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Abstract—Creating a neural network based classification 

model is commonly accomplished using the trial and error 

technique. However, the trial and error structuring method 

have several difficulties such as time and availability of experts. 

In this article, an algorithm that simplifies structuring neural 

network classification models has been proposed. The algorithm 

aims at creating a large enough structure to learn models from 

the training dataset that can be generalised well on the testing 

dataset. Our algorithm dynamically tunes the structure 

parameters during the training phase aiming to derive accurate 

non-overfitting classifiers. The proposed algorithm has been 

applied to phishing websites classification problem and it shows 

competitive results with respect to various evaluation measures 

such as Harmonic Mean (F1-score), precision, accuracy, etc. 

 

Keywords- Classification, Neural Network, Phishing, 
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I. INTRODUCTION 

Artificial Neural Network (ANN) proved its merits in several 

classification domains [1]. Nevertheless, one downside of 

creating any neural network (NN) based classification model 

is that it is difficult to interpret its results, and it is considered 

as a black-box. This characteristic has successfully applied in 

different security domains such as the work done in [2], [3], 

and [4]. 

Yet, we believe that this particular obstacle will add a positive 

edge to the domains where the results are more important 

than the understanding of how the model works, such as 

predicting phishing websites. Although selecting a suitable 

number of hidden neurons and determining the value of some 

parameters, i.e. learning rate, momentum value and epoch 

size showed to be crucial when creating a NN model [5] there 

is no clear procedure for determining such parameters, and 

most model designers rely on trial and error. However, the 

trial and error technique involves a painstaking process for 

many real world problems. In addition, the trial and error 

technique is a time-consuming process. A poorly structured 

NN model may cause the model to underfit the training 

dataset [6]. On the other hand, exaggeration in restructuring 

the system to suit every single item in the training dataset 

may cause the system to be overfitted [7]. One possible 

solution to avoid the overfitting problem is by restructuring 

the NN model in terms of tuning some parameters, adding 

new neurons to the hidden layer or sometimes adding a new 

layer to the network. A NN with a small number of hidden 

neurons may not have a satisfactory representational power to 

model the complexity and diversity inherent in the data. On 

the other hand, networks with too many hidden neurons could 

overfit the data. However, at a certain stage the model can no 

more be improved, therefore, the structuring process should 

be terminated. Hence, an acceptable error rate should be 

specified when creating any NN model, which itself is 

considered a problem since it is difficult to determine the 

acceptable error rate a priori [6]. For instance, the model 

designer may set the acceptable error rate to a value that is 

unreachable which causes the model to stick in local minima 

[1] or sometimes the model designer may set the acceptable 

error rate to a value that can further be improved.  

Overall, we believe that automating the structuring process of 

NN models is a timely issue and it might displace some of the 

burden from the system designer. However, automating 

structuring NN models does not merely means adding new 

neuron(s) to the hidden layer because the more hidden 

neurons does not necessarily mean that the accuracy will 

improve [8]. Hence, it is important to improve the NN 

performance by updating several parameters such as the 

learning rate before adding a new neuron to the hidden layer. 

Sadly, setting the learning rate value is also a trial and error 

process. Although several studies have been made to come up 

with the best NN structure, the optimal learning rate value is 

still concealed. 

II. NEURAL NETWORK STRUCTURING APPROACHES 

The traditional trial and error method is commonly used in 

structuring ANNs. However, several attempts have been 

devoted to automate NN structuring process such as 

constructive and pruning [9]. 
 

Constructive Algorithms 
 

This approach starts with a simple NN structure, i.e. one 

hidden layered NN with a single neuron in the hidden layer 

[9] and recursively new parameters i.e. hidden layers, hidden 

neurons, and connections are added to the initial structure 

until reaching a satisfactory result. After each addition, the 

entire network or only the recently added parameter is 

retrained. Constructive approach is relatively easy for 

inexperienced users because they are normally asked to 

specify few initial parameters, for example the number of 

neurons in the input layer and epoch size and then new 
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parameters are added to the network. This approach is 

computationally efficient because it searches for small 

structures first [9]. However, constructive approach has some 

hurdles that should carefully be addressed. For example, the 

user has to decide when to add a new parameter, when to stop 

the addition process, and when to stop training and produces 

the network [10].     

Pruning Algorithms 
 

The pruning approach starts with an oversized structure, i.e. a 

multi hidden layered NN with a large number of hidden 

neurons in each hidden layer. Later on, some parameters, i.e. 

connections, hidden neurons, and hidden layers are removed 

from the network. After each training process, the user 

removes some parameters from the network and the new 

structure is retrained so that the remaining parameters can 

compensate the functions played by the removed parameters 

[9]. If the network performance improved, the user removes 

more parameters and retrains the network again. However, if 

the network performance does not improved, the user restores 

what have been deleted and tries to remove other parameters. 

This process is repeated recursively until achieving the final 

network. Normally, only one parameter is removed in each 

pruning phase [9]. In general, this approach is a time 

consuming process. In addition, the user does not know a 

priori how big the initial NN structure should be for a specific 

problem. 

