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Auditing file system permissions using Association Rule Mining

S. Parkinsona,∗, V. Somarakia, R. Warda

aDepartment of Informatics, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield,
HD1 3DH, UK

Abstract

Identifying irregular file system permissions in large, multi-user systems is challenging due to the com-
plexity of gaining structural understanding from large volumes of permission information. This challenge is
exacerbated when file systems permissions are allocated in an ad-hoc manner when new access rights are re-
quired, and when access rights become redundant as users change job roles or terminate employment. These
factors make it challenging to identify what can be classed as an irregular file system permission, as well as
identifying if they are irregular and exposing a vulnerability. The current way of finding such irregularities
is by performing an exhaustive audit of the permission distribution; however, this requires expert knowledge
and a significant amount of time. In this paper a novel method of modelling file system permissions which
can be used by association rule mining techniques to identify irregular permissions is presented. This results
in the creation of object-centric model as a by-product. This technique is then implemented and tested
on Microsoft’s New Technology File System permissions (NTFS). Empirical observations are derived by
making comparisons with expert knowledge to determine the effectiveness of the proposed technique on five
diverse real-world directory structures extracted from different organisations. The results demonstrate that
the technique is able to correctly identify irregularities with an average accuracy rate of 91%, minimising
the reliance on expert knowledge. Experiments are also performed on synthetic directory structures which
demonstrate an accuracy rate of 95% when the number of irregular permissions constitutes 1% of the total
number. This is a significant contribution as it creates the possibility of identifying vulnerabilities without
prior knowledge of how to file systems permissions are implemented within a directory structure.

Keywords: Access control, Auditing, Association Rule Mining.

1. Introduction

File systems are common amongst the majority of computer operating systems and from a user perspec-
tive their primary use is to securely store files. Modern, multi-user computer systems contain high quantities
of data that require strong access control mechanisms to restrict data access to intended users. Different
operating systems provide different implementations of access control, but common to the most prevalent
is that they provide a customisable architecture for access control. This is implemented through the use of
both coarse- and fine-grained permissions (De Capitani di Vimercati et al., 2003). Coarse-grained permis-
sions are predefined levels (e.g read, write, full control, etc.) and fine-grained permissions are customised
permissions created from a set of predefined attributes to represent highly customised access control rules.
Using a mixture of both types of permissions provides a flexible architecture which can accommodate a
large verity of different access control levels. However, this flexible nature also provides the possibility for
complex permission relationships and anomalous permissions which often go undetected.
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Administration of file system permissions on large file systems is both a challenging and cumbersome task
as it is often difficult to conceptualise the large volumes of information available. Due to the complexities
of managing permissions, unforeseen weak and incorrect allocations are often made. These complexities are
usually the result of there being a large number of directories to secure, a large number of users that need to
be correctly assigned, and a large number of access control rules. There is a wide range of literature discussing
these complexities (Cao and Iverson, 2006; Beznosov et al., 2009; De Capitani di Vimercati et al., 2003), and
many factual guides have been produced for different operating systems (Thomas, 2010; Solomon, 2005).
However, even with such guides, users are left to analyse the large amount of access control information
independently. The level of their knowledge regarding access control and their system’s configuration often
directly determines the quality of their audit, and thus produces a heavy reliance on expert knowledge.

When analysing for vulnerabilities within file system permissions they can be divided into two groups of;
(1) known system vulnerabilities, and (2) those relative to the access control structure implemented within
a system. A trivial example of a known system fundamental is that users should not have access to an
important system directory (e.g C:\windows\system32). These are programmatically easy to find by using
a predefined knowledge-base of potential vulnerabilities. Identifying such vulnerabilities is at most O(n× v)
where n is the number of access control entries to examine and v is the number of known vulnerabilities. An
example of a relative vulnerability is an incorrect assignment of permission with respect to an organisation’s
implementation of access control. For example, the anomaly of one user having write privileges on a directory
where all other users have read access. Such anomalies are very difficult to identify within access control
as there is no quick method of determining potential vulnerabilities. The consequences of both types of
vulnerabilities can be severe and can be generated from both user and software actions. For example, if a
user has an elevated level of permission on a network directory structure, they could unintentionally modify
or remove important data. A more severe consequence would be if the user could access data which is
sensitive, as this could result in the organisation breaching the Data Protection Act. It is also possible
that software (such as viruses, etc.) executing under the user’s credentials could exploit their file system
permissions to perform malicious activity.

Trend mining, in the form of Association Rule Mining (ARM) (Ma, 1998), has been extensively used to
identifying anomalies and irregularities in many different application areas (Cheng et al., 2015). ARM is a
method of automatically identifying interesting relationships amongst variables in large datasets. Interesting
relationships are often those that frequently occur; however, in some applications, such as the one presented
in this paper, an interesting relationship is one which occurs infrequently. There have been many successful
applications of ARM for identifying interesting (both frequent and infrequent) relationships in large datasets.
For example, in finance (Yu et al., 2009; Barak and Modarres, 2015), medical data (Somaraki et al., 2011,
2015), and cellular networks (Khatib et al., 2015). The use of ARM is therefore a natural selection for
applying to the challenge of identifying irregularities in file system permissions.

