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Abstract 

The stoichiometry of the metal complexes formed between nickel and the ligand β-

glucoisosaccharinic acid (β-GISA) and a racemic mixture of enantiomers of 

xyloisosaccharinic acid (XISA) has been determined at both neutral and alkaline 

pHs. Bjerrum plots, Job’s plots and conductance measurements indicated that for 

each of the systems one to one Ni(ligand) complexes were formed at near neutral 

pHs (<7.5). At intermediate alkaline pHs (7.5-13) there is evidence to support the 

formation and precipitation of Ni2(ligand)(OH)3 complexes, finally, at high pH (>13) 

sparingly soluble Ni2(ligand)(OH)4 complexes were formed. 

The stability constants for the Ni(β-GISA), Ni(α-GISA) and Ni(XISA) complexes 

formed at neutral pH were determined under identical conditions using polarographic 

studies. The measured stability constants for Ni(β-GISA) (log10 β=1.94± 0.15) and for 

Ni(α-GISA)( log10 β=2.07± 0.13)  are very similar, the value measured for the 

Ni(XISA) complex (log10 β=0.83) was an order of magnitude smaller.  

The stability constants for the Ni2(Ligand)(OH)4 complexes formed at highly alkaline 

pHs were determined using the Schubert method. The measured stability constant 

for Ni2(β-GISA)(OH)4 (log10 β=30.6 ± 0.5) was an order of magnitude bigger than the 

value for Ni2(α-GISA)(OH)4 (log10 β=29.0 ± 0.5) measured under identical conditions.  

Attempts to measure the stability constant for Ni2(XISA)(OH)4 were unsuccessful; 

Ni2(XISA)(OH)4 complexes were not present in significant amounts at high pH to 

allow the log10β value to be determined by the Schubert method. 
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1. Introduction 

Under alkaline conditions cellulosic and hemicellulosic materials undergo partial 

depolymerisation by the ‘peeling’ reaction1-3 to generate a wide variety of ‘cellulose 

degradation products’ 4-6 (CDP). In aqueous alkaline solutions and at low 

temperatures saccharinic acids7,8, α- and β-glucoisosaccharinic acids (α-GISAs 1 

and β-GISA 2)9 derived from cellulose and xyloisosaccharinic acid (XISA-3) 10,11 from 

the arabinoxylan fraction of plant cell walls,  which are the most abundant 

components of CDP representing up to 80% of the total mass9,12.  
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There is growing interest in saccharinic acids for two different reasons: firstly, during 

the alkaline pulping of wood, in the manufacture of paper and card based products, 

large amounts of saccharinic acids and other hydroxyl acids are generated as waste 

products 11,13,14. Pulp manufacturers would like to be able to isolate saccharinic acids 

and to develop commercial uses for them. The second reason why saccharinic acids 

are of interest is related to the influence that CDP have on the safe disposal of 

intermediate level radioactive waste15-19. It has been recognised for a number of 

years that the saccharinic acids generated during the depolymerisation of the 

cellulose and hemicelluloses present in waste storage facilities have the potential to 

complex with radionuclides20-22. It has been shown that complex formation increases 

both the aqueous solubility of radionuclides and their mobility within the ground water 

of a disposal facility23 19 24-26  
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Supplies of α-GISA are available through the treatment of lactose with a saturated 

solution of calcium hydroxide27 and material synthesised using this method have 

been used to determine the complexation ability of α-GISA with a large number of 

different metals 28,29 24,25,30,31. Warwick et al have reported the stoichiometry and 

stability constants for the formation of nickel α-GISA complexes32 and the complexes 

formed with uranium30. Evans et al have studied α-GISA complexes with europium, 

cobalt and strontium24. Vercammen et al have studied the complexes of α-GISA with 

europium and thorium29 and Rojo et al have studied α-GISA complexation with 

Pu(IV) and Tc(IV)33. Rai et al have studied the thermodynamics and reactions of 

GISAs with calcium, thorium and neptunium34,35.  

