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Abstract 
 

The recent statements of both the European Union and the US Presidency pushed in the direction of 

using renewable forms of energy, in order to act against climate changes induced by the growing 

concentration of carbon dioxide in the atmosphere. In this paper, a survey regarding methods and 

tools presently available to determine potential and exploitable energy in the most important 

renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented. Moreover, 

challenges for each renewable resource are highlighted as well as the available tools that can help in 

evaluating the use of a mix of different sources. 
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1 Introduction 

As we all know, there is basically only one source of energy for us, living on the Earth: the sun. The 

power it irradiates on our planet is estimated to be about 175,000 TW, four orders of magnitude 

more than the power we use even in our energy intensive times. 

The energy we have received and continue to receive from the sun is converted in many different 

ways by the dynamics of our planet and of its atmosphere: the high temperatures below the crust are 

due to its original activity; the presence of hydrocarbons in the soil, to ancient photosynthesis; 

winds and waves to the present thermal differences. 

Thinking to a horizon of few tens of years, the current solar activity and the primordial heat left 

inside the planet may be assumed as constant and thus represent the unique renewable sources of 

energy for mankind. 

We have however several different ways for transforming this energy into forms that are more 

suitable for our everyday use. The mechanical energy of winds, water and waves can be converted 

into electricity so that it can be easily shipped far from the source (and we are not forced any more 

to bring our grain to the windmills as centuries ago). Biomass resources, which are the product of 

biological processes induced by solar light, can be burned to produce heat (to be used either as such 

or again to produce electricity) or chemically or biologically processed to generate usable fuels. The 

sunlight can be used directly to produce heat in a more usable form or can drive electron 

movements in silicon cells to produce electricity. A renewable energy source, freshwater, has been 

indeed the first way of producing electricity and has been extensively studied and exploited all over 

the world since more than one century. This is why it will not be further analysed in this paper. 

All the options we have to extract energy from solar activity enjoy the advantage of being 

sustainable (they can be replicated in time, at least over a horizon of several years) and to alter only 

marginally the carbon balance of the planet’s atmosphere, because the production, use, and 

decommissioning of conversion plants involve some emission that is normally small in comparison 

to those involved in the production of the same energy by fossil fuels. The use of fossil fuels on the 
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contrary is both unsustainable (they are present in the Earth in finite quantities) and increases the 

amount of CO2 in the atmosphere by releasing the carbon absorbed by vegetation millions of years 

ago and presently stored into the soil. 

On the other hand, all the renewable forms in which we exploit the sun energy are characterized by 

being spatially distributed and lacking the huge reservoirs of fossil fuels or freshwater, that can 

easily compensate for the time differences between offer and demand of energy. So the exploitation 

of these sources of energy is somehow more complex, and they are sometimes referred as 

“intermittent sources”. 

Their spatial distribution also means that their exploitation is closely linked to the peculiar 

characteristics of the local environment and, in turn, it may have environmental impacts distributed 

on a wider area. 

A characteristic they share with fossil energy sources is the impossibility of converting and 

exploiting all the energy which is potentially available. We can thus distinguish three different 

values: 

- potential energy, that is the gross energy of the source (e.g. that of wind at a given location); 

- theoretical energy, that is the fraction that can be harvested by the energy conversion system 

(e.g. the solar radiation collected by a certain surface of solar panels); 

- exploitable energy, the fraction that can be used taking into account criteria of sustainability 

related to logistic, environmental and economic issues (e.g. the heat produced by a biomass 

fueled plant). 

These definitions may be interpreted in a slightly different way for different applications. In many 

cases, for instance, the electric output of a plant can be considered as representing the exploitable 

energy. However, if we are talking of an offshore wind farm, 20 km from the rest of the grid, 

perhaps we want to compute the electric energy net from the (non irrelevant) losses on the 

underwater connecting cable. 
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Despite the technological and logistic difficulties, the attention towards these renewable forms of 

energy is steadily increasing all over the world, due to the urgency to act against climate changes 

induced by the growing concentration of carbon dioxide in the atmosphere. The recent statements of 

both the European Union and the US Presidency pushed in this direction. 

As an example, the European Union set an overall binding target of a 20% share of renewable 

energy sources in energy consumption and a 10% binding minimum target for biofuels in transport 

to be achieved by each Member State by 2020 (EU, 2008). Reaching this target will need a 

consistent proactive attitude of all governments, since in 2006 renewable energies were estimated at 

6.92% of the primary energy consumption of the EU countries, and at 14.6% , mainly hydropower, 

of the electricity production (EU, 2008).  

This is why it is worth to revise methods and tools presently available to determine potential and 

exploitable energy in the most important renewable sectors, as done in this paper. 

In the next sections, we will thus survey the state of the art of evaluation approaches for solar, wind, 

wave, biomass and geothermal energy, with attention to the site specific environmental 

characteristics, but without dealing with the final conversion step. Though this must be kept in mind 

because it sometimes influences the amount of exploitable energy, a review of possible conversion 

devices and processes would go far beyond the scope of this paper. 

2 Solar resource potentials  

Today, the most common technologies for utilising solar energy are photovoltaic and solar thermal 

systems. One of the main influencing factors for an economically feasible performance of solar 

energy systems (besides of installation costs, operation costs and lifetime of system components) is 

the availability of solar energy on ground surface that can be converted into heat or electricity (Suri 

et al., 2007). Therefore precise solar irradiation data are of utmost importance for successful 

planning and operation of solar energy systems. Solar irradiation means the amount of energy that 

reaches a unit area over a stated time interval, expressed as Wh/m2 (Suri and Hofierka, 2004). Solar 

radiation can be divided into direct and diffuse radiation. Together these components are denoted as 
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global irradiation. The distinction between direct and diffuse radiation is important as different 

technologies utilise different forms of solar energy.  

2.1 Identification of solar energy potentials 

For the estimation of available renewable energy potentials, a top down approach is widely used 

(Biberacher et al., 2008a; Greenpeace/EREC, 2008; Hoogwijk, 2004; Sørensen, 2001), which can 

also be applied in the case of solar energy. The top down approach starts with the computation of an 

available solar energy potential. This is expressed as the physically available solar radiation on the 

earth’s surface, that is influenced by various factors, as described in Suri and Hofierka (2004). 

These factors are the earth’s geometry, revolution and rotation, the terrain in terms of elevation, 

surface inclination and orientation and shadows as well as the atmospheric attenuation due to 

scattering and absorption by gases, solid and liquid particles and clouds. The estimated potential is 

then reduced by considering technical limitations (e.g. conversion efficiency factors), which means 

taking into account the losses associated with the conversion of solar irradiation to electric power or 

heat by state of the art technologies. 

By including rather soft factors which may be modified over time and may vary regionally (e.g. 

acceptance of technology, legislation) the potential is further reduced to realisable energy (Figure 

2.1) (Biberacher et al., 2008a). For the estimation of solar energy potential, this top down approach 

can be adopted at different scales (global, continental or local).  

Several databases on solar radiation exist, employing different approaches and methods to identify 

potential, theoretical, and exploitable energy as described in section 2.2.  The restricting factors 

included to derive the theoretical and exploitable levels may vary with the spatial resolution, as 

some of them can only be computed on fine scales. 
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<Figure 2.1 near here> 

2.2 Approaches for estimating solar energy potential 

There are different approaches to estimate solar irradiation on ground surface. A first approach is 

based on in situ data, a second method derives solar radiation data from satellite data, and, finally, a 

third is a combination of both.  

The spreading of meteorological stations which measure solar radiation is very heterogeneous 

over the planet and some regions are not covered properly. Therefore, in many regions solar 

irradiation cannot be accurately represented by meteorological stations. Other measured data, like 

sunshine duration or cloud cover, are used for the estimation of solar radiation in these cases. 

Additionally, most stations only measure global irradiation. Only few stations measure diffuse solar 

radiation separately and thus the diffuse fraction has to be estimated by empirical models in many 

cases. To derive continuous spatial datasets from the available heterogeneously measured or 

estimated data, interpolation techniques are applied (Suri, 2006). A 3D inverse distance 

interpolation model for instance, based on Zelenka et al. (1992) and Wald and Lefévre (2001), is 

used within the Meteonorm database for the derivation of monthly values of global radiation 

between the single measurement stations (Meteotest, 2008). In most cases, solar radiation data 

derived with this approach are available as daily total or monthly averages and only in few cases 

hourly or more detailed data are available. Especially in regions with complex topography (e.g. 

mountain regions) the uncertainty of datasets derived by spatial interpolation of ground measured 

data is high (Suri, 2006).  

The use of satellite data to estimate solar radiation values represents the second approach. Satellite 

images from geostationary satellites like Meteosat, GOES, MSAT or MSG (Meteosat Second 

Generation) can be used to derive information on solar irradiance over vast areas. Improvements 

have been made in the last years regarding spatial and temporal resolution of these data. While the 

spatial resolution for the Meteosat satellite is 2.5 km (Hammer et al., 2003; Suri, 2006) and the 

temporal resolution is 30 minutes, the new generation of satellites (e.g. MSG) can provide data at a 
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temporal resolution of 15 minutes and a spatial resolution of 1 km (Müller et al., 2002; Suri et al., 

2008). Rigollier et al. (2004), in agreement with other authors, points out that, for satellite data with 

pixel sizes of 10 km, the assessment of solar irradiation provides more precise values compared to 

results of estimates by interpolation of measurements from meteorological stations as soon as the 

distance between the stations is greater than 34 km for hourly irradiation values, and 50 km for 

daily values. A widely used method within this approach is the Heliosat method, which was 

originally implemented by Cano et al. (1986) and modified by Beyer et al. (1996) and Hammer 

(2000) (Müller et al. 2002). The method has been further improved by Rigollier et al. (2004), 

implementing the Heliosat2 method. The software for Heliosat2 is freely available at 

www.helioclim.net. The latest evolution, Heliosat3, is presented in Mueller et al. (2003) and Betcke 

et al. (2006). 

The third and most frequently applied approach uses measurements from meteorological stations as 

well as satellite data. Satellite derived data are used for areas with an unsatisfactory spreading of 

meteorological stations, as done in the Meteonorm database (Meteotest 2008) or in the PVGIS (see 

below) approach. 

