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Abstract: A method to obtain unambiguous surface height measurements 
using wavelength scanning interferometry with an improved repeatability, 
comparable to that obtainable using phase shifting interferometry, is 
reported. Rather than determining the conventional fringe frequency-
derived z height directly, the method uses the frequency to resolve the 
fringe order ambiguity, and combine this information with the more 
accurate and repeatable fringe phase derived z height. A theoretical model 
to evaluate the method’s performance in the presence of additive noise is 
derived and shown to be in good agreement with experiments. The 
measurement repeatability is improved by a factor of ten over that achieved 
when using frequency information alone, reaching the sub-nanometre range. 
Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced 
by a factor of ten. These order of magnitude improvements in measurement 
performance are demonstrated through a number of practical measurement 
examples. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 
License. Further distribution of this work must maintain attribution to the author(s) and the 
published article’s title, journal citation, and DOI. 
OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.3180) 
Interferometry; (120.6650) Surface measurements, figure; (120.4640) Optical instruments; 
(120.2650) Fringe analysis. 
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1. Introduction 

Interferometry is a widely-used technique to measure displacement and, when combined with 
an optical microscope, can allow the measurement of areal surface topography. The most 
common areal interferometry techniques for surface topography measurement are phase 
shifting interferometry (PSI) and coherence scanning interferometry (CSI), and many 
algorithms to estimate the surface heights from the interference fringes exist for these 
techniques [1–6]. 

Wavelength scanning interferometry (WSI) is a competing technique due to its potential 
for very short measurement times since its operation does not require a mechanical scan, at 
the expense of a measurement range limited by the objective lens depth of focus [7–11]. The 
most common method of surface extraction used by state-of-the-art WSI instruments utilises 
only the phase change information obtained from the fringe data [12–14]. Improvement in the 
measurement performance of the WSI technique has been previously reported by combining 
the phase change (i.e. the frequency) and the absolute phase of the fringe pattern to measure 
plate thicknesses and refractive index [15] and for point-like displacement measurement with 
a heterodyne interferometer [16]. Other techniques exist for measuring surfaces or film 
thicknesses with WSI instruments, which also exploit the absolute phase information that is 
available. These methods include phase estimation through Fourier transform (FT) [17], 
model-based techniques [18] or PSI algorithms to suppress spurious reflections [19]. 
However, the FT and model-based techniques require the assumption that the surface is 
continuous to unwrap the ambiguous phase, therefore, limiting their application. Furthermore, 
the FT method is subject to errors due to spectral leakage [20], and the model-based 
techniques are computationally intensive. PSI algorithms must be designed for specific 
frequencies, requiring foreknowledge of the interference pattern frequency. 

In this paper, we describe how the demodulated phase can be employed to obtain absolute 
areal surface topography measurements using WSI, with repeatability comparable to PSI and 
CSI, without the assumption of surface continuity or previous knowledge of the interference 
pattern frequency. A similar development was a key step in improving the performance of 
CSI instruments [4,21]. Additionally, we describe an analytical model to quantify the 
improvements when estimating the surface via phase change or absolute phase in presence of 
additive noise. The method, hereby described, permits the development of adaptive linear 
filtering algorithms that can be tuned for the specific needs of WSI [3,22], resulting in an 
accurate and computationally fast algorithm for WSI instruments. 

This paper is structured as follows: section 2 introduces the interferometric technique with 
a particular focus on WSI and the optical configuration, section 3 describes in detail how to 
combine phase and frequency to resolve the fringe order and improve the estimation of the 
surface height for WSI. Section 4 describes the model to calculate the Cramer-Rao bound 
(CRB) for the estimation of height for the standard method and the improved method 
proposed here. Section 5 reports on a variety of measurements to demonstrate the 
improvements and section 6 is a conclusion. 

2. Interferometer technique 

The intensity of an interference signal can be written as: 

 ( , ) ( )[1 ( ) cos(2 )]m mI k z q k V k kzπ= +  (1) 

where k is the wavenumber of the interfering light, zm is the optical path difference (OPD) 
between the measurement and reference arm of the interferometer, q(k) is the signal 
background and V(k) is the fringe visibility. In PSI and CSI, the phase is modulated by 
changing zm, i.e. by moving the sample or the reference mirror whilst the illumination (k) is 
kept constant. In WSI, the phase is instead modulated by changing the wavelength, i.e. by 
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modifying the magnitude of  and keeping fixed the reference mirror. In Fig. 1, examples of 
interferograms for PSI, CSI and WSI are shown. 

