
University of Huddersfield Repository

Mohammad, Rami, McCluskey, T.L. and Thabtah, Fadi Abdeljaber

A Dynamic Self-Structuring Neural Network

Original Citation

Mohammad, Rami, McCluskey, T.L. and Thabtah, Fadi Abdeljaber (2016) A Dynamic Self-
Structuring Neural Network. In: 2016 IEEE World Congress on Computational Intelligence, 24th -
29th July 2016, Vancouver, Canada. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/28479/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Dynamic Self-Structuring Neural Network
Fadi Thabtah

Nelson Marlborough Institute of

Technology

NewZeland.

Fadi.Fayez@nmit.ac.nz

Rami M. Mohammad

School of Computing and Engineering

University of Huddersfield

Huddersfield,UK
rami.mohammad@hud.ac.uk

Lee McCluskey

School of Computing and Engineering

University of Huddersfield

Huddersfield, UK

t.l.mccluskey@hud.ac.uk
Abstract—Creating a neural network based classification

model is commonly accomplished using the trial and error

technique. However, the trial and error structuring method

have several difficulties such as time and availability of experts.

In this article, an algorithm that simplifies structuring neural

network classification models has been proposed. The algorithm

aims at creating a large enough structure to learn models from

the training dataset that can be generalised well on the testing

dataset. Our algorithm dynamically tunes the structure

parameters during the training phase aiming to derive accurate

non-overfitting classifiers. The proposed algorithm has been

applied to phishing websites classification problem and it shows

competitive results with respect to various evaluation measures

such as Harmonic Mean (F1-score), precision, accuracy, etc.

Keywords- Classification, Neural Network, Phishing,

constructive, pruning.

I. INTRODUCTION

Artificial Neural Network (ANN) proved its merits in several

classification domains [1]. Nevertheless, one downside of

creating any neural network (NN) based classification model

is that it is difficult to interpret its results, and it is considered

as a black-box. This characteristic has successfully applied in

different security domains such as the work done in [2], [3],

and [4].

Yet, we believe that this particular obstacle will add a positive

edge to the domains where the results are more important

than the understanding of how the model works, such as

predicting phishing websites. Although selecting a suitable

number of hidden neurons and determining the value of some

parameters, i.e. learning rate, momentum value and epoch

size showed to be crucial when creating a NN model [5] there

is no clear procedure for determining such parameters, and

most model designers rely on trial and error. However, the

trial and error technique involves a painstaking process for

many real world problems. In addition, the trial and error

technique is a time-consuming process. A poorly structured

NN model may cause the model to underfit the training

dataset [6]. On the other hand, exaggeration in restructuring

the system to suit every single item in the training dataset

may cause the system to be overfitted [7]. One possible

solution to avoid the overfitting problem is by restructuring

the NN model in terms of tuning some parameters, adding

new neurons to the hidden layer or sometimes adding a new

layer to the network. A NN with a small number of hidden

neurons may not have a satisfactory representational power to

model the complexity and diversity inherent in the data. On

the other hand, networks with too many hidden neurons could

overfit the data. However, at a certain stage the model can no

more be improved, therefore, the structuring process should

be terminated. Hence, an acceptable error rate should be

specified when creating any NN model, which itself is

considered a problem since it is difficult to determine the

acceptable error rate a priori [6]. For instance, the model

designer may set the acceptable error rate to a value that is

unreachable which causes the model to stick in local minima

[1] or sometimes the model designer may set the acceptable

error rate to a value that can further be improved.

Overall, we believe that automating the structuring process of

NN models is a timely issue and it might displace some of the

burden from the system designer. However, automating

structuring NN models does not merely means adding new

neuron(s) to the hidden layer because the more hidden

neurons does not necessarily mean that the accuracy will

improve [8]. Hence, it is important to improve the NN

performance by updating several parameters such as the

learning rate before adding a new neuron to the hidden layer.

Sadly, setting the learning rate value is also a trial and error

process. Although several studies have been made to come up

with the best NN structure, the optimal learning rate value is

still concealed.

II. NEURAL NETWORK STRUCTURING APPROACHES

The traditional trial and error method is commonly used in

structuring ANNs. However, several attempts have been

devoted to automate NN structuring process such as

constructive and pruning [9].

Constructive Algorithms

This approach starts with a simple NN structure, i.e. one

hidden layered NN with a single neuron in the hidden layer

[9] and recursively new parameters i.e. hidden layers, hidden

neurons, and connections are added to the initial structure

until reaching a satisfactory result. After each addition, the

entire network or only the recently added parameter is

retrained. Constructive approach is relatively easy for

inexperienced users because they are normally asked to

specify few initial parameters, for example the number of

neurons in the input layer and epoch size and then new

mailto:Fadi.Fayez@nmit.ac.nz
mailto:rami.mohammad@hud.ac.uk
mailto:t.l.mccluskey@hud.ac.uk

parameters are added to the network. This approach is

computationally efficient because it searches for small

structures first [9]. However, constructive approach has some

hurdles that should carefully be addressed. For example, the

user has to decide when to add a new parameter, when to stop

the addition process, and when to stop training and produces

the network [10].

Pruning Algorithms

The pruning approach starts with an oversized structure, i.e. a

multi hidden layered NN with a large number of hidden

neurons in each hidden layer. Later on, some parameters, i.e.

connections, hidden neurons, and hidden layers are removed

from the network. After each training process, the user

removes some parameters from the network and the new

structure is retrained so that the remaining parameters can

compensate the functions played by the removed parameters

[9]. If the network performance improved, the user removes

more parameters and retrains the network again. However, if

the network performance does not improved, the user restores

what have been deleted and tries to remove other parameters.