There are several databases presenting solar radiation data for different extents (global, continental). 

The list shown in Table 2.1 is not exhaustive but shows a selection of databases for global, cross 

continental and European extents. Input is taken from Suri et al. (2008), who have compared several 

of the existing databases on solar radiation. Beside the differences regarding the extent and the 

general methodological approach, also the calculation of primary and derived parameters on solar 

radiation as well as the temporal and spatial resolution differs between the databases. In the 

following, three representative databases are described in more detail. 

<Table 2.1 near here> 

The Meteonorm database (Meteonorm, 2008) is based on a 3D inverse distance interpolation of 

measurements of solar radiation data from meteorological stations and includes data on global solar 

radiation as well as the direct and diffuse fraction on a global extent. Satellite data are used for areas 

http://www.helioclim.net/
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with a low density of meteorological stations. The time resolution for interpolated measurement 

data is a month. Hourly and minute values can be generated from monthly average values using 

stochastic models. Global and diffuse radiation on inclined surfaces including skyline effects can be 

calculated, in addition to  horizontal surfaces. Influences of terrain shadowing are already included. 

The time period covered is 1981 –2000. The database is a licensed product and is available for 

purchase at www.meteonorm.com.  

The PVGIS (Photovoltaic Geographic Information System) (Huld et al., 2006; Suri et al., 2007) 

database includes monthly averaged values of solar radiation and ambient temperature for Europe. 

It processes climatologic data that are available within the European Solar Radiation Atlas by using 

interpolation techniques and the r.sun model. This model is implemented in GRASS GIS, an open 

source environment based on C programming language. With the model, direct, diffuse and 

reflected fractions of solar irradiation can be calculated for horizontal and inclined surfaces. The 

model also considers shadowing due to local terrain features, by integrating a digital elevation 

model. The spatial resolution of the derived raster maps is 1 x 1 km. Further improvements for 

global radiation estimates of the model can be achieved by the integration of a 100 m resolution 

digital elevation model (Cebecauer et al., 2007; Suri et al., 2008). Data are freely accessible at 

http://re.jrc.ec.europa.eu/pvgis/.  

The HelioClim 2/3 databases contain long time series of solar radiation data for Europe and 

Africa. Meteosat satellite images are used to derive global irradiation maps on a horizontal surface 

(Cros et al., 2004).  The estimations are based on the Heliosat2 method (Rigollier et al., 2004), 

whose software is freely accessible at www.helioclim.net. With the Helioclim3 database, the 

temporal and spatial resolution could be enhanced thanks to the new Meteosat Second Generation 

satellites (Müller et al., 2002). The Helioclim3 database has a temporal resolution of 15 minutes and 

a spatial resolution of approximately 5 km. Data are available from 2004 to 2007 (Helioclim online, 

2008).  

http://www.meteonorm.com/
http://re.jrc.ec.europa.eu/pvgis/
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2.3 Estimation of exploitable solar potential  

Following the described top down approach, the available solar potential is further reduced to what 

is economically exploitable, by the integration of restricting factors regarding suitable areas, 

technical and economical factors (Biberacher et al., 2008b; Hoogwijk, 2004; Sørensen, 2001). 

Geographical restrictions for the installation of solar energy systems are included to derive only 

suitable areas, by using land cover maps. This evaluation also depends on the type of solar 

installations. Hoogwijk (2004) shows how to identify suitable areas for centralised and 

decentralised PV systems. While centralised installations with grid connection are assumed to be 

installed on land surface, decentralised applications are assigned to roofs or facades. Concentrating 

Solar Power (CSP) for instance is most suitable in bare areas with a high share of direct irradiation. 

On a global or regional scale, current land cover datasets are satisfactory for the estimation of 

suitable areas, on a local scale, analyses may require to go down to the single roof top. One 

approach for the estimation at such a detailed level is the use of Laserscan data (Kassner et al., 

2008; Muller et al., 2006).  

Other local factors may play a role in the detailed estimation of the performance of solar energy 

systems. Huld et al. (2006), for instance, presented a method taking into account the influence of 

temperature. More frequently, however, typical efficiencies for the different solar system types are 

applied, following the state of the art (Hoogwijk, 2004; Sørensen, 2001), and determine whether the 

spatial constraints can be satisfied. Finally, economic factors can also be essential to determine the 

feasibility of a project, as shown again by Hoogwijk (2004).  

All in all, available databases and relevant restriction factors can be identified within a 2 

dimensional matrix representing the global to the local scale as well as the theoretical to the 

economically feasible potential scale. All methods and data sources can be located somewhere in 

between (Figure 2.2). 

<Figure 2.2 near here> 
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2.4 Challenges for the near future 

A cross comparison of six databases for solar radiation estimates carried out by Suri et al. (2008) 

showed that, in the case of yearly sum of global irradiation, the uncertainty, expressed by standard 

deviation, does not exceed 7% within 90% of the study regions for horizontal surfaces. Especially 

for mountain areas with their complex climate conditions, higher differences between the databases 

are expected. Therefore further improvements for complex terrains should be done.  

Compared with other renewable energy carriers like wind and biomass, solar energy can be also 

harvested in densely populated areas. Approaches and methods to derive an effectively exploitable 

potential are still in a process of evolution (e.g.. laserscan data like LIDAR), but the opinions on 

what potential is really harvestable under sustainable conditions are quite diverse. Further 

improvements can be expected mainly in the explicit mapping of suitable rooftops regarding 

orientation and inclination, including also shadowing of neighbouring parts of buildings or trees. 

Especially the competition for installation areas between different solar system types (PV, solar 

heating) in case of decentralised usage have to be included in potential estimations, as the 

efficiencies of these systems differ substantially as well as the final energy use: electric energy can 

be returned to the grid, when not used; while thermal energy can be exploited only locally and with 

a limited storage capacity.  

 

3 Wind Resource Potential 

Wind was one of the first energy sources to be harnessed by early civilizations. Wind power has 

been used to propel sailboats and sail ships, to provide mechanical power for grinding grain in 

windmills and for pumping water. The world’s first automatically operated wind turbine, which was 

built in Cleveland in 1888 by C.F. Brush, was 18 m tall and had a 12 kW turbine (Danish Wind 

Industry Association, 2008). Nowadays the use of wind energy in electricity generation is widely 

spread and new units with nominal capacity of thousands of megawatts are being installed each 

year. The total wind power capacity installed worldwide has exceeded 120 GW in 2008 (WWEA, 
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2009). The ever increasing interest for wind energy, coupled with its uncertain nature, makes the 

estimation of wind energy perhaps the most difficult and crucial part of a project. 

3.1 Identifying Wind Energy 

As for solar power, the evaluation of the available wind energy follows a widely used top down 

approach. At the first level, the potential energy limited by all the physical geographical (high 

altitude areas, high slope areas), socio geographical (areas near towns, airports or archaeological 

sites, protected areas) and land use (areas used for agriculture, etc) constraints leads to the 

estimation of the theoretical energy. 

This can be assessed at a scale of the order of few kilometers, simply by processing the available 

anemological data (long or short term), with either statistical models or interpolating techniques. 

The latter are used mainly when sufficient data are not available for the site of interest, but only for  

nearby ones. When the estimation scale needs to be much smaller, of the order of a few meters, the 

methods used must be more accurate (e.g., wind flow modelling techniques). 

The theoretical energy can be further limited by the characteristics of the commercially available 

wind turbines (size, overall efficiency, full load hours) and the constraints of a wind farm.  

Finally, the exploitable energy can be defined as the part of the theoretical energy that can be 

harvested using an economically feasible installation, given also the cost of alternative energy 

sources. The basic methods used to estimate the different categories of wind energy are presented in 

the next sections. 

3.2 Estimating Theoretical Energy 

3.2.1 Measurements – Data Collection 

Every effort to estimate the theoretical energy of a region requires the availability of certain 

measurements, year-long or not, referring to either the target site or another site nearby (reference 

site). According to Lalas (1985), the available anemological data should include: (i) mean wind 

speed, on a monthly or seasonal basis, (ii) duration curves, (iii) persistence, i.e. continuous 

occurrence of wind speeds above a given speed, (iv) wind rose, i.e. joint frequency of occurrence of 
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specific wind speed and direction, (v) power spectra of wind speed, and (vi) variation with height of 

most of the above. Ideally, in order to obtain an accurate assessment of the wind regime of an area, 

wind data measurements over a 10 year period are required (Nfaoui et al., 1998). However, 

Frandsen and Christensen (1992) claim that a 1 year period of wind measurements may provide a 

reasonable indication of the potential for wind energy development, including a percentage of 

uncertainty from 5% to 15%, depending on the variability of the long term mean wind speed. 

Using accurate inputs is crucial in wind resource assessment, so special emphasis should be given 

on the quality of anemological data. A detailed description of the various types of equipments, 

instruments, site specifications and other technical needs for wind energy assessment has been 

presented by Alawaji (1996). Meteorological towers are the most common means of assessing the 

wind resource at a location, typically between 40 and 60 m high, with cup anemometers and wind 

vanes positioned at multiple heights on the tower. 

Nowadays, wind maps and global databases have been developed for many regions around the 

world, such as NCEP/NCAR and ECMWF databases, containing wind speed, temperature and 

pressure at several heights around the world (Landberg et al., 2003). However, low resolution of 

some existing data (i.e. 100s of km) and lack of data for certain regions (i.e. offshore) have led to 

the development of new techniques. Ground based remote sensing instruments, such as SODAR, 

LIDAR or satellite, have started being used as alternatives to meteorological towers for wind 

resource assessment with high resolution. However, their effectiveness and efficiency will have to 

be proved since their possible limitations are still under examination. 

Choisnard et al. (2004) and Bruun Christiansen et al. (2006) present a methodology for wind 

resource assessment using a series of satellite synthetic aperture radar (SAR) images, a technique 

particularly useful for regions where year long time series are generally unavailable, such as 

offshore regions. Lackner et al. (2008) investigate the use of an alternative monitoring strategy for 

wind resource assessment, the “round robin site assessment” method. Wind resource is measured at 
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multiple sites within a year, using a single portable device and measurement time is distributed at 

each site over the whole year. 

