H

University of
HUDDERSFIELD

University of Huddersfield Repository

Richardson, Nona Elizabeth

An operator induction tool supporting knowledge engineering in planning
Original Citation

Richardson, Nona Elizabeth (2008) An operator induction tool supporting knowledge engineering in
planning. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/2607/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Operator Induction Tool Supporting Knowledge
Engineering in Planning

Nona Elizabeth Richardson
School of Computing and Engineering
The University of Huddersfield

Queensgate

Huddersfield
HD1 3DH

A thesis submitted to the University of Huddersfield
in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Huddersfield supported by EPSRC

July 2008

TABLE OF CONTENTS

List of Figures vii
List of Tables ix
Abstract xii
Acknowledgements xii
Declaration xiii
Chapter 1: Introduction 1
1.1 Artificial Intelligence L. 2
1.2 Knowledge Engineeringo 2
1.3 Planning 3
1.4 Planning Domain Modelling 4
1.5 The Knowledge Acquisition Bottleneck 5
1.6 Some Further Definitions 5t
1.7 The Scope of this Research 8
1.7.1 Induction 8

1.7.2 Planning Problems 8

1.7.3 Types of Actions 9

1.7.4 A Typical Planning Problem 10

1.7.5 Modelling Methods 10

1.7.6 Domain Building o000 11

1.7.7 Opmaker e 12

1.7.8 GIPO e 12

1.7.9 Actions in a Planning Domain 15

1.7.10 Hierarchies 15

1.7.11 Tasks in a Planning Domain 15

1.7.12 Induction of Methods 15

1.8 The Remainder of this Thesis 20
1.9 The Aim of this Research 20
1.10 Contributions 21
Chapter 2: Domain Model Construction 23
2.1 Planning Domain Representation Languages 24

2.1.1 The Argument in Favour of the Object Centred Approach . . 25

2.2 Some Example Domains 27
2.2.1 The Hiking Domain. 28
2.2.2 The UM Translog Domain 29

23 GIPO . . . 32

2.4 Object Centred Language 35
2.4.1 Sorts and Objects L. 36
242 Predicates 38
24.3 States 40
244 Invariants Lo 42
245 Operatorso 44
2.4.6 The opmaker tool L o0

2.5 Conclusion 29

Chapter 3: The Development of Opmaker Version One 60

3.1 The Briefcase Domains 60
3.1.1 The Briefcase Domain (BC) 61
3.1.2 The Hierarchical Briefcase Domain (HBC) 61

i

3.2
3.3

3.4
3.5

3.6

Hierarchical Domains 64

Opmaker Phase One 65
331 Input. 66
3.3.2 Output. e 67
3.3.3 What Opmaker Does 71
3.3.4 An Example from the Hiking Domain 72
3.3.5 Induction of Methods 7
3.3.6 Incorporation of Opmaker into GIPO 79
Opmaker - Further Requirements for Hierarchical Domains 79
The Problem of Inheritance 80
3.5.1 What Is Inheritance? 0L 80
3.5.2 The Inheritance Problem 80
3.5.3 Finding the Inheritance Problem 81
3.5.4 Rectifying the Problem 84
Testing and Results from Opmaker1.1. 86
3.6.1 Success Criteria Lo 86
3.6.2 Results Measured Against these Criteria 86
3.6.3 Testing and Results Using HBC 87
3.6.4 Further Experimentation and findings 89

Chapter 4: The Development of Induction Tools Without Interme-

4.1

4.2

diate State User Input 93
The Extended Tyre Domain 94
4.1.1 The Original Tyre Domain 95
4.1.2 The Tyre Domain Extension 96
4.1.3 Substates in the Extended Tyre Domain 99
Experiments with the More Complex Domain 99
4.2.1 Aims of Experimentation 100

il

4.3

4.4

4.5

4.2.2 The Full Planning Problem 101
4.2.3 Decisions on the Potential Methods 101
4.2.4 Results of the Testing 103
4.2.5 Results for the Full Problem 106
4.2.6 Ideas for Improvements on the Opmaker System 107
Automatic Induction Without Intermediate State Information 108
4.3.1 The Need for Example Material 108
4.3.2 The Argument for Automatic Generation Without Intermedi-

ate State Informationo o0 110
4.3.3 Generation of Examples 0. 111
4.3.4 Heuristics to Reduce Choice 112
4.3.5 Changes to Input to Indicate Unchanging Objects 113
4.3.6 Calculating Paths Through State Space 113
4.3.7 Initial Results from Automatic Generation of Paths 114
4.3.8 The Use of the Invariants to Reduce the Search Space 118
4.3.9 Results Using the Invariants 118
How Opmaker2 Learns 120
4.4.1 A Diagrammatic Representation of the Opmaker2 System . . 120
4.4.2 Outline Design of the Opmaker2 Algorithm 122
4.4.3 A Description and Walk-Through of the Algorithm 124
Experiments and Results 127
4.5.1 The Extended Tyre Domain (ETD) 127
4.5.2 The Hiking Domain 127
4.5.3 The Blocks World Domain 128
4.5.4 The Testing Criteria 129
4.5.5 Results for the Extended Tyre Domain 130
4.5.6 Results for the Hiking Domain 131
4.5.7 Results from the Blocks World Domain 132

v

4.5.8 Our Conclusions From These Results 134

4.5.9 'Training Sets for Opmaker 135
Chapter 5: Related Work 137
5.1 Machine Learning - Historic 137
5.2 Machine Learning and Induction of Rules 142
5.2.1 Learning from Examples 145
5.2.2 Heuristics 146

5.3 Explanation Based Learning (EBL) 146
5.3.1 Other Techniques 147

5.4 A View on Domain Theories 148
5.5 An Analysis of the Types of Domain Theory Imperfections 154
5.6 Theory Revision L 154
5.7 Induction of Operators 155

5.8 TCAPS 2005 and 2007 Competitions on Knowledge Engineering for

Planning and Scheduling 159

5.9 Further Work in Knowledge Engineering 165
5.9.1 Very Recent Publications 169

5.10 Summary 170
Chapter 6: Conclusions and Future Work 172
6.1 Limitations of this Research 172
6.2 Summary e 173
6.3 Contributionso 176
6.4 Further Worko 177

Appendix A: A Full Coding of the Version of the Hiking Domain Built
Using GIPO 180

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Bibliography

A Test File from the Hiking Domain 187

Full Listing of the Hierarchical Briefcase Domain (HBC)as
Developed using GIPO 193

Test File with Results From HBC Showing the Sort Tree
Code is Working 210

The GIPO-Constructed Extended Tyre Domain Includ-
ing Extra Tasks 218

A Typical Test File to Generate the Method discover_puncture
in the Extended Tyre Domain 245

254

vi

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

LIST OF FIGURES

The Sort-Tree View Using GIPO 13
The Graphical Life-History Editor in GIPO 14
The Operator, put_down, in PDDL. 24
The Operator, put_down, in OCL. 27
The Method, transport,in OCLy. 30
The Method, move_traincar, in OCLy. 31
The Sort-Tree Showing Objects for the Translog Domain 32
The Method and Operator Structure for the Translog Domain 33

Part of the Coding of the Hiking Domain Showing the Sort Structure 36
The Sort-Tree View Using GIPO and Showing OCL Implementation . 37

The Predicate Editor View Using GIPO 39
The States Editor View Using GIPO 41
The Atomic Invariants Editor View Using GIPO 43

The OCL Drive Operator from the Hiking Domain (Conditional Version). 45

The Transition Editor View Using GIPO 48
The Graphical Representation of an Operator using GIPO 49
A Task is Constructed Using GIPO’s Task Editor 52
Constructing a Sequence Using GIPO 53
Opmaker Consulting the User 54
Sufficient Operators have been Generated to Complete the Task . . . 55
Newly Constructed Generalised Operator Headings Shown 56
GIPO’s View Option Showing Newly Formed Operators in OCL . . . 56

Vil

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

The Sort-Tree Showing the Levels at which Predicates Apply in HBC 63

An Action Sequence Composed Using GIPO 68
Outline Design of the opmaker Algorithm 70
Outline Design to Obtain all the Dynamic Sorts from a Hierarchy . . 85

The Task Goal Construction Window in GIPO Showing the take_lunch_to_work

Method under Construction 90
The Planner Window in GIPO Showing the Solution to the Task in

Figure 3.5 L 91
A Sensible Choice of Methods for the Extended Tyre Domain 102
The Initial Sequence Tagged (with ‘Q’) to Indicate Unchanging Objects113
Changing States of an Object in a Sequence 116
Changing States of hubl in a Sequence 117
Invariants encoded in the Extended Tyre World 119
Diagrammatic Representation of the Opmaker2 System 121

viil

3.1

4.1
4.2
4.3
4.4

4.5

5.1
5.2

2.3

LIST OF TABLES

A Possible Designation of Methods and Operators 65
Comparison of Two Versions of the Tyre Domain 98
Comparison of Plan Times Using Operators and Methods 104
HyHTN Plan Times Using Operators and Methods 105
Table Showing Total States and States Available for the Action Se-

quence in Figure 4.2 if States Must Change 115
Table Relating Numbers of Example Sets to Methods 117

Four Operators from Blocks World Showing the Completion of a Task 141
A Comparison of the Operator Centred and the Object Centred Ap-

Domain Theory Imperfections and the Object Centred Approach . . . 153

X

ABSTRACT

Within the field of artificial intelligence are many disciplines, one of which is
planning. Planning seeks to find a suitable sequence of actions to carry out a task
specified as a set of initial states for the objects involved in the actions and a required
goal state. To do this the system has to have enough knowledge about the ‘world’ in

the form of a planning domain model.

The process of constructing a planning domain model requires knowledge engi-
neering. The structuring of the knowledge is important and hand-coding a domain
model is a tedious and error-prone process. Static knowledge in the domain requires
little update but the same cannot be said for the dynamic knowledge. The most
difficult area of engineering planning domain models is the acquisition of operator
schema, which contain descriptions of all the primitive actions (operators). In hier-
archical models where actions may be modelled as sub-tasks, construction of these

actions (methods) is particularly difficult and error-prone.

We argue for a system whereby dynamic knowledge can be generated for every
planning eventuality. The major contribution of the thesis is a method for inducing
primitive and hierarchical actions from several solution examples, without the benefit
of intermediate state information. In our system, opmaker, actions are generated from
relatively short action sequences, indicated by a user, who has simply to name an
action and identify associated objects as being affected or unaffected by the action.
To complete a planning task the system uses the static domain knowledge, the initial
and goal states from the planning task, and the action sequences. Using these it
first deduces possible state-change pathways which, using the right heuristics, may
be unique (or at most have only a handful of pathways), and uses these to induce

all the actions it needs. These actions can then be learned or regenerated at will.

X

We show that these induced actions compare to hand-crafted versions and can be
used in planning. We can demonstrate that the hierarchical methods offer greater
efficiency in planning times when compared to domains where previously no methods

were offered.

The motivation for these ideas comes from the need to extend the development of
GIPO, an integrated package for the construction of domain models in the form of a
graphical user interface. We show how opmakerl has already become a tool within

GIPO for flat domains and argue for the inclusion of its successor, opmaker2.

Descriptions of domain construction and results using opmaker with several ex-
ample domains are given. We analyse how, in general, this work contributes to and
supports knowledge within the field, and the thesis concludes with suggestions for fu-
ture work and discusses the particular contributions offered by opmaker to planning

and knowledge engineering.

xi

ACKNOWLEDGEMENTS

I would particularly like to thank my supervisor, Lee McCluskey, for his advice
encouragement and ‘pep’ talks when the going got rough during my time as a PhD
student. I am indebted to Lee for his constructive advice on the content of this thesis
and for always being able to see the ‘bigger picture’. To Margaret West I would like
to extend my gratitude for all the patient hours helping me with Prolog and keeping
me on track. I would also like to thank both my second supervisors, Margaret West
and Diane Kitchin, for their advice on the readability of this thesis. My thanks also
go to Stephen Cresswell who has been invaluable for the discussion of ideas, arguing
about invariants and algorithms, and sharing the excitement of good results with

cautious optimism.

I would like to express my thanks to my family for their unstinting support of this
venture, for their encouragement and belief in me and, in the case of my husband

Mike, for his sheer determination when I had lost mine!

Finally I would like to dedicate this thesis to my father, Frank Douthwaite, who
sadly died six months before its completion, but who would have been proud to see

his daughter succeed.

xii

DECLARATION

I grant powers of discretion to the University Librarian to allow this thesis to
be copied in whole or in part without further reference to me. This permission
covers only single copies made for study purposes, subject to normal conditions of

acknowledgement.

xiil

Chapter 1

INTRODUCTION

The trends generally in computing are towards imaginative and intelligent use of
computers, and away from the idea that their use is mainly in banking and billing.
Information storage and retrieval are part of these trends and the last couple of
decades have seen an increase in the use of huge databases. Now databases can be
imaginatively searched and data retrieval and storage is as much a part of daily life

as the office typist and the filing cabinet were twenty years ago.

The definition of data for a large database has become a science in its own right,
along with its structure and linking in the database. Special algebras have been
developed to aid database design and information retrieval and these have greatly
increased the capacity and complexity of databases. With their capacity to store
vast amounts of structured data, databases have become essential to the science of
artificial intelligence, and database search techniques have been developed to achieve
quick and accurate results. Artificial intelligence has developed as a science because
some computer problems do not lend themselves to being solved by a straightforward
program which gives a rigid, structured, single result. They require the same degree
of flexibility that the human mind has - the ability to react to changes in input, to
make choices and to search and recall information. Problems like these can only be
resolved effectively if the system has the ability to learn from mistakes and to improve
and extend overall knowledge, to become more expert as that knowledge increases
and to use improved knowledge more effectively and efficiently. One area of artificial

intelligence, the subject of this thesis, is planning. Planning involves searching a

database of knowledge about potential actions in order to find a sequence of actions

to complete a task.

1.1 Artificial Intelligence

One way of resolving such issues is the use of artificial intelligence, [definition 1.1].

Definition 1.1 Artificial Intelligence (AI) may be defined as the branch of computer

science that is concerned with the automation of intelligent behaviour [41].

The field of artificial intelligence has expanded rapidly in recent years alongside
the general increase in the use of computing in almost every aspect of life. The use
of artificial intelligence (AI) allows a system to learn and to respond more flexibly
to many different circumstances. However intelligent systems require an extensive

knowledge base which has to be carefully constructed using knowledge engineering.

1.2 Knowledge Engineering

world in planning is given below.

Definition 1.2 Knowledge engineering in planning is the process by which a concep-
tual theory about an object based world is represented by being translated into code.
Objects and relations between them are identified and translated into the logic code
which includes all possible states of the objects and any invariant facts. Sets of actions

are defined and desirable tasks can be added.

In general, where an object based system is not required, KE is the process of

capturing and implementing the expertise of some specialist into an effective and

seemingly intelligent representation. Once the knowledge is captured it can be refined
by use of the results from some practice examples until it reaches some desired level

of performance [41].

KE for planning is a tedious business because defining the actions in terms of
transitions of objects from one state to another has to be accurate. It is largely an
iterative process by which domain knowledge is stipulated by a domain expert and
this knowledge is represented in some modelling language by the knowledge engineer.
At all times the requirements of the end user are paramount - in planning such a

person would be the one who requires to do the actual planning.

The main substance of this research is aimed at improving techniques to capture,
code and refine knowledge so that planning engines can act upon it effectively and

efficiently and knowledge engineering no longer requires an expert.

1.3 Planning

Planning is one area of Al which is particularly dependent upon an accurate and up-
to-date specialised knowledge base. Informally the idea in planning is a simple one in
which a knowledge base (database) is searched in a particular way. (However there
are other approaches such as logic, reasoning, negotiation etc. [69].) In planning the
knowledge base contains some facts about a problem scenario. Amongst the facts
are allowable actions in the scenario and knowledge about objects involved in those
actions. In particular there will be data on the states of the objects. (As a simple
example consider a book, a table and a reader. If the reader picks up the book the
book changes state from being on the table to being held by the reader.) The idea
in planning is to be able to use computing to define problems to solve and to solve
them. A typical problem definition would consist of listing starting states for the

objects and desirable goal states for them, whilst a solution would be an ordered

sequence of actions which would allow the goal state to be achieved. It becomes a
challenging problem computationally because of the very large number of potential
orderings of the actions. At its most basic, where there are n available actions, there
are n! sequences of actions. A more formal definition of a planning problem is given

in definition 1.15.

1.4 Planning Domain Modelling

Definition 1.3 A non-case-based planning domain model is a knowledge base which
contains a set of logical axioms within a formal system which, together with rules of
inference and any required heuristic control rules, is composed to accurately define
and model a problem scenario, and forms the basis of a logical deductive system. In

planning, such a theory is known as a domain theory.

When it is written according to the special syntax of some particular computer
modelling language the knowledge base becomes known as a planning domain model
[see definition 1.3]. It is desirable that such a knowledge base contains the descriptive
information required to accurately record and reflect a particular ‘world’” and whilst
it is largely a complete picture of that world, the system should also have the ability
to add to the dynamic knowledge it contains by experience. In this work we will
be describing the processes of acquiring knowledge bases with the object-centred
language OCL [45], and of adding to dynamic planning domain knowledge by the

induction of operators (actions).

Definition 1.4 Theory revision is a method of refining a theory or knowledge base by
the system automatically finding better changes to the theory to improve its inferential

capability.

Definition 1.5 An operator in planning is a written description of some action in
the domain modelling language in which dynamic objects feature either because their
initial states prevail or because they undergo state transitions which the operator de-

tails as pre-transition states and post-transition states.

