Computing and Library Services - delivering an inspiring information environment

The active site of cellobiohydralase Ce16A from Trichorderma reesei: the roles of aspartic acids D221 and D175

Koivula, Anu, Ruohonen, L., Wohlfahrt, G., Reinekainen, T., Teeri, T.T., Piens, K., Claeyssens, Marc, Weber, M., Vasella, A., Becker, D., Sinnott, Michael L., Zou, J., Kleywegt, G.J., Szardenings, M., Stahlberg, J. and Jones, T.A. (2002) The active site of cellobiohydralase Ce16A from Trichorderma reesei: the roles of aspartic acids D221 and D175. Journal of the American Chemical Society, 124 (34). pp. 10015-10024. ISSN 0002-7863

[img] PDF
Restricted to Registered users only

Download (810kB)


Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have
established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that
are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other.
Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to
confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to
contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural
and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve
a catalytic base. The value of D2O(V) of 1.16 ( 0.14 for hydrolysis of cellotriose suggests that the large
direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus
mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond
between D221 and D175 before catalysis.

Item Type: Article
Additional Information: UoA 18 (Chemistry) © 2002 American Chemical Society
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: (1) Wood, T. M.; Garcia-Campayo, V. Biodegradation 1990, 1, 147-161. (2) Teeri, T. T. Trends Biotechnol. 1997, 15, 160-167. (3) Henrissat, B.; Teeri, T. T.; Warren, R. A. FEBS Lett. 1998, 425, 352-4. (4) Rouvinen, J.; Bergfors, T.; Teeri, T.; Knowles, J. K.; Jones, T. A. Science 1990, 249, 380-6. (5) Srisodsuk, M.; Kleman-Leyer, K.; Keranen, S.; Kirk, T. K.; Teeri, T. T. Eur. J. Biochem. 1998, 251, 885-92. (6) Kleman-Leyer, K.; Siika-aho, M.; Teeri, T. T.; Kirk, T. K. Appl. EnViron. Microbiol. 1996, 62, 2883-2887. (7) Divne, C.; Stahlberg, J.; Reinikainen, T.; Ruohonen, L.; Pettersson, G.; Knowles, J. K.; Teeri, T. T.; Jones, T. A. Science 1994, 265, 524-8. (8) Divne, C.; Stahlberg, J.; Teeri, T. T.; Jones, T. A. J. Mol. Biol. 1998, 275, 309-25. (9) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson, D. B. Biochemistry 1998, 37, 9220-9. Published on Web 08/02/2002 (10) Koshland, D. E. Biol. ReV. 1953, 28, 416-436. (11) Knowles, J. K. C.; Lehtovaara, P.; Murray, M.; Sinnott, M. L. J. Chem. Soc., Chem. Commun. 1988, 1401-1402. (12) Claeyssens, M.; Tomme, P.; Brewer, C. F.; Hehre, E. J. FEBS Lett. 1990, 263, 89-92. (13) McCarter, J. D.; Withers, S. G. Curr. Opin. Struct. Biol. 1994, 4, 885-92. (14) Koivula, A.; Lappalainen, A.; Virtanen, S.; Ma¨ntyla¨, A. L.; Suominen, P.; Teeri, T. T. Protein Expression Purif. 1996, 8, 391-400. (15) Koivula, A.; Kinnari, T.; Harjunpaa, V.; Ruohonen, L.; Teleman, A.; Drakenberg, T.; Rouvinen, J.; Jones, T. A.; Teeri, T. T. FEBS Lett. 1998, 429, 341-6. (16) Ståhlberg, J.; Divne, C.; Koivula, A.; Piens, K.; Claeyssens, M.; Teeri, T. T.; Jones, T. A. J. Mol. Biol. 1996, 264, 337-49. (17) Varrot, A.; Schulein, M.; Davies, G. J. Biochemistry 1999, 38, 8884-91. (18) Zou, J.