The work presented in this paper is tailored towards Microsoft’s New Technology File System (NTFS);
however, it can be easily adapted to other file systems. The majority of multi-user environments in organ-
isations will use Microsoft’s NTFS for providing a distributed mechanism of file storage. There are many
complexities associated with administrating and auditing file system permissions on Microsoft’s NTFS which
can result in the creation of vulnerabilities. The complexity of identifying these vulnerabilities has resulted in
a unhealthy reliance on expert knowledge. The work presented in this paper helps to remove this unhealthy
balance on expert knowledge and provide a method of auditing file system permissions for all NTFS users.
This paper first provides a review into related work in the area of aiding auditing of file system permis-
sions. The next section the provides a description of NTFS access control structure, highlighting auditing
complexities. At the end of this section, detail is provides on how file system permissions are modelled in
the work presented in this paper, including the use of an algorithm to combine permissions to determine
the effective permission. This then leads to a description of association rule mining techniques which are
useful for identifying irregularities in file system permissions. In this section the chosen technique is also
discussed and justified. Empirical observations are then provided where the developed technique is tested
on five diverse real-world file systems. In this empirical observation, the results are compared to those of a
domain expert.
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2. Related work

Access control is typically defined as a relational model over the following domains: O the set of objects
(i.e users), the set of resources R and the set of permissions P . Access control is a characteristic function on
the set A ⊆ S ×O × R. A subject s is granted permission r over resource o iff 〈s, o, r〉 ∈ A. Access control
models are typically called the access matrix. In many operating systems the access matrix is stored as an
access list, which is associated with a resource object and is used to list all subjects and their permissions.
In NTFS, access lists are implemented as Discretionary Access Control List (DACL) models, where only the
owner of a resource is authorised to change its access permissions. However, in multi-user environments it
is possible for any user with sufficient permission to take ownership of a resource or change its permission.

Other operating systems also implement access control lists to manage file system permissions. Unix
(including Max OSX and Linux) and Portable Operating System Interface (POSIX) compliant systems have
a simple system for managing individual file permissions. This is the ability to assign a predetermined
set of coarse-grained permissions (often called “traditional Unix permissions”). Most of these systems also
support the use of Access Control Lists (ACL), such as POSIX.1e ACLs (coarse-grained) (Nemeth, 2010) or
NFSv4 ACLs (fine-grained) (Pawlowski et al., 2000). Interestingly, the implementation between NFSv4 and
NTFS ACLs is very similar and also caters for fine-grained permissions. The ability to create fine-grained
permissions significantly increases the complexity of the access control implementation. For this reason, and
due to strong similarities between NFSv4 and NTFS, the rest of this section will describe in more detail the
access control implementation of NTFS.

There are many tools available to assist with the examination of NTFS permissions allocation (Microsoft,
2006b,a). However, there is one common weakness in that they all still require expert knowledge to analyse
the output of the tools to determine if there are any weaknesses. Previous work in the area of file system
permission analysis resulted in the development of a novel tool for permissions administration that allows
users to easily view file system permissions for large directories (Parkinson and Crampton, 2013; Parkinson
and Hardcastle, 2014). The tool provides features to help the user identify vulnerabilities and view necessary
information to make better informed permission allocations. For example, the reduction in reported permis-
sions by not displaying inherited permissions, and allowing the user to filter and show effective permission
for a specified user, are two prominent features.

Identifying anomalies or irregularities in system security is by no means a new topic (Lazarevic et al.,
2003; Bhuyan et al., 2014). For decades, researchers have been developing techniques and tools to identify
security anomalies. For example, recent works have covered topics from the identification of anomalous user
behaviour in social networks (Viswanath et al., 2014), anomalies in network traffic (Catania et al., 2012;
Mahoney, 2003), anomaly detection in wireless networks (Islam and Rahman, 2011; Xie et al., 2011), and the
anomaly detection in power station security (Ten et al., 2011). All these studies generate good results and
demonstrate the potential of using machine learning and statistics to identify anomalies. Recent research
in the area of file systems includes the construction of a Bayesian network and neural network from the
predetermined knowledge of the manipulation of file system artefacts for file system forensic analysis (Khan,
2012). Research has been carried out into developing tools for identifying vulnerabilities in file system access
control based on some predetermined knowledge-base of vulnerability definitions. Nalgurd et. al. (Naldurg
et al., 2006) use an inference engine alongside a snapshot of the access control implementation with static
knowledge, and in further work they produce a technique where a model checking algorithm (Naldurg and
KR, 2011) is used to identify vulnerabilities. Another area that has recently received significant interest
in the access control community is that of access control and anomaly detection for cloud computing. For
example, recent work by Hu et al. (2013) both motivates the need for identifying anomalies in web access
control policies and provides a potential solution through the use of a binary decision diagram for anomaly
discovery and resolution.

These methods show significant ability at identifying vulnerabilities, but they require statically defining
a knowledge-base of vulnerabilities in respect to relative file system permissions which is heavily reliant on
expert knowledge. The focus of the work presented in this paper is to provide a mechanism to identify likely
vulnerabilities without the reliance on expert knowledge. Literature suggests that there has been no work in
the detection of irregularities in file system security without the need to statically define what constitutes an
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Attribute
Number
(a)

Description

1 Full control
2 Traverse folder \ execute files
3 List folder \ read data
4 Read attributes
5 Read extended attributes
6 Create files \ write data
7 Create folders \ append data
8 Write attributes
9 Write extended attributes
10 Delete subfolders and files
11 Delete
12 Read permissions
13 Change permissions
14 Take ownership

Table 1: Individual attributes.

irregular permission. This includes the potential application of Association Rule Mining, This is surprising
considering the vast user-base and the potential benefits that can be achieved.