In PSI, the surface height is estimated via estimation of the initial phase of the interference 
signal. The PSI measurement repeatability is limited by phase noise due, for example, to 
environmental instability, and ultimately by camera noise. Measurement repeatability for PSI 
instruments is typically in the sub-nanometre range [1]. The estimated phase is known modulo 
2π and, therefore, an ambiguity in the fringe order is present when measuring surfaces with a 
discontinuity larger than a quarter wavelength of the interfering light. 

In CSI, a broadband light source is used to obtain a short temporal coherence length, i.e. 
observing high-contrast fringes only when the OPD between the reference and the 
measurement arm is within the coherence length of the source. Peak detection of the 
coherence envelope [6,23,24] or Fourier analysis [4] can provide an initial unambiguous 
estimation of the surface height. The initial height estimation can be combined with phase 
information to obtain unambiguous measurement with a repeatability comparable to PSI 
[4,21,25,26]. The main disadvantage of CSI, as with PSI, is the need for mechanical scanning 
of a surface through the focus, which leads to a measurement time that is proportional to the 
surface height range. 

In WSI, the phase change that is introduced by the wavenumber change is proportional to 
the OPD and, therefore, unambiguous measurement of surface height is obtained by 
estimating the rate of phase change (i.e. the instantaneous frequency) of the fringe pattern 
[8,9,11,12,27–30]. The wavenumber changes used in WSI can be made much faster than the 
mechanical scans used in both PSI and CSI, resulting in shorter measurement times, but at the 
expense of a measurement range limited by the objective lens depth of focus. 

 

Fig. 1. Example interferograms from a) PSI, b) CSI and c) WSI. 

The WSI instrument used in this study can be divided into three major component blocks 
(see Fig. 2): the light source, the interferometer and the control electronics. The light coming 
from a white-light halogen bulb is collimated and filtered by an acousto-optic tuneable filter 
(AOTF). By changing the vibration frequency of the AOTF crystal, only one wavelength is 
selected and coupled into the fibre. The light delivered from the fibre is collimated and passed 
into a Linnik interferometer. The light reflected by the reference mirror and the sample 
recombines producing an interference signal that is imaged on a CCD camera. For the 
instrument studied here, the scanned wavelength interval is from 695.2 nm to 589.1 nm, 
corresponding to wavenumbers from 1.43 µm−1 to 1.70 µm−1. 

The algorithm employed to demodulate the phase from the fringe pattern is that described 
by Takeda et. al [31]. For WSI, it is possible to distinguish positive and negative OPDs by 
recording a quadrature interference signal [29]. In all cases, the signal processing step focuses 
on demodulating the phase: 

 0 0( ) 4 4 4 ( )m m mk kz k z k k zϕ π π π= = + −  (2) 

from which the instantaneous frequency provides an absolute estimation of the z-height: 

#258089 Received 22 Jan 2016; revised 10 Mar 2016; accepted 8 Apr 2016; published 15 Apr 2016 
© 2016 OSA 18 Apr 2016 | Vol. 24, No. 8 | DOI:10.1364/OE.24.008997 | OPTICS EXPRESS 9000 



 1
4mz

k
ϕ

π
∆

=
∆

 (3) 

However, the initial phase (4πk0zm where k0 is the initial wavenumber) also carries 
information regarding the z-height. The following section describes how to improve the 
measurement performance by combining both the frequency and phase information. 

 
Fig. 2. WSI setup. Top left block: control and computing electronics. Bottom block: 
wavelength sweeping light source by means of an acousto-optic tuneable filter (AOTF). Top 
right: Linnik type interferometer with optional reference mirror control for vibration 
compensation [9]. 

3. Phase and fringe order determination 

The demodulated phase, including the effect of dispersion and phase change upon reflection, 
can be written as: 

 0 0 0 0( ) 4 4 ( ) ( )k k z k k z k kϕ π π τ γ= + − + − +  (4) 
In Eq. (4), the first term on the right hand side is the initial phase of the fringe pattern, the 

second term relates to its frequency, which is proportional to the difference in the optical path 
between the measurement and reference arm (2z), the third term (τ) takes into account the 
dispersion difference between the interferometer arms, and 0γ  is the phase bias and/or phase 
change on reflection. These terms are summarised schematically in Fig. 3. 
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Fig. 3. Explanatory plot of terms in the demodulated phase, Eq. (4). The measured phase 
differs from the ideal value due to dispersion (τ) and phase change upon reflection (γ0). 