III. AN IMPROVED SELF-STRUCTURING NEURAL NETWORK 

ALGORITHM 

The pseudocode of proposed improved Self-Structuring 

Neural Network (iSSNN) algorithm is shown in Figure 1 and 

it works as follows: 

1- Parameter Settings Phase 

This phase involves several activities as follows: 

A. The number of neurons in the input layer is set to the 

number of the features offered in the training dataset 

(line 1 in Figure 1).  

B. The number of neurons in the output layer is set to one 

because iSSNN aims to create binary classification 

models (line 2). In other words, we will create a single 

neuron that might hold two possible values. 

C. The number of neurons in the hidden layer is to be 

determined by the algorithm. Constructive algorithms 

normally start with one hidden neuron [9]. At the 

beginning, the algorithm creates the simplest NN 

structure that consists of only one neuron in the hidden 

layer (line 3). This neuron is connected to all neurons in 

the input and output layers. 
Figure 1 iSSNN pseudocode 

D. Small non-zero random values will be assigned for each 

connection weight (line 4).  

E. The learning rate value commonly ranges from ≈0 to ≈1 

[1]. Following the default value of WEKA [11], the 

learning rate and momentum value are assumed 0.3 and 

0.2 respectively (line 5) and (line 6). However, the 

learning rate value will be adjusted several times during 

the network training process. 

F. The initial desired error-rate (DER) is set to 50% (line 7). 

This value will be used to assess if the algorithm can 

find a possible solution.  

G. The model designer specifies the maximum number of 

epochs. 

H. The model designer sets the maximum number of allowed 

hidden neurons. 

I. The training dataset is divided into training, testing, and 

validation datasets. The training dataset will be used to 

learn the model and update weights; the testing dataset 

will be used to assess the overall performance of the 

derived classifier. However, the validation dataset plays 

an important role in producing the final model as we 

will see later in the Training Phase.  

 

2- Warming-up Training Phase 

In this phase (line 8–9), the algorithm decides whether to 

proceed with creating a new classifier or not. The algorithm 

computes the calculated error-rate (CER), aiming to 

determine what the DER to be achieved in the next training 

phase is. In other words, the CER is the DER to be achieved 

in the next training session. Hence, the algorithm trains the 

network and finds the CER. If the algorithm finds a CER less 

than the initial DER before reaching the maximum number 

of epochs, then the algorithm assumes that the current 

structure can further be improved; hence, the algorithm 

resets the epoch, and assumes that the DER to be achieved in 

the next training phase is the CER. Then the algorithm 

moves to the Training Phase. On the other hand, if the CER 

is bigger than the DER, then the algorithm will be terminated 

(line 24). The CER is equivalent to Mean Square Error 

(MSE) and is calculated as per equation 1. Where Ak is the 

Input  

 Upload the minimal dataset and divide it to Training, Testing and Validation 

 Integer Tk specifying the number of epochs 

 Maximum number of possible hidden neurons 

Output 

 Optimal number of neurons in the hidden layer 

 Optimal learning rate value 

 Connection weights between input, hidden and output layers  

Initialize 

1 Number of neurons in the input layer = number of input features;  

2 Number of neurons in the output layer = 1 

3 Number of neurons in the hidden layer = 1; 

4 Weights = random numbers ranging from -0.5 to +0.5; 

5 Learning rate LR= 0.3; 

6 momentum value = 0.2 

7 Desired Error DER = 50%; 

Start 

8 Train the network to find the calculated error-rate CER;  

9  If CER < DER then { 

10  A: Set DER= CER; 

11 Train the network; 

12 Update the LR after each training epoch; 

13 Check the early stopping condition;  

14   If (DER Achieved && iteration< Tk) then     

15  Go to A; 

16   Else { 

17  Add a new neuron to the hidden layer; 

18  Train the network; 

19     If (DER Achieved && iteration< Tk)  

20             Go to A; 

21     Else 

22       Produce the Network;  

23  }   

24        Else (No Network can be produced) 

End 

  

Fig. 1 iSSNN pseudocode 



 

predicted value for instance k; and Dk is the real value 

associated with instance k in a training dataset having n 

examples. 

𝐶𝐸𝑅 =
1

𝑛
∑ (𝐴𝑘 − 𝐷𝑘)

2𝑛

𝑘=0
 (1) 

3- Training Phase 

In this phase (line 10-13), the iSSNN algorithm continues 

training the network until the CER is less than the DER or 

the maximum number of epochs is reached or achieving the 

early stopping condition. Each training epoch starts by 

updating the learning rate based on the CER achieved in the 

previous epoch. One of the simplest methods for updating 

the learning rate is the bold driver method [12]. After each 

training epoch, the algorithm compares the CER at time t 

with the CER at time t-1 and if the error has decreased, the 

learning rate is slightly increased by a specific ratio φ in 

order to accelerate the error-rate reduction process and 

converge quickly to the possible solution. In this case, the 

weights are updated. On the other hand, if the error has 

increased or has not changed, the iSSNN will heavily 

decreases the learning rate by φ’ because we might be 

approaching one possible solution and we need to slow down 

and study the possible solution more deeply. In this case, the 

weights are not updated. Commonly, φ and φ’ are set to 0.1 

and 0.5 respectively [6]. The reason that φ is smaller than φ’ 

is because we do not want to make a big step that causes the 

algorithm to converge from the possible solution. However, 

as soon as the algorithm approaches a possible solution we 

need to examine that solution more deeply; therefore the 

learning rate is heavily decreased.  