3. NTFS Implementation and Modelling

In this section, a description of how NTFS permissions are implemented is provided. Alongside this
description is a discussion of how its implementation can results in complexities which ultimately can result
in vulnerabilities. Following this, a description is provided of how NTFS permissions are translated into a
relational object-model.

3.1. Access Mask

NTFS implements DACLs by applying a DACL to each object within the file system. Each DACL will
contain a Security Identifier (SID) which is a unique key that identifies the owner of the object and the
primary associated group. The structure of the DACL is a sequential storage mechanism which contains
access control entries (ACEs). An ACE is an element within a DACL which dictates the level of access given
to the interacting subject. The ACE contains a SID that identifies the particular subject, an access mask
which contains information regarding the level of permissions and the inheritance flags. An ACE within
the NTFS is a set of attributes, p, from the predefined set of attributes p ⊆ P , P = {a1, . . . , an}. Table 1
shows the fourteen predefined attributes in the NTFS. The NTFS provides six levels of standard coarse-
grained permission that consist of a combination of predefined attributes. The NTFS also allow for the
creation of special fine-grained permissions that are constructed from a combination of fourteen permission
attributes (Russel et al., 2003).

The potential to create a special permission is a useful feature; however, it can introduce complexity as
it requires detailed knowledge regarding the authority that each attribute holds (Thomas, 2010). A example
of where a special permission could be used is if the user wanted to assign a user or group the standard
access level of Modify for all the contents of a shared directory. However, this has adverse consequences as
the Modify permissions will allow the user(s) to be able to delete the folder itself. A potential solution here
is to assign the user or group the default permissions level of Modify, and then modify the permissions’
attributes so that only subfolders and files can be deleted, and not the folder itself. This modification would
result in the creation of a special permission.
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3.2. Propagation and Inheritance

In this section, a discussion is provided on the different mechanisms through which NTFS permissions can
propagate through a directory structure. There are two types of ACE entires within the DACL; (1) Explicit
and (2) Inherited. Explicit entires are those that are applied directly to a DACL, whereas inherited are
propagated from the directory’s parent. The type property of the ACE allows programmatic determination
of whether the permission has been explicitly assigned to a directory or if it was inherited from a parent
directory. Furthermore, it is also possible to create custom fine-grained inheritance rules. Such special
inheritance rules can easily be overlooked during administration and auditing, resulting in theunintended
propagation of access.

3.3. Accumulation

Permissions accumulation creates the potential for an interacting subject to receive permissions from
multiple different policies. Any interacting subject within the NTFS can be assigned to access control
groups. This means that they do not have to be explicitly added in the ACE, they could be an associated
group member. Such policy combination is controlled by the Local Security Authority Subsystem Service
(LSASS). The high-level functionality of this service is to create an ordered union all relevant policies.
However, there are a few complexities that can occur in this combination process. These are: (1) explicit
permissions take priority over those inherited, (2) explicit deny permissions always take priority over any
other assigned permission, and (3) permissions inherited from closer relatives take priority over those further
away.

It would be logical to assume that deny permissions would always take precedence over apply permissions
to ensure that the user operates at the least possible level of access. However, the first point makes it possible
for an inherited deny permission to never be reached. This goes against a fundamental aspect of policy
combination that a deny permission should never be ignored. If a situation where a user is able to ignore a
deny permission was to arise, a system administrator would need to be aware of this so that they could take
rectifying action. In addition to explicit permissions taking priority over inherited permissions, inherited
permissions closer to the derrived directory will take priority over those more distance. For example, a
folder’s inherited permissions will take priority over those inherited from their grandparent.

To summarise, the ordered hierarchy for policy combination is:

1. Explicit deny.

2. Explicit allow.

3. Inherited deny.

4. Inherited allow.

3.4. Group Membership

A powerful feature of NTFS access control is that of group membership. An interacting subject (group,
user, or process) that interacts with the file system can hold membership to another group. This creates
the possibility for permissions to be inherited from all of the associated groups. Users will often be grouped
together to mange management easier. This separation of duty can often be seen in many organisations. For
example, users within a finance department will have different permissions that of management. As Hanner,
et. al. (Hanner and Hörmanseder, 1999) identifies, understanding effective file permissions can become
increasingly more complex by group association. This is because to evaluate a user’s effective permission
would require the knowledge of which groups that they are inheriting from. It should be noted here that it
is not a direct mechanism of how NTFS access control is implemented, rather it results from how Microsoft
allows for users, groups and processes to be managed and controlled through group memberships.
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Algorithm 1: Depth-first recursive permission extraction algorithm, returning an ordered list of ef-
fective permissions for each object within the directory structure.

