
University of Huddersfield Repository

Abdul-Rahman, Hussein S., Lou, Shan, Zeng, Wenhan, Jiang, Xiang and Scott, Paul J.

Freeform texture representation and characterisation based on triangular mesh projection techniques

Original Citation

Abdul-Rahman, Hussein S., Lou, Shan, Zeng, Wenhan, Jiang, Xiang and Scott, Paul J. (2016) 
Freeform texture representation and characterisation based on triangular mesh projection 
techniques. Measurement, 92. pp. 172-182. ISSN 0263-2241 

This version is available at http://eprints.hud.ac.uk/id/eprint/28666/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 

Freeform texture representation and characterisation based on 

triangular mesh projection techniques 

 

Hussein S Abdul-Rahman1, Shan Lou1, Wenhan Zeng1, Xiangqian Jiang1, Paul J. Scott1 

 

1EPSRC Centre for Innovative Manufacturing in Advanced Metrology, Centre for Precision 

Technologies, School of Computing and Engineering, University of Huddersfield, Huddersfield 

HD1 3DH 

United Kingdom 

 

 

Abstract  

Texture characterisation for freeform non-Euclidean surfaces is becoming increasingly important due to the 

widespread of the use of such surfaces in different applications, e.g. the additive manufacturing. Four main 

steps are required to analyse and characterise those surfaces which include new surface representation, 

surface filtration and decomposition, texture representation methods and finally the calculation of the surface 

parameters. Recently, the representation, as well as the filtration and decomposition, of freeform surfaces 

have been investigated and some algorithms have been proposed. This paper, however, shed the light on how 

to represent the texture of freeform non-Euclidean surfaces before calculating the parameters. A novel model 

for freeform surface parameterisation is introduced; this new model proposes the use of a projection 

algorithm before the actual calculation of the parameters.  Different projection algorithms have been adopted 

from the mesh projection techniques found in the field of computer graphics. The results of applying those 

algorithms to represent the texture of both simulated and bio-engineering surfaces are shown, also a 

comparison between those algorithms has been carried out. Furthermore, examples of calculating some of 

the surface parameters for freeform surfaces are given. 

 

Keywords: freeform surfaces; non-Euclidean geometry, triangular meshes; surface characterisation; texture 

representation, surface metrology, geometrical metrology. 

 

 



1. Introduction 

Surface texture characterisation for traditional Euclidean planar surfaces is well established. The Euclidean 

surfaces are defined by a single height value for each point in a plane. Mature measurement instruments 

based on wide range of principles including interferometry, stylus, confocal microscopy, atomic-force 

microscopy and many other principles, have been applied to measure a variety of surfaces in many different 

applications.  However, freeform non-Euclidean surfaces are rapidly emerging and they have been used in a 

number of different applications. For example, freeform surfaces are employed in optics in the extremely 

large European telescope E-ELT, 3D printed surfaces, energy-efficient jet engines, aircraft turbine wings and 

reliable long life human joints implants. Therefore, it is becoming very important to develop reliable and 

accurate measurement routines/approaches that can better characterise freeform surfaces which have non-

Euclidean natures. Consequently, surface texture characterisation has witnessed important shifts in the last 

decade or two; from profile measurements to areal measurements and from simple surfaces to complex 

freeform surfaces [1-3].  These shifts have triggered the need for new algorithms and techniques that can 

better describe, represent, measure and characterise the newly evolved complex freeform surfaces [4-10]. 

Traditionally, the characterisation and parameterisation of surface texture is carried out using the four major 

steps namely: surface sampling and representation, decomposition and filtration, texture representation and 

mapping and finally surface parameterisation as shown in Figure 1. However, moving from simple 

geometries to complex freeform geometries requires the re-thinking and re-designing of the algorithms used 

in every step shown in the figure as many of the techniques that are used already are only valid for Euclidean 

surfaces. 

Freeform surfaces have a more complex nature. The underlying domain is no longer a plane and contains 

points that have non-zero curvature, therefore, is called non-Euclidean; such freeform surfaces are also called 

non-Euclidean surfaces. According to Gauss’s theorem in differential geometry, Theorema Egregium, 

surfaces with the same curvature can be mapped into each other without any distortion. In contrast, Surfaces 

with different curvature cannot be mapped into each other without distortion, for example, the Earth cannot 

be displayed on a planner map without distortion.  Subsequently, a freeform non-Euclidean surface cannot be 

projected onto a plane without distortion or loss of some surface information. As a result, freeform surfaces 

can no longer be represented as a height values over a two-dimensional grid. To give another example, if 

attempts are made to represent a hemisphere surface over 2D grid, this will cause a distortion of the geodesic 

distances on the surface, i.e. the geodesic distances between different points on the actual surface will be 

distorted and will be smaller when projected onto the 2D grid. The geodesic distance between two points on 

a given surface is the shortest distance between the two points on that surface. Another example showing the 

invalidity of representing freeform non-Euclidean surfaces using 2D grid is that the lack of such method to 

represent closed surfaces such as a sphere. 

Our research group has been working on redesigning each of the steps shown in figure 1 so that they will be 

valid to handle the non-Euclidean geometries found in the freeform surfaces. Therefore, a new representation 



model based on three-dimensional triangular mesh was proposed to represent the freeform surfaces. This 

new representation method will preserve more information of the surface than the traditional method, height 

values over a regular grid, and will give extra flexibility to represent more surfaces that could not be 

represented before. Moreover, many filtering and decomposition algorithms for freeform surfaces that are 

represented by triangular meshes were proposed. Those algorithms use different principles such as partial 

differential equations, lifting wavelets, mesh relaxation schemes, morphological operations and manifold 

harmonics, to filter any freeform surface or decompose it into its different scales and components [4-10]. The 

work carried out in this paper continues the previous work by investigating the two remaining blocks in 

figure 1, i.e., the texture representation and the parameter calculation.  