-y.; Kleywegt, G. J.; Ståhlberg, J.; Driguez, H.; Nerinckx, W.; Claeyssens, M.; Koivula, A.; Teeri, T. T.; Jones, T. A. Structure 1999, 7, 1035-1045. (19) Harjunpaa, V.; Teleman, A.; Koivula, A.; Ruohonen, L.; Teeri, T. T.; Teleman, O.; Drakenberg, T. Eur. J. Biochem. 1996, 240, 584-91. (20) Koivula, A.; Reinikainen, T.; Ruohonen, L.; Valkeajarvi, A.; Claeyssens, M.; Teleman, O.; Kleywegt, G. J.; Szardenings, M.; Rouvinen, J.; Jones, T. A.; Teeri, T. T. Protein Eng. 1996, 9, 691-9. (21) Teleman, A.; Koivula, A.; Reinikainen, T.; Valkeajarvi, A.; Teeri, T. T.; Drakenberg, T.; Teleman, O. Eur. J. Biochem. 1995, 231, 250-8. (22) Marquart, D. W. J. Soc. Ind. Appl. Math. 1963, 11, 431-441. (23) Konstantinidis, A.; Sinnott, M. L. Biochem. J. 1991, 279, 587-93.(24) Becker, D.; Johnson, K. S.; Koivula, A.; Schulein, M.; Sinnott, M. L. Biochem. J. 2000, 345 Pt 2, 315-9. (25) van Tilbeurgh, H.; Pettersson, G.; Bhikabhai, R.; De Boeck, H.; Claeyssens, M. Eur. J. Biochem. 1985, 148, 329-34. (26) Schomburg, D.; Reichelt, J. J. Mol. Graphics 1988, 6, 161-165. (27) Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.; Weiner, P.; K.P.A. AMBER, 4.0 ed.; University of California: San Francisco, 1991. (28) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M. S.; D.C.F., T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179-5197. (29) Woods, R. J.; Dwek, R. A.; Fraser-Reid, B. J. Phys. Chem. 1995, 99, 3832- 3840. (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; A., P. J. Gaussian 94, revision B.3; Gaussian, Inc: Pittsburgh, PA, 1995. (31) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10296-10280. (32) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Imey, R.; Klein, M. J. Chem. Phys. 1983, 79, 926-935. (33) Ryckaert, J. P.; Cicotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327-341. Table 1. Kinetic Parameters for the wt Cel6A and Mutant Enzymes D221A and D175A on Cello-oligosaccharides (Glcn, n ) 4-6) Measured in 10 mM Sodium Acetate Buffer, pH 5.0 at 27 °Ca wt Cel6A D221A D175A substrate kcat (s-1) Km (íM) kcat/Km (s-1 íM-1) kcat (s-1) kcat (s-1) Km (íM) kcat/Km (s-1 íM-1) Glc3 0.06 ( 0.01 17 ( 5 0.004 ( 0.002 e0.0001 e0.0003 nd Glc4 4.1 ( 0.5 2.6 ( 0.5 2.0 ( 0.5 e0.0012 0.0013 ( 0.0010 4 ( 1 0.0003 ( 0.0004 Glc5 1.1 ( 0.2 1.3 ( 0.4 0.8 ( 0.5 e0.0010 0.025 ( 0.001 1.4 ( 0.7 0.02 ( 0.01 Glc6 14 (2 14 ( 6 1.0 ( 0.7 e0.0007 0.020 ( 0.001 nd aOwing to low activity, Km values could not be measured for the D221A mutant. Kinetic constants were calculated by a nonlinear regression data analysis program (Enzfit), which also gives the standard deviation. nd ) not determined. Catalytic Mechanism of T. reesei Cel6A A R T I C L E S (35) Davies, G.; Sinnott, M. L.; Withers, S. G. In ComprehensiVe biological catalysis; Sinnott, M. L., Ed.; Academic Press: London, 1998; Vol. I, pp 119-208. (36) Sulzenbacher, G.; Driguez, H.; Henrissat, B.; Schulein, M.; Davies, G. J. Biochemistry 1996, 35, 15280-7. Figure 5. Snapshots of the molecular dynamics simulations of the proposed catalytic states. Only the residues in the -1 and +1 sites are shown. All hydrogens and the backbone atoms of Y169, D175, and D221 are omitted for