This process is repeated recursively until achieving the final

network. Normally, only one parameter is removed in each

pruning phase [9]. In general, this approach is a time

consuming process. In addition, the user does not know a

priori how big the initial NN structure should be for a specific

problem.

III. AN IMPROVED SELF-STRUCTURING NEURAL NETWORK

ALGORITHM

The pseudocode of proposed improved Self-Structuring

Neural Network (iSSNN) algorithm is shown in Figure 1 and

it works as follows:

1- Parameter Settings Phase

This phase involves several activities as follows:

A. The number of neurons in the input layer is set to the

number of the features offered in the training dataset

(line 1 in Figure 1).

B. The number of neurons in the output layer is set to one

because iSSNN aims to create binary classification

models (line 2). In other words, we will create a single

neuron that might hold two possible values.

C. The number of neurons in the hidden layer is to be

determined by the algorithm. Constructive algorithms

normally start with one hidden neuron [9]. At the

beginning, the algorithm creates the simplest NN

structure that consists of only one neuron in the hidden

layer (line 3). This neuron is connected to all neurons in

the input and output layers.
Figure 1 iSSNN pseudocode

D. Small non-zero random values will be assigned for each

connection weight (line 4).

E. The learning rate value commonly ranges from ≈0 to ≈1

[1]. Following the default value of WEKA [11], the

learning rate and momentum value are assumed 0.3 and

0.2 respectively (line 5) and (line 6). However, the

learning rate value will be adjusted several times during

the network training process.

F. The initial desired error-rate (DER) is set to 50% (line 7).

This value will be used to assess if the algorithm can

find a possible solution.

G. The model designer specifies the maximum number of

epochs.

H. The model designer sets the maximum number of allowed

hidden neurons.

I. The training dataset is divided into training, testing, and

validation datasets. The training dataset will be used to

learn the model and update weights; the testing dataset

will be used to assess the overall performance of the

derived classifier. However, the validation dataset plays

an important role in producing the final model as we

will see later in the Training Phase.

2- Warming-up Training Phase

In this phase (line 8–9), the algorithm decides whether to

proceed with creating a new classifier or not. The algorithm

computes the calculated error-rate (CER), aiming to

determine what the DER to be achieved in the next training

phase is. In other words, the CER is the DER to be achieved

in the next training session. Hence, the algorithm trains the

network and finds the CER. If the algorithm finds a CER less

than the initial DER before reaching the maximum number

of epochs, then the algorithm assumes that the current

structure can further be improved; hence, the algorithm

resets the epoch, and assumes that the DER to be achieved in

the next training phase is the CER. Then the algorithm

moves to the Training Phase. On the other hand, if the CER

is bigger than the DER, then the algorithm will be terminated

(line 24). The CER is equivalent to Mean Square Error

(MSE) and is calculated as per equation 1. Where Ak is the

Input

 Upload the minimal dataset and divide it to Training, Testing and Validation

 Integer Tk specifying the number of epochs

 Maximum number of possible hidden neurons

Output

 Optimal number of neurons in the hidden layer

 Optimal learning rate value

 Connection weights between input, hidden and output layers

Initialize

1 Number of neurons in the input layer = number of input features;

2 Number of neurons in the output layer = 1

3 Number of neurons in the hidden layer = 1;

4 Weights = random numbers ranging from -0.5 to +0.5;

5 Learning rate LR= 0.3;

6 momentum value = 0.2

7 Desired Error DER = 50%;

Start

8 Train the network to find the calculated error-rate CER;

9 If CER < DER then {

10 A: Set DER= CER;

11 Train the network;

12 Update the LR after each training epoch;

13 Check the early stopping condition;

14 If (DER Achieved && iteration< Tk) then

15 Go to A;

16 Else {

17 Add a new neuron to the hidden layer;

18 Train the network;

19 If (DER Achieved && iteration< Tk)

20 Go to A;

21 Else

22 Produce the Network;

23 }

24 Else (No Network can be produced)

End

Fig. 1 iSSNN pseudocode

predicted value for instance k; and Dk is the real value

associated with instance k in a training dataset having n

examples.

𝐶𝐸𝑅 =
1

𝑛
∑ (𝐴𝑘 − 𝐷𝑘)

2𝑛

𝑘=0
 (1)

3- Training Phase

In this phase (line 10-13), the iSSNN algorithm continues

training the network until the CER is less than the DER or

the maximum number of epochs is reached or achieving the

early stopping condition. Each training epoch starts by

updating the learning rate based on the CER achieved in the

previous epoch. One of the simplest methods for updating

the learning rate is the bold driver method [12]. After each

training epoch, the algorithm compares the CER at time t

with the CER at time t-1 and if the error has decreased, the

learning rate is slightly increased by a specific ratio φ in

order to accelerate the error-rate reduction process and

converge quickly to the possible solution. In this case, the

weights are updated. On the other hand, if the error has

increased or has not changed, the iSSNN will heavily

decreases the learning rate by φ’ because we might be

approaching one possible solution and we need to slow down

and study the possible solution more deeply. In this case, the

weights are not updated. Commonly, φ and φ’ are set to 0.1

and 0.5 respectively [6]. The reason that φ is smaller than φ’

is because we do not want to make a big step that causes the

algorithm to converge from the possible solution. However,

as soon as the algorithm approaches a possible solution we

need to examine that solution more deeply; therefore the

learning rate is heavily decreased.