In WSI, the absolute height measurement is usually performed through estimation of the 
instantaneous frequency. The instantaneous frequency is calculated by taking the derivative of 
Eq. (4): 

 1 ( )
4 4 4f

d zz z
dk
ϕ τ d

π π π
= = + +  (5) 

where the estimated height fz , is different from the “true” height z . Dispersion causes the 
absolute height measurement to differ from the “true” value when estimated through the 
frequency of the interference pattern. An additional error δ  in the height estimation through 
the frequency is included: this error is known as “ripple error” or “fringe-bleed through” [32]. 
The ripple error is a consequence of the algorithm’s varying performance which depends on 
the frequency of the processed fringe pattern [20]. This error is a function of the z-height and, 
therefore, unknown a priori. Assuming τ  and δ  are known, the estimated value of z with the 
corrections is: 

 1ˆ ( ) .
4f

dz z
dk
ϕ τ d

π
 = − − 
 

 (6) 

The z-height can also be estimated using the phase intercept. The fringe pattern phase at 
the initial wavenumber ( 0k ) is known with a 2π phase ambiguity and is shifted by the phase 
change upon reflection: 

 0 0 0( ) 4 ambk k zϕ π γ= +  (7) 

where zamb is the ambiguous z-height estimated through the phase. The unambiguous z-height 
is then: 

 0 0 0

0 0 0 0 0

( )1 1 1
4 2 4 2 4p amb

k m mz z z
k k k k k

ϕ γ γ
ppp 

= + = + + = +  (8) 

where m is an integer specyfing the fringe order. The phase change on reflection has the effect 
of adding a bias to the phase estimation. By subtracting the offset due to the phase change on 
reflection from the phase, if it is known, the unambiguous estimated z-height through the 
phase is: 
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 ( )0 0
0

1ˆ ( ) 2
4

z k m
k

ϕ π γ
π

= + −  (9) 

Figure 4 shows a profile of a measured tilted flat both via the frequency and the 
ambiguous phase. 

 
Fig. 4. Example of tilted flat profile measurement. zf is the unambiguous measurement via 
estimation of the frequency of the fringe pattern. zamb is the ambiguous profile measurement via 
estimation of the phase of the fringe pattern. 

The fringe order can be recovered from the unambiguous zf, thus 

 ' 0 0
0

0

( )1 ( ) 2
4

k
m Round h Round z k

k k
ϕ γϕ d τ

π
  −∆ = = − − −    ∆   

 (10) 

where h’ is the data used to calculate the fringe order and Round is a function rounding to the 
nearest integer. zf forms a stair-like shape by subtracting the phase and rounding to the closest 
integer (see Fig. 5). 

In general, δ , τ  and 0γ  are not known a priori. ( )zδ  is a function of the measured 
displacement, and both τ  and 0γ  may not be constant across the instrument’s field-of-view. 
The fringe order can be estimated via Eq. (10) assuming 0( ) 0zδ τ γ= = = . This assumption 
does not cause errors in the fringe order determination if the following condition is satisfied: 

 0

0 0

1 1
4 4k k

γ
δ τ

π
 

+ − < 
 

 (11) 

i.e. if the ripple plus the offsets (dispersion and phase change on reflection) are not larger than 
each half stair jump (see Fig. 5). 
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Fig. 5. Fringe order determination. The profile h’ can be employed to determine the fringe 
order m. 

This is satisfied in the WSI considered here, since the value of / 4δ π  is in the range of ± 
40 nm, whilst the coefficients τ and γ0 are estimated to cause an offset smaller than one fifth 
of the fringe order step (≈350 nm). Finally, the zp profile can be obtained from the determined 
fringe order and the phase according to Eq. (9). The difference between the profile measured 
via estimation of the frequency and the phase can be compared by subtraction, see Fig. 6. 

 

Fig. 6. a) Tilted flat profile measured via estimation of the frequency and via the phase. An 
offset of 1 µm has been added for clarity. b) Difference between the two profiles. 