To date, similar studies of the complexes formed by β-GISA and XISA have not been 

performed. In this paper we report the results of our investigation of the stoichiometry 

of the complexes formed between nickel and the three ligands α-GISA, β-GISA and 

XISA, at both neutral and alkaline pHs, and the measurement of the stability 

constants of the corresponding nickel complexes. 
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2. Results and Discussion 

2.1 Determination of the stoichiometry of nickel β-GISA and nickel XISA complexes 

at different pHs and comparison with those for α-GISA 

The procedures used to explore the stoichiometry of the complexes formed between 

nickel and the ligands were the same as those that have been previously employed 

to study nickel gluconate36 and nickel α-GISA complexes32. For the nickel α-GISA 

complexes, the stability constants measured by Warwick et al32 at neutral pH 

(log10β=2.20-2.58) indicated relatively weak binding of nickel and the formation of a 

one to one complex Ni(α-GISA) whilst at high pH (>10) a considerably larger stability 

constant (log10β=29.9) for the formation of Ni2(α-GISA)(OH)4 was measured. In order 

to determine if β-GISA and XISA behave in a similar manner, the effect of the 

addition of nickel nitrate to solutions containing these ligands and also α-GISA was 

studied at various pHs. In the first instance, the systems were studied using UV-vis 

spectroscopy. For all three ligands, addition of nickel nitrate at neutral pH generated 

soluble green complexes, as the pH was raised above 7.5 crystalline solids 

precipitated and this precipitate was visible until the pH rose to above 12. At pHs of 

13 and higher, when working in dilute solution, a second soluble green complex was 

formed.  

 

2.1.1 Bjerrum plots37 

To determine the ratio of nickel to hydroxide in the various different complexes, a 

series of titrations were performed in which the nickel to hydroxide ratio was varied 

whilst keeping the nickel to ligand ratio constant. Four separate Bjerrum plots were 

constructed: one for a solution of nickel and β-GISA, one for a solution of nickel and 
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XISA, one for a solution of nickel and α-GISA and, for comparison purposes, a 

Bjerrum plot was also produced using identical conditions for the complex formed 

between nickel and gluconic acid (Fig. 1). 

 

Figure 1. Bjerrum plots; showing the change in pH on the addition of aliquots of a 
solution of sodium hydroxide ((0.1M) to a solution containing nickel (0.01M) and 
ligand (0.01M; circles: sodium gluconate; diamonds: sodium xyloisosaccharinate; 
triangles: sodium beta-glucoisosaccharinate and squares: sodium alpha-
glucoisosaccharinate). The change in pH is plotted as a function of the ratio of OH to 
Nickel. 
 

It is clear from the Bjerrum plots that all four ligands behave in a similar manner with 

the first inflection points in the plots being observed close to pH 8 when the nickel to 

hydroxide ratio was 2:3 (Ni2[OH]3[L]x). Further addition of hydroxide increased the 

solution pH from 8 to 10 and this corresponded to the pH range in which solid 

precipitated from solution. At higher pHs the complexes become soluble again and a 

second inflection point was observed close to pH 10.5, at which point the nickel to 

hydroxide ratio was 1:2. It has previously been shown that for the gluconate and α-

GISA systems the complexes formed at high pH have Ni2[OH]4[L]x  stoichiometry32. 
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2.1.2 Conductometric titrations 

In order to determine the ratio of nickel to ligand in the complexes formed at neutral 

pH and to confirm the ratio of nickel to ligand in the complexes formed at alkaline 

pHs, a range of conductometric titrations were performed in which solutions of 

ligands were titrated with nickel (at neural and high pH). At neutral pH, all three 

systems behaved in a similar manner: initial addition of the nickel nitrate to the 

ligands caused the conductance to increase linearly until one equivalent of nickel 

had been added (Fig. 2; 0-20 mL) after this point a small increase in the slope of the 

plot was observed (Fig. 2; 20-40 mL). 