Normally, the trial and error based NN structuring approach

assumes that the number of neurons in the hidden layer and

learning rate are fixed values that are not changed during the

training phase. However, the iSSNN algorithm follows a

different approach in determining the number of neurons in

the hidden layer since iSSNN algorithm leaves the network

expansion as a last option and keeps pushing on the learning

rate to improve the NN performance as much as possible

before adding a new neuron. After each training epoch, the

iSSNN algorithm calculates the error on the validation

dataset. When the error on the validation dataset starts to

increase, that mean the model has begun to overfit the data,

and the training should halt. Nevertheless, the validation

dataset may have several local minima; thus, if we stop

training at the first increase, we may lose some points that

achieve better results because the error-rate may decrease

again at some further points. Therefore, the iSSNN algorithm

tracks the error on the validation dataset. If the lastly

achieved error is less than the minimum achieved error, that

means the generalisation ability of the model is improved;

thus the algorithm saves the weights and continues training

the network. On the other hand, if the lastly achieved error is

bigger than the minimum achieved error, the algorithm

continues the training process without saving the weights.

However, if the lastly achieved error is bigger than the

minimum achieved error with a specific threshold α, then the

algorithm terminates the training process (early stopping);

since we assume that exceeding that threshold value might

mean that the model diverges from the ideal solution and is

difficult to converge back again. A recent study on early

stopping [13] finds that the early stopping is triggered if

α=50%. Equation 2 clarifies how the iSSNN algorithm

handles the early stopping. Where, 𝜀 is the lastly achieved

error, and 𝜀′ is the minimum error.

𝐼𝐹 {

𝜀 < 𝜀′
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑆𝑎𝑣𝑒𝑑
→ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

(𝜀 > 𝜀′)𝑎𝑛𝑑(𝜀 < [(1 + 𝛼) ∗ 𝜀′])
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑛𝑜𝑡 𝑆𝑎𝑣𝑒𝑑
→ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒 → 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

 (2)

4- Improvement Phase

In the training phase, if the iSSNN obtains a CER less than the

DER before reaching the maximum epoch, this could be an

indication that the model can further be improved without

adding any neurons to the hidden layer (line 14-15).

Therefore, the iSSNN maintains the learning rate and weights

achieved so far; resets the epoch, assumes that the DER to be

achieved in the next training phase is the CER, and goes back

to the Training Phase. Otherwise, the iSSNN goes to Adding a

New Neuron Phase (line 16).

If the iSSNN cannot achieve the DER and reaches either the

maximum allowed epoch or the early stopping condition. In

this case, we assume that the current structure has been

squeezed to the limit and the network’s ability of processing

the information is insufficient. Therefore, the algorithm will

add a new neuron to the hidden layer (line 17). The

algorithm connects the new neuron to all input and output

neurons, assigns small non-zero value to its weight,

maintains the learning rate and weights achieved so far, and

resets the epoch. Yet, adding a new neuron to the hidden

layer does not mean that this neuron is permanently added

into the network, we must first assess whether the new

neuron improves the network performance or not. Hence, the

algorithm continues training the network (line 18).

If (after adding a new neuron) the DER is achieved, then the

algorithm approves adding the new neuron, maintains the

learning rate and weights, resets the epoch, assumes that the

DER to be achieved in the next training phase is the CER,

and goes back to the Training Phase (line 19-20). Otherwise,

the algorithm moves to Producing the Final Network Phase

(line 21). The main concern in this phase is that the number

of hidden neurons can freely evolve resulting in a

complicated structure. Thus, the algorithm allows the system

designer to set the maximum number of hidden neurons.

5- Producing the Final Network Phase

If adding a new neuron to the network does not improve the

network performance, then the iSSNN removes the lastly

added neuron, resets the learning rate and the weights as they

were before adding the new neuron, terminates the training

process, and the final network is produced (line 22). The

most obvious network parameters to evolve in the iSSNN

algorithm are the learning rate, the weights, and the number

of hidden neurons. TANH activation function has been used

for the input layer, whereas, the bipolar hard limit activation

function has been used for the hidden layer.

IV. EVALUATING THE ISSNN ON PHISHING DATASET

several experiments will be accomplished to evaluate the

applicability of the iSSNN algorithm to phishing websites

classification problem. The experimental evaluation

compares the iSSNN algorithm with Decision Tree (C4.5),

Bayesian Network (BN), Logistic Regression (LR), and the

traditional Feed Forward Neural Network (FFNN) algorithm

implemented in WEKA [11]. FFNN algorithm assumes that

the number of neurons in the input layers equals the number

of attributes in the training dataset, whereas the number of

neurons in the output layer equals the number of classes. The

number of neurons in the hidden layer is the average number

of neurons in the layers and is calculated as per equation (3).

#hidden neurons =
#input neurons+number of output neurons

of layers
 (3)

Other algorithms were selected since they use different

strategies in producing classification models. For all these

algorithms, we used the default parameter settings of WEKA

[11]. Whereas, for iSSNN algorithm, two input values should

be entered from the system designer, i.e. number of epochs

and maximum number of possible hidden neurons. There is

no rule of thumb in which one can decide on these values

[1]. Therefore, following some recent studies which employ

NN to create classification models in different domains [14]

[15] [16] , we set the maximum number of possible neurons

to 10. Yet, these studies utilise different epoch sizes and the

most commonly used epoch size values are 100, 200, 500,

and 1000. Four sub-experiments will be conducted, in which

the maximum number of possible hidden neurons is 10, and

epoch size has been set to 100, 200, 500, and 1000 for

experiments 1, 2, 3, and 4 respectively. The iSSNN

algorithm has been implemented in Java. All experiments

were conducted in a system with CPU Pentium Intel®

CoreTM i5-2430M @ 2.40 GHz, RAM 4.00 GB. The

platform is Windows 7 64-bit Operating System.

V. TRAINING DATASETS

We have used the well-known phishing websites training

dataset from the University of California Irvine repository

(UCI) [17]. Table 1 shows the description of the training

dataset, i.e. number of attributes, number of instances, and

class distribution.