Input: Initial directory d
Output: Set of ordered effective permissions E = e1, e2, . . . , en where en = {d, o, p}. Here d is the

directory resource, o is the object, and p is the permission level, p = {a1, a2, . . . , an}
1 Output: Membership relation set, G = {g1, g2, . . . , gn} where gn = {o1, o2, . . . , on}
2 Algorithm algo()

44 P ← proc(d)
66 return

7

1 Procedure proc(directory d)
2 pACL← d(ACL)
3 foreach subdirectory c of d do
4 cACL← c(ACL)
5 if cACL ! = pACL then
6 ex = ∅, in = ∅, r = memberships(G)
7 foreach ACE a in cACL do
8 foreach Membership g in r do
9 if isExplicitDeny(a) then

10 E ← (c, getObj(a), getPerm(a))
11 break

12 else
13 else if isExplicitAllow(a) then
14 E ← (c, getObj(a), getPerm(a))
15 break

16 else if isInherited(a) then
17 if isInheritedDeny(a) then
18 E ← (c, getObj(a), getPerm(a))
19 break

20 else if isExplicitAllow(a) then
21 E ← (c, getObj(a), getPerm(a))
22 break

23 end
24

25

26 end
27

3.5. Object-centric Modelling

In order to represent the accumulated permission that each object holds on a file system resource, is it
necessary to adopt an object-centred approach to permissions modelling. In this section, the description
of NTFS’s access control structure is translated into an object-centred model suitable representation which
can be used for association rule mining.

Here each interacting object (user, group, etc.), o, holds a combination of permission attributes which
are accumulated based on (1) the assigned permissions, (2) propagated and inherited permissions, and
(3) group membership. Algorithm 1 has been developed to iterate over all the directories and create a
set of effective object permissions for each directory. Each effective permission for an object is the set of
permission attributes, p, that o holds on a directory, d. As seen in Algorithm 1, the hierarchy for permission
accumulation (Section 3.3) is taken into consideration. The algorithm also ignores permissions which do not
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Dave Read D : \

has permission

on directory

Figure 1: Object-based diagram for the permission entry of D : \, Dave, F ileReadData

differ from those of their parent directory. This helps to remove repetitive information and provides a useful
heuristic for increasing performance and reducing the volume of captured data. The data structure returned
from executing the algorithm is a list ordered by the directory structure. This list, E = {e1, e2, . . . , en},
contains an ordered list of tuples, en = {o, p, d}, where d is the directory resource object, o is the interacting
object, and p is the set of permission level objects, p = {a1, a2, . . . , an}.

The returned list (E) contains the object model for each files system entry. For example, consider a
directory where a user Dave, o = Dave, has permission of FileReadData, p = FileReadData, on a locally
mounted directory, d = D : \. A diagrammatic illustration of this model is provided in Figure 1. This object
model is then stored in Comma Separated Value form for future processing. In the provided example, the
following data set would be output:

Dave, F ileReadData,D : \

The example provided is simplistic and only represents one individual file system permission. It is often
the case that an interacting object would accumulate access permission from multiple sources (explicit,
inherited, etc.), and therefore Algorithm 1 is used to calculate each objects’ effective permission (i.e the
permission the user actually receive) before the creation of the object model. The output object model
(stored in text form) is then a complete representation of each interacting objects’ effective permission on
the specified directory structure.

4. Association Rule Mining

In this section, the area of Association Rule Mining (ARM) is discussed, and details of how it is used for
detecting irregularities in file system permissions are provided. ARM is a method of discovering associations
within data that frequently occur. For example, in the perspective of file system permissions analysis,
determining that a user (e.g Dave) frequently has the same level of permissions (e.g Read) on a wide array
of directories. In ARM, I is the set of binary items, and D are the data sets. In applying ARM to file
system permissions, I is the total object set (users, permissions, directories) and D (previously defined as
E) is the total set of effective permissions, D = {e1, e2, en}. Each permission entry en is a subset of I. For
example, a potential item set could be I = {Dave,Mike, F ileRead, F ileWrite,D : \} and the following are
example data sets:

E1 = {Dave, F ileRead,D : \}
E2 = {Mike, F ileRead,D : \}
E3 = {Mike, F ileWrite,D : \}

Association rule mining is a way to discover interesting relationships in datasets, or in the case of this
paper, infrequent relationships. The three following rules are used in association rule mining:

Definition 1 (Association rule). X =⇒ Y is an Association Rule (AR), if X and Y are item sets, X
is the LHS (Left Handside) or body of the rule, and Y is RHS (Right Handside) or head of rule. A set of
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data entries, can be informally define an Association Rule (AR) as the rule of X =⇒ Y , where X,Y ⊂ I.
In the continuing example, a file system specific association rule would be {FileRead} =⇒ {D : \}.

Definition 2 (Support of an AR). The support (supp(X)) of an AR is defined as the percentage of per-
mission entries that contain both X and Y . It can also be defined as the probability P

(
X ∩ Y

)
. In the

example, the dataset {FileRead,D : \} has support of 0.6 since is occurs in one two thirds of the permission
entries.