 

Figure 2. Titration A, plot of the changing conductance of a neutral solution (pH 7) 
containing ligand (20 mL, 0.1M; diamonds: sodium xyloisosaccharinate; triangles: 
sodium beta-glucoisosaccharinate and squares: sodium alpha-glucoisosaccharinate) 
on the addition of aliquots of nickel nitrate (0.1M).  
 

The results of the conductivity experiments are indicative of a rapid formation of a 

one to one complex of ligand with nickel at neutral pH; the initial increase in the 

conductance of the solution is due to the formation of the monocationic NiL complex 
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and the addition of nitrate anion; once all the free ligand has been consumed the 

slope increases as additional dicationic nickel and nitrate anions are added. 

 When the same experiments were repeated starting at a high pH (13), again each of 

the systems generated similar conductance profiles. At the start, the conductance of 

the solutions decreased (Fig 3) as complex formation removed ions from solution. 

Once the available free ligand had been consumed, further addition of both nickel 

and nitrate ions caused the conductance to increase (Fig. 3). The minimum in the 

curve was observed close to the point at which the nickel to ligand ratio was 2:1 and, 

combining this result with those of the Bjerrum plots, these results suggest that the 

stoichiometry of the complex being formed at high pH is Ni2(Ligand)(OH)4 and this is 

also in agreement with the stoichiometry determined by Warwick et al32 for α-GISA. 

 

Figure 3. Titration B, plot of the changing conductance of an alkaline solution (pH 
13) containing ligand (15 mL, 0.1M; diamonds: sodium xyloisosaccharinate; 
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triangles: sodium beta-glucoisosaccharinate and squares: sodium alpha-
glucoisosaccharinate) on the addition of aliquots of nickel nitrate (0.1M).  
 

There is a small variation in the position of the minima in the titration curves carried 

out at high initial pH, this is likely to be a consequence of the drop in the pH of the 

system as the experiments were performed (data not shown) and a shift in the 

speciation of the metal to the mono-nickel species as the pH moves considerably 

below 13.  

 

Figure 4. Titration C, plot of the changing conductance of an alkaline solution (pH 
13) containing ligand (10 mL, 0.1M; diamonds: sodium xyloisosaccharinate; 
triangles: sodium beta-glucoisosaccharinate and squares: sodium alpha-
glucoisosaccharinate) on the simultaneous addition of equal volumes of nickel nitrate 
(0.1M) and sodium hydroxide (0.2M).  
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The pH drops as hydroxide ion is removed in the formation of M2(L)(OH)4 and 

M(OH)n complexes. In order to avoid any changes in pH, an additional set of 

conductance measurements was made in which the ligand was titrated with a 

mixture of nickel and hydroxide in the ratio of 1:2; the value was chosen to represent 

the ratio of nickel to hydroxide in the complex formed at high pH, as determined in 

the Bjerrum plots. The new conductance profiles (Fig. 4) for the three ligands are 

very similar but, unfortunately, only a very subtle decrease in the slope was 

observed once all the available ligand was complexed. To a first approximation, the 

point of inflection in the plots occurs close to the point at which the ratio of metal to 

ligand is two to one and the result supports the M2(L)(OH)4 stoichiometry proposed 

for each of the complexes formed at high pH. 

 

2.1.3 Spectrophotometric studies 

Further confirmation of the stoichiometry of the complexes formed at neutral pH was 

achieved by studying the UV-visible spectra of solutions of the complexes and using 

Job’s method38 of continuous variations. Initial studies of the UV-absorption spectra 

for the various complexes formed at both neutral and high pH identified a main 

absorption band at 393 nm.  

2.1.3.1 Job’s method38,39 

In Job’s method of continuous variation the concentration of ligand was increased 

from 0 M to 0.05 M whilst the concentration of nickel in solution was reduced from 

0.05 to 0 M and the experiments were maintained at constant ionic strength. When 

the experiment was performed at neutral pH the absorption at 393 nm increased as 

the mole fraction of nickel in the system increased (Fig. 5); the absorption increase 

matching the increased formation of the complex. An inflection point was observed in 
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each of the traces at the point where the ratio of ligand to nickel was one to one 

confirming the one to one stoichiometry of the complex formed at pH <7.5 

 

Figure 5. Job’s plots; plot of the absorbance at 393 nm of solutions of constant ionic 
strength and at pH 7 containing different mole fractions of nickel and ligand 
(diamonds: sodium xyloisosaccharinate; triangles: sodium beta-glucoisosaccharinate 
and squares: sodium alpha-glucoisosaccharinate). 
 