Table 1 UCI dataset

Number of

attributes

Number of

Instances

Class Distribution

Phishing Legitimate

30 11055 44% 56%

The dataset was collected recently by one of the authors

of this article and published in UCI repository. Most of the

dataset’s attributes are binary (0, 1) or ternary (0,1,-1). The

dataset is categorized under classification in data mining

since there is class label added (target attribute) that has two

possible values (Phishy -1, Legitimate 1).

More details on the features names, types, possible values

and descriptions are given in [17].

VI. VALIDATION TECHNIQUE

The iSSNN algorithm splits the training dataset into

training, testing and validation datasets. The hold-out

validation technique is used in our experiments. Thus, the

dataset will be divided into 80% for training and 20% for

testing. Moreover, when creating the iSSNN classifiers the

training datasets will be further divided into 80% for training

and 20% for validation.

VII. EVALUATION METRICS

Four classification possibilities have been employed in

our experiments as per confusion matrix shown in Table 2.

Table 2 Confusion Matrix

A
c
tu

a
l

V
a
lu

e
 Predicted Value

 Positive Negative

Positive TP FN

Negative FP TN

Where True Positive (TP) is the number of legitimate

websites correctly classified as legitimate, False Negative

(FN) is the number of legitimate websites incorrectly

classified as phishing, False Positive (FP) is the number of

phishing websites incorrectly classified as legitimate and True

Negative (TN) is the number of phishing websites correctly

classified as phishing. Following previous studies related to

phishing classification [18], [7], [19], [8], [20], [21], [22] and

[23] we use a set of evaluation metrics that can be derived

from the confusion matrix shown in Table 2. These

evaluation metrics are as follows:

1. Precision (P): the rate of correctly classified legitimate

websites in relation to all instances that are classified as

legitimate and is calculated as per the equation 4.

 P
TP

TP+FP
 (4)

2. Recall (R): is equivalent to TPR (Sensitivity).

3. F1-score (Harmonic Mean): is the weighted average of P

and R. F1-score takes both FP and FN into account and is

calculated as per equation 5. This metric weights R and P

equally, and a good classifier will maximize both P and R

simultaneously. Thus, moderately good performance on

both will be favoured over good performance on one and

poor performance on the other.

 𝐹1 =
2 𝑃 𝑅

𝑃+𝑅
 (5)

4. Accuracy (ACC): the overall rate of correctly classified

legitimate and phishing websites in relation to the total

number of instances in the testing data set and is

calculated as per equation 6.

 Acc =
TP+TN

TP+FP+TN+FN
 (6)

VIII. EXPERIMENTAL RESULTS

Three experiments have been done with the aim of evaluating

the SSNN algorithm and compare the results with other DM

classification algorithms. Information Gain, Chi-Square and

Gain Ratio have been used in experiments 1, 2 and 3

respectively. The selection for these methods is because they

are commonly used for feature selection in the domain of

phishing websites classification [24], [25], [26], [22], [23].

The results are shown in Tables 3, 4, and 5.

Table 3 Experimental results when using Information Gain

Table 4 Experimental results when using Chi-Square

Table 5 Experimental results when using Gain Ratio

From the results, we can see that the iSSNN outperforms the

considered classification algorithms in most cases,

particularly when the epoch size is set to 500. For instance,

the average F1-score produced from the iSSNN when using

the Information Gain is higher than that produced from C4.5,

BN, LR, and FFNN with margins of 0.66, 1.55%, 1.50%, and

0.16% respectively when the epoch size is set to 500. In

addition, the average F1-score produced from the iSSNN

when using the Chi-Square is also beats C4.5, BN, LR, and

FFNN with margins of 0.82%, 1.46%, 1.43%, and 0.24%

respectively when the epoch size is set to 500. Again, when

using the same epoch size, the average F1-score produced

from the iSSNN algorithm when using the Gain Ration

outperforms C4.5, BN, LR, and FFNN with margins of

0.50%, 1.16%, 0.96%, and 0.46% respectively.

Overall, the high F1-score yielded from the iSSNN reflects

that the algorithm is able to derive classifiers that produce

good FP and FN rates. That can be attributed due to the well-

structured NN classifiers derived from the iSSNN algorithm

as a result to the good training procedure employed in the

algorithm. In general, the F1-score produced when using

different feature selection methods reflects that the NN based

algorithms derive better classifiers than other considered

classification algorithms when applied to phishing datasets in

the sense that the second best result achieved in all

experiments was from the FFNN. However, the highest F1-

score produced from the iSSNN was when using the

Information Gain for feature selection at 92.30%. This value

Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.25 91.73 92.25 91.60 94.17 92.25 92.37 92.12 92.12 91.99 92.27

