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Introduction
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Objectives- Engine Combustion Network



Exp. Priority 5 1 4 2 7 3 6

Oxygen Temperature

[K]

Density

[kg/m3]

Inj. Pressure

[bar]

Fuel Inj. Duration

[ms]

Nozzle

Spray A standard 0%, 15% 900 22.8 1500 n-dodecane 1.5
0.090 mm, axial 

hole

2 21% 800 15.2 1000 n-heptane 4
3-hole, 145 

angle, Spray B

3 13% 1000 7.6 500

77% n-

dodecane, 23% 

m-xylene

0.5/0.5 dwell/0.5
0.2 mm

Spray C

4 19% 1200 45.6 2000

50% n-

dodecane, 50% 

iso-octane

0.3/0.5 dwell/1.2 -

5 17% 700 30.4 - - - -

6 11% 950 - - - - -

7 - 850 - - - - -

8 - 1100 - - - - -

9 - 750 - - - - -
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Operating conditions

Legend

Completed

In progress

Not met

Fuel temperature at nozzle 363 K (90°C)  403 K (130°C)

Common rail GM Part number 97303659

Common rail volume/length 22 cm3/28 cm

Distance from injector inlet to common rail 24 cm

Tubing inside and outside diameters Inside: 2.4 mm. Outside: 6-6.4 mm.

Fuel pressure measurement 7 cm from injector inlet / 24 cm from nozzle



• Injector: Spray A.2 nozzle #201.02

– From second batch of Spray A injectors, purchased by IFPEN (Malbec et al. 

2013 papers.sae.org/2013-24-0037)

 New STL file for #201.02 generated by University of Bergamo (Prof. Santini)
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Spray A injector

X-ray µCT

(University of Bergamo)

Optical microscopy

(University of Brighton)

Injector

Serial #

Exit diameter

[μm]

K-factor Inlet radius

[μm]

201.02 93.9 1.8 30

http://papers.sae.org/2013-24-0037


• Reciprocating RCM based on Ricardo Proteus (2 stroke engine)

• Operated at 500 rpm

• TDC conditions: 5 MPa, 720 K

• Quiescent air motion at start of injection (no swirl)

• 3 optical accesses

• Multiple injection strategy/injection frequency 
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Experimental setup – Rapid compression machine

Pressure (ICP)

Temperature (ICT)

from Ricardo WAVE

Temperature at TDC was computed by Ricardo WAVE

by fitting measured ICP with simulated ICP (WAVE) 



7

Experimental setup – Fuel temperature control
Instrumented Siemens injector was used to measure injector tip temperature

Injector tip and fuel channel temperatures

 Measured tip temperature: 195-220 oC

 ECN target 90 oC

 Injector cooling was needed 

working range

Fuel channel thermocouple

Tip thermocouple

n
e
e

d
le
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Experimental setup – Fuel temperature control

 Directly cooled injector stem

 ΔT tip ≈ 80-100 oC

 130< Tip temperature < 135 oC for 120 min

ECN target

Fuel line temperature as a function of time for cooled 

and uncooled injectors
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Experimental setup – High-speed video

Microscope working distance 95 - 122 mm

Microscope NA = 0.156 - 0.20

Microscope DOF = 0.01 - 0.02 mm



Shadowgraphy setup based on Crua et al. (2015) Fuel 157 doi.org/4F3

• New camera: 29 megapixel (4400x6600 pixels) dual-frame

• Scale factor: 0.56 µm/pixel (2.46x3.70 mm)

• MTF at 10%: 250 cycles/mm  2 µm object
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Experimental setup – Long distance microscopy

http://doi.org/4F3


• Acquired ~7,400 dual-frame images for Spray A (815 GB)

• Data set covers x = 0 to 8 mm (y = ± 1.2 mm;  z = ±10 µm)

Currently processing for droplet size distributions

Still need to process velocity fields, and acquire Spray B data
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Test conditions for long-distance microscopy

Spray A Spray B

1500

bar

1000

bar

500

bar

1500

Bar

1000

bar

500

bar

Start of injection acquired,

in

progress

not

planned

in

progress
SOI+0.5ms completed being completed

End of injection processed
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Image processing

Wavelet filter12bit raw image

1. Convolution with wavelet

2. Threshold at 30% of intensity range

3. Measure droplet’s projected area

4. Calculate eq. diameter d =  A π

5. Correct diameters based on NIST-

calibrated target (1.9 to 101.6 µm)

1.9 3.1 3.7 4.8 5.9 7.0 7.6 8.8 10.1



• Algorithm correctly identifies many of the 

small liquid structures (left of figure below), 

without producing significant false positives in 

blurred regions (right of figure below)
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Image processing (0.5 ms after start of injection)



• Vapour emerges with 

vortex ring motion

• Followed by liquid jet and 

droplets

• Droplets present at liquid 

interface
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Results: Start of injection – 1500 bar



Axial distance from orifice [mm]
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Results: 0.5 ms after start of injection – 1500 bar

• Droplets visible at spray periphery

• Surrounded by vaporised fuel

• Pressure waves often visible along spray 
periphery.

• Not expected to occur for multi-hole 
nozzles, but could affect Spray A droplet 
formation, mixing and optical resolution

Pressure wave spacing: 100 to 150 µm

Clusters of droplets surrounded by vapour

Optically thin

region ~100 µm



Droplet density
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Results: Steady-state phase 1500 bar

Median diameter = 5.8 µm

Median diameter

• 1,575 images => 619,756 droplets

• Droplet data merged into 50x50 µm2 bins

• Droplet count: 200-1000 droplets/bin

• SMD in the optically-thin periphery of the 

spray is 6 – 8 µm

Sauter Mean Diameter (D32)
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Results: Steady-state phase – 1500 bar

Statistics for x = 1, 2, 4, 6 ±0.25 mm (y = ±1.2 mm; z = ±10 µm) from orifice 
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Analysis – Comparison between 500 and 1500 bar

SMD 1500 bar
• Marginally larger SMD at 

500 bar, compared to 1500 

bar, especially after 6 mm

• Asymmetrical distributions 

observed in both cases 

(SMD, drop count, median 

diameter)

SMD 500 bar



• Large variations in

– droplet position

– droplet size

– droplet shape
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Results: End of injection – 1500 bar



• Droplet size distributions measured in near-nozzle, optically-thin (≈ 100 µm), regions

• Droplet sizes appear normally distributed, and independent of radial position

• Processed data available for ECN4

Comparison with simulations

• Data processing is ongoing: can still produce new droplet binning, locations, etc…

Future plans

• Spray B in progress, expected to be completed after ECN4 meeting (September 2015)

• Velocimetry data (Sprays A and B)

• Droplet shape analysis for end of injection (Sprays A and B)

• All raw & processed data will be made public to promote comparison with simulations, and 

development of new image analysis techniques
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Conclusions
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