Normally, the trial and error based NN structuring approach 

assumes that the number of neurons in the hidden layer and 

learning rate are fixed values that are not changed during the 

training phase. However, the iSSNN algorithm follows a 

different approach in determining the number of neurons in 

the hidden layer since iSSNN algorithm leaves the network 

expansion as a last option and keeps pushing on the learning 

rate to improve the NN performance as much as possible 

before adding a new neuron. After each training epoch, the 

iSSNN algorithm calculates the error on the validation 

dataset. When the error on the validation dataset starts to 

increase, that mean the model has begun to overfit the data, 

and the training should halt. Nevertheless, the validation 

dataset may have several local minima; thus, if we stop 

training at the first increase, we may lose some points that 

achieve better results because the error-rate may decrease 

again at some further points. Therefore, the iSSNN algorithm 

tracks the error on the validation dataset. If the lastly 

achieved error is less than the minimum achieved error, that 

means the generalisation ability of the model is improved; 

thus the algorithm saves the weights and continues training 

the network. On the other hand, if the lastly achieved error is 

bigger than the minimum achieved error, the algorithm 

continues the training process without saving the weights.  

However, if the lastly achieved error is bigger than the 

minimum achieved error with a specific threshold α, then the 

algorithm terminates the training process (early stopping); 

since we assume that exceeding that threshold value might 

mean that the model diverges from the ideal solution and is 

difficult to converge back again. A recent study on early 

stopping [13] finds that the early stopping is triggered if 

α=50%. Equation 2 clarifies how the iSSNN algorithm 

handles the early stopping. Where, 𝜀  is the lastly achieved 

error, and 𝜀′ is the minimum error. 

 

𝐼𝐹 {

𝜀 <  𝜀′ 
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑆𝑎𝑣𝑒𝑑
→           𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

(𝜀 >  𝜀′)𝑎𝑛𝑑(𝜀 < [(1 + 𝛼) ∗ 𝜀′])
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑛𝑜𝑡 𝑆𝑎𝑣𝑒𝑑
→               𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒 →  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

  (2) 

4- Improvement Phase 

In the training phase, if the iSSNN obtains a CER less than the 

DER before reaching the maximum epoch, this could be an 

indication that the model can further be improved without 

adding any neurons to the hidden layer (line 14-15). 

Therefore, the iSSNN maintains the learning rate and weights 

achieved so far; resets the epoch, assumes that the DER to be 

achieved in the next training phase is the CER, and goes back 

to the Training Phase. Otherwise, the iSSNN goes to Adding a 

New Neuron Phase (line 16). 

If the iSSNN cannot achieve the DER and reaches either the 

maximum allowed epoch or the early stopping condition. In 

this case, we assume that the current structure has been 

squeezed to the limit and the network’s ability of processing 

the information is insufficient. Therefore, the algorithm will 

add a new neuron to the hidden layer (line 17). The 

algorithm connects the new neuron to all input and output 

neurons, assigns small non-zero value to its weight, 

maintains the learning rate and weights achieved so far, and 

resets the epoch. Yet, adding a new neuron to the hidden 

layer does not mean that this neuron is permanently added 

into the network, we must first assess whether the new 

neuron improves the network performance or not. Hence, the 

algorithm continues training the network (line 18).  

If (after adding a new neuron) the DER is achieved, then the 

algorithm approves adding the new neuron, maintains the 

learning rate and weights, resets the epoch, assumes that the 

DER to be achieved in the next training phase is the CER, 

and goes back to the Training Phase (line 19-20). Otherwise, 

the algorithm moves to Producing the Final Network Phase 

(line 21). The main concern in this phase is that the number 

of hidden neurons can freely evolve resulting in a 

complicated structure. Thus, the algorithm allows the system 

designer to set the maximum number of hidden neurons. 

5- Producing the Final Network Phase 

If adding a new neuron to the network does not improve the 

network performance, then the iSSNN removes the lastly 

added neuron, resets the learning rate and the weights as they 

were before adding the new neuron, terminates the training 

process, and the final network is produced (line 22). The 

most obvious network parameters to evolve in the iSSNN 

algorithm are the learning rate, the weights, and the number 

of hidden neurons. TANH activation function has been used 

for the input layer, whereas, the bipolar hard limit activation 

function has been used for the hidden layer.  