BN 90.31 91.09 91.47 91.21 91.73 92.67 91.86 91.99 92.38 91.86 91.99 91.69

LR 90.31 91.60 91.34 91.09 91.60 93.26 91.73 91.6 91.86 91.99 91.99 91.67

FFNN 91.47 92.64 92.37 91.99 92.51 94.03 93.02 93.02 93.93 92.76 94.32 92.91

SSNN-100 91.73 92.76 91.99 92.37 92.89 94.66 92.76 91.99 93.02 93.02 94.32 92.86

SSNN-200 92.37 92.76 91.73 92.51 92.51 94.52 93.15 92.25 93.28 92.89 93.41 92.85

SSNN-500 92.25 92.89 92.37 92.25 91.99 94.17 93.02 93.67 93.41 93.28 94.41 93.06

SSNN-1000 91.99 92.63 91.99 92.25 92.25 94.39 93.15 93.15 93.41 93.54 94.06 92.98

Average 91.57 92.33 91.87 91.99 92.14 93.98 92.62 92.51 92.93 92.68 93.31 92.54

C4.5 91.50 91.60 91.10 92.40 90.90 93.40 91.50 91.60 91.40 91.40 91.20 91.64

BN 89.10 90.00 90.50 90.30 90.80 91.70 91.00 91.10 91.60 91.00 91.10 90.75

LR 89.10 90.70 90.40 90.10 90.70 92.40 90.90 90.80 91.10 91.30 91.30 90.80

FFNN 90.50 91.70 91.50 91.00 91.70 93.40 92.20 92.30 93.40 92.00 93.80 92.14

SSNN-100 90.90 91.90 90.90 91.40 92.20 94.10 91.90 91.10 92.30 92.50 93.80 92.09

SSNN-200 91.70 91.90 90.70 91.60 91.70 93.90 92.40 91.40 92.60 92.20 92.80 92.08

SSNN-500 91.60 92.00 91.60 91.40 91.20 93.50 92.30 93.10 93.40 92.50 92.70 92.30

SSNN-1000 91.20 91.70 91.00 91.30 91.50 93.80 92.40 92.50 92.80 92.90 93.50 92.24

Average 90.70 91.44 90.96 91.19 91.34 93.28 91.83 91.74 92.33 91.98 92.53 91.75

C4.5 92.70 92.10 92.10 89.90 91.00 91.20 90.40 89.90 90.70 90.70 90.70 91.04

BN 85.70 87.60 88.50 88.50 88.80 89.60 89.60 89.60 90.20 89.30 89.60 88.82

LR 85.70 89.30 88.80 88.50 89.30 90.60 90.20 90.20 90.70 91.00 91.00 89.57

FFNN 88.80 88.80 89.30 87.90 90.20 93.60 89.90 90.70 92.70 91.00 93.80 90.61

SSNN-100 89.90 88.80 87.40 88.20 90.70 93.70 89.30 89.00 90.40 93.30 94.10 90.44

SSNN-200 91.90 88.80 87.60 88.80 90.20 93.60 90.20 89.30 91.00 91.60 92.10 90.46

SSNN-500 92.40 88.80 89.90 89.60 90.20 92.40 91.00 92.40 94.40 90.20 91.00 91.12

SSNN-1000 89.90 88.80 87.90 88.80 90.20 92.40 90.70 90.80 91.90 92.10 93.00 90.59

Average 89.63 89.13 88.94 88.78 90.08 92.14 90.16 90.24 91.50 91.15 91.91 90.33

C4.5 90.40 91.10 90.10 93.00 90.80 95.70 92.50 93.30 92.00 92.00 91.80 92.06

BN 92.70 92.60 92.60 92.10 92.90 93.90 92.50 92.70 93.00 92.70 92.70 92.76

LR 92.70 92.20 92.10 91.80 92.20 94.30 91.70 91.50 92.50 91.50 91.50 92.18

FFNN 92.40 95.50 93.80 94.30 93.30 93.20 94.70 93.90 93.35 93.10 93.80 93.76

SSNN-100 92.00 95.20 94.80 94.90 93.60 94.50 94.60 93.20 93.20 91.70 93.40 93.74

SSNN-200 91.60 95.20 94.00 94.60 92.30 94.30 94.70 93.50 94.20 92.90 93.40 93.70

SSNN-500 90.90 94.90 93.30 93.40 92.20 94.60 93.60 93.70 94.40 95.30 94.50 93.71

SSNN-1000 92.50 94.90 94.30 93.60 92.40 94.20 94.20 93.70 93.70 93.70 94.00 93.75

Average 91.90 93.95 93.13 93.46 92.46 94.34 93.56 93.19 93.29 92.86 93.14 93.21

Number of selected features

A
cc

u
ra

cy
F

1
-s

co
re

R
ec

a
ll

P
ec

is
io

n

Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.25 91.73 92.25 91.60 91.73 92.25 92.64 92.12 92.12 91.99 92.07