 

Figure 1 Surface characterisation model 

One of the important aspects that need addressing for freeform surface characterisation is how to represents 

the texture of such surfaces, or in other words, how to represents the surface residues after filtering out the 

form. In simple geometries the assumption is that the form is Euclidean, i.e. a planar surface, therefore it will 

be easy to project the surface texture onto a plane and then analysing these residues to obtain surface 

parameters. This projection will not introduce any distortion because the form itself is assumed to be 

Euclidean. However, applying the same technique to freeform surfaces that have non-Euclidean geometries 

will introduce different types of distortions, either in the distances, angles or the areas of the original surface. 

Therefore, texture representation methods are very important in terms of minimising these types of 

distortions before analysing the surface and obtain its parameters. 

In this paper, all non-Euclidean freeform surfaces are represented using 3D triangular mesh, therefore , using 

computer graphic terminology, the problem of projecting 3D triangular mesh into a 2D plane is also known 

as parameterisation, not to confused with surface parameterisation in metrology with means calculating the 

surface parameters. Projection is a well-known problem within computer graphics society and many 

algorithms already exist attempting to solve this problem. A number of mesh projection techniques are 

investigated and applied to represent the texture of freeform non-Euclidean surfaces in this paper. However, 

prior to the application of these different projection techniques, it is of necessity to specific different types of 

metric distortion that may occur when projecting a freeform surface into a plane. 

Metric distortion and surface projection techniques will be discussed in Section 2 of this paper. After the 

projection of the texture in a suitable planar two-dimensional domain, it is very important to calculate surface 

parameters that can describe the surface; the calculation of surface height parameters for the case of 3D 



triangular meshes is discussed in Section 3. Computer generated and bioengineering case studies are shown 

in Section 4 of the paper. 

 

2. Texture representation techniques for freeform surfaces 

In this section, we will investigate a number of different 3D mesh projection methods that we will use to 

represent the texture of freeform surfaces. Mesh projection can be seen as the process of obtaining a map 

between a 3D triangular mesh in a three-dimensional domain and a 2D triangular mesh in a planar 2D 

domain. Projection algorithms are very popular research area in the field of computer graphics and many 

algorithms have been proposed. Examples of well-known projection algorithms can be found in the 

references [11-19].  

Projection almost always introduces distortion in one or more surface metrics, i.e., surface angles, lengths 

and/or areas, and a good projection algorithm is the one which minimises one or more of these distortions. 

Therefore, the main goal of any projection algorithm is to minimise at least one of these distortions as we 

will see in throughout this section. 

To better understand the distortion problem, a simple example that shows why projection algorithms are 

needed to represent the texture of freeform surfaces will be given in the following section. Then a number of 

basic and advanced projection algorithms will be discussed. 

A. Problems with traditional texture representation: an example 

After the decomposition of the surface and form removal process [4-10], the remaining residues that 

represent the surface texture have to be parameterised. The representation of these residues is very important 

for the calculation of the surface parameters.  Traditionally, the texture is represented by subtracting the 

surface form from the actual surface.  In the Euclidean surfaces, the surface form is a plane or very close to 

being planar. Therefore, residues can be accurately displayed with respect to a plane without having any 

distortion. To illustrate this, figure 2 gives an example of how the surface feature are not distorted with the 

traditional representation of the residues of a simple Euclidean surface. In the figure, the form is represented 

by the curved line, and the dots represent the surface textures or features and the straight solid line represents 

the projection plane. As shown in the figure, the distances between features or residues on the surface are the 

same distance between these residues in the projecting plane. Moreover, the error or the normal distance 

between the residues and the surface form are preserved in the projection plane. This means that one can 

calculate different texture parameters accurately based on this texture representation. 

 



 

Figure 2 Texture representation for Euclidean surface; (a) the texture on the original surface and (b) the texture on a 

planar domain. 

 

However, the traditional projection will be problematic when it comes to the non-Euclidean surfaces as 

distortion may occur. Figure 3 shows an example of the distortion that could arise if we project the non-

Euclidean surface residues onto a planar domain using the traditional method. It is clear from the figure that 

the surface features are no longer preserved in this type of projection, for example, the distance between two 

residues on the surface is not the same as the distance between the same two residues on the projection plane, 

this can be seen in distance d3 between two successive features on the surface which is significantly distorted 

and becomes smaller, distance dd3 on the projection plane. Moreover, the normal distance between the 

surface form and the residue may also be distorted as could be seen in the difference in the distances d4 and 

dd4 on the surface and the projection plane respectively. 

 

Figure 3 Texture representation for non-Euclidean surface; (a) texture on the original surface and (b) the texture on a 

planar domain. 

 

From the previous example, it is evident that freeform surfaces will need projection algorithms that attempt 

to minimise surface metric distortions introduce due to the projection process. 

B. Surface Metric distortion 

It is very well established that surfaces can be represented using many different projection methods, and the 

projection of a given surface is not unique, and different projection will have different properties. For 

example, a hemisphere could be parameterise using different methods such as orthographic or stereographic 

projection [11, 19]. However, there are some intrinsic properties of the surface that are independent of the 

representation method, these intrinsic properties include the surface normals, Gaussian curvature and the 

mean curvature [11, 19]. Other properties, on the other hand, depends on the representation method, such as 

the angles, distances and areas on the surface. For example, only the stereographic projection of the 

hemisphere can preserve the angles of the hemisphere whereas the orthographic projection will cause the 

angles to be distorted [11].  