2.2 Measurement of stability constants 

The stability constants for the metal ligand complexes formed at neutral pH were 

determined using polarography. Half-wave potentials were measured for solutions of 

nickel nitrate in the presence of varying concentrations of the ligands, with the ionic 

strength of the solutions being maintained at a constant value. Plots of the corrected 

half-wave potential versus the logarithm of the ligand concentration (Fig. 6a-c) where 

used to determine the stability constants using the Lingane equation40: 
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Where, R is the ideal gas constant (8.314 JK-1mol-1); F is Faraday’s constant (96,485 

J); T is the absolute temperature (298 K); p is the coordination number of ligand per 

metal ion in the complex; n is the number of electrons transferred in the metal’s 

oxidation; ∆E1/2 is the shift in half-wave potential; L is the ligand concentration (mol 

dm-3) and Kd is the dissociation constant of the ligand complex. The natural log of the 

dissociation constant, Kd, is determined as the y-intercept of a plot of ln[L] vs. ∆E1/2. 
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Figure 6.  Determination of the stability constants at neutral pH using polarography 
studies: plot of the change in the half-wave reduction potential of solutions containing 
nickel and varying concentrations of the individual ligands. Top: beta-GISA; middle: 
alpha-GISA; bottom XISA. 
 
The calculated Kd values and the corresponding stability constants are presented in 

the table.  

Log10β 
 

Nickel Xylo-ISA Nickel α-ISA Nickel β-ISA 

pH <7.5, Polarography 
 

0.83 ± 0.04 2.07 ± 0.13 1.94± 0.15 

pH 13; Schubert Method 
 

Not Determined 29.0 ±0.5 30.6 ±0.5 

 
Table: Stability Constants for the nickel complexes of α-GISA, β-GISA and XISA 
 

Warwick et al32 have previously reported the use of polarography for the 

measurement of the stability constants for complexes formed by nickel and α-GISA. 

In the experiments reported here a number of difficulties were encountered in 

determining an accurate value for the change in the half-wave reduction potential 

when working with small concentrations of nickel and low ratios of nickel to ligand. In 

order to improve the accuracy of the data it was necessary to employ relatively high 

concentrations of nickel and also high ratios of metal to ligand, to maintain a 

constant ionic strength the measurements had to be performed at high ionic 

strengths (1M) and above those used in previous experiments (0-0.3 M). As one of 

the main objectives of the current work was to determine the relative stability of the 

complexes formed, the use of a high ionic strength was considered appropriate. 

The measured log10β values of 2.07 for Ni(α-GISA) and 1.94 for Ni(β-GISA) are very 

similar and higher than the value of 0.83 measured for Ni(XISA). As indicated 

previously, the stability constants will vary as the ionic strength of the solution 

changes, however, the value reported here for α-GISA (log10β=2.07) measured at an 
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ionic strength of 1M is close to the values of 2.20 & 2.58 measured by Warwick et al 

for Ni(α−GISA) at an ionic strength of 0.1M.  

 

The structures of the complexes formed between divalent transition metal cations 

and polyhydroxylated carboxylic acids has been discussed by van Duin et al41: at 

neutral pH’s (<8) ligands are expected to co-ordinate to the metal through a 

bidentate complexation involving the carboxylate group and the C2-α-hydroxyl. 

Whilst the epimeric α-GISA and β-GISA are diastereotopic, coordination to nickel will 

involve the functional groups at C1 and C2 which are away from the second 

stereocentre (C4) and, as such, the two might be expected to generate complexes 

with similar stability constants.  