 

IV. EVALUATING THE ISSNN ON PHISHING DATASET 

several experiments will be accomplished to evaluate the 

applicability of the iSSNN algorithm to phishing websites 

classification problem. The experimental evaluation 

compares the iSSNN algorithm with Decision Tree (C4.5), 

Bayesian Network (BN), Logistic Regression (LR), and the 

traditional Feed Forward Neural Network (FFNN) algorithm 

implemented in WEKA [11]. FFNN algorithm assumes that 

the number of neurons in the input layers equals the number 

of attributes in the training dataset, whereas the number of 

neurons in the output layer equals the number of classes. The 

number of neurons in the hidden layer is the average number 

of neurons in the layers and is calculated as per equation (3). 

#hidden neurons =  
#input neurons+number of output neurons

# of layers
                   (3) 

Other algorithms were selected since they use different 

strategies in producing classification models. For all these 

algorithms, we used the default parameter settings of WEKA 

[11]. Whereas, for iSSNN algorithm, two input values should 

be entered from the system designer, i.e. number of epochs 

and maximum number of possible hidden neurons. There is 

no rule of thumb in which one can decide on these values 

[1]. Therefore, following some recent studies which employ 

NN to create classification models in different domains [14] 

[15] [16] , we set the maximum number of possible neurons 

to 10. Yet, these studies utilise different epoch sizes and the 

most commonly used epoch size values are 100, 200, 500, 

and 1000. Four sub-experiments will be conducted, in which 

the maximum number of possible hidden neurons is 10, and 

epoch size has been set to 100, 200, 500, and 1000 for 

experiments 1, 2, 3, and 4 respectively. The iSSNN 

algorithm has been implemented in Java. All experiments 

were conducted in a system with CPU Pentium Intel® 

CoreTM i5-2430M @ 2.40 GHz, RAM 4.00 GB. The 

platform is Windows 7 64-bit Operating System. 

V. TRAINING DATASETS 

We have used the well-known phishing websites training 

dataset from the University of California Irvine repository 

(UCI) [17]. Table 1 shows the description of the training 

dataset, i.e. number of attributes, number of instances, and 

class distribution.  
 

Table 1 UCI dataset 

Number of 

attributes 

Number of 

Instances 

Class Distribution 

Phishing      Legitimate 

30 11055 44%          56% 

The dataset was collected recently by one of the authors 

of this article and published in UCI repository. Most of the 

dataset’s attributes are binary (0, 1) or ternary (0,1,-1). The 

dataset is categorized under classification in data mining 

since there is class label added (target attribute) that has two 

possible values (Phishy -1, Legitimate 1). 

More details on the features names, types, possible values 

and descriptions are given in [17]. 

VI. VALIDATION TECHNIQUE 

The iSSNN algorithm splits the training dataset into 

training, testing and validation datasets. The hold-out 

validation technique is used in our experiments. Thus, the 

dataset will be divided into 80% for training and 20% for 

testing. Moreover, when creating the iSSNN classifiers the 

training datasets will be further divided into 80% for training 

and 20% for validation. 

VII. EVALUATION METRICS 

Four classification possibilities have been employed in 

our experiments as per confusion matrix shown in Table 2. 
 

Table 2 Confusion Matrix 

A
c
tu

a
l 

V
a
lu

e
 Predicted Value 

 Positive Negative 

Positive TP FN 

Negative FP TN 

 

Where True Positive (TP) is the number of legitimate 

websites correctly classified as legitimate, False Negative 

(FN) is the number of legitimate websites incorrectly 

classified as phishing, False Positive (FP) is the number of 

phishing websites incorrectly classified as legitimate and True 

Negative (TN) is the number of phishing websites correctly 

classified as phishing. Following previous studies related to 

phishing classification [18], [7], [19], [8], [20], [21], [22] and 

[23] we use a set of evaluation metrics that can be derived 

from the confusion matrix shown in Table 2. These 

evaluation metrics are as follows: 

1.  Precision (P): the rate of correctly classified legitimate 

websites in relation to all instances that are classified as 

legitimate and is calculated as per the equation 4. 

 P
TP

TP+FP
 (4) 

2. Recall (R): is equivalent to TPR (Sensitivity). 

3. F1-score (Harmonic Mean): is the weighted average of P 

and R. F1-score takes both FP and FN into account and is 

calculated as per equation 5. This metric weights R and P 

equally, and a good classifier will maximize both P and R 

simultaneously. Thus, moderately good performance on 

both will be favoured over good performance on one and 

poor performance on the other. 

 𝐹1 =  
2 𝑃 𝑅

𝑃+𝑅
                     (5) 

4. Accuracy (ACC): the overall rate of correctly classified 

legitimate and phishing websites in relation to the total 

number of instances in the testing data set and is 

calculated as per equation 6. 