1.5 The Knowledge Acquisition Bottleneck

In the context of planning and this research, machine learning is desirable in part
to alleviate what Feigenbaum and McCorduck have referred to as the ‘knowledge
engineering bottleneck’, a major obstacle to the more widespread use of many Al
systems [18]. Any information system needs a lot of development time and AT systems
with their large and detailed knowledge bases are costly to develop. In terms of
time, operators (allowable actions) are particularly costly to develop. Time could
be saved using machine learning to acquire accurate actions automatically and track
the changing states of objects manipulated by them. The aim of this research was
to take steps towards relieving this knowledge acquisition bottleneck by introducing
a system which can induce [definition 1.6] and learn new operators [definition 1.5]

using a process of theory revision [definition 1.4].

1.6 Some Further Definitions

This research has its roots in the artificial intelligence branch of computer science, in
particular it concerns the knowledge engineering [definition 1.2] of planning domain
models [definition 1.3] constructed to form the knowledge base of planning prob-
lems [definition 1.15] and to assist with their solution. We also draw on the related
computer science topics of induction [definition 1.6], inductive logic programming

[definition 1.8], machine learning [definition 1.7] and theory revision [definition 1.4].

Definition 1.6 Induction s the process by which learning involves generalisation
from experience [41]. A learner may have to learn from only a few examples but still

acquire knowledge that will generalise correctly though not necessarily optimally.

Definition 1.7 Machine learning (ML) is the ability of a system to avoid some of the
computation involved if some calculation has to be repeated. Instead the system draws
on items added inductively to its knowledge base, by storage of previous results, use of
examples or analogy, previous experience of a successful outcome, use of probability

or because it has been instructed by an expert (human).

Definition 1.8 Inductive logic programming (ILP) is that branch of computer sci-
ence concerned with programming to produce additional facts from a set of examples
which may be positive or negative. These additional facts should be generalised by

machine learning [definition 1.7], but may not be optimal.

Definition 1.9 A dynamic object is considered to be an object whose state can be
changed by some action in the domain. Dynamic objects in OCL always have choices

of state sets listed in the domain as substates.

Definition 1.10 A static object cannot be relocated, changed or given different val-
ues and so does not any states listed in the substates. In fact the best examples of

static objects are locations themselves.

Definition 1.11 A method is a hierarchical operator in a more complex planning
domain model and is therefore part of an hierarchical domain [see definition 1.12].
Besides stating the transitions for the objects it lists preconditions, states effects and
stipulates an ordering of the methods and primitive operators it calls. Being itself part
of an hierarchical structure it can be called by other methods higher in the structure
and call on other methods and operators at a lower level. A method may call a
different selection of operators to perform similar tasks depending on the objects and

circumstances imvolved.

Definition 1.12 A hierarchical domain is one in which there may be an hierarchical

sort structure, or an hierarchical method structure, or both.

Definition 1.13 Scheduling, at its best, finds a close to optimal schedule (or plan)
given a set of actions, a set of resources and a set of constraints (often time related).
It seeks to arrange actions according to when the resources are available and to satisfy
all the constraints in the process. In some applications, such as university timetabling,

just finding a feasible schedule is considered a good solution.

Definition 1.14 In a closed world model there are boundaries beyond which nothing
is stated in the model. Often these are physical restrictions on the model as in Blocks
World where the table top defines the extent of the world. Only objects and states

specifically used in the model are described.

1.7 The Scope of this Research

The aim of this research is to alleviate the knowledge acquisition bottleneck by using
the part of the planning domain that is less time consuming to construct to induce
planning operators and methods (compound multi-stage operators) [see also definition
1.11] which normally take a long time to construct by hand. Further details and the
aim statement can be found in Section 1.9. The scope of the research is detailed in

the sections below.

1.7.1 Induction

In any new domain the knowledge engineer will have some idea which actions might
be required for the sort of problems to be solved. At the very least he might have
a name for such an action and he might also have ideas about the objects involved
in each action. We shall show that by taking a partially constructed domain with
only these outline ideas in the form of a sequence of operator names and a list of
the static and dynamic objects involved (the parameters), we can use the induction
process to model operators and methods. This will be done by giving consideration to
the initial states of objects in the domain and formulating goal states to be achieved
in planning. We plan, initially, to retain the new operators as they are induced,
using them to revise the original domain theory and learn a full set of generalised
operators to complete a new planning domain model [definition 1.3]. In this respect
the examples for induction come from the initial sequence and the initial and goal

states for the objects named in the sequence.

1.7.2 Planning Problems

Within the context of this thesis planning problems are typified by being closed world
problems. They contain sets of objects, mostly physical, to be manipulated. These

physical objects do different things, and so can exist in different states. For example

a book can be on a shelf or held in a hand and to get from one state to the other a
transition has to take place. Thus actions such as picking up a book are defined in
terms of a transition from the book’s being on the shelf to being held. Actions are
initiated and represented descriptively by operators. Some objects modelled are not
dynamic. A common thread in this thesis is the use of static objects to model the
location of an action or to model a move of objects from one location to another. The
locations are thus modelled as static because they never change unlike the objects

associated with the move.

1.7.3 Types of Actions

Sequences of operators can be constructed in order to model complex activities but
at all times the system must be able to keep track of the state change paths of the
objects in the model. Actions can be modelled as either instantaneous transitions or,

more recently, can be modelled as durative actions [21].

Durative Actions

The kinds of actions best suited to modelling with duration are those in which the
time factor is a natural element of the action, those where there is concurrency, and
those whose durations affect the start time of further actions which may depend upon
the effects of previous actions to produce their start conditions. A simple example
from the world of athletics would be the running of a relay race in which the second

runner may not begin running until the first has almost completed his leg of the race.

Instantaneous Actions

In this research we shall be considering only actions assumed to be instantaneous. In
these actions time is not a factor provided that actions are performed in the correct

sequence.

10

1.7.4 A Typical Planning Problem

A definition of a typical planning problem is given below.

Definition 1.15 A planning problem. Given a knowledge base containing certain
objects and states and a set of possible actions and knowing the initial states of the

objects, find a sequence of actions which will produce some pre-conceived goal state.

Actions in a world being modelled are captured in its operators [definition 1.5].

1.7.5 Modelling Methods

Knowledge engineers who are domain experts find that specifying operator descrip-
tions for a planning domain model, is a slow and painstaking process. (For detailed
descriptions of complex domain construction the reader is referred to the RAX and
VICAR system [17, 37].) When procedural knowledge is captured in a declarative way
[47] it requires a language (such as OCL or Planning Domain Definition Language,
PDDL [21]), selected because it is designed to be compatible with the construction
of planning engines. The problem of accurate representation of planning domains is
acute if non-planning experts are undertaking this task, or the operators are complex

or hierarchical.

There are different methodologies for domain creation and in his journal paper
Tate gives a good selection [73]. In our work the starting point is the creation of the
representation of objects in the domain whereas using a different system like STRIPS

[20] the starting point might be the actions in the world being modelled.

The Object Centred Approach

Our preferred method is the object centred approach in which actions are modelled in

terms of how they affect some of the objects declared for the domain. Objects undergo

11

state transitions under the effect of actions which record the initial state of the object
and its final state. In our earlier work we have developed a domain description
language for the purpose. Using this language an expert engineering a planning
domain model by hand would take as his normal starting point the specification of
the objects in the domain. He would arrange these in a tree structure of different

sorts.

Definition 1.16 Sort is the name given to a particular type of object. For example
apple and orange are particular instances of the sort fruit. Many sorts may be specified

for a domain.

Definition 1.17 Flat domain. We refer to a single level sort tree where ‘sorts’ is at
the root, all the domain sorts are at the first level and have object leaves, as a ‘flat’

domain structure because the sorts are all at one level.

Definition 1.18 An hierarchical domain. A more complex tree with several different
levels of sorts would be referred to as an ‘hierarchical’ sort structure and the domain
containing it would become an hierarchical domain. Whenever the sort structure is
not flat there is the potential for predicate inheritance. This occurs when predicates

apply to sorts at different levels of the tree and is explained in section 3.5.35.

The Action Centred Approach

Domain modellers using an action centred approach begin by specifying allowable
actions in the world they are trying to represent. Objects are important only in how

they are affected by these actions.

1.7.6 Domain Building

In our object centred approach the objects are modelled first. The domain expert
would next specify the relationships between the domain objects with a set of pred-

icates (or statements) which can be arranged in groups to describe potential sets of

12

alternative states for the objects. Next the expert would describe any constraints
and assumptions and any unchanging details in a set of invariants. A set of operators
would then be constructed and finally any tasks to be performed could be added.
Appendix A contains the coded version of a simple domain. The knowledge engineer
has the task of capturing the knowledge from the domain expert and structuring it
in the best way to be effective with the planner. As the domain is built and used it
is refined using input from the domain expert until both are satisfied with the model

produced.

1.7.7 Opmaker

The normal process for constructing operators is to hand-craft them with reference
to the desired set of actions for the domain and using the state sets to determine
pre and post-action states for all the objects. One recent extension of our work
on knowledge engineering is that operator construction can be eased by the use of
an implemented algorithm, opmaker. To use opmaker the domain engineer builds
the planning domain model to the point where operator construction is the next
step. He then conceives some task, the achievement of which requires a desirable
example sequence of operations. By giving the opmaker system a set of initial states
for the objects, the partially constructed domain, and the example sequence it can
then induce a set of operators to achieve the pre-conceived goal. There are other

mechanisms for learning operator sets and these will be covered in Chapter 5.

1.7.8 GIPO

To further address the bottleneck problem we have been developing an assisted
method by which the domain expert specifies the declarative structure of the do-
main interactively. The domain engineered in this way shares the same structure as

a hand-written one.

13

A domain building tool has been developed in a parallel research project where
we have developed a Graphical User Interface (GUI) tool, GIPO (Graphical Interface
for Planning with Objects) [25, 70, 44, 71], which is a tools package designed to make
the construction of domains easier for the non-expert. Opmaker has recently been
implemented within GIPO making it a powerful construction tool for the knowledge

engineer and the non-expert alike.

Currently GIPO enables the non-domain expert to construct a domain by ab-
stracting away much of the detail of the domain description language and allowing
him or her to focus on the objects in the domain and the states in which they can
exist. It does this by providing a GUI allowing a visual representation of the object
types in a sort [definition 1.16] tree (see Figure 1.1) and other construction, validation

and planning tools to construct the states and constraints. Operators can be con-

Sort View (Expert)
Allsarts
5| car
— O carl
— O carz
@ persan
— O fred
- sue
[5] tent
5] place
— O keswick
— O helwelyn
— 3 fairfield
— O hanister
— 3 derwent
[5] couple
Sort Name | || [Add i Delete Selected
Object Name | || [»Add Object
[Commit &b Verify T Restore @ Close

Figure 1.1: The Sort-Tree View Using GIPO

14

s[m] &] -
lojofa]x]2]%] [w]Hkmm [2] ¢
Library |_§;1’Lﬁe History | Data Structures |

histate .

portable
stack
switch i
rackedMobile|| -
ristate :

Type none

Things

[<]=]

Figure 1.2: The Graphical Life-History Editor in GIPO

structed by hand using a graphical tool but using this method still requires a greater
level of expertise from the user. Implementation of opmaker into GIPO has meant
that it is now easier for the non-expert to completely describe a domain. We suggest
that one area for further work should be an evaluation of the ease with which the
non-expert can create operators for a domain using opmaker as opposed to creating
the operators by hand and creating them using the operator construction tool also

offered in the GIPO system.

In further developments of GIPO a graphical life history editor allows inexpert
students of planning, after a little instruction, to build planning domains by con-
structing a diagram of objects, relationships and other properties, as shown in Figure

1.2.

15

1.7.9 Actions in a Planning Domain

Actions in a planning domain may be simple or compound. If we think of the simplest
single action then we model this with an operator, to which we might refer as a
‘primitive operator’. If we consider a group of single actions, put together in order to
achieve a simple task, then we refer to that task as a ‘method operator’. Since this
method operator uses only primitive operators it is necessarily at a lower level in any

method hierarchy than a method which uses other methods and primitive operators.

1.7.10 Hierarchies

Since domains may have method hierarchies and sort hierarchies there are different
ways in which we can describe them as ‘hierarchical’. We shall try to be consistent

in this thesis to describe in which way(s) a domain is hierarchical.

1.7.11 Tasks in a Planning Domain

When we consider tasks we think of the compound actions we want to perform. If
the domain has a hierarchical method structure then each method models a ‘task’.
These are effectively pre-determined tasks that are often required, so they become
part of the available actions in the domain. Over and above that we are also able
to define and declare tasks separately. In this way we have defined problems for the
planner to solve, and they can be viewed as additions to the domains. The reader is
referred to Appendix E where a number of tasks have been declared for that domain

and placed at the end, after the operators and methods.

1.7.12 Induction of Methods

In an informal idea of human planning we would begin by taking an overview of the
entire task to be achieved, then start splitting the task down into manageable chunks.

Each of these chunks might split into further chunks and so on until finally the whole

16

task can be broken up into single actions. In planning we call the single actions
‘operators’ whilst the chunks are ‘methods’. The branching tree of task, subtasks
and single actions is a ‘hierarchical task network’ (HTN) and planning using such
a network is called HT'N planning. Within a single method there may be several
single actions, or several methods or a mixture of both. Lowest level methods will
just contain a series of single actions. The method contains information about the
objects involved in it - in particular it considers the state sets for those objects. If
the objects change state in one of the actions a ‘transition’ describes how the object
states change. A method will contain several transitions and one obvious difference
from an operator is that there may be several transitions for one object. Methods
rely on the existence of operators and other methods and ‘call’ them. In the fact
that these are called in a logical order to complete the task being modelled, methods
resemble ‘mini-plans’. Having methods in a planning system reduces the search space
and so leads to time saved finding a suitable plan. A simple example of operators

could be those actions needed to send a letter by post. These might be

1. write the letter

2. put the letter in the post box
3. stamp the envelope

4. put the letter in the envelope

5. take the letter to the post box.

The plan would be these items in the correct order e.g. 1, 4, 3, 5 and 2, whilst a

method prepare letter for post would be the ordering 1, 4 and 3.

Development of opmaker has continued and it now induces operators and methods
for hierarchical domains but at the time of writing this has not all been implemented

in GIPO.

17

The logic of an example sequence may not include all the operators required for the
particular domain in mind. For example if the world was to do with sending a letter
you might put together a sequence that involved sticking on the stamp, walking to
the post box and posting the letter. You may also have writing the letter and putting
it in an envelope as possible actions which have not been included in this sequence.
This can mean that a full set of useful operators is not generated at one go. This
can be resolved by making the example sequence slightly artificial, by which we mean
that in order to ensure all desirable operators are induced we add on extra tasks to
the sequence but have to induce some of the operators twice. The example below

illustrates this point.

We developed a new planning domain, called the hiking domain, for the purpose
of testing the algorithm, opmaker. In this domain world a couple do a long walk over
several legs in the English Lake District, between such places as Keswick, Derwent,
Honister and Fairfield. Using 2 cars to transport themselves and their equipment
to the start of every leg of the journey, Fred and Sue rise in the morning, fit after a
night’s sleep and take down their tent. The tent is taken by car and erected at the end
point of the leg before returning to start the walk. On reaching the destination, tired,
they sleep overnight and awake fit again for the following day. Operators required in

the handwritten version of this domain were:-

put_down, put_up, drive, walk_together, load, unload, getin, getout

The operators could be induced by using the following example sequence. This
sequence describes a complete day in the walk and has been made long enough to
generate all the required operators but several are included more than once. For

example there are several drive operators.

put_down(tentl,sue,keswick),

load(fred,tentl,car2,keswick),

18

getin(sue,keswick,car2),
getin(fred,keswick,carl),
drive(sue,tentl,keswick,helvelyn,car2),*
drive(fred,keswick,helvelyn,carl),*
getout (sue,helvelyn,car?),
unload(sue,tentl,car2,helvelyn),

getout (fred,helvelyn,carl),
putup(tentl,fred,helvelyn),
getin(sue,helvelyn,car?),
getin(fred,helvelyn,car2),
drive(sue,fred,helvelyn,keswick,car2),x*
getout (sue, keswick,car2),

getout (fred,keswick,car2),
walk_together (sue,fred,couplel,keswick,helvelyn),
sleepintent (sue,fred,tentl,helvelyn),
getin(sue,helvelyn,carl),
getin(fred,helvelyn,carl),
drive(sue,fred,helvelyn,keswick,carl) ,x*
getout (fred,keswick,carl),
getin(fred,keswick,car?2),
drive(fred,car2,keswick,helvelyn),*
drive(sue,carl,keswick,helvelyn) ,*
getout (sue,carl,helvelyn),

getout (fred,car2,helvelyn)

(* These ‘drive’ operators are different and have different parameters. This is allowed
in the OCL language which allows us to model conditional operators as we see here.
Another way to model these as would be to name each differently such as ‘drive’,

‘drive_tent’ and ‘drive_passenger’.)

A problem with this method of inducing operators is the repetition. It is not
desirable to have several different versions of one operator in any domain and we

require a comparison and decision process to help us retain only the most useful

19

version of any single operator.

Another problem that comes with inducing all the operators in one go is that
the method which is induced is not very meaningful. The idea of methods is to use
them to break down a planning task into smaller subtasks. Each of these can be
broken down again until the smallest subtasks can be solved with a short sequence of
operators. This strongly resembles the way humans plan by splitting a problem into
chunks recursively until achievable tasks are obtained. A better way to use induction,
therefore, is to induce only those operators at any one go that will create a sensible
method, but to create enough of these methods to enable hierarchical planning to

take place. The subject of this research is the extension and implementation of this
algorithm to perform the following tasks.