Data collected in any of the ways described above can then be processed in order to provide useful 

information about the wind energy. The following sections present the basic processing methods. 

3.2.2 Statistical Analysis 

When year-long measurements for the target site are available, they usually constitute an enormous 

volume of data, difficult to analyze in its raw state. A simple solution would be to apply the proper 

statistical treatment in order to determine the probability density function (PDF) of the wind. The 

use of this frequency distribution approach can provide a simple method to evaluate the theoretical 

wind energy, because it provides useful information about wind speed. 

Carta et al. (2009) review and compare the most widely used and accepted distributions in the 

specialized literature on wind energy and the methods utilized to estimate their parameters. They 

conclude that the Weibull distribution has a number of advantages with respect to the other PDFs 

analysed. However, Weibull cannot describe all the wind regimes encountered in nature such as, for 

example, those with high percentages of null wind speeds, bimodal distributions, etc. Therefore, 

despite there are numerous examples in the literature of using the Weibull distribution for regional 

wind energy estimation, how to select the appropriate PDF for each wind regime in order to 

minimise estimation errors is still an open problem. 

Stevens and Smulders (1979) obtained the values of the Weibull distribution parameters using five 

different methods: moments, energy pattern factor, maximum likelihood, Weibull probability and 

the use of percentile estimators. The comparison of these analytical findings indicated that no 

significant discrepancies between the results from the different methods could be observed.  

A Cumulative Semi Varigram (CSV) model has been derived by Sen and Sahin (1997) to assess the 

regional patterns of wind energy along the western Aegean Sea coastal part of Turkey. This  

interesting technique provides clues about regional variations along any direction and yields the 

radius of influence for wind velocity and Weibull distribution parameters. 
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3.2.3 Forecasting Techniques 

When the available anemological data for the target site are insufficient, the measure-correlate-

predict (MCP) methods can be used to estimate the theoretical wind energy. These algorithms can 

reconstruct the wind resource at target sites by using data from a nearby reference site. The idea is 

to correlate short term measurements at the target site with an overlapping long time series of the 

reference site using simple statistical models. According to Landberg et al. (2003) climatological 

representativeness is obtained by having measurements for at least 5 but preferably 10 years. 

The way the correlation is established between the wind speed at the two sites varies from method 

to method. A linear regression model is used in many cases, but other models are used as well. 

Rogers and Rogers (2005) describe some of the MCP approaches in the literature and then compare 

the performance of four of these, using a common set of data from a variety of sites (complex 

terrain, coastal, offshore). 

Addison et al. (2000) state that conventional MCP techniques assume that the wind direction 

distribution at the target site is the same as that of the reference site, which may lead to a significant 

error and propose a correlation technique based on artificial neural networks (ANN). Bechrakis et 

al. (2004) present a two site wind correlation model, also based on an ANN, in which concurrent 

measurements of a short time period for both sites are being processed. 

3.2.4 Flow Modelling 

The techniques described in the previous sections estimate the theoretical wind energy at a 

resolution of the order of few kilometers, in the best of cases, suitable for a raw evaluation of the 

wind potential of a region. However, when wind turbine installation is designed, the resolution 

should be of the order of few meters and hence wind flow models are employed. 

Based on the theory of flow over small hills, some linearized flow models were the first to be 

developed for commercial use. In these models, the equations of motion were simplified by 

linearizing the advection terms and the other weaker nonlinearities in the turbulence closure 

equations (Ayotte, 2008). Indicative examples of such models are the WAsP model (Troen and 
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Petersen, 1989), based on some linearized forms of the fluid flow equations, and the MS Micro 

model (Taylor et al., 1983). 

A significant application is Wind Atlas methodology (Troen and Petersen, 1989), a method of 

vertical and horizontal extrapolation away from measurements taken somewhere within or near a 

target site, using steady state flow solutions (Figure 3.1). The method directly corrects existing long 

term measurements and estimates the generalized wind climate, the hypothetical wind climate for 

an ideal, featureless and completely flat terrain with a uniform surface roughness, assuming the 

same overall atmospheric conditions as those of the measuring position. This method can also be 

used in reverse, in order to determine to a high accuracy the specific winds at a site. This 

methodology, combined with WAsP, has been applied in a large number of countries (all of EU 

countries, Russia, Northern Africa), because of the modest computer resources requirements has 

become a de facto standard for the wind industry (Bowen and Mortensen, 2004). 

<Figure 3.1 near here> 

The main disadvantage of linear models is the low accuracy in the calculations of wind conditions 

in steep/complex terrain with known overestimates of the hill top acceleration and underestimates 

of the lee side decelerations (Ayotte, 2008). Another problem is that thermally driven winds are not 

modeled in a satisfactory way, especially with the Wind Atlas Methodology (Landberg et al., 2003).  

These limitations are becoming significant, since the pressure for increased wind capacity is leading 

to the installation of wind farms even in areas of increased terrain complexity. In such cases, more 

complex nonlinear models, permit overcoming many of the shortcomings mentioned above, and 

also provide a more accurate representation of the case under consideration. The most popular 

nonlinear model is RaptorNL, a computational flow model that simulates turbulent flow over 

topography.  

Palma et al. (2008) evaluate the theoretical wind energy of a coastal region using a wide variety of 

techniques, including field measurements and computer simulations using linear and nonlinear 

mathematical models and compare the results. 
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3.2.5 Mesoscale Modelling 

A different type of models, which began to emerge as a major focus of research during the late 

1990s, are atmospheric mesoscale models. They were developed for general weather prediction at 

fine resolution (1-10 km) and in particular for air pollution studies, and aviation purposes. They can 

be applied to estimate the wind resource of a region, by solving numerical equations for the 

conservation of momentum, heat and moisture, together with a continuity equation. 

Lyons and Bell (1990) used a numerical mesoscale model to describe the variation of wind energy 

across a coastal plain of Western Australia and to compare the results with those of a simpler linear 

flow model. Katsoulis and Metaxas (1992) use a mass consistent numerical mesoscale model to 

estimate the theoretical wind energy in Corfu, Greece, comparing the results with the statistical 

analysis of wind data from local meteorological stations. The major problem of mesoscale 

modelling is that resolutions of 1 km or less require a very high computational effort. 

3.2.6 Combination of Models 

A way to overcome this problem is the use of mesoscale models in combination with a wind flow 

model (microscale model). Instead of trying to resolve all small scale terrain features, the mesoscale 

modelling stops at a resolution of approximately 5 km and local predictions are made with a wind 

flow model (Figure 3.2). 

Frank and Landberg (1997) use the Karlsruhe Atmospheric Mesoscale Model, combined with the 

linear wind flow model WAsP, to estimate the theoretical wind energy of Ireland. Brower et al. 

(2004) develop MesoMap, a combination of MASS mesoscale atmospheric model and microscale 

model WindMap, and apply it for the estimation of theoretical energy in several areas in USA. 

Pepper and Wang (2007) use the PSU/NCAR fifth generation Mesoscale Model (MM5) in 

conjunction with an h-adaptive finite element model in order to conduct wind energy assessment in 

central Nevada. Kondo et al. (2008) use a mesoscale model (AIST-MM) combined with a multi 

layer canopy model to estimate wind energy in an urban area. 

<Figure 3.2 near here> 
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3.3 Estimating Exploitable Energy  

There is no definite methodology referring to the estimation of exploitable energy. Hence, certain 

indicative examples of its estimation will be mentioned, at various scales, regional, national or even 

global. Voivontas et al. (1998) attempt to estimate the theoretical and exploitable wind energy in a 

Greek island, using a Geographical Information System (GIS) Decision Support System. Acker et 

al. (2007) use GIS and wind maps, created by a mesoscale wind energy model, to produce a wind 

resource inventory in the state of Arizona, to evaluate the most promising sites for wind 

development and to present the cost of energy by using the NREL wind energy finance calculator. 

Hoogwijk et al. (2004) present the assessment of the global theoretical and exploitable wind energy, 

performing a sensitivity analysis for uncertain assumptions. De Vries et al. (2007) investigate the 

potential of wind, solar  and biomass, focusing on uncertainties in land use cover, by building four 

different scenarios. Biberacher et al. (2008a) developed a global GEOdatabase, including all 

renewable energy resources, at high resolution taking into account competitive land uses. 

3.4 Challenges for the near future 

According to Petersen (2006), a point has been reached where by giving the coordinates at any spot 

on Earth, the local wind energy can be estimated with a reasonably well known uncertainty. This 

has been made possible due to model development, where linear wind flow models are combined 

with adapted nonlinear models and mesoscale meteorological models, to fully exploit the 

capabilities of each method. 

The greatest challenge for wind resource estimation is to find flow models and numerical schemes 

which can pick up the main features of the wind flow in complex terrain and/or very complex 

climatology while keeping the calculation effort at an acceptable level. Other challenges are related 

to the prediction of the turbulence conditions and extreme winds at specific sites and the reduction 

of the uncertainties in the estimates. Ayotte (2008) presents the most recent developments and the 

challenges which still exist in flow modelling for wind resource assessment. 
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With respect to the huge potential of planned offshore farms, research attention has shifted to the 

estimation of the offshore wind potential. Many papers have been written on this subject in the last 

years (Dhanju et al., 2008; Lange and Højstrup, 2001; Lange et al., 2004,). The question that needs 

to be answered is whether the methodologies mentioned above can still be satisfactorily used for 

this purpose, given the unique features of these cases (strong thermally driven wind flow, sea 

surface roughness, bathymetry). Finally, recent studies have been initiated to consider the effect of 

climate change on the wind potential energy (Petersen, 2006). 

 

4 Wave Energy Potential 

The worldwide wave energy potential is estimated of the same order of magnitude as the world 

electrical energy consumption, however power generation is not currently a widely employed 

commercial technology. Some of the earliest recorded attempts to convert wave energy into more 

usable forms date back to several centuries, and today, thanks to the offshore oil industry and 

offshore wind energy development, much of the infrastructure and knowledge necessary to 

efficiently generate energy from the ocean already exists. Several wave energy conversion devices 

have already demonstrated the potential for commercially viable electricity generation and are 

expecting pre-commercial deployment in Europe. However, in order to achieve competitiveness, a 

good understanding of wave climate at the installation site and weather forecasting techniques are 

necessary. 

