
University of Huddersfield Repository

Richardson, Nona Elizabeth

An operator induction tool supporting knowledge engineering in planning

Original Citation

Richardson, Nona Elizabeth (2008) An operator induction tool supporting knowledge engineering in
planning. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/2607/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Operator Induction Tool Supporting KnowledgeEngineering in Planning
Nona Elizabeth RichardsonSchool of Computing and EngineeringThe University of Hudders�eldQueensgateHudders�eldHD1 3DH

A thesis submitted to the University of Hudders�eldin partial ful�lment of the requirements forthe degree of Doctor of Philosophy
The University of Hudders�eld supported by EPSRC

July 2008

TABLE OF CONTENTSList of Figures viiList of Tables ixAbstract xiiAcknowledgements xiiDeclaration xiiiChapter 1: Introduction 11.1 Arti�cial Intelligence . 21.2 Knowledge Engineering . 21.3 Planning . 31.4 Planning Domain Modelling . 41.5 The Knowledge Acquisition Bottleneck 51.6 Some Further De�nitions . 51.7 The Scope of this Research . 81.7.1 Induction . 81.7.2 Planning Problems . 81.7.3 Types of Actions . 91.7.4 A Typical Planning Problem 101.7.5 Modelling Methods . 101.7.6 Domain Building . 111.7.7 Opmaker . 12

1.7.8 GIPO . 121.7.9 Actions in a Planning Domain 151.7.10 Hierarchies . 151.7.11 Tasks in a Planning Domain 151.7.12 Induction of Methods . 151.8 The Remainder of this Thesis . 201.9 The Aim of this Research . 201.10 Contributions . 21Chapter 2: Domain Model Construction 232.1 Planning Domain Representation Languages 242.1.1 The Argument in Favour of the Object Centred Approach . . 252.2 Some Example Domains . 272.2.1 The Hiking Domain . 282.2.2 The UM Translog Domain . 292.3 GIPO . 322.4 Object Centred Language . 352.4.1 Sorts and Objects . 362.4.2 Predicates . 382.4.3 States . 402.4.4 Invariants . 422.4.5 Operators . 442.4.6 The opmaker tool . 502.5 Conclusion . 59Chapter 3: The Development of Opmaker Version One 603.1 The Briefcase Domains . 603.1.1 The Briefcase Domain (BC) 613.1.2 The Hierarchical Briefcase Domain (HBC) 61ii

3.2 Hierarchical Domains . 643.3 Opmaker Phase One . 653.3.1 Input . 663.3.2 Output . 673.3.3 What Opmaker Does . 713.3.4 An Example from the Hiking Domain 723.3.5 Induction of Methods . 773.3.6 Incorporation of Opmaker into GIPO 793.4 Opmaker - Further Requirements for Hierarchical Domains 793.5 The Problem of Inheritance . 803.5.1 What Is Inheritance? . 803.5.2 The Inheritance Problem . 803.5.3 Finding the Inheritance Problem 813.5.4 Rectifying the Problem . 843.6 Testing and Results from Opmaker1:1 863.6.1 Success Criteria . 863.6.2 Results Measured Against these Criteria 863.6.3 Testing and Results Using HBC 873.6.4 Further Experimentation and �ndings 89Chapter 4: The Development of Induction Tools Without Interme-diate State User Input 934.1 The Extended Tyre Domain . 944.1.1 The Original Tyre Domain . 954.1.2 The Tyre Domain Extension 964.1.3 Substates in the Extended Tyre Domain 994.2 Experiments with the More Complex Domain 994.2.1 Aims of Experimentation . 100iii

4.2.2 The Full Planning Problem 1014.2.3 Decisions on the Potential Methods 1014.2.4 Results of the Testing . 1034.2.5 Results for the Full Problem 1064.2.6 Ideas for Improvements on the Opmaker System 1074.3 Automatic Induction Without Intermediate State Information 1084.3.1 The Need for Example Material 1084.3.2 The Argument for Automatic Generation Without Intermedi-ate State Information . 1104.3.3 Generation of Examples . 1114.3.4 Heuristics to Reduce Choice 1124.3.5 Changes to Input to Indicate Unchanging Objects 1134.3.6 Calculating Paths Through State Space 1134.3.7 Initial Results from Automatic Generation of Paths 1144.3.8 The Use of the Invariants to Reduce the Search Space 1184.3.9 Results Using the Invariants 1184.4 How Opmaker2 Learns . 1204.4.1 A Diagrammatic Representation of the Opmaker2 System . . 1204.4.2 Outline Design of the Opmaker2 Algorithm 1224.4.3 A Description and Walk-Through of the Algorithm 1244.5 Experiments and Results . 1274.5.1 The Extended Tyre Domain (ETD) 1274.5.2 The Hiking Domain . 1274.5.3 The Blocks World Domain . 1284.5.4 The Testing Criteria . 1294.5.5 Results for the Extended Tyre Domain 1304.5.6 Results for the Hiking Domain 1314.5.7 Results from the Blocks World Domain 132iv

4.5.8 Our Conclusions From These Results 1344.5.9 Training Sets for Opmaker . 135Chapter 5: Related Work 1375.1 Machine Learning - Historic . 1375.2 Machine Learning and Induction of Rules 1425.2.1 Learning from Examples . 1455.2.2 Heuristics . 1465.3 Explanation Based Learning (EBL) 1465.3.1 Other Techniques . 1475.4 A View on Domain Theories . 1485.5 An Analysis of the Types of Domain Theory Imperfections 1545.6 Theory Revision . 1545.7 Induction of Operators . 1555.8 ICAPS 2005 and 2007 Competitions on Knowledge Engineering forPlanning and Scheduling . 1595.9 Further Work in Knowledge Engineering 1655.9.1 Very Recent Publications . 1695.10 Summary . 170Chapter 6: Conclusions and Future Work 1726.1 Limitations of this Research . 1726.2 Summary . 1736.3 Contributions . 1766.4 Further Work . 177Appendix A: A Full Coding of the Version of the Hiking Domain BuiltUsing GIPO 180v

Appendix B: A Test File from the Hiking Domain 187Appendix C: Full Listing of the Hierarchical Briefcase Domain (HBC)asDeveloped using GIPO 193Appendix D: Test File with Results From HBC Showing the Sort TreeCode is Working 210Appendix E: The GIPO-Constructed Extended Tyre Domain Includ-ing Extra Tasks 218Appendix F: A Typical Test File to Generate the Method discover puncturein the Extended Tyre Domain 245Bibliography 254

vi

LIST OF FIGURES1.1 The Sort-Tree View Using GIPO . 131.2 The Graphical Life-History Editor in GIPO 142.1 The Operator, put down, in PDDL. 242.2 The Operator, put down, in OCL. 272.3 The Method, transport, in OCLh . 302.4 The Method, move traincar, in OCLh 312.5 The Sort-Tree Showing Objects for the Translog Domain 322.6 The Method and Operator Structure for the Translog Domain 332.7 Part of the Coding of the Hiking Domain Showing the Sort Structure 362.8 The Sort-Tree View Using GIPO and Showing OCL Implementation . 372.9 The Predicate Editor View Using GIPO 392.10 The States Editor View Using GIPO 412.11 The Atomic Invariants Editor View Using GIPO 432.12 The OCL Drive Operator from the Hiking Domain (Conditional Version). 452.13 The Transition Editor View Using GIPO 482.14 The Graphical Representation of an Operator using GIPO 492.15 A Task is Constructed Using GIPO's Task Editor 522.16 Constructing a Sequence Using GIPO 532.17 Opmaker Consulting the User . 542.18 Su�cient Operators have been Generated to Complete the Task . . . 552.19 Newly Constructed Generalised Operator Headings Shown 562.20 GIPO's View Option Showing Newly Formed Operators in OCL . . . 56vii

3.1 The Sort-Tree Showing the Levels at which Predicates Apply in HBC 633.2 An Action Sequence Composed Using GIPO 683.3 Outline Design of the opmaker Algorithm 703.4 Outline Design to Obtain all the Dynamic Sorts from a Hierarchy . . 853.5 The Task Goal ConstructionWindow in GIPO Showing the take lunch to workMethod under Construction . 903.6 The Planner Window in GIPO Showing the Solution to the Task inFigure 3.5 . 914.1 A Sensible Choice of Methods for the Extended Tyre Domain 1024.2 The Initial Sequence Tagged (with `@') to Indicate Unchanging Objects1134.3 Changing States of an Object in a Sequence 1164.4 Changing States of hub1 in a Sequence 1174.5 Invariants encoded in the Extended Tyre World 1194.6 Diagrammatic Representation of the Opmaker2 System 121

viii

LIST OF TABLES3.1 A Possible Designation of Methods and Operators 654.1 Comparison of Two Versions of the Tyre Domain 984.2 Comparison of Plan Times Using Operators and Methods 1044.3 HyHTN Plan Times Using Operators and Methods 1054.4 Table Showing Total States and States Available for the Action Se-quence in Figure 4.2 if States Must Change 1154.5 Table Relating Numbers of Example Sets to Methods 1175.1 Four Operators from Blocks World Showing the Completion of a Task 1415.2 A Comparison of the Operator Centred and the Object Centred Ap-proach . 1525.3 Domain Theory Imperfections and the Object Centred Approach . . . 153

ix

ABSTRACT
Within the �eld of arti�cial intelligence are many disciplines, one of which isplanning. Planning seeks to �nd a suitable sequence of actions to carry out a taskspeci�ed as a set of initial states for the objects involved in the actions and a requiredgoal state. To do this the system has to have enough knowledge about the `world' inthe form of a planning domain model.The process of constructing a planning domain model requires knowledge engi-neering. The structuring of the knowledge is important and hand-coding a domainmodel is a tedious and error-prone process. Static knowledge in the domain requireslittle update but the same cannot be said for the dynamic knowledge. The mostdi�cult area of engineering planning domain models is the acquisition of operatorschema, which contain descriptions of all the primitive actions (operators). In hier-archical models where actions may be modelled as sub-tasks, construction of theseactions (methods) is particularly di�cult and error-prone.We argue for a system whereby dynamic knowledge can be generated for everyplanning eventuality. The major contribution of the thesis is a method for inducingprimitive and hierarchical actions from several solution examples, without the bene�tof intermediate state information. In our system, opmaker , actions are generated fromrelatively short action sequences, indicated by a user, who has simply to name anaction and identify associated objects as being a�ected or una�ected by the action.To complete a planning task the system uses the static domain knowledge, the initialand goal states from the planning task, and the action sequences. Using these it�rst deduces possible state-change pathways which, using the right heuristics, maybe unique (or at most have only a handful of pathways), and uses these to induceall the actions it needs. These actions can then be learned or regenerated at will.x

We show that these induced actions compare to hand-crafted versions and can beused in planning. We can demonstrate that the hierarchical methods o�er greatere�ciency in planning times when compared to domains where previously no methodswere o�ered.The motivation for these ideas comes from the need to extend the development ofGIPO, an integrated package for the construction of domain models in the form of agraphical user interface. We show how opmaker1 has already become a tool withinGIPO for at domains and argue for the inclusion of its successor, opmaker2.Descriptions of domain construction and results using opmaker with several ex-ample domains are given. We analyse how, in general, this work contributes to andsupports knowledge within the �eld, and the thesis concludes with suggestions for fu-ture work and discusses the particular contributions o�ered by opmaker to planningand knowledge engineering.

xi

ACKNOWLEDGEMENTSI would particularly like to thank my supervisor, Lee McCluskey, for his adviceencouragement and `pep' talks when the going got rough during my time as a PhDstudent. I am indebted to Lee for his constructive advice on the content of this thesisand for always being able to see the `bigger picture'. To Margaret West I would liketo extend my gratitude for all the patient hours helping me with Prolog and keepingme on track. I would also like to thank both my second supervisors, Margaret Westand Diane Kitchin, for their advice on the readability of this thesis. My thanks alsogo to Stephen Cresswell who has been invaluable for the discussion of ideas, arguingabout invariants and algorithms, and sharing the excitement of good results withcautious optimism.I would like to express my thanks to my family for their unstinting support of thisventure, for their encouragement and belief in me and, in the case of my husbandMike, for his sheer determination when I had lost mine!Finally I would like to dedicate this thesis to my father, Frank Douthwaite, whosadly died six months before its completion, but who would have been proud to seehis daughter succeed.

xii

DECLARATIONI grant powers of discretion to the University Librarian to allow this thesis tobe copied in whole or in part without further reference to me. This permissioncovers only single copies made for study purposes, subject to normal conditions ofacknowledgement.

xiii

Chapter 1INTRODUCTIONThe trends generally in computing are towards imaginative and intelligent use ofcomputers, and away from the idea that their use is mainly in banking and billing.Information storage and retrieval are part of these trends and the last couple ofdecades have seen an increase in the use of huge databases. Now databases can beimaginatively searched and data retrieval and storage is as much a part of daily lifeas the o�ce typist and the �ling cabinet were twenty years ago.The de�nition of data for a large database has become a science in its own right,along with its structure and linking in the database. Special algebras have beendeveloped to aid database design and information retrieval and these have greatlyincreased the capacity and complexity of databases. With their capacity to storevast amounts of structured data, databases have become essential to the science ofarti�cial intelligence, and database search techniques have been developed to achievequick and accurate results. Arti�cial intelligence has developed as a science becausesome computer problems do not lend themselves to being solved by a straightforwardprogram which gives a rigid, structured, single result. They require the same degreeof exibility that the human mind has - the ability to react to changes in input, tomake choices and to search and recall information. Problems like these can only beresolved e�ectively if the system has the ability to learn from mistakes and to improveand extend overall knowledge, to become more expert as that knowledge increasesand to use improved knowledge more e�ectively and e�ciently. One area of arti�cialintelligence, the subject of this thesis, is planning. Planning involves searching a

2database of knowledge about potential actions in order to �nd a sequence of actionsto complete a task.1.1 Arti�cial IntelligenceOne way of resolving such issues is the use of arti�cial intelligence, [de�nition 1.1].De�nition 1.1 Arti�cial Intelligence (AI) may be de�ned as the branch of computerscience that is concerned with the automation of intelligent behaviour [41].The �eld of arti�cial intelligence has expanded rapidly in recent years alongsidethe general increase in the use of computing in almost every aspect of life. The useof arti�cial intelligence (AI) allows a system to learn and to respond more exiblyto many di�erent circumstances. However intelligent systems require an extensiveknowledge base which has to be carefully constructed using knowledge engineering.1.2 Knowledge EngineeringOur de�nition of knowledge engineering (KE) in the context of an object centredworld in planning is given below.De�nition 1.2 Knowledge engineering in planning is the process by which a concep-tual theory about an object based world is represented by being translated into code.Objects and relations between them are identi�ed and translated into the logic codewhich includes all possible states of the objects and any invariant facts. Sets of actionsare de�ned and desirable tasks can be added.In general, where an object based system is not required, KE is the process ofcapturing and implementing the expertise of some specialist into an e�ective and

3seemingly intelligent representation. Once the knowledge is captured it can be re�nedby use of the results from some practice examples until it reaches some desired levelof performance [41].KE for planning is a tedious business because de�ning the actions in terms oftransitions of objects from one state to another has to be accurate. It is largely aniterative process by which domain knowledge is stipulated by a domain expert andthis knowledge is represented in some modelling language by the knowledge engineer.At all times the requirements of the end user are paramount - in planning such aperson would be the one who requires to do the actual planning.The main substance of this research is aimed at improving techniques to capture,code and re�ne knowledge so that planning engines can act upon it e�ectively ande�ciently and knowledge engineering no longer requires an expert.1.3 PlanningPlanning is one area of AI which is particularly dependent upon an accurate and up-to-date specialised knowledge base. Informally the idea in planning is a simple one inwhich a knowledge base (database) is searched in a particular way. (However thereare other approaches such as logic, reasoning, negotiation etc. [69].) In planning theknowledge base contains some facts about a problem scenario. Amongst the factsare allowable actions in the scenario and knowledge about objects involved in thoseactions. In particular there will be data on the states of the objects. (As a simpleexample consider a book, a table and a reader. If the reader picks up the book thebook changes state from being on the table to being held by the reader.) The ideain planning is to be able to use computing to de�ne problems to solve and to solvethem. A typical problem de�nition would consist of listing starting states for theobjects and desirable goal states for them, whilst a solution would be an ordered

4sequence of actions which would allow the goal state to be achieved. It becomes achallenging problem computationally because of the very large number of potentialorderings of the actions. At its most basic, where there are n available actions, thereare n! sequences of actions. A more formal de�nition of a planning problem is givenin de�nition 1.15.1.4 Planning Domain ModellingDe�nition 1.3 A non-case-based planning domain model is a knowledge base whichcontains a set of logical axioms within a formal system which, together with rules ofinference and any required heuristic control rules, is composed to accurately de�neand model a problem scenario, and forms the basis of a logical deductive system. Inplanning, such a theory is known as a domain theory.When it is written according to the special syntax of some particular computermodelling language the knowledge base becomes known as a planning domain model[see de�nition 1.3]. It is desirable that such a knowledge base contains the descriptiveinformation required to accurately record and reect a particular `world' and whilstit is largely a complete picture of that world, the system should also have the abilityto add to the dynamic knowledge it contains by experience. In this work we willbe describing the processes of acquiring knowledge bases with the object-centredlanguage OCL [45], and of adding to dynamic planning domain knowledge by theinduction of operators (actions).De�nition 1.4 Theory revision is a method of re�ning a theory or knowledge base bythe system automatically �nding better changes to the theory to improve its inferentialcapability.

5De�nition 1.5 An operator in planning is a written description of some action inthe domain modelling language in which dynamic objects feature either because theirinitial states prevail or because they undergo state transitions which the operator de-tails as pre-transition states and post-transition states.
1.5 The Knowledge Acquisition BottleneckIn the context of planning and this research, machine learning is desirable in partto alleviate what Feigenbaum and McCorduck have referred to as the `knowledgeengineering bottleneck', a major obstacle to the more widespread use of many AIsystems [18]. Any information system needs a lot of development time and AI systemswith their large and detailed knowledge bases are costly to develop. In terms oftime, operators (allowable actions) are particularly costly to develop. Time couldbe saved using machine learning to acquire accurate actions automatically and trackthe changing states of objects manipulated by them. The aim of this research wasto take steps towards relieving this knowledge acquisition bottleneck by introducinga system which can induce [de�nition 1.6] and learn new operators [de�nition 1.5]using a process of theory revision [de�nition 1.4].1.6 Some Further De�nitionsThis research has its roots in the arti�cial intelligence branch of computer science, inparticular it concerns the knowledge engineering [de�nition 1.2] of planning domainmodels [de�nition 1.3] constructed to form the knowledge base of planning prob-lems [de�nition 1.15] and to assist with their solution. We also draw on the relatedcomputer science topics of induction [de�nition 1.6], inductive logic programming[de�nition 1.8], machine learning [de�nition 1.7] and theory revision [de�nition 1.4].

6De�nition 1.6 Induction is the process by which learning involves generalisationfrom experience [41]. A learner may have to learn from only a few examples but stillacquire knowledge that will generalise correctly though not necessarily optimally.De�nition 1.7 Machine learning (ML) is the ability of a system to avoid some of thecomputation involved if some calculation has to be repeated. Instead the system drawson items added inductively to its knowledge base, by storage of previous results, use ofexamples or analogy, previous experience of a successful outcome, use of probabilityor because it has been instructed by an expert (human).De�nition 1.8 Inductive logic programming (ILP) is that branch of computer sci-ence concerned with programming to produce additional facts from a set of exampleswhich may be positive or negative. These additional facts should be generalised bymachine learning [de�nition 1.7], but may not be optimal.De�nition 1.9 A dynamic object is considered to be an object whose state can bechanged by some action in the domain. Dynamic objects in OCL always have choicesof state sets listed in the domain as substates.De�nition 1.10 A static object cannot be relocated, changed or given di�erent val-ues and so does not any states listed in the substates. In fact the best examples ofstatic objects are locations themselves.

7De�nition 1.11 A method is a hierarchical operator in a more complex planningdomain model and is therefore part of an hierarchical domain [see de�nition 1.12].Besides stating the transitions for the objects it lists preconditions, states e�ects andstipulates an ordering of the methods and primitive operators it calls. Being itself partof an hierarchical structure it can be called by other methods higher in the structureand call on other methods and operators at a lower level. A method may call adi�erent selection of operators to perform similar tasks depending on the objects andcircumstances involved.De�nition 1.12 A hierarchical domain is one in which there may be an hierarchicalsort structure, or an hierarchical method structure, or both.De�nition 1.13 Scheduling, at its best, �nds a close to optimal schedule (or plan)given a set of actions, a set of resources and a set of constraints (often time related).It seeks to arrange actions according to when the resources are available and to satisfyall the constraints in the process. In some applications, such as university timetabling,just �nding a feasible schedule is considered a good solution.De�nition 1.14 In a closed world model there are boundaries beyond which nothingis stated in the model. Often these are physical restrictions on the model as in BlocksWorld where the table top de�nes the extent of the world. Only objects and statesspeci�cally used in the model are described.

81.7 The Scope of this ResearchThe aim of this research is to alleviate the knowledge acquisition bottleneck by usingthe part of the planning domain that is less time consuming to construct to induceplanning operators and methods (compound multi-stage operators) [see also de�nition1.11] which normally take a long time to construct by hand. Further details and theaim statement can be found in Section 1.9. The scope of the research is detailed inthe sections below.1.7.1 InductionIn any new domain the knowledge engineer will have some idea which actions mightbe required for the sort of problems to be solved. At the very least he might havea name for such an action and he might also have ideas about the objects involvedin each action. We shall show that by taking a partially constructed domain withonly these outline ideas in the form of a sequence of operator names and a list ofthe static and dynamic objects involved (the parameters), we can use the inductionprocess to model operators and methods. This will be done by giving consideration tothe initial states of objects in the domain and formulating goal states to be achievedin planning. We plan, initially, to retain the new operators as they are induced,using them to revise the original domain theory and learn a full set of generalisedoperators to complete a new planning domain model [de�nition 1.3]. In this respectthe examples for induction come from the initial sequence and the initial and goalstates for the objects named in the sequence.1.7.2 Planning ProblemsWithin the context of this thesis planning problems are typi�ed by being closed worldproblems. They contain sets of objects, mostly physical, to be manipulated. Thesephysical objects do di�erent things, and so can exist in di�erent states. For example

9a book can be on a shelf or held in a hand and to get from one state to the other atransition has to take place. Thus actions such as picking up a book are de�ned interms of a transition from the book's being on the shelf to being held. Actions areinitiated and represented descriptively by operators. Some objects modelled are notdynamic. A common thread in this thesis is the use of static objects to model thelocation of an action or to model a move of objects from one location to another. Thelocations are thus modelled as static because they never change unlike the objectsassociated with the move.1.7.3 Types of ActionsSequences of operators can be constructed in order to model complex activities butat all times the system must be able to keep track of the state change paths of theobjects in the model. Actions can be modelled as either instantaneous transitions or,more recently, can be modelled as durative actions [21].Durative ActionsThe kinds of actions best suited to modelling with duration are those in which thetime factor is a natural element of the action, those where there is concurrency, andthose whose durations a�ect the start time of further actions which may depend uponthe e�ects of previous actions to produce their start conditions. A simple examplefrom the world of athletics would be the running of a relay race in which the secondrunner may not begin running until the �rst has almost completed his leg of the race.Instantaneous ActionsIn this research we shall be considering only actions assumed to be instantaneous. Inthese actions time is not a factor provided that actions are performed in the correctsequence.

101.7.4 A Typical Planning ProblemA de�nition of a typical planning problem is given below.De�nition 1.15 A planning problem. Given a knowledge base containing certainobjects and states and a set of possible actions and knowing the initial states of theobjects, �nd a sequence of actions which will produce some pre-conceived goal state.Actions in a world being modelled are captured in its operators [de�nition 1.5].1.7.5 Modelling MethodsKnowledge engineers who are domain experts �nd that specifying operator descrip-tions for a planning domain model, is a slow and painstaking process. (For detaileddescriptions of complex domain construction the reader is referred to the RAX andVICAR system [17, 37].) When procedural knowledge is captured in a declarative way[47] it requires a language (such as OCL or Planning Domain De�nition Language,PDDL [21]), selected because it is designed to be compatible with the constructionof planning engines. The problem of accurate representation of planning domains isacute if non-planning experts are undertaking this task, or the operators are complexor hierarchical.There are di�erent methodologies for domain creation and in his journal paperTate gives a good selection [73]. In our work the starting point is the creation of therepresentation of objects in the domain whereas using a di�erent system like STRIPS[20] the starting point might be the actions in the world being modelled.The Object Centred ApproachOur preferred method is the object centred approach in which actions are modelled interms of how they a�ect some of the objects declared for the domain. Objects undergo

11state transitions under the e�ect of actions which record the initial state of the objectand its �nal state. In our earlier work we have developed a domain descriptionlanguage for the purpose. Using this language an expert engineering a planningdomain model by hand would take as his normal starting point the speci�cation ofthe objects in the domain. He would arrange these in a tree structure of di�erentsorts.De�nition 1.16 Sort is the name given to a particular type of object. For exampleapple and orange are particular instances of the sort fruit. Many sorts may be speci�edfor a domain.De�nition 1.17 Flat domain. We refer to a single level sort tree where `sorts' is atthe root, all the domain sorts are at the �rst level and have object leaves, as a `at'domain structure because the sorts are all at one level.De�nition 1.18 An hierarchical domain. A more complex tree with several di�erentlevels of sorts would be referred to as an `hierarchical' sort structure and the domaincontaining it would become an hierarchical domain. Whenever the sort structure isnot at there is the potential for predicate inheritance. This occurs when predicatesapply to sorts at di�erent levels of the tree and is explained in section 3.5.3.The Action Centred ApproachDomain modellers using an action centred approach begin by specifying allowableactions in the world they are trying to represent. Objects are important only in howthey are a�ected by these actions.1.7.6 Domain BuildingIn our object centred approach the objects are modelled �rst. The domain expertwould next specify the relationships between the domain objects with a set of pred-icates (or statements) which can be arranged in groups to describe potential sets of

12alternative states for the objects. Next the expert would describe any constraintsand assumptions and any unchanging details in a set of invariants. A set of operatorswould then be constructed and �nally any tasks to be performed could be added.Appendix A contains the coded version of a simple domain. The knowledge engineerhas the task of capturing the knowledge from the domain expert and structuring itin the best way to be e�ective with the planner. As the domain is built and used itis re�ned using input from the domain expert until both are satis�ed with the modelproduced.1.7.7 OpmakerThe normal process for constructing operators is to hand-craft them with referenceto the desired set of actions for the domain and using the state sets to determinepre and post-action states for all the objects. One recent extension of our workon knowledge engineering is that operator construction can be eased by the use ofan implemented algorithm, opmaker. To use opmaker the domain engineer buildsthe planning domain model to the point where operator construction is the nextstep. He then conceives some task, the achievement of which requires a desirableexample sequence of operations. By giving the opmaker system a set of initial statesfor the objects, the partially constructed domain, and the example sequence it canthen induce a set of operators to achieve the pre-conceived goal. There are othermechanisms for learning operator sets and these will be covered in Chapter 5.1.7.8 GIPOTo further address the bottleneck problem we have been developing an assistedmethod by which the domain expert speci�es the declarative structure of the do-main interactively. The domain engineered in this way shares the same structure asa hand-written one.

13A domain building tool has been developed in a parallel research project wherewe have developed a Graphical User Interface (GUI) tool, GIPO (Graphical Interfacefor Planning with Objects) [25, 70, 44, 71], which is a tools package designed to makethe construction of domains easier for the non-expert. Opmaker has recently beenimplemented within GIPO making it a powerful construction tool for the knowledgeengineer and the non-expert alike.Currently GIPO enables the non-domain expert to construct a domain by ab-stracting away much of the detail of the domain description language and allowinghim or her to focus on the objects in the domain and the states in which they canexist. It does this by providing a GUI allowing a visual representation of the objecttypes in a sort [de�nition 1.16] tree (see Figure 1.1) and other construction, validationand planning tools to construct the states and constraints. Operators can be con-

Figure 1.1: The Sort-Tree View Using GIPO

14

Figure 1.2: The Graphical Life-History Editor in GIPOstructed by hand using a graphical tool but using this method still requires a greaterlevel of expertise from the user. Implementation of opmaker into GIPO has meantthat it is now easier for the non-expert to completely describe a domain. We suggestthat one area for further work should be an evaluation of the ease with which thenon-expert can create operators for a domain using opmaker as opposed to creatingthe operators by hand and creating them using the operator construction tool alsoo�ered in the GIPO system.In further developments of GIPO a graphical life history editor allows inexpertstudents of planning, after a little instruction, to build planning domains by con-structing a diagram of objects, relationships and other properties, as shown in Figure1.2.

151.7.9 Actions in a Planning DomainActions in a planning domain may be simple or compound. If we think of the simplestsingle action then we model this with an operator, to which we might refer as a`primitive operator'. If we consider a group of single actions, put together in order toachieve a simple task, then we refer to that task as a `method operator'. Since thismethod operator uses only primitive operators it is necessarily at a lower level in anymethod hierarchy than a method which uses other methods and primitive operators.1.7.10 HierarchiesSince domains may have method hierarchies and sort hierarchies there are di�erentways in which we can describe them as `hierarchical'. We shall try to be consistentin this thesis to describe in which way(s) a domain is hierarchical.1.7.11 Tasks in a Planning DomainWhen we consider tasks we think of the compound actions we want to perform. Ifthe domain has a hierarchical method structure then each method models a `task'.These are e�ectively pre-determined tasks that are often required, so they becomepart of the available actions in the domain. Over and above that we are also ableto de�ne and declare tasks separately. In this way we have de�ned problems for theplanner to solve, and they can be viewed as additions to the domains. The reader isreferred to Appendix E where a number of tasks have been declared for that domainand placed at the end, after the operators and methods.1.7.12 Induction of MethodsIn an informal idea of human planning we would begin by taking an overview of theentire task to be achieved, then start splitting the task down into manageable chunks.Each of these chunks might split into further chunks and so on until �nally the whole

16task can be broken up into single actions. In planning we call the single actions`operators' whilst the chunks are `methods'. The branching tree of task, subtasksand single actions is a `hierarchical task network' (HTN) and planning using sucha network is called HTN planning. Within a single method there may be severalsingle actions, or several methods or a mixture of both. Lowest level methods willjust contain a series of single actions. The method contains information about theobjects involved in it - in particular it considers the state sets for those objects. Ifthe objects change state in one of the actions a `transition' describes how the objectstates change. A method will contain several transitions and one obvious di�erencefrom an operator is that there may be several transitions for one object. Methodsrely on the existence of operators and other methods and `call' them. In the factthat these are called in a logical order to complete the task being modelled, methodsresemble `mini-plans'. Having methods in a planning system reduces the search spaceand so leads to time saved �nding a suitable plan. A simple example of operatorscould be those actions needed to send a letter by post. These might be1. write the letter2. put the letter in the post box3. stamp the envelope4. put the letter in the envelope5. take the letter to the post box.The plan would be these items in the correct order e.g. 1, 4, 3, 5 and 2, whilst amethod prepare letter for post would be the ordering 1, 4 and 3.Development of opmaker has continued and it now induces operators and methodsfor hierarchical domains but at the time of writing this has not all been implementedin GIPO.

17The logic of an example sequence may not include all the operators required for theparticular domain in mind. For example if the world was to do with sending a letteryou might put together a sequence that involved sticking on the stamp, walking tothe post box and posting the letter. You may also have writing the letter and puttingit in an envelope as possible actions which have not been included in this sequence.This can mean that a full set of useful operators is not generated at one go. Thiscan be resolved by making the example sequence slightly arti�cial, by which we meanthat in order to ensure all desirable operators are induced we add on extra tasks tothe sequence but have to induce some of the operators twice. The example belowillustrates this point.We developed a new planning domain, called the hiking domain, for the purposeof testing the algorithm, opmaker. In this domain world a couple do a long walk overseveral legs in the English Lake District, between such places as Keswick, Derwent,Honister and Fair�eld. Using 2 cars to transport themselves and their equipmentto the start of every leg of the journey, Fred and Sue rise in the morning, �t after anight's sleep and take down their tent. The tent is taken by car and erected at the endpoint of the leg before returning to start the walk. On reaching the destination, tired,they sleep overnight and awake �t again for the following day. Operators required inthe handwritten version of this domain were:-put_down, put_up, drive, walk_together, load, unload, getin, getoutThe operators could be induced by using the following example sequence. Thissequence describes a complete day in the walk and has been made long enough togenerate all the required operators but several are included more than once. Forexample there are several drive operators.put_down(tent1,sue,keswick),load(fred,tent1,car2,keswick),

18getin(sue,keswick,car2),getin(fred,keswick,car1),drive(sue,tent1,keswick,helvelyn,car2),*drive(fred,keswick,helvelyn,car1),*getout(sue,helvelyn,car2),unload(sue,tent1,car2,helvelyn),getout(fred,helvelyn,car1),putup(tent1,fred,helvelyn),getin(sue,helvelyn,car2),getin(fred,helvelyn,car2),drive(sue,fred,helvelyn,keswick,car2),*getout(sue,keswick,car2),getout(fred,keswick,car2),walk_together(sue,fred,couple1,keswick,helvelyn),sleepintent(sue,fred,tent1,helvelyn),getin(sue,helvelyn,car1),getin(fred,helvelyn,car1),drive(sue,fred,helvelyn,keswick,car1),*getout(fred,keswick,car1),getin(fred,keswick,car2),drive(fred,car2,keswick,helvelyn),*drive(sue,car1,keswick,helvelyn),*getout(sue,car1,helvelyn),getout(fred,car2,helvelyn)(* These `drive' operators are di�erent and have di�erent parameters. This is allowedin the OCL language which allows us to model conditional operators as we see here.Another way to model these as would be to name each di�erently such as `drive',`drive tent' and `drive passenger'.)A problem with this method of inducing operators is the repetition. It is notdesirable to have several di�erent versions of one operator in any domain and werequire a comparison and decision process to help us retain only the most useful

19version of any single operator.Another problem that comes with inducing all the operators in one go is thatthe method which is induced is not very meaningful. The idea of methods is to usethem to break down a planning task into smaller subtasks. Each of these can bebroken down again until the smallest subtasks can be solved with a short sequence ofoperators. This strongly resembles the way humans plan by splitting a problem intochunks recursively until achievable tasks are obtained. A better way to use induction,therefore, is to induce only those operators at any one go that will create a sensiblemethod, but to create enough of these methods to enable hierarchical planning totake place. The subject of this research is the extension and implementation of thisalgorithm to perform the following tasks.1. Induce a complete set of operators for a at domain2. Induce methods [de�nition 1.11] and operators in hierarchical domains3. Detect when an operator has already been induced4. Use theory revision to sequentially improve domain theories.Completion of this research allows for the provision of a method operator induc-tion tool for hierarchical domains to enhance the package of design and validationtools in GIPO. This work is signi�cantly di�erent from other research in the areabecause it concentrates on adding an important construction and validation tool toan overarching system, already in use, and designed intentionally to make the con-struction of planning domains an easier and more exact process. In this respect thisresearch should be seen as an add-on package to an existing system, although thecoding will allow for operator induction independent of the GIPO system.

201.8 The Remainder of this ThesisChapter 2 in this thesis describes in detail the object centred domain language andhow domains are built using it. The building of the hiking domain, briey mentionedin this chapter, is described both by hand and also using GIPO. In Chapter 3 operatorinduction is introduced as we look at the development of opmaker1 and we begin tosee why a further phase was required. Some new versions of classical domains, alteredin order to demonstrate and test sections of code within opmaker1, are introduced.Chapter 4, continues the discussion and highlights why it was necessary to move on toopmaker2. The action of this new version is described and some results shown whichhave been obtained using it on some classical domains. Chapter 5 contains a literaturesurvey of recent relevant work in the planning and knowledge engineering researchsector. Chapter 6 is a short chapter discussing the way forward. This research canbe viewed as steps towards much more fully automated domain construction allowingplanning to be integrated into remote agents so that they can plan e�ectively andautonomously.1.9 The Aim of this ResearchThe aim of the work represented in this thesis is to o�er a tool which takes thee�ective realisation of e�cient knowledge based systems as a motive. It aims to showthat e�ciency is addressed by:-1. making fuller use of knowledge already captured (in states and invariants) savingexpert time2. adding to that knowledge with the capture of operators and methods, furthersaving expert hand-coding time

213. o�ering the potential for faster planning times when a good selection of opera-tors and methods is included4. using an object-based system with strong capture of static knowledge5. using a system which tracks its own dynamic knowledge as it is built, via theintermediate states found.1.10 ContributionsWe adopt Zimmerman and Kambhampati's de�nition [89] of an agent: `a computerprogram with learning capabilities (means) we can say that learning takes place as aresult of the interaction of the agent and the world, and observation, by the agent,of its own decision-making processes'. Given this de�nition and the aims detailed inSection1.9, this work contributes to the area of research into knowledge engineeringof planning domains in the following ways.1. Induction of Hierarchical Models. Where an agent's knowledge is com-plex and systems include many objects and potential actions, our system canacquire operators (actions) and methods (macros) consisting of models for thecompletion of whole tasks.2. Evidence of E�ciency of Hierarchical Models. Hierarchical planning hasalways born the cost of development time for the operators and methods. Ourwork addresses this issue by automatically acquiring operators and methods,and supports the hypothesis that where domains are complex, planning timeis saved by the use of these. In line with the aims in Section 1.9, we arguethat the complexity of the domain model in terms of its states and invariantsultimately promotes the e�ciency of the process. Since this static knowledgerequires little (if any) update, the amount of domain expert time required to

22encode it is minimised. Using automated induction, system development costsshould be signi�cantly less, o�ering planning systems as an option where oncethey would have been discounted on grounds of cost.3. Towards True Agent Autonomy. Whereas our �rst work (opmaker1:1)required some user interaction, opmaker2 lays the foundation for autonomouslearning. Once the agent has a su�cient set of expert sequences it should bepossible to induce sets of operators and methods without further interventionfrom the expert.4. New Versions of Experimental Domain Knowledge. This work con-tributes to planning research by the introduction of new benchmark versionsof old favourite domains. The extended Tyre Domain increases the complexityof its predecessor whilst the hierarchical Briefcase Domain o�ers a very simplehierarchical version with the additional challenge of the potential for `double'conditional operators. Both these domains are available on the website [25].

