the reference electrode). The

signal conditioning system consisted of an RFI suppression filter, 2-stage gain

amplifiers  and  a  “right-leg”  drive  circuit.  The  overall  gain  of  the  system (≈1000) was

split over two amplification stages (×10 and ×100) to prevent the DC offset present in

the signals, due to electrode polarisation, from saturating the system. The “right-leg”

drive circuit is a technique often used in medical devices such as ECG and EEG to

minimise EM interference, especially mains harmonics, at the source. It is performed by

sensing the common-mode noise at the input of the signal conditioning circuit, and then

the phase of the noise was inverted and fed back to the source to reduce the noise. This

improved the CMRR of the overall conditioning system. The output of the conditioning
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system was connected to a DAQ device for AD conversion and data storage. The

control of the switching sequence of the multiplexer and the DAQ was performed on a

PC via MATLAB software.

The last part of the practical system was a signal processing technique which applied

digital PSD to the measured induced voltage signals from the electrodes to differentiate

between the flow induced potential differences and the transformer emfs. The digital

PSD method was implemented using a DFT approach rather than conventional PSD

techniques. The measured voltage signal ௝ܷ,௙ for each electrode and the coil current ଴ܫ

signal were sampled simultaneously. Then, the DFT was applied to extract the real and

imaginary parts of the voltage signal ௝ܷ,௙ and the coil current ଴ at the operatingܫ

frequency. Next, the PSD method was applied using the coil current as a reference

signal to determine the portion of the ௝ܷ,௙ signal that is in phase with the coil current i.e.

the flow induced potential difference. The PSD method was performed using a program

written in MATLAB software.

The flow induced potential difference measurements obtained from the physical model

for different test conditions were similar to the potential differences predicted using the

theoretical model given in Eq. 3-32 and Eq. 3-33. As was found from the outcomes of

the comparison between the theoretical and FE models, it was again found that the flow

induced potential distribution for the practical model was sensitive to the number, size

and location of the flow channels. However, the modulus of the |ܺ(1)| of  the

fundamental DFT component ܺ(1) of the boundary potential distribution was directly

proportional to the total volumetric flow rate ்ܳ irrespective of number, size and

location of the flow channels. Sources of error in the practical model were identified

and explained. The main source of error was an in-phase induced voltage due to the
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magnetic coupling between the coil current-carrying cables and the measurement

system. It was proposed that magnetic shielding could be used in the future to reduce

the noise in the system and to improve the quality and phase integrity of the measured

signals. The magnetic shield can of in the form of a foil that can be placed in the

enclosure, surrounding the measurement circuit to direct magnetic flux away.

The research work in this thesis provides a solid foundation for the development of the

first non-invasive multi-electrode EM blood flow meter for use in clinical applications.

Future research and designs can be based on the theoretical, FE and practical work

developed in this research. The theoretical work in this thesis has the flexibility to be

further developed and improved and could also be used to predict or validate the

operation of any prototype device. Further work is suggested below to take this research

closer to clinical trials.

8.2 Contribution to Knowledge

This research has proposed a novel method based on EM induction for non-invasive

blood flow measurement. In the proposed method, flow induced potentials are measured

on the boundary of a region in which flow occurs in the presence of a magnetic field.

These potentials are sensed by a ring of electrodes into which a limb is inserted and

across which a magnetic field is applied. From these potentials, the total volumetric

flow rate ்ܳ in the cross-sectional area bounded by the electrodes can be measured,

irrespective of number, size and location of the blood vessels. The main areas of

original contribution are:

· A mathematical model is developed based on the “virtual current” theory to find the

flow induced potential distribution ௝ܷ, for single or multiple flow channels located

within a cross-sectional area bounded by an electrode array, in terms of the radial
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and angular coordinates (ݎ௚ and ௚) of, and the flow ratesߠ ܳ௚ in, the flow channels

and the peak magnetic flux density ଴ (Eq. 3-32 and Eq. 3-33). It was also shownܤ

that the appropriate calibration factor ݇ଵ depends only on the radius of the electrode

array (into which the limb is inserted) which simplifies the calibration process

significantly.