clarity. Important hydrogen bonds are shown as green dots, and the interaction between water and C1, important for the nucleophilic attack, is shown in orange. The models of different reaction states show (a) the ground state with the -1 site sugar in a skew-boat conformation (2S0), (b) the ground state with the D221 side chain rotated toward the glycosidic oxygen, (c) an oxycarbenium ion intermediate modeled in a boat conformation (2,5B) as an analogue to the transition state, and (d) two sugars of the reaction products (R-cellobiose in the -1 and -2 sites and â-cellobiose in the +1 and +2 sites). A R T I C L E S Koivula et al. (37) Konstantinidis, A. K.; Marsden, I.; Sinnott, M. L. Biochem. J. 1993, 291, 883-8. (38) Sweilem, N. S.; Sinnott, M. L. In Carbohydrases from Trichoderma and other microorganisms; Claeyssens, M., Nierinckx, W., Piens, K., Eds.; Royal Society of Chemistry: London, 1998; pp 13-20. (39) Banting, G.; Higgins, S. J. Tetrahedron Lett. 2000, 28, 35. (40) Hehre, E. J. In Enzymatic degradation of insoluble carbohydrates; Saddler, J. N., Penner, M. H., Eds.; ACS Symposium Series 618; American Chemical Society: Washington, DC, 1995; pp 68-78. (41) Damude, H. G.; Ferro, V.; Withers, S. G.; Warren, R. A. Biochem. J. 1996, 315, 467-72. (42) Damude, H. G.; Withers, S. G.; Kilburn, D. G.; Miller, R. C., Jr.; Warren, R. A. Biochemistry 1995, 34, 2220-4. (43) Wolfgang, D. E.; Wilson, D. B. Biochemistry 1999, 38, 9746-9751. (44) Varrot, A.; Hastrup, S.; Schulein, M.; Davies, G. J. Biochem. J. 1999, 337, 297-304. (45) Davies, G. J.; Brzozowski, A. M.; Dauter, M.; Varrot, A.; Schulein, M. Biochem. J. 2000, 348 Pt 1, 201-7.(46) Sinnott, M. L. In Recent adVances in carbohydrate bioengineering; Gilbert, H. J., Davies, G. J., Henrissat, B., Svensson, B., Eds.; Royal Society of Chemistry: London, 1999; pp 45-61. (47) Konstantinidis, A. K.; Sinnott, M. L.; Hall, B. G. Biochem. J. 1993, 291, 15-17. (48) Rakus, K.; Verevkin, S. P.; Peng, W. H.; Beckhaus, H.-D.; Ruchardt, C. Liebings Ann. 1995, 2059-2067. (49) Schaffer, F.; Verevkin, S. P.; Rieger, H. J.; Beckhaus, H. D.; Ruchardt, C. Liebigs Ann. 1997, 1333-1334.(50) Bakthavachalam, V.; Lin, L. G.; Cherian, X. M.; Czarnik, A. W. Carbohydr. Res. 1987, 170, 124-35. (51) Cherian, X. M.; Van Arman, S. A.; Czarnik, A. W. J. Am. Chem. Soc. 1988, 110, 6566-6568. (52) Capon, B.; Smith, M. C.; Anderson, E.; Dahm, R. H.; Sankey, G. H. J. Chem. Soc. 1969, B, 1038-1047. (53) Anderson, E.; Fife, T. H. J. Am. Chem. Soc. 1969, 91, 7163-7166. (54) Fife, T. H.; Brod, L. H. J. Am. Chem. Soc. 1970, 92, 1681-1684. (55) Lee, I.; Koh, J.; Park, Y. S.; Lee, H. W. J. Chem. Soc., Perkin Trans. 1993, 2, 1575-1582. (56) Zhu, J.; Bennet, A. J. J. Am. Chem. Soc. 1998, 120, 3887-3893. (57) Huang, X.; Surry, C.; Hiebert, T.; Bennet, A. J. J. Am. Chem. Soc. 1995, 117, 10614-10621. (58) Markley, J. L.; Westler, W. M. Biochemistry 1996, 35, 11092-7. (59) Harris, M.; Jones, T. A. J. Acta Crystallogr. 2001, D57, 1201-1203. (60) Nicholls, A.; Sharp, K.; Honig, B. Proteins: Struct., Funct., Genet. 1991, 11, 281.
Depositing User: Briony Heyhoe
Date Deposited: 13 Jul 2007
Last Modified: 28 Aug 2021 23:33


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©