Chapter 2DOMAIN MODEL CONSTRUCTIONA planning domain is a knowledge base for a planning application modelled insome planning language. It contains all the predicates describing the relations be-tween objects featured in the domain, all the objects themselves and the states inwhich those objects can exist, a set of operators and all the constraints needed tomake logical sense of the world being modelled by the knowledge engineer. Whilstthe problems reected in these domains are inspired by real-world problems we areessentially reducing these to closed-world planning models. This chapter looks atdi�erent ways of representing a planning domain and the di�erent domain modellinglanguages including our choice of an object-centred representation. Using two rep-resentative domains modelled in OCL we consider GIPO (developed in a separateproject) and the arguments in favour of its use, showing how a domain can be builtstep by step. For clarity several diagrams are included, mainly snapshots from GIPOin stages of domain construction. Operator construction is shown using both GIPOand our recent addition, the opmaker tool, now embedded in GIPO. The chapterconcludes with some comments about ease of use and accuracy of the constructiontools. A �nal comment to be made here is the fact that there is another easier wayto construct a at domain using GIPO's life history editor. Figure 1.2 gives a avourof this tool which is not described for two reasons:1. It is the subject of a parallel research project2. The language is completely unseen by the user until the domain is complete.This is a real advantage for the non-expert but we are looking at the language

24description of parts of the domain.
2.1 Planning Domain Representation LanguagesThere are many di�erent ways of representing domain knowledge and di�erent lan-guages have been developed for the purpose. In one useful survey the authors discussthe relationship between agent architectures and representation languages [85]. Wemention two representation languages here. PDDL (Planning Domain De�nitionLanguage) is the most frequently used language in the planning community. It isaction-centred and a domain written in PDDL contains all the operators, which areexpressed in a STRIPS-like manner, together with a planning problem description.An example operator in PDDL, from the `hiking' domain, is shown in Figure 2.1.(:action put_down:parameters (?x1 - tent ?x2 - person ?x3 - place):precondition (and (fit ?x2 ?x3)(up ?x1 ?x3)):effect (and (down ?x1 ?x3)(not (up ?x1 ?x3))))Figure 2.1: The Operator, put down, in PDDL.Here a tent is taken down after a night's sleep in which the person becomes �t (bysleeping). The action is called put down and is intended to represent the taking downof a tent. Before the action put down happens, the declared parameters stipulatethe objects concerned with this action. These are tent, person and place, of whichonly tent and person are regarded as dynamic and therefore capable of change. Theprecondition states that the tent must be up and the person �t and the e�ects arethat the tent is taken down and is no longer `up'. All of this happens at one place,

25as shown by the inclusion of `place' in the `�t' precondition, and the person remains�t after the action.As a result of the 2002 planning competition PDDL has been extended to PDDL2.1 [21] which allows for a time factor to be taken into account in the planningprocess. Further developments to the PDDL language are represented in PDDL2.2and PDDL3 [15, 23]. Previous to this, in classical planning, actions were assumedto be instantaneous. If a problem could not be modeled with instant actions then itwas assumed to be a scheduling problem. With these new versions of PDDL there isa renewed interest in temporal planning.2.1.1 The Argument in Favour of the Object Centred ApproachBy contrast OCL (Object Centred Language), which was developed at The Universityof Hudders�eld, [40, 43, 45] takes the objects rather than the operators as its focus.This seems more natural and enables a richly expressive domain structure. TheObject-Centred Language and its associated development method forms a rigorousapproach to capture the functional requirements of classical planning domains.We can best justify the development of the object-centred approach and the OCLlanguage by acknowledging the need to develop a precise domain model. This isbest done based on a language o�ering a formal framework, which will be describedin detail later in this chapter. This framework allows for analysis and checking asthe domain is built and tools have been developed for this. Using the object-centredapproach a domain model has the advantage of a very structured development methodtogether with e�ciency of planning algorithms [35].The completed model of the planning world together with valid states and op-erator schemas o�er the knowledge based system community a bridge between theconceptual models of informal knowledge acquisition methods (such as KADS [1, 76])

26and implementations of knowledge-based systems [38], as well as being important inthe veri�cation and validation of KBS [51]. In planning, the construction and valida-tion of a domain model is therefore recognised as an essential stage in the constructionof a �nal system [45].A more detailed description of the OCL operator construction will be given inSection 2.4.5 but some explanation is necessary here. An OCL operator consists offour components as shown below.operator(name(parameter1, parameter2, ...,parameterN)prevail clauses listnecessary transitions listconditional transitions list).The �rst of these states that an operator is being described, gives its name anddeclares the objects (parameter1, parameter2 etc) included in the description. TheOCL representation of the same operator, instantiated, is shown in Figure 2.2. Theoperator's name is put down1 and the parameters are Tent1, Fred and Keswick.The next component lists states which prevail throughout the action. In Figure 2.2`se' (a state expression) indicates such a prevail - here Fred is �t in Keswick bothbefore and after putting down the tent. The third component shows the necessarytransitions which must occur when the action happens and, in Figure 2.2, where`sc' (state change) indicates that this is a necessary transition, these are shown asa list of state(s) for the tent to the left of the) prior to action, whilst the righthand side shows the state after the action. The �nal component shown in Figure 2.2in this particular operator shows an empty list but is used to show any conditionaltransitions in the same format as the necessary transitions of the third line. We couldthink, perhaps, of a ag on top of the tent which would change from being up andying to being down conditional upon the tent being up or down. (See also Section2.4.5, Figure 2.12.)1 This is a `user' supplied operator name corresponding to take down in Appendix A

27%name and paramsoperator(put_down(Tent1,Fred,Keswick),%prevails[se(person,Fred,[fit(Fred,Keswick)])],%necessary[sc(tent,Tent1,[up(Tent1,Keswick)] => [down(Tent1,Keswick)])],%conditional[]). Figure 2.2: The Operator, put down, in OCL.The remainder of this chapter refers to aspects of domain construction usingthe OCL language and a hierarchical version of OCL named OCLh . For a detaileddescription of the construction of a domain using OCL the reader should consult theOCL Manual [40] and the GIPO on-line manual [25] but the main points of domainconstruction will be summarised in this chapter.2.2 Some Example DomainsThere are a number of classic domains in existance which would serve to illustrate theprocess of domain construction. Blocks World is one such, which has many versionsand was used to illustrate the STRIPS methodology. Mostly versions consist of a setof blocks, a table top and a gripper arm which can manipulate the blocks, alteringtheir relative con�guration. We have chosen a di�erent at domain, the hiking world[46], which is described in more detail in Section 2.2.1 and which has the followingfeatures:� It models a real situation.� It contains enough detail to make the construction and planning interesting.

28� It requires several operators, some of which have conditional clauses.� It contains both static and dynamic objects.We have chosen the University of Maryland UM Translog Planning Domain [2] asan example of a much more complex hierarchically structured domain. It has a richset of entities, attributes, actions and conditions, which makes for lengthy plans withmany alternatives, and we have several versions of this domain available for use whichhave been translated into OCLh . Whilst the work in this thesis is based on the fullversion of this domain some diagrams show a simpler version to illustrate a pointwithout too much of the detail.2.2.1 The Hiking DomainThe Hiking Domain [58] describes a hiking holiday in the English Lake District. Itmodels a couple doing a long circular walk over several days between such places asKeswick, Helvelyn, Fair�eld, Honister and Derwent. A place is next to another if thesecond can be reached from the �rst by a day's walking which is always in the samedirection (clockwise or anti-clockwise). Fred and Sue walk a leg each day to arrive atthe night's stop-over tired but with the welcome sight of their tent ready and waitingfor them. They achieve this by using two cars to move their equipment around andto transport themselves to the start point of each day's walk. In a typical day theywould need to1. use one of the cars to fetch the other from the previous stop-over2. take down the tent and drive it and both cars to the day's destination3. erect the tent there and, leaving one car, return in the other to the start of theday's leg

294. leave the remaining car and walk the journey leg, arriving tired5. sleep overnight in the tent to awake �t the following morning6. repeat the process until the walk is completed.A full listing of the Hiking Domain is given in Appendix A.2.2.2 The UM Translog DomainThe version of the UM Translog Domain used for this work has been translatedinto OCLh and so to distinguish the OCLh version I shall refer to it as simply theTranslog Domain. This domain was contrived to model a transport logistics problemand, whilst still a model-in-miniature of a real transport problem, it is neverthelessa large domain with many and varied alternatives and thus a good test of a planner.It models the transportation of a variety of di�erent `packages' between three cities.Cargo may go by road, rail or air so long as a route can be found. `Packages' may belarge bulky parcels, liquid, grain, cars or livestock and any package may be valuable,requiring guards to accompany the package, or hazardous, requiring decontaminationprocedures before the next package can be transported. There are an assortmentof locations within the cities such as the railway station, the post-o�ce, an airportand a city-location. Also there is a variety of equipment to load the packages suchas cranes, ramps for livestock, bulky packages or cars to be loaded into the relevanttransport, hoppers for grain and hoses for liquid. Packages have to be `certi�ed' bypaying a fee before they can be transported. This domain is large enough to havemany operators both primitives (non-hierarchical) and methods, and also has manyconstraints. Constraints include atomic invariants that state, for example, whichvehicle object is suitable for which cargo, or which locations belong to which city.It has sorts arranged in a tree structure with several levels, and the methods are

30arranged in a method hierarchy. The sort structure for this domain is shown inFigure 2.5 whilst Figure 2.6 shows the methods diagrammatically. Whilst methodsare named in this diagram we show, in Figures 2.3 and 2.4, two random methodschosen to be representative of all the many methods available. (In these �gures `ss'(substate) indicates substates for the objects `Package' and `Train' respectively.) Fora full listing of the OCLh the reader is referred to [58].
method(transport(Package,Org,Dest),% pre-condition[], % Index Transitions[sc(package,Package,[uncertified(Package),at(Package,Org)]=>[delivered(Package),at(Package,Dest)])],% Static[in_region(Org,Region),in_region(Dest,Region)],% Temporal Constraints[before(1,2),before(2,3)],% Decomposition[achieve(ss(package,Package,[waiting(Package),certified(Package),at(Package,Org)])),carry_direct(Package,Org,Dest),deliver(Package,Dest)]). Figure 2.3: The Method, transport, in OCLh .

31
method(move_traincar(V,O,L),% pre-condition[], % Index Transitions[sc(traincar,V,[at(V,O)]=>[at(V,L)])],% Static[is_of_sort(V,traincar),connects(R2,O,L),is_of_sort(R2,rail_route),is_of_sort(Train,train)],% Temporal Constraints[before(1,2),before(2,3),before(3,4)],% Decomposition[achieve(ss(train,Train,[at(Train,O)])),attach_traincar(Train,O,V),pull_traincar(Train,O,V,R2,L),detach_traincar(Train,V)]). Figure 2.4: The Method, move traincar, in OCLh .

32
sorts

vehicle_type hub_type

primitive_sorts

package_type

non_primitive_sorts

route

road_route rail_route air_route

location

city region city_location

physical_obj

vehicle crane plane_ramp package

airplane land_carrier hazardous valuable normalp tcentre not_tcentre

truck railv

train traincar

airport train_station clocation post_office

tanker
hopper
livestock

mail
trainengine

refridgerated

mailp
bulky

liquid

regularp
perishable
livestockp

cars
granular

hub
not_hub

pramp1
pramp2

crane1
crane2

region1
region2

city1
city2
city3

road_route_1
road_route_2
road_route_3
road_route_4

rail_route_1
rail_route_2
rail_route_3
rail_route_4

air_route_1
air_route_2
air_route_3
air_route_4

train1
train2
train3

traincar_1
traincar_2
traincar_3

plane_1
plane_2

truck_1
truck_2
auto_1

truck_Tank_1

truck_Tank_2
truck_5

pkgpkg_4 pkg_1 _2

pkg_3
pkg_5

city1_ap1
city1_ap2
city2_ap1
city3_ap1

region1_ap1

city1_ts1
city1_ts2
city2_ts1
city3_ts1

region1_ts1

city1_cl1
city1_cl2
city2_cl1
city3_cl1

post_1

flatbed
regular

auto

plane

Figure 2.5: The Sort-Tree Showing Objects for the Translog Domain2.3 GIPOIn this section we look at GIPO itself, argue the reasons for its development andshow how this research �ts into GIPO's bigger picture. As planners and planningapplications become larger, the problems of engineering planning domain modelsbecome more acute. Engineering platforms are required that allow a domain expertto enter domain knowledge at a high level of abstraction, and to facilitate the gluingtogether of planning tools to help in domain modelling [58, 74, 38]. In particular, if AIplanning is to provide a solution for end-user problems then a system of construction

33
transport

carry

carry_direct
carry_via-hub

commission

load_top

norm
al

post_guard_outside

load

post_guard_inside

valuable

connect_ramp

open_door

load_package

close_door

disconnect_full_airplane

(air transport)

pick_up_package_ground

put_down_package_vehicle

(bulky)

load_package

no
rm

al connect_hose
open_valve

fill_tank
close_valve

disconnect_full_tanker
(liquid)

lower_ramp_for_package

load_cars
close_loaded

(cars)

connect_chute
fill_hopper

disconnect_full_hopper

(grain)

lower_ramp_for_package

fill_trough

load_livestock

close_loaded

(livestock)

move_vehicle

unload_top

unload

norm
al

post_guard_inside

post_guard_outside

valuable

affix_warning_signs(hazardous)

decontaminate_interior

remove_warning_signs

(hazardous)

connect_ramp

open_door

close_door

unload_package

disconnect_emptied_airplane

(air transport)

pick_up_package_vehicle

put_down_package_ground

(bulky)

unload_package

no
rm

al
connect_hose

open_valve

close_valve

disconnect_emptied_tanker

empty_tank

(liquid)

lower_ramp_for_package

unload_package

close_emptied

(cars)

connect_chute

empty_hopper

disconnect_emptied_hopper

(grain)

lower_ramp_for_package

close_emptied

unload_package

clean_interior

(livestock)

deliverFigure 2.6: The Method and Operator Structure for the Translog Domain

34of detailed domains is required. The argument for the development of GIPO hasalready been raised in relation to the di�culties of domain construction and operatorconstruction in particular. Another problem existing in the planning communityconcerns the general di�culty of planning and the time it takes to learn enoughabout the �eld to use the technology that planning o�ers on a wider scale. The idealsolution is a sort of abstraction allowing model building to be separated from codingin much the same ways as Windows-style environments allow many novice users tomanipulate data without knowing an operating system language like DOS, or inmodern integrated software development environments where CASE tools shield theuser from the languages underneath. This abstraction would allow domain modellingto be speeded up and become more cost-e�ective. In this way it should be possible forthe wider community to embrace planning and �nd uses for it in many applications.For these reasons a tools package has been recently developed and o�ered to thecommunity at an experimental level. The package, GIPO, [70, 44, 25] a Graphical In-terface for Planning with Objects, is an experimental Graphical User Interface (GUI)and tools environment for building classical planning domain models. It providesan interface that abstracts away much of the syntactic detail of encoding domains,and embodies validation checks to help the user remove errors early in domain de-velopment. GIPO has a series of editors for each stage in domain development andwe concentrate on these in the next section. These editors allow complete domainsto be constructed, either at or hierarchical without the user knowing OCL. GIPOalso integrates a range of planning tools - plan generators, a stepper, an animator, arandom task generator, a reachability analysis tool - all to help the user explore thedomain encoding, eliminate errors, and determine the kind of planner that may besuitable to use with the domain.This project has contributed towards the GUI with the introduction of an algo-rithm opmaker [46] [47] that induces operator descriptions from a user given example

35sequence. Essentially, the user supplies examples of action sequences by describingall the objects that these operations a�ect. Where there is a choice of the target statefor a dynamic object in an operation, the algorithm requires the user to point andclick on that state. The whole process helps the user abstract away from the par-ticular syntax and consequential errors, and in particular having to encode operatorschema using a symbolic language with subtle uses of parameters. A more detaileddescription of the opmaker tool can be found in Section 2.4.5.The present version of GIPO allows for hierarchical domains to be constructed byhaving an hierarchical transition editor, but the version of the opmaker tool imple-mented is for at domains only. Opmaker2, not yet embedded in GIPO, will induce aset of operators and a method. But as methods are built some operators are repeatedin di�erent sequences. A systematic approach to inducing operators was requiredwhich aims to reduce repetition and this research shows a way in which operators canbe induced gradually as the required methods are built thus minimising the repetitionof induced operators.2.4 Object Centred LanguageThe object centred domain modelling method provides a tool-supported language forthe capture and implementation of planning domain models. The structured languageleads to the sectional development of the whole model with validation and supporttools available to the developer. Once operational, the object-centred representationhas advantages in the development and resulting e�ciency of planning algorithms.In the following sections we see how a natural English description of a domain forplanning such as that given in Section 2.2.1 can be coded into the OCL representationin a step-wise manner. We use, as a running example, the building of the hikingdomain as we follow through the steps of its construction.

362.4.1 Sorts and ObjectsSort structure hand codedReading through the natural English description in Section 2.2.1 allows a set of objectsto be identi�ed and classi�ed into sorts. In the hiking domain the sorts are person,place, car, tent and couple. These, because this domain is a at structure, areclassi�ed as primitive sorts. The code for these is below.sorts(primitive_sorts,[car,person,tent,place,couple]).Objects are of two types, static and dynamic. Sorts of dynamic objects are person,car, tent and couple, whilst place is static, and this �ts in with our intuitive ideasabout these sorts. We shall see later that only dynamic objects are capable of statechange which becomes important in operators.% Sortssorts(primitive_sorts,[car,person,tent,place,couple]).% Objectsobjects(car,[car1,car2]).objects(tent,[tent1]).objects(person,[sue,fred]).objects(couple,[couple1]).objects(place,[keswick,helvelyn,fairfield,honister,derwent]).Figure 2.7: Part of the Coding of the Hiking Domain Showing the Sort StructureNext speci�c objects belonging to the sorts are identi�ed. These will be the cars,named here car1 and car2, the people, named fred and sue, the places, named keswick,

37derwent etc, the couple's name (couple1) and tent (tent1). When these are identi�edand coded by hand the domain now looks as shown in Figure 2.7.

Figure 2.8: The Sort-Tree View Using GIPO and Showing OCL ImplementationSort structure coded using GIPOA domain developer using GIPO would not have to deal directly with the coding.Using GIPO's sort editor, he uses dialog boxes to name the sorts and adds objects tothe resulting sorts tree structure by clicking on the sorts, Figure 2.8. Unseen by thedeveloper unless requested, GIPO generates the same code that appears in Figure 2.7.The code can be viewed at any time by clicking the view option when it is displayedin OCL. It can also be viewed in PDDL, making GIPO a useful tool for the planningcommunity at large.

382.4.2 PredicatesAs can be seen in Figure 2.9 a set of predicates expressing relationships between thesorts is the next thing to be modelled. Logically these cannot be modelled until thesorts have been expressed and the predicates are required to express the various statesin the model, so their construction is the next ordered step in domain construction.Of course if the domain is being built using GIPO then it is possible to revise thesorts after the predicates have been constructed, although the predicates would alsoneed revision. The predicates themselves stem from the natural language descriptionof the world though at �rst glance some may not seem obvious. For example thepredicatenext(place,place).does not seem intuitive but stems from the part of the description that states thewalk is circular and the couple walk the next leg of the journey (the second argument`place'). So here we make speci�c that places can be next to one another. Notethat here we are just establishing the predicates in general terms, any object of sortplace could be substituted for place in the predicate. Later we shall see in the atomicinvariants, Section 2.4.4, that we can specify exactly which places are next to eachother.Another interesting feature here is that a simple `at' predicate is not allowed byGIPO because of the clash between the sorts of the subject of the predicate. Insteadwe need `at tent', `at person' and `at car' for the subjects tent, person and car. OCLdoes not allow for a hierarchy of predicates but does allow use of a hierarchical sortstructure. If this had been used then it would be possible to have tent, person andcar belonging to the same sort, say `thing' and the `at' predicate applied at the levelof `thing' would then allow all the subjects individually to be used in the same `at'predicate.

39

Figure 2.9: The Predicate Editor View Using GIPOAll predicates, once declared, keep the same arity, and this can be used as furthervalidation. Some predicates such as up(tent), and down(tent) have an arity of one.The partners predicate has arity three and states that a couple consists of a personand a person. So does that mean that the same person twice could be a couple? Ifwe refer to the atomic invariants, in Section 2.4.4, we �nd the statementpartners(couple1,sue,fred)which constrains person and person to be two di�erent people, a particular couplecomprising a particular combination of the object person. Again this is a built-invalidation feature of the GIPO software which reects the completeness of the OCLlanguage. This particular predicate is one of the static predicates in this domain - assuch it is always true. The other static predicatenext(place,place).

40reects that places do not move. Other predicates in this domain are dynamic andremain true, in their instantiated format when used in the substate expressions (seeSection 2.4.3), only until they undergo a change of state in an operator.2.4.3 StatesOnce a set of predicates is complete the states in which the objects can exist arethe next thing to be constructed. These are lists of substates which are put togetherto reect the di�erent states for the objects concerned. For example, if the objectconcerned is the tent then, in the predicates, we have already constructed threepredicates of which tent is the subject. These areat_tent(tent,place).up(tent).down(tent).giving potentially six sets of substates (at tent, up, down, at tent and up, at tent anddown, and at tent and up and down). Not all of these make sense or are required andcareful thought in the hand-coded model is needed to correctly identify the relevantsubstates. The GIPO states editor, which is shown in Figure 2.10, assists in thisdecision process because it groups potential substates in the right window, separatingthem by a line. As can be seen in the �gure only two of the six potential substatesare required. To express the idea that a tent must always be at a place and that itcan be either up or down, OCL allows us to unite two predicates into one substate setso the only substates required are those shown in Figure 2.10. In our later discussionof opmaker2 we shall see that these substate sets, which are e�ectively constraints,can be used to reduce the search space of potential state change pathways. Themechanism for input of the substate sets into GIPO is by point and click. For theexample shown in Figure 2.10, the user would select the object tent in the left handwindow. All the predicates are listed in the predicate window and from these theuser can see those which feature the tent. Each predicate he clicks is added to the

41`Editable State' window so by selecting the �rst pair of predicates shown in the `StateDe�nitions' window of Figure 2.10 he has put them together as a pair. He then clicksthe `Add' button at the bottom to commit the pair to the `State De�nitions'. Figure2.10 shows that the user has just clicked `Add' to complete editing the substatesfor tent. The substates are a very useful mechanism for omitting combinations thatwould not make sense of the world being modelled so, for example, there is no substateset where the tent can be both up and down.

Figure 2.10: The States Editor View Using GIPOThe hand-coded de�nition of the substates is shown below. The reader shouldnote that the substate sets listed are mutually exclusive so, for example, a personmay be �t at a place or he may be tired at a place but he cannot be both. Thus noconstraint is needed to state this explicitly.

42% Object Class Definitionssubstate_classes(person,Person,[[at_person(Person,Place),fit(Person)],[at_person(Person,Place),tired(Person)]).substate_classes(couple,Couple,[[walked(Couple,Place),partners(Couple,Person1,Person2)]]).substate_classes(tent,Tent,[[at_tent(Tent,Place),up(Tent)],[at_tent(Tent,Place),down(Tent)]]).substate_classes(car,Car,[[at_car(Car,Place)]]).2.4.4 InvariantsThe domain modeller de�nes facts that make explicit any assumptions about themodel. The atomic invariants set the boundaries of compatibility between objectsin the domain. The inconsistent constraints state what cannot be true in objects'substates and the implied invariants state explicitly what is implied by existing sub-states.Atomic invariantsAtomic invariants list the speci�c instances of some of the predicates. So for thepredicate next(place,place) they state exactly which place is next to which otherplace. The full set of atomic invariants for the hiking domain is shown below. Hereit is explicitly stated that couple1 consists of the sue and fred partnership, and thatkeswick is next to helvelyn etc.% Atomic Invariantsatomic_invariants([partners(couple1,sue,fred),next(keswick,helvelyn),next(helvelyn,fairfield),next(fairfield,honister),

43next(honister,derwent)]).

Figure 2.11: The Atomic Invariants Editor View Using GIPOGIPO has a simple to use atomic invariant editor found under the edit menu.Using this editor, shown in Figure 2.11, static predicates can be edited by highlightingthe predicate, expanding the sort tree, dragging the objects onto the sorts displayedin the edit window and adding the edited invariant to the all predicates window. The�gure shows the editing of the predicatenext(place,place).Implied invariantsImplied invariants state explicitly what is implied by existing substates. The hikingdomain has no implied invariants. An implied invariant from the translog domainis...implied_invariant([loaded(P,V)],[at(P,L),at(V,L)]).

44To explain this invariant if P is a package, V is a vehicle and L is a location then thisinvariant says, `If a package, P, is loaded in a vehicle, V, then both the package, P,and the vehicle, V, are at the same place, L'.Inconsistent constraintsInconsistent constraints describe things that may seem obvious but should be statedexplicitly and make a useful debugging tool. They always record incompatibilities.There are no inconsistent constraints in the hiking domain but we can see one in thetranslog domain, where P is a package.inconsistent_constraint([certified(P), not_insured(P)]).Here the constraint is concerned with the way payment for transportation is made.When a package is to be transported a fee must be paid which covers transportationand insurance. Once the fee is paid the package becomes certi�ed. This constraint issaying that an uninsured package is not compatible with being certi�ed or, removingthe negatives, to be certi�ed is to be insured.2.4.5 OperatorsAs has been previously stated, the hand-coding of operators is the hardest part ofdomain construction, requiring much careful thought and time. As a novice to plan-ning at the beginning of this project, the writer can con�rm this statement! In thissection we consider the hand-coding of an operator from the hiking domain and welook at two tools o�ered by GIPO to make this coding easier. We begin by exam-ining the structure of an operator in greater detail. The operator we consider hereis the drive operator from a version of the hiking domain which allows conditionaloperators, and is shown in Figure 2.12. This domain has slightly di�erent predicatesfrom the version discussed so far and in particular contains the predicatein(person,car,place)

45to express that a person is in a car and both the person and the car are at a certainplace. In this operator the list of parameters after the operator name in its �rst line,shows us that not only is a car being driven by a person from place to place, but alsoa second person and a tent are featured.operator(drive(Person,Car,Place,Place2,Person2,Tent),% prevail[],% necessary[sc(person,Person,[in(Person,Car,Place),fit(Person)]=>[in(Person,Car,Place2),fit(Person)]),sc(car,Car,[at(Car,Place)]=>[at(Car,Place2)])],% conditional[sc(person,Person2,[in(Person2,Car,Place),fit(Person)]=>[in(Person2,Car,Place2),fit(Person)]),sc(tent, Tent, [loaded(Tent,Car,Place)]=>[loaded(Tent,Car,Place2)])]).Figure 2.12: The OCLDrive Operator from the Hiking Domain (Conditional Version).In Figures 2.12 and 2.2 the reader will note that the operator has four sections ofcode separated by three comments which are preceded by the % symbol and simplygive a heading to the state transition lines. The �rst line of code begins with `operator'and then gives the operator name, `drive' or, in Figure 2.2, `put down'. Next followthe parameters in braces which have initial capitals showing that these are variables.When constructing this operator the domain modeller has to give thought to the

46objects she aims to manipulate with it and these objects are represented by thevariables.Having identi�ed the objects the domain modeller next turns her attention to thesubstate lists for those objects. For each dynamic object she needs to consider whatstates exist for the object before the action takes place and what states it will assumeafter the action takes place. These states will all be drawn from the substate listsalready constructed. She will also have to consider if any of the dynamic objects doesnot change state. For this operator she wishes to model the action that takes a car,driven by one person with another as passenger from one place to a di�erent placewhilst carrying a tent. To model the prevail states she has to consider which objectsfrom the parameter list will not change state. The substates for this conditionalversion of the hiking domain are shown below.substate_classes(person,Person,[[in(Person,Car,Place),fit(Person)],[at_person(Person,Place),fit(Person)],[at_person(Person,Place),tired(Person)]).substate_classes(couple,Couple,[[walked(Couple,Place),partners(Couple,Person1,Person2)]]).substate_classes(tent,Tent,[[at_tent(Tent,Place),up(Tent)],[at_tent(Tent,Place),down(Tent)],[loaded(Tent,Car,Place)]]).substate_classes(car,Car,[[at_car(Car,Place)]]).Taking the objects one at a time, she would decide in this case that all the dynamicobjects must change state since at least one state of the possible state sets changes,namely all the dynamic objects begin by being at(Object,Place) and end by beingat(Object,Place2). Strictly speaking, for this model, the objects are either `at' them-selves (the car) or `in' a car which is `at' (person or tent), but other models arepossible. Since all the dynamic objects change state, the prevail states, i.e. the states

47which don't change, is an empty set, and this is shown in the second line of the codefor the operator.The next consideration in modelling this operator are the necessary and condi-tional changes. Here our modeller must think carefully about which are essentialparameters and which are the `extras'. Clearly cars do not yet drive themselves soshe reects in her modelling that one of the objects of sort person must be requiredand so will undergo a necessary change whilst the other person, as passenger (or back-seat driver) undergoes a change that is conditional upon the car being driven. Thesame conditional change is true for the tent, whilst the transition for car is clearlynecessary, so the modeller can decide to put transitions for the car and the driverunder the necessary changes whilst those for the passenger and the tent are put underthe conditional changes. In order to accurately reect those transitions the modellerconsiders preconditions and e�ects for each object. For example for the driver of thecar, `Person', there is only one possible state to consider. Initially the driver is �tand in a car which is at `Place' and the e�ect of the operator is to put the driver, �t,in a car at `Place2'. This transition is represented in the �rst line of code under the`% necessary' heading of Figure 2.12 which shows the precondition to the left of the) symbol and the e�ect to the right of the) symbol. The second line under thisheading reects the similar necessary transition for the car. Of course the modellerhas the responsibility to match all the correct before and after parts since it wouldmake no sense for the driver and tent to move from A to B whilst the passenger andcar move from B to A! Conditional transitions are often an empty set in an operatorbut where they exist, as in this case, they are modelled exactly like the necessarytransitions.The domain modeller can build a full set of operators in this way or they can bebuilt using the tools that GIPO o�ers. We now look at the �rst of these, the transitionconstructor, which allows similar thought processes but requires no expertise in OCL.

48The transition constructorFigure 2.13 shows the transition editor when it is �rst opened. There are �ve windowareas in the editor one of which displays the sorts constructed in the sort editor,Figure 2.8.

Figure 2.13: The Transition Editor View Using GIPOClicking on a sort in this window displays the lists of substates for that sort in thethe relevant window. The Editing/Drawing Canvas is for the graphics and will beexpanded in the next �gure to show a graphical representation of a newly constructedoperator. The Operators List shows the list of operators already constructed alongwith their parameters. The Static Predicates window reminds the user about thestatic predicates which have already been constructed and which cannot be changed

49in an operator.By clicking on the New button the user can select a name for the operator hewants to construct. When he con�rms the name the drawing canvas is activated,displaying a graphical version of the name. This window can be expanded and a viewof the left and central windows with the drive operator under construction is shownin Figure 2.14.

Figure 2.14: The Graphical Representation of an Operator using GIPOThe user has named the operator which appears in the oval-shaped area and hascompleted the transition for the object person. We can now track what he does to

50add the transition for the object car. In the sorts window he selects car. As hedoes this the possible substates for car appear in the substates window. He selectsthe only choice (at car(Car,Place)) and clicks necessary at the bottom to add thetransition to the operator. Any ambiguity in the object of the transition is clearedup by GIPO with a pop-up dialog box and then GIPO draws in the LHS part ofthe transition and prompts the user to select a substate for the RHS. In this casethere is only one choice which the user selects, giving the graphical output shown inFigure 2.14 which shows the graphical view after it has been edited. By clicking inthe edit tick box (not shown in Figure 2.14) the user is able to edit the RHS of hertransition. The original transition would reect the substate for car and would read(at car(Car,Place)) on both sides. This transition must be edited so that the usercan indicate that `Place' on the LHS is not the same as `Place' on the RHS. Afterthis edit the RHS of the car transition shows `Place2' indicating that a di�erent placeto the initial place must be an e�ect of the drive operator. Once the user is satis�edwith the new operator she clicks an add button (not shown) and the operator nameand parameters appear in the `Operators List' window where completed operatorsare listed whilst the description of the operator is added to the code, viewable at anytime by clicking the view menu.2.4.6 The opmaker toolHand-coding operators requires a domain expert who has a �rm grasp of the OCLlanguage and a large amount of time. Use of the GIPO system using the transitioneditor is quicker and knowledge of OCL is not required, but a novice would struggleeven with this tool until they grasped the concepts of forming the transitions. Un-dergraduate students studying a module on Arti�cial Intelligence have built domainsusing GIPO and their results can be viewed on-line at [72]. If the aim of the planningcommunity is to bring planning within the grasp of the world of software developerson a large scale then even more abstraction is needed. This is partly provided by

51the opmaker tool. At the time of writing the opmaker tool embedded in GIPO isopmaker1 which still requires user input. This is described in more detail in thenext chapter. It was anticipated that the follow up version, opmaker2, would allowoperators to be induced fully automatically and we describe work towards this in alater chapter.For the following discussion of the use of opmaker , we assume the domain devel-oper has managed to develop her domain to the point where everything up to theoperators has been developed. In the hiking world this would be at the stage wheresorts, predicates, substates, and invariants have been declared. Further than this thedeveloper should have thought about the actions she requires to be able to use. Sheshould know, for example, about any `moves' the objects should make, and whichobjects would be involved.To see how the opmaker tool works let us imagine a typical situation in the hikingdomain. Sue has taken down the tent at Keswick in the morning and driven withit to Helvelyn. Here she puts up the tent ready to sleep overnight after the walk.They need to leave one car at Helvelyn so Fred must pick her up. E�ectively the taskto perform here is for Fred to drive the second car to Helvelyn and to drive it backto Keswich with Sue as passenger. To stipulate such a task to a planner it wouldbe necessary to declare the initial states and target states of all the objects. In thisexample initial states are that Fred and car2 are at Keswick, Sue and car1 are atHelvelyn and the tent is up at Helvelyn, whilst goal states are that Fred, Sue andcar2 are at Keswick whilst car1 is at Helvelyn and the tent remains up at Helvelyn.So we can say, then, that a task consists of a set of initial states and a set of goalstates for the domain objects whilst a plan is the achievement of reaching the goalstates from the initial states. In the following series of �gures we see how GIPO isused to construct this task and opmaker to build the operators required.In Figure 2.15 we see the required task under construction. The `Initial State' and

52`Goal State' windows show that construction is almost �nished. The initial states forSue, Fred, the tent and the cars have been completed. The user wants to declare thegoal state for car2 and has clicked on car2 in the `Sorts' window. This has placed thestate for the car in the `States' window but it needs to be edited so that `Place' can beselected. In the `Edit States for Task' window the user is able to bring up a submenuof available places and will select `keswick' for the goal state of car2. Clicking the`Goal' button then commits this last state to the task which can then be veri�ed andsaved.

Figure 2.15: A Task is Constructed Using GIPO's Task EditorUsing opmaker the �rst thing to be done is to declare the initial sequence. Figure2.16 shows this process at the stage where the �rst action has been declared and the

53second is also complete. The user has typed into the `Action Name' box a suitablename for the second action (here `drive passenger' has been chosen). This actionname has been placed in the `Edit Action' window and by clicking and draggingobjects from the object tree the parameters have been added. At the same time theaction builds up in the `Action Sequence' window. Since this short sequence is nowcomplete the user will click the `Generate Operators' button, and this action startsa dialogue process with the user, part of which is shown in Figure 2.17.

Figure 2.16: Constructing a Sequence Using GIPOWhen the snapshot shown in Figure 2.17 was taken the user would have alreadyanswered several questions entering intermediate or goal states for objects. We seethat the question relates to the second operator and asks the user to specify where`fred' is after he has driven his passenger. Similar questions will appear for `sue' and`car2' until, in Figure 2.18, Opmaker has enough details to construct the operators

54for the chosen task (shown in the `Task' window as `oclTask 3' and constucted asshown in Figure 2.15) and ags up the `Generation Complete' message.

Figure 2.17: Opmaker Consulting the User

55

Figure 2.18: Su�cient Operators have been Generated to Complete the TaskFinally, as shown in Figure 2.19, we see that the user has used the `Commit'button and the new operators have been added to the domain. Their headings areshown in the `Known Actions' window and they have been generalised so that theirreuse is possible in di�erent situations. Figure 2.20 shows GIPO's `View' option whichcontains the OCL code for the new operators.