 Acc =
TP+TN

TP+FP+TN+FN
 (6) 

 

VIII. EXPERIMENTAL RESULTS 

Three experiments have been done with the aim of evaluating 

the SSNN algorithm and compare the results with other DM 

classification algorithms. Information Gain, Chi-Square  and 

Gain Ratio have been used in experiments 1, 2 and 3 

respectively. The selection for these methods is because they 

are commonly used for feature selection in the domain of 



 

phishing websites classification [24], [25], [26], [22], [23]. 

The results are shown in Tables 3, 4, and 5. 

 

 

Table 3 Experimental results when using Information Gain  

 
 

Table 4 Experimental results when using Chi-Square 

 
 

 

 

Table 5 Experimental results when using Gain Ratio  

 
From the results, we can see that the iSSNN outperforms the 

considered classification algorithms in most cases, 

particularly when the epoch size is set to 500. For instance, 

the average F1-score produced from the iSSNN when using 

the Information Gain is higher than that produced from C4.5, 

BN, LR, and FFNN with margins of 0.66, 1.55%, 1.50%, and 

0.16% respectively when the epoch size is set to 500. In 

addition, the average F1-score produced from the iSSNN 

when using the Chi-Square is also beats C4.5, BN, LR, and 

FFNN with margins of 0.82%, 1.46%, 1.43%, and 0.24% 

respectively when the epoch size is set to 500. Again, when 

using the same epoch size, the average F1-score produced 

from the iSSNN algorithm when using the Gain Ration 

outperforms C4.5, BN, LR, and FFNN with margins of 

0.50%, 1.16%, 0.96%, and 0.46% respectively.  

Overall, the high F1-score yielded from the iSSNN reflects 

that the algorithm is able to derive classifiers that produce 

good FP and FN rates. That can be attributed due to the well-

structured NN classifiers derived from the iSSNN algorithm 

as a result to the good training procedure employed in the 

algorithm. In general, the F1-score produced when using 

different feature selection methods reflects that the NN based 

algorithms derive better classifiers than other considered 

classification algorithms when applied to phishing datasets in 

the sense that the second best result achieved in all 

experiments was from the FFNN. However, the highest F1-

score produced from the iSSNN was when using the 

Information Gain for feature selection at 92.30%. This value 

Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.25 91.73 92.25 91.60 94.17 92.25 92.37 92.12 92.12 91.99 92.27