4.1 Identifying wave energy potential 

As already pointed out, wave energy can be considered as a concentrated form of solar energy. The 

differential heating of the earth generates winds which transfer some of their energy to form waves 

as they pass over open bodies of water. Waves travel great distances without significant losses and 

so act as an efficient energy transport mechanism across thousands of kilometers.  
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Whatever the means used to record or predict a wave climate, the sea state is usually described by 

using a simplifying set of statistical parameters. A sea state can then be represented as a spectrum of 

regular waves and often summarized in terms of wave height spectral peak, dominant wave period 

and mean wave direction. These wave spectral parameters are then used to quantify the wave 

energy resource and to estimate the flux of energy per unit of wave crest. The variation in sea states 

over a period of time can be represented by a wave scatter diagram, which indicates how often a sea 

state with a particular combination of wave height and period occurs. The angular distribution of 

wave power is usually represented in a “wave rose”. Synthesizing, the statistical parameters used 

are very similar to those adopted for wind energy.  

Wave energy is a renewable resource and therefore it is virtually inexhaustible in duration but 

limited, and also highly variable, in the amount that is available per unit of time. The theoretical 

potential identifies the physical upper limit of wave energy available at a certain site. The technical 

potential takes into account restrictions regarding the state of the art of the technology, limiting the 

theoretical potential and reducing the area that is realistically available for energy generation. The 

potential is further reduced when additional but compulsory restrictions are taken into account such 

as the proportion that can be utilised respecting ecological and socioeconomic factors. The methods 

used to estimate these potentials, along with several examples found in the bibliography, are 

described in the following sections. 

The World Energy Council has estimated the worldwide wave power resource in deep water 

between 1 to 10 TW (World Energy Council, 2007). As most forms of renewables, wave energy is 

unevenly distributed over the globe, varying by location and time. The best wave climates in terms 

of increased wave activity, with annual average power levels between 20-70 kW/m of wave front, 

are found in the temperate zones (30-60º latitude). However, attractive wave climates are also found 

within equatorial zones (0-30º latitude) where regular trade winds blow and the lower power levels 

are compensated by the smaller wave power variability.  
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Although the scale and character of the wave energy resource in many regions around the world 

remain poorly understood and ill defined, especially in nearshore areas, several efforts have been 

made to estimate the wave energy potential at regional, national and global scale. Some of them are 

described next, grouped according to the methods used and to the sources of data. 

4.1.1 Direct and remote measurements 

The most realistic wave data is collected in situ using moored buoys, fixed structures (laser and 

acoustic sensors) and bottom mounted pressure and acoustic sensors. The most common system is 

buoys. In the past, they could only measure wave energy but in the last years buoys equipped to 

measure horizontal surge and sway motions are used, allowing the calculation of wave 

directionality. Some wave recording buoys have been collecting data for years, gathering useful 

long term series.  

However, these types of measuring systems are not widely available and do not have a worldwide 

evenly distributed cover, mainly due to high costs and difficulty related to harsh environment.    

Satellite technology has started being used for accurate recording of wave height, velocity and 

direction, including both local and localised effects. It is not sensitive to bad weather conditions, but 

has low frequency of measurements and relatively high distance between tracks as drawbacks. 

Krogstad and Barstow (1999) describe the methodology used to calculate wave height, wind speed 

and wave period over 15 years based on satellite data. They present several case studies and also 

provide a few Internet sites where satellite wave data can be found. Barstow et al. (1998) used two 

years of altimeter data to construct a global map of the available wave energy resources in deep 

water. Despite the relatively short record length, the analysis succeeded in generating reasonable 

estimates of the spatial variation of mean wave energy. 

Satellite observations are able to provide reliable global long term wave statistics, also contributing 

to improve short term wave predictions. Combined with short term forecasting techniques, these 

data could be used to modify controlled response for safety in approaching storms and to call for 
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dispatch balancing plant in the electricity network to accommodate reductions in wave energy 

production. 

4.2 Statistical Analysis and numerical models 

Measuring systems produce a huge quantity of data that could be difficult to evaluate in its raw 

state. In order to help in the hindcasting and forecasting of wave climate, a more or less complicated 

statistical analysis is generally applied. Regarding the hindcasting of wave climate from 

meteorological data, Smith et al. (2006) proposes a new statistic that measures the rate of change in 

the wave period from one wave to the next, which would be relevant to wave energy devices. 

Statistical analysis could also help to determine the long term resource potential for a given site. 

This can be used to evaluate a site for development viability, but will not work for predicting the 

energy produced. 

According to Rusu and Guedes Soares (2009), wave energy can be accurately predicted within a 

window of a few days not by statistical analysis, but by using numerical models, the most widely 

used of which are WAM (Wave Analysis Model), WAVEWATCH III, FUNWAVE and SWAM 

(Simulating Waves Nearshore Model). They model wave generation based on wind-wave models, 

wave propagation and transformation, from open ocean to within ports and harbors. While WAN, 

WWIII and FUNWAVE are used at global scale for offshore locations, linking meteorological 

parameters to production of ocean wave regimes, SWAN is used to introduce the wave 

transformations that occur near the coast (whitecapping, bottom friction and depth induced wave 

breaking ) (Folley and Whittaker, 2009). 

Several authors have reported detailed energy resource assessments for particular regions or 

countries: Ireland (ESBI Environmental Services, 2005), United Kingdom (ABP Marine 

Environmental Research Limited, 2008), Portugal (Pontes et al., 2005), California (Wilson and 

Beyene, 2007), Canada (Dunnett and Wallace, 2009), the Baltic Sea (Henfridsson et al., 2007). 

These types of studies involve analysis of wave data from buoys, satellites, numerical wave 

hindcasts or a combination of these sources. 
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4.3 Estimating Technical Potential  

Wave power estimates usually describe the energy flux due to wave propagation but only a fraction 

of the energy flux available at any site can be captured and converted into more useful forms of 

energy. This fraction is imposed by the wave energy converter (WEC) inherent power limitation. 

How to calculate the fraction of “extractable” resource is not yet well established since there is not 

an agreement on the optimum wave energy conversion mechanism. 

It is also necessary to consider the effect of the resource variability on device performance since the 

excess wave power in sea states larger than a threshold power level is unexploitable. This threshold 

will depend on device/wave farm hydrodynamics, but in the case study presented by Folley and 

Whittaker (2009) four times the average incident wave power has been used. They present a method 

to estimate the wave energy resource in nearshore areas, proposing a measure of the resource that 

represents more accurately the potential for exploitation, avoiding omnidirectional wave energy and 

discounting high energy sea states.  

Boehme et al. (2006) suggest some figures of the loss in electricity production (and therefore, the 

reduction of theoretical resource to the extractable potential) generated with a Pelamis type device 

in Scotland. 

4.4 Estimating Economic and Sustainable Potential 

Most of the examples found in the literature agree on the restrictions that must be considered in 

order to estimate the realizable wave energy potential and how to rank feasible locations for wave 

energy deployment. Some suggest how the costs could be reduced, and several defend GIS as an 

appropriate tool to jointly evaluate the social, economic and environmental constrains. For instance, 

Hendfridsson et al. (2007) examines possible examples of power installations in the Baltic Sea. 

Activities such as commercial fishing, shipping channels, areas of military interest, sites of marine 

archaeological importance and valuable biological reserves were taken into account in the definition 

of the feasible areas. Also geographical conditions were considered, such as distances from land 
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and grid, the depths and substrate of the seabed, which can set boundaries to what is economically 

feasible.  

In the case of Boehme et al. (2006), GIS technology was used as the computer environment within 

which renewable resources, along with most of the physical constraints on their development, were 

mapped. The GIS program was also used to model renewable electricity generation, establishing the 

spatial relationships between resource, generation and electrical load datasets.  

The method presented in Nobre et al. (2009) constitutes a reference example in performing geo-

spatial analysis aiming to identify the best location to implement a wave energy farm off Portugal 

coast. Several factors, such as technological limitations, environmental conditions, administrative 

and logistic conditions, are taken into account. Some restrictions are imposed in the analysis 

(exclusion zones) while other areas have their suitability ranked with weighting factors. The result 

is a spatial suitability index for farm deployment.  

The cost involved in transmitting power to the electricity network from an offshore location is 

clearly more expensive than from an onshore location, due to the underwater cable infrastructure. 

Prest et al. (2007) describe a method, based on GIS, which optimises the cable route between a 

wave farm and the electricity network, while taking a range of exclusion zones. Graham et al. 

(2003) also use techniques available through GIS to optimise the integration of marine energy into 

the electricity network. 

4.5 Challenges for the near future 

For most wave energy conversion mechanisms, it is necessary to tune the oscillating bodies to some 

period of the waves. Hence, a good understanding of the wave climate at the site is required. A 

better resource analysis and weather forecasting is one of the most important challenges faced by 

marine renewable resources (Mueller and Wallace, 2008) in order to achieve competitiveness. It is 

also important to produce good and reliable information on the steadiness of the wave energy 

resource throughout the year and on the severity of the wave climate extremes when conducting 
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resource assessments for wave energy projects, since production and survival of converters will rely 

on them. 

It will be critically important to ensure that the development of new ocean energy technologies do 

not harm the marine environment, taking into account all the environmental restrictions that would 

assure the sustainability of its exploitation, while the resource assessment is performed. Recent 

studies have also suggested the necessity of considering, in long term planning, the impact that 

climate change could have on the marine resources (Harrison and Wallace, 2005). 

5 Dry biomass and energy crops potential 
Biomass resources have been largely used as traditional fuels and are now being promoted as a 

strategy to achieve sustainable development. Biomass is mainly available locally, allows the 

widespread production of energy at reasonable costs and can help to mitigate climate change, 

develop rural economies and increase energy security. Consequently, several methods and tools 

have been developed to assess the availability of biomass resources. We focus in this section on 

methods and tools for biomass estimation at the regional level subdivided by biomass type. 

Biomass is defined as the biodegradable fraction of products, wastes and residues from agriculture, 

forestry and related industries, as well as the biodegradable fraction of industrial and municipal 

wastes. Moreover biomass can be grown on purpose in dedicated energy crops. Residual biomasses 

derive from:  

· the agricultural sector, both in the form of crop residues and of animal waste;  

· the forestry sector, from forests’ thinning and maintenance;  

· the industrial sector of wood manufacture and food industries;  

· the waste sector, in the form of residues of parks maintenance and of municipal biodegradable 

wastes.  