The basic idea behind surface metric distortion is that, generally speaking, every small unit disc in the 

parameters 2D domain will be mapped into an ellipse in the actual 3D surface domain, as shown in figure 4 

below. This transformation of circles into ellipses is called the local metric distortion of the projection 

method and the nature of this distortion is encoded into the length of the two major axes of the ellipse σ1 and 

σ2 shown in the figure. 

 

Figure 4 Surface metric distortions due to the transformation of circles into ellipses in the projection algorithm. 

 

The values of σ1 and σ2 are in fact the two eigenvalues of the first fundamental form matrix, which derived 

from the Jacobian of the projection as defined in the field of differential geometry, more details about the 

first fundamental form matrix are given in [11, 19].  

Based on the values of σ1 and σ2, we can now summarise the main properties that a projection algorithm can 

have [11-13,19]: 

• Isometric projection (distance-preserving), when (σ1 = σ2=1). 

• Conformal projection (angle-preserving), when (σ1 = σ2). 

• Equiareal (area-preserving), when (σ1. σ2 = 1) 

In fact, the isometric mapping is conformal and equiareal, and this type of projection exists only for 

developed surfaces like planes, cones, and cylinders which have zero Gaussian curvature at all points of the 

surface. Therefore, it is very important to investigate different methods that would minimise metric 

distortions for freeform surfaces.  

C. Fixed boundary representation algorithms 

Fixed-boundary mapping, also known as Barycentric mapping [11-13, 19], is the simplest and fastest type of 

projection. In these algorithms, the 3D mesh surface is modelled by a network of springs that are connected 

at the vertices as shown in figure 5.  

 

Figure 5 Spring network model for fixed boundary representation algorithms. 



Therefore, projecting a surface into a plane can be carried out by stretching these springs in such a way that 

all vertices are located onto a plane with the most efficient configuration that would minimise the overall 

energy within all springs, which is given by [11]: 

𝐸𝐸 =  
1
2
� � 𝐷𝐷𝑖𝑖𝑖𝑖�𝒖𝒖𝒊𝒊 − 𝒖𝒖𝒋𝒋�

2

𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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Where 𝐷𝐷𝑖𝑖𝑖𝑖 represent the spring constant (weights) and is derived from the 3D mesh. 𝒖𝒖𝒊𝒊 is the parameterised 

location of the vertex i and 𝒩𝒩𝑖𝑖 is the first ring of neighbours of the vertex i in the original mesh.  

The optimal solution that would minimise the total energy of the spring model is obtained when the vertices 

in the parametric domain are a weighted average of their neighbours [11-13, 19] as shown in figure 6 this 

relation can be expressed mathematically as: 

� 𝐷𝐷𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 =   � 𝐷𝐷𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗
𝑗𝑗∈𝑁𝑁𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖

 2 

 

 

Figure 6 Fixed boundary vertices are a weighted average of their neighbours. 

The question remains now is how to choose the spring constants, weights, 𝐷𝐷𝑖𝑖𝑖𝑖 in the spring model. The 

simplest choice of weights is 𝐷𝐷𝑖𝑖𝑖𝑖 = 1, another choice is that the weights to be proportional to the lengths of 

the corresponding edges in the triangular mesh. The main drawback of these two choices is that they do not 

minimise any of the metrics described earlier in the previous section. Other choices of weights that minimise 

the angular or distance distortion are: 

• Discrete harmonic mapping [11]: in this type of mapping, the weights are derived from the 

approximation of the Laplacian operation (Laplace-Beltrami), these weights are given by: 

 

𝐷𝐷𝑖𝑖𝑖𝑖 =
cotαi,j + cotβi,j

∑ cotαi,l + cotβi,ll∈even_ring
 3 

 

The discrete harmonic map will minimise the angular distortion, and it usually produces a good 

projection with relatively small angular distortion, except at the boundary, this method may give 

unexpected results and the bijectivity is not guaranteed. Bijectivity means that the projection is 

reversible and no flipping occurs in any of the triangles in the 2D mesh. 



• Mean-value mapping [11-13]: this is another type of minimising angular distortion but using a 

different set of weights. In this case, the weights are given by: 

 

𝐷𝐷𝑖𝑖𝑖𝑖 =
tan(

αi,j
2 ) + tan(βi,j/2)

𝑟𝑟𝑖𝑖,𝑗𝑗
 4 

 

where, the angles α and βare the two opposite angles of the edge that connect the two vertices i and 

j, and 𝑟𝑟𝑖𝑖,𝑗𝑗 is the length of that edge. 

• Low-stretch mapping [14]: in this method, the weights are computed in two stages. In the first stage, 

the weights are calculated using the harmonic mapping or the mean-value as described above. For 

the second stage, the weights are updated using the eigenvalues of the first fundamental matrix σ, as 

explained in the previous section. The updated weights are given by: 

 

𝐷𝐷𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛𝑛𝑛) =
𝐷𝐷𝑖𝑖𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜)

𝜎𝜎𝑗𝑗
 5 

Fixed-boundary mapping gives a fast and reliable projection that would minimise some of the metric 

distortions. However, this type of projection requires the boundary to be fixed on a convex hull which will 

cause big distortions at the boundaries. Various type of barycentric mapping is implemented and the results 

are shown in the following sections. 

D. Free boundary representation algorithms 

Projecting the texture of a freeform surface into a plane will always result in a distortion with one or more 

properties of the surface. Distortion free projection is only possible with developed surfaces that have zero 

curvature, i.e. Euclidean, and all other types of surfaces will suffer some type of distortion when projected 

onto a planar domain. 