BN 90.31 91.09 91.47 91.21 91.73 92.67 91.86 91.99 92.38 91.86 91.99 91.69

LR 90.31 91.60 91.34 91.09 91.60 93.26 91.73 91.6 91.86 91.99 91.99 91.67

FFNN 91.47 92.64 92.37 91.99 92.51 94.03 93.02 93.02 93.93 92.76 94.32 92.91

SSNN-100 91.73 92.76 91.99 92.37 92.89 94.66 92.76 91.99 93.02 93.02 94.32 92.86

SSNN-200 92.37 92.76 91.73 92.51 92.51 94.52 93.15 92.25 93.28 92.89 93.41 92.85

SSNN-500 92.25 92.89 92.37 92.25 91.99 94.17 93.02 93.67 93.41 93.28 94.41 93.06

SSNN-1000 91.99 92.63 91.99 92.25 92.25 94.39 93.15 93.15 93.41 93.54 94.06 92.98

Average 91.57 92.33 91.87 91.99 92.14 93.98 92.62 92.51 92.93 92.68 93.31 92.54

C4.5 91.50 91.60 91.10 92.40 90.90 93.40 91.50 91.60 91.40 91.40 91.20 91.64

BN 89.10 90.00 90.50 90.30 90.80 91.70 91.00 91.10 91.60 91.00 91.10 90.75

LR 89.10 90.70 90.40 90.10 90.70 92.40 90.90 90.80 91.10 91.30 91.30 90.80

FFNN 90.50 91.70 91.50 91.00 91.70 93.40 92.20 92.30 93.40 92.00 93.80 92.14

SSNN-100 90.90 91.90 90.90 91.40 92.20 94.10 91.90 91.10 92.30 92.50 93.80 92.09

SSNN-200 91.70 91.90 90.70 91.60 91.70 93.90 92.40 91.40 92.60 92.20 92.80 92.08

SSNN-500 91.60 92.00 91.60 91.40 91.20 93.50 92.30 93.10 93.40 92.50 92.70 92.30

SSNN-1000 91.20 91.70 91.00 91.30 91.50 93.80 92.40 92.50 92.80 92.90 93.50 92.24

Average 90.70 91.44 90.96 91.19 91.34 93.28 91.83 91.74 92.33 91.98 92.53 91.75

C4.5 92.70 92.10 92.10 89.90 91.00 91.20 90.40 89.90 90.70 90.70 90.70 91.04

BN 85.70 87.60 88.50 88.50 88.80 89.60 89.60 89.60 90.20 89.30 89.60 88.82

LR 85.70 89.30 88.80 88.50 89.30 90.60 90.20 90.20 90.70 91.00 91.00 89.57

FFNN 88.80 88.80 89.30 87.90 90.20 93.60 89.90 90.70 92.70 91.00 93.80 90.61

SSNN-100 89.90 88.80 87.40 88.20 90.70 93.70 89.30 89.00 90.40 93.30 94.10 90.44

SSNN-200 91.90 88.80 87.60 88.80 90.20 93.60 90.20 89.30 91.00 91.60 92.10 90.46

SSNN-500 92.40 88.80 89.90 89.60 90.20 92.40 91.00 92.40 94.40 90.20 91.00 91.12

SSNN-1000 89.90 88.80 87.90 88.80 90.20 92.40 90.70 90.80 91.90 92.10 93.00 90.59

Average 89.63 89.13 88.94 88.78 90.08 92.14 90.16 90.24 91.50 91.15 91.91 90.33

C4.5 90.40 91.10 90.10 93.00 90.80 95.70 92.50 93.30 92.00 92.00 91.80 92.06

BN 92.70 92.60 92.60 92.10 92.90 93.90 92.50 92.70 93.00 92.70 92.70 92.76

LR 92.70 92.20 92.10 91.80 92.20 94.30 91.70 91.50 92.50 91.50 91.50 92.18

FFNN 92.40 95.50 93.80 94.30 93.30 93.20 94.70 93.90 93.35 93.10 93.80 93.76

SSNN-100 92.00 95.20 94.80 94.90 93.60 94.50 94.60 93.20 93.20 91.70 93.40 93.74

SSNN-200 91.60 95.20 94.00 94.60 92.30 94.30 94.70 93.50 94.20 92.90 93.40 93.70

SSNN-500 90.90 94.90 93.30 93.40 92.20 94.60 93.60 93.70 94.40 95.30 94.50 93.71

SSNN-1000 92.50 94.90 94.30 93.60 92.40 94.20 94.20 93.70 93.70 93.70 94.00 93.75

Average 91.90 93.95 93.13 93.46 92.46 94.34 93.56 93.19 93.29 92.86 93.14 93.21
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Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.25 91.73 92.25 91.60 91.73 92.25 92.64 92.12 92.12 91.99 92.07