Biomass potentials are classified depending on their theoretical, techno-economical and sustainable 

availability. The theoretically biomass potential can be estimated on the basis of biophysical and 

agro-ecological factors that determined the biomass growth and extension and the residues 
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production ratios. The techno-economical potential is then estimated taking into account 

accessibility, resources competition, biomass logistics, production costs and all other factors that 

constraint the theoretical potential. Sustainable potential is a further assessment that aims at 

evaluating the amount of biomass that can be obtained considering socio-economical and ecological 

impacts of this type of energy projects. Constraints may vary according to regional specificities 

such as forestry, agricultural and industry practices, to socio-economic conditions and to the natural 

environment.  

We will first consider dry biomass, namely that with a humidity content below 30%, and analyse 

specific methods to estimate the potential of different sources, namely, woody biomass, agricultural 

biomass, energy crops and industrial residues. 

5.1 Estimation of biomass potential 

5.1.1 Woody biomass 

Woody biomass estimation methods are usually based on forest inventories and agricultural 

censuses. The theoretical potential of biomass in forests is typically estimated through biomass 

allometric regression equations (BARE) and biomass expansion factors (BEF) (Brown, 2002). 

Allometric equations are regressions that relate diameter and height of a tree to stand volume and 

total biomass volume (Brown, 1997). A vast bibliography is available presenting allometric 

equations (e.g., Jenkins et al., 2003; Zianis et al., 2005). Local and regional characteristics such as 

climatic variables and topography have a strong influence in forest growth and so in the 

aboveground biomass volume tree. Specific allometric equations should be developed for each tree 

species, for each forest development stage and for each region. As these values have not been 

computed for all interesting species and locations, many authors adjust equations available in 

literature. 

BEFs are used for total aboveground biomass estimations and their components as an intermediate 

step for carbon stock and change calculation in forests. BEFs convert timber volumes to whole tree 

biomass and are calculated as the ratio between aboveground biomass and stem volume (Brown et 
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al., 1999). Some controversies have arisen regarding BEFs use for biomass estimations such as its 

inapplicability to trees below merchantable wood (Joosten et al., 2004), and BEF statistical error is 

often unknown leading to biased estimates. Efforts are being done to obtain more accurate BEF 

(Lethonen et al., 2004) including the differentiation by age and the estimation of error, but they 

cannot be applied when stand development conditions deviate from those under which the BEFs 

were computed (Jalkanen et al., 2005).  

Forest treatments, mainly pruning, thinning, and final felling are a key element as annual forestry 

residues production depends on these factors. Esteban Pascual (2005) and Panichelli and 

Gnansounou (2008a; 2008b) give examples of biomass estimations based on forest management 

practices.  

The main uncertainty in estimating woody biomass potential is the difficulty to account for forest 

dynamics. The last century has seen the development of various models for this purpose. Such 

models have been developed following different approaches and vary from complex eco-

physiological models, suitable for the study of the impact of forest on climate change, to empirical 

models. Forest growth models generally can be classified within the following categories (Gadow 

and Hui, 2001; Hasenauer, 2006): a) highly aggregate volume over age models, used for regional 

yield forecasting; b) stand models, used to predict the growth as a function of age; c) size class 

models, used to predict the plants growth in terms of variations of the diameter distribution; d) 

individual tree models that provide information about the plant growth, on the basis of spatial 

relations. Some models of forest growth (Umeki et al., 2008) dynamics have been developed but 

not fully integrated in biomass potential estimations. One of these is CO2FIX (Masera et al., 2003; 

Schelhaas et al., 2004) that has been designed to estimate all carbon flows from the atmosphere to 

the standing biomass, from biomass to decay in the soil, from the soil back to the atmosphere. 

These flows describe, through many parameters, the natural dynamic of a forest. Moreover, flows 

can be added to account for forest management (cuttings and crop rotations) and for the use of the 

woody products.  
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5.1.2 Agricultural biomass 

The theoretical potential of crop residues can be estimated on the basis of the cultivated area or the 

agricultural production for each crop (usually available from regional or national statistical offices) 

and average product to residue ratios or residue yields derived from literature or from referenced 

local trials. Different authors have proposed product to residue ratios (Koopmans and Koppenjan, 

1997). This method has been widely applied to estimate agricultural residues availability for energy 

purposes (Lewandowski et al., 2006; Perlack et al., 2005). The residue availability may 

significantly vary with local agricultural practices and climatic conditions. Product to residue ratios 

should thus be estimated at regional level on the basis of field trials (Bhattacharya et al., 2005). 

The theoretical potential of agricultural residues for energy purposes is restricted by competition 

and logistics constraints. Almost half of the total agricultural residues are exploited in non energy 

applications (Dalianis and Panoutsou, 1995). Moreover, agricultural machineries are not able to 

collect all the residues from the soil and typically leave 40÷50% of it on the field (Sokhansanj and 

Turhollow, 2002).  

Moreover, crop residues play an important role both protecting soil from erosion and returning 

nutrients to the soil. Residues removal should be evaluated in each specific case, according to local 

soil and climatic characteristics and to agricultural practices. In the U.S.A. this a very important 

issue given the high soil erosion rates experienced in the central plains, where wind, water 

availability and soil conditions strongly affect the amount of residue removal, as modelled by 

Graham et al. (2007). Agricultural residues have to be collected and transported to the conversion 

plant. Since the bulk density of agricultural residues is generally low, transport costs can be 

significant and need to be carefully assessed. One way to contain transportation costs is to process 

residues and densify them, for instance by baling.  
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5.1.3 Energy crops 

Biomass can be supplied by dedicated agricultural crops of arboreous and herbaceous species: short 

rotation forestry (SRF, e.g. poplars, willows, eucalyptus), annual crops (e.g. corn, soy, sugar cane, 

sorghum) and perennial grasses (e.g. switchgrass, miscanthus). Several models have been 

developed to support the decision over which species to grow. Local climate, morphology, soil 

characteristics, water and nutrients needs are commonly used to identify the set of species suitable 

for a specific area (Aylott et al., 2008). For example, potential biomass productivity of tree species 

can be assessed on the basis of the FAO/IIASA Agro Ecological Zones approach (Fischer et al., 

2005), while some information for herbaceous species can be found in the ECOCROP database 

(ecocrop.fao.org). 

Eventually, the most important issue regarding energy crops is the assessment of available land. 

Some models have presented assessments of land availability at global level (Field et al., 2008). 

However, once at regional scale different methods are needed in order to account for local socio-

economic and environmental conditions. Land available for energy crops can be identified with the 

help of current land use data and statistical databases. However, land conversion costs, social 

concerns and environmental constraints may limit the amount of available land for energy crops. 

Given a set of species suitable for a given area, an optimization problem of the entire energy chain 

(including cultivation and transport) must be solved in order to determine the amount of land to be 

dedicated to each specific crop (Fiorese and Guariso, 2009). 

A different approach for estimating energy crops potential is the economic modelling of the entire 

agricultural sector. Economic models account for biomass production for the internal market, 

exports and imports, and detailed costs and benefits of the major farming goods. The Polysis model 

(McLaughlin et al., 2002), developed for the U.S.A. estimates biomass production on the basis of 

the net profits compared with those derived from conventional crops. This model relies on many 

assumptions that range from farming practices to macro-economic variables of the agricultural 

sector.  
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GIS based applications allows considering spatial patterns of biomass distribution. Graham et al. 

(1996, 2000) developed a regional scale GIS based modelling system for evaluating potential 

biomass production and costs from energy crops. 

5.1.4 Industrial residues  

Biomass from industrial residues includes wood from sawmills and timber mills and by products of 

the food industry. The principle of waste reduction, re use, recycle and recover should be 

considered also when proposing waste to energy projects. 

Municipal solid waste, liquid by-products from the pulp and paper production industry; food 

processing wastes can all be used for energy conversion,  in some cases together with the wet 

biomass, as discussed in the next chapter.  

The availability of information on quantities of current biowaste production may significantly differ 

across the waste streams. Municipal solid wastes are monitored by government, so that statistics 

about their availability and the type of waste should be easily recovered from the national statistical 

offices. Similarly, the industry and service sectors are normally required to notify the type and the 

amount of waste produced, according to the categories of waste.  

Solid industrial residues consist mainly of clean wood fractions from the secondary wood 

processing industry. These residues are already concentrated at a processing industry and are often 

already dried, which reduces logistic and pre-treatment costs. However, wood industries already use 

part of these residues for heating purposes, so that the final amount of wood residues available for 

other energy conversions is reduced. Wood industrial wastes can be estimated from the quantity and 

quality of wood processed and from the type of process that the wood undergoes. The actual 

quantity of residues depends on several factors, such as wood properties, type of operation and 

maintenance of the plant. Again, alternative uses of wood residues, such as chips for pulp 

production, raw materials for particleboard and fibreboard production, must also be considered.  
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5.2 Spatial patterns and optimization 

State of the art in biomass to energy planning is focused on GIS based approaches where biomass 

potential is estimated from geo-references inventory data. Once that the available potential of 

biomass is assessed, the system is optimized based on cost minimization of biomass production and 

utilization in energy conversion facilities.  

Satellite images have been widely used to assess spatial patterns of biomass production. Methods 

account for the integration of forest inventories with satellite imagery (Labrecque et al., 2006; 

Remmel et al., 2005), the use of LIDAR remote sensing data (Zhao et al., 2009), teledetection 

applications (Garcia Martin et al., 2005) and normalized difference vegetation index (NDVI) data 

processing (Maselli et al., 2006). 

One of the main issues is the distance of the conversion plant from the needed feedstock and the 

capacity of the plant itself. Given a certain biomass availability and regional distribution, at the 

increase of size, in fact, collecting distances increases and thus also the biomass supply costs 

(Graham et al., 1997; Noon et al., 2002; Zhan et al., 2005). Many models have evaluated these 

issues, among them the Biomass Resources Assessment Version One (BRAVO) system in a 

computer based DSS to assist the Tennessee Valley Authority in estimating the supply cost for 

wood fuel as a function of the hauling distances (Noon and Daly, 1996). In this type of analysis, 

spatial information is needed in order to know where to collect the biomass from and where to 

deliver it.  