56

Figure 2.19: Newly Constructed Generalised Operator Headings Shown

Figure 2.20: GIPO's View Option Showing Newly Formed Operators in OCL

57A full version of the hiking domain was constructed using GIPO and in particularthe Op Maker tool. The resulting set of operators from the �rst sequence is shownbelow, in which `se' (state expression) denotes a prevail clause and `sc' (state change)denotes a necessary transition while for a full listing of the hiking domain the readeris referred to Appendix A.% Operatorsoperator(take_down(Person0,Tent0,Place0),% prevail[se(person,Person0,[at_person(Person0,Place0),fit(Person0)])],% necessary[sc(tent,Tent0,[at_tent(Tent0,Place0),up(Tent0)]=>[at_tent(Tent0,Place0),down(Tent0)])],% conditional[]).operator(drive_tent(Person0,Tent0,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),next(Place0,Place1)]=>[at_person(Person0,Place1),fit(Person0)]),sc(tent,Tent0,[at_tent(Tent0,Place0),down(Tent0),next(Place0,Place1)]=>[at_tent(Tent0,Place1),down(Tent0)]),sc(car,Car0,[at_car(Car0,Place0),next(Place0,Place1)]=>[at_car(Car0,Place1)])],% conditional[]).operator(drive(Person0,Place0,Place1,Car0),

58% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),next(Place0,Place1)]=>[at_person(Person0,Place1),fit(Person0)]),sc(car,Car0,[at_car(Car0,Place0),next(Place0,Place1)]=>[at_car(Car0,Place1)])],% conditional[]).operator(put_up(Person0,Tent0,Place0),% prevail[se(person,Person0,[at_person(Person0,Place0),fit(Person0)])],% necessary[sc(tent,Tent0,[at_tent(Tent0,Place0),down(Tent0)]=>[at_tent(Tent0,Place0),up(Tent0)])],% conditional[]).operator(drive_passenger(Person0,Person1,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),ne(Person0,Person1),next(Place1,Place0)]=>[at_person(Person0,Place1),fit(Person0)]),sc(person,Person1,[at_person(Person1,Place0),fit(Person1),next(Place1,Place0)]=>[at_person(Person1,Place1),fit(Person1)]),sc(car,Car0,[at_car(Car0,Place0),next(Place1,Place0)]=>[at_car(Car0,Place1)])],% conditional

59[]).operator(walk_together(Person0,Person1,Tent0,Couple0,Place0,Place1),% prevail[se(tent,Tent0,[at_tent(Tent0,Place1),up(Tent0)])],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),ne(Person0,Person1),next(Place0,Place1)]=>[at_person(Person0,Place1),tired(Person0)]),sc(person,Person1,[at_person(Person1,Place0),fit(Person1),next(Place0,Place1)]=>[at_person(Person1,Place1),tired(Person1)]),sc(couple,Couple0,[walked(Couple0,Place0),next(Place0,Place1)]=>[walked(Couple0,Place1)])],% conditional[]).
2.5 ConclusionHaving shown the essential parts of domain development in this chapter we willlook at operator induction in the next. The reader should be aware that there ismore to domain construction than the elements discussed. For example we have notdescribed the use of many of the tools available in GIPO nor have we shown howplans can be executed. Nevertheless the contents of this chapter should be adequatefor understanding the issues raised in this thesis and the reader is referred to theGIPO website [25] and the GIPO manual and tutorial for further details of tools notdescribed. The essential point here is that the required parts of the domains neededfor induction of operators have been described.

Chapter 3THE DEVELOPMENT OF OPMAKER VERSION ONEIn this chapter we look at the development of opmaker , the algorithm for theautomatic induction of operators. The �rst section considers a new experimental do-main created to be a useful example to illustrate some aspects of operator induction.This domain is referred to in the early part of the chapter and used extensively inlater sections. In the next section we consider the implications of a domain beinghierarchical. The third section describes how the original version of opmaker workedwhilst the fourth discusses further requirements. The �fth section describes the in-heritance problem in detail and the work done to correct this problem. In the sixthsection we discuss testing criteria and results from the induction process.3.1 The Briefcase DomainsA good example of an hierarchical domain is the Translog Domain. The main problemwith this domain is shown by Figures 2.5 and 2.6 which demonstrate its complicatedsort tree and method hierarchy. We felt it would not be easy to follow through exam-ples based on such a complex domain so we started to look for a less complex domainthat had the two features of interest that Translog has, namely the hierarchical sortstructure and the hierarchical method structure. It proved di�cult to �nd a suit-able simple domain so we decided to adapt another well-known domain, the BriefcaseDomain.

613.1.1 The Briefcase Domain (BC)The briefcase (BC) domain is extremely simple, having very few objects in a basicsort structure. This version of the traditional domain allows for conditional clausesin its operators and in BC relevant items are moved between two locations by usinga choice of container, such as one of the two bags. In BC the three items, a paycheque, a dictionary and a business suit, can be transported between home and theo�ce. There are two bags, a briefcase and a suitcase, and whilst all the items can betransported in the suitcase, only the dictionary and the cheque can be carried in thebriefcase. There is a simple sort and object structure which is at [De�nition 1.17]in the sense that every sort exists at the same level as every other and objects belongto one of the sorts. This sort structure is shown below.% Sortssorts(primitive_sorts,[bag,thing,place]).% Objectsobjects(bag,[briefcase,suitcase]).objects(thing,[cheque,suit,dictionary]).objects(place,[home,office]).3.1.2 The Hierarchical Briefcase Domain (HBC)For experimental purposes it was desirable to �nd a domain with few objects andoperators but with a hierarchical structure. To achieve this BC was adapted byadding some objects and structuring the sorts into a hierarchy, enabling the additionof some extra operators and methods and allowing the methods to be structured intoa hierarchy [De�nition 1.18]. So the idea of the Hierarchical Briefcase Domain (HBC)arose. HBC contains the additional items a pencil, some sandwiches, a lunch box, apencil box and containers such as box, bag and carrier. The sort structure for HBChas di�erent tiers or levels. The new sort `carrier' is one of three top level sorts, whilst`thing' and `place' are the others. Carrier is di�erent to the others in the sense that

62it is not a primitive sort (one which has no more sorts below it in the tree). To easefuture discussion about sort trees we shall refer to a sort at a higher level in the treethan another as a supersort whilst a sort at a level below another will be referred toas a subsort . The sort structure for HBC is shown below and is diagrammaticallyrepresented in Figure 3.1.option(hierarchical).% Sortssorts(primitive_sorts,[briefcase,suitcase,lunch_box,pencil_box,thing,place]).sorts(carrier,[bag,box]).sorts(bag,[briefcase,suitcase]).sorts(box,[lunch_box,pencil_box]).% Objectsobjects(briefcase,[bc1]).objects(suitcase,[sc1]).objects(lunch_box,[lb1]).objects(pencil_box,[pb1]).objects(thing,[cheque,suit,dictionary,sandwiches,pencil]).objects(place,[home,office]).As can be seen carrier was the supersort of bag and box, whilst bag and boxwere, respectively, the supersorts of briefcase and suitcase, and of lunch box andpencil box.With this new sort structure the HBC could represent such ideas as an objectbeing placed in a box which, in turn is placed in a bag. For example a pencil ina pencil box could be put in a briefcase. This introduced an unfamiliar idea of`conditional conditionals' in which the pencil in the box moved if the box moved and,if the box was placed in a bag, then the pencil moved if the bag moved.

63
[at_carrier] carrier thing [at_thing]

lunch_box pencil_box briefcase suitcase

[goes_in]

[box_outside]

[box_in_bag]

box bag

[safe_in]

[fits_in]

[in_box]

[in_bag]

 place

(sorts)

Figure 3.1: The Sort-Tree Showing the Levels at which Predicates Apply in HBCWith HBC there was the concept of packing your lunch ready for the journeyto work - a two stage process of putting the sandwiches into the lunch box and thelunch box into the briefcase.The example domain was created using GIPO and declared as option(hierarchical)and is listed in Appendix C. Operators and methods were constructed using GIPO'stools but not using opmaker which can only be used if domains are not declared ashierarchical. Tasks had to be constructed before the methods could be built. Theprocess was fairly time consuming but we needed a benchmark against which we couldcompare any induced methods and operators. Having arrived at this benchmark wewould be using only the �rst few sections of the new domain and a `stand-alone'version of opmaker in order to build operators and methods, but it was important

64to have the previously constructed ones for comparison. It is useful to explain herethat, whilst the opmaker tool embedded in GIPO works only with domains declaredas non-hierarchical, the stand-alone version does not have that restriction.3.2 Hierarchical Domains[See de�nition 1.12.] For a domain to be hierarchical we must consider two aspects,sort hierarchies and method hierarchies. These can occur in combinations:1. Flat sort structure and no method hierarchy2. Flat sort structure but with a method hierarchy3. Hierarchical sort structure but no method hierarchy4. Hierarchical sort structure and hierarchical method structure.Any of combinations 2, 3 or 4 can describe an hierarchical domain. In choosingdomains to illustrate points in this chapter we have selected the hiking domain as anexample of combination 1, a at domain, and HBC as an example of combination4, hierarchical in both respects. Those domains with method hierarchies are builtusing a bottom up approach. For example Table 3.1 shows a hypothetical situationin which the Hiking Domain has groups of operators built into �rst level methods.We can imagine the �rst-level methods shown in the table could be built up intosecond-level methods. Perhaps one such could be prepare to walk, which could becomposed of move camp and collect partner.

65Task Possible Method Name Primitive Operators1 move camp take down(Person,Tent,Place1)(Person,Tent,Car1,Place1,Place2) load(Person,Tent,Car1,Place1)getin(Person,Car1,Place1)drive tent(Person,Tent,Car1,Place1,Place2)unload(Person,Car1,Tent,Place2)put up(Person,Tent,Place2)2 collect partner drive(Person,Car,Place1,Place2)(Person1,Person2,Car) drive passenger(Person1,Person2,Car,Place2,Place1)3 collect car drive passenger(Person1,Person2,(Person1,Person2,Car1,Car2) Car1,Place2,Place1)drive(Person1,Car1,Place1,Place2)drive(Person2,Car2,Place1,Place2)Table 3.1: A Possible Designation of Methods and OperatorsAnother could be complete a leg consisting of methods collect car, move campand collect partner and operators walk together and sleep couple (these last twooperators can be found in the full listing of the Hiking Domain in Appendix A).3.3 Opmaker Phase OneIn this section we consider the algorithm for the automatic induction of operators,which was called opmaker . This could be used to generate full sets of operators anda single method for domains with no sort or method hierarchy. This had two distinctdevelopmental stages:� development of the working algorithm for at domains and integration intoGIPO for the building of non-hierarchical domains

66� development of the extended version to induce operators and methods for hier-archical domains.For descriptive purposes this section is split up as follows:1. Input to opmaker2. Output from opmaker3. The algorithm and how opmaker works4. An example from the Hiking Domain showing operator and method induction5. Incorporation of opmaker into GIPO.3.3.1 InputPhase one of the development of opmaker required input of the following items forinduction to take place.� A partial domain model without operators. This would be a sequentially con-structed domain consisting of sorts, objects, predicates, substates and invari-ants.� For some desired goal state, an ordered sequence of action names together withthe objects to be manipulated that will achieve that goal state - i.e. a plantrace.� A set of the initial states for all of the objects mentioned in the action sequence.� A set of user de�ned intermediate and goal states which stipulate post-actionstates for all the objects featured in the initial sequence. These are numberedto match the order of the actions in the initial sequence so that, if some of the

67objects have more than one state change, these changes happen in the correctorder. This input has become known as `example material'.The last two of these are e�ectively a description of the task to be achieved. If afull domain were the starting point it would include operators and task descriptions.Task descriptions are, for at domains, initial and goal state descriptions and thesecan be constructed using GIPO's task editor as we saw in Figure 2.15.3.3.2 OutputOutput from opmaker is� A full set of induced operators - one for every named action.� A single method operator, i.e. a macro or skeletal plan, which is a combinationof all the operators induced. This does not just repeat the initial sequence ofactions but contains precondition stipulations, an overall transition for eachdynamic changing object (i.e. one that gives initial states on the LHS and�nal states on the RHS but ignores states in between), a record of any staticsinvolved, an ordering (temporal constraints) of the actions and a listing of theactions, ordered to �t with the temporal constraints. Examples of two methodsfrom the Translog Domain can be viewed in Figures 2.3 and 2.4 whilst a methodfrom the Hiking Domain can be viewed in the results section of Appendix B.With this �rst version of opmaker this method of operator induction only gave ac-curate operators for domains with at sort structures and the reasons for this willbe discussed more fully in a later section. Knowledge engineers accept that it is notoften possible to identify a `complete' set of operators for a domain, and we gener-ally choose a set which is comprehensive enough to cover the main tasks planned forthe domain. But operators can always be added. Indeed, using opmaker , this is no

68longer a time consuming exercise. Whilst there is rarely a de�nitive complete set ofoperators for a domain, using this system the user could induce a working full setof operators at one go by having a suitable action sequence. This works well if theintention is to have a set of operators quickly but the system also induces a methodwhich, because it consists of all the operators induced ordered into a single method,is probably not the most useful method to induce. The point about methods is thatthey break the task down into chunks that, hopefully, are logical, stand-alone mini-plans, and by designating a logical order the bigger problem can be solved by callinga selection of methods and operators.A Signi�cant Finding A better way to use opmaker is to compose shorter actionsequences with the end method in mind.

Figure 3.2: An Action Sequence Composed Using GIPOFor Example A leg of the walk in the Hiking Domain is shown in Figure 3.2 andusing the sequence speci�ed here six operators will be induced and a singlemethod which does everything except collect the car for the start of the nextleg.

69But a di�erent way to think of this task is to consider that three compoundactions are involved. If, �rstly, we call thesemove_camp, collect_partnerandcollect_carthen, secondly, we decide the steps required for each, we can see that it would bebetter to use opmaker three times to induce, ultimately, the same set of opera-tors but three methods. Table 3.1 shows a similar idea but di�erent operatorsused to achieve it.This Has Importance because it changed the way we used opmaker to be in linewith the way in which humans plan. Humans plan by chunking actions intooverall tasks. A system that plans in this way is closer to human intelligenceand is more in tune with planning ideas.It Highlights a Task Modelling Problem because a domain may be more gen-eral than its tasks. For example the Hiking Domain could be used to modela camping holiday where any walks taken would be circular and need no car.Cars could still be necessary if larger numbers of people were on holiday, butcould be used di�erently for transportation, trips out and fetching provisionsetc. In this case tasks would be modelled di�erently, ending up with di�erentchunking of the actions.

70
program opmaker(OS: training sequence)op = operatorRHS = right hand side of transitionLHS = left hand side of transitionIn partial domain modelOut parameterised operator descriptions1. for each op in OS do2. form name and parameter list P ;3. for each dynamic O of sort S in P do4. get RHS from user input5. induce necessary substate class LHS6. form transition T = (S ;O ;LHS) RHS)7. match free vars in T with those in P8. end for9. for all conditional transitions10. get LHS from user input11. get RHS from user input12. form `8O 2 S ; (S ;O ;LHS) RHS)'13. end for14. end forprocedure match free vars in T with those in P1. repeat2. for each parameter X in transition T , X 6= O ,3. choose a parameter Y in P to match with4. X such that Y 6= O ; sort(X) = sort(Y),5. end for6. until parameter match set is consistent7. end Figure 3.3: Outline Design of the opmaker Algorithm

713.3.3 What Opmaker DoesWe begin with an overview of the opmaker system given the input and output detailedin Sections 3.3.1 and 3.3.2.� For every named operator� For every dynamic object� A transition is formed taking� LHS from the list of initial states or from the RHS of someprevious operator� RHS from the given example material� For static objects (locations)� The order listed is important: if there are two� The �rst goes to LHS� The second goes to the RHS� (Opmaker1:1) Inheritance in the sort structure is preserved� A method is formed from all the operatorsIn greater detail Opmaker works with the objects which are divided into dynamicobjects [De�nition 1.9] and static objects [De�nition 1.10]. The formal algorithm isgiven in Figure 3.3 but we see what it does in the case of a at domain - the HikingDomain.The operator heading - line2 of the algorithm Using the sequence of operatornames and the object lists supplied by the user opmaker forms an operatorheading - the �rst line of the operator is completed.Formation of prevail and necessary transitions - lines 3 to 8 Opmaker dealssequentially with the list of objects given. If an object is dynamic it has sub-states and can change state by the action of some operator. By contrast a

72static object has no sub-states. A dynamic object can undergo a transition andin an operator the left hand side of the transition is formed from either theobject's initial state, if it has not been used before in the sequence, or the statein which some prior operator in the sequence left it. The right hand side ofthe transition is formed from the goal state described in the example material(the user de�ned intermediate and goal states) with the number matching theordering in the sequence. If the example material contains the word null thisindicates to the system that the object does not change state and a prevailclause is formed in the operator being built.Handling of more than one static objects If there are static objects in the op-erator heading then opmaker has heuristics for dealing with them shown inthe �nal procedure. Often they are locations to be used in expressing a movefrom one location to the other. If this is the case then opmaker ensures thata di�erent location goes to the right of the transition than was in the left.The implementation currently in GIPO asks the user to indicate which locationprecedes the action and which is the consequent location.If there is only one static object Transitions are not formed for static objects sothey are never the subject of the transition but represent the attribute valuesof some of the dynamic objects, so they feature only when it is required to statelocations of objects.3.3.4 An Example from the Hiking DomainWe can now relate these ideas to a particular domain. Clearly there were manytest �les to be written and it was possible to end up with mistakes in the operatorsresulting from erroneous input material. Indeed, since the user has choice of operatornames, these could be di�erent from the model given previously as we see in the �rstoperator named `put down' instead of `take down' which appears in Appendix A.

73As was noted in the previous chapter, an induced operator takes its name from theuser-supplied initial sequence and can, by this means, have a di�erent name but allthe same parameters and actions as the original domain model. A typical test �le isshown in Appendix B. This is a variant of the domain version considered so far. Inthis version a tent can be `loaded' in a car as a third possible state for tent, and Sueand Fred are `tired' or `�t' depending on whether they have just walked or slept. Wesee that the initial user given sequence of actions is:1. putdown(tent1,fred,keswick),2. load(fred,tent1,car1,keswick),3. getin(sue,keswick,car1),4. drive(sue,car1,tent1,keswick,helvelyn).For the �rst operator in the sequence the left hand side of the transitions will comefrom the set of initial states:ss(car,car1,[at(car1,keswick)]),ss(car,car2,[at(car2,keswick)]),ss(couple,couple1,[walked(couple1,keswick)]),ss(person,sue,[fit(sue,keswick)]),ss(person,fred,[fit(fred,keswick)]),ss(tent,tent1,[up(tent1,keswick)]).The �rst operator When composing the �rst operator opmaker uses the �rst ac-tion in the sequence (putdown) to form the heading.� The initial state of the �rst dynamic object, `tent1', is checked - up(tent1,keswick). This state is destined for the LHS of a transition.� The example inputs are checked relating the correct set of numbered inputmaterial to the position in the sequence. These contain intermediate orgoal state information and are given by the user. Actual example input isgiven below.% putdown(tent1,fred,keswick)

74input(1,tent1,sclass(Tent,tent,[down(Tent,Place)])).input(1,fred,null).% load(fred,tent1,car1,keswick),input(2,fred,null).input(2,tent1,sclass(Tent,tent,[loaded(Tent,Car,Place)])).input(2,car1,null).% getin(sue,keswick,car1),input(3,sue,sclass(Person,person,[in(Person,Car,Place)])).input(3,car1,null).% drive(sue,car1,tent1,keswick,helvelyn),input(4,sue,sclass(Person,person,[in(Person,Car,Place)])).input(4,car1,sclass(Car,car,[at(Car,Place)])).input(4,tent1,sclass(Tent,tent,[loaded(Tent,Car,Place)])).The input for example 1 shows that the goal state for `tent1' is down(Tent,Place). The variables Tent and Place are matched to options in the oper-ator heading to form the �nal goal state down(tent1,keswick).� Opmaker then matches the given initial state for the �rst object withthe goal state from the example material and, for each object, forms atransition which, because the sides are di�erent, is a necessary transitionand would form one transition in the third section of the operator.� The second dynamic object from the �rst operator heading is treated ina similar manner. Thus `fred', the second object, is checked against theinitial states and is found to be �t(fred,keswick). Then the example mate-rial for the �rst operator is checked. Here we �nd input(1,fred,null). Theword null indicates that fred's state does not change so now a di�erenttype of transition is formed. This transition is a prevail transition and isused whenever the state of an object remains the same. It is listed in the

75operator's second section.� Finally the last object for the �rst operator is checked and found to be astatic object. It has already been used to describe the location of the tentand `fred' and there is no other static object so the operator is complete.(The last section of an operator is earmarked for conditional transitionsand there are none for this operator.)The output for this operator is:operator(putdown(Tent1,Fred,Keswick),[se(person,Fred,[fit(Fred,Keswick)])],[sc(tent,Tent1,[up(Tent1,Keswick)] => [down(Tent1,Keswick)])],[]).The second operator For the second action in the sequence opmaker makes anoperator heading of load(fred,tent1,car1,keswick).� The list of objects involved begins with `fred'. Opmaker recognises that`fred' has already featured in the sequence so it `knows' the �nal state of`fred' from the last operator that featured him. This state is taken to bethe initial state for the LHS of the �rst transition in the second operatorand since the example inputs again have the word null for `fred' we get aprevail transition for `fred'.� For the second object `tent1' the initial state (LHS) comes from the RHSof the previous operator formed. It is down(Tent1,Keswick). The examplematerial supplies the goal state for the RHS of loaded(Tent,Car,Place).Since this di�ers from the initial state a necessary transition is formed for`tent1'.

76� One further dynamic object remains - `car1'. This did not feature in the�rst operator so the initial state comes from the initial state set. The nullin the example material indicates that `car1' does not change so anotherprevail clause is added and then the new operator is given.operator(load(Fred,Tent1,Car1,Keswick),[se(person,Fred,[fit(Fred,Keswick)]),se(car,Car1,[at(Car1,Keswick)])],[sc(tent,Tent1,[down(Tent1,Keswick)] => [loaded(Tent1,Car1,Keswick)])],[]).The third operator is formed in a similar way. Object `sue' has not featured inthe sequence so her initial state and the LHS of her transition comes from theinitial states, the object state from the example material and since they aredi�erent a necessary transition is formed. The LHS for `car1' comes from theRHS of the previous operator and the null in the example material indicates aprevail transition for car.The third operator formed is;operator(getin(Sue,Keswick,Car1),[se(car,Car1,[at(Car1,Keswick)])],[sc(person,Sue,[fit(Sue,Keswick)] => [in(Sue,Car1,Keswick)])],[]).The fourth operator has a slightly di�erent feature in that its list of parametersincludes two static objects, `keswick' and `helvelyn'. Following the Europeanconvention, these are taken in order using the �rst for the LHS and the sec-ond for the RHS of the transitions for `sue', `tent1' and `car1'. Note that the

77partial domain shown in the full listing for this test �le, Appendix B, containsa predicate next(place,place) which is used to describe the order of the placesto be visited in the walk. It does this by detailing, in the atomic invariants,which speci�c static object is next to which other as in next(keswick,helvelyn).This is necessary information for an operator and needs to be addressed butstatic objects do not have transitions of their own. Therefore opmaker addsthe clause to the LHS of the �rst transition where both places feature in theparameters. The �nal operator is:operator(drive(Sue,Car1,Tent1,Keswick,Helvelyn),[],[sc(person,Sue,[in(Sue,Car1,Keswick),next(Keswick,Helvelyn)] =>[in(Sue,Car1,Helvelyn)]),sc(car,Car1,[at(Car1,Keswick)] => [at(Car1,Helvelyn)]),sc(tent,Tent1,[loaded(Tent1,Car1,Keswick)] => [loaded(Tent1,Car1,Helvelyn)])],[]).3.3.5 Induction of MethodsWhen opmaker reaches the end of the sequence of actions it �nally gives a singlemethod which is composed from the individual operators induced. The method hasthe following features:� A method name and set of parameters which features just the dynamic objectsa�ected by the method� A set of dynamic constraints found from the initial states - e.g. `fred' has to be�t and in the right place which must be the same as the tent� A list of necessary transitions that take place between the start of the �rst ac-tion and the end of the last action. These do not necessarily reect individual

78necessary transitions in the induced operators but do reect the overall transi-tion for each object. For example in the operator sequence `sue' has three states�t(Sue,Keswick) ! in(Sue,Car1,Keswick) ! in(Sue,Car1,Helvelyn) but in themethod only �t(Sue,Keswick) ! in(Sue,Car1,Helvelyn) appears� A list of any static constraints� A decomposition of the tasks to be undertaken which is a list of the operatornames to be called. (If this were a higher level method then you could expectto see this list contain the names of other methods as well as operators.)� A list of temporal constraints which stipulates the order in which the decompo-sition is applied taking the listed order of the operators as being numbered (inthis case 1 - 4). E�ectively this gives us the equivalent of a hierarchical macro(a macro that could also contain other macros).The method induced is given below.method(move_tent(Fred,Sue,Car1,Tent1),% dynamic constraints[se(person,Fred,[fit(Fred,Keswick)]),se(person,Fred,[fit(Fred,Keswick)])],% list of necessary transitions[sc(person,Sue,[fit(Sue,Keswick)] => [in(Sue,Car1,Helvelyn)]),sc(car,Car1,[at(Car1,Keswick)] => [at(Car1,Helvelyn)]),sc(tent,Tent1,[up(Tent1,Keswick)] => [loaded(Tent1,Car1,Helvelyn)])],% static constraints[next(Keswick,Helvelyn)],% temporal constraints[before(1,2),before(2,3),before(3,4)],% decomposition[putdown(Tent1,Fred,Keswick),

79load(Fred,Tent1,Car1,Keswick),getin(Sue,Keswick,Car1),drive(Sue,Car1,Tent1,Keswick,Helvelyn)]).3.3.6 Incorporation of Opmaker into GIPOThe original version of opmaker discussed in the previous sections has now becomeone of many tools available in GIPO. Details of this can be found in Section 2.4.6.This is not the whole story, however, because planning problems are becomingmore challenging and are applied to a range of real world problems. Therefore thereis a need to consider how humans do planning by chunking a task into subtasks thenplanning these at a more basic level. There is a good argument for replicating thisidea in AI planning and to do this we need to use hierarchical planning. Hierarchicalplanning has been seen as a big challenge for the knowledge engineer because of thedi�culty of constructing methods and method networks. We turn now, in the nextsection, to hierarchical planning, and examine how our later version of opmaker ,opmaker2, will help to ease the burden on knowledge engineers.3.4 Opmaker - Further Requirements for Hierarchical DomainsVersion one of opmaker did not go far enough in addressing all the issues. Forexample, it would generate operators but the method it was capable of producingwas dependent on the type of domain under construction. We saw the use of GIPOfor domain construction and in Section 2.4.1 we saw how the sort structure for thehiking domain was constructed by hand and by using GIPO's sorts editor. We sawthat, by comparison to the sort structure for the Translog Domain shown in Figure2.5, the structure of the Hiking Domain was just a at structure. Branching of thesort structure for the Translog Domain has a depth of 7. Using GIPO it is easyenough to construct such a sort tree but having predicates which apply at di�erent

80levels in the tree adds an extra problem for opmaker which will be shown in Section3.5.3.3.5 The Problem of InheritanceIn planning, where domains have an hierarchical sort structure, inheritance generallyoperates.3.5.1 What Is Inheritance?In Figure 3.1 we can see the sort tree for HBC. The �gure shows that there are pred-icates associated with di�erent levels of the tree. For example, `carrier' is one of thethree top level sorts and has the predicate at carrier(carrier,place) associated withit. Inheritance works in the sort tree so that any subsort of carrier also inherits theat carrier predicate. Further down the sort tree there are three predicates associ-ated with box, one of which is goes in(box,carrier). This predicate is inherited bylunch box and pencil box, but inheritance does not work up the tree, or across it,so carrier and bag do not inherit this predicate.In the following three sections we detail� exactly what the problem was� how the inheritance problem was recognised� what was done to correct the problem.3.5.2 The Inheritance ProblemIn order to identify objects that could be used in transitions, opmaker used the partialdomain model to identify a list of the dynamic sorts featured in the domain. If apredicate such as at carrier(carrier,place) was to feature in a transition, then any

81object which inherited this predicate was a candidate for the list, but opmaker onlydelivered the dynamic objects that it found at the same level in the sort tree thatthe predicate applied to. This meant that transitions for objects like briefcase or boxcould not be formed correctly. Thus it was a fundamental problem for any domainwith an hierarchical sort structure.3.5.3 Finding the Inheritance ProblemWe found that inheritance was causing a problem for opmaker because use of domainswith a sort structure did not always give a correct set of operators and often thesystem hung or did not produce a method. An example of faulty output from HBCis given below.For the following sequence of actionsput_thing_in_bag(sc1,home,suit),move(sc1,home,office,suit),take_out(suit,sc1,office)the following output of operators and methods was produced.operator(put_thing_in_bag(Sc1,Home,Suit),[],[sc(thing,Suit,[outside(Suit),at_thing(Suit,Home),fits_in(Suit,Sc1)] =>[in_bag(Suit,Sc1),at_thing(Suit,Home)])],[]).operator(move(Sc1,Home,Office,Suit),[],[sc(thing,Suit,[in_bag(Suit,Sc1),at_thing(Suit,Home),fits_in(Suit,Sc1)] =>[in_bag(Suit,Sc1),at_thing(Suit,Office)])],[]).

82
operator(take_out(Suit,Sc1,Office),[],[sc(thing,Suit,[in_bag(Suit,Sc1),at_thing(Suit,Office),fits_in(Suit,Sc1)] =>[outside(Suit),at_thing(Suit,Office)])],[]).% namemethod(take_suit_to_work(Suit),% dynamic constraints[],% list of necessary transitions[sc(thing,Suit,[outside(Suit),at_thing(Suit,Home)] =>[outside(Suit),at_thing(Suit,Office)])],% static constraints[fits_in(Suit,Sc1),],% temporal constraints[before(1,2),before(2,3)],% decomposition[put_thing_in_bag(Sc1,Home,Suit),move(Sc1,Home,Office,Suit),take_out(Suit,Sc1,Office),]). We can see that the �rst operator has an accurate transition for the suit and theatomic invariant �ts in(Suit,Sc1) is also correctly represented. However there shouldbe a prevail transition for the suitcase, sc1, which logically should remain at homewhilst the suit is packed. Example material for this transition was% put_thing_in_bag(sc1,home,suit)input(1,sc1,null).input(1,suit,sclass(Thing,thing,[in_bag(Thing,Bag),at_thing(Thing,Home)])).

83and at carrier(sc1,home) had been included in the initial states but no prevail transi-tion had been formed. Examining the two other operators showed a similar problem- there were no transitions for the suitcase, sc1. The method produced carried thesame problem and in fact the suitcase did not appear to be necessary to the trans-portation of the suit to the o�ce! However, the decomposition of the method madeit appear that the suitcase did feature so this anomaly was a problem.After producing several test �les and studying the results it seemed that theproblem arose as a result of the sort structure which related the predicateat_carrier(carrier,place)to the level of the sort tree carrier and we were using it at the level suitcase, two levelslower on the tree. After more checking with other domains with sort structures thisturned out to be a universal problem and we were able to identify that inheritancewas not being preserved by opmaker .To make description of the opmaker process easier in terms of versions, it nowbecomes necessary to de�ne these. In future discussion the version we have discussedso far will be referred to as opmaker1:0, whilst the version updated to compensatefor the inheritance problem will be opmaker1:1. The version in the next chapter willthen become opmaker2:0.Because only objects of dynamic sorts can be the subject of transitions (see Def-inition 1.9), when opmaker1:0 makes transitions it checks that each parameter is adynamic sort (with a listed substate or substate set). Looking at the listing for thesubstate classes belowsubstate_classes([carrier(C,[[at_carrier(C,L)]

84]),thing(T,[[outside(T),at_thing(T,L)],[in_bag(T,Bag),at_thing(T,L)],[in_box(T,Box),at_thing(T,L)]]),box(Box,[[box_in_bag(Box,Bag)],[box_outside(Box)]])]).we can see that, from this, opmaker1:0 can make the following list of dynamicsorts: [carrier, thing, box].However, looking at Figure 3.1 and referring to the HBC code listed in AppendixC, will show that other dynamic sorts can be found which are subsorts of theseitems. We would thus gain lunch box, pencil box, suitcase, briefcase and bag, all ofwhich inherit a substate from their supersort. The problem was that opmaker1:0 wasmissing these extra sorts.3.5.4 Rectifying the ProblemA revised implementation was written according to the outline algorithm shown inFigure 3.4. In outline lines 1-4 isolate and list the dynamic sorts from the substateclass list. At this stage these are [carrier, thing, box]. Lines 5-8 iterate throughthis list and �nd all the subsorts of each. In the case of `carrier' these are [box, bag,suitcase, briefcase, lunch box, pencil box]. For `thing' there are no subsorts and

85program get dynamic sorts(X ;Y)In the single substate class list (SSCL = X)Out a full list of dynamic sorts (DSL = Y)1.for each sort in SSCL do2. extract the sort name S3. add S to sort list DSL4. end for5. for each sort S in DSL do6. �nd all S 's subsorts (Subs)7. add Subs to DSL8. end for9. remove duplicates from DSL10. end
Figure 3.4: Outline Design to Obtain all the Dynamic Sorts from a Hierarchythose of `box' are [lunch box, pencil box]. These lists are then combined with theoriginal giving a list with duplicates which are removed by line 9.This leaves the full list of dynamic sorts which is [carrier, bag, briefcase, suitcase,box, pencil box, lunch box, thing].Opmaker1:1 would now be able to resolve the problem of inheritance since sortsbelow a node on the sort tree were identi�ed as inheriting the predicate attached tothe node of the supersort.Returning to the initial problem example, which was the lack of a prevail transitionfor suitcase shown in the �rst faulty operator, we can see that suitcase would now beidenti�ed as a dynamic sort, inheritance of the at carrier predicate would be assuredand the operator would correctly have a prevail transition for suitcase.

863.6 Testing and Results from Opmaker1:1Testing of opmaker1:1 was done on a range of domains. The new implementationwas also tested on various random sort trees created using GIPO.3.6.1 Success CriteriaSuccessful testing would be judged on:-1. Accurate identi�cation of full dynamic sorts lists from varied starting levels inthe sort trees.2. Use with domains without a hierarchical sort structure should give the sameresults as with opmaker1:0.3. Use with the Translog Domain should give accurate operators.4. Use with other domains should give either improved performance or the sameaccurate results as with use of opmaker1:0.3.6.2 Results Measured Against these Criteria1. All sort trees tested gave accurate sort lists of the subsorts for a named sort.2. Non-hierarchical domains tested gave the same results as previously obtainedusing opmaker1:0.3. The performance of opmaker1:1 with the Translog Domain gave a signi�cantimprovement in operator induction across a range of test �les. Not only wereoperators now accurate but methods could now be induced on this domaincomparable to hand-crafted ones.

874. For every domain tested opmaker1:1 gave the same results as opmaker1:0 wherethe domain had a at sort structure, and improved accurate operators andmethods where the domain had an hierarchical sort structure.
3.6.3 Testing and Results Using HBCInput to opmaker1:1 consisted of test �les of which one typical test �le for HBC usingopmaker1:1 is shown in Appendix D. Output is listed at the end of the appendix andshows that the transitions for the operators are accurate.One negative �nding was that conditional operators were not correctly induced.We decided this was due to the use of a double conditional domain (a pencil ina box, and the box in a bag means the pencil is doubly conditional on the boxand the bag). This is the only example of this type of domain in OCL and weconjectured that a bug in opmaker1:1 (and opmaker1:0) is responsible. When thisproblem was identi�ed we re-wrote the initial sequences for induction. They nowincluded all previously conditional objects in the action parameter lists. We renamed`move' actions according to what was moved, e.g. move bag, move box in bag,move pencil in box in bag etc. and were then able to induce operators.Building Methods using InductionIn order to induce methods we considered which actions were likely to be neededto be repeated most often. We argued that whilst all the objects would need to betransported regularly, taking lunch to work might be regarded as the most frequentof all actions. We could build each method using di�erent initial sequences like theone in the test �le shown in Appendix D. Using opmaker1:1 we induced the followingmethods and operators.

88� the method pack lunch(sandwiches,home,lunch box,briefcase), which comprisedthe operatorsput in box(sandwiches,home,lunch box) andput box in bag(lunch box,briefcase,home)� the operator move(sandwiches,lunch box,briefcase,home,o�ce)� the method unpack lunch(sandwiches,o�ce,lunch box,briefcase), which com-prised the operatorstake out box(lunch box,briefcase,sandwiches,o�ce) andempty box(sandwiches,lunch box,o�ce)� the method take lunch to work(sandwiches,lunch box,home,o�ce,briefcase),which comprised the following{ the method pack lunch(sandwiches,home,lunch box,briefcase){ the operator move(sandwiches,lunch box,briefcase,home,o�ce){ the method unpack lunch(sandwiches,o�ce,lunch box,briefcase).As can be seen above, the �nal method in this group could not be constructed untilthe other methods and operator existed but, since this �nal method used the others,it was at a higher level in the hierarchy of methods.There were several other possibilities for making the method hierarchy more com-plex. One such is packing the suit into the suitcase and taking it to work at the sametime as the briefcase containing the lunch. This would allow for a method such astake lunch and suit to work at a third level in the method hierarchy. (A theoret-ical fouth level would be to put both the suitcase and the briefcase in the car anddriving to work.)

89The Important points Were. . .1. The hierarchy is built bottom up. Opmaker1:1 uses operators to buildlowest level methods and higher levels are built from the operators and methodsalready induced.2. Careful thought needs to be exercised in the construction of a sensiblemethod hierarchy. Methods should not duplicate part of the function of othermethods.3. Using induction to build methods makes their construction easier andquicker.4. Time is saved building a method hierarchy.3.6.4 Further Experimentation and �ndingsWe built a version of HBC using just induced methods and operators and were ableto use it with HyHTN [44], the hierarchical planner available in GIPO. We devisedtasks similar to those in the GIPO built domain in Appendix C. A snapshot of thegoal of the task devised to replicate the method take lunch to work(sandwiches,lunch box, home, o�ce, briefcase) is shown in Figure 3.5. In this the left hand boxshows the representation of the task. In GIPO the methods are shown in lilac whilstthe operators are shown in green. The sequence of their application is demonstratedby the arrows and the right hand boxes list the available operators and methods - i.e.those already constructed.

90

Figure 3.5: The Task Goal Construction Window in GIPO Showing thetake lunch to work Method under ConstructionWe used the planner to solve the tasks in two ways either by using just the inducedoperators or by using the induced methods as well as the operators. We found thatthe time taken by the planner to solve one task using just operators was shorter, at0.36 seconds, than the time taken using methods, at 0.86 seconds. Figure 3.6 showsthe solution and part of the rationale to the task shown in Figure 3.5. In it we cansee a list of the operators used to reach the solution. Other tests produced similarresults showing that the overall time taken using the hierarchical planner to solvetasks was longer if methods were used.