The difference between the two profiles is equal to the difference between Eq. (5) and Eq. 
(8): 

 0

0

1 ( )
4f pz z z z

k
γ

τ δ
p
 

∆ = − = + − 
 

 (12) 

The ripple ( )zδ  is a major source of error in the measured profile with the standard WSI 
technique, i.e. estimation through only the frequency. The effect of ripple error on the 
measurement is completely removed by employing the frequency derived z-height only to 
resolve the fringe order for the ambiguous phase derived z-height, provided the ripple satisfies 
the condition specified in Eq. (11). Further research is required to estimate the distribution of 
the coefficients τ  and 0γ  relative to the systematic effects of the optics of the interferometer 
(sometimes referred to as the phase gap analysis [21]). 
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4. Cramer Rao Bound for frequency and phase estimation 

A model has been developed to compare the performances of the z-height estimation through 
the frequency or the phase in the presence of additive noise. In the measurement, the surface 
z-height should be estimated from N observations (samples) of the interference pattern. The 
observational model perturbed by an additive random effect is given by: 

 ( ) ( ) , [0,..., 1]n n nI S W n N= + ∈ −α α         (13) 

where In(α) is the nth observation point, i.e. the intensity recorded at the nth wavenumber kn, 
Sn(α) is the modelled ideal system response where α is the vector of unknown parameters and 
Wn is a random effect. For a given set of wavenumbers 1

0{ }N
n nk −

= , Sn(α) describes an N-

dimensional model surface in p, where p is the number of parameters in the vector α and N is 
the number of observed points. The observed data vector In(α) is the perturbed system 
response from the ideal response Sn(α), where α describes the true state of the system (see Fig. 
7). 

 
Fig. 7. System model response and its linear approximation. The ideal fringe pattern intensities 
observed at N points are a function of the model parameters α to the vector of observed data 
S(α) . Noise causes the observations to not be exactly at the ideal point along the system 
response curve, but in a point cloud around the ideal. The statistical property of the noise can 
be propagated to obtain the uncertainty of the model parameters. 

In vectorial form, Eq. (13) can be written as: 

 ( )I S W= +α  (14) 
The noise vector W is assumed zero-mean, white additive Gaussian noise and therefore its 

uncertainty matrix (also called covariance or dispersion matrix) is equal to 
2[ ]WU COV W σ= = ℑ , where ℑ  is the identity matrix. The uncertainty matrix is a matrix 

whose elements in the i,j position is the covariance between the i-th and the j-th elements of a 
vector of random variables. If the system response is linear, then ( )S α  is a linear function of 
the parameter α , and the maximum-likelihood estimation method is of least-squares form 
[33]. Furthermore, if the estimation is unbiased, it is possible to propagate the effect of W to 
obtain the uncertainty matrix LSU  associated with the least-squares estimate LSα . If the 
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system response ( )S α is not linear, the estimator is not biased and the noise is sufficiently 
small, the problem can still be linearized around the solution NLα  to determine an 
approximate uncertainty matrix NLU  [33]: 

 2 1[ ]T
NLU J Jσ −≈  (15) 

where J is the Jacobian matrix of the system response at the solution NLα  defined as: 

 ( )
[0,..., 1]; [0,..., 1]

NL

n
nj

j

S
J n N j p

α α
α

=

∂
= ∈ − ∈ −

∂
α

       (16) 

The result of Eq. (15) and Eq. (16) is also known as the Cramer-Rao bound (CRB) and is a 
known result in the signal processing field both for real and complex tone estimation [34]. 
The CRB establishes a lower bound on the variance of the estimation of a deterministic 
parameter from measured data with additive noise [35]. For clarity, the CRB is adapted for the 
case in which the frequency, the amplitude and the phase are the unknown, and the z-height is 
the aim of the estimation. 

For the case in which a complex fringe pattern is recorded, the system model is: 

 0 0[4 4 ( ) ]([ , , ]) [0,..., 1]p n fi k z k k z
n f pS b z z be n Npp + −= ∈ −          (17) 

where the parameter model vector [ , , ]f pb z z=α , i.e. the model unknowns are the amplitude, 
and two z-heights proportional to the frequency and phase. The propagated variance in the 
parameters estimation due to a perturbation in the observed data is: 
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where 
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where the substitution 0nk k n kδ− =  and the formulae for the sum of the first (N – 1) integers 

and the sum of their squares have been used (
1 1
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0 0

( 1) ( 1)(2 1);
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The inverse of a symmetric matrix has an analytical solution: 

 2 1 2 [ ][ ]
[ ]