1. Induce a complete set of operators for a flat domain

2. Induce methods [definition 1.11] and operators in hierarchical domains

3. Detect when an operator has already been induced

4. Use theory revision to sequentially improve domain theories.

Completion of this research allows for the provision of a method operator induc-
tion tool for hierarchical domains to enhance the package of design and validation
tools in GIPO. This work is significantly different from other research in the area
because it concentrates on adding an important construction and validation tool to
an overarching system, already in use, and designed intentionally to make the con-
struction of planning domains an easier and more exact process. In this respect this
research should be seen as an add-on package to an existing system, although the

coding will allow for operator induction independent of the GIPO system.

20

1.8 The Remainder of this Thesis

Chapter 2 in this thesis describes in detail the object centred domain language and
how domains are built using it. The building of the hiking domain, briefly mentioned
in this chapter, is described both by hand and also using GIPO. In Chapter 3 operator
induction is introduced as we look at the development of opmaker1 and we begin to
see why a further phase was required. Some new versions of classical domains, altered
in order to demonstrate and test sections of code within opmakerl, are introduced.
Chapter 4, continues the discussion and highlights why it was necessary to move on to
opmaker2. The action of this new version is described and some results shown which
have been obtained using it on some classical domains. Chapter 5 contains a literature
survey of recent relevant work in the planning and knowledge engineering research
sector. Chapter 6 is a short chapter discussing the way forward. This research can
be viewed as steps towards much more fully automated domain construction allowing
planning to be integrated into remote agents so that they can plan effectively and

autonomously.

1.9 The Aim of this Research

The aim of the work represented in this thesis is to offer a tool which takes the
effective realisation of efficient knowledge based systems as a motive. It aims to show

that efficiency is addressed by:-

1. making fuller use of knowledge already captured (in states and invariants) saving

expert time

2. adding to that knowledge with the capture of operators and methods, further

saving expert hand-coding time

21

3. offering the potential for faster planning times when a good selection of opera-

tors and methods is included
4. using an object-based system with strong capture of static knowledge

5. using a system which tracks its own dynamic knowledge as it is built, via the

intermediate states found.

1.10 Contributions

We adopt Zimmerman and Kambhampati’s definition [89] of an agent: ‘a computer
program with learning capabilities (means) we can say that learning takes place as a
result of the interaction of the agent and the world, and observation, by the agent,
of its own decision-making processes’. Given this definition and the aims detailed in
Section1.9, this work contributes to the area of research into knowledge engineering

of planning domains in the following ways.

1. Induction of Hierarchical Models. Where an agent’s knowledge is com-
plex and systems include many objects and potential actions, our system can
acquire operators (actions) and methods (macros) consisting of models for the

completion of whole tasks.

2. Evidence of Efficiency of Hierarchical Models. Hierarchical planning has
always born the cost of development time for the operators and methods. Our
work addresses this issue by automatically acquiring operators and methods,
and supports the hypothesis that where domains are complex, planning time
is saved by the use of these. In line with the aims in Section 1.9, we argue
that the complexity of the domain model in terms of its states and invariants
ultimately promotes the efficiency of the process. Since this static knowledge

requires little (if any) update, the amount of domain expert time required to

22

encode it is minimised. Using automated induction, system development costs
should be significantly less, offering planning systems as an option where once

they would have been discounted on grounds of cost.

. Towards True Agent Autonomy. Whereas our first work (opmakerl.l)
required some user interaction, opmaker2 lays the foundation for autonomous
learning. Once the agent has a sufficient set of expert sequences it should be
possible to induce sets of operators and methods without further intervention

from the expert.

. New Versions of Experimental Domain Knowledge. This work con-
tributes to planning research by the introduction of new benchmark versions
of old favourite domains. The extended Tyre Domain increases the complexity
of its predecessor whilst the hierarchical Briefcase Domain offers a very simple
hierarchical version with the additional challenge of the potential for ‘double’

conditional operators. Both these domains are available on the website [25].

Chapter 2

DOMAIN MODEL CONSTRUCTION

A planning domain is a knowledge base for a planning application modelled in
some planning language. It contains all the predicates describing the relations be-
tween objects featured in the domain, all the objects themselves and the states in
which those objects can exist, a set of operators and all the constraints needed to
make logical sense of the world being modelled by the knowledge engineer. Whilst
the problems reflected in these domains are inspired by real-world problems we are
essentially reducing these to closed-world planning models. This chapter looks at
different ways of representing a planning domain and the different domain modelling
languages including our choice of an object-centred representation. Using two rep-
resentative domains modelled in OCL we consider GIPO (developed in a separate
project) and the arguments in favour of its use, showing how a domain can be built
step by step. For clarity several diagrams are included, mainly snapshots from GIPO
in stages of domain construction. Operator construction is shown using both GIPO
and our recent addition, the opmaker tool, now embedded in GIPO. The chapter
concludes with some comments about ease of use and accuracy of the construction
tools. A final comment to be made here is the fact that there is another easier way
to construct a flat domain using GIPQO’s life history editor. Figure 1.2 gives a flavour

of this tool which is not described for two reasons:

1. It is the subject of a parallel research project

2. The language is completely unseen by the user until the domain is complete.

This is a real advantage for the non-expert but we are looking at the language

24

description of parts of the domain.

2.1 Planning Domain Representation Languages

There are many different ways of representing domain knowledge and different lan-
guages have been developed for the purpose. In one useful survey the authors discuss
the relationship between agent architectures and representation languages [85]. We
mention two representation languages here. PDDL (Planning Domain Definition
Language) is the most frequently used language in the planning community. It is
action-centred and a domain written in PDDL contains all the operators, which are
expressed in a STRIPS-like manner, together with a planning problem description.

An example operator in PDDL, from the ‘hiking’ domain, is shown in Figure 2.1.

(:action put_down
:parameters (7?x1 - tent 7x2 - person 7x3 - place)
:precondition (and (fit ?7x2 7x3) (up 7x1 ?7x3))

:effect (and (down ?7x1 7x3) (not (up 7x1 ?7x3))))

Figure 2.1: The Operator, put_down, in PDDL.

Here a tent is taken down after a night’s sleep in which the person becomes fit (by
sleeping). The action is called put_down and is intended to represent the taking down
of a tent. Before the action put_down happens, the declared parameters stipulate
the objects concerned with this action. These are tent, person and place, of which
only tent and person are regarded as dynamic and therefore capable of change. The
precondition states that the tent must be up and the person fit and the effects are

that the tent is taken down and is no longer ‘up’. All of this happens at one place,

25

as shown by the inclusion of ‘place’ in the ‘fit’ precondition, and the person remains

fit after the action.

As a result of the 2002 planning competition PDDL has been extended to PDDL
2.1 [21] which allows for a time factor to be taken into account in the planning
process. Further developments to the PDDL language are represented in PDDL2.2
and PDDL3 [15, 23]. Previous to this, in classical planning, actions were assumed
to be instantaneous. If a problem could not be modeled with instant actions then it
was assumed to be a scheduling problem. With these new versions of PDDL there is

a renewed interest in temporal planning.

2.1.1 The Argument in Favour of the Object Centred Approach

By contrast OCL (Object Centred Language), which was developed at The University
of Huddersfield, [40, 43, 45] takes the objects rather than the operators as its focus.
This seems more natural and enables a richly expressive domain structure. The
Object-Centred Language and its associated development method forms a rigorous

approach to capture the functional requirements of classical planning domains.

We can best justify the development of the object-centred approach and the OCL
language by acknowledging the need to develop a precise domain model. This is
best done based on a language offering a formal framework, which will be described
in detail later in this chapter. This framework allows for analysis and checking as
the domain is built and tools have been developed for this. Using the object-centred
approach a domain model has the advantage of a very structured development method

together with efficiency of planning algorithms [35].

The completed model of the planning world together with valid states and op-
erator schemas offer the knowledge based system community a bridge between the

conceptual models of informal knowledge acquisition methods (such as KADS [1, 76])

26

and implementations of knowledge-based systems [38], as well as being important in
the verification and validation of KBS [51]. In planning, the construction and valida-
tion of a domain model is therefore recognised as an essential stage in the construction

of a final system [45].

A more detailed description of the OCL operator construction will be given in
Section 2.4.5 but some explanation is necessary here. An OCL operator consists of

four components as shown below.

operator (name (parameterl, parameter2, ...,parameterN)
prevail clauses list
necessary transitions list

conditional transitions list).

The first of these states that an operator is being described, gives its name and
declares the objects (parameterl, parameter2 etc) included in the description. The
OCL representation of the same operator, instantiated, is shown in Figure 2.2. The
operator’s name is put_down' and the parameters are Tentl, Fred and Keswick.
The next component lists states which prevail throughout the action. In Figure 2.2
‘se’ (a state expression) indicates such a prevail - here Fred is fit in Keswick both
before and after putting down the tent. The third component shows the necessary
transitions which must occur when the action happens and, in Figure 2.2, where
‘s¢’ (state change) indicates that this is a necessary transition, these are shown as
a list of state(s) for the tent to the left of the = prior to action, whilst the right
hand side shows the state after the action. The final component shown in Figure 2.2
in this particular operator shows an empty list but is used to show any conditional
transitions in the same format as the necessary transitions of the third line. We could
think, perhaps, of a flag on top of the tent which would change from being up and

flying to being down conditional upon the tent being up or down. (See also Section

2.4.5, Figure 2.12.)

! This is a ‘user’ supplied operator name corresponding to take_down in Appendix A

27

%name and params
operator (put_down(Tent1,Fred,Keswick),
%prevails
[se(person,Fred, [fit (Fred,Keswick)])],
Jnecessary
[sc(tent,Tentl, [up(Tentl,Keswick)] => [down(Tentl,Keswick)])],

Y%conditional
(]
).

Figure 2.2: The Operator, put_down, in OCL.

The remainder of this chapter refers to aspects of domain construction using
the OCL language and a hierarchical version of OCL named OCL;. For a detailed
description of the construction of a domain using OCL the reader should consult the
OCL Manual [40] and the GIPO on-line manual [25] but the main points of domain

construction will be summarised in this chapter.

2.2 Some Example Domains

There are a number of classic domains in existance which would serve to illustrate the
process of domain construction. Blocks World is one such, which has many versions
and was used to illustrate the STRIPS methodology. Mostly versions consist of a set
of blocks, a table top and a gripper arm which can manipulate the blocks, altering
their relative configuration. We have chosen a different flat domain, the hiking world
[46], which is described in more detail in Section 2.2.1 and which has the following

features:

e It models a real situation.

e [t contains enough detail to make the construction and planning interesting.

28

e It requires several operators, some of which have conditional clauses.

e [t contains both static and dynamic objects.

We have chosen the University of Maryland UM Translog Planning Domain [2] as
an example of a much more complex hierarchically structured domain. It has a rich
set of entities, attributes, actions and conditions, which makes for lengthy plans with
many alternatives, and we have several versions of this domain available for use which
have been translated into OCL;,. Whilst the work in this thesis is based on the full
version of this domain some diagrams show a simpler version to illustrate a point

without too much of the detail.

2.2.1 The Hiking Domain

The Hiking Domain [58] describes a hiking holiday in the English Lake District. It
models a couple doing a long circular walk over several days between such places as
Keswick, Helvelyn, Fairfield, Honister and Derwent. A place is next to another if the
second can be reached from the first by a day’s walking which is always in the same
direction (clockwise or anti-clockwise). Fred and Sue walk a leg each day to arrive at
the night’s stop-over tired but with the welcome sight of their tent ready and waiting
for them. They achieve this by using two cars to move their equipment around and
to transport themselves to the start point of each day’s walk. In a typical day they

would need to

1. use one of the cars to fetch the other from the previous stop-over
2. take down the tent and drive it and both cars to the day’s destination

3. erect the tent there and, leaving one car, return in the other to the start of the

day’s leg

29

4. leave the remaining car and walk the journey leg, arriving tired
5. sleep overnight in the tent to awake fit the following morning

6. repeat the process until the walk is completed.

A full listing of the Hiking Domain is given in Appendix A.

2.2.2 The UM Translog Domain

The version of the UM Translog Domain used for this work has been translated
into OCL;, and so to distinguish the OCL, version I shall refer to it as simply the
Translog Domain. This domain was contrived to model a transport logistics problem
and, whilst still a model-in-miniature of a real transport problem, it is nevertheless
a large domain with many and varied alternatives and thus a good test of a planner.
It models the transportation of a variety of different ‘packages’ between three cities.
Cargo may go by road, rail or air so long as a route can be found. ‘Packages’ may be
large bulky parcels, liquid, grain, cars or livestock and any package may be valuable,
requiring guards to accompany the package, or hazardous, requiring decontamination
procedures before the next package can be transported. There are an assortment
of locations within the cities such as the railway station, the post-office, an airport
and a city-location. Also there is a variety of equipment to load the packages such
as cranes, ramps for livestock, bulky packages or cars to be loaded into the relevant
transport, hoppers for grain and hoses for liquid. Packages have to be ‘certified’ by
paying a fee before they can be transported. This domain is large enough to have
many operators both primitives (non-hierarchical) and methods, and also has many
constraints. Constraints include atomic invariants that state, for example, which
vehicle object is suitable for which cargo, or which locations belong to which city.

It has sorts arranged in a tree structure with several levels, and the methods are

30

arranged in a method hierarchy. The sort structure for this domain is shown in
Figure 2.5 whilst Figure 2.6 shows the methods diagrammatically. Whilst methods
are named in this diagram we show, in Figures 2.3 and 2.4, two random methods
chosen to be representative of all the many methods available. (In these figures ‘ss’
(substate) indicates substates for the objects ‘Package’ and ‘Train’ respectively.) For

a full listing of the OCL,, the reader is referred to [58].

method (transport (Package,Org,Dest),
% pre-condition

[

% Index Transitions

[

sc(package,Package, [uncertified(Package) ,at (Package,Org)1=>[delivered(Package) ,at (Package,D
% Static

[

in_region(0rg,Region),

in_region(Dest,Region)],
% Temporal Constraints

[

before(1,2),

before(2,3)],
% Decomposition

[
achieve(ss(package,Package, [waiting(Package) ,certified(Package) ,at(Package,0rg)])),
carry_direct (Package,Org,Dest),

deliver (Package,Dest)]

Figure 2.3: The Method, transport, in OCLy.

method (move_traincar(v,0,L),

% pre-condition

L

% Index Transitions

[

sc(traincar,V, [at(V,0)]=>[at(V,L)])],
% Static

[

is_of_sort(V,traincar),

connects(R2,0,L),
is_of_sort(R2,rail_route),
is_of_sort(Train,train)],
% Temporal Constraints

[

before(1,2),

before(2,3),

before(3,4)],
% Decomposition
[

achieve(ss(train,Train, [at(Train,0)])),
attach_traincar(Train,0,V),
pull_traincar(Train,0,V,R2,L),

detach_traincar(Train,V)]

Figure 2.4: The Method, move_traincar, in OCLy,.

31

32

sorL\

vehicle_type

primitive sorts

hub_type

trainengine tanker ~ auto hub
i package_type
flatbed hopper mla'aL e malp regularp not_hub
regular livestock P! bulky perishable
non_primitive_sorts refridgerated i | VEStockp
P liquid granular
cars
route
city region city location road_route rail_route
vehicle plane_ramp package cityl regionl road_route_ 1 rail_route 1
cranel prampl city2 region2 road_route 2 rail_route 2
crane2 pramp2 city3 road_route 3 rail_route 3
road_route_ 4 rail_route 4
airplane landcarrier hazardous valuable normalp tcentre not_tcentre
plane 1 pkg_4 pkg_1 pkg2
plane 2
pkg_3
pkg_5
airport train_station clocation post_office
truck ralv cityl_apl cityl tsl cityl cll post_1
truck_1 cityl ap2 cityl ts2 cityl cl2
truck_2 city2_apl city2 tsl city2 cll
auto_1 city3 apl city3_tsl city3 cll
truck_Tank_1 regionl_apl regionl_tsl
truck_Tank_:
truck 5)
~ train traincar
trainl traincar_1
train2 traincar_2
train3 traincar_3
Figure 2.5: The Sort-Tree Showing Objects for the Translog Domain
2.3 GIPO

In this section we look at GIPO itself, argue the reasons for its development and
show how this research fits into GIPQO’s bigger picture. As planners and planning
applications become larger, the problems of engineering planning domain models
become more acute. Engineering platforms are required that allow a domain expert
to enter domain knowledge at a high level of abstraction, and to facilitate the gluing
together of planning tools to help in domain modelling [58, 74, 38]. In particular, if Al

planning is to provide a solution for end-user problems then a system of construction

air_route
air_route 1
air_route 2
air_route_3
air_route_4

33

transport

|

carry
V carry_via-hub
carry_direct<=—"

I

commission

valuable ¢

post_guard_outside l

—

affix_warning_signs

post_guard_inside

(air transport) N
connect_chute

oonneT:t_ho
connecvt_ramp open valve fill” hopper lower_ramp_for_package
i fill_tank i ,
open_door pick_up_package _ground close‘_valve disconnect_full_hopper fill_trough
o . —
load_package % load_package disconnect_full_tanker loadlivestock
~ s lower_ramp_for_pac
put_down_package vehicle = !
close_door - - 2 load_cars close_loaded
2 close_|oaded
disconnect_full_airplane

move_vehicle

valuable _¢

/\unlo | top
]

(=}
post_guar& 3

o

unload

post_guard w_/ 3

(air transport) 5 l

conn?t_ramp “&mﬂ Q

RS connect_hose

AN
connect_chute
N
empty_hopper
N

. X |
open_door pick_up_package vehicle open_valve lower_ramp_for_package

\)
empty_tank B4
unload_package S
unload_package |_packag dose vaive disconnectfem&ti ed_hopper unload_package
put_down_package_ground) -) \ /

close_door disconnect_emptied_tanker close_emptied

= lower_ramp_for_package | _/)
disconnect_emptied_airplane = ! , clean_interior

= unload_package }/

deliver

Figure 2.6: The Method and Operator Structure for the Translog Domain

34

of detailed domains is required. The argument for the development of GIPO has
already been raised in relation to the difficulties of domain construction and operator
construction in particular. Another problem existing in the planning community
concerns the general difficulty of planning and the time it takes to learn enough
about the field to use the technology that planning offers on a wider scale. The ideal
solution is a sort of abstraction allowing model building to be separated from coding
in much the same ways as Windows-style environments allow many novice users to
manipulate data without knowing an operating system language like DOS, or in
modern integrated software development environments where CASE tools shield the
user from the languages underneath. This abstraction would allow domain modelling
to be speeded up and become more cost-effective. In this way it should be possible for

the wider community to embrace planning and find uses for it in many applications.