· A mathematical relationship is provided (Eq. 3-39) and proven which shows that

the modulus |ܺ(1)| of  the  DFT  component ܺ(1) of the flow induced boundary

potential distribution measured at the electrode array is directly proportional to the

total volumetric flow rate ்ܳ in the flow channels and the peak magnetic flux

density ଴, irrespective of the number, size and location of the flow channels withinܤ

the cross-sectional area bounded by the electrode array. Provided the calibration

factor ݇ଵ is  known, determination of |ܺ(1)| enables the total volumetric flow rate

in the cross-sectional area bounded by the electrode array to be found.

· An FE model was developed in COMSOL software to validate and support the

mathematical model. This model can predict the flow induced potential distribution

at the boundary of a region across which a magnetic field is applied for a given

flow  distribution  within  the  region.  This  model  can  also  be  used  as  a  ‘dry

calibration’ method for a device based on the proposed EM method. It can also be

utilised for further research work including tomographic methods (See

Section 8.3.1) and modelling of human skin and tissue surrounding the blood

vessels.

· A practical physical system was designed and built to test and validate the proposed

EM method. This system demonstrated the framework for building a device based

on the EM method for clinical applications. It defines the major parts required for a

fully working system, i.e. an electrode array, the AC-powered electromagnet, a



Chapter 8
Conclusions & Recommendations for Further Work

342

multiplexed AC signal conditioning system and a signal processing system. Each

part was fully designed and tested. Issues such as large DC offsets due to

polarisation, EM interference and transformer emf have been discussed, and

methods have been suggested and implemented to overcome these issues. All these

major contributory parts can also be further developed and optimised.

This research presented a novel EM induction method that can be applied to measure

the total volumetric blood flow rate in a human limb, non-invasively. This method

overcomes problems encountered in previous attempts for measuring blood flow such as

sensitivity to velocity profile and the need for online calibration. It can be an alternative

method in cases where the application of ultrasonic technology is incapable of making

accurate measurements. A medical device built using this method can be portable and

low in cost due to its simple design. Hence, it could be available in health centres and

clinics to be used by GPs, nurses, physiotherapists and podiatrists in various

applications including the diagnosis of PAD and DVT.

8.3 Recommendations for Further Work

There are number of areas which can be further developed and investigated in order to

take this research a significant step closer to the first non-invasive EM blood flow meter

for clinical trials. These areas can be divided into three categories, i.e. theoretical

modelling, simulation and practical work.

8.3.1 Theoretical Modelling

· Tomographic methods

Currently, the EM method can only provide information on the total volumetric flow

rate in the cross-sectional area bounded by the electrode array. Recent progress has been
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made in the area of inductive flow tomography (IFT) based on multi-electrode EM flow

metering for use in industrial applications, i.e. single and multi-phase flow [121]. IFT

enables the velocity profile in the cross-section of the pipe bounded by the electrodes to

be reconstructed. In the IFT technique, the flow induced potential differences ௝ܷ

obtained from the electrode array are associated with the local flow velocity distribution

via variables referred to as ‘weight values’ which are found using finite element

software such as COMSOL Multiphysics. Then, a matrix inversion method is applied

using these weight values to reconstruct the velocity profile. The cross section bounded

by the electrodes is considered as being divided into ܰ sub-regions (or pixels) – for

example, in Figure 8.1, the flow cross-section is divided into 30 pixels (30-pixel model)

– and the matrix technique mentioned above is used to find the axial flow velocity in

each sub-region [121, 212].

A similar approach could be used for blood flow monitoring applications. The values of

the potential difference measurements could be used to determine the peak blood flow

rate in each artery, and also the spatial location of each artery, by extending the IFT

‘matrix inversion’ velocity reconstruction method. Suppose that a sequence of ܲ

different ‘magnetic field projections’ is used, where each projection consists of a

different magnetic flux density distribution in the region bounded by the electrode array.