Definition 3 (Confidence of an AR). The confidence of an AR is defined as the ratio between the num-
ber of transactions that contain X ∪Y and the number of transactions that contain X. It can also be defined
as P

(
X ∪ Y |X

)
= P

(
X ∪ Y

)
/P

(
X
)
. In the example, the confidence (supp(X ⊂ Y )/supp(X)) would equal

0.6/0.6 = 1, meaning that for 100% of the permission entries that have FileRead are related to D : \

ARM procedures contain two stages: (i) the identification of frequent datasets, and (ii) generation of
ARs. Piatetsky-Shapiro (1991) defines ARM as a method for the description, analysis and presentation of
ARs which are discovered in databases using different measures to determine interesting data. ARM is
concerned with the discovery, in tabular databases, of rules that satisfy defined threshold requirements. Of
these requirements, the most fundamental is concerned with the support (frequency) of the item sets used to
make up the ARs: a rule is applicable only if the relationship occurs sufficiently often in the data. Whether
an item set is relevant or not, is determined by its support count confidence value. An item set is deemed
to be relevant if its support count is above a user specified support threshold. Similarly, an AR is deemed
relevant if the confidence value is above a user specified confidence threshold (Singer and Willett, 2003).
Although minimum support and confidence thresholds help remove the generation of uninteresting rules,
many of the remaining rules are still not interesting to the users. This work focuses on irregularities which
in the context of Association Rule Mining can be assumed to be a non-frequent set of items. Therefore,
in this work an interesting rule (I.e an irregular file system permission) is one with both low support and
confidence.

Frequent data set mining is thoroughly studied by many researchers, but important rare items are
often not discovered by these algorithms. In many cases, the contradictions or exceptions also offers useful
associations. In the recent past researchers started to focus on the discovery of such kind of associations
called rare associations. Rare data sets can be obtained by setting low support; however, this generates huge
number of rules. Therefore the key idea is to inverse the support threshold criterion by using a maximum
support threshold but also using the confidence as a second criterion to deal with the large amounts of rare
relations between items. In the technique presented in this paper, the selection of the minimum support
threshold value is based on the frequency of each item in the data set. E.g. how many times an item appears
which is turned into a percentage and represents the threshold value. As regards to the confidence threshold,
it is selected empirically and usually its value is selected to be equal to the minimum support threshold.

SOMA (Somaraki et al., 2010) is a trend-mining framework for knowledge discovery from large databases,
the development of a validation framework for trend mining. SOMA was originally developed for the
application of trend mining in medical data; however, SOMA itself is not domain dependent and can
therefore be used with any type of data in different application areas. The framework exploits three steps:
pre-processing, association rule mining, and trend mining; however, given the nature of the data and the aim
of the investigation, both preprocessing and trend mining stages are not required. The preprocessing stage is
superfluous in this application as the data is complete and discrete and there are no temporal requirements.
In SOMA’s original application of medical data, logic was utilised to aid with merging and time-stamping
data subsets for analysis. Trend mining is also not required. For this application the most important phase
is association rule mining, where rules are extracted by considering a the of variables extracted from the
data.

In this paper, the Matrix (Yuan and Huang, 2005) algorithm which is part of SOMA framework was
used for association rule mining. The algorithm is more efficient than the well-known Apriori (Tsai and
Chen, 2004) algorithm as it only requires one pass over the data to generate the matrix. The algorithm is
called a matrix algorithm as it creates a binary matrix with entries (0, 1) from passing over the database,
resulting in the creation of a set of candidate items from which association rules are produced. In the work
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Stage 1 (NTFS Processing)

Stage 2 (SOMA)

Input: NTFS Directory

Effective Permissions

Output: Infrequent Permissions

Figure 2: Schematic illustrating the integration of both the NTFS permissions extraction software and SOMA for association
rule mining.

presented in this paper, the file system permission data is passed to the matrix algorithm in tabular form
for processing and the output is a set of association rules, generated based on the support threshold and
confidence value. The output is then processed to identify association rules for infrequent data. Full details
of the matrix algorithm can be found in Yuan and Huang (2005).

There is an absence of literature detailing the use of ARM to detect anomalies in file systems; however,
closely related research on the identification of anomalies and irregular data sets using ARM strongly moti-
vate its use (Chandola et al., 2009). For example, Li et al. (2009) present the successful use of ARM to detect
anomalies in identifying irregular behaviour in local area network traffic. In addition, intrusion detection is
another successful area of research which has seen applications of ARM (Patcha and Park, 2007).

5. Produced Software

Software has been developed for the extraction, processing and association rule mining of file system
permissions. For the extraction and accumulation of file system permissions (stage one), software was
developed in C# using the .NET System.Management namespace. The developed application is a command
line application which can be executed on any Windows NT operating system. The application will run
under the user’s credentials, and therefore can only analyse directories on which the user has authority to
read security permissions. The output from the tool contains the ACL information for each directory in
comma value separated form which is subsequently used for association rule mining. In the second stage,
the SOMA framework was developed in MATLAB 20014a. In the experiments presented in this paper, both
stages were executed on a Intel i7 Processor with a clock speed of 2.2 GHz. Figure 2 provides an overview
illustration of the integration of the two stages. This integration of these two stages allows the user to
extract NTFS permissions and then identify irregularities through trend mining.