For these reasons a tools package has been recently developed and offered to the
community at an experimental level. The package, GIPO, [70, 44, 25] a Graphical In-
terface for Planning with Objects, is an experimental Graphical User Interface (GUI)
and tools environment for building classical planning domain models. It provides
an interface that abstracts away much of the syntactic detail of encoding domains,
and embodies validation checks to help the user remove errors early in domain de-
velopment. GIPO has a series of editors for each stage in domain development and
we concentrate on these in the next section. These editors allow complete domains
to be constructed, either flat or hierarchical without the user knowing OCL. GIPO
also integrates a range of planning tools - plan generators, a stepper, an animator, a
random task generator, a reachability analysis tool - all to help the user explore the
domain encoding, eliminate errors, and determine the kind of planner that may be

suitable to use with the domain.

This project has contributed towards the GUI with the introduction of an algo-

rithm opmaker [46] [47] that induces operator descriptions from a user given example

35

sequence. Essentially, the user supplies examples of action sequences by describing
all the objects that these operations affect. Where there is a choice of the target state
for a dynamic object in an operation, the algorithm requires the user to point and
click on that state. The whole process helps the user abstract away from the par-
ticular syntax and consequential errors, and in particular having to encode operator
schema using a symbolic language with subtle uses of parameters. A more detailed

description of the opmaker tool can be found in Section 2.4.5.

The present version of GIPO allows for hierarchical domains to be constructed by
having an hierarchical transition editor, but the version of the opmaker tool imple-
mented is for flat domains only. Opmaker2, not yet embedded in GIPO, will induce a
set of operators and a method. But as methods are built some operators are repeated
in different sequences. A systematic approach to inducing operators was required
which aims to reduce repetition and this research shows a way in which operators can
be induced gradually as the required methods are built thus minimising the repetition

of induced operators.

2.4 Object Centred Language

The object centred domain modelling method provides a tool-supported language for
the capture and implementation of planning domain models. The structured language
leads to the sectional development of the whole model with validation and support
tools available to the developer. Once operational, the object-centred representation
has advantages in the development and resulting efficiency of planning algorithms.
In the following sections we see how a natural English description of a domain for
planning such as that given in Section 2.2.1 can be coded into the OCL representation
in a step-wise manner. We use, as a running example, the building of the hiking

domain as we follow through the steps of its construction.

36

2.4.1 Sorts and Objects
Sort structure hand coded

Reading through the natural English description in Section 2.2.1 allows a set of objects
to be identified and classified into sorts. In the hiking domain the sorts are person,
place, car, tent and couple. These, because this domain is a flat structure, are

classified as primitive sorts. The code for these is below.

sorts(primitive_sorts, [car,person,tent,place,couple]).

Objects are of two types, static and dynamic. Sorts of dynamic objects are person,
car, tent and couple, whilst place is static, and this fits in with our intuitive ideas
about these sorts. We shall see later that only dynamic objects are capable of state

change which becomes important in operators.

% Sorts

sorts(primitive_sorts, [car,person,tent,place,couple]).

% Objects

objects(car, [carl,car2]).
objects(tent, [tentl]).
objects(person, [sue,fred]).
objects(couple, [couplel]).

objects(place, [keswick,helvelyn,fairfield,honister,derwent]) .

Figure 2.7: Part of the Coding of the Hiking Domain Showing the Sort Structure

Next specific objects belonging to the sorts are identified. These will be the cars,

named here carl and car2, the people, named fred and sue, the places, named keswick,

37

derwent etc, the couple’s name (couplel) and tent (tentl). When these are identified

and coded by hand the domain now looks as shown in Figure 2.7.

Sort View (Expert) 4 £ 61Po Text View [hiking 1 :
AllSorts
?— car | || & Strings
O carl
O car? domain_nameihiking).
> [3] person
O sue % Sorts
0 fred sors{primitive_sorts, [car person tent,place, couplel).
o [5] tent
QO tentl % Ohjects
o [3] place objectsicar [car! car]).
O keswick abjectsitent,[tent1]).
O helvelyn abjectsiperson,[sue fred)).
O fairfield objectsicouple [coupled]).
O haonister objectsiplace, [keswick helvelyn fairfield honister, derwent])
O derwent
f—couple % Predicates
O couplel [Ipredicatesi]
at_tentitent place),
at_personiperson,place),
at_car{car,place),
partnersi{couple person persony,
Sort Name | |: uptent),
dowenitent),
walked{couple place),
Ohject Name nextiplace, place)]).
Figure 2.8: The Sort-Tree View Using GIPO and Showing OCL Implementation

Sort structure coded using GIPO

A domain developer using GIPO would not have to deal directly with the coding.

Using GIPO’s sort editor, he uses dialog boxes to name the sorts and adds objects to

the resulting sorts tree structure by clicking on the sorts, Figure 2.8. Unseen by the

developer unless requested, GIPO generates the same code that appears in Figure 2.7.

The code can be viewed at any time by clicking the view option when it is displayed

in OCL. It can also be viewed in PDDL, making GIPO a useful tool for the planning

community at large.

38

2.4.2 Predicates

As can be seen in Figure 2.9 a set of predicates expressing relationships between the
sorts is the next thing to be modelled. Logically these cannot be modelled until the
sorts have been expressed and the predicates are required to express the various states
in the model, so their construction is the next ordered step in domain construction.
Of course if the domain is being built using GIPO then it is possible to revise the
sorts after the predicates have been constructed, although the predicates would also
need revision. The predicates themselves stem from the natural language description
of the world though at first glance some may not seem obvious. For example the

predicate

next (place,place).

does not seem intuitive but stems from the part of the description that states the
walk is circular and the couple walk the next leg of the journey (the second argument
‘place’). So here we make specific that places can be next to one another. Note
that here we are just establishing the predicates in general terms, any object of sort
place could be substituted for place in the predicate. Later we shall see in the atomic
invariants, Section 2.4.4, that we can specify exactly which places are next to each

other.

Another interesting feature here is that a simple ‘at’ predicate is not allowed by
GIPO because of the clash between the sorts of the subject of the predicate. Instead
we need ‘at_tent’, ‘at_person’ and ‘at_car’ for the subjects tent, person and car. OCL
does not allow for a hierarchy of predicates but does allow use of a hierarchical sort
structure. If this had been used then it would be possible to have tent, person and
car belonging to the same sort, say ‘thing” and the ‘at’ predicate applied at the level
of ‘thing” would then allow all the subjects individually to be used in the same ‘at’

predicate.

[Predicate View (Expert)

Sorts ..

~Predicates .

Edit Predicate ..

[5]Ansors at_tent(tent,place) [. at_person
[5] car at_personiperson,place) t persen
person at_car{car,place) plare
E;ice Static partners{couple,person,person)

[5] couple upctent
downitent)

walked{couple,place)
Static nextiplace,place)

~Filter By ..
(_) First Reference Only
() All Referenced

@ All Predicates

[C] Unifying Sorts

@ Refresh Selection
Static Tougle

[Mew Name [— ¥ Delete

| 5 Commit || @b Verify || [} Restore || @ Close |

Figure 2.9: The Predicate Editor View Using GIPO

39

All predicates, once declared, keep the same arity, and this can be used as further

validation. Some predicates such as up(tent), and down(tent) have an arity of one.

The partners predicate has arity three and states that a couple consists of a person

and a person. So does that mean that the same person twice could be a couple? If

we refer to the atomic invariants, in Section 2.4.4, we find the statement

partners(couplel,sue,fred)

which constrains person and person to be two different people, a particular couple

comprising a particular combination of the object person. Again this is a built-in

validation feature of the GIPO software which reflects the completeness of the OCL

language. This particular predicate is one of the static predicates in this domain - as

such it is always true. The other static predicate

next (place,place).

40

reflects that places do not move. Other predicates in this domain are dynamic and
remain true, in their instantiated format when used in the substate expressions (see

Section 2.4.3), only until they undergo a change of state in an operator.

2.4.3 States

Once a set of predicates is complete the states in which the objects can exist are
the next thing to be constructed. These are lists of substates which are put together
to reflect the different states for the objects concerned. For example, if the object
concerned is the tent then, in the predicates, we have already constructed three

predicates of which tent is the subject. These are

at_tent(tent,place).
up(tent) .

down(tent).

giving potentially six sets of substates (at_tent, up, down, at_tent and up, at_tent and
down, and at_tent and up and down). Not all of these make sense or are required and
careful thought in the hand-coded model is needed to correctly identify the relevant
substates. The GIPO states editor, which is shown in Figure 2.10, assists in this
decision process because it groups potential substates in the right window, separating
them by a line. As can be seen in the figure only two of the six potential substates

are required. To express the idea that a tent must always be at a place and that it

so the only substates required are those shown in Figure 2.10. In our later discussion
of opmaker2 we shall see that these substate sets, which are effectively constraints,
can be used to reduce the search space of potential state change pathways. The
mechanism for input of the substate sets into GIPO is by point and click. For the
example shown in Figure 2.10, the user would select the object tent in the left hand
window. All the predicates are listed in the predicate window and from these the

user can see those which feature the tent. Each predicate he clicks is added to the

41

‘Editable State’ window so by selecting the first pair of predicates shown in the ‘State
Definitions’ window of Figure 2.10 he has put them together as a pair. He then clicks
the ‘Add’ button at the bottom to commit the pair to the ‘State Definitions’. Figure
2.10 shows that the user has just clicked ‘Add’ to complete editing the substates
for tent. The substates are a very useful mechanism for omitting combinations that
would not make sense of the world being modelled so, for example, there is no substate

set where the tent can be both up and down.

State View (Expert)
Sorts.————— Predlicates .. -Editable State ~State Definitions ..
[5] AllSoms at_tent{tent,place) at_tent{Tent,Place)
[S] car at_personiperson,place) up{Tent)
person at_car(car,place) at_tent(Tent,Place)
t;:ﬁztce Static partners(couple,person,person) down(Tent)
[5] couple up{tent)
downitent)

walked{couple,place)
Ltiatic nextiplace place)

<< Remove Add =>

~State Variable Bindi

~Filter By ..

i1 First Reference Only

3 All Referenced

i@ All Predicates

[Z] Unifying Sorts

| % Refresh Selection |

~State VariableldD ..

|T9”‘ ” @ Change || [&] Clear ” [y Add || @ Update H T Delete

| = Commit || [Restore || @b Verify States || @ Close |

Figure 2.10: The States Editor View Using GIPO

The hand-coded definition of the substates is shown below. The reader should
note that the substate sets listed are mutually exclusive so, for example, a person
may be fit at a place or he may be tired at a place but he cannot be both. Thus no

constraint is needed to state this explicitly.

42

% Object Class Definitions
substate_classes(person,Person, [
[at_person(Person,Place),fit(Person)],
[at_person(Person,Place),tired (Person)]) .
substate_classes(couple,Couple, [
[walked (Couple,Place) ,partners(Couple,Personl,Person2)]]).
substate_classes(tent,Tent, [
[at_tent(Tent,Place) ,up(Tent)],
[at_tent(Tent,Place) ,down(Tent)]1]).
substate_classes(car,Car, [

[at_car(Car,Place)]]).

2.4.4 Invariants

The domain modeller defines facts that make explicit any assumptions about the
model. The atomic invariants set the boundaries of compatibility between objects
in the domain. The inconsistent constraints state what cannot be true in objects’
substates and the implied invariants state explicitly what is implied by existing sub-

states.

Atomic invariants

Atomic invariants list the specific instances of some of the predicates. So for the
predicate next(place,place) they state exactly which place is next to which other
place. The full set of atomic invariants for the hiking domain is shown below. Here
it is explicitly stated that couplel consists of the sue and fred partnership, and that

keswick is next to helvelyn etc.

% Atomic Invariants
atomic_invariants ([
partners(couplel,sue,fred),
next (keswick,helvelyn),
next (helvelyn,fairfield),

next (fairfield,honister),

43

next (honister,derwent)]).

Atomic Invariants View (Expert)
Sorts..—— Static Predicates .. ~All Predicates ..

| AllSorts Static partnersicouple,person,person) nextikeswick,helrelrn)

[5] car Static nextiplace,place) nextihelretyn,fairfield)

[5] person next{fairfield,honister)

g fSrL;Z t(honister,derwent)
partnersicouple1,suefred)

[B] tent

place
0O keswick
O helvelyn
) fairfield
O honister
) derwent ~Edit Predicate ..

couple T next
O couplel O place

QO place

| Doadd | Dupdate | 0 Delete |
| 2 Commit " @b Verify " I Restore " @ cClose |

Figure 2.11: The Atomic Invariants Editor View Using GIPO

GIPO has a simple to use atomic invariant editor found under the edit menu.
Using this editor, shown in Figure 2.11, static predicates can be edited by highlighting
the predicate, expanding the sort tree, dragging the objects onto the sorts displayed
in the edit window and adding the edited invariant to the all predicates window. The

figure shows the editing of the predicate

next (place,place).

Implied invariants

Implied invariants state explicitly what is implied by existing substates. The hiking
domain has no implied invariants. An implied invariant from the translog domain

1S...

implied_invariant([loaded(P,V)], [at(P,L),at(V,L)]).

44

To explain this invariant if P is a package, V is a vehicle and L is a location then this
invariant says, ‘If a package, P, is loaded in a vehicle, V, then both the package, P,

and the vehicle, V, are at the same place, 1.".

Inconsistent constraints

Inconsistent constraints describe things that may seem obvious but should be stated
explicitly and make a useful debugging tool. They always record incompatibilities.
There are no inconsistent constraints in the hiking domain but we can see one in the

translog domain, where P is a package.

inconsistent_constraint([certified(P), not_insured(P)]).

Here the constraint is concerned with the way payment for transportation is made.
When a package is to be transported a fee must be paid which covers transportation
and insurance. Once the fee is paid the package becomes certified. This constraint is
saying that an uninsured package is not compatible with being certified or, removing

the negatives, to be certified is to be insured.

2.4.5 Operators

As has been previously stated, the hand-coding of operators is the hardest part of
domain construction, requiring much careful thought and time. As a novice to plan-
ning at the beginning of this project, the writer can confirm this statement! In this
section we consider the hand-coding of an operator from the hiking domain and we
look at two tools offered by GIPO to make this coding easier. We begin by exam-
ining the structure of an operator in greater detail. The operator we consider here
is the drive operator from a version of the hiking domain which allows conditional
operators, and is shown in Figure 2.12. This domain has slightly different predicates

from the version discussed so far and in particular contains the predicate

in(person,car,place)

45

to express that a person is in a car and both the person and the car are at a certain
place. In this operator the list of parameters after the operator name in its first line,
shows us that not only is a car being driven by a person from place to place, but also

a second person and a tent are featured.

operator (drive (Person,Car,Place,Place2,Person2,Tent),
% prevail
I,
% necessary
[
sc(person,Person, [in(Person,Car,Place) ,fit (Person)]=>
[in(Person,Car,Place2),fit (Person)]),
sc(car,Car, [at (Car,Place)]=>[at(Car,Place2)])
1,
% conditional
[
sc(person,Person2, [in(Person2,Car,Place) ,fit (Person)]=>
[in(Person2,Car,Place2) ,fit(Person)]),
sc(tent, Tent, [loaded(Tent,Car,Place)]=>[loaded(Tent,Car,Place2)])
]
).

Figure 2.12: The OCL Drive Operator from the Hiking Domain (Conditional Version).

In Figures 2.12 and 2.2 the reader will note that the operator has four sections of
code separated by three comments which are preceded by the % symbol and simply
give a heading to the state transition lines. The first line of code begins with ‘operator’
and then gives the operator name, ‘drive’ or, in Figure 2.2, ‘put_down’. Next follow
the parameters in braces which have initial capitals showing that these are variables.

When constructing this operator the domain modeller has to give thought to the

46

objects she aims to manipulate with it and these objects are represented by the

variables.

Having identified the objects the domain modeller next turns her attention to the
substate lists for those objects. For each dynamic object she needs to consider what
states exist for the object before the action takes place and what states it will assume
after the action takes place. These states will all be drawn from the substate lists
already constructed. She will also have to consider if any of the dynamic objects does
not change state. For this operator she wishes to model the action that takes a car,
driven by one person with another as passenger from one place to a different place
whilst carrying a tent. To model the prevail states she has to consider which objects
from the parameter list will not change state. The substates for this conditional

version of the hiking domain are shown below.

substate_classes(person,Person, [
[in(Person,Car,Place),fit (Person)],
[at_person(Person,Place),fit(Person)],
[at_person(Person,Place),tired (Person)]) .
substate_classes(couple,Couple, [
[walked (Couple,Place),partners (Couple,Personl,Person2)]]).
substate_classes(tent,Tent, [
[at_tent(Tent,Place) ,up(Tent)],
[at_tent(Tent,Place) ,down(Tent)],
[loaded(Tent,Car,Place)]]).
substate_classes(car,Car, [

[at_car(Car,Place)]]).

