Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/26468/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.
Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Dr Adam Bevan – Institute of Railway Research
Stephanie Klecha – MRX Technologies
Overview

• Background
• Wheel tread damage
• SCM development
• Theory of SCM
• Wheel handheld unit
• Damage types
• Summary
• Acknowledgements
• Wheelset account for a large proportion of a fleet's whole-life costs
• Wheelsets are routinely maintained to ensure safe operation and prolong life
• This includes measurements to inspect:
 – Roundness
 – Profile shape
 – Rim thickness
 – Visual inspection of surface damage
Wheel Tread Damage

- Surface damage is difficult to classify through visual inspections
 - Not possible to establish depth of damage
- Wheelsets are re-profiling to remove any identified damage
- Crucial balance exists:
 - Removing enough material to eliminate the damage
 - Minimising cut depth to preserve the rim thickness
- Taking multiple smaller cuts increases time at wheel lathe
Cut Depths

- Example radial material loss during turning

![Graph showing radial material loss over mileage](image)
SCM Development

- MRX’s Surface Crack Measurement (SCM) technology has been in use on rails for 8+ years
- Technology has been adapted to measure surface damage on wheels using a hand held device
- Funding awarded through the RSSB/Future Railway ‘Rail Operator Challenge Competition’ to validate and further develop the product in collaboration with:
 - Bombardier Transportation
 - Institute of Rail Research, University of Huddersfield
 - Arriva Trains
Theory of SCM – 1

- Magnetic Particle Inspection (MPI) and SCM are similar
- They involve magnetizing the specimen surface
- This introduces lines of magnetic flux into the specimen
In a defect free specimen, these lines travel undisturbed through the specimen.

If a defect is present, the flux cannot travel as easily through it.

This causes some flux to leak at the position of the defect.
Wheel Handheld Unit – 1

- Wheel SCM uses 16 magnetic field sensors to measure and record the leaking flux.
- Reports the depth of the deepest artifact in the scan.
 - Amount of material to remove from the wheel to eliminate the damage.
Wheel Handheld Unit – 2

- Handheld unit specification:
 - 1 mm = Lower Detection Limit (shallowest artifact)
 - 10 mm = Upper Detection Limit (deepest artifact)
 - +/- 0.5 mm = System Accuracy
• Surface breaking and near-surface damage
 – Cracking and cavities
• Surface breaking and near-surface damage
 – Rolling contact fatigue (RCF) cracking
Damage Types – 3

- Surface breaking and near-surface damage
 - Rolling contact fatigue (RCF) cracking
 - Thermal cracking and cavities
Non-visible Damage – 1

- HHU reveals damage not visible on uncut wheel

Max. Measured Depth ~ 4.2mm
Non-visible Damage – 2

- HHU reveals damage not visible on uncut wheel

Un-Cut Wheel - cavity/thermal damage not visible

Wheel after 1st Cut - cavity/thermal damage visible

Scan of un-cut wheel
Max. Measured Depth ~ 7.3mm
Damage Free Wheel

- Confirms when wheel is damage free
Summary

• SCM technology has been adapted to evaluate surface and sub-surface defects in wheels

• Potential uses include:
 – *Replacing visual inspection during routine maintenance exams*
 • Repeatable, not reliant on judgement
 • Reveals damage that is not obvious/visible on uncut tread
 – *Optimisation of cut depths at wheel lathe*
 • Reduce risk of overcutting and also saves time removing defects
 – *Trending to understand RCF development and growth rates*
 • Improved planning of maintenance
 • Highlight problem wheels/vehicles
 – *Supporting specific case studies*
 • New profiles, steels etc. (monitor performance)
Next Steps

- Further wheel lathe trials to confirm damage depth readings and access constraints etc.
- Further developments of prototype HHU
- Assessment of scrap wheels:
 - Samples to be examined optically to determine deformation depth, crack length and crack depth
 - Micro-hardness testing
 - Correlation HHU readings with measured damage
- Business case detailing the benefits of the data for trending and maintenance planning
Acknowledgments

• The results and findings presented were developed as part of the RSSB/Future Railway managed ‘Rail Operator Challenge Competition’

• For further information visit us at the blue-sky village exhibition or contact:
 – a.j.bevan@hud.ac.uk
 – sek@mrxtech.co.uk