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Abstract 

Direct mixing of alginate and divalent cations such as Ca
2+

 generally produces heterogeneous 

gels that form almost instantaneously. Therefore, is particularly difficult to measure the 

rheological properties of this gelation event due to the rapid gelation kinetics. In this study, 

the gelation of alginate when exposed to a solution of CaCl2 was measured by using a 

modified rheometer. This modification involved attaching a petri dish to the lower plate of 

the rheometer into which, filter paper impregnated with CaCl2 solution was added. A semi-

permeable membrane was then placed above the filter paper as a barrier to prevent the filter 

paper imbibing the gel.  Samples of 4%w/w alginate were loaded onto the semi-permeable 

membrane and measurements were taken using 55mm parallel plate geometry. Measurements 

of G′ and Gʺ were determined as a function of time to monitor gelation. Once gelation was 

complete the filter paper was removed and replaced with filter paper impregnated with 

calcium chelators (EDTA, sodium citrate) to assess the degradation of the gel. The results 

showed that this technique was suitable for analysing the external gelation of alginate with a 

sharp increase in G′ in the first three minutes which then plateaued over the remainder of the 

test. It was also shown that gel stiffness reduced to a greater extent on exposure to EDTA 

compared with sodium citrate. This method is not only suitable for measuring rapid gelation 

kinetics on exposure to cross-linkers, but has potential applications in modelling the in situ 

gelation behaviour in simulated physiological environments. 

 Keywords: Alginate; in situ; gelation; rheology; gel; degradation. 
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1. Introduction 1 

 Alginates have many applications within the food, pharmaceutical and biomedical 2 

industries due to their unique physicochemical properties. Of particular interest to these 3 

industries is the ability for solutions of alginate to undergo a temperature independent sol-gel 4 

transition in the presence of multivalent cations (e.g. Ca
2+

) (Smidsrød & Draget 1996) and on 5 

exposure to acidic pH (generally < pH 3) (Draget, Skjåk-Bræk & Smidsrød 1994; Draget, 6 

Skjåk Bræk, Christensen, Gaserod & Smidsrød 1996; Draget, Stokke, Yuguchi, Urakawa, & 7 

Kajiwara 2003; Draget, Skjåk Bræka, & Stokke 2006). This behaviour makes alginate 8 

particularly suitable for 3D cell culture and bioresponsive drug delivery systems as these 9 

environmental conditions can be found in various physiological fluids and, therefore, have 10 

the potential to undergo a sol-gel transition in situ. Indeed the simplest and most widely used 11 

method is to drop an alginate solution via a syringe into a solution of calcium chloride. 12 

Although considerable work has been performed that exploits this sol-gel transition using 13 

various techniques to introduce the alginate to the calcium chloride solution (Kierstan and 14 

Bucke, 1977; Hulst, Tramper, Vantriet, & Westerbeek, 1985; Matsumoto, Kobayashi, & 15 

Takashima 1986; Sugiura et al 2005; Clark et al 2008), the rapid gelation and heterogeneous 16 

nature of the gels formed on direct mixture of crosslinking ions has made the rheological 17 

behaviour particularly difficult to measure. Several methods have been developed to 18 

overcome this to further understand the fundamental structural aspects of alginate gelation. 19 

These methods include the controlled release of divalent ions from an insoluble source 20 

(Draget et al 1990; Draget 2000; Draget, Moe, Skjåk-Bræk, & Smidsrød 2006) or by use of a 21 

sequestering agent such as ethylenediamine tetraacetic acid (EDTA) (Toft 1982) and using 22 

the slowly hydrolysing n-glucono delta-lactone (GDL) to lower the pH and release the 23 

complexed calcium into the alginate solution. The gels produced using these methods tend to 24 

be considerably more homogeneous than those produced by direct mixing of alginate to an 25 
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external crosslinking source as for example occurs when making alginate beads. Moreover, 26 

slowly releasing crosslinking ions that are complexed and suspended within the alginate 27 

solution manifests a very different mechanism compared with when alginate comes in to 28 

contact with crosslinking ions in physiological environments. To replicate physiological 29 

exposure, the usual method is to load sodium alginate into dialysis tubing and then immerse it 30 

into a solution containing the required crosslinking ions for various periods of time before 31 

removing and cutting the gel to an appropriate size for mechanical testing using a rheometer 32 