6. Empirical Observations

This section contains two types of empirical observations through using the tools developed in Section 5.
The first is empirical observations based on synthetically generated file system data, and the second is
from analysing five real-world, multi-user directory structures of different configurations. The aim of this
experiment is to determine the effectiveness of the proposed technique at identifying irregular and anomalous
permissions within the directory structures. In both tests, to asses the performance, the following measures
are considered: (1) True Positive Rate (tpr): the fraction of irregular permissions correctly identified as
irregular; (2) False Positive Rate (fpr = 1 - tnr): the fraction of regular permissions incorrectly identified
as irregular; (2) True Negative Rate (tnr): the fraction of regular permissions correctly identified as regular;
(3) False Negative Rate (fnr = 1- tpr): the fraction of irregular permissions incorrectly classified as regular;
Finally, the accuracy is reported as the fraction of all samples correctly identified.
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Algorithm 2: Algorithm for generated synthetic directory structures

Input: The maximum number of directories to be created, MaxDir
Input: The step size of the increasing number of directories, StepDir
Input: The maximum number of anomalies to be created, MaxAnom
Input: The step size of increasing the number of anomalies, StepAnom
Output: A set of directories, S = {s1, s2, ..., sn}, where sn = {d, p} where d is the directory resource,

and p is the permission level
1 Algorithm algo()

2 for n← 0 to MaxAnom do
3 i = 0
4 while i ≤MaxDir do
5 S[j]← createDirectory()
6 i+ = StepSize

7 end
8 j = 0, i = 0
9 while J ≤MaxAnom do

10 dirNo = genRandomInt(0, i)
11 pLevel = genRandomInt(1, 14)
12 i+ = StepSize
13 S[j]← pLevel

14 end
15 n+ = StepAnom

16 end
17 return S

6.1. Synthetic Data sets

The motivation behind using synthetically generated test data is that although acquiring security in-
formation from real-world directory structures is easily achievable, it is difficult to acquire ground-truth
knowledge regarding the irregularities within those systems. This is because the identification of irregular
permissions is ultimately down to the auditor’s knowledge, and although evaluating the system against such
data is useful, it potentially limits the quality of assessment as both correct and incorrect permissions might
have been incorrectly identified by the expert.

In order to generate synthetic file system data, a technique has been created to automatically generate
directory structures, assign permissions, and insert irregular permissions (anomalies). From the created
directory structures, it is then possible to use the proposed NTFS processing software to extract access
control information, and then use SOMA to identify irregularities. Algorithm 2 describes the process to
generate synthetic directory structures. The first aspect of the algorithm is to create a the directory struc-
tures by providing a maximum number of directories and a stepsize. For example, providing a maximum
directory size (MaxDir) of 50 and a stepsize (StepDir) of 10 would result in the generation of five directory
structures (10, 20, 30, 40, and 50). In the creation of directories, the security permission of their parent
and system defaults will automatically be inherited. In addition, the same directory structure is created
multiple times, from 1 until MaxAnom in the step size of StepAnom. For example, if MaxAnom = 20
and StepAnom = 5, the number of the same directory structure created would be four with 5, 10, 15, and
20 anomalies. Creating the anomalies for each directory structure is performed by identifying a random
number between 0 and and the current directory size (i). This random number (dirNo) will be used to
assign an anomaly. The permission of the anomaly is determined by generating a random number between
1 and 14 (Table 1), pLevel. The number identified represents the number of permission attribute set. For
example, if the generated number is 2, the first two permission attributes are set.

In the synthetic experiments presented in this paper, MaxDir = 1, 000, StepDir = 100, MaxAnom =
64, and for each iteration is StepAnom = StepAnom× 2. I.e the anomalies would increase in the sequence

10



User Group Directory Attribute Support Confidence
Administrators 100\100 16 Delete 0.05 0.27
Anomalyuser 100\100 16\0 Delete 0.001 0.01

Table 2: Example Association Rules generated when analysing synthetically produced file systems that has 100 directory and
16 anomalies.

of 1, 2, 4, 8, 16, 32, 64. Doubling the number of anomalies in each iteration will allow for the comprehensive
understanding of the system’s ability to recognise anomalies as their frequency increases. The random
approach of assigning permissions, as well as the permission level, helps to simulate a file system that is
becoming increasingly complex and helps to replicate the process of ‘ad-hoc’ permissions allocation. This
results in the production of 70 different directory structures to test the proposed technique.

Figure 6 illustrates the average execution time for analysing each directory size. The difference in
execution time for directory structures of the same size but with a different number of irregular permissions
is less than 1 second. From the Figure 6 it is noticeable that execution time increases by around 50 seconds
until the directory size reaches 800 where the time increases by around 100 seconds for the addition of 100
directories. It is also noticeable that the time required for the associative rule mining stage makes up a
larger portion of the duration than the permission extraction stage.

The results from all 10 directory structures, and the 7 different permission levels, are demonstrated in
three different graphs illustrates the Receiver Operator Characteristics (ROC) space (Hanley and McNeil,
1982). Figure 3 illustrates the tpr and the fpr for the first four directory structures, with a directory size
of 100, 200, 300, and 400, respectively. Figure 4 illustrates the results for the directory structures with
500, 600 and 700 directories. Finally Figure 5 illustrates the results for the directory sizes of 800, 900,
and 1000. These results are interesting as they demonstrate both an improvement in tpr and a decrease
in fpr as the directory size increases. This reason behind this is that the proportion of anomalies in the
directory structure containing 100 directories is greater than that of the directory with 200 directories. For
example, the directory structure with 100 directories containing 32 anomalies consists of a total of 1008
permissions. The directory structure containing 200 directories and 32 anomalies anomalies consists of 1936
total permissions. This is interesting as it demonstrates that the tools ability improves with an increasing
number of directories and a decreasing number of irregular permissions. In the first instance this might
appear like a negative characteristic of the system; however, as real-world directory structures will often be
well in excess of 200 directories, with a low proportion of anomalies, it can be seen that the tools performance
would be suitable for application. It is, however, worth raising the point that the accuracy would reduce
in directory structures where permissions have been managed in an ad-hoc manner for a prolonged period
of time. However, considering the fact that a large portion of permissions will always be system generated,
the technique should still be able to identify anomalies, even if accuracy is reduced.