All fixed boundary algorithms discussed in the previous section require the boundary vertices to be fixed on 

a convex shape, such as a rectangle, circle, and triangle, which will lead to huge distortions near those 

boundaries. 

In this section, however, a number of more advanced algorithms that do not require the boundaries to be 

fixed are investigated; such algorithms are sometimes called free boundary projection algorithms, and will 

produce a projection that has a minimum distortion in one or more metrics. Fortunately, the field of computer 

graphics is very rich with such algorithms. In this section, four well-known algorithms have been 

investigated and applied to represent the texture of free-form surfaces, these algorithms are; the least square 

conformal mapping (LSCM), the angle based flattering (ABF), the as-similar-as-possible algorithm (ASAP) 

and the as-rigid-as-possible algorithms (ARAP) [15-18]. 



All of the aforementioned algorithms attempt to minimise a cost function that measures an overall distortion 

function of the projection. The overall cost function is defined as the averaging of local distortions over the 

whole parametric domain 𝛀𝛀, where the local distortion is calculated over each triangle using the eigenvalues 

(σ1,σ2). The overall cost function is mathematically expressed as: 

𝐸𝐸 =  
∑ 𝐸𝐸(𝜎𝜎1,𝜎𝜎2)𝑡𝑡∈𝛺𝛺
∑ 𝐴𝐴(𝑡𝑡)𝑡𝑡∈𝛺𝛺
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Where; 

𝐸𝐸(𝜎𝜎1,𝜎𝜎2) is the local distortion at a particular triangle, which depends on the eigenvalues (𝜎𝜎1,𝜎𝜎2) 

𝐴𝐴(𝑡𝑡) is the area of that particular triangle. 

Ω refers to the whole 2D parametric domain. 

Least square conformal mapping defines the local distortion as the square different between the two 

eigenvalues [15] as: 

𝐸𝐸(𝜎𝜎1,𝜎𝜎2) =  
1
2

(𝜎𝜎1 − 𝜎𝜎2)2 7 

This local distortion is used in the global cost function shown in equation 8.6, and then the minimum 

solution is found using one numerical minimisation methods such as gradient descent. It is obvious that the 

minimum solution will occur when (𝜎𝜎1 = 𝜎𝜎2) which result in an angle-preserving projection. However, it 

has been found that the LSCM also produce a very local areal distortion. Nevertheless, the LSCM do not 

guarantee local or global bijectivity, and can theoretically result in flipped triangles and overlaps. 

The as-similar-as-possible (ASAP) [16] algorithm tries to force each triangle in the parametric domain to be 

as similar as possible to its 3D counterpart. This algorithm uses the same local distortion as the conformal 

mapping and yields very close results to those of the LSCM algorithm. 

The as-rigid-as-possible (ARAP) algorithm [16] tries to force each 2D triangle in the parametric domain to 

be as rigid as possible to its 3D counterpart. This projection attempt to minimise the stretch distortion by 

defining the local distortion as: 

𝐸𝐸(𝜎𝜎1,𝜎𝜎2) =  (𝜎𝜎1 − 1)2 + (𝜎𝜎2 − 1)2 8 

It is obvious that the minimum solution will occur only when 𝜎𝜎1 = 𝜎𝜎2 = 1. In other words, this projection 

attempts to preserve all the metrics of the original surface. 

The angle based flattering (ABF) method, developed by Sheffer et al [17, 18], uses a different approach to 

obtain an angle-preserving projection. Instead of defining the overall cost function as an average of all local 

distortion; the cost function is defined here to be the difference between the angles in the 2D and 3D 

domains. The cost function for the ABF is given by: 



𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝛼𝛼) = �� �𝛼𝛼𝑖𝑖𝑘𝑘 − 𝜙𝜙𝑖𝑖𝑘𝑘�
23

𝑘𝑘=1𝑡𝑡∈Ω

.𝜔𝜔𝑖𝑖
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Where; 

𝛼𝛼𝑖𝑖𝑘𝑘 is an angle in the 2D parameter domain. 

𝜙𝜙𝑖𝑖𝑘𝑘 is an optimal angle, derived from the angles in the 3D mesh. 

𝜔𝜔𝑖𝑖
𝑘𝑘 is weighting factor. 

To ensure that the 2D angles define a valid triangulation, a set of constraints needs to be satisfied. The most 

two important constraints are designed to ensure that the sum of angles in a single triangle is π and the sum 

of the angles around an internal vertex should be equal to 2π. 

Examples of different projection results for computer-generated as well as real engineering surfaces 

represented by 3D triangular meshes are shown and discussed later in this paper. 

 

3. Calculations of global statistical characteristics of freeform surfaces 

After representing the texture on the parametric domains, the texture parameters have to be calculated. 

Traditionally, the texture parameters are calculated on the basis that the surface is regularly sampled over a 

grid, this assumption is no longer valid for the case of freeform surfaces represented by 3D triangular 

meshes. In the case of the freeform surfaces, the calculations of surface parameters have to be generalised. In 

this section, four surface parameters that are widely used among different disciplines, Sa, Sq, Ssk and Sku, 

are extended for the case in triangular meshes. The definition of surface height parameters and many other 

parameters for traditional surfaces can be found in many books and research papers, for example [1-3, 20-

21]. 