T
T

NL T

adj J JU J J
det J J

σ σ−≈ =  (23) 

where adj is the adjugate matrix of its argument and det the matrix determinant [36]. The 
adjugate matrix is the transpose of the cofactor matrix and, therefore: 
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The elements along the diagonal of the matrix UNL are the propagated variance in the 
estimation of the parameters in the system model vectorα , i.e. the minimum achievable 
estimation variance in the presence of additive noise for the amplitude, the z-height estimated 
via the frequency and via the phase of the fringe pattern. Expanding the different 
contributions leads to: 
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and, therefore: 
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where the substitution N k kδ = ∆ has been used, and the approximations are valid for large N. 
df and dp are the variance in the estimation of the z-height via the frequency or the phase. The 
variance is always proportional to the inverse of the signal to noise ratio 
( 2 2

1010 log [ / ]SNR b σ= ). The z-height estimation variance via the frequency is inversely 
proportional to the square of the wavenumber range ( N k kδ = ∆ ), i.e. increasing the 
wavenumber range decreases the variance of the frequency estimation. Additionally, the 
phase and frequency variance is inversely proportional to the number of samples. The 
estimation via the phase is inversely proportional to the square of the wavenumber for which 
the phase is evaluated ( 0k ). In a wavelength period, the phase varies by 2π and, therefore, 
shorter wavelengths (larger wavenumbers) reduce the variance in the z-height estimation 
through the phase, as expected. For performance evaluation it is more convenient to use the 
root mean square error (RMSE) of the z-height estimation, being equal to the square root of 
the variance. For example, for a SNR of 20 dB ( / 10b σ = ) and 128 samples, the z-estimation 
RMSE through the frequency for a wavenumber range of 1.66 µm−1 to 1.43 µm−1 (wavelength 
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range from 600 nm to 700 nm) is approximately 10 nm. On the other hand, the z-estimation 
RMSE through the phase for a wavenumber of 1.43 µm−1 and, with the same parameters as 
the frequency estimation, is approximately 1 nm. The ratio between the RMSE through the 
frequency and the phase, for large N, is equal to: 
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d Nk k
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which, for the wavenumber values reported above corresponds to an improvement of the 
RMSE of the z-height estimation of approximately ten. 

For the case where N is equal to 2, the model agrees with the improvement discussed by 
de Groot [1] for Fourier analysis of CSI interferograms and it is equal to: 

 02f

p

d k
d k

=
∆

 (31) 

Figure 8 shows the results of the simulation of the RMS error of the z-height estimation as 
a function of the number of samples and SNR from the frequency (left) and from the phase 
(right). The wavenumber range employed for the estimation through the frequency is 1.43 
µm−1 to 1.70 µm−1 (corresponding to a wavelength range of 695.2 nm to 589.1 nm) and the 
estimation through the phase is for the initial wavenumber 1.43 µm−1. 

 

Fig. 8. Comparison of RMS error of z-height estimation through the fringe pattern frequency 
(a) and through the phase (b) as a function of the SNR and the number of samples (N). 

The improvement is approximately an order of magnitude for all cases. The RMS error 
reaches sub-nanometre values for every number of samples for a SNR above 25 dB, 
corresponding to a noise amplitude of approximately 6% of the fringe visibility. 

5. Experimental results 

To evaluate the improvements achieved, comparisons using surface measurements are 
reported. It should be noted that in a real WSI instrument, the fringe visibility decreases when 
further away from the zero OPD position and, therefore, the SNR and resulting measurement 
performance will vary within the instrument’s measurement range. 

In Fig. 9(a) and Fig. 9(b) an example of step height measurement via frequency and via 
phase estimation, respectively, is shown. The step height has a calibrated height of 12.6 µm ± 
0.1 µm (coverage factor k = 2) as measured with a contact stylus. The number of frames 
acquired for this measurement (N) is equal to 256. An ISO 5436 step height analysis is also 
shown on the profile obtained as the average of the individual profiles with the corresponding 
measured step height. In order to estimate the measurement noise for the step height top and 
bottom planes, the root mean squared height (divided by the square root of two) of the 
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subtraction of two repeated measurements is considered, hereby referred to as Nm [37], for the 
estimation via frequency and via phase (Fig. 9(c) and Fig. 9(d) respectively). On both planes 
the measurement noise is reduced by an order of magnitude. Note that no spatial filtering has 
been applied in both cases. 

 
Fig. 9. Measurements of a 12.5 µm step height.a) surface and ISO 5436 analysis of step height 
via frequency estimation. b) surface and ISO 5436 step height analysis via phase estimation c) 
Measurement noise via frequency estimation and d) measurement noise via phase estimation. 