The verbose results from all 70 experiments are omitted from the paper due to space constraints. How-
ever, the results and data sets are available from the author upon request. In addition, from the graphs it
is not possible to identify the number of irregular permissions each directory structure has; however, from
analysing the results it can be stated that the directory structure with fewest regular permissions has the
highest tpr an the lowest tnr across all directory sizes. Another observation that is consistent for all directory
sizes is that the tpr increases and the tnr decreases incrementally with the increasing number of irregular
permissions.

Table 2 demonstrates two example Associate Rules for demonstrating both an irregular and regular per-
mission extracted from a synthetically generated directory structure with 100 directories and 16 anomalies.
The first rule is for a frequently occurring permission, and the second rule is for a irregular permission
allocation. The first rule (X =⇒ Y ) demonstrates that the Administrators group implies Delete,
X = {Administrators} =⇒ Y = {Delete}. This rule is frequently occurring because the percent-
age (support) of all entries that contain both X and Y is at 5 %. This is high considering that there
are in excess of five other users and groups within the system, and fourteen different attributes used in
total. The confidence value is also quite high (27 %) which indicates that there is a strong relationship
between both Administrators and Delete. The second rule demonstrates an irregular permission between
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Directory
Number

Directories Permissions
levels

Permission
Entries

1 36 3 248
2 108 3 1142
3 427 2 1708
4 453 4 3184
5 407 4 3719

Table 3: Test NTFS directory structures specifics. The numbers are only considering directories with permissions different
from their parent. I.e. not inherited.

the Anomalyuser and Delete permission. Here the support is less 0.1 % indicating that a low number of
permissions contain both X and Y . In addition, the confidence value is also low at 1 % indicating that a
low number of the total Delete permissions are related to Anomalyuser. From this example, it is easy to
determine how the second permission has been identified as an anomaly.

In the results presented in this section, the average accuracy rate for each dataset is incrementally
improving from 0.85 to 0.95 for the directory structure with 100 and 1000 directories, respectively. This
further stimulates the assumption that the system performs best when the number of anomalies represents
1% or less than the total number of permissions (100 irregular and 9136 regular). However, even when the
number of irregular permissions is around 10%, the accuracy rate is around 85%. This is interesting as it
demonstrates the suitability of the technique for identifying file system permission regularity, which increases
as the percentage of irregular permissions decreases. This is contradictory to the main aim of this work which
is trying to eliminate the requirement for expert knowledge when auditing file system permissions. This
is because as the complexity of a file system increases through more ad-hoc permissions, the tool’s ability
decreases and the requirement for expert knowledge increases. However, this tool does make progress on
reducing the need for expert knowledge by making considerable progress towards removing the requirement
for an exhaustive manual audit.

6.2. Real-world Data sets

In this section the proposed system is validated against five real-world file systems to identify irregular
permissions. As this test is not synthetic, the ground truth is acquired by expert knowledge. The limitation of
acquiring expert knowledge alongside access to real-world directory structures limits the number of available
directory structures for analysis.

Table 3 shows details of the five previously unseen NTFS directory structures that are used to establish
the developed techniques’ performance. The diversity of different organisations permissions varies widely;
some have good access control which is maintained through adhering to a rigorous structure, whereas
some have inconsistent access control resulting from ad-hoc fixes. The number of directories presented in
Table 3 is significantly lower than the total number of directories in the file system. This is because the
algorithm considers directories which have permission different from their parent. For example, directory
number 1 in Table 3 actually contains 2856 directories of which only 55 are are unique. I.e these 55
permissions are inherited to all their sub-directories. For each test case, the ground truth (I.e the correct
identification of irregular permissions) is acquired through reports produced by an independent security
auditing organisation.

Figure 7 illustrates the computation times for each of the directory structures presented in Table 3. From
this graph, it is noticeable that the execution time for both stages of the algorithm increase as the size and
complexity of the directory structure increase. However, the results demonstrate that the duration of the
extraction and processing stage is more sensitive to an increase in both directory size and the number of
assigned permissions, whereas stage two (association rule mining) is less affected by an increasing number
of allocated permissions. For example, in the results it can be seen that the execution time of both stages
increases greater than exponentially until directory structure 4. Interestingly there is a large difference
between the number of permission entries for directory structures 3 and 4 (1708 to 3184) which results in a
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Directory
Number

Irregular Regular True
positive
(tpr)

False
Positive
(fpr)

True
Negative
(tnr)

False
Negative
(fnr)

accuracy

1 6 248 5 (0.83) 1 (0.17) 203 (0.82) 45 (0.18) 0.82
2 62 1142 50 (0.81) 12 (0.19) 977 (0.86) 165 (0.14) 0.85
3 24 1708 20 (0.83) 4 (0.17) 1538 (0.90) 170 (0.10) 0.90
4 14 3184 13 (0.93) 1 (0.07) 3037 (0.95) 147 (0.04) 0.97
5 144 3719 143 (0.97) 4 (0.03) 3619 (0.97) 100 (0.03) 0.99

Table 4: Accuracy results from empirical analysis. See paragraph 1 in Section 6 for a description of the measures.

large increase in computation time for stage one; however, the computation time for stage two only changes
a small amount (less than one second). This demonstrates good scalability of SOMA (stage 2) for analysing
file system permissions.