• The arithmetic mean height, Sa: 

The arithmetic mean height or Sa parameter is defined as the arithmetic mean of the absolute value 

of the height in the normal direction over the parametric domain, the Sa for traditional surfaces is 

given by: 

 

𝑆𝑆𝑆𝑆 =  
1
𝐴𝐴
�|𝑧𝑧(𝑥𝑥,𝑦𝑦)|.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

10 

 

The formula above can be understood as calculating the total sum of all volumes between the surface 

and the residues, and then dividing that total volume by the total area of the surface. Therefore, this 

formula can be extended to suit the case of triangular mesh, and for triangular mesh the Sa is given 

by: 

https://www.google.co.uk/search?espv=2&biw=1440&bih=752&q=discipline&spell=1&sa=X&ei=1hCOVJfdMYm2UfTWgJAK&ved=0CBoQvwUoAA


 

𝑆𝑆𝑆𝑆 =  
∑ �𝐴𝐴(𝑡𝑡).∑ �

�𝑧𝑧𝑡𝑡,𝑘𝑘�
3 �3

𝑘𝑘=1 �𝑡𝑡∈Ω

∑ 𝐴𝐴(𝑡𝑡)𝑡𝑡∈Ω
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Where; 

A(t) is the area of the triangle t in the parametric domain 𝛀𝛀 as could be seen in figure 7. 

𝑧𝑧𝑡𝑡,𝑘𝑘 is the residue value of the vertex k in the triangle t in the parametric domain 𝛀𝛀 as could be seen 

in figure 7. 

∑ ��𝑧𝑧𝑡𝑡,𝑘𝑘�
3
�3

𝑘𝑘=1 , is the mean value of the surface residues (texture) for the three vertices of the triangle t 

  

 

Figure 7 Calculating parameters for a surface represented by a 3D triangular mesh. 

 

• The root mean square height, Sq: 

The root mean square height or Sq parameter is defined as the root mean square value of the surface 

heights in the normal direction within the whole parametric domain, and it is given by: 

 

𝑆𝑆𝑆𝑆 =  �
∑ �𝐴𝐴(𝑡𝑡).∑ �

𝑧𝑧𝑡𝑡,𝑘𝑘
2

3 �3
𝑘𝑘=1 �𝑡𝑡∈Ω

∑ 𝐴𝐴(𝑡𝑡)𝑡𝑡∈Ω
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• The Skewness, Ssk: 

Skewness is the ratio of the mean of the heights values of texture cubed, in the normal direction, to 

the cube of Sq within the parametric domain, or: 

 

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ �𝐴𝐴(𝑡𝑡).∑ �

𝑧𝑧𝑡𝑡,𝑘𝑘
3

3 �3
𝑘𝑘=1 �𝑡𝑡∈Ω

𝑆𝑆𝑆𝑆3.∑ 𝐴𝐴(𝑡𝑡)𝑡𝑡∈Ω
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• The Kurtosis, Sku: 

The Sku parameter is a measure of the sharpness of the surface texture heights distribution in the 

normal direction and is the ratio of the mean of the fourth power of the normal texture height values 

of the fourth power of Sq within the parametric domain, and it can be expressed mathematically as: 

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ �𝐴𝐴(𝑡𝑡).∑ �

𝑧𝑧𝑡𝑡,𝑘𝑘
4

3 �3
𝑘𝑘=1 �𝑡𝑡∈Ω

𝑆𝑆𝑆𝑆4.∑ 𝐴𝐴(𝑡𝑡)𝑡𝑡∈Ω
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4. Case studies 

The aforementioned mesh projection algorithms have been investigated to represent the texture for a 

computer generated surfaces represented by triangular mesh and also to represent the texture of real 

measured surfaces. The results are shown and compared in the following subsections. 

A. Computer generated surfaces 

In order to compare between the different algorithms, three freeform computer generated surfaces 

represented by triangular mesh is created. These surfaces are designed to cover a wide range of freeform 

non-Euclidean surfaces with different topological types. The first surface is a saddle shaped surface which is 

considered to be a typical example of a non-Euclidean surface with a negative curvature. The second surface 

is a wavy surface that has more topological features than the first one. The third surface is a more 

complicated surface with non-constant curvatures to simulate a complex freeform surface; we refer to this 

surface as an egg-box surface. All of these surfaces are represented by triangular meshes and they are shown 

in figure 8. 

 

 

Figure 8 Computer-generated surfaces represented by 3D triangular meshes; (a) the saddle surface, (b) the wavy 

surface and (c) the egg-box surface. 

 

Using the aforementioned mesh projection methods discussed in the previous section, these three surfaces 

are projected from 3-dimensional xyz domain into 2-dimensional UV domain and the results of these UV 

domains in shown in figures 9, 10 and 11. 



 

Figure 9 Projection results (UV-domains) of the saddle surface using; (a) square boundary harmonic projection, (b) 

circle boundary harmonic projection, (c) low-stretch projection, (d) LSCM projection, (e) ABF projection, (f) ASAP 

projection and (g) ARAP projection. 

Figure 9 shows the UV domains of the saddle surface yield from different mesh projection algorithms. These 

algorithms have different results because each of these algorithms is attempting to minimise one particular 

metric error in the original surface. Figure 9(a) shows the UV domain of projecting the saddle surface onto a 

plane using the fixed boundary harmonic mapping with a square boundary, whereas figure 9(b) shows the 

UV domain of the fixed boundary harmonic mapping with a circular boundary. Fixed boundary harmonic 

mapping is designed to minimise the angular distortion of the original surface, and it generally gives good 

results in the middle regions of the surface but introduces big distortions at the boundary. 

Figure 9(c) shows the UV domain of the saddle surface when using the fixed boundary low-stretch 

algorithm. This algorithm is designed to minimise the errors introduced in the distances of the original mesh. 

However, it might produce a higher angular distortion than the other algorithms as a cost of minimising the 

stretch error. Moreover, because this is a fixed boundary algorithm huge distortions will always be at the 

boundaries. 