BN 90.31 91.09 91.47 91.21 91.73 91.60 91.86 92.12 92.38 91.86 91.99 91.60

LR 90.31 91.60 91.34 91.09 91.60 91.60 91.73 92.25 91.86 91.99 91.99 91.58

FFNN 89.02 93.02 92.37 92.51 91.99 92.76 93.15 93.93 93.54 93.67 93.02 92.63

SSNN-100 91.99 92.76 92.37 91.73 92.64 92.38 93.28 93.28 93.67 93.67 93.66 92.86

SSNN-200 91.99 92.64 92.37 92.37 92.76 92.25 93.67 93.92 93.67 93.67 93.02 92.94

SSNN-500 92.62 92.64 92.37 92.51 91.86 92.40 93.90 93.15 93.67 93.67 93.54 92.94

SSNN-1000 92.24 92.76 92.51 93.02 92.25 92.25 93.67 93.28 94.06 92.57 93.02 92.88

Average 91.33 92.35 92.07 92.09 92.05 92.12 92.94 93.07 93.12 92.90 92.78 92.44

C4.5 91.50 91.60 91.10 91.40 90.90 90.90 91.50 92.00 91.40 91.00 91.20 91.32

BN 89.10 90.00 90.50 90.30 90.80 90.70 91.00 91.30 91.60 91.00 91.10 90.67

LR 89.10 90.70 90.40 90.10 90.70 90.70 90.90 91.50 91.10 91.30 91.30 90.71

FFNN 88.80 92.20 91.50 91.60 91.20 91.90 92.50 93.30 92.80 92.90 92.20 91.90

SSNN-100 91.40 91.90 91.60 90.90 91.90 91.50 92.60 92.60 93.00 93.00 93.00 92.13

SSNN-200 91.40 91.70 91.60 91.60 92.00 91.30 93.00 92.30 92.90 93.00 92.20 92.09

SSNN-500 91.70 91.70 91.40 91.70 91.10 91.50 93.20 92.40 93.00 93.00 92.80 92.14

SSNN-1000 91.60 91.90 91.70 92.30 91.50 91.30 93.00 92.60 93.30 92.00 92.20 92.13

Average 90.58 91.46 91.23 91.24 91.26 91.23 92.21 92.25 92.39 92.15 92.00 91.64

C4.5 92.70 92.10 92.10 89.90 91.00 89.30 90.40 91.90 90.70 89.30 90.70 90.92

BN 85.70 87.60 88.50 88.50 88.80 89.00 89.60 89.90 90.20 89.30 89.60 88.79

LR 85.70 89.30 88.80 88.50 89.30 89.30 90.20 91.00 90.70 91.00 91.00 89.53

FFNN 89.00 89.30 89.30 89.00 90.20 89.00 91.60 91.30 91.00 90.70 89.90 90.03

SSNN-100 92.40 89.00 90.40 89.30 90.40 89.30 91.00 91.90 91.10 91.10 91.10 90.64

SSNN-200 92.40 88.80 89.90 89.90 91.00 88.80 92.10 91.60 90.70 92.30 89.90 90.67

SSNN-500 91.90 89.00 89.80 89.60 90.40 89.80 91.90 91.30 91.90 91.30 90.70 90.69

SSNN-1000 92.40 89.00 89.90 91.00 90.70 88.50 91.90 91.30 91.60 89.90 89.90 90.55

Average 90.28 89.26 89.84 89.46 90.23 89.13 91.09 91.28 90.99 90.61 90.35 90.23

C4.5 90.40 91.10 90.10 93.00 90.80 92.40 92.50 92.10 92.00 92.00 91.80 91.65

BN 92.70 92.60 92.60 92.10 92.90 92.40 92.50 92.80 93.00 92.70 92.70 92.64

LR 92.70 92.20 92.10 91.80 92.20 92.20 91.70 92.00 91.50 91.50 91.50 91.95

FFNN 90.30 95.20 93.80 94.30 92.20 94.90 93.40 94.30 94.70 93.10 94.70 93.72

SSNN-100 90.40 94.90 92.80 92.40 93.30 93.80 94.20 93.40 94.00 94.00 94.00 93.38

SSNN-200 90.40 94.90 93.30 93.30 93.10 94.00 94.00 95.00 95.30 93.80 93.70 93.71

SSNN-500 91.60 93.90 93.90 93.40 91.60 94.40 94.40 93.90 94.20 94.80 94.50 93.69

SSNN-1000 90.90 94.90 93.60 93.60 92.30 94.30 94.20 93.90 95.30 93.90 93.70 93.69

Average 91.18 93.71 92.78 92.99 92.30 93.55 93.36 93.43 93.75 93.23 93.33 93.05

Number of selected features

A
cc

u
ra

cy
F

1
-s

co
re

R
ec

a
ll

P
ec

is
io

n

Algorithm F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Average

C4.5 92.12 92.12 92.12 91.60 91.60 91.99 92.25 92.12 92.24 92.24 92.25 92.06

BN 90.31 91.21 91.09 91.47 91.73 92.12 91.86 91.86 91.99 91.86 92.25 91.61

LR 90.31 91.86 91.86 92.12 91.60 91.86 91.73 91.86 91.86 91.86 91.86 91.71

FFNN 91.47 91.99 89.92 91.09 92.51 92.76 92.76 92.64 92.64 92.89 93.54 92.20

SSNN-100 91.99 92.24 91.37 91.09 93.02 92.89 93.54 92.41 93.15 93.02 92.89 92.51

SSNN-200 91.99 92.12 90.95 90.70 92.38 93.54 93.02 92.41 93.67 93.67 93.80 92.57

SSNN-500 92.25 92.37 90.05 91.09 91.99 93.15 93.28 93.28 93.67 93.67 93.67 92.59

SSNN-1000 92.25 92.37 90.17 91.09 92.63 92.78 93.28 93.28 93.67 93.28 93.67 92.59

Average 91.59 91.99 90.94 91.31 92.18 92.64 92.63 92.37 92.75 92.81 92.89 92.23

C4.5 91.50 91.50 91.50 91.00 90.90 91.30 91.50 91.30 91.40 91.40 91.50 91.35

BN 89.10 90.20 90.10 90.50 90.80 91.30 91.00 91.00 91.10 91.00 91.40 90.68

LR 89.10 91.10 91.10 91.30 90.70 91.10 90.90 91.10 91.10 91.10 91.10 90.88

FFNN 90.50 91.10 88.90 90.20 91.70 92.10 91.90 91.80 91.90 92.20 92.90 91.38

SSNN-100 91.40 91.60 91.00 90.20 92.30 92.30 92.90 91.70 92.50 92.40 91.89 91.84

SSNN-200 91.40 91.50 90.20 89.70 91.60 92.90 92.30 91.70 93.00 93.10 92.80 91.84

SSNN-500 91.60 91.70 89.00 90.20 91.10 92.50 92.60 92.60 93.00 93.00 93.00 91.85

SSNN-1000 91.60 91.70 89.10 90.20 91.80 92.20 92.60 92.60 92.90 92.60 92.90 91.84

Average 90.66 91.24 90.11 90.44 91.36 91.96 91.87 91.60 92.00 92.10 92.08 91.46

C4.5 92.40 92.10 90.70 88.80 90.70 92.70 91.30 90.60 91.30 91.10 92.20 91.26

BN 85.70 88.20 88.50 88.50 88.80 89.60 89.60 89.60 89.60 89.60 89.60 88.85

LR 85.70 90.20 90.20 89.90 89.30 90.40 90.20 90.20 90.40 90.40 90.20 89.74

FFNN 88.80 88.80 87.40 88.80 90.20 92.90 89.30 89.60 91.00 91.00 91.60 89.95

SSNN-100 92.70 92.70 92.70 92.10 91.00 91.00 90.40 90.40 89.90 89.90 90.20 91.18