Suppose also that for the ௧௛݌  projection and for 16 boundary electrodes, 15 independent

potential difference measurements ௝ܷ,௣ can be made. Due to the inherent linearity of the

system [213], (and for moderate (≤ 5:1) change in the local conductivity) ௝ܷ,௣ can  be

expressed as

௝ܷ,௣ =
଴,௣ܤ2

ܴߨ ෍ݓ௜,௝,௣ܣ௜ݒ௜

ே

௜ୀଵ

Eq. 8-1
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where ଴,௣ is the peak of magnetic flux density for theܤ ܲ௧௛  projection, at a specific

reference point in the magnetic field, ܴ is  the  radius  of  the  region  bounded  by  the

electrode array, ௜ is the cross-sectional area of theܣ ݅௧௛ sub-region, ௜ is the peak arterialݒ

blood flow velocity in the ݅௧௛ sub-region, ௜,௝,௣ is the relevant weight value andݓ

ܰ = 15ܲ.

Figure 8.1: Flow cross-section divided into 30 regions (pixels)

It has previously been shown [121] that the weight values ௜,௝,௣ can be calculated usingݓ

finite  element  software  such  as  COMSOL Multiphysics.  A solution  to  Eq.  8-1  for  the

velocities in the ܰ sub-regions has been shown [121] to be given by the matrix equation

ࢂ =
ܴߨ
2

[ࢁ࡮ࡾ]ଵି[࡭ࢃ] Eq. 8-2

where ࢂ is the matrix of velocities in the ܰ sub-regions, is the matrix of measured ࢁ

potential differences, ,is the weight value matrix ࢃ is the matrix of the sub-region ࡭

areas and is ࡮ࡾ  a  matrix  containing  the  values  of ଴,௣ for the different magnetic fieldܤ

projections. Note that ௜ represents the ‘area weighted’ mean velocity in theݒ ݅௧௛ sub-
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region and so, provided all of the major arteries lie in different sub-regions, the peak

blood volumetric flow rate ܳ௚ for  an  artery  lying  in  the ݅௧௛ sub-region is given by

ܳ௚ = ௜. The spatial position of each artery is given by the position of the sub-regionݒ௜ܣ

in which that artery resides.

Other analytical methods have been developed which enable reconstruction of the

velocity profile from the measured boundary potential distribution. One such method

[212] assumes that the velocity profile is made up of polynomial velocity components,

the properties of which are determined from the higher order components ܺ(2), ܺ(3),

ܺ(4), …, etc, of the DFT of the flow induced boundary potential distribution measured

at the electrode array. These polynomial velocity components can be combined to reveal

the  flow  velocity  distribution  within  the  electrode  array  to  a  high  level  of  spatial

resolution.

8.3.2 Finite Element Analysis Modelling

· Validation of Tomographic methods

The current FE model described in this thesis can be used to implement and validate the

tomographic methods proposed above. The FE model can also be used to calculate the

weight values which are used to relate the contribution of local flow velocity in different

parts of the cross-section of the region bounded by the electrode array to the measured

flow induced potential differences.

· Simulation of Effect of Conductivity on Current EM Method

Despite the observation that for moderate (≤ 5:1) variations in local conductivity there

is minimal effect on the performance of the EM flow meter as it is a linear device, it

would be a useful investigation to model the effects of the conductivities of tissues in
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the vicinity of the major arteries (flow channels) such as the femoral or brachial arteries

on the flow induced potential distribution. Such tissues include regions of skin, muscle

and bone. Moreover, the variation of haematocrit level in the blood could also be

investigated as discussed in Chapter 2 (Section 2.4.2). The typical conductivity value

for dry skin is 0.0002 S/m (conductivity of wet skin is 0.1 S/m [214]), muscle is 0.5 S/m

and bone is 0.06 S/m [215]. In the current FE model, the cylindrical region, which has

two flow channels, has uniform conductivity of 0.013 S/m and is surrounded by a 5 mm

annulus which represents a layer of static water of the same conductivity. The current

FE model could be modified to account for different conductivities of tissues. Such

modifications to the FE model are not complex as it is only the cross-sectional area

bounded by the electrode array which is the area of interest. Modelling of the skin,

muscle and bone can be in the form of simple geometries using conductivity values

similar to those given above.