In Fig. 10 the measurement noise is shown as a function of the number of samples 
recorded. The noise scales as the square root of the number of samples in agreement with the 
model. Acquiring fewer samples allows for faster measurements but increases the value of the 
measurement noise. The minimum number of samples required is given in accordance to the 
Nyquist-Shannon theorem [36]. The measurement speed is ultimately limited by the camera 
frame rate. For 2 × 128 acquired samples the measurement time is 1.25 s for a 200 fps 
camera, allowing measurements of z-heights in the range ± 120 µm, limited by the objective 
lens depth of focus. For comparison, a CSI fringe acquisition of the same vertical range would 
need to step the piezo-transducer by 71 nm per camera frame [39]; with the same camera the 
entire acquisition would take at least 16.9 s. For the specific implementation presented here, 
the measurement noise including the effect of the measurement time is 6.9 nm Hz  via 

frequency estimation and 0.65 nm Hz  via phase estimation, mainly limited by the power of 
the light source. 
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Fig. 10. Noise as a function of samples acquired for measurement via frequency estimation, 
and phase estimation. In both cases the noise is compared with the square root of the number of 
samples acquired curve. Note the different scales for the two curves. 

In Fig. 11, two measurements of an areal cross grating (type ACG) surface with a nominal 
height of 15 nm are compared. The improvement is clearly noticeable when comparing two 
profiles. The profile estimated via the frequency shows a higher level of noise, bias in the step 
height measurement and edge artefacts. The profile measured via the phase shows a lower 
level of noise, a consistent step height profile measured and minimal edge artefacts. 

 
Fig. 11. Areal surface topography measurements and extracted profiles of a 15 nm nominal 
type ACG surface using z-height estimation via the frequency (a) and via the phase (b). 

The unwanted bleed-through or ripple-error [32], discussed in section 3, is caused by bias 
in the frequency estimation depending on the value of the frequency to be estimated [20]. The 
ripple can be observed by measuring a tilted flat. The levelled surface shows ripples 
perpendicular to the direction of the tilt (see Fig. 12). For the measurement via estimation of 
the frequency, the ripples have an amplitude of the order of tens of nanometres ( ± 20 nm), 
whilst for the phase case, the ripples are reduced by an order of magnitude ( ± 2 nm). These 
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axis non-linearities may be due to non-linearity in the light source wavenumber scan, or the 
phase demodulation algorithm’s sensitivity to these non-uniform phase shifts. 

 
Fig. 12. Areal surface topography measurements and extracted profiles of a calibrated tilted flat 
(maximum surface height Sz of 17.5 nm at coverage probability of 95%) using z-height 
estimation via the frequency (a) and via the phase (b). 

In Fig. 13 measurement profiles of a steel sphere obtained with the two methods are 
compared. The measurement via frequency estimation shows significant ripple errors, while 
the ripples are not visible using the phase method. However, for high-sloped surfaces, fringe 
order errors begin to appear. Fringe order determination error correction has been reported by 
Ghim et al. [25] for CSI and similar improvements may be possible in WSI. The erroneous 
fringe order determination could be attributed to surface gradient-dependent effects due to the 
finite objective lens numerical aperture (NA) and optical aberrations [40]. The measurements 
reported here are designed to show the level of improvement with the new method and they 
do not account for all the effect on the measurement uncertainty of all the instrument’s 
various metrological characteristics [41,42]. 

 
Fig. 13. Profile of steel sphere measurements via estimation of the frequency (a)and the phase 
(b). 
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6. Conclusion 

It has been shown that it is possible to combine the fringe frequency and phase information 
acquired in WSI to obtain absolute measurement of heights with repeatability comparable 
with PSI and CSI. The possible sources of error are included and their effects have been 
discussed. An analytical model has been described that allows the calculation of the minimum 
achievable RMSE in the estimation of height from phase and frequency in the presence of 
Gaussian additive noise, showing a theoretical improvement of the measurement repeatability 
by a factor of approximately ten, which is in agreement with the experiments. Moreover, the 
method is also shown to reduce the vertical axis non-linearity by a factor of ten. 

By implementing this method, the useful dynamic range of WSI can effectively be 
extended and comparisons using practical measurement examples clearly show the achieved 
performance improvements. Coupled with the increased measurement speed offered by WSI, 
this method broadens the potential applications of the technique for high-speed metrology at 
the nanoscale. 
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