Taking the objects one at a time, she would decide in this case that all the dynamic
objects must change state since at least one state of the possible state sets changes,
namely all the dynamic objects begin by being at(Object,Place) and end by being
at(Object,Place2). Strictly speaking, for this model, the objects are either ‘at’ them-
selves (the car) or ‘in’ a car which is ‘at’ (person or tent), but other models are

possible. Since all the dynamic objects change state, the prevail states, i.e. the states

47

which don’t change, is an empty set, and this is shown in the second line of the code

for the operator.

The next consideration in modelling this operator are the necessary and condi-
tional changes. Here our modeller must think carefully about which are essential
parameters and which are the ‘extras’. Clearly cars do not yet drive themselves so
she reflects in her modelling that one of the objects of sort person must be required
and so will undergo a necessary change whilst the other person, as passenger (or back-
seat driver) undergoes a change that is conditional upon the car being driven. The
same conditional change is true for the tent, whilst the transition for car is clearly
necessary, so the modeller can decide to put transitions for the car and the driver
under the necessary changes whilst those for the passenger and the tent are put under
the conditional changes. In order to accurately reflect those transitions the modeller
considers preconditions and effects for each object. For example for the driver of the
car, ‘Person’, there is only one possible state to consider. Initially the driver is fit
and in a car which is at ‘Place’ and the effect of the operator is to put the driver, fit,
in a car at ‘Place2’. This transition is represented in the first line of code under the
‘% mnecessary’ heading of Figure 2.12 which shows the precondition to the left of the
= symbol and the effect to the right of the = symbol. The second line under this
heading reflects the similar necessary transition for the car. Of course the modeller
has the responsibility to match all the correct before and after parts since it would
make no sense for the driver and tent to move from A to B whilst the passenger and
car move from B to A! Conditional transitions are often an empty set in an operator
but where they exist, as in this case, they are modelled exactly like the necessary

transitions.

The domain modeller can build a full set of operators in this way or they can be
built using the tools that GIPO offers. We now look at the first of these, the transition

constructor, which allows similar thought processes but requires no expertise in OCL.

The transition constructor

48

Figure 2.13 shows the transition editor when it is first opened. There are five window

areas in the editor one of which displays the sorts constructed in the sort editor,

Figure 2.8.

Transition YAndow

File Operator Design & Edit VWiew

= il & & & 0 0 %] &, 2,
Commit Restore Verify Verify current Previe New Add Update Delete Zoomin Foom C
~Sorts .. 1 -Editing/Drawing Canvas - 4 Operators List
N

AllSorts put_down{Person,Place,Tent)

[3] car put_up{Person,Place,Tent)

[5] person .

Y tent drive_passenger{Person,Place,Placez,Car,Person?)

pelgce drive{Person,Place,Placez,Car)

| couple drive_tent(Person,Place,Place2,Car,Tent)

~Substates List

[«]

|2

[v]

drive_tent_passenger{Parson,Place,Place2,C ar,Tent,Persons)
walk_together{Tent,Placez,Personi,Place1,Personz,Couple)

~Static Predicates List

Static partnersicouple,person,persen)
Static nextiplace,place)

2 Add Prevail 0 Add Neces.. (0 Add Conditi...() Select

4 Delete || 2 Undo H & Redo

Figure 2.13: The Transition Editor View Using GIPO

Clicking on a sort in this window displays the lists of substates for that sort in the

the relevant window. The Editing/Drawing Canvas is for the graphics and will be

expanded in the next figure to show a graphical representation of a newly constructed

operator. The Operators List shows the list of operators already constructed along

with their parameters. The Static Predicates window reminds the user about the

static predicates which have already been constructed and which cannot be changed

49

in an operator.

By clicking on the New button the user can select a name for the operator he
wants to construct. When he confirms the name the drawing canvas is activated,
displaying a graphical version of the name. This window can be expanded and a view
of the left and central windows with the drive operator under construction is shown

in Figure 2.14.

~Sorts ..

[E] allSons
[5] car
pErson
[5] tent
place
[5] couple

~EditingDrawing Canvas 1

~Substates List——
|at_car{Car,PIace} |

1 Add Prevail Add Mecessany 1 Add Conditional ® Select

Figure 2.14: The Graphical Representation of an Operator using GIPO

The user has named the operator which appears in the oval-shaped area and has

completed the transition for the object person. We can now track what he does to

50

add the transition for the object car. In the sorts window he selects car. As he
does this the possible substates for car appear in the substates window. He selects
the only choice (at_car(Car,Place)) and clicks necessary at the bottom to add the
transition to the operator. Any ambiguity in the object of the transition is cleared
up by GIPO with a pop-up dialog box and then GIPO draws in the LHS part of
the transition and prompts the user to select a substate for the RHS. In this case
there is only one choice which the user selects, giving the graphical output shown in
Figure 2.14 which shows the graphical view after it has been edited. By clicking in
the edit tick box (not shown in Figure 2.14) the user is able to edit the RHS of her
transition. The original transition would reflect the substate for car and would read
(at_car(Car,Place)) on both sides. This transition must be edited so that the user
can indicate that ‘Place’ on the LHS is not the same as ‘Place’ on the RHS. After
this edit the RHS of the car transition shows ‘Place2’ indicating that a different place
to the initial place must be an effect of the drive operator. Once the user is satisfied
with the new operator she clicks an add button (not shown) and the operator name
and parameters appear in the ‘Operators List” window where completed operators
are listed whilst the description of the operator is added to the code, viewable at any

time by clicking the view menu.

2.4.6 The opmaker tool

Hand-coding operators requires a domain expert who has a firm grasp of the OCL
language and a large amount of time. Use of the GIPO system using the transition
editor is quicker and knowledge of OCL is not required, but a novice would struggle
even with this tool until they grasped the concepts of forming the transitions. Un-
dergraduate students studying a module on Artificial Intelligence have built domains
using GIPO and their results can be viewed on-line at [72]. If the aim of the planning
community is to bring planning within the grasp of the world of software developers

on a large scale then even more abstraction is needed. This is partly provided by

51

the opmaker tool. At the time of writing the opmaker tool embedded in GIPO is
opmaker1 which still requires user input. This is described in more detail in the
next chapter. It was anticipated that the follow up version, opmaker2, would allow
operators to be induced fully automatically and we describe work towards this in a

later chapter.

For the following discussion of the use of opmaker, we assume the domain devel-
oper has managed to develop her domain to the point where everything up to the
operators has been developed. In the hiking world this would be at the stage where
sorts, predicates, substates, and invariants have been declared. Further than this the
developer should have thought about the actions she requires to be able to use. She
should know, for example, about any ‘moves’ the objects should make, and which

objects would be involved.

To see how the opmaker tool works let us imagine a typical situation in the hiking
domain. Sue has taken down the tent at Keswick in the morning and driven with
it to Helvelyn. Here she puts up the tent ready to sleep overnight after the walk.
They need to leave one car at Helvelyn so Fred must pick her up. Effectively the task
to perform here is for Fred to drive the second car to Helvelyn and to drive it back
to Keswich with Sue as passenger. To stipulate such a task to a planner it would
be necessary to declare the initial states and target states of all the objects. In this
example initial states are that Fred and car2 are at Keswick, Sue and carl are at
Helvelyn and the tent is up at Helvelyn, whilst goal states are that Fred, Sue and
car2 are at Keswick whilst carl is at Helvelyn and the tent remains up at Helvelyn.
So we can say, then, that a task consists of a set of initial states and a set of goal
states for the domain objects whilst a plan is the achievement of reaching the goal
states from the initial states. In the following series of figures we see how GIPO is

used to construct this task and opmaker to build the operators required.

In Figure 2.15 we see the required task under construction. The ‘Initial State’ and

52

‘Goal State’” windows show that construction is almost finished. The initial states for
Sue, Fred, the tent and the cars have been completed. The user wants to declare the
goal state for car2 and has clicked on car2 in the ‘Sorts’ window. This has placed the
state for the car in the ‘States’ window but it needs to be edited so that ‘Place’ can be
selected. In the ‘Edit States for Task’ window the user is able to bring up a submenu
of available places and will select ‘keswick’ for the goal state of car2. Clicking the

‘Goal’ button then commits this last state to the task which can then be verified and

saved.
[F] Task View : o o
= & & e s} o =] @
Commit Restore Verify Rename Copy Delete Print Close
Sorts .. States .. Edit States for Task .. Task ..
DSDns B car(carz piace) at_car(car2, Plape— aciTask_3 [+]
o [[5] car k —
0 tarl iahestinr Initial State
O e i [at_tent(tent1,hetvelyn)
i~ [l persan lhonister upitent1)
Q sue [derwent at_personisue,hetvelym)
0 fred at_personifred keswick)
o~ [S] tent
= 0 tent! at_car(car 1,hehvelyn)
,_ place at_car(car2,keswick)
O keswick
O helwelyn
O Tairfleld
O honister
O derwent
v~ [5] couple
L o couplet
Goal State
‘at_tent(tent1helvetyn)
upitent1)
at_person{sue,keswick)
at_personifred keswick)
at_car{car1,hetvelyn)
G i o
New Clear Delete
(B [%
Initial Goal Update

Figure 2.15: A Task is Constructed Using GIPO’s Task Editor

Using opmaker the first thing to be done is to declare the initial sequence. Figure

2.16 shows this process at the stage where the first action has been declared and the

93

second is also complete. The user has typed into the ‘Action Name’ box a suitable
name for the second action (here ‘drive_passenger’ has been chosen). This action
name has been placed in the ‘Edit Action’” window and by clicking and dragging
objects from the object tree the parameters have been added. At the same time the
action builds up in the ‘Action Sequence’ window. Since this short sequence is now
complete the user will click the ‘Generate Operators’ button, and this action starts

a dialogue process with the user, part of which is shown in Figure 2.17.

[~] Op Maker '
| = Commit H @b Generate Operators || Print Actions H @ Close ‘
Task.. Ohject Tree .. Action Sequence .. Edit Action ..
ociTask_3 - | 5] AllSorts driveifred,car2 keswick,hehehm) . drive_passenger
Initial State car drive_passenger(fred,sue,car2 helvelyn keswi fred
e t O tarl sue
[at_tentitent1,helvetm) O car2 [3] ear2
upitent1) persan helvelyn
[at_person{sue,hehvelyn O sue keswick
at_person(fred,keswict IO tfred
—_ e
-at_car{car1,hehlrelm) [O tenti
at_car{car2,keswick) place
O keswick
O helvelyn
‘ v Q fairfield 4] I [T»
Goal State O honister
————— O derwent ¥ Delete
at_tent(tent1,hehelym) | couple
up(tent1)
at_person{sue,keswick Known Actions ..
at_person(fred,keswict
jat_car{car1,hehelm) Action Hame ’7
[at_car(car2,keswick)
{ I0Iiry i [D

Figure 2.16: Constructing a Sequence Using GIPO

When the snapshot shown in Figure 2.17 was taken the user would have already
answered several questions entering intermediate or goal states for objects. We see
that the question relates to the second operator and asks the user to specify where
‘fred’ is after he has driven his passenger. Similar questions will appear for ‘sue’ and

‘car?2’ until, in Figure 2.18, Opmaker has enough details to construct the operators

54

for the chosen task (shown in the ‘Task’ window as ‘oclTask_3’ and constucted as

shown in Figure 2.15) and flags up the ‘Generation Complete’ message.

] On Maker o
| 5 Commit | | @ Generate Operators | | & Print Actions H @ Close |
Task .. Object Tree .. Action Sequence .. Edit Action ..
oclTask_3 - AlSorts | [urivedrred,car2 keswick hetelm) B drive_passenger
Initial State L] ear drive_passenger(fred,sue,car2 heiehm,keswi fred
= Q carl sue
at_tent{tent1;hehehm) 0 car? car?
upitent1) p— person elvelyn
at_person(sue,hetvelym O sue eswick
P E——————— Q fred
at_personifred,keswict
A PerSONIteOSWIGt | L 1) oy = GIPO Input \
at_car{car1,hehelym) (. O tentl
at_car(car2 keswick) L[] place Select avalue for place in
O keswick at_personifred,Place)
O helvelyn after applying the action
1 L[] O fairield drive_passengerifred,sue,car2helvelm,keswick)
Goal State O honister
e ——— O derwent |helvelyn "‘
at_tent{tent1,helvelm) ,_ couple
at_personisue,keswick Known Actions ..

[at_personifredkeswick
at_car(car1,hehetymn)
at_car{car2 keswick)

Action Hame

d Iy 1 D

Figure 2.17: Opmaker Consulting the User

39

] Op Maker :
| 5 Commit ‘ ‘ @b Generate Operators ‘ ‘ Print Actions H @ cClose |
Task .. Object Tree .. Action Sequence .. Edit Action ..
ociTask 3 | [B] Algors | [ariveifred,car2 keswick heetymy drive_passenger
Initial State [5] car drive_passengerired,sue,car2,hetveln, keswi [3] fred
it O carl [5] sue
at_tentitent1,helvetym) O carz [5] carz
upitent1) person [S] helvetyn
at_personisue,hehehm 0 sue [S] keswick
at_person(iredkeswicl tgm”e“
at_caricar1,heleln) [O tentt
at_car(car2 keswick) place — GIPO Information |
O keswick
O helvelyn @ Generation Complete - The Goal State has been reached.
[l [T O fairielt
Goal State O honister -
TN O derwent m
at_tent{tent1,helvehm) ‘ couple
upitent1) ‘
at_person{sue,keswick Known Actions ..
at_personifred,keswict
at_car{carhehelm) Action Hame ’7
at_car(car2keswick)
d IDIiry 1 D

Figure 2.18: Sufficient Operators have been Generated to Complete the Task

Finally, as shown in Figure 2.19, we see that the user has used the ‘Commit’
button and the new operators have been added to the domain. Their headings are
shown in the ‘Known Actions’ window and they have been generalised so that their
reuse is possible in different situations. Figure 2.20 shows GIPO’s ‘View’ option which

contains the OCL code for the new operators.

56

[*] Op Maker
| 5 Commit | ‘ ¢ Generate Operators | ‘ B Print Actions ‘ | @ Close |
Task .. Object Tree .. Action Sequence .. Edlit Action ..
ociTask_3 - AllSorts drivefred,car?,keswick,hetvelym) . drive_passenger
Initial State 3] ear drive_passenger(ired,sue,car2 hehvelym keswi fred
- Q carl sue
at_tentitent1,helvehm) O car? [5] carz
upitent1) p person helvelyn
at_person(suehelvehm O sue keswick
at_personifred, keswicl O fred
——————— | [Stent
at_car{car1,hetvelyn) L ¢ tentt
at_car{car2,keswick) p— place
O keswick
QO helvelyn
4 1] O fairfizld 4
Goal State O honister
e — O derwent
at_temtttentihehetym) | L[5 oupe
upitent1)
at_person(sue keswick Known Actions ..
at_person(ired keswicl drive{Person0,Car0,Place0,Place1)
i P
at_car{car1,hehretlyn) Action Name ‘ drive sonD,Personi,Cal
at_car{car2 keswick)
1 I [T T T» Al I Tv]

Figure 2.19: Newly Constructed Generalised Operator Headings Shown

=] GIPO Text View [hiking]

| || & String Search || @ Object Search

|»

% Operators
operator{drivelPersonl Placel Placet,Card),

% prevail

0

% necessany

[=c{person Persond [at_person{Persond Flacel) nextiPlacel Place!)==[at_person{Fersond Flace1)]),
scicar,Carl [al_car{Car0 Placel)]==[al_cariZar0 Place1)])],

% conditional

m-
perator{drive_passenger(Persond,Placed,Flacet Persont Card),

% prevail

0

% necessany

[seipersonPersond [at_person{Person0,Placed)ne(Persond,Persont)nexdiPlacel Placeljl=={at_person(Persond Place)],
sciperson,Persont [at_person{Persont Placedi]==[at_person{Person, Placel]),

scicar,Carl [at_car(CarQ Placel]==[at_cariCarl Place)],

% conditional

m

=]

Domain File: hikingMay28.oc|

| @ Close

Figure 2.20: GIPO’s View Option Showing Newly Formed Operators in OCL

o7

A full version of the hiking domain was constructed using GIPO and in particular
the Op Maker tool. The resulting set of operators from the first sequence is shown
below, in which ‘se’ (state expression) denotes a prevail clause and ‘sc’ (state change)
denotes a necessary transition while for a full listing of the hiking domain the reader

is referred to Appendix A.