To minimise the error around the boundary, the advanced free boundary algorithms, namely, LSCM, ABF, 

ASAP and ARAP, described earlier are applied. Figures 9(d)-(g) show the UV domains of these algorithms 

respectively. As can be seen from the figure, these algorithms relaxed the boundary to minimise the 

distortion. Despite the fact that the LSCM, ABF and ASAP algorithms all attempts to minimise the angular 

distortion of the original mesh, they are using different strategies. Each of these algorithms defines an 

objective function that needed to be minimised slightly different that the other with may affect the overall 

minimization results. 

  As discussed earlier, mesh projection algorithms attempt to minimise the distortion of one of the intrinsic 

features of the original surface when projected onto a 2D plane. Table 1 below shows the root mean square 

errors of the angles, areas and length when projected onto a 2D parametric domain using different 

algorithms. The root mean square error is calculated by matching all the vertices and edges in the 3D surface 

domain to the corresponding vertices and edges in the 2D projection domain, and then calculating the areas, 

angles, and lengths to find the RMS differences between the two domains. 

 



 

Table 1.  Angles, areas, lengths root mean square errors between the 3D mesh and the 2D UV-planar mesh 
for the Saddle Surface 

Projection Method Angles RMS error 
(degree) 

Areas RMS error 
(unit length2) 

Lengths RMS error 
(unit length) 

Harmonic / square 0.1954 0.0332 0.2734 
Harmonic / circle 0.0789 0.0319 0.2423 
Low-Stretch 0.2876 0.0324 0.2388 
LSCM 0.0509 0.0325 0.2521 
ABF 0.0519 0.0345 0.2715 
ASAP 0.0511 0.0323 0.2498 
ARAP 0.0662 0.0322 0.2484 

 

As can be seen from the table, angular based algorithms, e.g. the harmonic/circle, produce less error in the 

angular distortion but might produce higher errors in the other metrics and so for the areal and stretch 

algorithms as anticipated. 

After calculating a 2D planar domain for a 3D surface, the surface texture that is extracted from analysing, 

filtering and decomposing the 3D surface [4-10], has to be projected back into this 2D planar domain so that 

the surface parameters can be calculated. Traditionally, the surface texture is projected onto a 2D planar 

domain by subtracting the surface form from the original surface. As mentioned earlier in the beginning of 

this paper, this type of simple projection which performed by only subtracting the form will result in 

distortion of surface metrics; angles, lengths or/and areas. Figure 10 shows the projection of the surface 

texture onto various UV-domains for the saddle surface. 

 

Figure 10 Surface texture imposed onto different UV-domains of the saddle surface using; (a) Traditional projection, 

(b) square boundary harmonic projection, (c) circle boundary harmonic projection, (d) low-stretch projection, (e) LSCM 

projection, (f) ABF projection, (j) ASAP projection and (h) ARAP projection. 

 

Finally, different surface parameters could be calculated once the texture is projected into a suitable 2D 

planar domain. Table 2 shows a number of different surface parameters for the saddle surface calculated 

using the equations 11-14 as explained in the previous section.  

 

 

 



Table 2.  Some of the global statistical parameters for the for the 
Saddle Surface 
Projection Method Sa Sq Ssk Sku 
Traditional projection 0.0361 0.0488 1.7165 3.3650 
Harmonic / square 0.0746 0.0865 1.3066 1.8227 
Harmonic / circle 0.0746 0.0864 1.3063 1.8222 
Low-Stretch 0.0741 0.0855 1.3025 1.8198 
LSCM 0.0746 0.0865 1.3062 1.8223 
ABF 0.0746 0.0865 1.3063 1.8224 
ASAP 0.0747 0.0865 1.3059 1.8212 
ARAP 0.0746 0.0864 1.3054 1.8198 

 

As could be read from the table, all the parameters are close to each other. However, the traditional 

projection shows relatively different results than the other methods. As an example, the Sa and Sq parameters 

calculated using the traditional projection gives an indication that the surface is relatively smooth. 

Nevertheless, the parameters calculated using other projection methods show that the surface is actually 

rougher with higher Sa and Sq parameters. This example illustrates that the traditional projection method is 

on longer valid to calculate the parameters of the freeform surfaces. 

The Projection results for the wavy and the egg-boxed surfaces can be seen in figures 11 to 14 below. 

 

Figure 11 Projection results (UV-domains) of the wavy surface using; (a) square boundary harmonic projection, (b) 

circle boundary harmonic projection, (c) low-stretch projection, (d) LSCM projection, (e) ABF projection, (f) ASAP 

projection and (g) ARAP projection. 

 

 

Figure 12 Projection results (UV-domains) of the egg-box surface using; (a) square boundary harmonic projection, (b) 

circle boundary harmonic projection, (c) low-stretch projection, (d) LSCM projection, (e) ABF projection, (f) ASAP 

projection and (g) ARAP projection. 



Figures 13 and 14 show the results of projecting the texture of wavy and egg-box surfaces into various UV-

domains. The root mean square RMS errors for the main surface metric between the 3D surface and its 2D 

counterpart are calculated in tables 3 and 4. 

 

Figure 13 Surface texture imposed onto different UV-domains of the wavy surface using; (a) Traditional projection, (b) 

square boundary harmonic projection, (c) circle boundary harmonic projection, (d) low-stretch projection, (e) LSCM 

projection, (f) ABF projection, (j) ASAP projection and (h) ARAP projection. 