Following analysis of the performance, it is important to evaluate the ability to correctly identify both
irregular and regular permissions. This is performed by comparing the results of processing permissions
with SOMA with the results of expert analysis. Figure 8 illustrates the Receiver Operator Characteristics
(ROC) space (Hanley and McNeil, 1982) for all five directory structures. The ROC graph demonstrates that
although accuracy is lower on the smaller directory structures (directory structure 1 and 2), it is improving as
both the directory size and complexity increase. For example, for directory structure 1 has a tpr of 0.83, a fpr
of 0.17, and an accuracy of 0.82. Directory structure 5 has a tpr of 0.97, a fpr of 0.03, and an accuracy of 0.99
(full results can be seen in Table 4). Although directory structure 1 demonstrates a reasonable performance
where 80 % of classifications are correct, it would still require a reliance on expert interpretation to improve
confidence. Directory structures two and three are slightly better where the accuracy rate has increased
to 0.85 and 0.90, respectively. It is interesting to discover that directory structures four and five have
improved and have accuracy levels of 0.97 and 0.99, respectively. This is a significant finding as it suggests
that the accuracy of the proposed techniques are improving as both the directory size and complexity are
increasing. This would suggest that the directory structures one, two and three are not big enough to allow
the association mining techniques to correctly distinguish between what is normal and irregular.

The empirical results presented above demonstrate the potential of the proposed technique to program-
matically identify irregular permissions with a minimal reliance on expert knowledge. These results have
demonstrated that the proposed technique is sensitive to directory size, and in general performs better on
larger directory structures with diverse permissions.

7. Conclusion

This paper presents a technique to identify irregular file system permissions using Association Rule
Mining. This research focuses on the vulnerabilities of Microsoft’s New Technology File System (NTFS).
Motivation for applying the presented technique to the NTFS is justified through a details discussion on
the complexities associated with NTFS permissions administration. A detailed discussion is then provided
where the structure of NTFS permissions is discussed and modelled in a suitable way to develop algorithms
to autonomously identify irregular file system permissions.

The developed technique is a two-stage algorithm. The first stage is a permission extraction algorithm
for acquiring all relevant information for analysis. Empirical analysis has demonstrated that this stage is
sensitive to both the size of the directory structure as well as the complexity of the assigned permissions.
However, given that analysis is performed off-line and that permissions are often not changing quickly, the
time-scale that is presented (a maximum of just over 2 minutes for the largest directory) is not detrimental.
The second stage is to use association rule mining to identify permissions which are irregular and can
potentially result in vulnerabilities. Using association rule mining results in the production of a final rule
set containing those which have low support and confidence. This stage of the produced system scales well
and has an accuracy rate which increases with both directory size and complexity.
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Empirical observations are then performed which included executing the produced technique against
70 synthetically generated and five real-world, multi-user directory structures. The synthetically generated
directory structures created the possibility to rigorously evaluate the system’s performance and understand
the ability to identify irregular permissions which have been created in an ‘ad-hoc’ manner. The results from
the synthetic directory structures demonstrated that the presented technique has an 90 % average accuracy.
The main finding from these experiments was that the ability to correctly identify irregular permissions
increases and the incorrect identification of regular permissions decreases as the directory size increases and
the number of anomalies stays the same or decreases. It was identified that 95 % accuracy can be achieved
when the percentage of irregular permissions is equal to or less than 1 % of the total permissions.

The real-world directory structures were different in terms of directory size, the number of assigned
permissions, and the number of known irregular permissions. The irregular permissions have been prede-
termined through the use of expert knowledge. This expert knowledge was used as ground truth for the
empirical analysis. The results are promising with an average accuracy rate of 91 %. It is interesting to
discover that the technique has a better accuracy on larger and more complex directory structures.

Although an accuracy rate in excess of 90 % has been achieved, it still does not completely remove
the requirement for expert knowledge. However, it significantly reduces the reliance on expert knowledge
as well as the time consuming process of having to perform an exhaustive manual security audit of a file
system. The contribution from this paper to the anomaly detection and file system auditing communities is
significant and strongly motivates further research. All the data sets and software presented in this paper are
available form the corresponding author upon request. Future research is to further develop the techniques
to include different mechanisms of file system access control as well as identifying suitable mechanisms of
further improving accuracy.
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Figure 3: ROC space demonstrating the fpr and tpr of
identifying anomalies in the synthetic directory structures
where d is the number of directories.
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Figure 4: ROC space demonstrating the fpr and tpr of
identifying anomalies in the synthetic directory structures
where d is the number of directories.
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Figure 5: ROC space demonstrating the fpr and tpr of
identifying anomalies in the synthetic directory structures
where d is the number of directories.
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Figure 6: Computation time in seconds for (1) extracting
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ecution of the trend mining (SOMA) algorithm to identify
irregular permissions.
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Figure 7: Computation time in seconds for (1) extracting and processing NTFS permissions, followed by (2) the execution of
the trend mining (SOMA) algorithm to identify irregular permissions.
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Figure 8: ROC curve for the analysis of the test file systems
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