91

Figure 3.6: The Planner Window in GIPO Showing the Solution to the Task in Figure3.5 These results were disappointing because we had expected to con�rm that hi-erarchical planning was more e�cient. However we realised that HBC was a verysimple domain for which, normally, researchers would not use hierarchical planning.Hierarchical operators can be regarded as ready-to-use plan chunks which save thetime taken to search for a sub-plan and thus save on overall planning time. On theother hand, before opmaker1:0, the time taken to construct methods would have tobe taken into account and for simple domains would not be cost-e�ective. In thecase of HBC, which has only a few operators, search times were unlikely to be verylong. We had constructed a more complex domain in terms of operators and methods

92than was required and it seemed that the complexity of the domain was slowing theplanning time down. The same planner, HyHTN [44], was used for plans using justoperators and plans using methods and the extra time taken was still under 1 secondso there were arguments in favour of continuing the work. Firstly, hierarchical plan-ning is more like the way humans plan by chunking tasks to be performed and AIaims to emulate human thinking using computational methods. Secondly, an OCL-expressed domain had a richer language structure and the methods encapsulated theplan chunking e�ectively. Thirdly, we wanted to continue but to use a more complexdomain with more objects and operations to perform to see if we found the sameslower plan times. We hoped there would be a crossover point where the number ofsearches needed using just operators would slow down the plan time more than theextra time required by using methods.The following chapter describes the further work done in this area and demon-strates more promising results. In particular we introduce opmaker2, an improvedsystem of induction which needs no intermediate state information.

Chapter 4THE DEVELOPMENT OF INDUCTION TOOLSWITHOUT INTERMEDIATE STATE USER INPUTIn this chapter we investigate techniques for inducing operators without the re-quirement of hand-crafted intermediate and goal state descriptions. We are workingtowards the goal of automated planning in which an agent (system) has full or partialdomain knowledge but is able to use the level of knowledge it has to infer and inducethe rest.To aid description we need to introduce another domain which was extended froman existing version to provide more of a challenge to the hierarchical planner. In the�rst section we describe the alterations made to the well-known tyre world [65] tocreate the Extended Tyre Domain. In the second section we see how experimentswith this new domain compare to those on HBC. In the third section we introduceideas for improving operator induction by automating the process of obtaining theexample input sets giving goal states for operator transitions. The fourth section de-scribes the implementation of the new process with a diagram and gives an algorithmfor this, along with a walk-through description of the stages involved in inductionwithout hand-crafted example material. Finally, the �fth section discusses the aimsfor experimentation with the process output and success criteria. Results are givenfor three di�erent domains.

944.1 The Extended Tyre DomainAs we noted in the last chapter, HBC was not challenging to the planner, thoughit had helped with the testing of the inheritance problem. With its 11 objects, 9sorts and 7 operators the conditional version of HBC was very primitive, but wase�ective for testing purposes once the inheritance problem had been resolved. Onefurther di�culty with this domain, as we briey noted, was that conditional operatorswere not well represented appearing in the necessary clauses of the operators insteadof the conditional clauses. We conjectured that, since a version that contained noconditional operators and consequently contained more operators was still slowerwhen planning using methods than when using operators, we should try a morechallenging domain.We aimed to �nd a domain with more objects and more operators. We decidedto use a domain with a at sort structure since we knew how to solve the inheritanceproblem. We wanted to use opmaker1:1 to induce all its operators and methods.A domain with a lot more objects was di�cult to �nd because many domains forexperimental purposes produce quick results from few objects and operators. Oneof our main aims was to show that for longer plans our induced methods would givefaster plan times than by just using operators. After all if we could decrease the timetaken for domain construction and, at the same time, reduce the time taken to arriveat accurate plans we would have made a signi�cant contribution to planning. Weconsidered the traditional tyre domain which did have more operators. We decidedto extend this domain to make it more of a challenge to the planner by maximisingthe number of operators and objects it contained. In this section we describe thealterations to this at domain to give it a full set of induced operators and a selectionof useful methods.

954.1.1 The Original Tyre DomainThe original tyre domain was built to model the steps required in the changing of awheel on a single wheel hub. Sorts and objects in the domain were those necessary tothe wheel change but limited to two wheels and one each of other objects except thewheel nuts which are not numbered but simply declared as `nuts', and thus e�ectivelya single object.The Sorts and Objects in the Original Tyre DomainThe at sort and object declarations are shown below.domain_name(tyre).% Sortssorts(primitive_sorts,[container,nuts,hub,pump,wheel,wrench,jack]).% Objectsobjects(container,[boot]).objects(nuts,[nuts_1]).objects(hub,[hub0]).objects(pump,[pump0]).objects(wheel,[wheel1,wheel2]).objects(wrench,[wrench0]).objects(jack,[jack0]).In total the original Tyre Domain contained 8 objects and 7 primitive sorts whichmade it less complex than HBC in this respect.Operators in the Original Tyre DomainThere were more operators in the Tyre World, so in this sense it was more challengingto a planner than HBC. Also these operators had an obvious sequence which allow

96the reader to discern the intentions of the full plan of changing the wheel. We shalllist here just the names of these operators.open_container(Boot)fetch_jack(Boot,Jack)fetch_wheel(Boot,Wheel2)fetch_wrench(Boot,Wrench)fetch_pump(Boot,Pump)loosen(Wrench,Hub,Nuts)jack_up(Hub,Jack)undo(Wrench,Hub,Jack,Nuts)remove_wheel(Wheel1,Hub,Jack)put_on_wheel(Wheel2,Hub,Jack)do_up(Wrench,Hub,Jack,Nuts)jack_down(Hub,Jack)tighten(Wrench,Hub,Nuts)putaway_wheel(Boot,Wheel1)putaway_wrench(Boot,Wrench)putaway_jack(Boot,Jack)putaway_pump(Boot,Pump)close_container(Boot)One item, the pump, was not actually used by any operators other than the tworesponsible for getting it out and putting it away. Whilst this was a comprehensiveset of operators, the few objects in the domain did not allow for a full model unlessit was of a unicycle with a boot.4.1.2 The Tyre Domain ExtensionThe decision was taken to extend this domain so that it modelled the numbers ofobjects used in changing the wheel of the average family saloon car. Thereafter, ifrequired, the domain could be extended further to cover a large commercial vehicle.We assumed the average family saloon car would have four wheels and a spare, with

97normal tyres before the invention of run-at tyres. With this model we assumed afairly down-market vehicle without alloy wheels but with wheel trims which couldbe applied and removed. This gave us two extra operators. Also it now had tyreson the wheels which could be `full' if they were fully inated with air, `at' if theywere discovered to be at but could be fully inated, or `punctured' if use of thepump was ine�ective. These alterations gave a use for the pump which had to beused when checking for punctures and created two further operators, inate tyre anddiscover puncture.The most notable thing about this extension was the increase in the number ofobjects - an increase over the original domain of 18. There were two additional sortsand 4 additional operators in total. A larger number of objects would increase thesearch time quite signi�cantly when instantiating operators to �nd a correct plan.The extended object and sort structure is shown below, and a comparison of theobjects and operators in the two versions of the Tyre Domain can be seen in Table4.1.domain_name(tyre_extended).option(hierarchical).% Sortssorts(primitive_sorts,[container,nuts,hub,pump,wheel,wrench,jack,wheel_trim,tyre]).% Objectsobjects(container,[boot]).objects(nuts,[nuts1,nuts2,nuts3,nuts4]).objects(hub,[hub1,hub2,hub3,hub4]).objects(pump,[pump0]).objects(wheel,[wheel1,wheel2,wheel3,wheel4,wheel5]).

98Tyre Domain Extended Tyre DomainObjects Objects1 boot 1 boot1 set of wheel nuts 4 sets of wheel nuts1 hub 4 hubs1 pump 1 pump2 wheels 5 wheels1 wheel wrench 1 wheel wrench1 jack 1 jack0 wheel trims 4 wheel trims0 tyres 5 tyresTotal Objects Total Objects8 26Total Operators Total Operators18 22Table 4.1: Comparison of Two Versions of the Tyre Domainobjects(wrench,[wrench0]).objects(jack,[jack0]).objects(wheel_trim,[trim1,trim2,trim3,trim4]).objects(tyre,[tyre1,tyre2,tyre3,tyre4,tyre5]).The additional operators were:apply_trim(Hub,Wheel_trim,Wheel)remove_trim(Hub,Wheel_trim,Wheel)inflate_tyre(Pump,Tyre)find_puncture(Pump,Tyre)The complete version of the Extended Tyre Domain which was extended using

99GIPO can be viewed in Appendix E.4.1.3 Substates in the Extended Tyre DomainLater sections of this chapter will show that it would be important to consider thesubstates declared in the partial domain input to opmaker much more closely thatpreviously. The substates direct what the possible transitions for the objects mightbe. For example, looking at the substates for jack,substate_classes(jack,J,[[have_jack(J)],[jack_in_use(J,H)],[jack_in(J,C)]]).if we are given an initial state for the object jack as have jack(Jack) then if the jackundergoes a transition we can see what the possible transitions might be:� have jack(Jack) ! have jack(Jack) (a prevail transition)� have jack(Jack) ! jack in use(Jack,Hub) (one possible necessary transition)� have jack(Jack) ! jack in(Jack,Boot) (another possible necessary transition).The substate classes for the Extended Tyre Domain contain a lot of possible statesfor the objects and are themselves another way in which this domain is more complexthan HBC where the substates appear shorter because of inheritance and becausethere are few substate choices. Further discussion on substate classes can be foundin Section 4.3.3.4.2 Experiments with the More Complex DomainWe built the new version of the Extended Tyre Domain (ETD) using GIPO. Thecomplete version of ETD included tasks and all the operators and methods which we

100aimed to replicate using opmaker1:1 induction. This domain is included in AppendixE. This example ETD was validated by GIPO and tested by using the planner to �ndsolutions to the tasks. This step was necessary so that we had an example correctdomain to which we could compare induced operators and methods.4.2.1 Aims of ExperimentationAs with previous domains we then took the partial domain (without the operatorsand methods) and added the initial sequence, initial states and example intermediatestates, having separate test �les for each desired method. The aims in experimenta-tion with the new domain were to:-1. Build a full and accurate set of operators2. Compare these operators to the ones constructed using GIPO, which had beenvalidated by the system3. Use logical short sequences of actions to induce meaningful methods whichaccurately described a complete task in the tyre change process4. Add the induced methods and operators to the partial domain5. Construct tasks that would test all of the operators and methods forming in-creasing lengths of plans6. Use the new version for planning where only the induced operators were availablefor planning7. Use the new version for planning using operators and methods8. Compare the times taken for 6 and 7 above and compare both against timestaken for hand-crafted operators and methods

1014.2.2 The Full Planning ProblemAt this stage we de�ne the full planning problem for ETD. This is modi�ed fromthe full problem for the original domain to take account of the extra objects andoperators available. It is de�ned as:-The vehicle is found to have two at tyres. The motorist must open the boot andusing the pump discover if either of the tyres is simply at. One tyre is at and isinated using the pump, but the other is found to be punctured. The motorist mustthen remove the wheel trim from the punctured wheel, use the wrench (fetched fromthe boot) to loosen the nuts and the jack to jack up the hub. This done he removesthe nuts, exchanges the wheel for the spare and does up the nuts. After jacking downhe tightens the nuts, re-applies the trim and puts all items away in the boot beforeclosing it.4.2.3 Decisions on the Potential MethodsWe needed to give consideration to the chunks of the full planning problem of changingthe wheel from start to �nish. This follows on from the argument in Section 3.6 wherewe state that it is at this stage that careful thought has to be given to the methodstructure. Since induction of methods has eased their individual construction it isbetter to be aware of what appears to be a sensible choice for the methods. Wedecided on a sensible choice of methods for ETD and these are shown in Figure 4.1.Each of the desired methods shown in Figure 4.1 was made into a test �le tobe used with opmaker1:1. A test �le for the method discover puncture is shown inAppendix F. Results from running this �le can be seen at the end of the test �le.

1021. A method called �x at in which, on spotting a at tyre, the motorist opensthe boot, takes out the pump, uses it to inate the tyre, puts away the pumpand closes the boot.2. A method called discover puncture which is similar to the �rst. Here the mo-torist opens the boot, takes out the pump, �nds he can't inate the tyre (sodiscovers he has a puncture) and puts away the pump, leaving the boot openbecause he knows he will need to get out more equipment.3. A method called fetch tools in which the motorist fetches the jack and thewrench from the open boot.4. A method called putaway tools in which the jack and wrench are returned tothe boot.5. A method called unfasten hub in which the wheel trim is removed, the wrenchis used to loosen the nuts, the jack is used to jack up the hub and the nuts areundone and removed.6. A method called fasten hub which reverses the process in point 5 above. Herethe nuts are put on and done up, the hub is jacked down, the nuts are tightenedand the wheeltrim is replaced.7. A method called change wheel in which the spare wheel with its tyre is fetchedfrom the boot, the punctured tyre is lifted from the hub and put into the bootand the spare is positioned on the hub.Figure 4.1: A Sensible Choice of Methods for the Extended Tyre Domain

103Starting with a complete domain without operators, each of the desired method�les was run with opmaker1:1 and the resulting new operators and method wereadded to the new version of the domain. Eventually all the operators that werein the GIPO-constructed domain were replicated in the new version of the domain,which then contained the seven methods suggested in Figure 4.1.4.2.4 Results of the TestingThe results from the eight aims of the testing are listed below:-1. All the operators were built successfully2. All operators were similar to the example domain3. Meaningful methods did describe chunks of the full tyre change problem4. Induced operators and methods were added to a partial domain to be latertested further5. The previously devised tasks were copied into the new version to complete thefull induced version of ETD6. The full induced version was used for planning when the methods were unavail-able and plan times were noted7. The full induced version was used for planning when the methods and operatorswere available and again plan times were noted8. The times taken in item 6 and 7 were compared. Results of this comparisoncan be seen in Table 4.2 in which task 11 is the full planning problem.

104Task No. Steps in Plan Plan Correct? Time for Operators Time for Methods1 8 Yes 1.01 secs 1.09 secs2 7 Yes 1.43 secs 2.25 secs3 6 Yes 0.85 secs 1.25 secs4 1 Yes 0.00 secs 0.01 secs5 3 Yes 0.01 secs 0.01 secs6 3 Yes 0.02 secs 0.02 secs7 3 Yes 0.01 secs 0.05 secs8 3 Yes 0.01 secs 0.07 secs9 4 Yes 0.15 secs 0.24 secs10 16 Yes 2.67 secs 4.53 secs11 24 Yes for methods no plan found 0.2 secsTable 4.2: Comparison of Plan Times Using Operators and Methods9. Improved planning e�ciency using methods is demonstrated in Table 4.3. Itshows that replacing operators by methods as the plan steps increase keepsplan times at around 0.02 seconds. Table 4.2 shows that plan times for justoperators increase and as the steps increase, and some plans cannot be solvedwith operators alone.Tasks for TestingTasks were devised to test that each section was working correctly and these wereconstructed in two ways. The �rst way was to assume the domain was at and onlyallow the use of operators in the task. The second was to assume the domain washierarchical and allow the use of the method. Each of these was run with the planner.The resulting times taken to reach a plan were recorded and are shown in Table 4.2.

105Task No. Steps in Plan Time (Secs) Operators Used Methods Used1 4 0.00 0 12 4 0.00 0 13 2 0.00 0 14 6 0.00 0 25 10 0.01 0 36 14 0.02 4 37 18 0.02 4 48 20 0.01 4 59 21 0.01 5 510 24 0.02 8 5Table 4.3: HyHTN Plan Times Using Operators and MethodsOnce each potential method had been tested as above, combinations of operatorsand methods were tested to achieve increasingly large sections of the full problem.Table 4.3 shows the ten di�erent tasks that were tested on the Extended Tyre Domain.The second column lists the number of plan steps in terms of operators used and needsto be viewed in conjunction with the �fth column which lists the number of methodsused because each method consists of ordered sets of operators. The third columnlists the times taken to reach a successful plan using the HyHTN planner in everycase.The Full Tyre-Change ProblemSo far none of the tests performed tested the domain for the full tyre change problem.As can be seen in Table 4.2 our results so far were showing that it was slower to usea method than to use operators for plans with a small number of steps. These results

106compared with what we found using HBC. As yet we had not tried to use the taskcontaining the full planning problem de�ned in section 4.2.2. Tasks for this fullproblem were coded up in the two ways using for the �rst just operators and for thesecond mostly methods and a few operators.4.2.5 Results for the Full ProblemUsing Just OperatorsUsing just operators was challenging because of the number of operator choices andthe number of objects available to instantiate those chosen operators. The task wasleft running on a Sun Blade 100 overnight. After 20 hours no plan was found.Using Operators and MethodsEach method, by the fact that it decomposes into an operator sequence, stipulates achunk of the plan to be achieved. Our task used 5 methods and 8 operators and theplanner found the plan shown below in 0.02 seconds.SOLUTIONopen_container(boot)fetch_pump(boot,pump0)find_puncture(pump0,tyre1)putaway_pump(boot,pump0)fetch_wrench(boot,wrench0)fetch_jack(boot,jack0)remove_trim(hub1,trim1,wheel1)loosen(wrench0,hub1,trim1,nuts1)jack_up(nuts1,hub1,jack0)undo(wrench0,trim1,hub1,jack0,nuts1)remove_wheel(trim1,wheel1,hub1,jack0)fetch_wheel(boot,wheel5)putaway_wheel(boot,wheel1)put_on_wheel(trim1,wheel5,hub1,jack0)

107do_up(wrench0,trim1,hub1,jack0,nuts1)jack_down(nuts1,hub1,jack0)tighten(wrench0,hub1,trim1,nuts1)apply_trim(hub1,trim1,_108198)putaway_wrench(boot,wrench0)putaway_jack(boot,jack0)fetch_pump(boot,pump0)inflate_tyre(pump0,tyre2)putaway_pump(boot,pump0)close_container(boot)END FILEResults of Testing the Full ProblemOnly one operator, apply trim, was not fully instantiated and this did not a�ectcorrect plan formation. We had shown that, for a more complex domain, the use ofhierarchical methods was a much more e�cient way of planning.4.2.6 Ideas for Improvements on the Opmaker SystemIt could well be argued that the e�ciency of hierarchical planning comes at large costin terms of time to construct methods and tasks. Indeed when we were constructingthe example version of ETD we found this to be the case even using GIPO for someof the task editing. Even when using opmaker1:1 to induce methods and operatorsand even though initial action sequences can be rapidly achieved by `point and click'means, it takes time to construct the example input material from which opmaker1:1obtains the intermediate and goal states for the transitions as shown in chapter 3.Whilst our opmaker1:1 system saved signi�cant time spent on operator and methodconstruction, it needed to be more automated and less dependent on a knowledgeengineer's input. We needed a system to speed up the induction process. The areasthat could potentially be speeded up were the construction of the action sequence

108and the compiling of the example material. We argued that time could not be savedconstructing initial and goal states as they were necessary to the planning processanyway and were already represented in a planning task. The editor provided by thepresent opmaker1:1 system embedded in GIPO allows rapid construction of an initialaction sequence. Hence we decided to concentrate our e�orts on the example inputmaterial. In Section 4.3 of this chapter we discuss how the example input materialwas generated automatically by the next phase of opmaker , speeding up the processof induction.4.3 Automatic Induction Without Intermediate State InformationWe begin this section by recalling why we need example material for operator induc-tion then we consider the argument for automatic generation of that example materialand briey state why this line was adopted. We consider the ways that we can get allthe choices for the right hand side of state transitions for the operators and then wediscuss ways of narrowing those choices to obtain good quality input example sets.Finally we show some resulting sets of example material.4.3.1 The Need for Example MaterialWe recall that four main items of input were needed for opmaker1:0 and opmaker1:1to induce operators. These were:-� A training sequence of actions� A set of initial states for all the objects in the training sequence� A partial domain (without operators and methods)� Numbered sets of example material, i.e. the user input.

109When opmaker builds operators it obtains the post-transition states of the objectsfrom the example material and these are reected in the right hand sides of theoperator transitions. We remind ourselves that some transitions are prevail transitionsin which the post-transition state is the same as the initial state and that the examplematerial we have met so far indicated the presence of a prevail transition to opmakerby use of the `null' clause.For a typical initial sequence ofdo_up(wrench0,hub1,jack0,nuts1,trim1),jack_down(hub1,jack0),tighten(wrench0,hub1,nuts1,trim1),apply_trim(hub1,trim1,wheel5)a suitable set of example material could be% do_up(wrench0,hub1,jack0,nuts1,trim1)input(1,wrench0,null).input(1,hub1,sclass(Hub1,hub,[jacked_up(Hub1,Jack0),fastened(Hub1)])).input(1,jack0,null).input(1,trim1,null).input(1,nuts1,sclass(Nuts1,nuts,[loose(Nuts1,Hub1)])).% jack_down(hub1,jack0)input(2,hub1,sclass(Hub1,hub,[on_ground(Hub1),fastened(Hub1)])).input(2,jack0,sclass(Jack0,jack,[have_jack(Jack0)])).% tighten(wrench0,hub1,nuts1,trim1)input(3,wrench0,null).input(3,hub1,null).input(3,trim1,null).input(3,nuts1,sclass(Nuts1,nuts,[tight(Nuts1,Hub1)])).% apply_trim(hub1,trim1,wheel5)

110input(4,hub1,null).input(4,trim1,sclass(Trim1,wheel_trim,[trim_on(Trim1,Wheel5)])).input(4,wheel5,null).and this example material was coded by hand so prone to errors. When opmaker wasembedded into GIPO a series of questions were posed to the user who was e�ectivelybeing asked to supply the end state for each transition. Again this process dependedon the user making correct choices.4.3.2 The Argument for Automatic Generation Without Intermediate State Infor-mationConsistency and accuracy. An e�ective automisation of the process of formingthe example input material would be a good way to ensure consistency andaccuracy of the input material.Time saved. Furthermore this would speed up the process of induction by savingthe time taken to code and correct the examples by hand or by using GIPO.Increase of abstraction. A further argument takes the line that automating theprocess of generating the examples increases the abstraction of domain buildingand removes more of the need for domain builders to be knowledge engineeringexperts.Autonomous Learning. An agent (system) should be able to learn and plan with-out direct human intervention so that it can be of use in remote areas or thosewhere it is unsafe for the human to go. If an agent is given action sequencesas training material it can learn the knowledge it needs to plan safely ande�ciently.

111Having given due consideration to these arguments it seemed clear that a good wayforward was to try to �nd some way of generating the example material automatically.4.3.3 Generation of ExamplesIn later parts of this chapter we consider the process as a whole, so we view thewhole picture as being one of generating the operators and methods. Internal to thesystem, however, the idea of having example material is useful to hang onto for de-scriptive purposes. This material is generated automatically and used by opmaker2:0to generate the operators and methods.The domain substate classes in any OCL domain contain templates for sets ofstates, and objects must be in one of these states at any one time. For example, inSection 4.1.3, three states for a jack are listed. At any one time the jack must bein one of those states and one only. If jack is in the state have jack(J) a transitioncan do one of two things - either leave jack's state unchanged or change it to one ofthe other states. The idea behind automatic generation of operators is to considerpossible alternative state combinations for the objects involved.As a simple example suppose the initial sequence wasopen_container(boot),fetch_pump(boot,pump0),and the initial states for boot and pump0 weress(container,boot,[closed(boot)]),ss(pump,pump0,[pump_in(pump0,boot)])then we can have the following possible example states:-1. closed(boot) and pump in(pump0,boot),2. open(boot) and pump in(pump0,boot),

1123. open(boot) and have pump(pump0),4. closed(boot) and have pump(pump0).The �rst of these is e�ectively the prevail state where neither object changes state,whilst the other three are potential outcomes, even though actually only item 2 canbe achieved in a single action.Since each item in this sequence has only two possible states the possible combi-nations for example material sets are 2 x 2 = 4. For a longer sequence of actions suchas that shown in Section 4.3.1 where more objects are involved the possible numberof potential example sets, even for this short sequence of four actions, is 2 654 208!4.3.4 Heuristics to Reduce ChoiceThis number can be drastically reduced by using information we already have or caneasily obtain by:-1. Making sure the initial sequence of actions includes information about whichobjects will not change at each action. Figure 4.2 shows one system of taggingobjects that will not change in an example sequence.2. Including heuristics that handle information in 1 above, for example if an objectis labeled as `changing' (untagged), then its pre-action state is not available asits post-action state.3. Allowing goal states speci�ed in the tasks to be used to narrow the search.4. Using all the information in the substate classes to narrow the search - the onlyallowable states are listed there.

113do_up(@wrench0,hub1,@jack0,nuts1,@trim1),jack_down(hub1,jack0),tighten(@wrench0,@hub1,nuts1,@trim1),apply_trim(@hub1,trim1,wheel5)Figure 4.2: The Initial Sequence Tagged (with `@') to Indicate Unchanging Objects5. Using additional domain information, not previously used, to be declared in theinvariants where it is not already implied by the substate classes.6. Where potential operators are seen as direct opposites of one another these aredeclared e.g. do up and undo.4.3.5 Changes to Input to Indicate Unchanging ObjectsWe give, in Figure 4.2 a short sequence of actions as an example of typical userinput. The user has only to compose the sequence and decide whether objects willbe changed by the named action. In this sequence the `@' sign has been used by theuser to indicate unchanging objects.4.3.6 Calculating Paths Through State SpaceWe now consider how items 1 - 4 listed in Section 4.3.4 above reduce the possiblepaths through the state space and then go on to discuss the contribution made byinvariants. For the sequence in Figure 4.2 the �rst action has �ve objects. Three ofthese, wrench0, jack0 and trim1 are tagged so only the initial state can be selected. Ofthe others, which must change state, hub1 has three potential di�erent states whilstnuts1 has two. Hence the di�erent variants for the �rst action total 1 x 3 x 1 x 2 x1 = 6. Similarly we can calculate that the second action has 3 x 2 = 6 variants andthe third has 1 x 1 x 2 x 1 = 2 variants. The fourth action with objects hub1, trim1and wheel5 looks as though there is only one state each for hub1 and trim1 but three

114states for wheel5. States for wheel are state sets which include a value for trim and theinitial have trim(trim1) state must change. The wheel state must be consistent withthe trim state so the only choice available is wheel on(wheel5,hub1),trim on(wheel5,trim1). Hence our number of variants for the last action is 1 x 1 x 1 = 1. Thecombined number of di�erent example sets for this action sequence is therefore 6 x 6x 2 x 1 = 72.4.3.7 Initial Results from Automatic Generation of PathsUsing experimental input and heuristics we found that tagged sequences, initial statesand partial domains could be used to generate several di�erent paths. These werecounted and con�rmed the number of 72 shown in the previous section.This could still mean that, for longer action sequences, there would be very largenumbers of example sets. Also we had not taken account of any other restrictions inthe domain, for example the invariants. We decided, on this evidence that we neededto use the information contained in the invariants.To show how the di�erent paths were reached we can see in Figure 4.3 that �rstlyan object has a known initial state. Information about the �nal state may be missing.The search for a path through the state space of potential interim states aims to �nda �nal state and �ll in the details each step of the way. In the second diagram wesee the object's trace tracked. In Figure 4.4 we consider the object hub1 in the �rstaction from the sequence shown in Figure 4.2. We note that it is not tagged whichmeans it must change. In Figure 4.4 we see the potential paths one of which is notavailable because it represents a prevail transition.

115
Object No. of Substates Valid? No.Substates AvailableWrench 2 have wrench(Wr) Yes 1wrench in(Wr,C) YesHub 4 on ground(H),fastened(H) No 3jacked up(H,J),fastened(H) Yesfree(H),jacked up(H,J),unfastened(H) Yesunfastened(H),jacked up(H,J) YesJack 3 have jack(J) Yes 2jack in use(J,H) Yesjack in(J,C) YesNuts 3 tight(N,H) Yes 2loose(N,H) Yeshave nuts(N) YesTrim 2 trim on wheel(WT,Wh) Yes 1have trim(WT) YesWheel 4 have wheel(Wh),trim o�(Wh) No 1wheel in(Wh,C),trim o�(Wh) Nowheel on(Wh,H),trim o�(Wh) Yeswheel on(Wh,H),trim on(Wh,WT) YesTable 4.4: Table Showing Total States and States Available for the Action Sequencein Figure 4.2 if States Must Change

116
Object in Initial State (KNOWN)

} Possible paths from object’s

first state

} Possible paths to object’s

final state

Object in Final State (May be UNKNOWN)

1. For a Changing Object

2. Tracking the Path of Object Changes

Initial State

Final State

By finding the object’s

it makes

trace including any associations

Figure 4.3: Changing States of an Object in a Sequence

117

hub1 is a changing object - it must change to one of these states

Not allowed

Same State State 3State 2State 1

jacked_up(hub1,jack0)
Object name: hub1 Current state = unfastened(hub1),

Action name: do_up

Figure 4.4: Changing States of hub1 in a Sequence
Method Name Number of Examples in Set Accuracy�x at 2 1 accurate1 not accuratefetch tools 1 accuratediscover puncture 2 1 accurate1 not accurateunfasten hub 1 accuratechange wheel 1 accurateattach hub 1 accurateputaway tools 1 accurateTable 4.5: Table Relating Numbers of Example Sets to Methods

1184.3.8 The Use of the Invariants to Reduce the Search SpacePreviously, using opmaker1:0, the partial domains used for induction had containedinvariants in the form of atomic invariants, implied invariants and inconsistent con-straints. The substate classes also act like invariants in this respect by controlling thetransitions available. Of the invariants, only the atomic invariants were used in theinduction process. We needed to accurately de�ne and use other knowledge containedin the invariants as a further search heuristic.Invariants were added where the constraints they represented were not alreadyrepresented in the substate classes and atomic invariants. Their function is to guidethe state space search for intermediate and goal states. The logic of the invariants isshown in Figure 4.5.At the same time the opmaker code was altered and extended in the followingways.� It took account of the invariants written as shown.� All objects in the operators had an initial substate.� There was a testing procedure on the invariants so that if any were incorrectthey could quickly be adjusted.4.3.9 Results Using the InvariantsWhen using opmaker1:1 we needed to give numbered sets of examples to the systemas part of the input. The �rst phase of opmaker2:0 replicates these sets which can becompared to the old example sets for accuracy and can also be counted to show howaccurate the state space search is. Test �les were written to generate example setsfor each of the 7 desired methods for the Extended Tyre Domain shown in Figure4.1. These were run in turn with the extended opmaker and the results are shown

119
1. Equivalence between hub fastened and nuts tight/loose on hub.8H :hub : [fastened(H) () 9N :nuts : (tight(N ;H) _ loose(N ;H))]2. Equivalence between jack in use and jacked up.8H :hub : 8J :jack : [jack in use(J ;H)() jacked up(H ; J)]3. Equivalence between hub not free and wheel on hub.8H :hub : [:free(H) () 9W :wheel : wheel on(W ;H)]4. Equivalence between trim on wheel and trim on.8T :wheel trim : 8W :wheel : [trim on wheel(T ;W)() trim on(W ;T)]5. Only a single set of nuts can be on a hub.8H :hub : 8N1:nuts : 8N2:nuts :264 0B@ (tight(N1;H) _ loose(N1 ;H))^(tight(N2;H) _ loose(N2 ;H)) 1CA) (N1 = N2) 3756. Only a single wheel can be on a hub.8H :hub : 8W1:wheel : 8W2:wheel :2640B@ wheel on(W1;H)^wheel on(W2;H) 1CA) (W1 = W2)3757. Domain constraint: If nuts are tight on a hub then the hub must be on the ground.8H :hub : [(9N :nuts : tight(N ;H))) on ground(H)]8. Domain constraint: if a trim is on a wheel, then the wheel is on a hub and the nuts are tight.8W :wheel : 9T :wheel trim : " trim on wheel(T ;W))(9H :hub : wheel on(W ;H)) ^ (9N :nuts : tight(N ;H)) #Figure 4.5: Invariants encoded in the Extended Tyre World

120in Table 4.4. The accuracy of the recorded example sets was also noted. For eachmethod there was exactly one accurate example set for this domain. There were twoinaccurate example sets which relate to the methods �x at and discover puncture.In these cases the sense of the method was either that the tyre could be pumped up tochange it from at to full or that it could not be �lled with air and so was designatedpunctured. However, in each case there were two other states for tyre apart fromat, and, with no invariant guidance, we got two example sets. One of these gavethe �nal state for tyre as punctured(Ty) and the other gave it as full(Ty). Thesewere relatively trivial inaccuracies and could be resolved interactively with the userselecting the correct version for the sense of the method.4.4 How Opmaker2 LearnsIn this section we show diagrammatically how the system is designed and we give aformal algorithm for the opmaker2 system. The section concludes with a descriptive`walk-through' of the algorithm using a chosen action sequence. This is similar to theexample given in a recent paper, [50].4.4.1 A Diagrammatic Representation of the Opmaker2 SystemFigure 4.6 gives an indication of the design of the system for inducing operators andmethods in opmaker2. In �gure 4.6 the boxes at the top of the diagram indicatethe input to the opmaker2 system, whilst those at the bottom indicate output fromthe system. The large ellipse is the opmaker2 system which includes two furtherprocesses - `Generate' and opmaker1 (described in Section 3.3). Generate is the newprocess which uses the input of the partial domain, the invariants, the initial statesand optionally also the goal states, and the action sequence. Output from Generate istwo-fold. The example states represent the automatically generated intermediate and

121
Initial (and optional

goal) states.

Opmaker2

Invariants

Generate

Partial Domain

Opmaker1

Increased Domain Methods

Full Domain

OperatorsIntermediate States

Example Sequence

Figure 4.6: Diagrammatic Representation of the Opmaker2 Systemend state sets which opmaker1 required as input to induce operators. Additionallyand optionally Generate will generate operators but not methods. Opmaker1 is stillrequired for the generation of methods and will generate a method for each inputaction sequence and is able to use most of the input; namely the partial domain,initial states and action sequence. In addition opmaker1 uses the example sets outputfrom Generate and any operators from Generate to �nally produce the more completedomain with some of the operators and a method. Each iteration takes a fresh actionsequence so that a full set of operators and methods is built up and the �nal outputis the full domain.

1224.4.2 Outline Design of the Opmaker2 AlgorithmIn the following algorithm variables are shown in uppercase. Assignments and storageof operators is undone on backtracking.program opmaker2In: a set of sorts,a set of valid substate classes for each sort,a set of objects,initial and (optionally) �nal substates of objects,state invariant conditions,example sequence of actions.1. De�nitions:Obj :sort { sort of object ObjObj :name { name of object ObjObj :substate(i) - ground substate of object Obj at step iinit { identi�er for initial state�nal { identi�er for �nal stateObj :substate(init) { initial state of ObjObj :substate(�nal) { �nal state of ObjAct :prevail { set of objects which are unchanged by action ActAct :changing { set of objects which are changed by action ActSort :substate classes{ set of substate classes for Sort2. current:=init3. next:=successor(init)4. for each action Act in training sequence5. for each object Obj in Act :prevail6. Obj :substate(next) := Obj :substate(current)

1237. end for8. for each object Obj in Act :changing9. if Obj doesn't change again in rest of sequence10. and �nal state of Obj is known,11. Obj :substate(next) := object :substate(�nal)12. else13. choose Substate class 2 (Obj :sort):substate classes14. Obj :substate :=bind(Substate class;Obj ;Act :prevail [Act :changing)15. if Obj :substate(current)=Obj :substate(next)16. backtrack to previous choice point17. end if18. end if19. end for20. if the global state SObj Obj :substate(next)21. is inconsistent with some invariant condition22. then backtrack to last choice point23. end if24. Derive implied de�nition of operator and store with name Act :name25. if operator is inconsistent with any previous de�nition then26. backtrack to previous choice point27. end if28. current:=next29. next:=successor(current)30. end for31. produce a method from the sequences of actions and states as in Opmakerfunction bind(Substate class;Obj0;Params)

12432. Let ObjVar0 be the variable placeholder for the object described by Substate class33. Let ObjVars be the the set of other free variables in Substate class34. form Bindings, a set such that35. hObjVar0;Obj0i 2 Bindings and36. for each ObjVar 2 ObjVars, there is a pair hObjVar ;Obj i 2 Bindings37. with choice of Obj 2 Params such that V :sort = Obj :sort38. form ground substate S from Substate class with Bindings39. if no disequality constraints in S are broken40. return S41. else42. backtrack to previous choice point43. end if
4.4.3 A Description and Walk-Through of the AlgorithmThe learning method is speci�ed by the algorithm description at the start of Section4.4.2. In outline, the method is:1. Use a set of heuristics and inference to track the changing states of each objectreferred to within a training example, taking advantage of the static, object-state information and invariants within the domain model. Infer full details ofobject transitions for each dynamic object.2. Use the techniques of the original Opmaker algorithm [47] shown in Figure 3.3to generalise object references and create parameterised operator schema fromthe speci�c object transitions extracted in 1 from the training examples.

125To illustrate the main innovations of the algorithm in Section 4.4.2, we will usean example walk-though taken from the extended tyre domain. In this sequence achanged wheel is secured on the hub and the vehicle is made ready for use. Assumea training sequence is input into opmaker2 and this has components as follows:name: do up; prevail: wrench0, jack0, trim1; changing: hub1, nuts1name: jack down; changing: hub1, jack0name: tighten; prevail: wrench0, hub1, trim1; changing: nuts1name: apply trim; prevail: hub1; changing: trim1, wheel5.Prevail objects have to be present in a particular state during execution of theaction, but remain una�ected (wrench0 is available, jack0 is jacking up the wheel,trim1 is hub1's wheel trim and has to have been removed).The `changing' objects must change state (hub1 becomes `fastened' and nuts1 are`done up').Line 4 takes the �rst action in the training sequence shown above and identi�esthe objects.Line 5 identi�es the prevail (unchanging) objects as wrench0, jack0 and trim1.It iterates through these and Line 6 makes prevail transitions from them.Line 8 identi�es the changing objects (hub1 and nuts1) and takes them in turn- the �rst of these is hub1.Line 9 looks ahead to see if hub1 will change again in a subsequent action and�nds that it does in the second action in the sequence. In the case of nuts1 theyalso change again in the third action when they are tightened. If we had chosenan example where neither changing object changes again after the �rst action thenLines 10 and 11 execute and a transition to the object's �nal state is made.