SSNN-200 92.40 91.90 90.40 87.90 90.70 92.10 91.00 90.60 91.30 92.40 92.10 91.16

SSNN-500 92.40 91.90 87.60 88.80 90.20 91.90 90.70 91.00 91.30 91.90 91.30 90.82

SSNN-1000 92.40 91.90 87.60 88.80 89.90 91.60 90.70 91.00 90.40 91.00 91.60 90.63

Average 90.01 90.96 89.39 89.26 90.10 91.53 90.36 90.29 90.65 90.91 91.10 90.45

C4.5 90.40 90.40 90.40 89.90 90.80 91.50 92.50 92.30 93.00 93.00 92.80 91.55

BN 92.70 92.40 91.80 92.60 92.90 93.00 92.50 92.50 92.70 92.50 93.30 92.63

LR 92.70 92.00 92.00 92.80 92.20 91.70 91.70 92.50 91.70 91.70 92.00 92.09

FFNN 92.40 93.50 90.40 91.60 93.30 92.40 94.60 94.10 92.80 93.40 94.20 92.97

SSNN-100 90.40 91.10 91.20 91.60 93.90 91.90 94.50 92.90 93.70 92.70 93.40 92.48

SSNN-200 90.40 91.10 89.90 91.50 92.60 93.70 93.60 92.90 94.80 93.70 94.00 92.56

SSNN-500 90.90 91.60 90.40 91.60 93.00 93.10 94.40 94.20 94.80 94.20 94.80 93.00

SSNN-1000 90.90 91.60 90.70 91.60 93.80 92.90 94.40 94.20 95.50 94.20 93.05 92.99

Average 91.41 91.73 90.85 91.66 92.81 92.53 93.40 93.06 93.63 93.18 93.44 92.53

Number of selected features

A
cc

u
ra

cy
F

1
-s

co
re

R
ec

a
ll

P
ec

is
io

n

is higher than the values produced from Chi-Square and Gain

Ration with margins of 0.16% and 0.45% respectively.

In terms of average accuracy, and when the epoch size is set

to 500, the iSSNN outperforms C4.5, BN, LR, and FFNN

with margins of 0.79%, 1.38%, 1.39%, and 0.15%

respectively when using the Information Gain. In addition,

the average accuracy produced from the iSSNN algorithm

when using the Chi-square outperforms C4.5, BN, LR, and

FFNN with margins of 0.87%, 1.34%, 1.36%, and 0.30%

respectively. Further, the iSSNN algorithm beats C4.5, BN,

LR, and FFNN with margins of 0.53%, 0.97%, 0.88% and

0.39% respectively when using the Gain Ration. Overall, the

high accuracies produced from the iSSNN when using

different feature selection methods are good sign that the

training procedure in the iSSNN algorithm is able to produce

well-structured NN classifiers. Yet, the highest average

accuracy produced from the iSSNN was when the

Information Gain has been used for feature selection at

93.06%. This value bypasses the results achieved from Chi-

Square and Gain Ration with margins of 0.12% and 0.47%

respectively.

In terms of average Recall, we find that the iSSNN algorithm

has been defeated two times from the C4.5 when using Chi-

Square and Gain Ration with margins of 0.23% and 0.45%

respectively when the epoch size is set to 500. However,

when using the Information Gain, we find that the iSSNN

outperforms the C4.5 with a margin of 0.08%. This difference

is relatively small. However, a good classification model is

the model that is able to maximize both Precision and Recall

simultaneously. Yet, from the results, we find that although

the average Recall produced from C4.5 beats the iSSNN

algorithm when using Chi-Square and Gain Ration, the

iSSNN algorithm outperforms the C4.5 in terms of average

Precision with 2.04% and 1.45% when using Chi-Square and

Gain Ration respectively when the epoch size is set to 500.

Such results confirm that the iSSNN algorithm is able to

derive classifiers that show a moderately good performance

on both Precision and Recall. The same scenario is also

happens with FFNN, since the FFNN produced higher

precision than the iSSNN with margins of 0.03% when using

Chi-Square when the epoch size is set to 500. Yet, when

using the same epoch size, the iSSNN produced higher

Recalls than the FFNN with margins of 0.66% and 0.87%

when using Chi-Square and Gain Ration respectively.

Overall, the training procedure utilised when deriving NN

classifiers using the iSSNN algorithm has proven to be

effective in creating well-structured models in terms of

number of hidden neurons and weights space.

IX. SUMMARY

In this article we proposed an improved self-structuring

neural network algorithm that simplifies structuring NN

classifiers. several experiments have been accomplished to

evaluates the applicability of the iSSNN on phishing

websites data set. Three feature selection methods have been

used in order to evaluate these methods and their effect on

the performance of the iSSNN and other considered

classification algorithms. The results show that the iSSNN

algorithm outperformed the considered classification

algorithms in most cases. The classifiers produced from the

iSSNN have been shown to produce a moderately good

performance on both Precision and Recall. However, the

experimental results revealed that the Information Gain is

more effective than other feature selection methods in

improving the performance of the SSNN and other

considered classification algorithms. In general, the

experimental results show that the iSSNN algorithm is able

to produce good NN classifiers.