% Operators
operator (take_down(Person0,Tent0,Place0),
% prevail
[se(person,Person0, [at_person(Person0,Place0),fit(Person0)])],
% necessary
[sc(tent,TentO, [at_tent(Tent0,Placel) ,up(Tent0)]=>
[at_tent(Tent0,Place0) ,down(Tent0)]1)],

% conditional

.

operator (drive_tent (Person0,Tent0,Place0,Placel,Car0),
% prevail
1,
% necessary
[sc(person,Person0, [at_person(Person0,Place0) ,fit (Person0),
next (Place0,Placel)]=>
[at_person(Person0O,Placel) ,fit(Person0)]),
sc(tent,Tent0, [at_tent(Tent0,Place0) ,down(Tent0),
next (PlaceO,Placel)]=>
[at_tent(TentO,Placel) ,down(Tent0)]),
sc(car,Car0, [at_car(Car0,Place0) ,next (Place0,Placel)]=>
[at_car(Car0O,Placel)])],
% conditional

1.

operator (drive (Person0O,Place0,Placel,Car0),

% prevail
a,

% necessary

[sc(person,Person0, [at_person(Person0,Place0),fit(Person0),

next (Place0,Placel)]=>
[at_person(Person0,Placel) ,fit(Person0)]),
sc(car,Car0, [at_car(Car0,Place0) ,next (Place0,Placel)]=>

[at_car(Car0,Placel1)])],

% conditional

.

operator (put_up(Person0,Tent0,Place0),

% prevail

[se(person,Person0, [at_person(Person0,Place0) ,fit(Person0)])],

% necessary
[sc(tent,Tent0, [at_tent (Tent0,Place0l) ,down(Tent0)]=>
[at_tent(Tent0,Place0) ,up(Tent0)])],

% conditional

1.

operator (drive_passenger (Person0,Personl,Place0,Placel,Car0),

% prevail
a1,

% necessary

[sc(person,Person0, [at_person(Person0,Place0) ,fit (Person0),
ne (Person0,Personl) ,next(Placel,Place0)]=>
[at_person(Person0,Placel),fit (Person0)]),

sc(person,Personl, [at_person(Personl,Place0) ,fit(Personl),
next (Placel,Place0)]=>
[at_person(Personl,Placel) ,fit(Person1)]),

sc(car,Car0, [at_car(Car0,Place0) ,next (Placel,Place0)]=>
[at_car(Car0,Placel)])],

% conditional

58

59

1.

operator (walk_together (PersonO,Personl,Tent0,Couple0,Place0,Placel),
% prevail
[se(tent,TentO, [at_tent (Tent0,Placel) ,up(Tent0)]1)],
% necessary
[sc(person,Person0, [at_person(Person0,Place0) ,fit (Person0),
ne (Person0,Personl) ,next (Place0,Placel)]=>
[at_person(Person0,Placel) ,tired(Person0)]),
sc(person,Personl, [at_person(Personl,Place0) ,fit(Personl),
next(Place0,Placel)]=>
[at_person(Personl,Placel) ,tired(Personl)]),
sc(couple,Couple0, [walked (CoupleO,Place0) ,next (Place0,Placel)]=>
[walked (CoupleO,Placel)])],
% conditional

1.

2.5 Conclusion

Having shown the essential parts of domain development in this chapter we will
look at operator induction in the next. The reader should be aware that there is
more to domain construction than the elements discussed. For example we have not
described the use of many of the tools available in GIPO nor have we shown how
plans can be executed. Nevertheless the contents of this chapter should be adequate
for understanding the issues raised in this thesis and the reader is referred to the
GIPO website [25] and the GIPO manual and tutorial for further details of tools not
described. The essential point here is that the required parts of the domains needed

for induction of operators have been described.

Chapter 3

THE DEVELOPMENT OF OPMAKER VERSION ONE

In this chapter we look at the development of opmaker, the algorithm for the
automatic induction of operators. The first section considers a new experimental do-
main created to be a useful example to illustrate some aspects of operator induction.
This domain is referred to in the early part of the chapter and used extensively in
later sections. In the next section we consider the implications of a domain being
hierarchical. The third section describes how the original version of opmaker worked
whilst the fourth discusses further requirements. The fifth section describes the in-
heritance problem in detail and the work done to correct this problem. In the sixth

section we discuss testing criteria and results from the induction process.

3.1 The Briefcase Domains

A good example of an hierarchical domain is the Translog Domain. The main problem
with this domain is shown by Figures 2.5 and 2.6 which demonstrate its complicated
sort tree and method hierarchy. We felt it would not be easy to follow through exam-
ples based on such a complex domain so we started to look for a less complex domain
that had the two features of interest that Translog has, namely the hierarchical sort
structure and the hierarchical method structure. It proved difficult to find a suit-
able simple domain so we decided to adapt another well-known domain, the Briefcase

Domain.

61

3.1.1 The Briefcase Domain (BC)

The briefcase (BC) domain is extremely simple, having very few objects in a basic
sort structure. This version of the traditional domain allows for conditional clauses
in its operators and in BC relevant items are moved between two locations by using
a choice of container, such as one of the two bags. In BC the three items, a pay
cheque, a dictionary and a business suit, can be transported between home and the
office. There are two bags, a briefcase and a suitcase, and whilst all the items can be
transported in the suitcase, only the dictionary and the cheque can be carried in the
briefcase. There is a simple sort and object structure which is flat [Definition 1.17]
in the sense that every sort exists at the same level as every other and objects belong

to one of the sorts. This sort structure is shown below.

% Sorts

sorts(primitive_sorts, [bag,thing,place]).

% Objects
objects(bag, [briefcase,suitcase]).
objects(thing, [cheque,suit,dictionary]).

objects(place, [home,office]).

3.1.2 The Hierarchical Briefcase Domain (HBC)

For experimental purposes it was desirable to find a domain with few objects and
operators but with a hierarchical structure. To achieve this BC was adapted by
adding some objects and structuring the sorts into a hierarchy, enabling the addition
of some extra operators and methods and allowing the methods to be structured into
a hierarchy [Definition 1.18]. So the idea of the Hierarchical Briefcase Domain (HBC)
arose. HBC contains the additional items a pencil, some sandwiches, a lunch_box, a
pencil_box and containers such as box, bag and carrier. The sort structure for HBC
has different tiers or levels. The new sort ‘carrier’ is one of three top level sorts, whilst

‘thing’ and ‘place’ are the others. Carrier is different to the others in the sense that

62

it is not a primitive sort (one which has no more sorts below it in the tree). To ease
future discussion about sort trees we shall refer to a sort at a higher level in the tree
than another as a supersort whilst a sort at a level below another will be referred to
as a subsort. The sort structure for HBC is shown below and is diagrammatically

represented in Figure 3.1.

option(hierarchical).

% Sorts

sorts(primitive_sorts, [briefcase,suitcase,lunch_box,pencil_box,thing,place]).
sorts(carrier, [bag,box]) .

sorts(bag, [briefcase,suitcase]).

sorts(box, [lunch_box,pencil_box]) .

% Objects

objects(briefcase, [bcll).

objects(suitcase, [scl]).

objects(lunch_box, [1b1]).

objects(pencil_box, [pb1]).

objects(thing, [cheque,suit,dictionary,sandwiches,pencil]).

objects(place, [home,office]).

As can be seen carrier was the supersort of bag and box, whilst bag and box
were, respectively, the supersorts of briefcase and suitcase, and of lunch_box and

pencil_box.

With this new sort structure the HBC could represent such ideas as an object
being placed in a box which, in turn is placed in a bag. For example a pencil in
a pencil_box could be put in a briefcase. This introduced an unfamiliar idea of
‘conditional conditionals’ in which the pencil in the box moved if the box moved and,

if the box was placed in a bag, then the pencil moved if the bag moved.

63

(sorts)

[at_carrier] carrier thing [at_thing] place

[in_bag]
[in_box]
[fits_in]
[safe_ in]

[box_in_bag]

[box_outside] box bag

[goes_in]

lunch_box pencil_box briefcase suitcase

Figure 3.1: The Sort-Tree Showing the Levels at which Predicates Apply in HBC

With HBC there was the concept of packing your lunch ready for the journey
to work - a two stage process of putting the sandwiches into the lunch_box and the

lunch_box into the briefcase.

The example domain was created using GIPO and declared as option(hierarchical)
and is listed in Appendix C. Operators and methods were constructed using GIPO’s
tools but not using opmaker which can only be used if domains are not declared as
hierarchical. Tasks had to be constructed before the methods could be built. The
process was fairly time consuming but we needed a benchmark against which we could
compare any induced methods and operators. Having arrived at this benchmark we
would be using only the first few sections of the new domain and a ‘stand-alone’

version of opmaker in order to build operators and methods, but it was important

64

to have the previously constructed ones for comparison. It is useful to explain here
that, whilst the opmaker tool embedded in GIPO works only with domains declared

as non-hierarchical, the stand-alone version does not have that restriction.

3.2 Hierarchical Domains

[See definition 1.12.] For a domain to be hierarchical we must consider two aspects,

sort hierarchies and method hierarchies. These can occur in combinations:

1. Flat sort structure and no method hierarchy
2. Flat sort structure but with a method hierarchy
3. Hierarchical sort structure but no method hierarchy

4. Hierarchical sort structure and hierarchical method structure.

Any of combinations 2, 3 or 4 can describe an hierarchical domain. In choosing
domains to illustrate points in this chapter we have selected the hiking domain as an
example of combination 1, a flat domain, and HBC as an example of combination
4, hierarchical in both respects. Those domains with method hierarchies are built
using a bottom up approach. For example Table 3.1 shows a hypothetical situation
in which the Hiking Domain has groups of operators built into first level methods.
We can imagine the first-level methods shown in the table could be built up into
second-level methods. Perhaps one such could be prepare_to_walk, which could be

composed of move_camp and collect_partner.

65

Task | Possible Method Name

Primitive Operators

1 move_camp

(Person,Tent,Carl,Placel,Place2)

take_down(Person, Tent,Placel)

load (Person, Tent,Carl,Placel)
getin(Person,Carl,Placel)
drive_tent(Person,Tent,Carl,Placel,Place2)
unload (Person,Carl,Tent,Place2)

put_up(Person, Tent,Place2)

2 collect_partner

(Person1,Person2,Car)

drive(Person,Car,Placel,Place2)
drive_passenger(Person1,Person2,

Car,Place2,Placel)

3 collect_car

(Personl,Person2,Carl,Car2)

drive_passenger(Person1,Person2,
Carl,Place2,Placel)

drive(Person1,Carl,Placel,Place2)
drive(Person2,Car2,Placel,Place2)

Table 3.1: A Possible Designation of Methods and Operators

Another could be complete_a_leg consisting of methods collect _car, move_camp

and collect_partner and operators walk_together and sleep_couple (these last two

operators can be found in the full listing of the Hiking Domain in Appendix A).

3.3 Opmaker Phase One

In this section we consider the algorithm for the automatic induction of operators,

which was called opmaker. This could be used to generate full sets of operators and

a single method for domains with no sort or method hierarchy. This had two distinct

developmental stages:

e development of the working algorithm for flat domains and integration into

GIPO for the building of non-hierarchical domains

66

e development of the extended version to induce operators and methods for hier-

archical domains.

For descriptive purposes this section is split up as follows:

1. Input to opmaker

2. Output from opmaker

3. The algorithm and how opmaker works

4. An example from the Hiking Domain showing operator and method induction

5. Incorporation of opmaker into GIPO.

3.3.1 Input

Phase one of the development of opmaker required input of the following items for

induction to take place.

e A partial domain model without operators. This would be a sequentially con-
structed domain consisting of sorts, objects, predicates, substates and invari-

ants.

e For some desired goal state, an ordered sequence of action names together with
the objects to be manipulated that will achieve that goal state - i.e. a plan

trace.

e A set of the initial states for all of the objects mentioned in the action sequence.

e A set of user defined intermediate and goal states which stipulate post-action
states for all the objects featured in the initial sequence. These are numbered

to match the order of the actions in the initial sequence so that, if some of the

67

objects have more than one state change, these changes happen in the correct

order. This input has become known as ‘example material’.

The last two of these are effectively a description of the task to be achieved. If a
full domain were the starting point it would include operators and task descriptions.
Task descriptions are, for flat domains, initial and goal state descriptions and these

can be constructed using GIPO’s task editor as we saw in Figure 2.15.

3.3.2 Output

Output from opmaker is

e A full set of induced operators - one for every named action.

e A single method operator, i.e. a macro or skeletal plan, which is a combination
of all the operators induced. This does not just repeat the initial sequence of
actions but contains precondition stipulations, an overall transition for each
dynamic changing object (i.e. one that gives initial states on the LHS and
final states on the RHS but ignores states in between), a record of any statics
involved, an ordering (temporal constraints) of the actions and a listing of the
actions, ordered to fit with the temporal constraints. Examples of two methods
from the Translog Domain can be viewed in Figures 2.3 and 2.4 whilst a method

from the Hiking Domain can be viewed in the results section of Appendix B.

With this first version of opmaker this method of operator induction only gave ac-
curate operators for domains with flat sort structures and the reasons for this will
be discussed more fully in a later section. Knowledge engineers accept that it is not
often possible to identify a ‘complete’ set of operators for a domain, and we gener-
ally choose a set which is comprehensive enough to cover the main tasks planned for

the domain. But operators can always be added. Indeed, using opmaker, this is no

68

longer a time consuming exercise. Whilst there is rarely a definitive complete set of

operators for a domain, using this system the user could induce a working full set

of operators at one go by having a suitable action sequence. This works well if the

intention is to have a set of operators quickly but the system also induces a method

which, because it consists of all the operators induced ordered into a single method,

is probably not the most useful method to induce. The point about methods is that

they break the task down into chunks that, hopefully, are logical, stand-alone mini-

plans, and by designating a logical order the bigger problem can be solved by calling

a selection of methods and operators.

A Significant Finding A better way to use opmaker is to compose shorter action

sequences with the end method in mind.

Actioh Sequence .. Edit Action ..
take_down(sue,tent1,keswick) . walk_together
drive_tent{suetent1,keswick,helvelyn,car1) Sle
driveiired keswick,helvelyn,car?) fred
put_updfreditentd hehselm) EBD“J:MM
drive_passenger(fred,sue,hetrelyn keswick,car2) Kesuick
walk_together{sue fredtent1,couple 1,keswick,hehrahyn) hebelyn

Figure 3.2: An Action Sequence Composed Using GIPO

For Example A leg of the walk in the Hiking Domain is shown in Figure 3.2 and

using the sequence specified here six operators will be induced and a single

method which does everything except collect the car for the start of the next

leg.

This

69

But a different way to think of this task is to consider that three compound

actions are involved. If, firstly, we call these

move_camp, collect_partner

and

collect_car

then, secondly, we decide the steps required for each, we can see that it would be
better to use opmaker three times to induce, ultimately, the same set of opera-
tors but three methods. Table 3.1 shows a similar idea but different operators

used to achieve it.

Has Importance because it changed the way we used opmaker to be in line
with the way in which humans plan. Humans plan by chunking actions into
overall tasks. A system that plans in this way is closer to human intelligence

and is more in tune with planning ideas.

It Highlights a Task Modelling Problem because a domain may be more gen-

eral than its tasks. For example the Hiking Domain could be used to model
a camping holiday where any walks taken would be circular and need no car.
Cars could still be necessary if larger numbers of people were on holiday, but
could be used differently for transportation, trips out and fetching provisions
etc. In this case tasks would be modelled differently, ending up with different

chunking of the actions.

program opmaker(OS: training sequence)
op = operator

RHS = right hand side of transition

LHS = left hand side of transition

In partial domain model

Out parameterised operator descriptions

1. for each op in OS do

2. form name and parameter list P;

3. for each dynamic O of sort S in P do

4. get RHS from user input

5. induce necessary substate class LHS
6. form transition T = (S, O, LHS = RHS)
7. match free vars in T with those in P
8. end for

9. for all conditional transitions

10. get LHS from user input

11. get RHS from user input

12. form VO € S, (S, 0,LHS = RHS)
13. end for

14. end for

procedure match free vars in 7' with those in P
1. repeat
2. for each parameter X in transition T, X # O,

3. choose a parameter Y in P to match with
4. X such that Y # O, sort(X) = sort(Y),
5. end for

6. until parameter match set is consistent

7. end

Figure 3.3: Outline Design of the opmaker Algorithm

70

71

3.3.8 What Opmaker Does

We begin with an overview of the opmaker system given the input and output detailed

in Sections 3.3.1 and 3.3.2.

e For every named operator
e For every dynamic object
e A transition is formed taking
e LHS from the list of initial states or from the RHS of some
previous operator
e RHS from the given example material
e For static objects (locations)
e The order listed is important: if there are two
e The first goes to LHS
e The second goes to the RHS
e (Opmaker1.1) Inheritance in the sort structure is preserved

e A method is formed from all the operators

In greater detail Opmaker works with the objects which are divided into dynamic
objects [Definition 1.9] and static objects [Definition 1.10]. The formal algorithm is
given in Figure 3.3 but we see what it does in the case of a flat domain - the Hiking

Domain.

The operator heading - line2 of the algorithm Using the sequence of operator
names and the object lists supplied by the user opmaker forms an operator

heading - the first line of the operator is completed.

Formation of prevail and necessary transitions - lines 3 to 8 Opmaker deals
sequentially with the list of objects given. If an object is dynamic it has sub-

states and can change state by the action of some operator. By contrast a

72

static object has no sub-states. A dynamic object can undergo a transition and
in an operator the left hand side of the transition is formed from either the
object’s initial state, if it has not been used before in the sequence, or the state
in which some prior operator in the sequence left it. The right hand side of
the transition is formed from the goal state described in the example material
(the user defined intermediate and goal states) with the number matching the
ordering in the sequence. If the example material contains the word null this
indicates to the system that the object does not change state and a prevail

clause is formed in the operator being built.

Handling of more than one static objects If there are static objects in the op-
erator heading then opmaker has heuristics for dealing with them shown in
the final procedure. Often they are locations to be used in expressing a move
from one location to the other. If this is the case then opmaker ensures that
a different location goes to the right of the transition than was in the left.
The implementation currently in GIPO asks the user to indicate which location

precedes the action and which is the consequent location.

If there is only one static object Transitions are not formed for static objects so
they are never the subject of the transition but represent the attribute values
of some of the dynamic objects, so they feature only when it is required to state

locations of objects.

3.3.4 An Example from the Hiking Domain

We can now relate these ideas to a particular domain. Clearly there were many
test files to be written and it was possible to end up with mistakes in the operators
resulting from erroneous input material. Indeed, since the user has choice of operator
names, these could be different from the model given previously as we see in the first

operator named ‘put_down’ instead of ‘take_down’ which appears in Appendix A.

73

As was noted in the previous chapter, an induced operator takes its name from the
user-supplied initial sequence and can, by this means, have a different name but all
the same parameters and actions as the original domain model. A typical test file is
shown in Appendix B. This is a variant of the domain version considered so far. In
this version a tent can be ‘loaded’ in a car as a third possible state for tent, and Sue
and Fred are ‘tired’ or ‘fit” depending on whether they have just walked or slept. We

see that the initial user given sequence of actions is:
1. putdown(tentl,fred,keswick),
2. load(fred,tentl,carl,keswick),
3. getin(sue,keswick,carl),
4. drive(sue,carl,tentl,keswick,helvelyn).