Haematocrit level can also alter the conductivity of the blood as discussed in

Section 2.5.7. In the current model, the imposed water had conductivity of 0.013 S/m,

and for normal haematocrit level, i.e. 47%, the blood conductivity is 0.7 S/m which is

47 times greater in value.  It  does not seem that the haematocrit  level would affect  the

EM method as it was tested with a low value of conductivity. However, the effect of the

haematocrit levels could be investigated.

8.3.3 Practical Work

· Development of human-like phantom limb
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An independent investigation8 was carried out to design and construct a phantom limb

that has a similar electrical conductivity distribution as a real human limb. Marconite

and Bentonite materials were studied and samples were made of different conductivities

that are similar to those of human tissues such as muscle and bone. Both Marconite and

Bentonite are commonly used in the concrete mixes for foundations (replacing sand) of

power distribution towers and lighting and communication aerials to provide proper

electrical earthing [216]. Bentonite and Marconite have resistivities 3 Ω/m and 0.1	Ω/m,

respectively. Relationships were established between the volume sample and

conductivity of Bentonite and Marconite. Hence, for a desired conductivity, the

volumes required of Marconite/Bentonite, cement, sand and water can be determined.

Conductivities similar to that of bone (0.04 S/m) and muscle (0.07 S/m) were achieved.

Figure 8.2 shows the top and side view of a phantom limb made using Marconite. The

model consisted of bone, muscle and artery regions.

8 This was an MSc project – by Raymond Webilor – in which the author of this thesis was involved.

Artery Bone Muscle

(a) (b)

Figure 8.2: (a) Top-view of the phantom limb and (b) side-view of the model
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Other models with a different number of bones or blood vessels could also be

constructed based on this work. Such models could be integrated in a flow loop to be

tested with the EM method developed. It was also found in the literature that for in vitro

(artificial) testing, phantom models can be constructed from C-Flex tubing, mimicking

vessels, and surrounded by agar-based material, which models tissues [101]. The C-Flex

tubing can model stenosed and unstenosed vessels. This could also be considered for

future models of phantom limbs.

· Use of ultra-high input-impedance  front-end amplifiers

In ECG and EMG systems, either wet or dry electrodes are used for potential difference

measurements. In wet-electrode measurements, the skin requires preparation such as

cleaning, shaving and applying electrolyte gel to reduce its impedance. Dry-electrodes

are often used for long-term monitoring and therefore, they require ultra-high input

impedance amplifiers to avoid any loss in signal amplitude. The design of an ultra-high

input-impedance front-end amplifier could be considered for either dry or capacitive

electrodes. Such an amplifier could utilise the bootstrapping technique, i.e. a small

portion of the output of the amplifier is fed back to its non-inverting pin through

(positive feedback) a filter network (high-pass filter), to increase its input impedance

(Figure 8.3) [217].
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Figure 8.3: Bootstrapped voltage follower

· Development of pulsatile flow loop

Pulsatile flow can be created artificially using a pneumatic pump which can be

electrically controlled to simulate arterial flow in the circulatory system.
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· Other electrical and electronic improvements

The measurement system could also be magnetically shielded to minimise in-phase

noise voltage to improve the phase integrity of the system. Other sources of the in-phase

noise could also be investigated. The operating frequency could also be changed to

75 Hz which could have several benefits such as (1) faster response for electronic

systems, (2) additional attenuation of low-frequency noise as the lower cut-off

frequency of the measurement system could be increased and (3) less data acquisition

time would be required for sampling the measured signals. Moreover, harmonics of a 75

Hz power supply would be the same as 50 Hz mains harmonics, and therefore, no

additional noise components are introduced in the surrounding mains power lines.

However, a change of operating frequency would require modifications for the current,

voltage and PFC settings.

· Generation of different magnetic field projections

Using the tomographic methods suggested above would require additional magnetic

field projections. Rotating the electromagnet manually might be inconvenient. Hence,

one solution would be to rotate the magnetic field itself. This could be achieved using a

design similar to that of a 3-phase AC stator. In an AC stator, a rotating magnetic field

is generated by controlling the applied sinusoidal voltages with different phases, i.e.