References

[1] I. Basheer and M. Hajmeer, "Artificial neural networks:

fundamentals, computing, design, and application.," Journal of

Microbiological Methods., vol. 43, no. 1, pp. 3-31, 2000.

[2] M. Arvandi, S. Wu and A. Sadeghian, "On the use of recurrent

neural networks to design symmetric ciphers," Computational

Intelligence Magazine, IEEE, vol. 3, no. 2, pp. 42-53, 2008.

[3] K. M. Alallayah, W. AbdElwahed, M. Amin and A. H.

Alhamami, "Attack of Against Simplified Data Encryption

Standard Cipher System Using Neural Networks," Journal of

Computer Science, vol. 6, no. 1, pp. 29-35, 2010.

[4] M. Al-Ubaidy, "Black-box attack using neuro-identifier,"

Cryptologia (Taylor & Francis), vol. 28, no. 4, pp. 358-372,

2004.

[5] I. Basheer and M. Hajmeer, "Artificial neural networks:

fundamentals, computing, design, and application," Journal of

Microbiological Methods., vol. 43, no. 1, pp. 3-31, 2000.

[6] S. Duffner and C. Garcia, "An Online Backpropagation

Algorithm with Validation Error-Based Adaptive Learning

Rate," in Artificial Neural Networks – ICANN 2007, Porto,

Portugal, 2007.

[7] R. M. Mohammad, F. Thabtah and L. McCluskey, "Predicting

phishing websites based on self-structuring neural network,"

Neural Computing and Applications, vol. 25, no. 2, pp. 443-

458, 2013-B.

[8] R. M. Mohammad, F. Thabtah and L. McCluskey, "Predicting

Phishing Websites using Neural Network trained with Back-

Propagation," in ICAI, Las Vigas, 2013-C.

[9] M. Islam, A. Sattar, F. Amin, X. Yao and K. Murase, "A New

Adaptive Merging and Growing Algorithm for Designing

Artificial Neural Networks," IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp.

705-722, 2009.

[10] T.-Y. Kwok and D.-Y. Yeung, "Constructive algorithms for

structure learning in feedforward neural networks for

regression problems," IEEE Transactions on Neural Networks,

vol. 8, no. 3, pp. 630-645, 1997.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann

and I. H. Witten, "Waikato Environment for Knowledge

Analysis," University of Waikato, 2011. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 20

December 2011].

[12] R. Battiti, "Accelerated Backpropagation Learning: Two

Optimization Methods," Complex Systems, vol. 3, no. 4, pp.

331-342, 1989.

[13] M. Riley, J. Karl and T. Chris, "A Study of Early Stopping,

Ensembling, and Patchworking for Cascade Correlation Neural

Networks," IAENG International Journal of Applied

Mathematics, vol. 40, no. 4, pp. 307-316, 2010.

[14] V. Kesari, L. K. Verma and P. Tripathi, "Image Classification

using Backpropagation Algorithm," Journal of Computer

Science, vol. 1, no. 2, 2014.

[15] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen and T. Sainath, "Deep

neural networks for acoustic modeling in speech recognition,"

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97,

2012.

[16] S. Madhusmita, S. K. Dash, S. Dash and A. Mohapatra, "An

approach for iris plant classification using neural network,"

International Journal on Soft Computing , vol. 3, no. 1, 2012.

[17] R. M. Mohammad, L. McCluskey and F. Thabtah, "Phishing

Websites Data Set," University of California, Irvine, School of

Information and Computer Sciences, 2015. [Online].

Available:

http://archive.ics.uci.edu/ml/datasets/Phishing+Websites.

[Accessed 26 March 2015].

[18] R. M. Mohammad, F. Thabtah and L. McCluskey, "An

assessment of features related to phishing websites using an

automated technique," in International Conference for Internet

Technology And Secured Transactions, 2012, London, 2012 A.

[19] R. M. Mohammad, F. Thabtah and L. McCluskey, "Intelligent

Rule based Phishing Websites Classification," IET Information

Security, vol. 8, no. 3, pp. 153-160, July 2013-A.

[20] Y. Zhang, J. Hong and L. Cranor, "CANTINA: A Content-

Based Approach to Detect Phishing Web Sites.," in The 16th

World Wide Web Conference. WWW '07, Banff, AB, Canada.,

2007.

[21] M. Aburrous, M. A. Hossain, K. Dahal and F. Thabtah,

"Intelligent phishing detection system for e-banking using

fuzzy data mining," Expert Systems with Applications: An

International Journal, vol. 37, no. 12, pp. 7913-7921,

December 2010 C.

[22] N. Abdelhamid, A. Ayesh and F. Thabtah, "Phishing detection

based Associative Classification data mining," Expert Systems

with Applications, vol. 41, no. 13, p. 5948–5959, 2014.

[23] H. Y. Mansour and H. A. Alshihri, "Adapting associative

classification for detecting phishing websites," in The First

Summit on Countering Cyber Crimes, Riyadh, 2015.

[24] Y. Pan and X. Ding, "Anomaly Based Web Phishing Page

Detection," in The 22nd Annual Computer Security

Applications Conference (ACSAC), Miami Beach, Florida,

USA, 2006.

[25] J. Ma, L. K. Saul, S. Savage and G. M. Voelker, "Identifying

suspicious URLs: an application of large-scale online

learning," in The 26th Annual International Conference on

Machine Learning, Montreal, Canada, 2009.

[26] M. Aburrous, M. A. Hossain, K. Dahal and F. Thabtah,

"Predicting Phishing Websites using Classification Mining

Techniques," in The Seventh International Conference on

Information Technology, Las Vegas, Nevada, USA, 2010 B.