126We are still considering hub1 and now Line 13 matches a suitable substate classfor the sort of the object (hub) and binds the variable to the object unless, Line 16,it selects the objects next substate to be the current one. (This rules out making aprevail transition for a changing object).The current state of hub1 is [unfastened(hub1), jacked up(hub1)] and there arefour potential substate classes to select, which we name below as S1-4:S1 = [on ground(h),fastened(h)],S2 = [jacked up(h,j),fastened(h)],S3 = [free(h),jacked up(h,j),unfastened(h)],S4 = [unfastened(h),jacked up(h,j)]Since hub1's current state is not necessarily its �nal one but we know it mustchange, there are 3 potential transitions.(hub, h, [unfastened(h), jacked up(h,j)] ! [on ground(h),fastened(h)])(hub, h, [unfastened(h), jacked up(h,j)]! [free(h),jacked up(h,j),unfastened(h)])(hub, h, [unfastened(h), jacked up(h,j)] ! [jacked up(h,j),fastened(h)])Lines 20-23 of the algorithm check these transitions with the invariants, derivepotential end states and form a transition. This repeats for the other changing object,nuts1.Line 24 stores the de�nition of the operator and checks it against any previousde�nition.Example sets are formed by the stage of line 23. Operator descriptions are deliv-ered by use of the whole algorithm.

127Finally, a hierarchical method is generated by combining the 4 action schemagenerated from the action sequence in a similar fashion to the original Opmakersystem [47].4.5 Experiments and ResultsIn this section we discuss our testing process used on three di�erent domains: theExtended Tyre Domain, the Hiking Domain and a 7-block version of the well- knownBlocks World Domain [83]. We give details of the full planning problem devised foreach domain. We set down the aims of our testing and the criteria for success. Nextwe list the results for each domain and discuss the implications of these. Finally wedraw our conclusions on these results.4.5.1 The Extended Tyre Domain (ETD)Details of this domain are given in section 4.1.2 where there is a statement of the fullplanning problem. This domain had several invariants which have been implementedin the search for example intermediate states. Sets of example material were generatedand these were tested using the test criteria detailed in section 4.5.4.4.5.2 The Hiking DomainDetails of this domain are given in section 2.2.1. We identi�ed the full hiking problemfor the purposes of this test as being the completion of one complete leg of the walk,including the movement of the cars and personnel ready for the next day's walk. Againsets of example material were generated to be measured against our test criteria insection 4.5.4.

1284.5.3 The Blocks World DomainWe have made little reference to this frequently used and quoted domain so far. OurOCL version of this domain has, where B, B1, B2 etc represent di�erent blocks andG represents the gripper, the following operators:-1. grip from blocks(B,B1,G,B2) (a block is gripped from a pile of blocks)2. grip from one block(B,B1,G) (a block is gripped from one other block)3. grip from table(B,G) (a block is gripped from the table)4. put on blocks(B,G,B1,B2) (a block is put on a pile of more than one block)5. put on one block(B,G,B1) (a block is put on another)6. put on table(B,G) (a block is put on the table)The task we devised for this domain to use as a motivation for inducing theoperators is de�ned as follows:-Beginning with a pile of 7 ordered blocks (block 1 on the bottom and 7 on thetop) the task is to move the blocks so that the three even numbered blocks form onepile in order (bottom to top) of block 6, block 2 and block 4 whilst the four oddnumbered blocks form the pile ordered (bottom to top) of block 5, block 1, block 7and block 3. The overall problem splits into 7 sections.1. `position �rst even' aims to place block 6 on the table.2. `position �rst odd' aims to place block 5 on the table.3. `position second even' aims to place block 2 on block 6.4. `position second odd' aims to place block 1 on block 5.

1295. `position last even' aims to place block 4 on blocks 6 and 2.6. `position third odd' aims to place block 7 on blocks 5 and 1.7. `position last odd' aims to place block 3 on blocks 5, 1 and 7.Splitting this planning problem into seven methods is only one way to solve it butwill be su�cient to demonstrate that opmaker2 can be applied to other problems.4.5.4 The Testing CriteriaSince induction sequences deliver several actions and a single method, initial se-quences would be tailored to produce a meaningful method, and su�cient initialsequences would be composed to cover all the major sub-tasks that could be requiredby the domain. In each case the agent would begin with domain knowledge but havesketchy knowledge about its potential actions.The Aims of Testing1. To produce example sets automatically from the domains given initial and goalstates (already declared in the task for the domain that is equivalent to thatcontained in the initial sequence), a partial domain and the handcrafted (orGIPO-crafted) action sequence.2. To judge the e�ciency of the system based on the number of example setsobtained and the accuracy of their content.3. To use the example material obtained and opmaker2 to to induce operators anda method for each action sequence.4. Using standard planners, to compare e�ciency of planning using the new oper-ators as opposed to the handcrafted ones.

130Success CriteriaSuccess would be judged based on:-1. Low numbers of example sets produced (ideally a single set) and accuracy oftheir content.2. The ability to use the example material to produce operators and methods.3. The results of comparison between the operators and methods produced andthe hand-crafted versions.4. Planning using the operator and method output of opmaker2 should be com-parable in accuracy and e�ciency to planning with the hand-crafted version.(Since the aim of this work is e�ciency in knowledge engineering, planning withthe new output does not need to be faster.)5. Low numbers of invariants required. (Since these take time to construct thereis a trade o� between time saved constructing examples and time spent con-structing invariants.)4.5.5 Results for the Extended Tyre DomainThis domain was used for the testing of the initial stages of the development ofopmaker2. Gradually during development extra tools were added which took accountof goal states, tagging of unchanging items in transitions, use of invariants and use of`opposite actions'. In the case of this last item we had noticed that sometimes extraexample sets were generated where actions were the opposites of others. When werecti�ed this bug and declared actions to be opposite actions of others the numbersof example sets reduced further. Examples of opposite actions could be jack up andjack down, or apply trim and remove trim.

131Findings� By using the eight invariants shown in Figure 4.5 we obtained unique examplesets for all method sequences in ETD.� In each case the example set for a method matched the hand-coded examplesets we had used with the opmaker1 system.� The example sets delivered a full set of operators and methods using theopmaker2 system.� The operators and methods matched the hand-crafted versions.� Planning using the induced operators and methods from opmaker2 matchedresults for opmaker1, with the full plan using methods and operators taking asimilar time to complete an accurate plan.� With this large domain there were eight invariants. This was more than wererequired for the other domains we tested but the size of this domain was sig-ni�cantly larger too.Apart from the large number of invariants required we judged the tests using thisdomain to be a success.4.5.6 Results for the Hiking DomainThis domain di�ered from ETD by containing static objects. These were in the formof locations modelled as static objects in OCL. During testing we found that theycould be identi�ed as prevail objects in each action in the sequence, allowing the sensethat a tent could be `up' at Keswick and `down' at Keswick to be expressed. Placespossible were the hiking legs Keswick, Derwent, Helvelyn etc. and the alteration

132meant that it was acceptable to have a transition from state 1 to state 1 so long asthe variable bindings changed.Findings� Low numbers (1 - 4) of example sets were produced for 4 of the potentialmethods. The �fth was complicated by the fact that actions were repeatedfrequently and gave large numbers of examples. This did not a�ect planningsince operators could be used in its place.� A set of 4 methods and all operators could be reproduced.� Operators and methods matched the hand-crafted ones.� Planning using induced methods and operators produced similar results to useof the hand-crafted alternatives.� Only one invariant was required.One di�culty was the �nal method which gave initially 168 example sets. Howeverthe remainder of the domain gave good results although there were only two sets ofunique examples. One advantage was the low number of invariants required - for thisdomain a single invariant was needed.4.5.7 Results from the Blocks World DomainSection 4.5.3 gives details of the operators to be replicated and the de�ned task. Asbefore test �les were built and in each case, for this domain, a single solution set wasobtained. An example, where the gripper is represented by the name tom, is shownbelow.

133%% grip_from_blocks(block7,block6,@block5,tom)input(1,block7,sclass(Block7,block,[gripped(Block7,Tom)])).input(1,block6,sclass(Block6,block,[on_block(Block6,Block5),clear(Block6),ne(Block6,Block5)])).input(1,block5,null).input(1,tom,sclass(Tom,gripper,[busy(Tom)])).%% put_on_table(block7,tom)input(2,block7,sclass(Block7,block,[on_table(Block7),clear(Block7)])).input(2,tom,sclass(Tom,gripper,[free(Tom)])).%% grip_from_blocks(block6,block5,@block4,tom)input(3,block6,sclass(Block6,block,[gripped(Block6,Tom)])).input(3,block5,sclass(Block5,block,[on_block(Block5,Block4),clear(Block5),ne(Block5,Block4)])).input(3,block4,null).input(3,tom,sclass(Tom,gripper,[busy(Tom)])).%% put_on_table(block6,tom)input(4,block6,sclass(Block6,block,[on_table(Block6),clear(Block6)])).input(4,tom,sclass(Tom,gripper,[free(Tom)])).Solutions = 1 ?With this particular domain we noted that an `ne' clause (not equal) appeared inthe example material as can be seen in input 1 and input 3 above.The `ne' clause is part of the structure of the OCL language and is used to showthat the arguments are not the same, so that, as above,ne(Block6,Block5)means that Block6 and Block5 are not equal (ne), i.e. they are di�erent blocks.This device is only used in domains where there are two objects of one sort listedin a predicate as in

134on_block(Block6,Block5)making the available substates for the object block to be[gripped(B,G)],[on_block(B,B1),clear(B),ne(B,B1)],[on_block(B,B1),ne(B,B1)],[on_table(B),clear(B)],[on_table(B)].In English these say, `A block may be gripped, or it may be on a block with no blockon top of it (i.e. clear), or it may be on a block with another on it, or it may be onthe table with no other block on it, or it may be on the table with another block onit'.Findings� In every case a unique set of examples was given.� Operators and methods were generated.� Operators grip from table and put on table were accurate. Operators involv-ing more than one block in their descriptions were not accurate. The variablenames for the blocks were not necessarily the ones intended.� Due to a lack of accurate induced operators planning was not attempted.� No invariants were required.4.5.8 Our Conclusions From These ResultsThis little `ne' clause was a di�culty when it came to using these example inputs toinduce the operators. Those operators which contained the `ne' clause were incorrect

135and so a method could not be formed. For now we have consigned the removal of thisbug to `Future Work' and the reader is referred to Chapter 6 where ideas for this arementioned.Despite this bug we have tried three di�erent domains and been able to induceexample sets for input into the operator induction process from them all.From the results obtained so far we can conclude that an agent, given a `workingstock' of potential action sequences, and having domain knowledge and a `belief'about the states of objects it `knows' about will be able to generate its own examplesand use them to supply itself with parameterised actions to suit every possible objectcombination. Since methods can be formed from the action sequences the agentshould be able to plan e�ciently and autonomously and does so for most of ourresults, so long as the number of operators is above about 12. For domains withsmaller numbers of operators there seems to be no advantage using methods.4.5.9 Training Sets for OpmakerBoth versions of opmaker require training sets. For both versions it is possible toinduce a set of operators that replicate all the hand-crafted ones at one go. To dothis requires:� for opmaker1 - a full sequence containing at least one copy of all the originaloperator names (or new equivalents) and parameters, plus user responses toGIPO's e�orts to choose correct �nal states� for opmaker2 - a full sequence as above.So in this way a full set of operators can be induced with a single set of trainingexamples. However, since for each action sequence a method is produced, it is better

136to use several small sequences which lead to a desirable set of methods. Training se-quences are very quick to construct, especially using GIPO. It is possible to constructa series of these for the solution to the full problem in less time than it would taketo hand-craft two or three operators - thus the system is e�ective at relieving the`knowledge acquisition bottleneck'.

Chapter 5RELATED WORKIn this chapter work closely related to ours is reviewed and analysed. The chapterbegins with an historical overview of machine learning in the last thirty to fortyyears. Subsequent sections look more closely at machine learning of rules in Section5.2 and explanation based learning in Section 5.3. A brief review of theory revisionin Section 5.6 is succeeded by the longer Section 5.7 on operator induction. Thechapter concludes with a survey of some very recent, relevant work and a summary ofentries in the recent ICAPS competitions, Section 5.8. Whilst reviewing the relatedliterature, an analysis of where and why opmaker �ts into the picture is discussed.5.1 Machine Learning - HistoricSome of today's applications of Machine learning include predictive text, word pro-cessing from speech, search engines, medical applications including diagnosis, detec-tion of credit card fraud, stock market analysis, forensic applications, handwritingrecognition, game playing and robotics. There are good reasons why the ability ofmachines to learn is desirable. In the context of arti�cial intelligence, it could beargued that the ability to learn is a prerequisite for intelligence whether it be hu-man, animal or mechanical. The arguments for human learning are clear enough;humans use learning to progress through stages of life with increasing abilities suchas acquiring new knowledge, learning new skills and improvement through practice.If machines learn like this, then, when the machine is switched o�, a good percentageof that learning should be retained, but in many cases that is not quite the case. In

138many systems that learn there is a training period by which the system becomes moreexpert, followed by a period of use where the results are signi�cantly better than inthe early stages of training. On the next use the same training is required and thesystem goes through the same learning process.Machine learning has evolved over the last three or four decades. In the 1970's re-search into machine learning became more active and researchers were able to demon-strate learning in a number of areas. Some of these achievements are given in theparagraphs below.P. H. WinstonOne such researcher, Winston, demonstrated a supervised learning task where thechallenge to the learner was to learn descriptions of structures such as an arch [84].The learner was given a positive example in the form of two equal-sized upright blocks(not touching), supporting a horizontal cross-member. A sequence of positive andnegative examples was given to the learner. One negative example was having the twouprights touching, another had the cross-member below the uprights, whilst a positiveexample was having a di�erent shaped cross-member with only one long at side.After `observing' the �rst example the learner formed a hypothesis about a correctdescription of an arch. With subsequent examples this hypothesis was re�ned. Foreach example a set of di�erences was identi�ed between the example and the currenthypothesis, and the di�erences were used to either generalise the hypothesis, if theexample was positive, or to specialise the hypothesis, if the example were negative.Winston concluded from this work that the best training sequence was a series of`near misses' where only one concept was changed at once.

139META-DENDRALMeta-DENDRAL [8] was an expert system that helped chemists determine how muchthe mass spectrometric fragmentation depended upon substructural features. To dothis it discovered fragmentation rules for given classes of molecules. Meta-DENDRALderived these rules by using training instances consisting of sets of molecules withknown 3-D structures and known mass spectra. The system then used a CandidateElimination Algorithm. It �rst generated a set of highly speci�c rules which accountfor a single fragmentation in a particular molecule. Then it used the training examplesto generalize those rules.AQ11Machine learning was applied to diagnosis of soybean disease in 1978 [52]. Agricul-turalists were questioned about disease symptoms of soybean plants. The projectwas to discover a set of classi�cation rules for the diagnosis of the diseases. Classi-�cation rules were learned from training instances and consisted of sample patternsand their correct classi�cation derived from the experts. The researcher, Michalski,represented discrimination rules as a modi�ed version of propositional logic, whichincludes conjunction, disjunction, and set-membership operators.ID3Originally devised by J. R. Quinlan in 1983, the ID3 algorithm spawned manydecision-tree methods for machine learning. The basic decision tree process looksat the various attributes of the positive and negative examples. For example if thedecision was to do with people then attributes such as height, with instances tallor short, hair-colour, with instances red, blonde and dark, and eye-colour, with in-stances blue or brown, might be considered. An attribute is chosen at random toform the root of the tree and a decision tree is built recursively on the root. Di�er-

140ent trees could be produced for the same set of examples by making di�erent initialand subsequent choices for the order in which the attributes were considered, and itwas found that some produced deep trees whilst others produced shallow but morebranching ones, and these shallow trees were said to be more e�cient since decisionswere reached more quickly because they were at a higher level. The contributionmade by ID3 was the discovery that there were ways to compute a better initialchoice of attribute for the root of the tree. The proportion of positive to negativeexamples for each attribute was to be calculated, the attribute with the highest ratiowas selected, and the tree was built recursively reapplying the same principles. Therewas also a system called windowing to be used if there were very large numbers ofexamples of training data. This selected a subset of training data to build the initialdecision tree. Remaining examples were then classi�ed using the tree. If the treegave correct classi�cations for these examples then the initial tree was accepted asthe classi�cation tree for all examples. If examples were found that could not beclassi�ed by the initial tree then a subset of these were used along with the originalsubset to compute a new tree and the process repeated until a tree was found to coverall the examples. Quinlan applied this theory to the problem of learning end-of-gamechess rules [61].MACROPSAnother form of learning, MACROPS, is demonstrated by the work of Fikes, Hartand Nilsson [19]. We have previously seen that learning can occur when a system iso�ered many examples of training data. In future sections of this chapter we shallsee that learning is possible from few examples, but Fikes et al were, in a sense,ahead of their time, being able to demonstrate that learning could occur using justa single example in the well-known blocks world. Operators [De�nition 1.5] in theworld de�ne a single action and four such operators are pick-up-from-table, pick-up-from-block, put-down-on-table and put-down-on-block.

141Initial state: block B on block C, block A on tableoperator blockspick-up-from-block B from Cput-down-on-table Bpick-up-from-table Cput-down-on-block C on AGoal state: block C on block A, block B on tableTable 5.1: Four Operators from Blocks World Showing the Completion of a TaskFor example, if given three blocks A, B and C and a starting condition of block Bon top of block C with block A resting on the table, and a goal condition of block Con top of block A, with B resting on the table, a single example for learning achievesthe goal state and consists of the actions shown in table 5.1.The idea was that these actions could be clumped together to form one singleprocedure as a kind of macro-operator which could be used whenever that particularmanoeuvre was required. So the process was to build a plan then learn it. Theproblem was that learning that particular plan would not help to solve a similarsituation with blocks D, E and F. The learned details would be speci�c to the namedblocks in an identical con�guration to the initial state. The system in MACROPSwas to generalise a successful macro by replacing the constants with suitable variablesand de�ning the preconditions and postconditions of the operation. The de�nition ofthe preconditions would say when the macro could be applied, whilst the comparisonof the macro's postconditions to any required goal state would determine whether themacro was applicable in the given situation. Thus the system learned from a singleexample. Other examples in incremental learning can be seen in the work of Wang[80] and Gil [24].

1425.2 Machine Learning and Induction of RulesThe machine learning required for the induction of operators is more speci�c than thegeneralised topic of machine learning. Two theses written in 1996 by Tim Grant [26],and Xuemei Wang [80], give very good overviews of these speci�c areas of machinelearning.In [26], pages 50-52, Grant de�nes machine learning and induction generally, interms of the available literature and his own Planning Operator Induction (POI)system. He opts for Carbonell's de�nition of 1989 [9]:\. . . learning can be de�ned operationally to mean the ability to perform newtasks that could not be performed before or [to] perform old tasks better (faster, moreaccurately, etc) as a result of changes produced by the learning process."Grant argues that this de�nition �ts well with his own induction system and sinceopmaker is able to induce methods, and we have shown that in some cases the use ofmethods produced solutions to planning problems that could not be solved just usingoperators, we have to agree that this is also a good basic de�nition for the learningin our opmaker system.In Chapter 7 of Wang's thesis [80] she gives an excellent review of rule learningin structural domains. She categorises four types of learning systems in structuraldomains as1. The type of learned knowledge2. The source of learning3. The learning algorithm4. Initial knowledge

143and describes her own system, OBSERVER, under these headings. Using this classi-�cation we can say, of opmaker :1. Opmaker is a concept learning system, and the concepts learned are operatorsand methods for hierarchical domains.2. Opmaker learns from a partial domain which contains static knowledge aboutobjects in the sorts, predicates, substates and invariants, but no dynamic knowl-edge in terms of operators. Also required is a named sequence of operatorstogether with the objects they will manipulate (equivalent to a plan-trace insome other systems). Additionally opmaker1 requires user given positive exam-ples which determine the intermediate and goal states for the new operators.Opmaker2 e�ectively deduces its own positive examples from the domain.3. The learning algorithm is a deductive and inductive process for opmaker2.Opmaker1 was purely inductive.4. Initial knowledge for learning assumes correct partial domain knowledge includ-ing substates, tasks and invariants but no operators or methods.A good overview of machine learning, and induction in particular, can be found inShavlik and Dietterich, 1990 [68]. More recently some of the text books on machinelearning cover data mining ideas and are not particularly relevant to the subjectmatter in this thesis, but the reader is also referred to two text books which help toplace machine learning in the context of other issues in arti�cial intelligence [41, 75].In their survey [89], Zimmerman and Kambhampati present an analysis of researchwork done in the last thirty years on machine learning, as it relates to planning. Theyaim to develop a broad perspective of the work done in order to build a projection of

144potentially pro�table areas for further research. As such this is a useful starting pointfor new researchers in the �eld. They identify three phases where learning techniquesmight be applied: (i) learning and improving a given domain theory (ii) learningduring the process of �nding a valid plan and (iii) learning during the execution of aplan. For opmaker2, which is essentially a mixed initiative approach, the goal is tolearn or improve domain theory (phase (i)).Langley and Simon [36] have classi�ed machine learning into �ve basic paradigms.One of these is rule induction of certain condition-action rules. Arguably operatorinduction is a good example of rule induction. They submit that theory revisioncombines the emphasis, on background knowledge, of analytical methods with theemphasis, on heuristic search, of rule induction. When considering operator inductionitself there is little literature available and what there is will be discussed in a latersection. The reason for this appears to be the fact that in many knowledge basesfor planning, the operators together with the conditions under which they may beapplied are the knowledge base and, whilst application rules may be induced, theoperators must exist �rst. The case for object centred planning has already beenpresented in section 2.1.1.In [22] Garland, Ryall and Rich show, in their Collagen system, that learning taskmodels can be achieved by training examples and support from a domain expert.Their `task models' are similar to OCLh methods in the following ways:� they show a complete recipe to achieve some task� they show orderings of the steps to achieve the task� they are developing a graphical user interface to aid construction� the orderings of the steps contain primitive and non-primitive stages

145� they list constraints that apply to the various steps� user/expert guidance is required for the detail.The notable di�erences between the Collagen and GIPO are in what is to beachieved. Collagen develops a task model by �rst de�ning a list of actions, thoughthis is not essential, and the list may change over time. A major part of the taskmodel development is de�ning the hierarchy of the actions. Whilst they agree thatin all non-trivial domains identifying the correct set of abstract non-primitive actionsis challenging, they do not actually have to go so far as as specifying the operators'details. This is where the learning occurs, using opmaker in GIPO. The need in taskmodelling is only to determine appropriate actions and having done this the expertcan train the system by adding to the model de�nition any variations which wouldalso produce di�erent valid models. By contrast GIPO makes no assumption thatactions exist and the user de�nes, interactively, a sequence of desirable actions to beconstructed into both primitive and non-primitive, hierarchical operators.Collagen assumes operators exist and learns by using positive evidence and thelack of negative evidence in building its task models. Opmaker learns by generalisingoperators from previously induced examples.5.2.1 Learning from ExamplesThe usual mechanism for machine learning is the use of positive and negative exam-ples. Whilst it was thought to be advantageous to use both kinds of example, manysystems use only one kind of example. In particular Vere's [78] Maximal UnifyingGeneralisation (1987), and Wang's [80] OBSERVER system learn from just positiveexamples, whilst Grant's [26] POI system learns from positive examples and uses adefault rule to provide negative information which boosts the positive training in-stances. Opmaker2 is similar. It uses positive examples in the initial sequence and

146it deduces further examples from the domain substates, tasks and invariants, whichserve to restrict the positive examples of the intermediate and �nal-states for theoperators.5.2.2 HeuristicsPorter and Kibler [59] use Experimental Goal Regression (EGR). With prompts froma user the learning system uses these to form heuristic rules to guide subsequent prob-lems. As in our opmaker2 system, the learner can generate examples, but, whereasopmaker2 uses domain knowledge and invariants, EGR makes small changes to atraining instance supplied by a teacher. Once the learner is able to solve the prob-lems it will then classify the examples as positive and negative.5.3 Explanation Based Learning (EBL)In his thesis, Grant [26] di�erentiates between systems that learn� Control knowledge e.g. rules� Domain knowledge e.g. operators� Plans and plan segments e.g. schemas and subgoal sequences. EBL approaches have been used in the above, in particular in learning controlknowledge and plans. Notable amongst these are:-Prodigy [10] Carbonell and Gil's system learns from failures, successes and inter-actions to derive rules for these.GERRY [90] learns from constraints in scheduling problems to produce variableordering heuristics.

147Theo-Agent [3] learns rules from planning problems and operators.Stepping Stone [64] which uses EBL and induction to learn subgoal sequencesfrom goals and operators.BAGGER [67] which learns schemas or generic plans from operators and a planningproblem.ARMS 1988 [66] which learns by observing a single task performed by an expertand constructing the explanation based on domain theory and the solution. Thegeneralisation of this produces new operator schema. In the sense that learningis from a single example, opmaker resembles ARMS.Nejati, Langley and Konik [56] have a system similar to ARMS [1988] whichlearns from observing sequences of operators which are experts problem solu-tions. However in their system hierarchical task networks are learned.Planning in real-world situations can require necessarily complex planning opera-tors which can be considered as control loops in a much larger system. In their work,Levine and DeJong [39] describe how EBL is applied to the aquisition of operator de-scriptions in such a planning domain. An `operator design module' is used to collectinformation from background knowledge, and the authors illustrate the method witha complex ight simulator domain, where the focus is the aircraft `takeo�' operator.5.3.1 Other TechniquesIn addition to EBL systems we mention here some other techniques which are rel-evant to our work. Most learn operators whilst two notable ones learn invariants.Learning invariants could become an idea for future work on our system, since invari-ants have proved to be useful for some domains in reducing the output of erroneous

148operators. Puget's LIFE system, [60], outputs invariants by examining states. Whenour invariants were constructed (see Figure 4.5), the states and substate sets had tobe examined to discover which eventualities were covered by the substates. Those notcovered had to be handcrafted accordingly. In their work on invariants, the authorsof [54] show that operators need not necessarily be the source from which invariantsare derived. They argue that where knowledge does not include the operators theycan be `discovered' by analysing reachable states, rather in the way that generatetracks available substates in opmaker2. However their system is di�erent in that itcomputes factors measuring the potential of states to make a good invariant.The other systems under this heading learn operators. Two of these systems doso by using the before and after states in much the same way as opmaker1, wherethe initial states were given input, whilst the goal states were prescribed by thedomain expert in the examples given to the system. Of these two systems, Di�y-S[34] used constructive induction, whilst THOTH [78] used generalisation, to achievetheir results.One further system, Operator Learner [13], learns from a set of partial operatorsthat are edited by experts. Using induction the system supplies as much of the missingdata as possible, e.g. preconditions, and evaluates and monitors user's planningchoices. By contrast, opmaker begins with no operators but, like Operator Learner,it uses induction.5.4 A View on Domain TheoriesHu�man, Pearson and Laird [32] present a very useful analysis of pre 1992 Explanation-Based Learning systems. Their analysis shows that one of the major problems withEBL systems is the requirement of a complete and correct domain theory for learningto occur. They argue that the construction of any nontrivial domain to this degree

149of completeness and correctness is a near impossible task due to the frame problem.Even in the closed-world system, by which everything not speci�cally stated as trueis assumed to be false, construction of domains is notoriously di�cult.They de�ne two complementary tasks performed by EBL systems as analysis andgeneration tasks.Analysis tasks involve explaining or understanding some observed example asin Wang \Learning by observation and practice" [79]. In analysis tasks, the systemobserves a sequence of states ending at a goal and reasons about the observation toinfer that a consistent sequence of operations like the one observed will bring aboutthat goal. It will then use such a sequence of states as part of its planning if the samegoal is required.Generation tasks involve constructing (as opposed to observing) a plan. Herethe system is given initial and goal states. It may also have to be given any additionaldetails necessary in order to perform planning. The system then plans a sequence ofoperations leading from initial to goal state.Both require knowledge of the performable operations in the domain, their appli-cability and their e�ects. Thus the analysis task can be seen as a more constrainedversion of the generation task and the concentration of their argument is on thegeneration tasks.The domain theory is seen as simply the system's knowledge of operators, theirpreconditions and their e�ects. Each time the system makes an inference it can beviewed as learning an operator. Any additional knowledge within the domain is usedto guide the search through the states of the problem space. This additional material,they argue, is not regarded as part of the domain but as part of the search control.The recent thrust of the research here at Hudders�eld has been directed towards

150the construction of better domain theories by the development of a tools packageaimed at removing most of the di�culty and uncertainty of domain construction. Bycomparison, in this system, not the operators but the objects are the focus of thesystem's knowledge.Using GIPO the resulting domains are nearer to the targets of completeness andaccuracy, described in OCL, an object centred language which can be translated toother description languages. OCL concentrates on describing the `world' from thepoint of view of the objects in it and the states in which these objects can exist,rather than focusing on the operators as in traditional KB systems.An ExampleAn operator causes an action to happen - e.g. \Put the red button in the blue box".In a knowledge base that `knows' about operators there will be the knowledge thatone operator puts the button in the box, plus a range of preconditions such as thebutton should be red, should be being held, should �t in the box which should be blueetc. There will also be a range of e�ects held in the knowledge base such as the handbecomes empty or the box becomes full. By contrast in a system that `knows' aboutobjects, the system knows that the button can be in di�erent states, e.g. it can bered, it can be in the blue box, it can be held, it can be on the table, it can be attachedto a coat - the number of di�erent states being, at least in part, determined by otherobjects in the system like box, hand, table, coat and even non-concrete objects likecolour. The operators are induced when an object changes its state - in this case thebutton changes from the state of being held to the state of being in the box, but thestate of being red remains unchanged for the button whilst the box state remainsblue. The box changes from the state of being empty to the state of being full.Table 5.2 shows a comparison between the operator centred and the object centred

151approach.This `object �rst' approach allows for the construction of more accurate and com-plete domain theories in a closed world situation, as it is often easier to envisage theconcrete states of objects than the potential results of some action.

152

search space is involved to solve the problem
Without good search control more of the

most desirable.
depending on whether speed or efficiency are
Different algorithms can be used to search
Search control not in the knowledge base.

efficiency not correctness.
part of the knowledge base since it affects
Search control knowledge not regarded as

starting point.
Analysis of the refinement task is the Analysis of the refinement task

these to refine the domain theory.
Use induction to produce operators. Use

refinement.
a universal weak method for domain theory
Huffman, Pearson and Lairds’ goal: to develop

Without good search control more of the

Constraints

Knowledge
additional

to the knowledge
base

Required

Goals

Domains

Refinement

Knowledge

Base

base.
search so are required in the knowledge
Can affect the accuracy of the results of

base.
search so are required in the knowledge
Can affect the accuracy of the results of

search space is involved to solve the problem

GIPO.

domain knowledge acquisitionarity or difference
Aspects of simil-

pre-1992 Explanation Based Learning systems
Huffman, Pearson and Lairds’ view model of

Centred around the operators, their

Easy to build using tools packages within
completely.
Almost impossible to build accurately and

Difficult to learn from an incomplete domain. Yet to be researched - should be easier.Learning

may be more difficult to detect.
is virtually complete - however any ’bugs’
Should be easier to refine because the theory

knowledge.
Difficult to refine without complete

Huddersfield University’s present system of

Allows for a more complete knowledge base

induce others from the knowledge base.

Always incomplete due to the frame problem

existance. Contains some operators and can
Centred around the objects and their states of

preconditions and effects.

Table 5.2: A Comparison of the Operator Centred and the Object Centred Approach

153

The effect of some operator is to change the substate of the
object primarily concerned in the operator. However other
objects may be less directly concerned and their substates
may change too as a result of the operator. Their
potential substates should be recorded within the domain.

Missing operators can be induced from the domain
theory given some example input from the user

The substates allowable should always be in the goal state
of the operator so effects are predictable from a subset of
the allowable substates

Preconditions should always be accurate under the terms of

.

 test is used (e.g. "fruit" instead of "banana").

is applicable.

The planner is unaware of some effect of an operator.

produce some effect which it does not.

An entire operator is absent from the domain theory.

how the domain is defined. If a substate has been
described to be over specific then the domain has not been
correctly modelled.

.

Types of domain theory imperfections What our system does

Overgeneral Preconditions.

 An operator precondition is missing, or an overgeneral
Objects are described as existing in certain states or have
been left in those states by the action of some previous
operator. Lists of allowable ’substates’ for all objects
are defined in the domain building process and these form
the preconditions for the operators.

Overspecific Preconditions

An extra, unnecessary precondition is present, overly
restricting the set of situations in which the operator

Incomplete Postconditions

Extraneous Postconditions

The planner incorrectly believes that an operator will

Missing operators

.

.

Table 5.3: Domain Theory Imperfections and the Object Centred Approach

154Again an example will help to illustrate the point. Possible e�ects of the action ofclosing the door could be causing a temporary draught, it bangs, it breaks, it closes,it hits someone coming through it etc. By considering the states of the door it iseasier to narrow the choices - the door can be open or closed.5.5 An Analysis of the Types of Domain Theory ImperfectionsHu�man, Pearson and Laird [32] present an analysis of past research in the areaof correcting and extending domain theories by presenting a characterisation of theproblem based on the types of knowledge de�ciencies present in theories and the typesof performance errors that can result.Table 5.3 contains, on the left, their analysis, and on the right how our systemreacts to these problems.This work had implications for our later work when we concentrated on the re�ne-ment of domain theory extended with operators induced by the opmaker algorithm.5.6 Theory RevisionA related work, a PhD thesis by Douglas Pearson[57], details one system of correctingoperator preconditions and changing the domain knowledge. This uses techniquessimilar to the work of Wang [79], Gil [24] and DesJardins [13]. For a review of thistopic including EBL in the planning area the reader is also referred to Minton andZweben [53].Research has been published from The University of Hudders�eld on theory re-vision using a di�erent context. In this work, \The Automated Re�nement of a Re-quirements Domain Theory", a large air-tra�c domain was studied and interpretedinto the modelling language. When theory revision was applied to the domain model

155several `bugs' were identi�ed and eliminated in a potentially safety-critical domain[48] [49]. There are di�erences between this work and ours in that theory revisionwas mainly numeric whilst our work adds or revises operators - state transitions ofobjects.5.7 Induction of OperatorsWe can track the progress of opmaker through our publications at various stages.In [46] we see opmaker beginning to induce operators for both at and hierarchicaldomains. At this stage some of the operators for hierarchical domains would be wrongbecause of the inheritance problem. A later publication [47] details how opmaker1was integrated into GIPO. We can see that ideas for merging operator descriptionswere emerging in [62] these ideas allow opmaker to handle repetitions of operators.In the next published work [44], we see the introduction of the hybrid hierarchicalplanner HyHTN, and its integration into GIPO, whilst in [63] the idea that inductionsequences need to be carefully chosen by the domain engineer to model separate tasks,begins to emerge. This work also introduced HBC and suggested how hierarchies ofmethods could be built. The work in [50] details the introduction of opmaker2 andincludes work detailed in Chapter 4.For a very detailed and useful survey on the whole topic of operator induction thereader is referred to Xuemei Wang's thesis [80].Induction of operators is not the only aspect of knowledge engineering when itis applied to planning. Various other types of knowledge can be acquired, such asknowledge of the current state of a domain, knowledge of suitable goal states for thedomain and knowledge about the domain model. Operator induction belongs to thelatter category.

156Until recent years knowledge acquisition has been done manually, but startingwith GIPO there has been a growth in systems that acquire the knowledge in astructured shift towards automation. Certainly, it could be argued that the ICAPSKnowledge Engineering Competition has added fuel to this. (The reader will seemore on the ICAPS competition in Section 5.8.) Opmaker , being a mixed initiativesystem, has bene�ted from and contributed to this shift in thinking.Whilst operator induction is the subject of this thesis, other methods have beenapplied to learning operators, as we showed earlier in the section on EBL, Section5.3. Genetic algorithms have also been tried.We turn our attention again to the closely related research by Tim Grant [26]. Inhis PhD thesis Grant takes as his motivating theme the simple question, \Where doplanning operators come from?".Under this theme, [26] page 14, he raises the related questions� How does a developer formulate a set of planning operators for a new domain?Is this di�cult? Is it a transferable skill?� How can the developers (and the users) be sure that the set of planning opera-tors is complete, correct and precise?� What are the consequences of having incomplete, incorrect, or imprecise domainknowledge? In particular, what happens if the domain knowledge is distributedover multiple agents?These questions are very relevant to our work and neatly summarise our objectives.The stance taken by Hu�man, Pearson and Laird [32] is that most domains employan explanation-based learning system that requires a domain knowledge based around

157the operators. The operators have to be part of the domain and then plans can beformed and learning can take place. This uses a system of generating `explanations'for planning attempts then using these to update the knowledge base, but it assumesthe presence of the operators in the knowledge base.By contrast, by asking his question, Tim Grant [26] takes the stance that theoperators need not necessarily exist. He cites the example of expert systems wherethere has been progress in automating the formulation of production rules by induc-tion from examples, and argues that it should also be possible to induce planningoperators from examples. This would save the domain development specialist longhours of tedious work.Grant has developed a system based on Chen's [11] entity relationship modellingnotation, which describes the states of the objects around which it is centred anduses the constraints that arise out of this form of modelling to induce operators. The`examples' used to generate the operators are the observed states.Our work compares and contrasts with Grant's in the following ways.� our work is done in the context of an existing knowledge engineering toolsenvironment and bene�ts from and contributes to this.� constraints were not present in the sample material given to opmaker1. Inopmaker2 constraints are present in the form of invariants only if they arerequired.� examples come from the user using an interactive tool (GIPO) for developmentin the form of clicking, typing a name and dragging and dropping objects intothe newly named operator shell. These `shells' are built up into an examplesequence of desirable operators.