BN 90.31 91.09 91.47 91.21 91.73 91.60 91.86 92.12 92.38 91.86 91.99 91.60

LR 90.31 91.60 91.34 91.09 91.60 91.60 91.73 92.25 91.86 91.99 91.99 91.58

FFNN 89.02 93.02 92.37 92.51 91.99 92.76 93.15 93.93 93.54 93.67 93.02 92.63

SSNN-100 91.99 92.76 92.37 91.73 92.64 92.38 93.28 93.28 93.67 93.67 93.66 92.86

SSNN-200 91.99 92.64 92.37 92.37 92.76 92.25 93.67 93.92 93.67 93.67 93.02 92.94

SSNN-500 92.62 92.64 92.37 92.51 91.86 92.40 93.90 93.15 93.67 93.67 93.54 92.94

SSNN-1000 92.24 92.76 92.51 93.02 92.25 92.25 93.67 93.28 94.06 92.57 93.02 92.88

Average 91.33 92.35 92.07 92.09 92.05 92.12 92.94 93.07 93.12 92.90 92.78 92.44

C4.5 91.50 91.60 91.10 91.40 90.90 90.90 91.50 92.00 91.40 91.00 91.20 91.32

BN 89.10 90.00 90.50 90.30 90.80 90.70 91.00 91.30 91.60 91.00 91.10 90.67

LR 89.10 90.70 90.40 90.10 90.70 90.70 90.90 91.50 91.10 91.30 91.30 90.71

FFNN 88.80 92.20 91.50 91.60 91.20 91.90 92.50 93.30 92.80 92.90 92.20 91.90

SSNN-100 91.40 91.90 91.60 90.90 91.90 91.50 92.60 92.60 93.00 93.00 93.00 92.13

SSNN-200 91.40 91.70 91.60 91.60 92.00 91.30 93.00 92.30 92.90 93.00 92.20 92.09

SSNN-500 91.70 91.70 91.40 91.70 91.10 91.50 93.20 92.40 93.00 93.00 92.80 92.14

SSNN-1000 91.60 91.90 91.70 92.30 91.50 91.30 93.00 92.60 93.30 92.00 92.20 92.13

Average 90.58 91.46 91.23 91.24 91.26 91.23 92.21 92.25 92.39 92.15 92.00 91.64

C4.5 92.70 92.10 92.10 89.90 91.00 89.30 90.40 91.90 90.70 89.30 90.70 90.92

BN 85.70 87.60 88.50 88.50 88.80 89.00 89.60 89.90 90.20 89.30 89.60 88.79

LR 85.70 89.30 88.80 88.50 89.30 89.30 90.20 91.00 90.70 91.00 91.00 89.53

FFNN 89.00 89.30 89.30 89.00 90.20 89.00 91.60 91.30 91.00 90.70 89.90 90.03

SSNN-100 92.40 89.00 90.40 89.30 90.40 89.30 91.00 91.90 91.10 91.10 91.10 90.64

SSNN-200 92.40 88.80 89.90 89.90 91.00 88.80 92.10 91.60 90.70 92.30 89.90 90.67

SSNN-500 91.90 89.00 89.80 89.60 90.40 89.80 91.90 91.30 91.90 91.30 90.70 90.69

SSNN-1000 92.40 89.00 89.90 91.00 90.70 88.50 91.90 91.30 91.60 89.90 89.90 90.55

Average 90.28 89.26 89.84 89.46 90.23 89.13 91.09 91.28 90.99 90.61 90.35 90.23

C4.5 90.40 91.10 90.10 93.00 90.80 92.40 92.50 92.10 92.00 92.00 91.80 91.65

BN 92.70 92.60 92.60 92.10 92.90 92.40 92.50 92.80 93.00 92.70 92.70 92.64

LR 92.70 92.20 92.10 91.80 92.20 92.20 91.70 92.00 91.50 91.50 91.50 91.95

FFNN 90.30 95.20 93.80 94.30 92.20 94.90 93.40 94.30 94.70 93.10 94.70 93.72

SSNN-100 90.40 94.90 92.80 92.40 93.30 93.80 94.20 93.40 94.00 94.00 94.00 93.38

SSNN-200 90.40 94.90 93.30 93.30 93.10 94.00 94.00 95.00 95.30 93.80 93.70 93.71

SSNN-500 91.60 93.90 93.90 93.40 91.60 94.40 94.40 93.90 94.20 94.80 94.50 93.69

SSNN-1000 90.90 94.90 93.60 93.60 92.30 94.30 94.20 93.90 95.30 93.90 93.70 93.69

Average 91.18 93.71 92.78 92.99 92.30 93.55 93.36 93.43 93.75 93.23 93.33 93.05
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Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.12 92.12 91.60 91.60 91.99 92.25 92.12 92.24 92.24 92.25 92.06