 

Table 3.  Angles, areas, lengths root mean square errors between the 3D mesh and the UV mesh for the 
wavy Surface 

Projection Method Angles RMS error 
(degree) 

Areas RMS error 
(unit length2) 

Lengths RMS error 
(unit length) 

Harmonic / square 0.2129 0.0273 0.2312 
Harmonic / circle 0.3373 0.0264 0.2014 
Low-Stretch 0.3704 0.0264 0.2061 
LSCM 0.1730 0.0267 0.2114 
ASAP 0.1740 0.0267 0.2123 
ARAP 0.1729 0.0267 0.2117 

 

 

 

Figure 14 Surface texture imposed onto different UV-domains of the egg-box surface using; (a) Traditional projection, 

(b) square boundary harmonic projection, (c) circle boundary harmonic projection, (d) low-stretch projection, (e) LSCM 

projection, (f) ABF projection, (j) ASAP projection and (h) ARAP projection. 



 

Table 4.  Angles, areas, lengths root mean square errors between the 3D mesh and the UV mesh for the 
egg-box Surface 

Projection Method Angles RMS error 
(degree) 

Areas RMS error 
(unit length2) 

Lengths RMS error 
(unit length) 

Harmonic / square 0.2493 0.0392 0.3187 
Harmonic / circle 0.2688 0.0380 0.2863 
Low-Stretch 0.4626 0.0379 0.2855 
LSCM 0.0847 0.0381 0.2880 
ASAP 0.0884 0.0381 0.2880 
ARAP 0.1625 0.0381 0.2876 

 

Tables 5 and 6 shows different surface texture parameters calculated using equation 11-14 as explained in 

the previous section. 

Table 5.  Some of the global statistical parameters for the for the wavy 
Surface 
Projection Method Sa Sq Ssk Sku 
Traditional projection 0.0696 .0806 -1.3134 1.8492 
Harmonic / square 0.0752 0.0868 1.3011 1.8062 
Harmonic / circle 0.0761 0.0880 1.2916 1.7710 
Low-Stretch 0.0754 0.0871 1.3004 1.8030 
LSCM 0.0757 0.0877 1.2954 1.7817 
ABF 0.0756 0.0874 1.2942 1.7795 
ASAP 0.0754 0.0874 1.2970 1.7871 
ARAP 0.0758 0.0876 1.2935 1.7769 

 

Table 6.  Some of the global statistical parameters for the for the egg-
box Surface 
Projection Method Sa Sq Ssk Sku 
Traditional projection 0.0449 0.0544 1.4843 2.5234 
Harmonic / square 0.0746 0.0862 1.2985 1.7967 
Harmonic / circle 0.0748 0.0864 1.2966 1.7904 
Low-Stretch 0.0744 0.0859 1.2994 1.8007 
LSCM 0.0738 0.0857 1.3084 1.8261 
ABF 0.0744 0.0860 1.2990 1.7979 
ASAP 0.0740 0.0859 1.3056 1.8170 
ARAP 0.0744 0.0860 1.2989 1.7981 

 

B. Bioengineering surfaces 

After the initial application of various projection algorithms to computer generated freeform surfaces, these 

algorithms were applied on real surface measurement data.  The data were obtained from coordinate 

measuring machine (CMM) measurement representing a portion of hip replacement components. Two 

surfaces were acquired from the CMM and represented by 3D triangular meshes; the first surface has 3380 

vertices and 6591 faces, and the second surface has 7182 vertices and 14108 faces (triangles). After the 

initial measurement of the two surfaces, an additional texture is imposed onto the surfaces to emphasise the 

effect of projection on surface characterisation. These two measured surfaces are shown in figure 15 we refer 

to these two surfaces as HipJoint-pt1 and HipJoint-pt2 as shown in figure 15(a) and (b) respectively.  



 

Figure 15 Bioengineering surfaces represented by 3D triangular meshes; (a) The HipJoint-pt1 surface and (b) The 

HipJoint-pt2 surface. 

Fixed boundaries and free boundary projection algorithms were applied to calculate the 2D UV-domains for 

these two surfaces. Then the surface texture is projected back on these planar domains and the result of these 

various algorithms for both surfaces are shown in figures 16-19. The RMS errors for the main surface metric 

between the 3D surface and its 2D counterpart are calculated in tables 7 and 8. 

 

 

Figure 16 Projection results (UV-domains) of the HipJoint-pt1 surface using; (a) square boundary harmonic projection, 

(b) circle boundary harmonic projection, (c) low-stretch projection, (d) LSCM projection, (e) ABF projection, (f) ASAP 

projection and (g) ARAP projection. 

 

 

Figure 17 Surface texture imposed onto different UV-domains of the HipJoint-pt1 surface using; (a) Traditional 

projection, (b) square boundary harmonic projection, (c) circle boundary harmonic projection, (d) low-stretch 

projection, (e) LSCM projection, (f) ABF projection, (j) ASAP projection and (h) ARAP projection. 

 

 



Table 7.  Angles, areas, lengths root mean square errors between the 3D mesh and the UV mesh for the 
HipJoint-pt1 surface 

Projection Method Angles RMS error 
(degree) 

Areas RMS error 
(unit length2) 

Lengths RMS error 
(unit length) 

Harmonic / square 0.2148 0.5826 1.2085 
Harmonic / circle 0.0889 0.5823 1.1914 

LSCM 0.0130 0.5823 1.1914 
ASAP 0.0128 0.5823 1.1917 
ARAP 0.1038 0.5823 1.1957 

 

 

Figure 18 Projection results (UV-domains) of the HipJoint-pt2 surface using; (a) square boundary harmonic projection, 

(b) circle boundary harmonic projection, (c) low-stretch projection, (d) LSCM projection, (e) ABF projection, (f) ASAP 

projection and (g) ARAP projection. 