158� the development language, OCL, di�ers from the language Grant developed butremains object based. Di�erences are minor and are documented in [27].� operators will be used to re�ne the domain theory e.g. by the addition ofconstraints. Here the constraints will come last whereas Grant begins withthem to build his operators.� Grant's work also included inheritance; see his thesis [26] page 105 and section4.10, pages 155-8.� using OCL allows for the extension of our system to cover hierarchical domains.Further work by Tim Grant can be seen later in Section 5.9.1.Another very useful research was done by Xuemei Wang [79, 80] whose systembuilds operators incrementally from experimentation and practice. Unlike our systemwhich accepts examples from a non-expert domain builder, in Wang's system thesample material comes from observation of an expert. Whilst training takes place thedomain knowledge can be incorrect or incomplete in the ways described by Hu�man,Pearson and Laird [32] and therefore planning must be able to take place on thisincomplete domain so a system of integrating planner repair, learning and executionis required.Wang's system [79, 82, 81, 80] OBSERVER, takes, as input, the domain descrip-tion language and expert solution traces and some initial operators are generated andlearned. These can be re�ned by further observation until the re�nement is su�cientto allow planning to take place. OBSERVER is then given practice problems similarto our OCL `Tasks', and initial plans can be formed using the learned operators.Plans formed are run and result in either successful executions or unsuccessful exe-cutions. These can be considered to be the necessary positive and negative examples

159required in theory re�nement. Unsuccessful executions can be used to repair plansand also used along with successful executions to re�ne operators. Re�ned operatorsare used to build a more complete system of operators and these operators are theeventual output of the system.There are some obvious similarities to our system, the main di�erence being thatusing opmaker integrated with GIPO accepts example material from non-experts anduses the restraints of a question and response system to allow non-domain experts tocreate domains and make and use operators as part of a complete package of domaincreation tools. Whilst Wang was limited to at domains, our recent improvement ofthe algorithm to generate operators for hierarchical domains makes opmaker a usefuland credible tool for building domains of any degree of complexity.5.8 ICAPS 2005 and 2007 Competitions on Knowledge Engineering forPlanning and SchedulingIn 2005 the competition was introduced to the International Conference on Auto-mated Planning and Scheduling (ICAPS). This competition had the following aims:� Promote the knowledge-based and domain modeling aspects of planning andscheduling� Accelerate knowledge engineering research in AI planning and scheduling� Encourage the development and sharing of prototype tools or software platformsthat promise more rapid, accessible, and e�ective ways to construct reliable ande�cient planning and scheduling systems.It is interesting to see and compare the work of contemporaries in this �eld. Therewere seven entries in each of the 2005 and 2007 competitions, including GIPO itself

160in 2005, and in this section we can explore the 2005 entries and one from 2007 insome detail.1. The argument used by Borrajo et al [6] to support their work is that whilstdomain independent planners can be given increased e�ciency by the use ofheuristics (which may fail in some domains), domain dependent planners requireadditional control knowledge to be added to the domain to make planning moree�cient. This control knowledge can be acquired automatically using a tool thatis able to learn search control knowledge and formulate it into control rules. Theauthors appear to claim that the result of learning this control knowledge buildsup macro-operators by using both an EBL system and an inductive-deductiveapproach. The system uses an explanation trace to �nd search routes leading togood solutions and these are then formulated into control rules. This is similarto Minton and Zweben [53] although the latter's approach was purely EBL.The deductive side of this approach depends on retaining learned rules fromall decisions that were e�ectively the second and third alternatives tried oneach occasion and therefore more speci�c than the �rst. Each retained rule wasthen ascribed a utility factor calculated from the time saved by using the rule,the probability that the rule would match, and the matching time cost. Anacceptable utility factor could be prede�ned by the user and rules with a lowerutility factor could then be discarded.2. Like the GIPO system the Tailor tool featured in the work by Jim Blythe andVarun Ratnaker [4], allows for interaction with users who are not KE experts.Tailor allows for end users to modify procedure de�nitions by o�ering a setof plausible modi�cations and demonstrates these in use so that the user may

161backtrack if required. The system will then analyse the e�ect of these modi�ca-tions and will o�er warnings of potential problems and advice for �xing them.However Tailor is a fundamentally di�erent system from GIPO in that it relieson modi�cation of an existing domain rather than having the potential to builda new one. The system was tested by novices using sets of instructions foundon the web. However these instructions had to be translated by experts intothe correct format for Tailor to accept. Thus we conclude that a novice cannotuse Tailor to build a new domain from scratch as is the case with GIPO.3. NASA contributed to the competition with Patrick Daley et al's work on a de-bugging system, PlanWorks, for constraint based planning systems [12]. Besidesbeing developed for debugging, PlanWorks also has potential as a knowledgecapture system and can also be used as an end-user operations tool. PlanWorkswas developed for the constraint based planning system EUROPA2 (ExtensibleUniversal Remote Operations Planning Architecture), developed at NASA. Asthe planner makes decisions each activity is logged and the unique key is passeddown to PlanWorks which uses a MySQL database system back-end to log andkeep track of relationships and produce ER-type diagrams enabling users to seethe relationships between entities in the plan. The user can use this and otherfacilities for debugging during planning. These ideas are similar to the use ofthe stepper in GIPO where the user can manually step through a set task totest the validity of the domain under construction. There are other similaritiesto GIPO since PlanWorks allows for many di�erent views of the domain underconsideration, but the essential di�erence is that PlanWorks is not primarily adomain construction tool but rather a tool for debugging a domain. Howeverthe NASA team claim that the present system is a precursor to a visual modelbuilding tool planned for the near future.

1624. Stefan Edelkamp and Tilman Mehler [16] have adopted a very similar argu-ment for their development of their planning ModPlan workbench to the oneused to develop GIPO. Di�erences lie in the approach as the authors claimthat developing a domain model is an iterative process and have designed theiracquisition tool around this fact, whereas using GIPO to develop a domain is alargely serial process so long as the modeller is reasonably competent. Howeverthe theory revision of the generated operators is still iterative. The other maindi�erence between the two systems is the initial approach since only GIPO isobject oriented. A further di�erence lies in the fact that the �nal `product 0 hasdi�erent emphasis. The workbench system is aimed at producing plans by learn-ing domains along the way whereas GIPO produces a largely complete domain`oven-ready' for planning. ModPlan is an integrated environment for domainmodelling, static analysis, plan �nding and validation and plan visualisationproducing domains in a temporal version of PDDL.5. Vaquero et al's itSIMPLE tool [77] concentrates on producing a system thatultimately creates real world domains that are portable. The authors have spot-ted an anomaly with the modelling languages used amongst di�erent researchgroups and industry and tried to redress this using Uni�ed Modelling Language(UML) [14] to build an original model of the domain to be represented. Thecode is then stored in XML (Extensible Markup Language) �les [7] and can bemade compatible with PDDL 2.1 [21]. UML is an object oriented modellinglanguage generally represented in diagrammatic form. It allows a visual repre-sentation and includes invariant modelling. It is interesting that despite usingan object oriented model the authors still concentrate on modelling operatorsin the STRIPS style, with add and delete lists [[20]]. This is probably becausethey are aiming to produce models in the main in PDDL so this model onlypartly bridges the gap between other planning model languages. However since

163OCL is translated into PDDL by GIPO this anomaly can be overlooked. Thereis an argument that the use of XML gives a more modern feel and approachto planning and may give some protection from redundancy of the system asit ages. It certainly allows access by a web browser and many of the most re-cently developed languages will be able to read its �les thus greatly increasingits portability. The itSIMPLE tool will also incorporate the use of Petri Nets[55] which provide a tree model for checking and selecting planning heuristics.This addition will increase compatibility with current manufacturing processesand allow it to be a tool for the next generation of planning. At present theitSIMPLE system is still experimental and is incomplete unlike GIPO whichhas already reached its third release but the basic ideals of a universal plan-ning language with complete portability might indicate a way toward greatercommercial use of planning.6. Kangheng Wu et al [86] have taken planning on into the realms of automaticallydiscovering action models. The system �nds macro-operators for plan comple-tion by using observation of previously successful plans. Their ARMS systemlearns from gathered knowledge on the statistical distribution of frequent setsof actions in a set of example plans. Using a model built as a propositionalsatis�ability problem it then uses a SAT solver to learn the action models. Inthe �rst phase, the ARMS algorithm �nds frequent action sets from plans thatshare common parameters and it also �nds predicate-action relations giving astart point for preconditions and STRIPS style add and delete lists. These canthen be used to devise an initial set of constraints which ensure correct plan-ning. In the second phase, the ARMS algorithm converts the constraints into aweighted SAT representation [5]. The solution of this SAT problem produces anaction model. Further action models are produced and re�ned by the iterationsof the process.

164There are some similarities with the opmaker system of incrementally re�ningoperators which make this system interesting. Whereas with opmaker we con-centrate on re�ning short operator sequences, here the energies go into re�ningoperator sets. This is comparable to opmaker2:0 allowing hierarchical operatorsto be de�ned for more complex domains. Of course there are di�erences too,not least the fact that our operators are produced from complete knowledgeand are object oriented rather than in STRIPS format.7. The �nal entry to the competition was the Hudders�eld University paper onGIPO [71]. In this the author describes the GIPO environment and suggeststhat GIPO should be useful as a modelling tool irrespective of the �nal mod-elling language. The object oriented approach is a very visual way of repre-senting the domain and GIPO as a tool exploits this by o�ering the knowledgeengineer di�erent ways of visualising what she is building. The paper describesthe function of many of the tools within GIPO including, new for the third re-lease, an object life history editor. This allows the user to draw state machinesand the argument for its inclusion has some similarities to the use of UML inthe itSIMPLE tool [77] detailed above in paragraph 5. Also described in thiswork is the application of opmaker for inducing operators which has now beenencoded into GIPO. Using opmaker the knowledge engineer has to supply a listof names and parameters for actions required to complete a prede�ned task.Then GIPO uses a series of questions to remove any ambiguities and producesa complete set of operators for the speci�c task.This new version of GIPO also includes tools for engineering HTN planning.There are special tools for validation and planning including a stepper whichallows a user to step through an action sequence and to correct any errors tothe newly constructed domain. A typical example may be a missing invariant

165which allows a faulty operator to be constructed.Overall this was a very strong �eld for the competition and the competition itselfhas promoted interest in this �eld of research. The winner was the GIPO systemdeveloped at Hudders�eld University by Ron Simpson.In the 2007 Planning Competition one author, [29], argues for a change of di-rection for the competition itself. He de�nes a `tough nut' as a domain which canbe addressed, language-wise, by existing planning techniques, but cannot be solvede�ciently. The argument is for adding a track to the competition in which awardsare made� for the `tough nut' which survives the longest� for the �rst technique which solves a problemand would keep track of these challenges and solutions. Perhaps this would be ameans for resolving problems with our version of Blocks World?5.9 Further Work in Knowledge EngineeringModel-liteIn their paper on Model-lite Planning [88] the authors detail a system for planningwhere the domain model is incomplete. Whilst their aims are quite di�erent to oursthere are some similarities to our approach. They aim to produce action sequences(plans) by use of a probabilistic model for planning using incomplete domains. Thusboth their system and ours begin with lack of operator knowledge. However, in theircase the aim is to achieve valid operators from existing incomplete domain modelswhereas we begin with no operators.

166The other interesting facet of Model-lite Planning is the use of invariants to modelthe domain constraints. The authors use invariants to supply the detail lacking intheir operators and these invariants thus enable them to control planning. In ourcase we have been constructing and using invariants to prune potential intermediatesubstates for transitions induced by opmaker2.Learning Recursive HTN-Method Structures for PlanningIn their machine learning paper the authors [87] tackle the issue of learning HTNmethods by looking at three problems:-� acquiring logical relationships between high-level tasks and low level actions(i.e. task descriptions and available operators)� learning pre and post conditions of primitives in STRIPS or PDDL action mod-els� acquiring decomposition structures of HTNmethods from observed action tracesfrom input of multiple action sequences for multiple tasks.The authors focus on matching sub-sequences to tasks assuming no knowledge ofobserved states achieved by low-level actions. The output consists of pairs of actionsequences and the high-level tasks achieved by them. As with our system they beginwith action sequences and de�ned tasks (ours are de�ned in terms of initial states andgoal states). Unlike ourselves they do not use lists of potentially available substates.The �rst phase is matching sub-sequences of actions from examples to tasks, usingprobability and hand tuning. In the second phase sets of recursive methods arelearnt from these with the focus on learning the decomposition of the methods. Theyassess their success by comparing learnt methods to hand-crafted ones. The systemonly required about 40 training sets. Once learned they were �ne tuned by domain

167experts by hand. By contrast our system induces both primitives and a method usingsubstate lists and invariants and requires only an initial action sequence. The inducedprimitives form the decomposition of the method.CaMeLThe authors of Learning Preconditions for Planning [33] describe their CaMeL systemwhich aims to aid domain building by learning the preconditions from HTN methods.They present a proof theorem about CaMeL's soundness, completeness and conver-gence, and show some empirical results. These claim that CaMeL converges fasteston HTN's that are needed most often - thus enabling it to be useful even beforeconvergence.In their paper [31] the authors share our argument that the major hurdle forHTN planning use is the acquisition of the HTN domain descriptions. They presenta compelling argument that encoding `task models', which contain knowledge abouthow to decompose tasks into subtasks is really di�cult and time consuming. Theirsolution is HTN � MAKER (Hierarchical Task Networks with Minimal AdditionalKnowledge Engineering Required) an o�-line incremental algorithm for learning taskmodels. Learning is based on the input of a STRIPS domain model, a STRIPS planand task de�nition. In an upward manner as variables are incrementally substituted,it becomes possible to learn a set of methods, where the �rst encapsulates the previousoperator, the next the two previous operators and so on. In this way the methodsthat are shortest and simplest are learned �rst and these can then be learned andused as subtasks in methods that encapsulate longer sections of the plan. This ideahas some similarities with our own thinking. These are� The CaMeL team agree that acquisition of HTN planning domain descriptionsis a major hurdle for HTN planning.

168� They build methods with a bottom up approach.
Semantics for High Level ActionsIn their paper [42] Marthi et al argue for a system of high-level actions (HLA's) whichcan be re�ned downwards into simple action sequences in many ways, following thelines of human mind planning where a high level action would be the �rst choice andas planning proceeds the details of simpler actions begin to emerge.Their starting point seems to be the knowledge of simple (primitive) actions andsome high-level `desires'. This system works in a top-down forward search way, search-ing for a suitable action sequence to de�ne the HLA. Our system, by contrast, beginswith no actions but a human designed action sequence which translates into prim-itive action schema and a single high level action which has, as its decomposition,the initial action sequence. Their system is illustrated by an interesting version ofblocks world which used a variant of a STRIPS-like symbolism. The description ofthe workings of the domain suggest a 1 dimensional table the width of a block andof set length upon which the blocks are stacked by a suspended gripper. The grippercan only pick up a block from the right or left sides and to e�ect a pick-up the grippermust be facing the block. The blocks are stacked on the table and on each other atvarious levels. However, the gripper can only be turned if it is above the level ofthe blocks. Thus this version of the blocks world has many actions associated withmanipulating the gripper such as raising, lowering, moving, turning right or left, andpicking up and putting down the blocks. These additions allow for much longer plansto be formed for relatively few objects and the authors include an apparently simplethree blocks problem which requires 50 steps to solve. Further work on our systemcould well include the ideas in this domain which will extend plan steps quite quicklyto large numbers.

169Using their implemented algorithm the authors are able to demonstrate consistentimprovement in running time as stages in the process are added for problems requiringup to 90 steps in planning.5.9.1 Very Recent PublicationsTwo very recent publications (December 2007) support our work directly and are veryclosely allied to it. In the �rst of these [28] we look at another interactive domainediting and planning system for building domains which delivers domain descriptionsin PDDL. In the second [27] a system of inducing operators by relying on the use ofinvariants is the subject of some interesting work in a multi-agent system.VLEPpOThe VLEPpO (Visual Language for Enhanced Planning problem Orchestration) do-main modelling system [28] was developed in response to a need to have a similarsystem to GIPO for building domains modelled in PDDL. The authors express theview that a visual tool similar to the graphical life history editor in GIPO is needed tohelp domain builders build domains in the latest versions of PDDL without the needfor familiarity with either PDDL or OCL and without having to translate betweenthem. There are fundamental di�erences in the structure of the languages whichmean that direct translation is e�ective only into the more basic versions of PDDLfrom OCL which does not yet handle temporal planning for example. VLEPpO alsoallows the user to plan by using web services. In a later stage of development it isplanned to develop an extention into HTN planning. We welcome the introductionof VLEPpO and will watch with interest how it develops.

170POIIn his work in the past [26] Grant has shown how he can induce operators from aknowledge of inconsistent constraints. In this latest work [27] he shows how thissystem, Planning Operator Induction (POI), extends to a multi-agent system. Thework is based on representations of operators and constraints which between themmodel the domains so the modelling process is fundamentally di�erent from ours. Inthis work we assume there is complete domain knowledge and known initial and goalstates. Planning is, however, made more complex by the fact that the agents initiallydo not have complete knowledge and have to share parts of their own knowledgewith other agents before planning can take place e�ectively. In this context planningrequires the application of machine learning techniques to the acquisition of plan-ning operators. It also includes an element of Model-lite planning [88], and requiresknowledge sharing concepts. The author presents a good assessment and diagram-matic model of planning in this context where an initially complete domain modelis shown to be capable of receiving and assimilating sensory feedback. Because thisinitial domain model is distributed across several agents who, as a set, have completeknowledge, individual agents will have only partial knowledge and must share thisknowledge for planning to be successful. The emphasis in [27] is on how the recipientagent assimilates the knowledge another agent has given it into its own knowledge.5.10 SummaryAll this recent literature shows many attempts to make computers simulate tasks thehuman brain is already good at. In their work [31] the authors show how humans learnby tackling simple tasks and gradually building up to move onto more complex ones.By contrast, when planning the authors of [42], Semantics for High-level Actions, saythat humans plan top down, by looking at the overall task �rst, which is split downinto simpler tasks and eventually into simple operations. Opmaker builds operators

171�rst then constructs methods from the newly induced operators. In planning theHyHTN [44] planning algorithm in GIPO uses methods, where they are available, inpreference to operators, so priority is given to chunking in the way that humans plan.

Chapter 6CONCLUSIONS AND FUTURE WORK6.1 Limitations of this ResearchThis work contains a number of assumptions and limitations to restrict the scope andscale of the research which have been necessary to identify the speci�c project. Theseare:-1. The work has only been applied to planning domains constructed in the OCLplanning language which enforces an object based approach.2. The work includes action modelling of `instantaneous actions' only. Durativeactions or those depending on resource availability have not been modelled.3. Planners used have been restricted to Ho�mann's FF [30] and HyHTN [44].4. Objects modelled have been concrete items rather than abstract concepts suchas jobs or marital status.5. The work reported depends on the availability of at least a partial domain withwhich to work. Often we begin with a full model, in which case operatorscontained in the full model can be used for comparison purposes.6. We assume that the space of states is restricted in that objects are pre-conceivedto be a �xed set of plausible states.7. Some knowledge engineering problems remain - more work is required to usethe acquired methods in an HTN network for larger domains.

1736.2 SummaryThis thesis has studied how knowledge engineering is used to construct knowledgebases for planning. Di�erent planning domain languages are used for this and up tillnow the knowledge engineer has needed to be an expert in the particular languageshe uses. However, this in itself is a barrier to the wider use of planning since ittakes a long time to become an expert. Additionally, in the past, planning domainshave taken a lot of time to construct because of the high degree of accuracy requiredespecially when constructing the operators. The aim of this work, speci�ed in Section1.9, has been to increase the e�ciency of domain construction by the automaticinduction of planning domain operators using an object based knowledge capturesystem, and making particular use of the knowledge already contained.We have shown that opmaker1:0 was capable of inducing operators for domainswith at sort structures and could, additionally, induce a single method for everyinput sequence. Initially this system was error-prone because the examples requiredfor the induction were hand coded and erroneous material could be used to createmeaningless operators. For example before the inheritance problem was solved it waspossible to induce operators with empty prevail or necessary transitions. Our systemof checking induced operators relied on people who themselves can make errors.One of the advantages of this system being embedded in GIPO was that theconstraints of working with an editor reduce the chance of introducing erroneous data.When opmaker1 was embedded into GIPO this represented a big step forward becauseGIPO contained many validation checks to screen out most errors. At that stage,however, GIPO still required some knowledge of planning from the engineer. NowGIPO has a graphical `Life History' editor which allows for much greater abstractionand students of arti�cial intelligence can, with a little instruction, create new domainswithout ever seeing the OCL language. Basically this means that GIPO is getting

174towards its target of allowing non-experts to use planning as a tool.With the new opmaker2:0 system, operator creation becomes one step easier too.The hand-coding of the example material was an area likely to introduce bugs into thesystem. Opmaker2:0, with its automatic generation of the intermediate states, ruledout these kinds of errors. Some engineering problems remain. The system still needsto be integrated into GIPO. There are a few factors that need further consideration.Whilst we can choose the initial sequences carefully to induce meaningful methods,more work is required to learn and use those methods when building up the HTNnetwork for larger domains. We need to implement opmaker2:0 in the Life Historyeditor of GIPO which, as yet, only engineers at domains.Despite these problems, we have shown the great power of a system able to create,learn and use its own planning operators. More than this when considering automaticoperator induction using GIPO there is the potential to engineer, validate and useHTN planning without the expert knowledge that was once mandatory for the en-gineer. An autonomous system that plans and creates its own operators, perhapsworking in some remote area, is close to reality.This thesis began by examining the area of arti�cial intelligence into which thiswork �ts. We saw, in Chapter 1, how knowledge engineering is essential to the �eldof AI by creating the database on which it is based. Planning is seen as a challengingproblem and accurate representation of the planning domain and in particular theoperators is essential to enable planning to be accurate. In the discussion of the`knowledge acquisition bottleneck' [18], we saw the di�culty of hand-constructingoperators to reasonable time-scales. The chapter also gives several de�nitions whichwould be required throughout the thesis. There was a discussion of the process ofinduction of operators, which model actions in the domains. Opmaker was intro-duced. The end of this chapter showed the aim of this research and discussed thecontributions it makes to planning knowledge.

175Chapter 2 was concerned with explaining to the reader how a detailed domain isconstructed in the OCL language. We saw, in various steps, how the static knowl-edge for the knowledge base is engineered both by hand and by using GIPO. Severaldomains were introduced in the chapter and we saw how to use some of the con-struction tools in GIPO to construct domain parts like sort trees, atomic invariantsand operators. Later in the same chapter we saw how to use opmaker1 in GIPO toconstruct an operator sequence and we saw the dialogue that GIPO begins with theuser to resolve any intermediate state conicts. In later chapters we would show thatopmaker2 was capable of resolving these conicts by drawing on domain knowledge.In Chapters 3 and 4 we saw the two distinct stages of opmaker development.Chapter 3 gives an overview of the opmaker algorithm and also the algorithm inmore detail. It explains how well it worked and gives some experimental resultsbefore going on to explain how these were tarnished, for domains with hierarchicalsort structures, by the inheritance problem. In Chapter 4 we discuss the reasons fordeveloping opmaker further and again give an algorithm. We show how this mightwork with reference to a tyre domain which serves as an example throughout thechapter. Finally we discuss experimental results.Chapter 5 discusses literature and work done in this area of planning. It beginswith some of the recent `historical' work showing how induction of operators arose.Later it shows how we can categorise our system of operator induction in terms ofthe other work which has been done. The chapter concludes with some very recentwork and reports on the achievements of those taking part in the bi-annual PlanningCompetition.

1766.3 ContributionsContributions are detailed in Chapter 1, Section 1.10. Here we summarise wherethese contributions are to be found bearing in mind the aims of this research statedin Section 1.9.1. Contribution 1 - Induction of Hierarchical Models is demonstrated inChapters 3 and 4 where we show how methods can be induced from the ini-tial sequences given to the system. We show that a sensible choice of actionsequences helps to build hierarchical operators which can be used e�ectively inplanning for the completion of whole tasks.2. Contribution 2 - Evidence of E�ciency of Hierarchical Models isdemonstrated in Chapters 3 and 4. We show that development time for opera-tors and methods is minimised by the induction process and this is particularlythe case when the opmaker2:0 system is used and user input is greatly reduced.We see, in Chapter 3, that hierarchical systems do not always produce fasterplan times but in Chapter 4, Table 4.3 we show that as the plans get longer andthe number of objects in the domains increase then they become more e�cient.3. Contribution 3 - Towards True Agent Autonomy is demonstrated in thesecond half of Chapter 4 where the idea of complete autonomy is discussedin a system which generates its own intermediate states using heuristics andinvariants, and uses its knowledge to output accurate HTN methods for eachnovice or expert de�ned input sequence. The desirability of a remote agentacquiring its own planning knowledge with user input reduced to a minimum isalso discussed.4. Contribution 4 - New Versions of Experimental Domain Knowledgeare shown in Chapters 2, 3 and 4 where we discuss new versions of older domains

177- the Hierarchical Briefcase Domain (Chapter 3) and the Extended Tyre Domain(Chapter 4). Chapter 2 also discusses a relatively new experimental domain inthe Hiking Domain, introduced in 2001 [46].6.4 Further WorkSuggestions for further work include the following.1. Since a set of operators can be induced to �t the demands of a chosen task, thenin that sense we can say they are a complete set for that particular problem.However another task may require some di�erent operators for its completion.We could argue that the space of unknown tasks is unknown and, therefore,there is no such thing as a complete set of operators for a domain. However,the beauty of a system such as opmaker2 is that so long as the new task canbe modelled, and the expert can compose a sequence to complete the task,then a further set of operators for that task can be induced. This argumentcould be strengthened if we could say that any necessary invariants could beconstructed and added dynamically to the static domain knowledge. This ideagives a pointer for a future direction.2. When using HyHTN, the hierarchical OCL planner, there seems to be a crossoverpoint (about 12 steps) beyond which hierarchical operators produce faster plantimes than non-hierarchical ones, whether or not the domains used containedinduced operators and methods as opposed to hand-crafted ones. Currentlyour evidence is that hierarchical domains do produce faster plan times, but thisarea requires further investigation and could make a useful project for research.3. This work could be extended to capturing domains with durative actions, orother, more expressive formulations for action.

1784. The theoretical limitations on the content of the methods that are created fromOpmaker2, as compared to hand-crafted HTN operators, should be investigated.5. The Opmaker2 system should be extended to deal with model maintenance, sothat old operator schema can be re�ned in the presence of new example solutionsequences.6. A rigorous investigation should be conducted into the resilience of our approachin the face of errors in training tasks or in the partial domain model.7. Investigations should be conducted into whether� This work will extend to the operator centred rather than the object cen-tred approach.� This work can be replicated using other forms of machine learning.� The work o�ers a forum for planning with uncertainty or incomplete in-formation.� The chunking of operators can be automated.8. The evaluation of opmaker1, currently available in GIPO, should be done usinggroups of non-experts (students) to create at domains in di�erent ways, suchas:-� By hand� Using the operator constructor in GIPO� Using the opmaker tool embedded in GIPO� Using the graphical life-history editor in GIPO9. The embedding of the hierarchical induction process into GIPO is a clear re-quirement for the completion of the GIPO tool set.

17910. The induction of methods for the Translog Domain including testing and eval-uation would give useful con�rmation of current results.11. A collaborative system where two agents induce methods and act together tosolve a single plan would o�er a challenge to teams taking the work further.12. Further analysis of results using opmaker2 is required. These results could beshown graphically or in a table similar to Table 4.2.13. Analysis of which sorts of domain are suitable to be HTN should be attempted,bearing in mind we have shown conditional domains to be problematic anddomains where there are many instances of the same sort in an operator as inblocks world.14. It would be of interest to use GIPO for the construction and use of the unusualversion of blocks detailed in Section 5.9 [42], i.e. in a very complex domain.Opmaker2 could then induce more complex operators and methods and resultsof experimentation on this domain would make a useful addition to planning.

Appendix AA FULL CODING OF THE VERSION OF THE HIKINGDOMAIN BUILT USING GIPOAll rights reserved. Use of this software is permitted for non-commercial researchpurposes, and it may be copied only for that use. All copies must include thiscopyright message. This software is made available AS IS, and neither the GIPOteam nor the University of Hudders�eld make any warranty about the software or itsperformance.Automatically generated OCl Domain from GIPO Version 1.0Author: scomner Institution: University of Hudders�eld Date created: Tue Jul22 15:01:56 BST 2003 Date last modi�ed: Description:GIPO constructed domainfor thesis using �t and tired.domain_name(newhiking).% Sortssorts(primitive_sorts,[car,person,tent,place,couple]).% Objectsobjects(car,[car1,car2]).objects(person,[sue,fred]).objects(tent,[tent1]).objects(place,[keswick,helvelyn,fairfield,honister,derwent]).objects(couple,[couple1]).% Predicatespredicates([

181at_tent(tent,place),at_person(person,place),at_car(car,place),partners(couple,person,person),tired(person),fit(person),up(tent),down(tent),walked(couple,place),next(place,place)]).% Object Class Definitionssubstate_classes(car,Car,[[at_car(Car,Place)]]).substate_classes(tent,Tent,[[at_tent(Tent,Place),up(Tent)],[at_tent(Tent,Place),down(Tent)]]).substate_classes(person,Person,[[at_person(Person,Place),fit(Person)],[at_person(Person,Place),tired(Person)]]).substate_classes(couple,Couple,[[walked(Couple,Place)]]).% Atomic Invariantsatomic_invariants([next(keswick,helvelyn),next(helvelyn,fairfield),next(fairfield,honister),next(honister,derwent),partners(couple1,sue,fred)]).% Implied Invariants

182% Inconsistent Constraints% Operatorsoperator(take_down(Person0,Tent0,Place0),% prevail[se(person,Person0,[at_person(Person0,Place0),fit(Person0)])],% necessary[sc(tent,Tent0,[at_tent(Tent0,Place0),up(Tent0)]=>[at_tent(Tent0,Place0),down(Tent0)])],% conditional[]).operator(drive_tent(Person0,Tent0,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),next(Place0,Place1)]=>[at_person(Person0,Place1),fit(Person0)]),sc(tent,Tent0,[at_tent(Tent0,Place0),down(Tent0),next(Place0,Place1)]=>[at_tent(Tent0,Place1),down(Tent0)]),sc(car,Car0,[at_car(Car0,Place0),next(Place0,Place1)]=>[at_car(Car0,Place1)])],% conditional[]).operator(drive(Person0,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),next(Place0,Place1)]=>[at_person(Person0,Place1),fit(Person0)]),

183
sc(car,Car0,[at_car(Car0,Place0),next(Place0,Place1)]=>[at_car(Car0,Place1)])],% conditional[]).operator(put_up(Person0,Tent0,Place0),% prevail[se(person,Person0,[at_person(Person0,Place0),fit(Person0)])],% necessary[sc(tent,Tent0,[at_tent(Tent0,Place0),down(Tent0)]=>[at_tent(Tent0,Place0),up(Tent0)])],% conditional[]).operator(drive_passenger(Person0,Person1,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),ne(Person0,Person1),next(Place1,Place0)]=>[at_person(Person0,Place1),fit(Person0)]),sc(person,Person1,[at_person(Person1,Place0),fit(Person1),next(Place1,Place0)]=>[at_person(Person1,Place1),fit(Person1)]),sc(car,Car0,[at_car(Car0,Place0),next(Place1,Place0)]=>[at_car(Car0,Place1)])],% conditional[]).operator(walk_together(Person0,Person1,Tent0,Couple0,Place0,Place1),% prevail[se(tent,Tent0,[at_tent(Tent0,Place1),up(Tent0)])],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),ne(Person0,Person1),ne

184xt(Place0,Place1)]=>[at_person(Person0,Place1),tired(Person0)]),sc(person,Person1,[at_person(Person1,Place0),fit(Person1),next(Place0,Place1)]=>[at_person(Person1,Place1),tired(Person1)]),sc(couple,Couple0,[walked(Couple0,Place0),next(Place0,Place1)]=>[walked(Couple0,Place1)])],% conditional[]).operator(sleep_couple(Person0,Person1,Tent0,Place0),% prevail[se(tent,Tent0,[at_tent(Tent0,Place0),up(Tent0)])],% necessary[sc(person,Person0,[at_person(Person0,Place0),tired(Person0),ne(Person0,Person1)]=>[at_person(Person0,Place0),fit(Person0)]),sc(person,Person1,[at_person(Person1,Place0),tired(Person1)]=>[at_person(Person1,Place0),fit(Person1)])],% conditional[]).operator(drive_tent_passenger(Person0,Person1,Tent0,Place0,Place1,Car0),% prevail[],% necessary[sc(person,Person0,[at_person(Person0,Place0),fit(Person0),ne(Person0,Person1),next(Place1,Place0)]=>[at_person(Person0,Place1),fit(Person0)]),sc(person,Person1,[at_person(Person1,Place0),fit(Person1),next(Place1,Place0)]=>[at_person(Person1,Place1),fit(Person1)]),sc(tent,Tent0,[at_tent(Tent0,Place0),down(Tent0),next(Place1,Place0)]=>[at_tent(

185Tent0,Place1),down(Tent0)]),sc(car,Car0,[at_car(Car0,Place0),next(Place1,Place0)]=>[at_car(Car0,Place1)])],% conditional[]).% Methods% Domain Tasksplanner_task(1,% Goals[se(couple,couple1,[walked(couple1,helvelyn)]),se(car,car1,[at_car(car1,helvelyn)]),se(tent,tent1,[at_tent(tent1,helvelyn),up(tent1)]),se(car,car2,[at_car(car2,keswick)]),se(person,sue,[at_person(sue,helvelyn),tired(sue)]),se(person,fred,[at_person(fred,helvelyn),tired(fred)])],% INIT States[ss(car,car1,[at_car(car1,keswick)]),ss(car,car2,[at_car(car2,keswick)]),ss(person,sue,[at_person(sue,keswick),fit(sue)]),ss(person,fred,[at_person(fred,keswick),fit(fred)]),ss(tent,tent1,[at_tent(tent1,keswick),up(tent1)]),ss(couple,couple1,[walked(couple1,keswick)])]).planner_task(2,% Goals[se(couple,couple1,[walked(couple1,helvelyn)]),se(car,car1,[at_car(car1,helvelyn)]),se(car,car2,[at_car(car2,helvelyn)]),se(tent,tent1,[at_tent(tent1,helvelyn),down(tent1)]),

186se(person,sue,[at_person(sue,helvelyn),fit(sue)]),se(person,fred,[at_person(fred,helvelyn),fit(fred)])],% INIT States[ss(couple,couple1,[walked(couple1,helvelyn)]),ss(car,car1,[at_car(car1,helvelyn)]),ss(tent,tent1,[at_tent(tent1,helvelyn),up(tent1)]),ss(car,car2,[at_car(car2,keswick)]),ss(person,sue,[at_person(sue,helvelyn),tired(sue)]),ss(person,fred,[at_person(fred,helvelyn),tired(fred)])]).

Appendix BA TEST FILE FROM THE HIKING DOMAIN% This code is a typical test file designed to run with the induction code which% includes the $opmaker$ algorithm. It consists of an action sequence, a set of% initial states for the objects, example training material and a partial% domain in which the substates are in single set format. Added to the end is% the output given by the induction process.:- multifile input/3.:- dynamic input/3.:- multifile planner_task/3.:- dynamic planner_task/3.% ACTION SEQUENCEt1 :- sequops([putdown(tent1,fred,keswick),load(fred,tent1,car1,keswick),getin(sue,keswick,car1),drive(sue,car1,tent1,keswick,helvelyn)]).htn(move_tent).% INITIAL STATESplanner_task(_,_,[

188
ss(car,car1,[at(car1,keswick)]),ss(car,car2,[at(car2,keswick)]),ss(couple,couple1,[walked(couple1,keswick)]),ss(person,sue,[fit(sue,keswick)]),ss(person,fred,[fit(fred,keswick)]),ss(tent,tent1,[up(tent1,keswick)])]).% EXAMPLE INPUTS% putdown(tent1,fred,keswick)input(1,tent1,sclass(Tent,tent,[down(Tent,Place)])).input(1,fred,null).% load(fred,tent1,car1,keswick),input(2,fred,null).input(2,tent1,sclass(Tent,tent,[loaded(Tent,Car,Place)])).input(2,car1,null).% getin(sue,keswick,car1),input(3,sue,sclass(Person,person,[in(Person,Car,Place)])).input(3,car1,null).% drive(sue,car1,tent1,keswick,helvelyn),input(4,sue,sclass(Person,person,[in(Person,Car,Place)])).input(4,car1,sclass(Car,car,[at(Car,Place)])).input(4,tent1,sclass(Tent,tent,[loaded(Tent,Car,Place)])).% PARTIAL DOMAIN DESCRIPTIONdomain_name(hiking).