120° apart. The stator can consist of 3 coil pairs. Each coil pair is controlled by an H-

bridge power drive.

· Conceptual design of a non-invasive EM blood flow meter

A  conceptual  design  of  the  first  EM  blood  flow  meter  is  provided  in  Figure  8.4.  The

stator-like electromagnet allows the magnetic field, applied at the electrode plane, to be
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either projected in one direction or rotated. The direction of the magnetic field is

controlled by modifying the phase of the three-phase AC voltage supply which is

applied to the stator pairs –  similar in a way to the working principle of AC electrical

motors [218]. The electrode-array is clamped around the limb and coupled electrically

to the limb by using an electrolyte gel similar to the one used with ECG devices. Figure

8.5 depicts a cross-sectional view of the design, showing the stator poles.

Figure 8.4: Conceptual design of the non-invasive EM blood flow meter

Figure 8.5: Cross-sectional view of the non-invasive blood flow meter
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APPENDICES

Appendix A

Derivation of the unit for ૚ in Equation 3-39ܓ

From Eq. 3-39, the factor kଵ is given by

݇ଵ =
|ܺ(1)|
଴ܤ்ܳ

Eq. A-1

where the modulus |ܺ(1)| of the DFT component ܺ(1)  unit is V, the total flow rate ்ܳ

unit  is  m3s-1 and the peak magnetic flux density ଴ unitܤ  is  T.  Hence  the  unit  of kଵ is

given by

݇ଵ =
V

mଷsିଵT = V	s	Tିଵ	mିଷ Eq. A-2

The  base  units  for  V and  T are  kg  m2 A-1 s-3 and  kg  A-1 s-2
, respectively. Substituting

these units in Eq. A-2 gives

݇ଵ =
V

mଷsିଵT =
kg	mଶ

A	sଷ 	s	
A	sଶ	

kg
1

mଷ =
1
m = mିଵ Eq. A-3

Hence the unit of ݇ଵ is mିଵ which is predicted as ݇ଵ is given by Eq. 3-33 as

݇ଵ =
1

ܴߨ2
Eq. A-4

where ܴ is the radius of the cross section area bounded by the electrodes.
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Appendix B

Derivation of the Peak Magnetic Flux Density ૙ (Equation 5-7)࡮

The electromagnet obeys ohm’s law for a magnetic circuit which states that,

ℱ = Φℛ Eq. B-1

where ℱ is the magnetomotive force ‘mmf’ (unit: ampere-turns ,(ݐܣ Φ is the magnetic

flux (unit: Weber ܹܾ) and ℛ is the total reluctance of the circuit (unit: At/Wb). The

magnetomotive force is the product of the number of turns ܰ of, and current ,through ܫ

the coil. It is defined by [153]

ℱ = ܫܰ Eq. B-2

From Eq. B-1 and Eq. B-2, the magnetic flux Φ can be given as

Φ =
ܫܰ
ℛ

Eq. B-3

The magnetic flux lines Φ passing through an area is called the magnetic (unit: m2) ܣ

flux density which is given by (unit: Tesla or Wb/m) ܤ

ܤ =
Φ
ܣ

Eq. B-4

Therefore, the peak magnetic flux density ଴, using Eq. B-3 and Eq. B-4, can be givenܤ

as

଴ܤ =
଴ܫܰ
ℛܣ

Eq. B-5

where ଴ is the peak current (unit: A) flowing through the coil of the electromagnet. Forܫ

the electromagnet in consideration (Figure 5.13), the total reluctance of the magnetic

circuit is the sum of the reluctance of the core ℛ௖ and the reluctance of the air gap of the

core ℛ௚. However, the reluctance of the air gap is much greater than the reluctance of
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the core (ℛ௚ ≫ ℛ௖) therefore, the reluctance of the core is negligible. Hence, the peak

magnetic flux density ଴ of this electromagnet is expressed asܤ

଴ܤ =
଴ܫܰ
ℛ௚ܣ௚

Eq. B-6

where ௚ is the area of the air gap. The electromagnet is also an electrical AC circuitܣ