At the higher pH (13) stability constants were measured using the Schubert 

method42. The Schubert method requires measurement of the distribution of nickel 

between the complex in solution and nickel bound to a cation exchange resin. In the 

experiments reported here, ICP-MS was used to measure the solution phase nickel 

concentrations. It has previously been shown32 that for a metal to ligand 

stoichiometry of 2:1, the form of the general algebraic expression relating the stability 

constant to the distribution constant is: 

 

 

 

where β is the stability constant, A is related to the sum of the concentration of the 

metal present as metal hydroxides (A= 1+ β1HO[OH-] +β2HO[OH-]2 +.....])43. The value 

of A will be a constant at a fixed pH and ionic strength and the data have previously 
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been collated by Glaus et al44 and the values (measured at an ionic strengths 

between 0 and 0.3 M) were extrapolated to an ionic strength of 1.0 M (logβ1HO = 

10.16 and logβ2HO = 19.35). Do is the distribution coefficient of the metal between the 

solution phase and the resin in the absence of the ligand which is also a constant 

and is measured in the experiment, [L] is the concentration of the ligand and Msol is 

the concentration of the nickel in solution. Ideally, the stability constants should be 

determined using more than one starting nickel concentration as the stability 

constants may vary with the metal ion concentration however, measurements of the 

stability constants for a similar ligands by other workers32 have demonstrated that 

the absolute values do not vary with change in Msol. Due to the limited availability of 

the β-GISA, stability constants were only measured at a single metal concentration. 

The main focus of the work reported here was to establish the relative metal binding 

capacity of the three CDP ligands and, as such, an attempt was made to determine 

the stability constants (β) at the same metal ion concentration for each of the ligands: 

α-GISA, β-GISA and XISA. 

For α-GISA and β-GISA, the stability constants were determined from plots of 

log10(D’), where D’= , vs log[L] which were linear (Fig. 7). The values for 

log10β' were determined from the y-intercept of the plots and are presented in the 

table. Unfortunately, at high pH, it wasn’t possible to determine the stability constant 

for XISA with nickel as it wasn’t possible to determine the distribution coefficient (D) 

for the metal bound ligand with the same degree of accuracy as that for the other two 

ligands.  

The measured binding constants for β-GISA (30.6) is an order of magnitude larger 

 than the value determined  for α-GISA (29.0); these results suggest that the Ni2(β-
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GISA)(OH4) complex is more stable than Ni2(α-GISA)(OH4). At alkaline pH, both 

GISA ligands form substantially more stable nickel complexes than XISA. 

 

 

Figure 7: Determination of the stability constants at high pH using the Schubert 
methods: plot of log of the distribution of nickel between a cation exchange resin and 
solution (D’-see results section for an explanation of D’ for metal-ligand 
stoichiometries of 2:1) versus the log of the ligand concentration. Top: beta-GISA; 
bottom: alpha-GISA. 
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The stability constant reported here for α-GISA is in close agreement with the value 

measured by Warwick et al (29.85)32.  

In the general coordination–ionisation scheme for polyhydroxylated-carboxylic acids 

proposed by van Duin et al41 with nickel as a cation and at pHs greater than eight, 

coordination should involve the carboxylate group and an ionised α-hydroxyl-group 

(C2-OH). For the GISA epimers, coordination of the carboxylate group and the 

ionised C2-hydroxyl would generate the dianion 4 as the active ligand. However, at 

higher pHs and with more electron deficient and highly polarisable metal cations, 

polyhydroxylated carboxylic acids frequently coordinate as doubly ionised geminal 

diols; for the GISA ligands this would involve the trianion species 5. Whilst the 

current experiments do not allow us to identify precise details about the type of 

binding present at pH 13, the presence of two geminal diol in the GISAs and only 

one in XISA would account for the different stability of the ligand complexes. The 

results of experiments studying the influence of XISA and GISA on their ability to 

increase solubility of radionuclides suggests that GISA is also better at forming 

complexes with europium and thorium compared to XISA45. 