(Miyazaki, Kubo & Attwood 2000; Kubo, Miyazaki, & Attwood, 2003.). Another method 33 

that has been used is to pour sodium alginate into tissue culture plates containing filter paper 34 

impregnated with soluble crosslinking ions (one placed beneath the alginate and one on top). 35 

The alginate is then allowed to gel for a specific time before the mechanical properties are 36 

measured (Hunt, Smith, Gbureck, Shelton & Grover 2010; Jahromi, Grover, Paxton & Smith 37 

2011).   Neither of these external gelation methods, however, offers an insight into the real 38 

time gelation of alginate. To try to address this, we have used a Malvern Gemini rheometer, 39 

with a modified lower plate to allow the exposure to an external source of crosslinking ions to 40 

facilitate the rheological measurement of alginate gelation in situ.    41 

 42 

2. Materials and Methods 43 

2.1 Materials 44 

Dialysis tubing (14000 MWCO) was from Thermo Scientific, UK, the filter paper used was 45 

Whatman Grade 1 supplied by Fisher scientific UK, sodium alginate was from Sigma Aldrich 46 

(UK) and was described as medium molecular weight (80,000 - 120,000) with a M:G ratio of 47 

0.39:0.61. All the other chemicals were obtained from Sigma Aldrich (UK) and where of 48 

analytical grade and were used without any further purification.   49 
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2.2 Methods 50 

2.2.1 Preparation of alginate solutions  51 

Solutions of 4% w/w alginate were made by dispersing weighed amount of alginate in 100 ml 52 

distilled water and stirring at 60 °C for 30 min. Any evaporated water was replaced and the 53 

sample was stored in a sealed vial prior to use. 54 

2.2.2 Preparation calcium chloride solution  55 

Three different concentrations of CaCl2 (50,100 and 200 mM) were prepared by dissolving 56 

the correct weight of calcium chloride dihydrate powder in 100 ml deionized water.  57 

2.2.3 Preparation of EDTA solution 58 

500 mM of EDTA was prepared by dissolving the weighted amount of EDTA powder in 100 59 

ml warm deionized water with continuous stirring for 30 min.  The pH was then adjusted to 60 

pH 7.0 using 1 M NaOH.     61 

2.2.4 Preparation of sodium citrate solution 62 

Sodium citrate was prepared at a concentration of 500 mM in the same manner as the EDTA, 63 

by dissolving the correct amount sodium citrate powder in 100 ml warm deionized water with 64 

continuous stirring for 30 min and the pH adjusted to pH to 7.0 using 1 M NaOH.     65 

2.2.5 In situ gelation  66 

The experimental setup used a Malvern Gemini Nano HR rheometer with a modified lower 67 

plate as shown in Figure 1. Briefly, a petri dish containing a filter paper soaked with CaCl2 68 

solution was securely attached to the lower plate of the rheometer. The theoretical amount of 69 

total calcium added was estimated by weighing the filter paper before and after soaking. This 70 

was calculated as 2.5, 5 and 10 mg of calcium for 50, 100 and 200 mM CaCl2 solutions 71 

respectively. A dialysis membrane (MWCO 14000 Da) which had previously been hydrated 72 
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in deionised water was placed on top of the filter paper to prevent the sample being imbibed 73 

by the filter paper. The gap was then zeroed, the samples of alginate were loaded onto the 74 

dialysis tubing and light silicone oil was used around the periphery of the geometry to 75 

prevent evaporation. Small deformation oscillatory measurements of storage and loss moduli 76 

(G′ and Gʺ) were then performed as a function of time at 0.5% strain and a frequency of 10 77 

rad s
-1

 using a 55 mm diameter parallel plate geometry with a 1 mm gap. All measurements 78 

were performed within the linear viscoelastic region previously determined using amplitude 79 

sweeps. Alginate solutions measured in the same way but using filter paper impregnated with 80 

deionized water served as control.  81 

2.2.6 In situ gel degradation 82 

Following a 20 min exposure to CaCl2 solution the geometry was raised and the filter paper 83 

was carefully removed from the petri dish and replaced with a filter paper impregnated with a 84 

calcium chelator (either 500 mM EDTA or 500 mM sodium citrate). The rheological 85 

measurements of G′ and Gʺ as a function of time were then resumed using the same 86 

conditions as used in the gelation measurements. During the procedure of changing the filter 87 