Interactions of biomass supply and demand have also been a major subject of research. Masera et 

al. (2006) have assessed the wood fuels resources in Mexico, Slovenia and Senegal using the 

Woodfuel Integrated Supply/Demand Overview Mapping model (WISDOM). The model is a GIS 

based tool aiming to analyze firewood demand and supply spatial patterns highlighting areas in 

which several criteria of interest coincide.  

Much of the present work is directed toward the development of GIS based decision support tools 

of the complete biomass-to-energy chain, such as that developed by Frombo et al. (2009a, 2009b). 
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Another GIS based model for public forests, based on inventory data, was developed and tested in 

the Northern Black Forest region, Germany (Heisig et al., 2005). The feasibility of the biomass to 

energy chain was assessed in the Tuscany region (Bernetti et al., 2004). Tatsiopoulos and Tolis 

(2001) have evaluated the economic aspects of the cotton stalk biomass logistics in a mathematical 

formulation for Thessally, Greece. Centralized and decentralized approaches were considered and 

the entire model was driven by a GIS interface that permitted to define the suitable location for 

siting power units. These tools are useful to identify the main parameters that affect location and 

number of bioenergy conversion facilities based on plant capacity and spatial distribution of the 

available biomass resources.  

DSSs may also allow policy makers to assess the impact of bioenergy policies: Chalmers et al. 

(2003), for instance, have created a GIS based tool that estimates the effect of policy constraints in 

thinning. 

Finally, they may explicitly include economic considerations. Kinoshita et al. (2009) have focused 

on the spatial modelling of forest biomass as a function of production costs for different machinery 

and forest treatment. An integrated GIS based approach including techno-economical, socio-

political and environmental constraints to biomass production and utilization was developed by 

Perpiñá et al. (2009) to evaluate biomass to energy potential in the Valencia Community, Spain. 

Panichelli and Gnansounou (2008a,b) have tackled the problem of resources competition between 

energy facilities and farm gate price variability in function of biophysical and location constraints. 

The DSS model was applied in Northern Spain to determine optimal locations for bioenergy 

facilities.  

5.3 Challenges for the near future 

The main challenges in biomass to energy planning deal with the improvement of models to 

account for forest and agricultural dynamics and their integration into GIS environments, the 

development of specific biomass estimation factors and equations, the assessment of biomass 

competition between energy conversion and other uses, and the development of multicriteria 
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optimization models. Moreover, social and environmental considerations (Tilman et al., 2009) need 

to be taken into account in order to face issues such as biodiversity loss.   

6 Wet biomasses and biogas potential 
In this section of the paper, we will analyse biogas production via anaerobic digestion (AD). Biogas 

produced via AD is a mixture of methane (CH4) and carbon dioxide (CO2), in a ratio of about 60/40 

to 70/30. Biogas can then be burned in stationary engines to produce electrical and/or thermal 

energy or to fuel vehicles.  

In recent years, AD has been developing as one of the most attractive renewable energy resources 

especially in Northern Europe. European production of primary energy from biogas has reached 5.9 

million tons of oil equivalent (Mtoe), increasing by 20% since 2006 (EurObserv’ER, 2008). Biogas 

derives from landfills (49%), waste treatment plants (15%) and agricultural units (36%). Gross 

electricity production from biogas in the EU was about 17 TWh in 2006; more than half is produced 

in cogeneration plants (EurObserv’ER, 2008). 

Biogas can be produced from nearly all kind of biological feedstock types. The largest resource is 

represented by animal manure, slurries, and organic waste streams. Dedicated agricultural crops and 

crop residues are also promising feedstock such as grasses (e.g., straws from wheat, rice, and 

sorghum) or silage maize.  

The increasing interest in animal manures and slurries is due to the many co-benefits that derive 

from their energy exploitation. When untreated or poorly managed, animal manure becomes a 

major source of air and water pollution. Nutrient leaching, mainly nitrogen and phosphorous, 

ammonia evaporation and pathogen contamination are some of the major threats. Moreover, from 

the climate change perspective, the animal production sector is responsible for 18% of the overall 

greenhouse gases emissions in CO2 equivalent (Holm Nielsen et al., 2009). The energy use of 

manure contributes to decrease water, soil and air pollution, whilst pathogens population possibly 

present in the manure are reduced (Sørensen, 2004). Moreover, the digestate, the final residue of 
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AD, can be used as soil amendment, for fertigation or as a colloidal humus (Tambone et al., 2009; 

Tani et al., 2006). 

The potential energy from biogas can be assessed following these steps: first, feedstock should be 

assessed at local level on the basis of the socio-economic and farming conditions, which can 

significantly vary with country legislation and common agricultural practices; this assessment 

should take into account technical (feedstock suitable to be used as AD substrate) and socio-

economic (feedstock that can economically be treated in AD and that are not subtracted to other end 

uses) constraints. Second, on the basis of available substrates, the conversion technology should be 

chosen and the energy system designed: socio-economic (e.g., local energy demand) and 

geographical (e.g., land morphology, road network) constraints should thus be considered.  

6.1 Feedstock 

Even though the chemical and physical characteristics of biomasses are extremely variable (for 

substrates characteristics see e.g. Pesta, 2007 and PHYLLIS Database, 2008), a wide variety of high 

moisture content biomasses can be used as substrates for biochemical conversions such as AD. In 

this section we will focus on animal manure, whilst dedicated energy crops were discussed in 

Section 5.1.3.  

Typically, more than one substrate is simultaneously fed to the digester in order to improve the 

methane content in biogas. This practice is commonly known as co-digestion. The most common 

co-digestion application can be found in agricultural biogas plants where manures are co-digested 

with smaller amounts of grasses, crop residues, maize or grass silage. In fact, co-digestion of 

manure with biomass is a way to adjust the C:N ratio, which is lower for manure and higher for 

grasses and residues (Braun and Wellinger, 2003; Pesta, 2007; Ward et al., 2008).  

Biogas yields vary depending on the kind of raw material used as substrate, given the same 

conversion technology. This is due to the different chemical and physical composition of the raw 

material and, in particular, to the difference of organic matter, carbohydrate and fat content. High 

fat content, for example, provides biogas with high methane content. In addition, the composition of 
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a specific raw material can vary markedly among sites or with time. For instance, the time of 

harvesting will affect the content of various carbohydrates in ley crops, and thus affect the 

degradability of the crop itself. The methane potential varies with different livestock: species, 

breed, growth stage of the animals, feed, amount, and type of bedding and also any degradation 

processes which may take place during storage are all factors that affect methane potential (Moller 

et al., 2004). 

Modelling techniques are used to optimise the spreading of animal manure on agriculture land. The 

USDA model developed for Chesapeake Bay (Aillery et al., 2005) is a nonlinear mathematical 

programming model that estimates manure land application costs from the distribution of manure, 

given farming practices in use, and from the land available for manure spreading. The model is 

based on the interaction between geographical information and numerical databases, derived from 

the agricultural census.  

The literature proposes different methods to evaluate biomass availability. The assessment of 

suitable feedstock is at the basis of analysis of biogas contribution to the energy balance of a region 

(e.g., Salomon and Silva Lora (2009) for Brazil; Jingura and Matengaifa (2009) for Zimbabwe). 

The assessment of the energy potential should start from the analysis of territory configuration 

(digital cartography) as well as agricultural and industrial censuses and current farming practices. 

This information allows estimating the amount of different types of feedstock available in each 

portion of the territory. The integration of GIS with statistical data stands at the base of several 

models, such as that developed by Batzias et al. (2005) to estimate the regional distribution of 

biogas potential in Greece.  

The amount of raw material available can also be estimated from specific dataset on socio-

economic (as for wastes) and farming (as for manure residues and energy crops) activities. E.g., the 

amount of animal manure can be estimated from the number of animal units in an area multiplied 

by specific parameters (e.g. Table 6.1) that returns the potential biomass supply and its organic 
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content. The number of animal units is commonly given by national agricultural surveys (or 

Eurostat for all the European countries).  

In general, the amount of biogas generated by any type of feedstock can be calculated by 

multiplying the amount of input feedstock; its availability factor; the percentage of dry matter; the 

percentage of organic content per dry matter; and the gas generation rate per unit of substrate. 

Examples of dry matter and organic matter content for various substrates are listed in Table 6.2.  

The availability fraction strongly depends on current farming and disposal practices; e.g., for 

Greece it was estimated at 0.45 for cattle manure and 0.80 for pig manure (Batzias et al., 2005). The 

expected amount of energy from biogas is then obtained by multiplying the amount of biogas times 

the percentage of methane and its lower heating value (typically 34.6 GJ/m3). 

<Table 6.1 near here> 

<Table 6.2 near here> 

Feedstock that can be used as substrates share the common characteristics of biomass: they are 

largely available, originate from different sectors and are disperse over the territory. Thus, an effort 

is needed to collect and deliver the feedstock to the plant. The AD process can be carried out at a 

large variety of plant scale (from few kWe to several MWe). However, as the scale increase, one 

has to contrast the increasing cost of feedstock collection vs. economies of scales. This issue has 

been explored for AD (Fiorese et al., 2008) and for lignocellulosic biomass and thermo-chemical 

combustion conversions (Marrison and Larson, 1995). The characteristics of wet biomasses (high 

water content, composition, odour) make transportation difficult and expensive. For example, 

transportation accounted for 35–50% of the total operating costs in the Danish centralised biogas 

plants (Flotats et al., 2009). To reduce costs and favour bigger centralised digesters, manure 

transportation in pipelines is considered a valid alternative to trucks in intensive farming areas 

(Bjerkholt et al., 2005; Ghafoori et al., 2007).  
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6.2 Challenges for the near future 

Modelling techniques in this field are typically used to optimise the management of animal manure.  