189% Sortssorts(primitive_sorts,[car,person,tent,place,couple]).% Objectsobjects(car,[car1,car2]).objects(tent,[tent1]).objects(person,[sue,fred]).objects(couple,[couple1]).objects(place,[keswick,helvelyn,fairfield,honister,derwent]).% Predicatespredicates([up(tent,place),down(tent,place),loaded(tent,car,place),in(person,car,place),fit(person,place),tired(person,place),at(car,place),partners(couple,person,person),walked(couple,place),next(place,place)]).% Object Class Definitionssubstate_classes([person(Person,[[tired(Person,Place)],[fit(Person,Place)],[in(Person,Car,Place)]]),

190
couple(Couple,[[walked(Couple,Place),partners(Couple,Person1,Person2)]]),tent(Tent,[[up(Tent,Place)],[down(Tent,Place)],[loaded(Tent,Car,Place)]]),car(Car,[[at(Car,Place)]])]).% Atomic Invariantsatomic_invariants([partners(couple1,sue,fred),next(keswick,helvelyn),next(helvelyn,fairfield),next(fairfield,honister),next(honister,derwent)]).% OUTPUT GIVEN BY INDUCTION PROCESS/*states created..operator(putdown(Tent1,Fred,Keswick),

191[se(person,Fred,[fit(Fred,Keswick)])],[sc(tent,Tent1,[up(Tent1,Keswick)] => [down(Tent1,Keswick)])],[]).operator(load(Fred,Tent1,Car1,Keswick),[se(person,Fred,[fit(Fred,Keswick)]),se(car,Car1,[at(Car1,Keswick)])],[sc(tent,Tent1,[down(Tent1,Keswick)] => [loaded(Tent1,Car1,Keswick)])],[]).operator(getin(Sue,Keswick,Car1),[se(car,Car1,[at(Car1,Keswick)])],[sc(person,Sue,[fit(Sue,Keswick)] => [in(Sue,Car1,Keswick)])],[]).operator(drive(Sue,Car1,Tent1,Keswick,Helvelyn),[],[sc(person,Sue,[in(Sue,Car1,Keswick),next(Keswick,Helvelyn)] =>[in(Sue,Car1,Helvelyn)]),sc(car,Car1,[at(Car1,Keswick)] => [at(Car1,Helvelyn)]),sc(tent,Tent1,[loaded(Tent1,Car1,Keswick)] => [loaded(Tent1,Car1,Helvelyn)])],[]).% namemethod(move_tent(Fred,Sue,Car1,Tent1),% dynamic constraints[se(person,Fred,[fit(Fred,Keswick)]),se(person,Fred,[fit(Fred,Keswick)])],

192% list of necessary transitions[sc(person,Sue,[fit(Sue,Keswick)] => [in(Sue,Car1,Helvelyn)]),sc(car,Car1,[at(Car1,Keswick)] => [at(Car1,Helvelyn)]),sc(tent,Tent1,[up(Tent1,Keswick)] => [loaded(Tent1,Car1,Helvelyn)])],% static constraints[next(Keswick,Helvelyn)],% temporal constraints[before(1,2),before(2,3),before(3,4)],% decomposition[putdown(Tent1,Fred,Keswick),load(Fred,Tent1,Car1,Keswick),getin(Sue,Keswick,Car1),drive(Sue,Car1,Tent1,Keswick,Helvelyn)]).*/

Appendix CFULL LISTING OF THE HIERARCHICAL BRIEFCASEDOMAIN (HBC)AS DEVELOPED USING GIPO/*** All rights reserved. Use of this software is permitted for non-commercial* research purposes, and it may be copied only for that use. All copies must* include this copyright message. This software is made available AS IS, and* neither the GIPO team nor the University of Huddersfield make any warranty* about the software or its performance.** Automatically generated OCL Domain from GIPO Version 2.0** Author: Beth Richardson* Institution: University of Huddersfield* Date created: Fri Oct 07 14:19:51 BoxST 2005* Date last modified: 2006/10/04 at 12:46:18 PM BST* Description:* Briefcase world has additional containers - a lunch box and a pencil box.* These fit in the briefcase and themselves can contain, respectively,* sandwiches and a pencil. Additional activities include* pack and unpack lunch, pack and take an object to work and pack suit.*/domain_name(hier_briefcase).option(hierarchical).% Sorts

194sorts(primitive_sorts,[briefcase,suitcase,lunch_box,pencil_box,thing,place]).sorts(carrier,[bag,box]).sorts(bag,[briefcase,suitcase]).sorts(box,[lunch_box,pencil_box]).% Objectsobjects(briefcase,[bc1]).objects(suitcase,[sc1]).objects(lunch_box,[lb1]).objects(pencil_box,[pb1]).objects(thing,[cheque,suit,dictionary,sandwiches,pencil]).objects(place,[home,office]).% Predicatespredicates([at_thing(thing,place),outside(thing),at_carrier(carrier,place),in_bag(thing,bag),in_box(thing,box),box_in_bag(box,bag),box_outside(box),fits_in(thing,bag),safe_in(thing,box),goes_in(box,bag)]).% Object Class Definitionssubstate_classes(carrier,Carrier,[[at_carrier(Carrier,Place)]]).substate_classes(thing,Thing,[[outside(Thing),at_thing(Thing,Place)],[in_bag(Thing,Bag),at_thing(Thing,Place)],[in_box(Thing,Box),at_thing(Thing,Place)]]).

195substate_classes(box,Box,[[box_in_bag(Box,Bag)],[box_outside(Box)]]).% Atomic Invariantsatomic_invariants([fits_in(cheque,bc1),fits_in(dictionary,bc1),fits_in(suit,sc1),fits_in(cheque,sc1),fits_in(dictionary,sc1),goes_in(lb1,bc1),goes_in(pb1,bc1),safe_in(pencil,pb1),safe_in(sandwiches,lb1)]).% Implied Invariantsimplied_invariant([in_box(Thing,Box),box_in_bag(Box,Bag),at_carrier(Bag,Place)],[at_thing(Thing,Place),at_carrier(Box,Place)]).implied_invariant([in_box(Thing,Box),box_in_bag(Box,Bag)],[in_bag(Thing,Bag)]).% Inconsistent Constraintsinconsistent_constraint([at_thing(Thing,Place),at_thing(Thing,Place1),ne(Place1,Place)]).inconsistent_constraint([at_carrier(Carrier,Place),at_carrier(Carrier,Place1),ne(Place1,Place)]).inconsistent_constraint([in_bag(Thing,Bag),in_bag(Thing,Bag1),ne(Bag1,Bag)]).inconsistent_constraint([in_box(Thing,Box),in_box(Thing,Box1),ne(Box1,Box)]).inconsistent_constraint([in_bag(Thing,Bag),outside(Thing)]).inconsistent_constraint([in_box(Thing,Box),outside(Thing)]).inconsistent_constraint([in_bag(Thing,Bag),at_carrier(Carrier,Place),at_thing(Thing,Place1),ne(Place1,Place)]).inconsistent_constraint([in_box(Thing,Box),at_carrier(Carrier,Place),at_thing(Th

196ing,Place1),ne(Place1,Place)]).inconsistent_constraint([outside(Thing),fits_in(Thing,Bag)]).inconsistent_constraint([outside(Thing),safe_in(Thing,Box)]).inconsistent_constraint([box_outside(Box),goes_in(Box,Bag)]).% Operatorsoperator(put_in_box(Box,Place,Thing),% prevail[se(box,Box,[box_outside(Box),at_carrier(Box,Place)])],% necessary[sc(thing,Thing,[outside(Thing),at_thing(Thing,Place)]=>[in_box(Thing,Box),at_thing(Thing,Place),safe_in(Thing,Box)])],% conditional[]).operator(put_box_in_bag(Bag,Place,Box),% prevail[se(bag,Bag,[at_carrier(Bag,Place)])],% necessary[sc(box,Box,[box_outside(Box),at_carrier(Box,Place)]=>[box_in_bag(Box,Bag),at_carrier(Box,Place),goes_in(Box,Bag)])],% conditional[sc(thing,Thing,[in_box(Thing,Box),at_thing(Thing,Place)]=>[in_box(Thing,Box),at_thing(Thing,Place),safe_in(Thing,Box)])]).operator(put_thing_in_bag(Bag,Place,Thing),% prevail[se(carrier,Bag,[at_carrier(Bag,Place)])],% necessary[

197sc(thing,Thing,[outside(Thing),at_thing(Thing,Place)]=>[in_bag(Thing,Bag),at_thing(Thing,Place),fits_in(Thing,Bag)])],% conditional[]).operator(move(Carrier,Place,Place1),% prevail[],% necessary[sc(carrier,Carrier,[at_carrier(Carrier,Place)]=>[at_carrier(Carrier,Place1),ne(Place1,Place)])],% conditional[sc(box,Box,[box_in_bag(Box,Bag),at_carrier(Box,Place),goes_in(Box,Bag)]=>[box_in_bag(Box,Bag),at_carrier(Box,Place1),goes_in(Box,Bag),ne(Place1,Place)]),sc(thing,Thing,[at_thing(Thing,Place),fits_in(Thing,Bag),in_bag(Thing,Bag)]=>[at_thing(Thing,Place1),fits_in(Thing,Bag),in_bag(Thing,Bag),ne(Place1,Place)]),sc(thing,Thing1,[in_box(Thing1,Box),at_thing(Thing1,Place)]=>[in_box(Thing1,Box),at_thing(Thing1,Place1),ne(Place1,Place)])]).operator(take_out_box(Bag,Place,Box),% prevail[se(bag,Bag,[at_carrier(Bag,Place)])],% necessary[sc(box,Box,[box_in_bag(Box,Bag),at_carrier(Box,Place),goes_in(Box,Bag)]=>[box_outside(Box),at_carrier(Box,Place)])],% conditional[sc(thing,Thing,[in_box(Thing,Box),at_thing(Thing,Place),safe_in(Thing,Box)]=>[in

198_box(Thing,Box),at_thing(Thing,Place),safe_in(Thing,Box)])]).operator(empty_box(Box,Place,Thing),% prevail[se(box,Box,[box_outside(Box),at_carrier(Box,Place)])],% necessary[sc(thing,Thing,[in_box(Thing,Box),at_thing(Thing,Place),safe_in(Thing,Box)]=>[outside(Thing),at_thing(Thing,Place)])],% conditional[]).operator(take_out(Bag,Place,Thing),% prevail[se(bag,Bag,[at_carrier(Bag,Place)])],% necessary[sc(thing,Thing,[at_thing(Thing,Place),in_bag(Thing,Bag),fits_in(Thing,Bag)]=>[outside(Thing),at_thing(Thing,Place)])],% conditional[]).% Methods/******/method(pack(Suit,Place,Bag),% pre-condition[], % Index Transitions[

199sc(thing,Suit,[outside(Suit),at_thing(Suit,Place)]=>[in_bag(Suit,Bag),at_thing(Suit,Place)])],% Static[fits_in(Suit,Bag)],% Temporal Constraints[before(1,2)],% Decomposition[achieve(ss(bag,Suitcase,[at_carrier(Suitcase,Place)])),put_thing_in_bag(Bag,Place,Thing)])./******/method(pack_lunch(Sandwiches,Place,Lunch_box,Bag),% pre-condition[], % Index Transitions[sc(thing,Sandwiches,[outside(Sandwiches),at_thing(Sandwiches,Place)]=>[in_box(Sandwiches,Lunch_box),at_thing(Sandwiches,Place)]),sc(lunch_box,Lunch_box,[box_outside(Lunch_box),at_carrier(Lunch_box,Place)]=>[box_in_bag(Lunch_box,Bag),at_carrier(Lunch_box,Place)])],% Static[safe_in(Thing,Lunch_box),goes_in(Lunch_box,Bag)],% Temporal Constraints

200[before(1,2)],% Decomposition[put_in_box(Box,Place,Thing),put_box_in_bag(Bag,Place,Box)])./******/method(unpack_lunch(Lunch_box,Bag,Place,Sandwiches),% pre-condition[], % Index Transitions[sc(lunch_box,Lunch_box,[box_in_bag(Lunch_box,Bag),at_carrier(Lunch_box,Place)]=>[box_outside(Lunch_box),at_carrier(Lunch_box,Place)]),sc(thing,Sandwiches,[in_box(Sandwiches,Lunch_box),at_thing(Sandwiches,Place)]=>[outside(Sandwiches),at_thing(Sandwiches,Place)])],% Static[safe_in(Thing,Lunch_box),goes_in(Lunch_box,Bag)],% Temporal Constraints[before(1,2)],% Decomposition[take_out_box(Bag,Place,Box),empty_box(Box,Place,Thing)]

201)./******/method(pack_and_take(Thing,Place,Bag,Place1),% pre-condition[], % Index Transitions[sc(thing,Thing,[outside(Thing),at_thing(Thing,Place)]=>[in_bag(Thing,Bag),at_thing(Thing,Place1),ne(Place1,Place)])],% Static[fits_in(Thing,Bag)],% Temporal Constraints[before(1,2)],% Decomposition[pack(Suit,Place,Bag),move(Carrier,Place,Place1)])./******/method(take_lunch_to_work(Sandwiches,Place,Place1,Lunch_box,Briefcase),% pre-condition[], % Index Transitions[

202
sc(thing,Sandwiches,[outside(Sandwiches),at_thing(Sandwiches,Place)]=>[outside(Sandwiches),at_thing(Sandwiches,Place1),ne(Place1,Place)]),sc(box,Lunch_box,[box_outside(Lunch_box),at_carrier(Lunch_box,Place)]=>[box_outside(Lunch_box),at_carrier(Lunch_box,Place1),ne(Place1,Place)]),sc(bag,Briefcase,[at_carrier(Briefcase,Place)]=>[at_carrier(Briefcase,Place1),ne(Place1,Place)])],% Static[], % Temporal Constraints[before(1,2),before(2,3)],% Decomposition[pack_lunch(Sandwiches,Place,Lunch_box,Bag),move(Carrier,Place,Place1),unpack_lunch(Lunch_box,Bag,Place,Sandwiches)])./******/method(take_lunch_and_item_to_work(Bag,Place,Place1,Lunch_box,Thing,Sandwiches),% pre-condition[], % Index Transitions[sc(briefcase,Bag,[at_carrier(Bag,Place)]=>[at_carrier(Bag,Place1),ne(Place1,Plac

203e)]),sc(lunch_box,Lunch_box,[box_outside(Lunch_box),at_carrier(Lunch_box,Place)]=>[box_outside(Lunch_box),at_carrier(Lunch_box,Place1),ne(Place1,Place)]),sc(thing,Thing,[outside(Thing),at_thing(Thing,Place)]=>[outside(Thing),at_thing(Thing,Place1),ne(Place1,Place)]),sc(thing,Sandwiches,[outside(Sandwiches),at_thing(Sandwiches,Place)]=>[outside(Sandwiches),at_thing(Sandwiches,Place1),ne(Place1,Place)])],% Static[fits_in(Thing,Bag),safe_in(Sandwiches,Lunch_box),goes_in(Lunch_box,Bag)],% Temporal Constraints[before(1,3),before(2,3),before(3,4),before(3,5)],% Decomposition[put_thing_in_bag(Bag,Place,Thing),pack_lunch(Sandwiches,Place,Lunch_box,Bag),move(Carrier,Place,Place1),take_out(Bag,Place,Thing),unpack_lunch(Lunch_box,Bag,Place,Sandwiches)]).% Domain Tasks% HTN Domain Tasks

204htn_task(1,goal([pack(Suit,Place,Bag)],% Temporal Constraints[], % Static constraints[]), % INIT States[ss(thing,suit,[outside(suit),at_thing(suit,home)]),ss(suitcase,sc1,[at_carrier(sc1,home)])]).htn_task(2,goal([pack_lunch(Sandwiches,Place,Lunch_box,Bag)],% Temporal Constraints[], % Static constraints[]), % INIT States[ss(thing,sandwiches,[outside(sandwiches),at_thing(sandwiches,home)]),ss(briefcase,bc1,[at_carrier(bc1,home)]),ss(lunch_box,lb1,[box_outside(lb1),at_carrier(lb1,home)])]).htn_task(3,goal([unpack_lunch(Lunch_box,Bag,Place,Sandwiches)],

205% Temporal Constraints[], % Static constraints[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,office)]),ss(lunch_box,lb1,[box_in_bag(lb1,bc1),at_carrier(lb1,office)]),ss(thing,sandwiches,[in_box(sandwiches,lb1),at_thing(sandwiches,office)])]).htn_task(4,goal([pack_and_take(suit,home,sc1,office)],% Temporal Constraints[], % Static constraints[]), % INIT States[ss(thing,suit,[outside(suit),at_thing(suit,home)]),ss(suitcase,sc1,[at_carrier(sc1,home)])]).htn_task(5,goal([move(bc1,home,office)],% Temporal Constraints[],

206% Static constraints[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,home)])]).htn_task(6,goal([pack_lunch(sandwiches,home,lb1,bc1),move(bc1,home,office),unpack_lunch(lb1,bc1,office,sandwiches)],% Temporal Constraints[before(1,2),before(2,3)],% Static constraints[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,home)]),ss(lunch_box,lb1,[box_outside(lb1),at_carrier(lb1,home)]),ss(thing,sandwiches,[outside(sandwiches),at_thing(sandwiches,home)])]).htn_task(7,goal([put_thing_in_bag(bc1,home,dictionary),take_out(bc1,office,dictionary),move(bc1,home,office),put_in_box(pb1,home,pencil),put_box_in_bag(bc1,home,pb1),take_out_box(bc1,office,pb1),

207empty_box(pb1,office,pencil)],% Temporal Constraints[before(1,3),before(3,2),before(5,3),before(3,6),before(4,5),before(6,7)],% Static constraints[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,home)]),ss(thing,pencil,[outside(pencil),at_thing(pencil,home)]),ss(pencil_box,pb1,[box_outside(pb1),at_carrier(pb1,home)]),ss(thing,dictionary,[outside(dictionary),at_thing(dictionary,home)])]).htn_task(8,goal([put_thing_in_bag(bc1,home,cheque),pack_lunch(sandwiches,home,lb1,bc1),move(bc1,home,office),unpack_lunch(lb1,bc1,office,sandwiches),take_out(bc1,office,cheque)],% Temporal Constraints[before(1,3),before(2,3),before(3,5),before(3,4)],% Static constraints

208[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,home)]),ss(lunch_box,lb1,[box_outside(lb1),at_carrier(lb1,home)]),ss(thing,sandwiches,[outside(sandwiches),at_thing(sandwiches,home)]),ss(thing,cheque,[outside(cheque),at_thing(cheque,home)])]).htn_task(9,goal([put_thing_in_bag(bc1,home,cheque),put_in_box(lb1,home,sandwiches),put_box_in_bag(bc1,home,lb1),move(bc1,home,office),take_out_box(bc1,office,lb1),empty_box(lb1,office,sandwiches),take_out(bc1,office,cheque)],% Temporal Constraints[before(1,2),before(2,3),before(3,4),before(4,5),before(5,6),before(6,7)],% Static constraints[]), % INIT States[ss(briefcase,bc1,[at_carrier(bc1,home)]),ss(lunch_box,lb1,[box_outside(lb1),at_carrier(lb1,home)]),

209ss(thing,sandwiches,[outside(sandwiches),at_thing(sandwiches,home)]),ss(thing,cheque,[outside(cheque),at_thing(cheque,home)])]).

Appendix DTEST FILE WITH RESULTS FROM HBC SHOWINGTHE SORT TREE CODE IS WORKING/* THIS FILE REPLICATES THE TASK FOR PACK LUNCH AND TAKE TOWORK Task 6 in my original domain */:- multifile input/3.:- dynamic input/3.:- multifile planner_task/3.:- dynamic planner_task/3.% Sequops below details the task to be achieved and names the operators.% Arguably it is equivalent to the goal state (part of the task editor% in GIPO)t1 :- sequops([put_in_box(sandwiches,lb1,home),put_box_in_bag(bc1,home,sandwiches,lb1),move(bc1,sandwiches,lb1,home,office),take_out_box(lb1,sandwiches,bc1,office),empty_box(lb1,sandwiches,office)]).% Labels the method producedhtn(pack_and_take_lunch_to_work).% details initial states for all the dynamic objects equivalent to GIPO's% initial states in the task editor

211planner_task(_,_,[ss(thing,sandwiches, [outside(sandwiches),at_thing(sandwiches,home)]),ss(thing,pencil, [outside(pencil),at_thing(pencil,home)]),ss(thing,dictionary, [outside(dictionary),at_thing(dictionary,home)]),ss(thing,cheque, [outside(cheque),at_thing(cheque,home)]),ss(thing,suit, [outside(suit),at_thing(suit,home)]),ss(box,lb1, [at_carrier(lb1,home),box_outside(lb1)]),ss(box,pb1, [at_carrier(pb1,home),box_outside(pb1)]),ss(carrier,bc1, [at_carrier(bc1,home)]),ss(carrier,sc1, [at_carrier(sc1,home)])])./* The example inputs are the equivalent of GIPO asking which statean object is in after the action. These inputs are numbered, one for everyoperator heading in sequops. For each dynamic object in the operator headingthere is an input line where, if the object does not change state, nullimplies there is no state change and prompts a prevail clause.At present you have to put any object in the operator heading which isconditional and, because opmaker does not yet deal correctly with conditionaldomains an extra necessary transition is created for it which gets round theproblem for now. */% EXAMPLE INPUTS%put_in_box(sandwiches,lb1,home)input(1,sandwiches,sclass(Thing,thing,[in_box(Thing,Box),at_thing(Thing,Place)])).input(1,lb1,null).

212
%put_box_in_bag(bc1,home,sandwiches,lb1)input(2,bc1,null).input(2,sandwiches,null).input(2,lb1,sclass(Box,box,[box_in_bag(Box,Bag)])).%move(bc1,sandwiches,lb1,home,office)input(3,bc1,sclass(Bag,carrier,[at_carrier(Bag,Office)])).input(3,sandwiches,sclass(Thing,thing,[in_box(Thing,Box),at_thing(Thing,Office)])).input(3,lb1,sclass(Box,carrier,[at_carrier(Box,Office)])).input(3,lb1,sclass(Box,box,[box_in_bag(Box,Bag)])).%take_out_box(lb1,sandwiches,bc1,office)input(4,lb1,sclass(Box,box,[box_outside(Box)])).input(4,sandwiches,null).input(4,bc1,null).%empty_box(lb1,sandwiches,office)input(5,lb1,null).input(5,sandwiches,sclass(Thing,thing,[outside(Thing),at_thing(Thing,Office)]))./**This section is a listing of the domain sorts, objects, predicates, staticssubstate classes, invariants and constraints (axioms) and excluding methods,operators and tasks.***/domain_name(hier_briefcase).option(hierarchical).% Sorts

213sorts(non_primitive_sorts, [bag,box,carrier]).sorts(primitive_sorts,[briefcase,suitcase,lunch_box,pencil_box,thing,place]).sorts(carrier,[bag,box]).sorts(bag,[briefcase,suitcase]).sorts(box,[lunch_box,pencil_box]).% Objectsobjects(briefcase,[bc1]).objects(suitcase,[sc1]).objects(lunch_box,[lb1]).objects(pencil_box,[pb1]).objects(thing,[cheque,suit,dictionary,sandwiches,pencil]).objects(place,[home,office]).% Predicatespredicates([% dynamicat_thing(thing,place),outside(thing),at_carrier(carrier,place),in_bag(thing,bag),in_box(thing,box),box_in_bag(box,bag),box_outside(box),% staticfits_in(thing,bag),safe_in(thing,box),goes_in(box,bag)]).% Object Class Definitionssubstate_classes([carrier(C,

214[[at_carrier(C,L)]]),thing(T,[[outside(T),at_thing(T,L)],[in_bag(T,Bag),at_thing(T,L)],[in_box(T,Box),at_thing(T,L)]]),box(Box,[[box_in_bag(Box,Bag)],[box_outside(Box)]])])./* to fit with the opmaker method the substate classes have to be in the formatabove. This section shows how they would normally appear.substate_classes(carrier,Carrier,[[at_carrier(Carrier,Place)]]).substate_classes(thing,Thing,[[outside(Thing),at_thing(Thing,Place)],[in_bag(Thing,Bag),at_thing(Thing,Place)],[in_box(Thing,Box),at_thing(Thing,Place)]]).substate_classes(box,Box,[[box_in_bag(Box,Bag)],[box_outside(Box)]]). */% Atomic Invariants

215atomic_invariants([fits_in(cheque,bc1),fits_in(dictionary,bc1),fits_in(suit,sc1),fits_in(cheque,sc1),fits_in(dictionary,sc1),goes_in(lb1,bc1),goes_in(pb1,bc1),safe_in(pencil,pb1),safe_in(sandwiches,lb1)]).% Implied Invariants% Inconsistent Constraintsinconsistent_constraint([at_thing(Thing,Place),at_thing(Thing,Place1),ne(Place1,Place)]).inconsistent_constraint([at_carrier(Carrier,Place),at_carrier(Carrier,Place1),ne(Place1,Place)]).inconsistent_constraint([in_bag(Thing,Bag),in_bag(Thing,Bag1),ne(Bag1,Bag)]).inconsistent_constraint([in_box(Thing,Box),in_box(Thing,Box1),ne(Box1,Box)]).inconsistent_constraint([in_bag(Thing,Bag),outside(Thing)]).inconsistent_constraint([in_box(Thing,Box),outside(Thing)]).inconsistent_constraint([in_bag(Thing,Bag),at_carrier(Carrier,Place),at_thing(Thing,Place1),ne(Place1,Place)]).inconsistent_constraint([in_box(Thing,Box),at_carrier(Carrier,Place),at_thing(Thing,Place1),ne(Place1,Place)]).inconsistent_constraint([outside(Thing),fits_in(Thing,Bag)]).inconsistent_constraint([outside(Thing),safe_in(Thing,Box)]).inconsistent_constraint([box_outside(Box),goes_in(Box,Bag)])./* RESULTS from running this test file with opmakerstates created..

216
operator(put_in_box(Sandwiches,Lb1,Home),[se(lunch_box,Lb1,[box_outside(Lb1),at_carrier(Lb1,Home),safe_in(Sandwiches,Lb1)])],[sc(thing,Sandwiches,[outside(Sandwiches),at_thing(Sandwiches,Home)] =>[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Home)])],[]).operator(put_box_in_bag(Bc1,Home,Sandwiches,Lb1),[se(briefcase,Bc1,[at_carrier(Bc1,Home),goes_in(Lb1,Bc1),safe_in(Sandwiches,Lb1)]),se(thing,Sandwiches,[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Home)])],[sc(lunch_box,Lb1,[box_outside(Lb1)] => [box_in_bag(Lb1,Bc1)])],[]).operator(move(Bc1,Sandwiches,Lb1,Home,Office),[],[sc(briefcase,Bc1,[at_carrier(Bc1,Home),goes_in(Lb1,Bc1),safe_in(Sandwiches,Lb1)] => [at_carrier(Bc1,Office)]),sc(thing,Sandwiches,[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Home)] =>[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Office)]),sc(lunch_box,Lb1,[at_carrier(Lb1,Home),box_in_bag(Lb1,Bc1)] =>[at_carrier(Lb1,Office),box_in_bag(Lb1,Bc1)])],[]).operator(take_out_box(Lb1,Sandwiches,Bc1,Office),[se(thing,Sandwiches,[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Office),goes_in(Lb1,Bc1),safe_in(Sandwiches,Lb1)]),se(briefcase,Bc1,[at_carrier(Bc1,Office)])],[sc(lunch_box,Lb1,[box_in_bag(Lb1,Bc1)] => [box_outside(Lb1)])],

217[]).operator(empty_box(Lb1,Sandwiches,Office),[se(lunch_box,Lb1,[box_outside(Lb1),at_carrier(Lb1,Office),safe_in(Sandwiches,Lb1)])],[sc(thing,Sandwiches,[in_box(Sandwiches,Lb1),at_thing(Sandwiches,Office)] =>[outside(Sandwiches),at_thing(Sandwiches,Office)])],[]).% namemethod(pack_and_take_lunch_to_work(Sandwiches),% dynamic constraints[],% list of necessary transitions[sc(thing,Sandwiches,[outside(Sandwiches),at_thing(Sandwiches,Home)] =>[outside(Sandwiches),at_thing(Sandwiches,Office)])],% static constraints[goes_in(Lb1,Bc1),safe_in(Sandwiches,Lb1)],% temporal constraints[before(1,2),before(2,3),before(3,4),before(4,5)],% decomposition[put_in_box(Sandwiches,Lb1,Home),put_box_in_bag(Bc1,Home,Sandwiches,Lb1),move(Bc1,Sandwiches,Lb1,Home,Office),take_out_box(Lb1,Sandwiches,Bc1,Office),empty_box(Lb1,Sandwiches,Office)]).*/

Appendix ETHE GIPO-CONSTRUCTED EXTENDED TYREDOMAIN INCLUDING EXTRA TASKSAll rights reserved. Use of this software is permitted for non-commercial researchpurposes, and it may be copied only for that use. All copies must include thiscopyright message. This software is made available AS IS, and neither the GIPOteam nor the University of Hudders�eld make any warranty about the software or itsperformance.Automatically generated OCL Domain from GIPO Version 2.0Author: Beth Richardson Institution: University of Hudders�eld Date created:April 2000 Date last modi�ed: 2006/11/01 at 03:16:13 PM GMT Description: Thistyre domain has extra objects and actions. Now, instead of just two wheels there are�ve with �ve tyres, four wheel trims and four named hubs. There are also four sets ofwheel nuts. The pump now has a use. If a tyre is low it may be `at' or `punctured'.If it is at then a prevail of inate tyre is have(pump).domain_name(tyre_extended).option(hierarchical).% Sortssorts(primitive_sorts,[container,nuts,hub,pump,wheel,wrench,jack,wheel_trim,tyre]).% Objectsobjects(container,[boot]).objects(nuts,[nuts1,nuts2,nuts3,nuts4]).

219objects(hub,[hub1,hub2,hub3,hub4]).objects(pump,[pump0]).objects(wheel,[wheel1,wheel2,wheel3,wheel4,wheel5]).objects(wrench,[wrench0]).objects(jack,[jack0]).objects(wheel_trim,[trim1,trim2,trim3,trim4]).objects(tyre,[tyre1,tyre2,tyre3,tyre4,tyre5]).% Predicatespredicates([closed(container),open(container),tight(nuts,hub),loose(nuts,hub),have_nuts(nuts),on_ground(hub),fastened(hub),jacked_up(hub,jack),free(hub),unfastened(hub),have_pump(pump),pump_in(pump,container),have_wheel(wheel),wheel_in(wheel,container),wheel_on(wheel,hub),have_wrench(wrench),wrench_in(wrench,container),have_jack(jack),jack_in_use(jack,hub),jack_in(jack,container),trim_on(wheel_trim,wheel),trim_off(wheel_trim),fits_on(tyre,wheel),

220full(tyre),flat(tyre),punctured(tyre)]).% Object Class Definitionssubstate_classes(container,C,[[closed(C)],[open(C)]]).substate_classes(nuts,N,[[tight(N,H)],[loose(N,H)],[have_nuts(N)]]).substate_classes(hub,H,[[on_ground(H),fastened(H)],[jacked_up(H,J),fastened(H)],[free(H),jacked_up(H,J),unfastened(H)],[unfastened(H),jacked_up(H,J)]]).substate_classes(pump,Pu,[[have_pump(Pu)],[pump_in(Pu,C)]]).substate_classes(wheel,Wh,[[have_wheel(Wh)],[wheel_in(Wh,C)],[wheel_on(Wh,H)]]).substate_classes(wrench,Wr,[[have_wrench(Wr)],[wrench_in(Wr,C)]]).substate_classes(jack,J,[[have_jack(J)],[jack_in_use(J,H)],[jack_in(J,C)]]).substate_classes(wheel_trim,WT,[[trim_on(WT,Wh)],

221[trim_off(WT)]]).substate_classes(tyre,Ty,[[fits_on(Ty,Wh)],[full(Ty)],[flat(Ty)],[punctured(Ty)]]).% Atomic Invariantsatomic_invariants([fits_on(tyre1,wheel1),fits_on(tyre2,wheel2),fits_on(tyre3,wheel3),fits_on(tyre4,wheel4),fits_on(tyre5,wheel5)]).% Implied Invariants% Inconsistent Constraintsinconsistent_constraint([have_nuts(N),tight(N,_)]).inconsistent_constraint([have_nuts(N),loose(N,_)]).inconsistent_constraint([loose(_,H),tight(_,H)]).inconsistent_constraint([unfastened(H),tight(_,H)]).inconsistent_constraint([unfastened(H),loose(_,H)]).inconsistent_constraint([wheel_in(Wh,_),wheel_on(Wh,_)]).inconsistent_constraint([wheel_in(Wh,_),have_wheel(Wh)]).inconsistent_constraint([jack_in(J,_),have_jack(J)]).inconsistent_constraint([pump_in(Pu,_),have_pump(Pu)]).inconsistent_constraint([wrench_in(Wr,_),have_wrench(Wr)]).inconsistent_constraint([open(C),closed(C)]).inconsistent_constraint([full(Ty),flat(Ty)]).inconsistent_constraint([full(Ty),punctured(Ty)]).inconsistent_constraint([flat(Ty),punctured(Ty)]).inconsistent_constraint([fastened(H),unfastened(H)]).

222inconsistent_constraint([jacked_up(H,J),on_ground(H)]).inconsistent_constraint([free(H),wheel_on(_,H)]).inconsistent_constraint([free(X),fastened(X)]).inconsistent_constraint([free(X),tight(Nuts,X)]).inconsistent_constraint([free(X),loose(Nuts,X)]).inconsistent_constraint([wheel_on(W1,X),wheel_on(W2,X),ne(W1,W2)]).inconsistent_constraint([wheel_on(W,H1),wheel_on(W,H2),ne(H1,H2)]).inconsistent_constraint([wheel_on(W,H1),have_wheel(W)]).inconsistent_constraint([jacked_up(H,J),jack_in(J,_)]).inconsistent_constraint([jacked_up(H,J),have_jack(J)]).inconsistent_constraint([fastened(H),have_nuts(N)]).inconsistent_constraint([jack_in_use(J,_),jack_in(J,_)]).inconsistent_constraint([jack_in_use(J,_),have_jack(J)]).inconsistent_constraint([jack_in_use(J,H),on_ground(H)]).inconsistent_constraint([trim_on(WT,Wh),loose(N,H)]).inconsistent_constraint([trim_on(Wheel_trim,Wheel),jack_in_use(Jack,Hub)]).inconsistent_constraint([trim_on(Wheel_trim,Wheel),have_nuts(Nuts)]).inconsistent_constraint([trim_on(Wheel_trim,Wheel),free(Hub)]).inconsistent_constraint([trim_on(Wheel_trim,Wheel),unfastened(Hub)]).% Operatorsoperator(open_container(C),% prevail[],% necessary[sc(container,C,[closed(C)]=>[open(C)])],% conditional[]).operator(close_container(C),% prevail[],% necessary[sc(container,C,[open(C)]=>[closed(C)])],

223% conditional[]).operator(fetch_jack(C,J),% prevail[se(container,C,[open(C)])],% necessary[sc(jack,J,[jack_in(J,C)]=>[have_jack(J)])],% conditional[]).operator(fetch_wheel(C,Wh),% prevail[se(container,C,[open(C)])],% necessary[sc(wheel,Wh,[wheel_in(Wh,C)]=>[have_wheel(Wh)])],% conditional[]).operator(fetch_wrench(C,Wr),% prevail[se(container,C,[open(C)])],% necessary[sc(wrench,Wr,[wrench_in(Wr,C)]=>[have_wrench(Wr)])],% conditional[]).operator(fetch_pump(C,Pu),% prevail[se(container,C,[open(C)])],% necessary[sc(pump,Pu,[pump_in(Pu,C)]=>[have_pump(Pu)])],% conditional[]).operator(putaway_wheel(C,Wh),% prevail[se(container,C,[open(C)])],

224% necessary[sc(wheel,Wh,[have_wheel(Wh)]=>[wheel_in(Wh,C)])],% conditional[]).operator(putaway_wrench(C,Wr),% prevail[se(container,C,[open(C)])],% necessary[sc(wrench,Wr,[have_wrench(Wr)]=>[wrench_in(Wr,C)])],% conditional[]).operator(putaway_jack(C,J),% prevail[se(container,C,[open(C)])],% necessary[sc(jack,J,[have_jack(J)]=>[jack_in(J,C)])],% conditional[]).operator(putaway_pump(C,Pu),% prevail[se(container,C,[open(C)])],% necessary[sc(pump,Pu,[have_pump(Pu)]=>[pump_in(Pu,C)])],% conditional[]).operator(loosen(Wr,H,WT,N),% prevail[se(wrench,Wr,[have_wrench(Wr)]),se(hub,H,[on_ground(H),fastened(H)]),se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(nuts,N,[tight(N,H)]=>[loose(N,H)])],% conditional

225[]).operator(tighten(Wr,H,WT,N),% prevail[se(wrench,Wr,[have_wrench(Wr)]),se(hub,H,[on_ground(H),fastened(H)]),se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(nuts,N,[loose(N,H)]=>[tight(N,H)])],% conditional[]).operator(jack_up(N,H,J),% prevail[se(nuts,N,[loose(N,H)])],% necessary[sc(hub,H,[on_ground(H),fastened(H)]=>[jacked_up(H,J),fastened(H)]),sc(jack,J,[have_jack(J)]=>[jack_in_use(J,H)])],% conditional[]).operator(jack_down(N,H,J),% prevail[se(nuts,N,[loose(N,H)])],% necessary[sc(hub,H,[jacked_up(H,J),fastened(H)]=>[on_ground(H),fastened(H)]),sc(jack,J,[jack_in_use(J,H)]=>[have_jack(J)])],% conditional[]).operator(do_up(Wr,WT,H,J,N),% prevail[se(wrench,Wr,[have_wrench(Wr)]),se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(hub,H,[unfastened(H),jacked_up(H,J)]=>[jacked_up(H,J),fastened(H)]),sc(nuts,N,[have_nuts(N)]=>[loose(N,H)])],

226% conditional[]).operator(remove_wheel(WT,Wh,H,J),% prevail[se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(wheel,Wh,[wheel_on(Wh,H)]=>[have_wheel(Wh)]),sc(hub,H,[unfastened(H),jacked_up(H,J)]=>[free(H),jacked_up(H,J),unfastened(H)])],% conditional[]).operator(put_on_wheel(WT,Wh,H,J),% prevail[se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(wheel,Wh,[have_wheel(Wh)]=>[wheel_on(Wh,H)]),sc(hub,H,[free(H),jacked_up(H,J),unfastened(H)]=>[unfastened(H),jacked_up(H,J)])],% conditional[]).operator(undo(Wr,WT,H,J,N),% prevail[se(wrench,Wr,[have_wrench(Wr)]),se(wheel_trim,WT,[trim_off(WT)])],% necessary[sc(hub,H,[jacked_up(H,J),fastened(H)]=>[unfastened(H),jacked_up(H,J)]),sc(nuts,N,[loose(N,H)]=>[have_nuts(N)])],% conditional[]).operator(apply_trim(H,WT,Wh),% prevail[se(hub,H,[on_ground(H),fastened(H)])],% necessary[sc(wheel_trim,WT,[trim_off(WT)]=>[trim_on(WT,Wh)])],% conditional

227[]).operator(remove_trim(H,WT,Wh),% prevail[se(hub,H,[on_ground(H),fastened(H)])],% necessary[sc(wheel_trim,WT,[trim_on(WT,Wh)]=>[trim_off(WT)])],% conditional[]).operator(inflate_tyre(Pu,Ty),% prevail[se(pump,Pu,[have_pump(Pu)])],% necessary[sc(tyre,Ty,[flat(Ty)]=>[full(Ty)])],% conditional[]).operator(find_puncture(Pu,Ty),% prevail[se(pump,Pu,[have_pump(Pu)])],% necessary[sc(tyre,Ty,[flat(Ty)]=>[punctured(Ty)])],% conditional[]).% Methods/***** The pump is used to re-inflate the tyre and then returned to the boot.*/method(fix_flat(Ty),% pre-condition[], % Index Transitions[

