University of Huddersfield Repository

Petushek, Erich J., Cokely, Edward T., Ward, Paul, Durocher, John, Wallace, Sean and Myer, Gregory D.

Visual estimation of ACL injury risk: Efficient assessment method, group differences, and expertise mechanisms

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/26342/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Visual Estimation of ACL Injury Risk: Efficient Assessment Method, Group Differences, and Expertise Mechanisms

Erich J. Petushek¹, Edward T. Cokely², Paul Ward³, John Durocher⁴, Sean Wallace⁵, & Gregory D. Myer⁶

¹Michigan State University, USA ²University of Oklahoma, USA ³University of Huddersfield, UK ⁴Michigan Technological University, USA ⁵Illinois Institute of Technology, USA ⁶Cincinnati Children’s Hospital Medical Center, USA

Introduction

Impact
• Over 2 million ACL injuries occur worldwide annually.
• Approximately 1 in 30 female athletes participating in landing and cutting sports (basketball, soccer) will tear their ACL within one season of play.
• Annual costs in U.S. likely exceed $3 billion (majority pursue surgery).
• Osteoarthritis occurs at 10 times the normal rate.

Methods

Aim
b.) Ensure biomechanical feedback during prevention programs is accurate
a.) Reduce screening time and cost

Potential Solutions

• Osteoarthritis occurs at 10 times the normal rate.
• Annual costs in U.S. likely exceed $3 billion (majority pursue surgery).
• Sports (basketball, soccer) will tear their ACL within one season of play.
• Approximately 1 in 30 female athletes participating in landing and cutting sports (basketball, soccer) will tear their ACL within one season of play.
• Over 2 million ACL injuries occur worldwide annually.

Impact

Re-evaluate the preventative technique to “High-risk”

Musculoskeletal Injury Prevention

Identify injury mechanisms

Develop efficient screening method

Skilled Movement Analysis

Efficiently Assess Observational Skill

Group Differences

Skill Mechanisms

Discussion

• It will be important to target parents, athletes, coaches, and physicians for improving risk assessment performance or to adopt the ACL nomogram to aid their injury risk assessment in practice.
• The ACL-IQ is an assessment technology and feedback system for ACL injury risk prediction ability.
• Individuals can assess their ACL injury risk prediction ability with a short, free, and online (www.ACL-IQ.org) tool.

Moving Forward

• Future research will focus on developing efficient methods to improve visual risk prediction performance (e.g., see Decision Tree to the right) and establishing predictive evidence that individuals with high ACL-IQ can reduce ACL injuries.

Figure 2: Sample ACL-IQ item (snapshot of video sequence)

Acknowledgments: This material is based upon work supported by the National Science Foundation, National Institutes of Health and the Research Council of Norway.