Besides the Chesapeake Bay model already mentioned, other models and DSSs have been 

developed, always with the aim of optimising manure spreading on cropland (e.g., Karmakar et al., 

2007). The use of manure as an AD substrate used either alone or with other biomasses represents a 

relative new way of managing manure. Models are thus needed to evaluate all the consequences of 

this practice and to integrate it in the overall management of a farming system. These models 

should always be based on the interaction between geographical (data on cropland cover or other 

spatially explicit features) and numerical databases (such as the agricultural censuses that collect 

information on animals).  

7 Geothermal Energy Resource Potential 
Geothermal energy is the heat that can, or could, be extracted from the interior of the Earth. This 

heat has two primary sources: the decay of the long live radioactive isotopes and the stored energy 

from planetary accretion. Geothermal heat has the advantage of being available all day and in all 

seasons. 

Geothermal energy, as natural steam and hot water, has been exploited for decades to generate 

electricity, in domestic heating and industrial processes. In year 2000, geothermal resources have 

been identified in over 80 countries and there are quantified records of geothermal utilization in 58 

countries in the world (Fridleifsson, 2001). 

7.1 Classification, definition and uses of geothermal resources 

As opposed to other sources or energy, renewable or exhaustible, there is not an agreement on the 

definition and classification of geothermal resources. According to Muffler and Cataldi (1978), the 

accessible resource base corresponds to all of the thermal energy stored between the Earth’s surface 

and a specified depth in the crust, beneath a specified area and measured from local mean annual 

temperature. The accessible resource base includes the useful accessible resource, which could be 

considered as resource, constituted by the part that could be extracted economically and legally at 
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some specified time in the future (less than a hundred years). Figure 7.1, taken from Muffler and 

Cataldi (1978), illustrates in graphic form these and other terms that may be used within the context 

of geothermal resource assessment.  

There is another common criterion based on the enthalpy of the geothermal fluids. The enthalpy 

could be considered almost proportional to temperature, so the resources are divided into low, 

medium and high enthalpy; but there is no general agreement on the arbitrary temperature ranges 

used. Another frequent distinction is made between liquid dominated geothermal systems and vapor 

dominated systems.  

<Figure 7.1 near here> 

Geothermal energy can be used for direct application, with a wide variety of end uses such as 

heating and cooling, industry, greenhouses, fish farming, and health spas (Fridleifsson, 2001). 

While electricity production requires high temperature geothermal resources (over 100-150ºC) and 

implies drilling and pumping water from depth, direct application can use both high and low 

temperature geothermal resources and is therefore much more widespread in the world than 

electricity production. Indeed, the almost constant temperature of the soil few meters under the 

surface almost everywhere, can serve as a perfect heat source for small and simple heating and/or 

cooling systems driven by heat pumps. 

In general, an assessment procedure should be used to determine the amount and the form of 

geothermal energy stored in the subsurface and these factors  would restrict the type of application 

and extraction method (Hurter and Schellschimdt, 2003).  

Usually, the exploration program is developed on a step by step basis, closely following those of 

traditional fossil fuels search and exploitation. The initial phase is based on the selection of the most 

promising areas. The surface investigations in the selected area form the pre-feasibility phase, while 

the subsequent feasibility phase consists of deep exploratory drilling and reservoir testing. At an 

early stage in exploration, prior to drilling, resource assessment is largely qualitative. Once a few 

wells have been drilled, it will be possible to undertake a more accurate resource assessment. The 
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final phases of the project are those of development and exploitation. During each stage of the 

process, the least interesting areas are gradually eliminated so that efforts are concentrated on the 

remaining, more promising ones.  

A general approach to both targeting a geothermal well location and assessing resource capacity is 

to gather data about anomalies, and to define a conceptual model consistent with the available 

information. 

7.2 Geothermal exploration data 

Once a geothermal region has been identified, various exploration techniques are used to locate the 

most interesting areas. These techniques are based on several surveys which collect data to estimate 

temperature, reservoir volume and permeability at various depths, as well as to predict whether 

wells will produce steam or just hot water (Barbier, 2002).  

Geological and hydrogeological studies provide basic information to define any exploration 

program. The presence and distribution of young volcanic rocks, active volcanoes, craters, calderas, 

faults and fractures are the main data used in the early stages of geothermal resource assessment, 

aiming to identify geothermal phenomena and to estimate the size of the resource. Geochemical 

surveys are a useful means of determining whether the geothermal source is water or vapor 

dominated. The chemical characteristics of the deep fluid can be interpreted as geothermometers, 

i.e. a set of experimental relations that allow to define the model of the reservoir and its physical 

characteristics, such as temperature, electrical conductivity, density, etc., starting from the measured 

concentration of some minerals. Other commonly used techniques to infer the temperature of the 

fluids are: direct current resistivity, transient electromagnetic (TEM), and magneto-telluric (MT) 

studies (Meju, 2002). 

7.3 Data integration for targeting promising areas and well sites 

The decision making process involved in locating prospective areas, recommended for further study 

or exploratory drilling, demands to combine, integrate and interpret the results of geological, 

geochemical, geophysical and other surveys (Noorollahi, et al., 2008). GIS models have been 
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successfully used in performing these tasks. They can be grouped according to their main goal: 

selecting promising geothermal fields for further exploration at regional scale or defining specific 

sites for well drilling at local/basin scale.  

The methodologies used by Noorollahi et al. (2007) and by Yousefi et al. (2007) are quite similar  

and belong to the first group of studies. The datasets used in the analysis consist of geological, 

geochemical and geophysical information. Boolean integration method by using “or” and “and” 

operators were applied to combine all the evidence layers within each type of information, resulting 

in three suitability maps: geological, geochemical and geophysical (thermal). The final geothermal 

favourability map is then created by weighted overlay. Noorollahi et al. (2007) also presents a 

distance relationship analysis to determine the predominant distance between actual geothermal 

wells and interesting geological features (such as faults or hot springs) represented in a GIS layer. 

The results are buffers around those known features that can be combined to obtain the final 

favorability map. Carranza et al. (2008) focuses on the analysis of spatial distribution of geothermal 

prospects and thermal springs (evidences), and their spatial association with geological features 

(resources), highlighting their strong positive correlation. As a result, the mapping of high 

geothermal potential is presented. The methodology presented by Blewitt (2003) also studies spatial 

relationships at regional scale, but between geologic structures and regional tectonic strain 

measured with GPS geodetic observations. 

The final stage of a feasibility study is exploratory well drilling, and this is the only means of 

determining the real characteristics of the existing resource and thus assessing its potential. Several 

studies at local/basin scales have used GIS for the siting of exploratory wells in the most favorable 

areas. In the case reported by Prol Ledesma (2000), three knowledge driven models are proposed: 

Boolean logic model, index overlay model and fuzzy data analysis. In all models the same input 

data are used and the same conditions need to be satisfied. The Boolean method proved to be more 

restrictive and therefore more dependable for exploration well siting. Noorollahi et al. (2008) 

introduce the results of an environmental suitability analysis (e.g. land cover, residential areas,…) 
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to select the most promising well sites. As stated by Cumming (2009), using a conceptual model 

approach in well targeting has the advantage of testing the properties of the model, especially for 

temperatures. 

7.4 Resource conceptual model 

Geothermal conceptual models bring together the observed and inferred information that best 

illustrates the reservoir fluid and rock properties. According to the volume method (Muffler and 

Cataldi, 1978), the electric power generation potential from an identified geothermal system 

depends on the thermal energy in the reservoir, the amount of thermal energy that can be extracted 

from the reservoir at the wellhead, and the efficiency with which that wellhead thermal energy can 

be converted to electric power. The volume method was quickly established as the standard 

approach and most of the assessments made in parts of the United States rely on a version of this 

method. Nowadays, a new assessment of identified geothermal resources is being carried out by the 

U.S. Geological Survey, still using the volume method while incorporating some modifications 

regarding, among others, the temperature and depth ranges for electrical power production. For 

example, the assumed 150ºC lower limit for electric power production is under revision to include 

power production from moderate temperature systems using binary technology (Williams et al., 

2008).  

A more accurate assessment method is the use of geothermal simulation models to estimate the 

generation capacity of a given geothermal field. A detailed knowledge on the internal conditions of 

the geothermal reservoir is needed, and therefore, this method can hardly be applied until several 

wells have been drilled (Stefansson, 2005). 

7.5 Geothermal resource assessments and maps 

Stefansson (2005) recently presented an estimation of the geothermal potential of the world. The 

volumetric assessment method on the identified resources was assumed to provide the most likely 

value, while the hidden resources were assumed to be 5-10 times than those identified and the 
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results obtained by simulation models tended to be 4-5 times lower than the first method. The 

results are summarized in Table 7.1. 

<Table 7.1 near here> 

The geothermal resources of most European countries have been estimated and compiled in an atlas 

(Hurter and Schellschimdt, 2003). A volumetric heat content model was the basis for calculating the 

resources, assuming that exploitation would take place in a doublet system. Mapping of geothermal 

potential at regional scale have been implemented using GIS in many other countries (Jung et al., 

2003; Kohl et al., 2003; Ondreka et al., 2007). 

7.6 Challenges for the near future 

The utilization of geothermal energy has been limited to areas in which geological conditions allow 

a carrier liquid or steam to transfer the heat from deep zones, but only a small fraction of the 

geothermal potential has been developed so far, and there is ample space for an increased use of 

geothermal energy both for electricity generation and direct applications. 

Most current studies on the classification of favorable areas have been based on GIS tools. 

However, technical improvements and innovative technologies, such as enhanced geothermal 

systems (EGS) and binary plants, offer new perspectives in this sector. EGS technology is based on 

developing new reservoirs through the creation and stimulation of fractures and thus it requires 

existing models of thermal energy recovery factors and resource assessment tools to be adapted. In 

addition, advances in power production technology and the scientific understanding of geothermal 

systems indicate that some important elements of geothermal assessment methodology require 

detailed examination and revision, which indeed makes the updating of geothermal assessment 

appraisals obligatory. 