For the first operator in the sequence the left hand side of the transitions will come

from the set of initial states:

ss(car,carl, [at(carl,keswick)]),
ss(car,car2, [at (car2,keswick)]),
ss(couple,couplel, [walked(couplel, keswick)]),
ss(person,sue, [fit(sue,keswick)]),
ss(person,fred, [fit (fred,keswick)]),

ss(tent,tentl, [up(tentl,keswick)]).

The first operator When composing the first operator opmaker uses the first ac-

tion in the sequence (putdown) to form the heading.

e The initial state of the first dynamic object, ‘tent1’, is checked - up(tentl,
keswick). This state is destined for the LHS of a transition.

e The example inputs are checked relating the correct set of numbered input
material to the position in the sequence. These contain intermediate or

goal state information and are given by the user. Actual example input is

given below.

% putdown (tentl,fred,keswick)

74

input(1,tentl,sclass(Tent,tent, [down(Tent,Place)])).

input(1,fred,null).

% load(fred,tentl,carl,keswick),
input(2,fred,null).
input(2,tentl,sclass(Tent,tent, [loaded(Tent,Car,Place)])).

input(2,caril,null).

% getin(sue,keswick,carl),
input (3, sue,sclass(Person,person, [in(Person,Car,Place)])).

input (3,carl,null).

% drive(sue,carl,tentl,keswick,helvelyn),
input (4, sue,sclass(Person,person, [in(Person,Car,Place)])).
input(4,carl,sclass(Car,car, [at (Car,Place)])).

input(4,tentl,sclass(Tent,tent, [loaded(Tent,Car,Place)])).

The input for example 1 shows that the goal state for ‘tent1’ is down(Tent,
Place). The variables Tent and Place are matched to options in the oper-

ator heading to form the final goal state down(tentl, keswick).

Opmaker then matches the given initial state for the first object with
the goal state from the example material and, for each object, forms a
transition which, because the sides are different, is a necessary transition

and would form one transition in the third section of the operator.

The second dynamic object from the first operator heading is treated in
a similar manner. Thus ‘fred’, the second object, is checked against the
initial states and is found to be fit(fred,keswick). Then the example mate-
rial for the first operator is checked. Here we find input(1,fred,null). The
word null indicates that fred’s state does not change so now a different
type of transition is formed. This transition is a prevail transition and is

used whenever the state of an object remains the same. It is listed in the

7

operator’s second section.

e Finally the last object for the first operator is checked and found to be a
static object. It has already been used to describe the location of the tent
and ‘fred’ and there is no other static object so the operator is complete.
(The last section of an operator is earmarked for conditional transitions

and there are none for this operator.)

The output for this operator is:

operator (putdown(Tent1,Fred,Keswick),

[se(person,Fred, [fit(Fred,Keswick)])],

[sc(tent,Tentl, [up(Tentl,Keswick)] => [down(Tentl,Keswick)])],
[

).

The second operator For the second action in the sequence opmaker makes an

operator heading of load(fred,tent1,carl keswick).

e The list of objects involved begins with ‘fred’. Opmaker recognises that
‘fred’ has already featured in the sequence so it ‘knows’ the final state of
‘fred” from the last operator that featured him. This state is taken to be
the initial state for the LHS of the first transition in the second operator
and since the example inputs again have the word null for ‘fred” we get a

prevail transition for ‘fred’.

e For the second object ‘tent1’ the initial state (LHS) comes from the RHS
of the previous operator formed. It is down(Tent1,Keswick). The example
material supplies the goal state for the RHS of loaded(Tent,Car,Place).
Since this differs from the initial state a necessary transition is formed for

‘tent]1’.

76

e One further dynamic object remains - ‘carl’. This did not feature in the
first operator so the initial state comes from the initial state set. The null
in the example material indicates that ‘carl’ does not change so another

prevail clause is added and then the new operator is given.

operator (load(Fred,Tent1,Carl,Keswick),

[se(person,Fred, [fit(Fred,Keswick)]),

se(car,Carl, [at(Carl,Keswick)])],

[sc(tent,Tentl, [down(Tentl,Keswick)] => [loaded(Tentl,Carl,Keswick)])],
[]

).

The third operator is formed in a similar way. Object ‘sue’ has not featured in
the sequence so her initial state and the LHS of her transition comes from the
initial states, the object state from the example material and since they are
different a necessary transition is formed. The LHS for ‘carl’ comes from the
RHS of the previous operator and the null in the example material indicates a

prevail transition for car.The third operator formed is;

operator (getin(Sue,Keswick,Carl),

[se(car,Carl, [at(Carl,Keswick)])],
[sc(person,Sue, [fit (Sue,Keswick)] => [in(Sue,Carl,Keswick)])],
[

).

The fourth operator has a slightly different feature in that its list of parameters
includes two static objects, ‘keswick’ and ‘helvelyn’. Following the European
convention, these are taken in order using the first for the LHS and the sec-

ond for the RHS of the transitions for ‘sue’, ‘tent1’ and ‘carl’. Note that the

77

partial domain shown in the full listing for this test file, Appendix B, contains
a predicate next(place,place) which is used to describe the order of the places
to be visited in the walk. It does this by detailing, in the atomic invariants,
which specific static object is next to which other as in next(keswick,helvelyn).
This is necessary information for an operator and needs to be addressed but
static objects do not have transitions of their own. Therefore opmaker adds
the clause to the LHS of the first transition where both places feature in the

parameters. The final operator is:

operator (drive(Sue,Carl,Tentl,Keswick,Helvelyn),

I,

[sc(person,Sue, [in(Sue,Carl,Keswick) ,next (Keswick,Helvelyn)] =>
[in(Sue,Carl,Helvelyn)]),

sc(car,Carl, [at(Carl,Keswick)] => [at(Carl,Helvelyn)]),

sc(tent,Tentl, [loaded(Tent1,Carl,Keswick)] => [loaded(Tentl,Carl,Helvelyn)])]
[]

).

3.3.5 Induction of Methods

When opmaker reaches the end of the sequence of actions it finally gives a single
method which is composed from the individual operators induced. The method has

the following features:

e A method name and set of parameters which features just the dynamic objects

affected by the method

e A set of dynamic constraints found from the initial states - e.g. ‘fred’ has to be

fit and in the right place which must be the same as the tent

e A list of necessary transitions that take place between the start of the first ac-

tion and the end of the last action. These do not necessarily reflect individual

78

necessary transitions in the induced operators but do reflect the overall transi-
tion for each object. For example in the operator sequence ‘sue’ has three states
fit(Sue,Keswick) — in(Sue,Carl,Keswick) — in(Sue,Carl,Helvelyn) but in the

method only fit(Sue,Keswick) — in(Sue,Carl,Helvelyn) appears
A list of any static constraints

A decomposition of the tasks to be undertaken which is a list of the operator
names to be called. (If this were a higher level method then you could expect

to see this list contain the names of other methods as well as operators.)

A list of temporal constraints which stipulates the order in which the decompo-
sition is applied taking the listed order of the operators as being numbered (in
this case 1 - 4). Effectively this gives us the equivalent of a hierarchical macro

(a macro that could also contain other macros).

The method induced is given below.

method (move_tent(Fred,Sue,Carl,Tentl),

% dynamic constraints

[se(person,Fred, [fit (Fred,Keswick)]),

se(person,Fred, [fit (Fred,Keswick)])],

% list of necessary transitions

[sc(person,Sue, [fit (Sue,Keswick)] => [in(Sue,Carl,Helvelyn)]),

sc(car,Carl, [at(Carl,Keswick)] => [at(Carl,Helvelyn)]),

sc(tent,Tentl, [up(Tentl,Keswick)] => [loaded(Tentl,Carl,Helvelyn)])],

% static constraints

[

next (Keswick,Helvelyn)],

% temporal constraints

[before(1,2) ,before(2,3),before(3,4)],

h
L

decomposition

putdown(Tent1,Fred,Keswick),

79

load(Fred,Tent1,Carl,Keswick),
getin(Sue,Keswick,Carl),

drive(Sue,Carl,Tentl,Keswick,Helvelyn)]

3.3.6 Incorporation of Opmaker into GIPO

The original version of opmaker discussed in the previous sections has now become
one of many tools available in GIPO. Details of this can be found in Section 2.4.6.
This is not the whole story, however, because planning problems are becoming
more challenging and are applied to a range of real world problems. Therefore there
15 a need to consider how humans do planning by chunking a task into subtasks then
planning these at a more basic level. There is a good argument for replicating this
idea in Al planning and to do this we need to use hierarchical planning. Hierarchical
planning has been seen as a big challenge for the knowledge engineer because of the
difficulty of constructing methods and method networks. We turn now, in the next
section, to hierarchical planning, and examine how our later version of opmaker,

opmaker2, will help to ease the burden on knowledge engineers.

3.4 Opmaker - Further Requirements for Hierarchical Domains

Version one of opmaker did not go far enough in addressing all the issues. For
example, it would generate operators but the method it was capable of producing
was dependent on the type of domain under construction. We saw the use of GIPO
for domain construction and in Section 2.4.1 we saw how the sort structure for the
hiking domain was constructed by hand and by using GIPO’s sorts editor. We saw
that, by comparison to the sort structure for the Translog Domain shown in Figure
2.5, the structure of the Hiking Domain was just a flat structure. Branching of the
sort structure for the Translog Domain has a depth of 7. Using GIPO it is easy

enough to construct such a sort tree but having predicates which apply at different

80

levels in the tree adds an extra problem for opmaker which will be shown in Section

3.5.3.

3.5 The Problem of Inheritance

In planning, where domains have an hierarchical sort structure, inheritance generally

operates.

3.5.1 What Is Inheritance?

In Figure 3.1 we can see the sort tree for HBC. The figure shows that there are pred-
icates associated with different levels of the tree. For example, ‘carrier’ is one of the
three top level sorts and has the predicate at_carrier(carrier,place) associated with
it. Inheritance works in the sort tree so that any subsort of carrier also inherits the
at_carrier predicate. Further down the sort tree there are three predicates associ-
ated with box, one of which is goes_in(box,carrier). This predicate is inherited by
lunch_box and pencil_box, but inheritance does not work up the tree, or across it,

so carrier and bag do not inherit this predicate.
In the following three sections we detail

e exactly what the problem was
e how the inheritance problem was recognised

e what was done to correct the problem.

3.5.2 The Inheritance Problem

In order to identify objects that could be used in transitions, opmaker used the partial
domain model to identify a list of the dynamic sorts featured in the domain. If a

predicate such as at_carrier(carrier,place) was to feature in a transition, then any

81

object which inherited this predicate was a candidate for the list, but opmaker only
delivered the dynamic objects that it found at the same level in the sort tree that
the predicate applied to. This meant that transitions for objects like briefcase or box
could not be formed correctly. Thus it was a fundamental problem for any domain

with an hierarchical sort structure.

3.5.8 Finding the Inheritance Problem

We found that inheritance was causing a problem for opmaker because use of domains
with a sort structure did not always give a correct set of operators and often the
system hung or did not produce a method. An example of faulty output from HBC

is given below.

For the following sequence of actions

put_thing_in bag(scl,home,suit),
move(scl,home,office,suit),

take_out(suit,scl,office)
the following output of operators and methods was produced.

operator (put_thing_in_bag(Scl,Home,Suit),

1,

[sc(thing,Suit, [outside(Suit) ,at_thing(Suit,Home) ,fits_in(Suit,Sc1)] =>
[in_bag(Suit,Scl),at_thing(Suit,Home)])],

[]

).

operator (move(Scl,Home,0ffice,Suit),

I,

[sc(thing,Suit, [in_bag(Suit,Scl),at_thing(Suit,Home),fits_in(Suit,Sc1)] =>
[in_bag(Suit,Scl),at_thing(Suit,0ffice)])],

[]

).

82

operator (take_out (Suit,Scl,0ffice),

1,

[sc(thing,Suit, [in_bag(Suit,Scl) ,at_thing(Suit,0ffice),fits_in(Suit,Sc1)] =>
[outside(Suit) ,at_thing(Suit,0ffice)])],

[

).

% name

method (take_suit_to_work(Suit),

% dynamic constraints

I,

% list of necessary transitions

[sc(thing,Suit, [outside(Suit) ,at_thing(Suit,Home)] =>

[outside(Suit) ,at_thing(Suit,0ffice)])],

% static constraints

[fits_in(Suit,Scl),

1,

% temporal constraints

[before(1,2),before(2,3)],

% decomposition

[put_thing_in_bag(Scl,Home,Suit),
move(Scl,Home,0ffice,Suit),

take_out (Suit,Scl,0ffice),

We can see that the first operator has an accurate transition for the suit and the
atomic invariant fits_in(Suit,Sc1) is also correctly represented. However there should
be a prevail transition for the suitcase, scl, which logically should remain at home

whilst the suit is packed. Example material for this transition was

% put_thing_in_bag(scl,home,suit)
input(1,scl,null).

input(1,suit,sclass(Thing,thing, [in_bag(Thing,Bag),at_thing(Thing,Home)])).

83

and at_carrier(scl,home) had been included in the initial states but no prevail transi-
tion had been formed. Examining the two other operators showed a similar problem
- there were no transitions for the suitcase, scl. The method produced carried the
same problem and in fact the suitcase did not appear to be necessary to the trans-
portation of the suit to the office! However, the decomposition of the method made

it appear that the suitcase did feature so this anomaly was a problem.

After producing several test files and studying the results it seemed that the

problem arose as a result of the sort structure which related the predicate

at_carrier(carrier,place)

to the level of the sort tree carrier and we were using it at the level suitcase, two levels
lower on the tree. After more checking with other domains with sort structures this
turned out to be a universal problem and we were able to identify that inheritance

was not being preserved by opmaker.

To make description of the opmaker process easier in terms of versions, it now
becomes necessary to define these. In future discussion the version we have discussed
so far will be referred to as opmaker1.0, whilst the version updated to compensate
for the inheritance problem will be opmaker1.1. The version in the next chapter will

then become opmaker2.0.

Because only objects of dynamic sorts can be the subject of transitions (see Def-
inition 1.9), when opmaker1.0 makes transitions it checks that each parameter is a
dynamic sort (with a listed substate or substate set). Looking at the listing for the

substate classes below

substate_classes([

carrier(C,

[

[at_carrier(C,L)]

84

ID

thing (T,

[
[outside(T) ,at_thing(T,L)],
[in_bag(T,Bag) ,at_thing(T,L)],
[in_box(T,Box) ,at_thing(T,L)]

D,

box (Box,

[
[box_in_bag(Box,Bag)],

[box_outside(Box)]
n
.

we can see that, from this, opmaker1.0 can make the following list of dynamic

sorts: [carrier, thing, box].

However, looking at Figure 3.1 and referring to the HBC code listed in Appendix
C, will show that other dynamic sorts can be found which are subsorts of these
items. We would thus gain lunch_box, pencil_box, suitcase, briefcase and bag, all of
which inherit a substate from their supersort. The problem was that opmaker1.0 was

missing these extra sorts.

3.5.4 Rectifying the Problem

A revised implementation was written according to the outline algorithm shown in
Figure 3.4. In outline lines 1-4 isolate and list the dynamic sorts from the substate
class list. At this stage these are [carrier, thing, box]. Lines 5-8 iterate through
this list and find all the subsorts of each. In the case of ‘carrier’ these are [box, bag,

suitcase, briefcase, lunch_box, pencil_box|. For ‘thing’ there are no subsorts and

85

program get_dynamic_sorts(X,Y)

In the single substate class list (SSCL = X)
Out a full list of dynamic sorts (DSL = Y)
1.for each sort in SSCL do

2. extract the sort name S

. add S to sort list DSL

3
4
5. for each sort S in DSL do

6. find all S’s subsorts (Subs)
7 add Subs to DSL

8. end for

9

. remove duplicates from DSL

10. end

Figure 3.4: Outline Design to Obtain all the Dynamic Sorts from a Hierarchy

those of ‘box’ are [lunch_box, pencil _box]. These lists are then combined with the

original giving a list with duplicates which are removed by line 9.

This leaves the full list of dynamic sorts which is [carrier, bag, briefcase, suitcase,

box, pencil_box, lunch_box, thing].

Opmaker1.1 would now be able to resolve the problem of inheritance since sorts
below a node on the sort tree were identified as inheriting the predicate attached to

the node of the supersort.

Returning to the initial problem example, which was the lack of a prevail transition
for suitcase shown in the first faulty operator, we can see that suitcase would now be
identified as a dynamic sort, inheritance of the at_carrier predicate would be assured

and the operator would correctly have a prevail transition for suitcase.

86

3.6 Testing and Results from Opmakerl.1

Testing of opmaker1.1 was done on a range of domains. The new implementation

was also tested on various random sort trees created using GIPO.

3.6.1 Success Criteria

Successful testing would be judged on:-

1. Accurate identification of full dynamic sorts lists from varied starting levels in

the sort trees.

2. Use with domains without a hierarchical sort structure should give the same

results as with opmaker1.0.

3. Use with the Translog Domain should give accurate operators.

4. Use with other domains should give either improved performance or the same

accurate results as with use of opmaker1.0.

3.6.2 Results Measured Against these Criteria

1. All sort trees tested gave accurate sort lists of the subsorts for a named sort.

2. Non-hierarchical domains tested gave the same results as previously obtained

using opmaker1.0.

3. The performance of opmakerl.l with the Translog Domain gave a significant
improvement in operator induction across a range of test files. Not only were
operators now accurate but methods could now be induced on this domain

comparable to hand-crafted ones.