O
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                                          4                                        5 

3. Conclusion 

In conclusion, at neutral pHs all three ligands form one to one complexes with nickel, 

the stability constants for the Ni.(α-GISA) (log10β=2.07 ± 0.13) and for the Ni(β-GISA) 
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(log10β=1.94 ± 0.15) are very similar whereas the value for Ni(XISA) (log10β= 0.83± 

0.04) is an order of magnitude smaller.  

At high pH (13) all three ligands form Ni2(Ligand)(OH)4 complexes but with 

significantly different stability constants. The most stable complex is the Ni2(β-

GISA)(OH)4 (log10β=30.6) which is approximately an order of magnitude more stable 

than the  Ni2(α-GISA)(OH)4 complex (log10β=29.0 measured under identical 

conditions and 29.85 measured by Warwick et al). Our failure to be able to measure 

the stability constant for the Ni2(XISA)(OH)4   complex suggests that the ability of 

XISA to bind nickel is much lower than that of the glucoisosaccharinic acids. 

It is clear that at neutral pH all three ligands behave in a similar manner and form 

relatively weak Ni.L complexes. At high pH, β-GISA forms the most stable Ni2L(OH)4 

complex. If similar behaviour is observed in β-GISA complexation with actinides, 

then it is important that future safety assessments for radioactive waste disposal 

facilities46 explicitly consider the impact that β-GISA will have on the mobility of 

radionuclides, rather than assuming that the two epimers have the same properties. 

This is especially pertinent if one considers the much greater solubility of the salts of 

the alkaline earth metals of β-GISA in aqueous solution compared to those of α-

GISA which will result in precipitation of the calcium salts of α-GISA in the cement 

dominated radioactive waste disposal facilities. 

 

Table here: 

 

4. Experimental 

4.1 Materials and methods 



20 
 

Potassium nitrate (≥99 %); sodium gluconate (≥99 %); nickel nitrate (≥98.5 %) and 

nickel chloride (98 %) were purchased from Sigma-Aldrich (Poole, UK). Analytical 

grade sodium hydroxide was purchased from Fisher Scientific (98.87 %). Sodium α-

GISA and sodium β-GISA were synthesised using the procedures detailed by 

Whistler et al27 and by Shaw et al47 respectively. A racemic mixture of XISA was 

prepared according to the method initially described by Greenfield et al48 and 

adapted by Shaw49. Ultra-pure water produced by a Thermo Scientific Barnstead 

nanopure (D23750; 0.20 µm) fibre filter was used in the preparation of all solutions. 

The resin used in the determination of stability constants was purchased from 

BioRad (Hemel Hempstead UK) and was 50W-X2 cation exchange resin. 

4.1.1Ultraviolet-Visible spectroscopy 

The UV-Vis spectroscopy data collected in these studies was obtained using an 

Agilent Technologies Cary 60 spectrometer (Cheadle, UK) with samples being 

prepared in Fisherbrand macro-cuvettes (FB55143-optical path-length of 1 cm). 

Spectrophotometric scans were taken over the range 300 nm to 1000 nm and 

specific absorbance readings were collected at 370.0 nm, 393.0 nm, 640.0 nm and 

715.0 nm. 

4.1.2 Conductometric and pH measurements 

Conductometric titrations were performed using a Jenway 4510 (K = 0.89) 

conductivity meter. pH titrations were performed using a Jenway 3510 pH meter. The 

buffers used in the calibration of the pH probe were pH 4, 7 and 12. The pH 7 (7.00 ± 

0.01 at 25 oC) and pH 4 (4.00 ± 0.01 at 25 oC) buffers were both purchased from 

Beckman Coulter with the pH 12 buffer was made up using 50 ml of potassium 

chloride (0.20 M) and 12 ml of a standardised potassium hydroxide solution (0.20 M).  
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4.1.3 Inductively Coupled Plasma-Mass Spectrometery 

The inductively coupled plasma mass spectrometer used was an Agilent 

technologies 7700 Series ICP-MS with an ASX-500 Series Autosampler. This ICM-

MS plasma was generated by a 27 MHz RF generator with a power range of 500 W 

to 1600 W. The mass analyser in this instrument was a 3 MHz quadrupole with a 

mass range of 2 - 260 amu; with a mass resolution of < 0.3 amu to > 1.0 amu.   