228sc(tyre,Ty,[flat(Ty)]=>[full(Ty)])],% Static[], % Temporal Constraints[before(1,2),before(2,3),before(3,4),before(4,5)],% Decomposition[open_container(C),fetch_pump(C,Pu),inflate_tyre(Pu,Ty),putaway_pump(C,Pu),close_container(C)])./***** The pump is used to discover that the flat tyre won't inflate so it isclassified as punctured. The pump is then returned to the boot.*/method(discover_puncture(Ty),% pre-condition[], % Index Transitions[sc(tyre,Ty,[flat(Ty)]=>[punctured(Ty)])],% Static[], % Temporal Constraints

229[before(1,2),before(2,3),before(3,4)],% Decomposition[achieve(ss(container,C,[open(C)])),fetch_pump(C,Pu),find_puncture(Pu,Ty),putaway_pump(C,Pu)])./***** The jack and wrench needed to change the wheel are fetched.*/method(fetch_tools(Wr,C,J),% pre-condition[], % Index Transitions[sc(wrench,Wr,[wrench_in(Wr,C)]=>[have_wrench(Wr)]),sc(jack,J,[jack_in(J,C)]=>[have_jack(J)])],% Static[], % Temporal Constraints[before(1,2),before(1,3)],% Decomposition[achieve(ss(container,C,[open(C)])),fetch_jack(C,J),

230fetch_wrench(C,Wr)])./***** The jack and wrench are put away in the boot.*/method(putaway_tools(Wr,C,J),% pre-condition[], % Index Transitions[sc(wrench,Wr,[have_wrench(Wr)]=>[wrench_in(Wr,C)]),sc(jack,J,[have_jack(J)]=>[jack_in(J,C)])],% Static[], % Temporal Constraints[before(1,2),before(1,3)],% Decomposition[achieve(ss(container,C,[open(C)])),putaway_wrench(C,Wr),putaway_jack(C,J)])./***** The wheel trim is removed and the wheel nuts are loosened. After jackingup the car the wheel nuts are undone and removed.*/method(unfasten_hub(N,H,J,WT,Wh),% pre-condition[

231se(wrench,Wr,[have_wrench(Wr)])],% Index Transitions[sc(nuts,N,[tight(N,H)]=>[have_nuts(N)]),sc(hub,H,[on_ground(H),fastened(H)]=>[unfastened(H),jacked_up(H,J)]),sc(jack,J,[have_jack(J)]=>[jack_in_use(J,H)]),sc(wheel_trim,WT,[trim_on(WT,Wh)]=>[trim_off(WT)])],% Static[], % Temporal Constraints[before(1,2),before(2,3),before(3,4),before(4,5)],% Decomposition[fetch_tools(Wr,C,J),remove_trim(H,WT,Wh),loosen(Wr,H,WT,N),jack_up(N,H,J),undo(Wr,WT,H,J,N)])./***** The wheel nuts are applied and done up, then the jack is lowered and thewheel nuts tightened. Finally the wheel trim is replaced.*/method(fasten_hub(N,H,J,WT,Wh),% pre-condition[se(wrench,Wr,[have_wrench(Wr)])],% Index Transitions

232[sc(nuts,N,[have_nuts(N)]=>[tight(N,H)]),sc(hub,H,[unfastened(H),jacked_up(H,J)]=>[on_ground(H),fastened(H)]),sc(jack,J,[jack_in_use(J,H)]=>[have_jack(J)]),sc(wheel_trim,WT,[trim_off(WT)]=>[trim_on(WT,Wh)])],% Static[], % Temporal Constraints[before(3,4),before(4,5),before(1,2),before(2,3)],% Decomposition[achieve(ss(hub,H,[unfastened(H),jacked_up(H,J)])),do_up(Wr,WT,H,J,N),jack_down(N,H,J),tighten(Wr,H,WT,N),apply_trim(H,WT,Wh)])./***** The punctured wheel is removed and replaced by the spare.*/method(change_wheel(Wh1,H,Wh2),% pre-condition[], % Index Transitions[sc(wheel,Wh1,[have_wheel(Wh1)]=>[wheel_on(Wh1,H)]),sc(wheel,Wh2,[wheel_on(Wh2,H),ne(Wh2,Wh1)]=>[have_wheel(Wh2),ne(Wh2,Wh1)])],

233% Static[], % Temporal Constraints[before(2,3),before(1,2)],% Decomposition[achieve(ss(hub,H,[unfastened(H),jacked_up(H,J)])),remove_wheel(WT,Wh,H,J),put_on_wheel(WT,Wh,H,J)]).% Domain Tasksplanner_task(1,% Goals[se(container,boot,[closed(boot)]),se(wheel,wheel1,[wheel_on(wheel1,hub1)]),se(tyre,tyre1,[full(tyre1)]),se(wheel_trim,trim1,[trim_on(trim1,wheel1)]),se(hub,hub1,[on_ground(hub1),fastened(hub1)]),se(pump,pump0,[pump_in(pump0,boot)]),se(wrench,wrench0,[wrench_in(wrench0,boot)]),se(jack,jack0,[jack_in(jack0,boot)])],% INIT States[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),

234ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)])]).planner_task(2,% Goals[se(container,boot,[closed(boot)]),se(wheel,wheel1,[wheel_in(wheel1,boot)]),se(wheel,wheel5,[wheel_on(wheel5,hub1)]),se(tyre,tyre1,[punctured(tyre1)]),se(wheel_trim,trim1,[trim_on(trim1,wheel5)]),se(hub,hub1,[on_ground(hub1),fastened(hub1)]),se(pump,pump0,[pump_in(pump0,boot)]),se(wrench,wrench0,[wrench_in(wrench0,boot)]),se(jack,jack0,[jack_in(jack0,boot)]),se(nuts,nuts1,[tight(nuts1,hub1)])],% INIT States[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),

235ss(pump,pump0,[pump_in(pump0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)])]).planner_task(3,% Goals[se(container,boot,[closed(boot)]),se(tyre,tyre1,[full(tyre1)]),se(wheel,wheel1,[wheel_on(wheel1,hub4)]),se(wheel,wheel4,[wheel_in(wheel4,boot)]),se(wheel_trim,trim4,[trim_on(trim4,wheel1)])],% INIT States[ss(wheel,wheel1,[wheel_in(wheel1,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(tyre,tyre2,[full(tyre2)]),ss(wheel_trim,trim2,[trim_on(trim2,wheel2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(tyre,tyre3,[full(tyre3)]),ss(wheel_trim,trim3,[trim_on(trim3,wheel3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(tyre,tyre4,[punctured(tyre4)]),ss(wheel_trim,trim4,[trim_on(trim4,wheel4)]),ss(wheel,wheel5,[wheel_on(wheel5,hub1)]),ss(tyre,tyre5,[full(tyre5)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel5)]),ss(container,boot,[closed(boot)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),

236ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(hub,hub2,[on_ground(hub2),fastened(hub2)]),ss(hub,hub3,[on_ground(hub3),fastened(hub3)]),ss(hub,hub4,[on_ground(hub4),fastened(hub4)])]).planner_task(4,% Goals[se(wheel,wheel5,[wheel_on(wheel5,hub3)]),se(hub,hub3,[on_ground(hub3),fastened(hub3)]),se(wheel_trim,trim3,[trim_on(trim3,wheel5)]),se(wheel,wheel3,[wheel_in(wheel3,boot)]),se(nuts,nuts3,[tight(nuts3,hub3)])],% INIT States[ss(wheel_trim,trim3,[trim_off(trim3)]),ss(tyre,tyre3,[punctured(tyre3)]),ss(hub,hub3,[on_ground(hub3),fastened(hub3)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(pump,pump0,[have_pump(pump0)]),ss(container,boot,[open(boot)]),ss(tyre,tyre5,[full(tyre5)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(nuts,nuts3,[tight(nuts3,hub3)])]).% HTN Domain Taskshtn_task(1,

237goal([open_container(boot),fetch_pump(boot,pump0),inflate_tyre(pump0,Ty),putaway_pump(boot,pump0),close_container(boot)],% Temporal Constraints[before(1,2),before(2,3),before(3,4),before(4,5)],% Static constraints[]), % INIT States[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)])])./* Experimental set of domain tasks designed to cover the main tasks for which the methods were induced.

238
% Domain Tasksplanner_task(1,% Goals[se(container,boot,[closed(boot)]),se(wheel,wheel1,[wheel_on(wheel1,hub1)]),se(tyre,tyre1,[full(tyre1)]),se(wheel_trim,trim1,[trim_on(trim1,wheel1)]),se(hub,hub1,[on_ground(hub1),fastened(hub1)]),se(pump,pump0,[pump_in(pump0,boot)]),se(wrench,wrench0,[wrench_in(wrench0,boot)]),se(jack,jack0,[jack_in(jack0,boot)])],% INIT States[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)])]).planner_task(2,% Goals[se(container,boot,[closed(boot)]),se(wheel,wheel1,[wheel_in(wheel1,boot)]),se(wheel,wheel5,[wheel_on(wheel5,hub1)]),

239se(tyre,tyre1,[punctured(tyre1)]),se(wheel_trim,trim1,[trim_on(trim1,wheel5)]),se(hub,hub1,[on_ground(hub1),fastened(hub1)]),se(pump,pump0,[pump_in(pump0,boot)]),se(wrench,wrench0,[wrench_in(wrench0,boot)]),se(jack,jack0,[jack_in(jack0,boot)]),se(nuts,nuts1,[tight(nuts1,hub1)])],% INIT States[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)])]).planner_task(3,% Goals[se(container,boot,[closed(boot)]),se(tyre,tyre1,[full(tyre1)]),se(wheel,wheel1,[wheel_on(wheel1,hub4)]),se(wheel,wheel4,[wheel_in(wheel4,boot)]),se(wheel_trim,trim4,[trim_on(trim4,wheel1)])],

240% INIT States[ss(wheel,wheel1,[wheel_in(wheel1,boot)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(tyre,tyre2,[full(tyre2)]),ss(wheel_trim,trim2,[trim_on(trim2,wheel2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(tyre,tyre3,[full(tyre3)]),ss(wheel_trim,trim3,[trim_on(trim3,wheel3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(tyre,tyre4,[punctured(tyre4)]),ss(wheel_trim,trim4,[trim_on(trim4,wheel4)]),ss(wheel,wheel5,[wheel_on(wheel5,hub1)]),ss(tyre,tyre5,[full(tyre5)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel5)]),ss(container,boot,[closed(boot)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(hub,hub2,[on_ground(hub2),fastened(hub2)]),ss(hub,hub3,[on_ground(hub3),fastened(hub3)]),ss(hub,hub4,[on_ground(hub4),fastened(hub4)])]).planner_task(4,% Goals[se(wheel,wheel5,[wheel_on(wheel5,hub3)]),se(hub,hub3,[on_ground(hub3),fastened(hub3)]),

241se(wheel_trim,trim3,[trim_on(trim3,wheel5)]),se(wheel,wheel3,[wheel_in(wheel3,boot)]),se(nuts,nuts3,[tight(nuts3,hub3)])],% INIT States[ss(wheel_trim,trim3,[trim_off(trim3)]),ss(tyre,tyre3,[punctured(tyre3)]),ss(hub,hub3,[on_ground(hub3),fastened(hub3)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(pump,pump0,[have_pump(pump0)]),ss(container,boot,[open(boot)]),ss(tyre,tyre5,[full(tyre5)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(nuts,nuts3,[tight(nuts3,hub3)])]).planner_task(5,% Goals[se(container,boot,[open(boot)]),se(hub,hub1,[on_ground(hub1),fastened(hub1)]),se(wheel_trim,trim1,[trim_on(trim1,wheel1)]),se(tyre,tyre1,[punctured(tyre1)]),se(wheel,wheel1,[wheel_on(wheel1,hub1)]),se(wheel,wheel2,[wheel_on(wheel2,hub2)]),se(wheel,wheel3,[wheel_on(wheel3,hub3)]),se(wheel,wheel4,[wheel_on(wheel4,hub4)]),se(wheel,wheel5,[wheel_in(wheel5,boot)]),se(pump,pump0,[pump_in(pump0,boot)]),se(jack,jack0,[have_jack(jack0)]),se(wrench,wrench0,[have_wrench(wrench0)])],% INIT States[

242ss(container,boot,[closed(boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(tyre,tyre1,[flat(tyre1)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)])]).planner_task(6,% Goals[se(nuts,nuts1,[have_nuts(nuts1)]),se(hub,hub1,[free(hub1),jacked_up(hub1,jack0),unfastened(hub1)]),se(wheel,wheel1,[have_wheel(wheel1)]),se(wheel_trim,trim1,[trim_off(trim1)])],% INIT States[ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(wrench,wrench0,[have_wrench(wrench0)]),ss(jack,jack0,[have_jack(jack0)]),

243ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),ss(wheel_trim,trim2,[trim_on(trim2,wheel2)]),ss(wheel_trim,trim3,[trim_on(trim3,wheel3)]),ss(wheel_trim,trim4,[trim_on(trim4,wheel4)]),ss(tyre,tyre1,[punctured(tyre1)])]).planner_task(7,% Goals[se(tyre,tyre1,[punctured(tyre1)]),se(wheel_trim,trim1,[trim_off(trim1)]),se(jack,jack0,[jack_in_use(jack0,hub1)]),se(wrench,wrench0,[have_wrench(wrench0)]),se(wheel,wheel1,[have_wheel(wheel1)]),se(hub,hub1,[free(hub1),jacked_up(hub1,jack0),unfastened(hub1)]),se(nuts,nuts1,[have_nuts(nuts1)]),se(container,boot,[open(boot)])],% INIT States[ss(container,boot,[closed(boot)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wheel_trim,trim1,[trim_on(trim1,wheel1)]),

244ss(wheel_trim,trim2,[trim_on(trim2,wheel2)]),ss(wheel_trim,trim3,[trim_on(trim3,wheel3)]),ss(wheel_trim,trim4,[trim_on(trim4,wheel4)]),ss(tyre,tyre1,[flat(tyre1)])]).*/

Appendix FA TYPICAL TEST FILE TO GENERATE THE METHODDISCOVER PUNCTURE IN THE EXTENDED TYREDOMAIN/* Experimental file to produce a method for the actions- open (boot)- fetch_pump- find_puncture- putaway_pumpfrom tyre_extended world. The method will be called discover_puncture. */:- multifile input/3.:- dynamic input/3.:- multifile planner_task/3.:- dynamic planner_task/3.sequence([open_container(boot),fetch_pump(@boot,pump0),find_puncture(@pump0,tyre1),putaway_pump(@boot,pump0)]).htn(discover_puncture).

246
opposites(_,_):-fail.planner_task(_,% Goal[se(container,boot,[open(boot)]),se(pump,pump0,[pump_in(pump0,boot)]),se(tyre,tyre1,[punctured(tyre1)])],% Initial state[ss(container,boot,[closed(boot)]),ss(wheel,wheel1,[wheel_on(wheel1,hub1),trim_on(wheel1,trim1)]),ss(wheel,wheel2,[wheel_on(wheel2,hub2),trim_on(wheel2,trim2)]),ss(wheel,wheel3,[wheel_on(wheel3,hub3),trim_on(wheel3,trim3)]),ss(wheel,wheel4,[wheel_on(wheel4,hub4),trim_on(wheel4,trim4)]),ss(wheel,wheel5,[wheel_in(wheel5,boot),trim_off(wheel5)]),ss(tyre,tyre2,[full(tyre2)]),ss(tyre,tyre1,[flat(tyre1)]),ss(wheel_trim,trim1,[trim_on_wheel(trim1,wheel1)]),ss(wheel_trim,trim2,[trim_on_wheel(trim2,wheel2)]),ss(wheel_trim,trim3,[trim_on_wheel(trim3,wheel3)]),ss(wheel_trim,trim4,[trim_on_wheel(trim4,wheel4)]),ss(nuts,nuts1,[tight(nuts1,hub1)]),ss(nuts,nuts2,[tight(nuts2,hub2)]),ss(nuts,nuts3,[tight(nuts3,hub3)]),ss(nuts,nuts4,[tight(nuts4,hub4)]),ss(pump,pump0,[pump_in(pump0,boot)]),ss(jack,jack0,[jack_in(jack0,boot)]),ss(wrench,wrench0,[wrench_in(wrench0,boot)]),ss(hub,hub1,[on_ground(hub1),fastened(hub1)]),ss(hub,hub2,[on_ground(hub2),fastened(hub2)]),

247ss(hub,hub3,[on_ground(hub3),fastened(hub3)]),ss(hub,hub4,[on_ground(hub4),fastened(hub4)])])./*** All rights reserved. Use of this software is permitted for non-commercial* research purposes, and it may be copied only for that use. All copies must* include this copyright message. This software is made available AS IS, and* neither the GIPO team nor the University of Huddersfield make any warranty* about the software or its performance.** Automatically generated OCL Domain from GIPO Version 2.0** Author: Beth Richardson* Institution: University of Huddersfield* Date created: April 2000* Date last modified: 2006/10/25 at 03:52:11 PM BST* Description:* This tyre domain has extra objects and actions. Now, instead of just two* wheels there are five with five tyres, four wheel trims and four named* hubs. There are also four sets of wheel nuts. The pump now has a use. If* a tyre is low it may be 'flat' or 'punctured'. If it is flat then a prevail of* inflate_tyre is have(pump).*/domain_name(tyre_extended).% Sortssorts(primitive_sorts,[container,nuts,hub,pump,wheel,wrench,jack,wheel_trim,tyre]).% Objectsobjects(container,[boot]).objects(nuts,[nuts1,nuts2,nuts3,nuts4]).

248objects(hub,[hub1,hub2,hub3,hub4]).objects(pump,[pump0]).objects(wheel,[wheel1,wheel2,wheel3,wheel4,wheel5]).objects(wrench,[wrench0]).objects(jack,[jack0]).objects(wheel_trim,[trim1,trim2,trim3,trim4]).objects(tyre,[tyre1,tyre2,tyre3,tyre4,tyre5]).% Predicatespredicates([closed(container),open(container),tight(nuts,hub),loose(nuts,hub),have_nuts(nuts),on_ground(hub),fastened(hub),jacked_up(hub,jack),free(hub),unfastened(hub),have_pump(pump),pump_in(pump,container),have_wheel(wheel),wheel_in(wheel,container),wheel_on(wheel,hub),have_wrench(wrench),wrench_in(wrench,container),have_jack(jack),jack_in_use(jack,hub),jack_in(jack,container),trim_on(wheel,wheel_trim),trim_off(wheel),fits_on(tyre,wheel),

249full(tyre),flat(tyre),punctured(tyre),have_trim(wheel_trim),trim_on_wheel(wheel_trim,wheel)]).% Object Class Definitionssubstate_classes([container(C,[[closed(C)],[open(C)]]),nuts(N,[[tight(N,H)],[loose(N,H)],[have_nuts(N)]]),hub(H,[[on_ground(H),fastened(H)],[jacked_up(H,J),fastened(H)],[free(H),jacked_up(H,J),unfastened(H)],[unfastened(H),jacked_up(H,J)]]),pump(Pu,[[have_pump(Pu)],[pump_in(Pu,C)]]),wheel(Wh,[

250[have_wheel(Wh),trim_off(Wh)],[wheel_in(Wh,C),trim_off(Wh)],[wheel_on(Wh,H),trim_off(Wh)],[wheel_on(Wh,H),trim_on(Wh,WT)]]),wrench(Wr,[[have_wrench(Wr)],[wrench_in(Wr,C)]]),jack(J,[[have_jack(J)],[jack_in_use(J,H)],[jack_in(J,C)]]),wheel_trim(WT,[[trim_on_wheel(WT,Wh)],[have_trim(WT)]]),tyre(Ty,[[full(Ty)],[flat(Ty)],[punctured(Ty)],[fits_on(Ty,Wh)]])]).% Atomic Invariantsatomic_invariants([fits_on(tyre1,wheel1),

251fits_on(tyre2,wheel2),fits_on(tyre3,wheel3),fits_on(tyre4,wheel4),fits_on(tyre5,wheel5)]).% Implied Invariants% Inconsistent Constraints% Equivalences between predicates% (note redundancy of predicates sometimes has useful side-effect of% of enforcing 1:1 relationships)invariant(all(H:hub,fastened(H)<==>ex(N:nuts,tight(N,H)\/loose(N,H)))).invariant(all(H:hub,all(J:jack,jack_in_use(J,H)<==>jacked_up(H,J)))).invariant(all(H:hub,~free(H)<==>ex(W:wheel,wheel_on(W,H)))).invariant(all(T:wheel_trim,all(W:wheel,trim_on_wheel(T,W)<==>trim_on(W,T)))).% Hub may only have one set of nuts attachedinvariant(all(H:hub,all(N1:nuts,all(N2:nuts,(tight(N1,H)\/loose(N1,H)) /\(tight(N2,H)\/loose(N2,H))==>(N1=N2))))).% Hub may only have one wheel attached.invariant(all(H:hub,all(W1:wheel,all(W2:wheel,wheel_on(W1,H)/\wheel_on(W2,H)==>(W1=W2))))).% If the nuts are tight then the hub must be on the ground.invariant(all(H:hub, ex(N:nuts,tight(N,H)) ==> on_ground(H))).% If a trim is on a wheel, then the wheel is on a hub and% the nuts are tight.

252invariant(all(W:wheel,ex(T:wheel_trim,trim_on_wheel(T,W))==>ex(H:hub,wheel_on(W,H)/\ex(N:nuts,tight(N,H)))))./*OUTPUT - the correct set of operators and a methodoperator(fetch_pump(Container1,Pump2),[se(container,boot,[open(Container1)])],[sc(pump,Pump2,[pump_in(Pump2,Container1)]=>[have_pump(Pump2)])],[]).operator(find_puncture(Pump1,Tyre2),[se(pump,pump0,[have_pump(Pump1)])],[sc(tyre,Tyre2,[flat(Tyre2)]=>[punctured(Tyre2)])],[]).operator(open_container(Container1),[],[sc(container,Container1,[closed(Container1)]=>[open(Container1)])],[]).operator(putaway_pump(Container1,Pump2),[se(container,boot,[open(Container1)])

253],[sc(pump,Pump2,[have_pump(Pump2)]=>[pump_in(Pump2,Container1)])],[]).*/
% namemethod(discover_puncture(Tyre1,Boot,Pump0),% dynamic constraints[se(pump,Pump0,[pump_in(Pump0,Boot)])],% list of necessary transitions[sc(tyre,Tyre1,[flat(Tyre1)] => [punctured(Tyre1)]),sc(container,Boot,[closed(Boot)] => [open(Boot)])],% static constraints[],% temporal constraints[before(1,2),before(2,3),before(3,4)],% decomposition[open_container(Boot),fetch_pump(Boot,Pump0),find_puncture(Pump0,Tyre1),putaway_pump(Boot,Pump0)]).

BIBLIOGRAPHY[1] M. Aben, J. Balder, and F. van Harmelen. Support for the formalisa-tion and validation of kads expertise model. Technical report, KADS-II/M2/UvA/DM2.6a/1.0, ESPRIT, 1994.[2] Scott Andrews, Brian Kettler, Kutluhan Erol, and James Hendler. Um translog:A planning domain for the development and benchmarking of planning systems.Technical report, Dept. of Computer Science, University of Maryland, CollegePark, MD 20742, USA 301.405.1000, 1995.[3] J. Blythe and T. M. Mitchell. On becoming reactive. Segre, pages 255{257, 1989.[4] Jim Blythe and Varun Ratnaker. Helping end users modify procedures by in-struction. In Proceedings of the International Conference for Knowledge Engi-neering in Planning and Scheduling, Monterez, 2005.[5] B. Borchers and J. Furman. A two-phase exact algorithm for max-sat andweighted max-sat problems. Journal of Combinatorial Optimization 2, 4:299{ 306, 1999.[6] Daniel Borrajo, Susana Fernandez, Raquel Fuetetaja, and Juan D. Arias. Toolfor automatically acquiring control knowledge for planning. In Proceedings of theInternational Conference for Knowledge Engineering in Planning and Schedul-ing, Monterez, 2005.

255[7] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Exten-sible markup language (xml) 1.0 - fourth edition world wide web consortium,recommendation rec-xml-20060816. http://www.w3.org/TR/REC-xml/, 2006.[8] B. G. Buchanan and T. M. Mitchell. Model-directed learning of production rules.In Pattern-Directed Inference Systems. Academic Press, 1978.[9] J. G. Carbonell. Introduction: Paradigms for machine learning. Arti�cial Intel-ligence, 40:1{9, 1989.[10] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: the operatorre�nement method. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,1990.[11] P. P.-S. Chen. The Entity-Relationship Model: Towards a Uni�ed View of Data.In ACM Transactions on Database Systems, volume 1, pages 9{36. ACM Press,1976.[12] Patrick Daley, Jeremy Frank, Michael Iatauro, Conor McGann, and Will Taylor.Planworks: A debugging environment for constraint based planning systems.In Proceedings of the International Conference for Knowledge Engineering inPlanning and Scheduling, Monterez, 2005.[13] Marie desJardins. Knowledge development methods for planning systems. InAAAi-94 Fall Symposium Series: Planning and Learning: On to Real Applica-tions, New Orleans, LA, USA, 1994. AAAI.[14] F.D. D'Souza and A.C. Wills. Objects, Components, and Frameworks with UML:The Catalysis Approach. Addison-Wesley, United States of America and Canada,1999.

256[15] S. Edelkamp and J. Ho�mann. Pddl2.2: The language for the classical part ofthe 4th international planning competition? In Proceedings of the ICAPS, 2004.[16] Stefan Edelkamp and Tilman Mehler. Knowledge acquisition and knowledge en-gineering in the ModPlan workbench. In Proceedings of the International Con-ference for Knowledge Engineering in Planning and Scheduling, Monterez, 2005.[17] D. Bernard et al. Remote Agent Experiment: Deep Space 1. Technical report,National Aeronautics and Space Administration, 2000.[18] E. Feigenbaum and P. McCorduck. The Fifth Generation. Addison-Wesley,Reading, MA, 1983.[19] R. Fikes, P. Hart, and N Nilsson. Learning and executing generalised robotplans. Arti�cial Intelligence, 3:251{288, 1972.[20] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the applicationfor theorem proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.[21] M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporalplanning domains. Journal of Arti�cial Intelligence Research, 20:61 { 124, 2003.[22] Garland, Tyall, and Rich. Learning hierarchical task models by de�ning and re-�ning examples. In Proceedings of the First International Conference on Knowl-edge Capture, 2001.[23] A. Gerevini and D. Long. Plan constraints and preferences in pddl3: The lan-guage of the �fth international planning competition. Technical report, TheUniversity of Brescia, Italy, August 2005.

257[24] Y. Gil. Acquiring Domain Knowledge for Planning by Experimentation. PhDthesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,USA, 1992.[25] GIPO. Graphical interface for planning with objects.http://compeng.hud.ac.uk/Artform/projects/planform/gipo, 2003.[26] T. J. Grant. Inductive Learning of Knowledge-Based Planning Operators. PhDthesis, de Rijksuniversiteit Limburg te Maastricht, Netherlands, 1996.[27] T.J. Grant. Assimilating planning domain knowledge from other agents. InProceedings of the 26th Workshop of the UK Planning and Scheduling SpecialInterest Group, 2007.[28] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas.Vleppo: A visual language for problem representation. In Proceedings of the26th Workshop of the UK Planning and Scheduling Special Interest Group, 2007.[29] J. Ho�mann. A "tough nuts" track for the ipc. In Proceedings of the ICAPS,2007.[30] J�org Ho�mann and Bernhard Nebel. The FF planning system: Fast plan genera-tion through heuristic search. Journal of Arti�cial Intelligence Research, 14:253{302, 2001.[31] C. Hogg and H. Munoz-Avila. Learning hierarchical task networks from plantraces. In Proceedings of the ICAPS'07 Workshop on Arti�cial Intelligence Plan-ning and Learning, 2007.

258[32] S. B. Hu�man, D. J. Pearson, and J. E. Laird. Correcting imperfect domaintheories: A knowledge-level analysis. In S. Chipman and A. Meyrowitz, editors,Kluwer Academic Press., 1992.[33] O. Ilghami, D.S. Nau, H. Munoz-Avila, and D.W. Aha. Learning preconditionsfor planning from plan traces and htn structure. Computational Intelligence 21,4:88{143, 2005.[34] C. M. Kadie. Di�y-s:learning robot operator schemata from examples. In Pro-ceedings of the 5th International Conference on Machine Learning, San Mateo,California, USA, 1988. Morgan Kaufmann.[35] D. E. Kitchin. Object-centred Generative Planning. PhD thesis, School of Com-puting and Mathematics, University of Hudders�eld, UK, 1999.[36] Pat Langley and Herbert A. Simon. Applications of machine learning and ruleinduction. Communications of the ACM, 38(11):54{64, 1995.[37] S. LaVoie, D. Alexander, C. Avis, H. Mortensen, C. Stanley, and L. Wainio.Vicar user's guide, version 2, jpl internal document d{ 41 86. Technical report,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,1989.[38] D.B. Lenat and R. Davis. Knowledge-Based Systems in Arti�cial Intelligence.McGraw-Hill, New York, 1982.[39] Geo�rey Levine and Gerald DeJong. Explanation-based acquisition of planningoperators. In Proceedings of the Sixteenth International Conference on Auto-mated Planning and Scheduling, pages 152{161, California, 2006.

259[40] D. Liu and T. L. McCluskey. The OCL Language Manual, Version 1.2. Techni-cal report, Department of Computing and Mathematical Sciences, University ofHudders�eld, UK, 2000.[41] G. F. Luger and W. A. Stubble�eld. Arti�cial Intelligence: Structures and Strate-gies for Complex Problem Solving. The Benjamin/Cummings Publishing Com-pany, Inc., California, 1993.[42] B. Marthi, J. Wolfe, and S. Russell. Semantics for high-level actions. In Pro-ceedings of the International Conference on Automated Planning and Scheduling,ICAPS 2007, 2007.[43] T. L. McCluskey and D. E. Kitchin. A Tool-Supported Approach to EngineeringHTN Planning Models. In Proceedings of 10th IEEE International Conferenceon Tools with Arti�cial Intelligence, 1998.[44] T. L. McCluskey, D. Liu, and R. Simpson. Gipo ii: Htn planning in a tool-supported knowledge engineering environment. In Proceedings of the Interna-tional Conference on Automated Planning and Scheduling, 2003.[45] T. L. McCluskey and J. M. Porteous. Engineering and Compiling PlanningDomain Models to Promote Validity and E�ciency. Arti�cial Intelligence, 95:1{65, 1997.[46] T. L. McCluskey and N. E. Richardson. The induction of operator descriptionsfrom examples and structural domain knowledge. In Proceedings of the 20thWorkshop of the UK Planning and Scheduling Special Interest Group, pages 181{192, 2001.[47] T. L. McCluskey, N. E. Richardson, and R. M. Simpson. An Interactive Methodfor Inducing Operator Descriptions. In Proceedings of the 7th International Con-

260ference on Arti�cial Intelligence Planning and Scheduling Systems (aips-2002),2002.[48] T. L. McCluskey and M. M. West. Towards the automated debugging andmaintenance of logic-based requirements models. In ASE '98: Proceedings of the13th IEEE International Conference on Automated Software Engineering, 1998.[49] T. L. McCluskey and M. M. West. The Automated Re�nement of a RequirementsDomain Theory. Journal of Automated Software Engineering, Special Issue onInductive Programming, 6:195{218, May 2001.[50] T.L. McCluskey, S.N. Cresswell, N.E. Richardson, and M.M. West. Opmaker2:E�cient action schema acquisition. In Proceedings of the 26th Workshop of theUK Planning and Scheduling Special Interest Group, 2007.[51] P. Meseguer and A. D. Preece. Assessing the role of formal speci�cations inveri�cation and validation of knowledge-based systems. In Proceedings of the3rd International Conference on Achieving Quality in Software, pages 317{328,London, 1996. Chapman and Hall.[52] R. S. Michalski. Pattern recognition as rule-guided inductive inference. InIEEE Transactions on Pattern Analysis and Machine Intelligence, pages 349{361, 1980.[53] S. Minton and M. Zweben. Machine Learning Methods for Planning. MorganKaufmann, San Francisco, California, 1993.[54] Proshanto Mukherji and Lenhart K. Schubert. Discovering planning invariantsas anomalies in state descriptions. In Proceedings of the Fifteenth InternationalConference on Automated Planning and Scheduling (ICAPS 2005), Monterey,US, 2005.

261[55] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of theIEEE, 77, 4:541 { 580, 1989.[56] Negin Nejati, Pat Langley, and Tolga Konik. Learning hierarchical task networksby observation. In ICML '06: Proceedings of the 23rd international conferenceon Machine learning, pages 665{672, New York, NY, USA, 2006. ACM.[57] D. J. Pearson. Learning procedural planning knowledge in complex environments.PhD thesis, Computer Science and Engineering, The University of Michigan,1996.[58] Planform. An open environment for building planners.http://compeng.hud.ac.uk/Artform/projects/planform/, 2007.[59] Bruce W. Porter and Dennis F. Kibler. Experimental goal regression: A methodfor learning problem-solving heuristics. Mach. Learn., 1(3):249{285, 1986.[60] J-F. Puget. Learning invariants from explanations. Segre, pages 200{204, 1989.[61] J. R. Quinlan. Learning e�cient classi�cation procedures and their applicationto chess end games. In Machine Learning: An arti�cial intelligence approach,Los Altos, CA:, 1983. Morgan Kaufmann.[62] N. E. Richardson. Towards comparing and merging induced operator descrip-tions. In Proceedings of the 21st Workshop of the Planning and Scheduling SpecialInterest Group, University of Delft, Netherlands, 2002.[63] N. E. Richardson, T. L. McCluskey, and M. M. West. Towards inducing htndomain models from examples. In Proceedings of the 25th Workshop of thePlanning and Scheduling Special Interest Group, The University of Nottingham,UK, 2006.

262[64] D. Ruby and D. Kibler. Learning to plan in complex domains. Segre, pages180{182, 1989.[65] S. Russell. E�cient memory-bounded search algo-rithms. In Proceedings of theECAI, 1992.[66] A. M. Segre. Machine Learning of Robot Assembly Plans. Kluwer AcademicPublishers, Boston, MA, 1988.[67] J. W. Shavlik. An empirical analysis of ebl approaches for learning planschemata. Segre, pages 183{187, 1989.[68] J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. MorganKaufmann Publishers Inc., San Mateo, CA, USA, 1990.[69] Herbert A. Simon. Search and reasoning in problem solving. Arti�cial Intelli-gence, 21:7{29, 1983.[70] R. M. Simpson, T. L. McCluskey, W. Zhao, R. S. Aylett, and C. Doniat. GIPO:An Integrated Graphical Tool to support Knowledge Engineering in AI Planning.In Proceedings of the 6th European Conference on Planning, 2001.[71] R.M. Simpson. Gipo graphical interface for planning with objects. In Proceed-ings of the International Conference for Knowledge Engineering in Planning andScheduling, Monterez, 2005.[72] Arti�cial Intellegence Students. Gipo student domains.http://compeng.hud.ac.uk/planform/gipo/, 2006.[73] A. Tate. Roots of spar - shared planning and activity representation. TheKnowledge Engineering Review, Special Issue on "Putting Ontologies to Use",13(1):121{128, 1998.

263[74] A. Tate, S. T. Polyak, and P. Jarvis. TF Method: An Initial Framework forModelling and Analysing Planning Domains. Technical report, University ofEdinburgh, UK, 1998.[75] E. Turban and J. E. Aronson. Decision Support Systems and Intelligent Systems.Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1998.[76] F. van Harmelen and M. Aben. Structure-preserving speci�cation languages forknowledge-based systems. International Journal of HumanComputer Studies,44:187{212, 1996.[77] Tiago Stegun Vaquero, Flavio Tonidandel, and Jose Reinaldo Silva. The it-simple tool for modeling planning domains. In Proceedings of the InternationalConference for Knowledge Engineering in Planning and Scheduling, Monterez,2005.[78] S. Vere. In Pattern Directed Inference Systems. Academic Press, New York,1978.[79] X. Wang. Learning by Observation and Practice: An Incremental Approachfor Planning Operator Acquisition. In Proceedings of the 12th InternationalConference on Machine Learning, 1995.[80] X. Wang. Learning Planning Operators by Observation and Practice. PhD thesis,Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,Pittsberg, PA 15213, 1996.[81] X. Wang. Planning while learning operators. In Proceedings of the Third Inter-national Conference on AI Planning Systems, Edinburgh, Scotland, 1996.

264[82] X. Wang and M. Veloso. Learning planning knowledge by observation and prac-tice. In ARPA/ Rome Laboratory Knowledge-Based Planning and SchedulingInitiative, Tucson, Arizona, 1994.[83] T. Winograd. Understanding Natural Language. Academic Press, New York,USA, 1972.[84] P. H. Winston. Learning structural descriptions from examples. In The Psychol-ogy of Computer Vision, pages 157 { 209, New York, 1975. McGraw-Hill.[85] M. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages:A survey. In Proceedings of ECAI ATAL Workshop, pages 1{39, 1994.[86] Kangheng Wu, Qiang Yang, and Yunfei Jiang. Arms: Action-relation modellingsystem for learning action models. In Proceedings of the International Conferencefor Knowledge Engineering in Planning and Scheduling, Monterez, 2005.[87] Q. Yang, R. Pan, and S. J. Pan. Learning recursive htn-method structures forplanning. In Proceedings of the ICAPS'07 Workshop on Arti�cial IntelligencePlanning and Learning, 2007.[88] Sungwook Yoon and Subbarao Kamphampati. Towards model-lite planning: Aproposal for learning and planning with incomplete domain models. In Proceed-ings of the ICAPS'07 Workshop on Arti�cial Intelligence Planning and Learning,2007.[89] Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automatedplanning: looking back, taking stock, going forward. AI Mag., 24(2):73{96, 2003.[90] M. Zweben, E. Davis, B. Daun, E. Draschler, M. Deale, and M. Eskey. Learningto improve constraint-based scheduling. Arti�cial Intelligence, 58:1{3, 1993.