paper the crosslinked alginate gel remained adhered to the upper geometry which facilitated 88 

the change without significantly disturbing the gel. Moreover, no significant changes in 89 

normal force were apparent following the change of filter paper.   90 

3. Results and Discussion 91 

3.1 In situ gelation 92 

The changes in G′ and G ′′ showing the gelation behaviour of alginate when exposed to an 93 

external source of calcium chloride was measured by using a modified Malvern Gemini 94 

rheometer. The concentration of the alginate was chosen at 4% to ensure a good signal to 95 

noise ratio from the non-crosslinked sample and to facilitate a strong and rapid gelling 96 
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reaction to emphasize the ability to measure the rapid changes in moduli. Figure 2A-C show 97 

a rapid increase in G′ and G′′ over the first 3 min of exposure with G′ overtaking G′′ within 2 98 

min in all the concentrations of CaCl2 tested. The gelation reaction was allowed to proceed 99 

for 20 min and the values for G′ were recorded and showed an increase that was proportional 100 

to the concentration of CaCl2 (Figure 2D). This proportional increase in G′ has been shown 101 

previously with alginate crosslinked by internal gelation mechanisms (Draget et al 2006).  102 

 103 

3.1 In situ gel degradation 104 

To highlight the potential of this method to analyse changes in rheological properties of gels 105 

on exposure to external sources of salts, the effect of commonly used calcium chelators on 106 

4% alginate crosslinked for 20 min by an external source of 200 mM CaCl2 was studied 107 

(Figure 2E). EDTA was shown clearly to be a more potent calcium chelator than sodium 108 

citrate, causing G′ to return to a similar modulus to that of the original sodium alginate, prior 109 

to crosslinking, after only 35 min of exposure. In contrast, sodium citrate only reduced G′ by 110 

one order of magnitude in comparison with the two orders of magnitude achieved when using 111 

EDTA. This can be explained by EDTA having a higher calcium ion binding constant that 112 

sodium citrate as previously demonstrated by Keowmaneechai & McClements (2002).  113 

 114 

4. Conclusion Limitations and Future Perspectives 115 

This study has demonstrated a novel method to measure the rapid changes in rheological 116 

properties of alginate during external gelation on exposure to CaCl2. Differences in gel 117 

strength could also be measured when changing the source concentrations of CaCl2. 118 

Moreover, the degradation of calcium cross-linked alginate gels can also be monitored in real 119 

time by replacing a crosslinking ion source for a calcium chelator. Indeed, results obtained 120 

using this method showed that EDTA was a more effective chelator than sodium citrate. It 121 
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should be mentioned however, that for a suitable comparisons between samples it is crucial to 122 

begin the measurements at a consistent time following loading of the sample as this is 123 

particularly important with rapid gelling systems such as alginate. Furthermore, 124 

quantification of the concentrations of ions diffused into the sample is unknown and could 125 

result in the possibility of an inhomogeneous gel with the sample being more crosslinked 126 

close to the filter paper. This effect would have greater significance, however, on thicker gels 127 

i.e those measured with a larger gap size.  It is proposed that this technique could be applied 128 

to studying gelation of pectins, carrageenans and other biopolymers that gel in the presence 129 

of metal ions, small molecule crosslinkers or by changes in pH. The wider implication of this 130 

is an ability to choose isolated biopolymers for many different industry applications where 131 

there may be a need for rapid or slow gelation.  For example, this system could be used as a 132 

model for understanding changes in rheological behaviour when biopolymers are exposed to 133 

various physiological fluids. This could therefore, have particular applications in designing 134 

bioresponsive delivery systems in the food, pharmaceutical and biomedical industries.    135 

 136 
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 196 

Figure 1 In situ gelling experiment using a modified lower plate of a commercial rheometer 197 

 198 

Figure 2 Rheological measurements showing variation of G′ (filled symbols), G′′ (open 199 

symbols) vs time on exposure to A) 50 mM B) 100 mM and C) 200 mM; D) shows the values 200 

of G′ after 20 min exposure to 50mM, 100mM and 200mM CaCl2; E) shows the effect of the 201 

calcium chelators sodium citrate 500 mM and EDTA 500 mM on the variation G′ for 4% 202 

alginate crosslinked with 200 mM CaCl2 for 20mim in situ. Dotted line indicates when the 203 

crosslinking source CaCl2 was changed to either sodium citrate or EDTA. 204 