8 Conclusion 
A survey of methods and tools to evaluate the availability of  renewable resources (i.e., solar, wind, 

wave, biomass and geothermal energy) has been presented. In particular, potential, theoretical and 

exploitable energy have been differentiated and investigated for each kind of resource. All these 
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energy sources share the feature of being distributed over the territory and of being measurable only 

at specific sites. This means that they all need tools to determine their spatial dimension and these 

may be provided by geostatistical tools or by remote sensed spatial information. In quite the same 

way, they all require GISs both to process data and to demonstrate their local impacts. Indeed, their 

presence on the territory generates some form of conflict with other uses, from the subtraction of 

land otherwise dedicated to food agriculture (as it happened in Mexico in 2007 with the famous 

“tortilla riot”) or by perturbing existing landscapes (as claimed by various associations in UK). To 

correctly support decisions on renewable energy sources, studies should thus deepen the evaluation 

of these conflicts and take into account not just the exercise of the energy conversion plants, but 

their entire life-cycle. The University of Sydney’s Integrated Sustainability Analysis report (see 

Lang, 2009), for instance, estimates at something between 20-40 kg CO2eq/MWh, depending on the 

estimated life and capacity factor, the GHG emission due to the building, operating and 

decommissioning of wind turbines. “Renewable” does not mean “completely CO2 neutral” and thus 

more detailed and comprehensive analysis tools will probably be developed in the near future. 

An additional important issue (that has not been highlighted in the previous sections) is that non of 

the renewable source analysed would be able to supply the growing energy need of even small 

isolated areas of the world. It is thus necessary to integrate few of them and choose the best mix of 

different resources. The objective of choosing a mix of plants that maximizes environmental 

sustainability as well as economic viability can somehow be conflicting with the maximization of 

the energy supply reliability. Methods and tools that deal with the this type of integration are 

already present in the literature. An example is HOMER computer model (Lambert et al., 2005; 

Lilienthal et al., 2004): it is an easy to use tool that simplifies the task of evaluating design options 

for both off grid and grid connected renewable power systems for remote, stand alone, and 

distributed generation applications (https://analysis.nrel.gov/homer/). It comprises three different 

modules:  

https://analysis.nrel.gov/homer/
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· a simulation module, at hourly time scale, that compares the electrical and thermal demand 

to the energy that a mixed renewable/fossil system can supply, and estimates the cost of 

installing and operating the system over the lifetime of the project. HOMER simulates 

system configurations with several different combinations of components, and discards all 

those that do not respect reliability or cost constraints; 

· an optimization module: after simulating all the possible system configurations, HOMER 

orders feasible configurations from the most to the least cost effective, so that different 

design options can be compared; 

· a sensitivity analysis module: that repeats optimization for different values of parameters to 

take into account uncertainties. 

HOMER can thus find feasible solutions to design an efficient mix of renewable energy plants on 

the basis of a cost criterion. It could be easily expanded to consider other objectives such as land 

occupation or GHG reduction. Yet another research direction will emerge as extremely important in 

the near future: the management and control of a mix of existing plants, subject to an intermittent 

resource availability, that has to meet the fluctuating energy demands and be embedded into an 

energy network, particularly for electricity, that was originally conceived with a centralized 

structure. The energy flow may in fact reverse from the nodes to the center of the network and this 

may create tough problems to current devices. A large restructuring of the energy networks will 

probably be necessary in the future and this will entail the consideration of multiple objectives and 

multiple criteria, including the competition for land use. Examples related to design and planning 

decision problems, solved through mathematical programming and multicriteria approaches, can 

already be found in the literature at local scale (for example: Cai et al., 2009; Pohecar and 

Ramachandra, 2004; Ramachandra, 2009), but more flexible and integrated tools that couple 

environmental and decision models, databases and assessment tools, integrated under a GIS based 

Graphical User Interface (GUI) (Denzer, 2005; Matthies et al., 2007; Rizzoli and Young, 1997) are 

still necessary to implement Environmental Decision Support Systems that can operate on different 
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territories and multiple scales to plan and manage an efficient mix of renewable energy sources.
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Figure 2.1. Top-down approach to estimate renewable energy potentials (Biberacher et al., 2008) 
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Figure 2.2. Matrix of available databases and restricting factors covering the spatial dimension as 

well as the dimension of the top-down levels 
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Figure 3.1. Wind Atlas Methodology (adapted from Troen and Petersen, 1989) 
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Figure 3.2. Downscaling using Mesoscale and Microscale Modelling (adapted from Windlab, 2005) 
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Figure 5.1: Classification of biomass potentials.  
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Figure 7.1. Diagram representing the different categories of geothermal resources according to 

(Muffler et al., 1978). 
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Table 2.1: Databases on solar irradiation and methods 

 

 Technical parameters Methods used in calculation of primary & derived parameters 

Database / 

Method 

Extent Data inputs Period Time 

resoluti

on 

Spatial 

resolution 

Global 

horizontal 

radiation 

Diffuse 

fraction 

Inclined 

surface 

(diffuse 

model) 

Derived 

parameters * 

For PV / ST 

potential 

estimation ** 

PVGIS 

(Europe) 

Europe ~ 560 meteo 

stations 

1981 – 

1990 

Monthly 

averages 

1 km x 1 km + 

on-fly 

disaggreg. by 

100 m DEM 

3 D spline 

interpol. of 

ground data + 

model r.sun: Suri 

& Hofierka 2004 

Measured at 

63 stations, 

rest estim. by 

Czeplak 

1996 

Muneer 

1990 

G, D, terrain 

shadowing 

(beam only) 

PV, ST 

Meteonorm 

6.1 

Global Meteo stations 

+ satellite data 

1981 – 

2000 

Monthly 

averages 

Interpol. (on-

fly) + satellite; 

disaggreg. by 

100 m DEM 

3 D inverse 

distance interpol. 

by Zelenka et al 

1992 and Wald & 

Lefevre 2001; 

Heliosat 1 for sat. 

data 

Perez et al. 

1991 

Perez et al. 

1987 

G, D, B, terrain 

shadowing 

(beam and 

diffuse) 

PV, ST 

ESRA Europe ~ 560 meteo 

stations + SRB 

satellite data 

1981 – 

2000 

Monthly 

averages 

5 arc-minute x 

5 arc-minute 

Interpol. of 

ground data by 

co-kriging: Beyer 

et al. 1997 

Measured at 

63 stations, 

the rest 

estim. by 

Czeplak 

1996 

Muneer 

1990 

G, D, B, 

clearness, zones 

PV, ST 

Satel-Light Europe Meteosat 5, 6, 

7 

1996 – 

2000 

30-

minute 

4.6 – 4.2 km x 

6.1 – 14.2 km 

Heliosat 1 

(Dumortier 

diffuse clear sky 

model) 

Skarteveit et 

al. 1998 

Skarteveit & 

Olseth 1986 

G, B, D, 

illuminances, 

ext. statistics 

PV, ST 

HelioClim-2 Cross-

continental 

Meteosat 8 and 

9 (MSG) 

2004 – 

2007 

15-

minute 

3.1 – 4.2 km x 

4.1 -9.6 km 

Heliosat-2 

(Rigollier et al. 

2004) 

N/A N/A G PV 

NASA SSE 6 Global GEWEX/SRB 

3 + ISCCP 

satel. Clouds + 

NCAR 

reanalysis 

1983 – 

2005 

3-hour 1 arc-degree x 1 

arc-degree 

Satellite model by 

Pinker & Laszlo 

1992 

Erbs et al. 

1982 

Retscreen 

method by 

Duffie & 

Beckman 

1991 

G, B, D, 

extended 

number of 

parameters & 

statistics 

PV, ST 

* G = global, B = beam (direct), D = diffuse radiation; ** PV = photovoltaic, ST = solar thermal 



 

64 

Table 6.1: Parameter used to assess the availability of biomass from zootechnical residues (dry 

kilogram per head per day).  

 

Livestock  Residue 
Washington State, 

US (Frear et al., 2006) 
Greece 

(Batzias et al., 2005) 

Dairy milker manure 6.55  4.22 

Dairy calve   manure 1.83 - 

Cattle  manure 2.76 - 

Calve manure 0.69 - 

Swine manure 0.45 0.59 

Horse manure 5.5 7.12 

Poultry 
egg layer 

 0.27 
0.03 

Polutry 
broiler 

 0.18 
- 
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Table 6.2: characteristics of few selected feedstocks (Riva, 2004). 

 Dry matter 

content 

Organic matter 

content 
Ntot P2O5 K2O C/N CH4 yield 

 % % ss % ss % ss % ss  Ndm3/t so 

Liquid cattle manure  6-11 68-85 2.6-6.7 0.5-3.3 5.5-10 10-17 260 

Solid cattle manure 11-25 65-85 1.1-3.4 1.0-1.5 2-5 14-25 300 

Liquid hog manure  2.5-9.7 60-85 6-18 2-10 3.0-7.5 5-10 450 

Solid hog manure 20-25 75-90 2.6-5.2 2.3-2.8 2.5-3 9-16 450 

Liquid poultry manure  10-29 75-77 2.3-6.0 2.3-6.2 1.2-3.5 - 400 

Solid poultry manure 32.0-32.5 70-80 5.4 - - - 400 

Grass silage 26-82 67-98 3.5-6.9 0.38-0.76 - - 500 

Corn stover 86 72 1.2 0.5 1.7 30 700 

Straw   85-90 85-89 0.5 0.2-0.4 1.0-2.3 70-165 600 

Miscanthus - - - - - - 495 

Apple waste & peel 2.0-3.7 94-95 - 0.73 - 6 330 

Potato waste & peel 12-15 90 5-13 0.9 6.4 3-9 250 

Fruit wastes 40-50 30-93 1.0-1.2 0.5-0.6 1.2-1.6 30-50 400 

Mixed vegetable waste  5-20 76-90 3-5 0.8 1.1 15 400 

Yard waste 11.7 87-93 3.3-4.3 0.3-2 2-9 12-27 600 

Municipal organic waste  9-37 74-98 0.6-5.0 0.3-1.5 0.3-1.2 15-21 700 
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Table 7.1. Overview of estimated geothermal resources potential in the world (Stefansson, 2005). 

 

 

 
Lower limit for the potential 

of geothermal resources 

World geothermal 

potential for identified 

resources 

Upper limit for total 

world geothermal 

potential 

Resources suitable for 

electricity generation 
0.05TWe 0.2 TWe 1-2 TWe 

Resources only suitable 

for direct use 
1 TWth 4.4 TWth 22-44 TWth 

Total potential 1.5 TWth 6 TWth 30-60 TWth 

 

 

 

 

 