BN 90.31 91.21 91.09 91.47 91.73 92.12 91.86 91.86 91.99 91.86 92.25 91.61

LR 90.31 91.86 91.86 92.12 91.60 91.86 91.73 91.86 91.86 91.86 91.86 91.71

FFNN 91.47 91.99 89.92 91.09 92.51 92.76 92.76 92.64 92.64 92.89 93.54 92.20

SSNN-100 91.99 92.24 91.37 91.09 93.02 92.89 93.54 92.41 93.15 93.02 92.89 92.51

SSNN-200 91.99 92.12 90.95 90.70 92.38 93.54 93.02 92.41 93.67 93.67 93.80 92.57

SSNN-500 92.25 92.37 90.05 91.09 91.99 93.15 93.28 93.28 93.67 93.67 93.67 92.59

SSNN-1000 92.25 92.37 90.17 91.09 92.63 92.78 93.28 93.28 93.67 93.28 93.67 92.59

Average 91.59 91.99 90.94 91.31 92.18 92.64 92.63 92.37 92.75 92.81 92.89 92.23

C4.5 91.50 91.50 91.50 91.00 90.90 91.30 91.50 91.30 91.40 91.40 91.50 91.35

BN 89.10 90.20 90.10 90.50 90.80 91.30 91.00 91.00 91.10 91.00 91.40 90.68

LR 89.10 91.10 91.10 91.30 90.70 91.10 90.90 91.10 91.10 91.10 91.10 90.88

FFNN 90.50 91.10 88.90 90.20 91.70 92.10 91.90 91.80 91.90 92.20 92.90 91.38

SSNN-100 91.40 91.60 91.00 90.20 92.30 92.30 92.90 91.70 92.50 92.40 91.89 91.84

SSNN-200 91.40 91.50 90.20 89.70 91.60 92.90 92.30 91.70 93.00 93.10 92.80 91.84

SSNN-500 91.60 91.70 89.00 90.20 91.10 92.50 92.60 92.60 93.00 93.00 93.00 91.85

SSNN-1000 91.60 91.70 89.10 90.20 91.80 92.20 92.60 92.60 92.90 92.60 92.90 91.84

Average 90.66 91.24 90.11 90.44 91.36 91.96 91.87 91.60 92.00 92.10 92.08 91.46

C4.5 92.40 92.10 90.70 88.80 90.70 92.70 91.30 90.60 91.30 91.10 92.20 91.26

BN 85.70 88.20 88.50 88.50 88.80 89.60 89.60 89.60 89.60 89.60 89.60 88.85

LR 85.70 90.20 90.20 89.90 89.30 90.40 90.20 90.20 90.40 90.40 90.20 89.74

FFNN 88.80 88.80 87.40 88.80 90.20 92.90 89.30 89.60 91.00 91.00 91.60 89.95

SSNN-100 92.70 92.70 92.70 92.10 91.00 91.00 90.40 90.40 89.90 89.90 90.20 91.18

SSNN-200 92.40 91.90 90.40 87.90 90.70 92.10 91.00 90.60 91.30 92.40 92.10 91.16

SSNN-500 92.40 91.90 87.60 88.80 90.20 91.90 90.70 91.00 91.30 91.90 91.30 90.82

SSNN-1000 92.40 91.90 87.60 88.80 89.90 91.60 90.70 91.00 90.40 91.00 91.60 90.63

Average 90.01 90.96 89.39 89.26 90.10 91.53 90.36 90.29 90.65 90.91 91.10 90.45

C4.5 90.40 90.40 90.40 89.90 90.80 91.50 92.50 92.30 93.00 93.00 92.80 91.55

BN 92.70 92.40 91.80 92.60 92.90 93.00 92.50 92.50 92.70 92.50 93.30 92.63

LR 92.70 92.00 92.00 92.80 92.20 91.70 91.70 92.50 91.70 91.70 92.00 92.09

FFNN 92.40 93.50 90.40 91.60 93.30 92.40 94.60 94.10 92.80 93.40 94.20 92.97

SSNN-100 90.40 91.10 91.20 91.60 93.90 91.90 94.50 92.90 93.70 92.70 93.40 92.48

SSNN-200 90.40 91.10 89.90 91.50 92.60 93.70 93.60 92.90 94.80 93.70 94.00 92.56

SSNN-500 90.90 91.60 90.40 91.60 93.00 93.10 94.40 94.20 94.80 94.20 94.80 93.00

SSNN-1000 90.90 91.60 90.70 91.60 93.80 92.90 94.40 94.20 95.50 94.20 93.05 92.99

Average 91.41 91.73 90.85 91.66 92.81 92.53 93.40 93.06 93.63 93.18 93.44 92.53
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is higher than the values produced from Chi-Square and Gain 

Ration with margins of 0.16% and 0.45% respectively. 

In terms of average accuracy, and when the epoch size is set 

to 500, the iSSNN outperforms C4.5, BN, LR, and FFNN 

with margins of 0.79%, 1.38%, 1.39%, and 0.15% 

respectively when using the Information Gain. In addition, 

the average accuracy produced from the iSSNN algorithm 

when using the Chi-square outperforms C4.5, BN, LR, and 

FFNN with margins of 0.87%, 1.34%, 1.36%, and 0.30% 

respectively. Further, the iSSNN algorithm beats C4.5, BN, 

LR, and FFNN with margins of 0.53%, 0.97%, 0.88% and 

0.39% respectively when using the Gain Ration. Overall, the 

high accuracies produced from the iSSNN when using 

different feature selection methods are good sign that the 

training procedure in the iSSNN algorithm is able to produce 

well-structured NN classifiers. Yet, the highest average 

accuracy produced from the iSSNN was when the 

Information Gain has been used for feature selection at 

93.06%. This value bypasses the results achieved from Chi-

Square and Gain Ration with margins of 0.12% and 0.47% 

respectively. 

In terms of average Recall, we find that the iSSNN algorithm 

has been defeated two times from the C4.5 when using Chi-

Square and Gain Ration with margins of 0.23% and 0.45% 

respectively when the epoch size is set to 500. However, 

when using the Information Gain, we find that the iSSNN 

outperforms the C4.5 with a margin of 0.08%. This difference 

is relatively small. However, a good classification model is 

the model that is able to maximize both Precision and Recall 

simultaneously. Yet, from the results, we find that although 

the average Recall produced from C4.5 beats the iSSNN 

algorithm when using Chi-Square and Gain Ration, the 

iSSNN algorithm outperforms the C4.5 in terms of average 

Precision with 2.04% and 1.45% when using Chi-Square and 

Gain Ration respectively when the epoch size is set to 500. 

Such results confirm that the iSSNN algorithm is able to 

derive classifiers that show a moderately good performance 

on both Precision and Recall. The same scenario is also 

happens with FFNN, since the FFNN produced higher 

precision than the iSSNN with margins of 0.03% when using 

Chi-Square when the epoch size is set to 500. Yet, when 

using the same epoch size, the iSSNN produced higher 

Recalls than the FFNN with margins of 0.66% and 0.87% 

when using Chi-Square and Gain Ration respectively.  

Overall, the training procedure utilised when deriving NN 

classifiers using the iSSNN algorithm has proven to be 

effective in creating well-structured models in terms of 

number of hidden neurons and weights space. 

IX. SUMMARY 

In this article we proposed an improved self-structuring 

neural network algorithm that simplifies structuring NN 

classifiers. several experiments have been accomplished to 

evaluates the applicability of the iSSNN on phishing 

websites data set. Three feature selection methods have been 

used in order to evaluate these methods and their effect on 

the performance of the iSSNN and other considered 

classification algorithms. The results show that the iSSNN 

algorithm outperformed the considered classification 

algorithms in most cases. The classifiers produced from the 

iSSNN have been shown to produce a moderately good 

performance on both Precision and Recall. However, the 

experimental results revealed that the Information Gain is 

more effective than other feature selection methods in 

improving the performance of the SSNN and other 

considered classification algorithms. In general, the 

experimental results show that the iSSNN algorithm is able 

to produce good NN classifiers. 
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