

#### **University of Huddersfield Repository**

Bevan, Adam and Molyneux-Berry, Paul

Optimisation of Wheelset Maintenance using Whole System Cost Modelling

#### **Original Citation**

Bevan, Adam and Molyneux-Berry, Paul (2012) Optimisation of Wheelset Maintenance using Whole System Cost Modelling. In: Rail Research UK Association Annual Conference, 7th November 2012, London. (Unpublished)

This version is available at https://eprints.hud.ac.uk/id/eprint/26343/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Institute of Railway Research

# Optimisation of Wheelset Maintenance using Whole System Cost Modelling

Adam Bevan, Paul Molyneux-Berry – University of Huddersfield

Steve Mills – Rail Safety & Standards Board Andy Rhodes, Daniel Ling – Serco











- Background
- Vision of VTISM
- Wheelset Maintenance Strategy
- Damage rates and WPDM
- Wheelset Costs
- Whole System Costs
- Summary
- Acknowledgements

#### Background

University of HUDDERSFIELD

- Wheelset maintenance and renewal activities account for a large proportion of a fleets whole-life costs
- Influenced by a large number of factors:
  - Depot constraints
  - Wheel tread damage
  - Fleet availability
  - Vehicle design
- Optimisation of maintenance and renewal regimes will help to increase wheelset life and reduce costs







#### Background

University of HUDDERSFIELD

- Tools currently exist for prediction of track damage, replacement and maintenance costs
  - Whole Life Rail Model (rail RCF & wear)
  - Track-Ex (NR decision support tool)
  - VTISM (links vehicle-track characteristics to track costs)
- Stage 2 development of VTISM enhanced the rolling stock modelling capabilities
  - Strategic planning of wheelset maintenance and renewal activities
  - Examine benefits and cost impact of a range of different scenarios
  - Optimise wheelset management strategies
- These enhancements go some way to determining the whole life costs for the complete system (vehicle-track)

University of HUDDERSFIELD



University of HUDDERSFIELD



University of HUDDERSFIELD



University of HUDDERSFIELD



#### Wheelset Maintenance Strategy

University of HUDDERSFIELI

Institute of Railway Research



#### **Inspection Strategy**

Applied if mileage since last inspection is greater than the relevant inspection interval

#### Wheel Turning Strategy

Triggered if condition reaches a predefined limit (i.e. flange thickness is less than the minimum permitted flange thickness)

#### Wheelset Replacement Strategy

Triggered if condition reaches a predefined limit (i.e. wheel diameter is less than the minimum diameter for running

- Rates of damage are included to describe how the attributes of the wheel deteriorate over time
  - Tread/flange wear
  - Change in conicity
  - RCF damage
  - Probability of flats
- Compared with pre-defined limits trigger maintenance or renewal activity
- This information can be obtained from observation data
- Alternatively, the WPDM can be used to predict the damage rates

- Wheel Profile Damage Model (WPDM) is a standalone tool for the prediction of deterioration rates of the wheel tread
- Uses VAMPIRE vehicle dynamics simulation software to predict wear and RCF damage
- WPDM methodology
  - Characterises a vehicle's route diagram in terms of parameters which influence wheel damage
  - Predicts wheel-rail forces for the chosen route conditions using vehicle dynamics simulations
  - Post-process the calculated wheel-rail forces to predict the formation of wear (Archard model) and RCF (Tγ-damage model) on the wheel
  - Plot and save the results for use within VTISM and WMM

#### **Predicted Wheel Wear**

University of HUDDERSFIELD





#### **Analysis Scenarios**

University of HUDDERSFIELD

- Mileage-based turning regime (Base Case)
  - Turning interval set to 140,000 miles to represent current practice
- Reduced mileage-based turning interval
  - Turning interval reduced to 100,000 miles to represent a 'little and often' turning regime
- Condition-based turning regime
  - Turning triggered by the condition of the wheelset only
- Lubrication strategy
  - Coefficient of friction at the flange contact was reduced to  $\mu$ =0.1
  - Inspection and maintenance of the lubrication system included
  - Includes modified wear and RCF damage rates for all wheelset types
- Modified primary yaw stiffness
  - Includes modified wear and RCF damage rates for all wheelset types

University of HUDDERSFIELD



University of HUDDERSFIELD



- Reduced Turning Interval
  - Increase in mileage-based turning
  - Reduction in turning for damage

University of HUDDERSFIELD

Institute of Railway Research



- Reduced Turning Interval
  - Increase in mileage-based turning
  - Reduction in turning for damage

#### Condition-based Turning

- Increase in turning for damage and parity
- No mileage-based turning

University of HUDDERSFIELD



- Reduced Turning Interval
  - Increase in mileage-based turning
  - Reduction in turning for damage
- Condition-based Turning
  - Increase in turning for damage and parity
  - No mileage-based turning
- Primary Yaw Stiffness
  - Increase rates of damage
  - Increase in turning for damage

University of HUDDERSFIELD



- Reduced Turning Interval
  - Increase in mileage-based turning
  - Reduction in turning for damage
- Condition-based Turning
  - Increase in turning for damage and parity
  - No mileage-based turning
- Primary Yaw Stiffness
  - Increase rates of damage
  - Increase in turning for damage
- Lubrication
  - Reduction in damage rates
  - Increase in number of wheelsets achieving mileage-based turning

### **Optimised Wheel Turning Interval**

University of HUDDERSFIELD

Institute of Railway Research

Total costs for varying wheel turning interval



### Material Loss at Turning

University of HUDDERSFIELD

- Low mileages cut depth is governed by the amount of material loss required to restore the profile shape
- Higher mileages similar cut depth to restore profile, but additional material removed due to RCF damage



#### Whole System Costs

University of HUDDERSFIELD

- Increased intervals between wheel turning may result in a cost benefit to vehicle operators/maintainers
- But increases in wheel/rail conformality may result ≈ increasing the probability of RCF damage on the track
- To reduce whole system costs (vehicle-track) it is therefore important to optimise both sides of the interface



#### Track-Wheelset Costs

University of HUDDERSFIELD



#### **Distribution of Flange Height**







Institute of Railway Research

- New tools have been developed which allow users to:
  - Evaluate wheelset whole life costs using fleet asset inventory data, deterioration rates and maintenance regimes
  - Determine annual inspection, maintenance and renewal costs
  - Optimise wheelset maintenance strategy
  - Carry out 'what if' analysis
- Capabilities of these new tools have been demonstrated by predicting the whole life costs for a typical DMU fleet

Cost implications of number of scenarios presented

 Tools can be used to determine the impact of system changes on both vehicle and track costs ≈ potential for reducing whole system costs



 The results and findings presented were developed from the RSSB managed rail industry research programme, funded by the Department of Transport



• For more information: a.j.bevan@hud.ac.uk