Table 8.  Angles, areas, lengths root mean square errors between the 3D mesh and the UV mesh for the 
HipJoint-pt2 surface 

Projection Method Angles RMS error 
(degree) 

Areas RMS error 
(unit length2) 

Lengths RMS error 
(unit length) 

Harmonic / square 0.4307 0.1475 0.5808 
Harmonic / circle 0.3700 0.1473 0.5707 
LSCM 0.0580 0.1474 0.5796 
ASAP 0.0599 0.1474 0.5796 
ARAP 0.1390 0.1474 0.5786 

 

 

Figure 19 Surface texture imposed onto different UV-domains of the HipJoint-pt2 surface; (a) Traditional projection, 

(b) square boundary harmonic projection, (c) circle boundary harmonic projection, (d) low-stretch projection, (e) LSCM 

projection, (f) ABF projection, (j) ASAP projection and (h) ARAP projection. 

 

Finally, different surface parameters are calculated using the equations 11-14 for the two surfaces under 

different projection algorithms and the results are shown in tables 9 and 10. 

 



Table 9.  Some of the global statistical parameters for the for the 
HipJoint-pt1 surface 
Projection Method Sa Sq Ssk Sku 

Traditional projection 0.0361 0.0488 1.7165 3.3650 

Harmonic / square 0.0746 0.0865 1.3066 1.8227 
Harmonic / circle 0.0746 0.0864 1.3063 1.8222 
Low-Stretch 0.0741 0.0855 1.3025 1.8198 
LSCM 0.0746 0.0865 1.3062 1.8223 
ABF 0.0746 0.0865 1.3063 1.8224 
ASAP 0.0747 0.0865 1.3059 1.8212 
ARAP 0.0746 0.0864 1.3054 1.8198 

 

Table 10.  Some of the global statistical parameters for the for the 
HipJoint-pt2 surface 
Projection Method Sa Sq Ssk Sku 

Traditional projection 0.0328 0.0408 -1.3225 3.1000 

Harmonic / square 0.0752 0.0867 1.2979 1.7964 
Harmonic / circle 0.0750 0.0866 1.2990 1.7996 
LSCM 0.0748 0.0864 1.3002 1.8034 
ASAP 0.0750 0.0865 1.2989 1.7996 
ARAP 0.0749 0.0865 1.2999 1.8028 

 

Tables show slight changes in the texture height parameters; this is due to the fact that these parameters 

mainly depend on the height of the texture. In our examples, the height of the texture remains the same under 

different projection scheme, except for the traditional projection. However, the angles, areas and distances 

are significantly varied between different algorithms, which will have a significant effect on spatial 

parameters and other hybrid parameters. The traditional projection method produces slightly different results 

to the other projection methods due to the fact that the height of the texture will be distorted when projected 

directly onto a plane, because the traditional projection considers the texture’s height in the z-direction 

instead of considering the height in the normal direction to the form of the surface.  

All of the case studies shown in the paper, computer-simulated and real, show that texture projection 

methods will produce more accurate indications about the nature of the freeform surfaces and will be a more 

precise tool for surface characterisation.  

 

5. Conclusions and Future Work 

This research paper proposes a novel framework for freeform surfaces parameterisation. This new 

framework is a generalisation of the traditional model that is used to parameterise simple surfaces which are 

represented as height values over a regular grid. However, in this proposed model, the freeform surfaces are 

represented by 3D triangular meshes, and therefore could represent more range of complex surfaces. The key 

point of the proposed framework is to apply a projection algorithm that projects the surface from its three-

dimensional world into a simpler two-dimensional world with the minimum distortions possible before 

calculating its parameters.  



Moreover, various texture projection algorithms were investigated. These projection algorithms can be 

roughly divided into two main categories; the fixed-boundary (basic) algorithms and the free-boundary 

(advanced) algorithms. These projection algorithms attempt to project the 3D surface represented by 

triangular mesh into a 2D planar domain with minimum distortion in one or more in surface metrics, i.e. the 

distances, angles or areas. 

After the surface is projected, different surface parameters can be calculated depending on the 2D planar 

domain. Four global statistical parameters were extended to suit surfaces represented by triangular meshes. 

These four parameters are the height parameters which considered being the most important parameters that 

can describe the surface texture. Results showed that the traditional projection method produced less accurate 

parameters than other projection techniques; this is because of the high distortion caused by the projection. 

However, all other projection methods give similar results due to the fact the parameters being calculated are 

influenced by the height of the residues not by the distance and angles between them. Nevertheless, spatial 

and features surface parameters that based on distances, angles, or the features of the surface will be affected 

by different projection algorithms. Such parameters are yet to be extended to accommodate new complex 

surfaces represented by a triangular mesh as a future work of this research. Yet another challenge to the 

proposed framework is to decide what is the best projection technique that has to be adopted, it still not very 

clear what type of projection is the best for surface characterisation, various techniques have been applied in 

this paper but a further investigation is needed to attempt to understand the best projection method for 

surface characterisation, or the best projection method for certain parameters. 

The main purpose of the projection algorithm is to minimise the distortions happened when using the 

traditional method, i.e., subtraction of the form from the surface. However, these projection algorithms are 

not a distortion free and will produce some distortion in one or more of the surface metrics. Therefore, one 

can argue that the best way forward is to calculate the parameters directly on the surface without introducing 

any projection technique. This observation is completely truly, however, calculating the surface parameters 

directly on the surface, especially the spatial and features parameters are difficult and still not defined, and 

therefore, the model proposed in this paper represents an intermediate stage to calculate all the parameters. 

Finally, the research shown in this paper is anticipated to have a significant impact for the characterisation of 

3D printed surfaces as some of those surfaces have a freeform nature and relatively rough texture and 

therefore, it will be important, as a future work, to examine the projection techniques described in this paper 

to characterise such surfaces. 
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