4.2 Determination of the stoichiometry of nickel complexes at various pHs. 

4.2.1 Bjerrum plots  

A range of solutions containing sodium hydroxide (0.1 mol dm-3) were added to a 

mixture of nickel chloride (0.01 mol dm-3) and the sodium salt of the ligand, (0.01 mol 

dm-3 of either sodium gluconate, α-GISA, β-GISA or XISA) to produce solutions of 

varying nickel to hydroxide ratios (0 to 4). The ionic strength of the final solutions 

was adjusted to I= 0.1 mol dm-3 by the addition of potassium nitrate. At various time 

intervals (3, 7 & 14 days) the pH of the solutions was measured and plotted against 

the nickel to hydroxide ion ratio. 

4.2.2 Conductometric titrations 

 Three different conductometric titrations were performed. In the first set (titration A) 

aliquots of nickel chloride (1cm3, 0.1 M) were added to a solution of the sodium salt 

of the ligand (α-GISA, β-GISA and XISA; 20 mL, 0.1 M) and the conductance of the 

solution was measured after each addition. In the second set (titration B) excess of 

the sodium salt of the ligand (15 mL, 0.1 M) was added to sodium hydroxide (10 mL, 

0.1 M) and the combined solution was titrated with nickel chloride (0.25 mL, 0.1 M) 

and the conductance of the solution was measure after each addition. In the final 
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conductance experiment (titration C)  the sodium salt of the ligands (10 mL, 0.1 M) 

was titrated simultaneously with aliquots of nickel chloride (1 mL, 0.1 M) and aliquots 

of sodium hydroxide (1 mL, 0.2 M) and the conductance of the solution was 

measured after each addition. 

4.2.3 Job’s method of continuous variation 

Job’s method of continuous variation was performed at pH 7 for all three ligands. 

Eleven solutions were prepared containing nickel chloride (0-0.05 M) and the sodium 

salts of the relevant ligand (0.05 to 0 M) respectively. These were allowed to 

equilibrate for 3-days at which time the absorbance at 393 nm was measured and a 

graph was plotted of the absorbance against the mole fraction of nickel. 

4.3 Measurement of stability constants 

4.3.1 The Schubert Method (pH 13) 

In polypropylene tubes, Analar sodium hydroxide 1000 (± 10.0) mg was added with a 

solution of ligand (20.0 ml, 1 x 10-2 to 1 x 10-5 M). After allowing the samples to 

return to room temperature, four aliquots (5.0 ml each) of the ligand solution were 

taken and a solution of nickel nitrate (34.0 µl of 1.0 mM) was added to three of the 

aliquots with water (34.0 µl) being added to the fourth. Into these solutions, cation 

exchange resin (2 g) was added and the pH of the system was recorded.   

In addition, three solutions of nickel nitrate (34.0 µl of 1.0 mM) were added to UP 

water (5.0 ml) for use in measurement of the total metal concentration (Mres + Msol) in 

the sample solutions before the resin was added. No resin was added to these 

solutions. 
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After 3 days of equilibration on a shaker (150 rpm; 25.0 oC) the samples were filtered 

through 0.45 µm filters and the resulting solution (3.98 ml) was spiked with 20.0 µl of 

a 100 ppm rhodium solution for use as an internal standard. These were then 

analysed on a Perkin Elmer ICP-MS. 

4.3.2 Polarographic studies (pH 7) 

For the nickel-ligand complexation studies at near neutral pH, five solutions of 

varying ligand concentrations (10 ml, 0 to ~ 1.0 M) were prepared in UPW and 

equilibrated at 25.0 oC for 48 h. The pH was recorded and the solutions were filtered 

through a 0.45 µm filter before analysis via differential pulse polarography. Nitrogen 

was bubbled through the samples for 10 mins to remove oxygen from the solution 

before scanning the applied voltage between -0.5 to 1.3 V. Each solution was 

analysed three times and values were tabulated to determine the ∆E1/2 values.  
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