with a very small resistance and large inductance. The peak current ଴ of the circuit canܫ

be given by

଴ܫ = ଴ܸ

ܼ௧௢௧௔௟
Eq. B-7

Assuming a pure inductive load as the small resistance of the electromagnet coil can be

negligible, the total impedance of the circuit ܼ௧௢௧௔௟  is equal to the reactive impedance ܼ௅

where

ܼ௅ = ݆ܺ௅ Eq. B-8

where ݆ is the imaginary term which indicates that the current ଴ in a pure inductive loadܫ

lags the supply voltage ଴ܸ by 90o and ܺ௅ is the reactance of the inductor (electromagnet)

and is given by

ܺ௅ = ܮ݂ߨ2 Eq. B-9

The inductance of the electromagnet can also be expressed in terms of the number of ܮ

turns  of  the  coil ܰ and the reluctance of the air gap [153] (reluctance of the core is

negligible) which is given by

ܮ =
ܰଶ

ℛ௚

Eq. B-10

Substituting Eq. B-10 and Eq. B-9 into Eq. B-8 gives,

ܼ௅ = ݂ߨ2݆
ܰଶ

ℛ௚
Eq. B-11
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From Eq. B-7 and Eq. B-11 (ignoring the term ݆ as phase information is not required)

ܰଶ = ଴ܸℛ௚

଴ܫ݂ߨ2
Eq. B-12

By taking the square of Eq. B-6, the following equation is obtained,

଴ଶܤ =
ܰଶܫ଴ଶ

ℛ௚
ଶܣ௚ଶ

Eq. B-13

Substituting Eq. B-12 into Eq. B-13 gives

଴ଶܤ = ଴ܸܫ଴
௚ଶܣℛ௚݂ߨ2

Or

଴ܤ =
1
௚ܣ

ඨ ଴ܸܫ଴
ℛ௚݂ߨ2

Eq. B-14
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Appendix C

AC-coupled instrumentation amplifier: Frequency response Test Setup

Figure C.1: Frequency response test setup for AC-coupled instrumentation amplifier

Tina 9 Software by DesignSoft was used to perform the AC analysis for this circuit.
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RFI and ac-coupled instrumentation amplifier circuits: Frequency Response Test

Setup

Figure C.2: Frequency response test setup for RFI and AC-coupled instrumentation amplifier

Both RFI filter and AC-coupled instrumentation amplifier are connected. AC analysis

was performed in Tina 9 to obtain the frequency response of the circuit.
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AC Signal Conditioning Circuit (Gain of 10): CMRR Test Setup

Figure C.3: CMRR test setup for AC signal conditioning circuit

In this setup, the signal source ‘VCM’ was connected to both input resistors ܴଵ and ܴଶ

of the AC signal conditioning circuit via electrodes (ܴଽܥ଺ and ܴଵ଴ܥ଻ are basic electrode

electrical models). The output of the RLD amplifier is connected to the negative

terminal  of  the  ‘VCM’  signal  source  via  an  electrode  electric  model  (ܴଵଵ଼ܥ). AC

analysis was performed to obtain CMRR vs frequency plot. The inverting amplifier

circuit is not tested in this circuit as it only amplifies the output voltage by a gain of

100.
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AC Signal Conditioning Circuit (Gain of 1000): Normal Operation Test Circuit

Figure C.4: Normal operation test setup for AC signal conditioning circuit

In this test, a small sinusoidal voltage (VG1 andVG2) is applied to the inputs of the AC

signal conditioning circuit via electrode models. A 50 Hz noise (VG3) is also added to

the input voltage to simulate mains interference. The inverting amplifier is connected in

this circuit to amplify the signal by a further factor of 100.
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AC Signal Conditioning Circuit: Transient and Frequency Responses Test Circuit

Figure C.5: Transient and frequency responses test setup for AC-coupled instrumentation
amplifier

This test  setup was used to test  the AC signal conditioning circuit  for its  transient and

frequency responses. Both tests were done using TINA 9 software.
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Appendix D

Figure C.6: The SVS flow test rig, the power supply and the measurement system
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