87

4. For every domain tested opmakerl.1 gave the same results as opmaker1.0 where
the domain had a flat sort structure, and improved accurate operators and

methods where the domain had an hierarchical sort structure.

3.6.3 Testing and Results Using HBC

Input to opmaker1.1 consisted of test files of which one typical test file for HBC using
opmaker1.1 is shown in Appendix D. Output is listed at the end of the appendix and

shows that the transitions for the operators are accurate.

One negative finding was that conditional operators were not correctly induced.
We decided this was due to the use of a double conditional domain (a pencil in
a box, and the box in a bag means the pencil is doubly conditional on the box
and the bag). This is the only example of this type of domain in OCL and we
conjectured that a bug in opmakerl.1l (and opmaker1.0) is responsible. When this
problem was identified we re-wrote the initial sequences for induction. They now
included all previously conditional objects in the action parameter lists. We renamed
‘move’ actions according to what was moved, e.g. move_bag, move_box_in_bag,

move_pencil_in_box_in_bag etc. and were then able to induce operators.

Building Methods using Induction

In order to induce methods we considered which actions were likely to be needed
to be repeated most often. We argued that whilst all the objects would need to be
transported regularly, taking lunch to work might be regarded as the most frequent
of all actions. We could build each method using different initial sequences like the
one in the test file shown in Appendix D. Using opmaker1.1 we induced the following

methods and operators.

88

e the method pack_lunch(sandwiches,home,lunch_box,briefcase), which comprised
the operators
put_in_box(sandwiches home,lunch_box) and

put_box_in_bag(lunch_box,briefcase,home)
e the operator move(sandwiches,lunch_box,briefcase,home,office)

e the method unpack_lunch(sandwiches,office,lunch_box,briefcase), which com-
prised the operators
take_out_box(lunch_box,briefcase,sandwiches,office) and

empty_box(sandwiches,lunch_box,office)

e the method take_lunch_to_work(sandwiches,lunch_box home,office,briefcase),

which comprised the following

— the method pack_lunch(sandwiches home,lunch_box,briefcase)
— the operator move(sandwiches,lunch_box,briefcase,home,office)

— the method unpack_lunch(sandwiches,office,lunch_box,briefcase).

As can be seen above, the final method in this group could not be constructed until
the other methods and operator existed but, since this final method used the others,

it was at a higher level in the hierarchy of methods.

There were several other possibilities for making the method hierarchy more com-
plex. One such is packing the suit into the suitcase and taking it to work at the same
time as the briefcase containing the lunch. This would allow for a method such as
take_lunch_and_suit_to_work at a third level in the method hierarchy. (A theoret-
ical fouth level would be to put both the suitcase and the briefcase in the car and

driving to work.)

89

The Important points Were. . .

1. The hierarchy is built bottom up. Opmakerl.1 uses operators to build
lowest level methods and higher levels are built from the operators and methods

already induced.

2. Careful thought needs to be exercised in the construction of a sensible
method hierarchy. Methods should not duplicate part of the function of other

methods.

3. Using induction to build methods makes their construction easier and

quicker.

4. Time is saved building a method hierarchy.

3.6.4 Further Experimentation and findings

We built a version of HBC using just induced methods and operators and were able
to use it with HyHTN [44], the hierarchical planner available in GIPO. We devised
tasks similar to those in the GIPO built domain in Appendix C. A snapshot of the
goal of the task devised to replicate the method take lunch_to_work(sandwiches,
lunch_box, home, office, briefcase) is shown in Figure 3.5. In this the left hand box
shows the representation of the task. In GIPO the methods are shown in lilac whilst
the operators are shown in green. The sequence of their application is demonstrated
by the arrows and the right hand boxes list the available operators and methods - i.e.

those already constructed.

90

Edit goal list .. Operators List

put_in_box({Box,Place, Thing)
put_box_in_bag({Bag,Place,Box)
put_thing_in_bag{Bag,Place,Thing)
move({Carrier,Place,Place1)
take_out_hox{Bag,Place,Box)
empty_box(Box,Place,Thing)
take_out{Bag,Place, Thing)

Compound Operators List

pack({Suit,Place,Bag)

pack_lunch{Sandwiches,Place,Lunch_box,Bag)
unpack_lunch{Lunch_hox,Bag,Place,Sandwiches)
pack_and_takeiThing,Place,Bag,Place1)
take_lunch_to_work{Sandwiches,Place,Place1,Lunch_bhox,Briefcase)
take_lunch_and_item_to_work{Bag,Place,Place1,Lunch_box, Thing,Sandwiches)

Figure 3.5: The Task Goal Construction Window in GIPO Showing the

take_lunch_to_work Method under Construction

We used the planner to solve the tasks in two ways either by using just the induced
operators or by using the induced methods as well as the operators. We found that
the time taken by the planner to solve one task using just operators was shorter, at
0.36 seconds, than the time taken using methods, at 0.86 seconds. Figure 3.6 shows
the solution and part of the rationale to the task shown in Figure 3.5. In it we can
see a list of the operators used to reach the solution. Other tests produced similar
results showing that the overall time taken using the hierarchical planner to solve

tasks was longer if methods were used.

I A

TASK &

SOLUTION
put_in_boxilh1 home, sandwiches)
put_hox_in_haaibo! home k)
rmowvelhcl home office)
take_out_boxibcl office,lb1)
empty_boxilh1 office, sandwiches)
ErMD FILE

BEGIMN METHOD
in1;
Flame:pack_lunchizandwiches home,lh1 bet);
Fre-condition:[selunch_box b1, [box_outside(lb1),at_carrier(lb1 hamel]),seithing, sandwiche
g [outsidedsandwiches) at_thinglsandwiches homel]i];

Temporal Constraints:[heforechp11 hp1 23]
Decomposition:[stepthpt 1, put_in_hox(lb1 home, sandwiches) [sedbriefcase bel, [at_carrier(h
c1 homed),sedlunch_kox b1 [hox_outsidedbt)at_carrierdlb1 homel),seithing, sandwiches, [0
utsidefsandwirhesh at thinnfsandwiches hnme™ Isefthinn sandwiches lin bnv'sandwirhe

91

Figure 3.6: The Planner Window in GIPO Showing the Solution to the Task in Figure

3.5

These results were disappointing because we had expected to confirm that hi-

erarchical planning was more efficient. However we realised that HBC was a very

simple domain for which, normally, researchers would not use hierarchical planning.

Hierarchical operators can be regarded as ready-to-use plan chunks which save the

time taken to search for a sub-plan and thus save on overall planning time. On the

other hand, before opmaker1.0, the time taken to construct methods would have to

be taken into account and for simple domains would not be cost-effective. In the

case of HBC, which has only a few operators, search times were unlikely to be very

long. We had constructed a more complex domain in terms of operators and methods

92

than was required and it seemed that the complexity of the domain was slowing the
planning time down. The same planner, HyHTN [44], was used for plans using just
operators and plans using methods and the extra time taken was still under 1 second
so there were arguments in favour of continuing the work. Firstly, hierarchical plan-
ning is more like the way humans plan by chunking tasks to be performed and Al
aims to emulate human thinking using computational methods. Secondly, an OCL-
expressed domain had a richer language structure and the methods encapsulated the
plan chunking effectively. Thirdly, we wanted to continue but to use a more complex
domain with more objects and operations to perform to see if we found the same
slower plan times. We hoped there would be a crossover point where the number of
searches needed using just operators would slow down the plan time more than the

extra time required by using methods.

The following chapter describes the further work done in this area and demon-
strates more promising results. In particular we introduce opmaker2, an improved

system of induction which needs no intermediate state information.

Chapter 4

THE DEVELOPMENT OF INDUCTION TOOLS
WITHOUT INTERMEDIATE STATE USER INPUT

In this chapter we investigate techniques for inducing operators without the re-
quirement of hand-crafted intermediate and goal state descriptions. We are working
towards the goal of automated planning in which an agent (system) has full or partial
domain knowledge but is able to use the level of knowledge it has to infer and induce

the rest.

To aid description we need to introduce another domain which was extended from
an existing version to provide more of a challenge to the hierarchical planner. In the
first section we describe the alterations made to the well-known tyre world [65] to
create the Extended Tyre Domain. In the second section we see how experiments
with this new domain compare to those on HBC. In the third section we introduce
ideas for improving operator induction by automating the process of obtaining the
example input sets giving goal states for operator transitions. The fourth section de-
scribes the implementation of the new process with a diagram and gives an algorithm
for this, along with a walk-through description of the stages involved in induction
without hand-crafted example material. Finally, the fifth section discusses the aims
for experimentation with the process output and success criteria. Results are given

for three different domains.

94

4.1 The Extended Tyre Domain

As we noted in the last chapter, HBC was not challenging to the planner, though
it had helped with the testing of the inheritance problem. With its 11 objects, 9
sorts and 7 operators the conditional version of HBC was very primitive, but was
effective for testing purposes once the inheritance problem had been resolved. One
further difficulty with this domain, as we briefly noted, was that conditional operators
were not well represented appearing in the necessary clauses of the operators instead
of the conditional clauses. We conjectured that, since a version that contained no
conditional operators and consequently contained more operators was still slower
when planning using methods than when using operators, we should try a more

challenging domain.

We aimed to find a domain with more objects and more operators. We decided
to use a domain with a flat sort structure since we knew how to solve the inheritance
problem. We wanted to use opmakerl.l to induce all its operators and methods.
A domain with a lot more objects was difficult to find because many domains for
experimental purposes produce quick results from few objects and operators. One
of our main aims was to show that for longer plans our induced methods would give
faster plan times than by just using operators. After all if we could decrease the time
taken for domain construction and, at the same time, reduce the time taken to arrive
at accurate plans we would have made a significant contribution to planning. We
considered the traditional tyre domain which did have more operators. We decided
to extend this domain to make it more of a challenge to the planner by maximising
the number of operators and objects it contained. In this section we describe the
alterations to this flat domain to give it a full set of induced operators and a selection

of useful methods.

95

4.1.1 The Original Tyre Domain

The original tyre domain was built to model the steps required in the changing of a
wheel on a single wheel hub. Sorts and objects in the domain were those necessary to
the wheel change but limited to two wheels and one each of other objects except the
wheel nuts which are not numbered but simply declared as ‘nuts’, and thus effectively

a single object.

The Sorts and Objects in the Original Tyre Domain

The flat sort and object declarations are shown below.

domain_name (tyre) .

% Sorts

sorts(primitive_sorts, [container,nuts,hub,pump,wheel,wrench, jack]) .

% Objects
objects(container, [boot]) .
objects(nuts, [nuts_1]).
objects (hub, [hub0]) .
objects (pump, [pump0]) .
objects(wheel, [wheell,wheel2]).
objects(wrench, [wrenchO]) .

objects(jack, [jack0]).

In total the original Tyre Domain contained 8 objects and 7 primitive sorts which

made it less complex than HBC in this respect.

Operators in the Original Tyre Domain

There were more operators in the Tyre World, so in this sense it was more challenging

to a planner than HBC. Also these operators had an obvious sequence which allow

96

the reader to discern the intentions of the full plan of changing the wheel. We shall

list here just the names of these operators.

open_container (Boot)
fetch_jack(Boot,Jack)
fetch_wheel (Boot,Wheel?2)
fetch_wrench(Boot,Wrench)
fetch_pump (Boot ,Pump)
loosen(Wrench,Hub,Nuts)
jack_up (Hub, Jack)

undo (Wrench,Hub, Jack,Nuts)
remove_wheel (Wheell,Hub, Jack)
put_on_wheel (Wheel2,Hub, Jack)
do_up (Wrench,Hub, Jack,Nuts)
jack_down (Hub, Jack)
tighten(Wrench,Hub,Nuts)
putaway_wheel (Boot,Wheell)
putaway_wrench (Boot ,Wrench)
putaway_jack (Boot,Jack)
putaway_pump (Boot ,Pump)

close_container (Boot)

One item, the pump, was not actually used by any operators other than the two

responsible for getting it out and putting it away. Whilst this was a comprehensive

set of operators, the few objects in the domain did not allow for a full model unless

it was of a unicycle with a boot.

4.1.2 The Tyre Domain Extension

The decision was taken to extend this domain so that it modelled the numbers of

objects used in changing the wheel of the average family saloon car. Thereafter, if

required, the domain could be extended further to cover a large commercial vehicle.

We assumed the average family saloon car would have four wheels and a spare, with

97

normal tyres before the invention of run-flat tyres. With this model we assumed a
fairly down-market vehicle without alloy wheels but with wheel trims which could
be applied and removed. This gave us two extra operators. Also it now had tyres
on the wheels which could be ‘full’ if they were fully inflated with air, ‘flat’ if they
were discovered to be flat but could be fully inflated, or ‘punctured’ if use of the
pump was ineffective. These alterations gave a use for the pump which had to be
used when checking for punctures and created two further operators, inflate_tyre and

discover_puncture.

The most notable thing about this extension was the increase in the number of
objects - an increase over the original domain of 18. There were two additional sorts
and 4 additional operators in total. A larger number of objects would increase the
search time quite significantly when instantiating operators to find a correct plan.
The extended object and sort structure is shown below, and a comparison of the
objects and operators in the two versions of the Tyre Domain can be seen in Table

4.1.

domain_name (tyre_extended) .

option(hierarchical).

% Sorts

sorts(primitive_sorts, [container,nuts,hub,pump,wheel,wrench, jack,wheel_trim,tyre

D.

% Objects

objects(container, [boot]) .

objects(nuts, [nutsl,nuts2,nuts3,nuts4]).

objects (hub, [hubl,hub2,hub3,hub4]) .
objects (pump, [pump0]) .

objects(wheel, [wheell,wheel2,wheel3,wheeld,wheelb]) .

Tyre Domain

Ezxtended Tyre Domain

Objects

Objects

1 boot

1 set of wheel nuts
1 hub

1 pump

2 wheels

1 wheel wrench

1 jack

0 wheel trims

0 tyres

1 boot

4 sets of wheel nuts
4 hubs

1 pump

5 wheels

1 wheel wrench

1 jack

4 wheel trims

o tyres

Total Objects
8

Total Objects
26

Total Operators
18

Total Operators
22

98

Table 4.1: Comparison of Two Versions of the Tyre Domain

objects(wrench, [wrenchO]) .
objects(jack, [jack0]).
objects(wheel_trim, [triml,trim2,trim3,trimd]).

objects(tyre, [tyrel,tyre2,tyre3,tyre4,tyreb]).

The additional operators were:

apply_trim(Hub,Wheel_trim,Wheel)
remove_trim(Hub,Wheel_trim,Wheel)
inflate_tyre(Pump,Tyre)

find_puncture (Pump, Tyre)

The complete version of the Extended Tyre Domain which was extended using

99

GIPO can be viewed in Appendix E.

4.1.3 Substates in the Extended Tyre Domain

Later sections of this chapter will show that it would be important to consider the
substates declared in the partial domain input to opmaker much more closely that
previously. The substates direct what the possible transitions for the objects might

be. For example, looking at the substates for jack,

substate_classes(jack,J,[
[have_jack(J)],
[jack_in_use(J,H)],
[jack_in(J,C)11).

if we are given an initial state for the object jack as have_jack(Jack) then if the jack

undergoes a transition we can see what the possible transitions might be:

e have_jack(Jack) — have_jack(Jack) (a prevail transition)
e have_jack(Jack) — jack_in_use(Jack,Hub) (one possible necessary transition)

e have_jack(Jack) — jack_in(Jack,Boot) (another possible necessary transition).

The substate classes for the Extended Tyre Domain contain a lot of possible states
for the objects and are themselves another way in which this domain is more complex
than HBC where the substates appear shorter because of inheritance and because
there are few substate choices. Further discussion on substate classes can be found

in Section 4.3.3.

4.2 Experiments with the More Complex Domain

We built the new version of the Extended Tyre Domain (ETD) using GIPO. The

complete version of ETD included tasks and all the operators and methods which we

100

aimed to replicate using opmaker1.1 induction. This domain is included in Appendix
E. This example ETD was validated by GIPO and tested by using the planner to find
solutions to the tasks. This step was necessary so that we had an example correct

domain to which we could compare induced operators and methods.

4.2.1 Aims of Experimentation

As with previous domains we then took the partial domain (without the operators
and methods) and added the initial sequence, initial states and example intermediate
states, having separate test files for each desired method. The aims in experimenta-

tion with the new domain were to:-

1. Build a full and accurate set of operators

2. Compare these operators to the ones constructed using GIPO, which had been

validated by the system

3. Use logical short sequences of actions to induce meaningful methods which

accurately described a complete task in the tyre change process
4. Add the induced methods and operators to the partial domain

5. Construct tasks that would test all of the operators and methods forming in-

creasing lengths of plans

6. Use the new version for planning where only the induced operators were available

for planning
7. Use the new version for planning using operators and methods

8. Compare the times taken for 6 and 7 above and compare both against times

taken for hand-crafted operators and methods

101

4.2.2 The Full Planning Problem

At this stage we define the full planning problem for ETD. This is modified from
the full problem for the original domain to take account of the extra objects and

operators available. It is defined as:-

The vehicle is found to have two flat tyres. The motorist must open the boot and
using the pump discover if either of the tyres is simply flat. One tyre is flat and is
inflated using the pump, but the other is found to be punctured. The motorist must
then remove the wheel trim from the punctured wheel, use the wrench (fetched from
the boot) to loosen the nuts and the jack to jack up the hub. This done he removes
the nuts, exchanges the wheel for the spare and does up the nuts. After jacking down
he tightens the nuts, re-applies the trim and puts all items away in the boot before

closing it.

4.2.8 Decisions on the Potential Methods

We needed to give consideration to the chunks of the full planning problem of changing
the wheel from start to finish. This follows on from the argument in Section 3.6 where
we state that it is at this stage that careful thought has to be given to the method
structure. Since induction of methods has eased their individual construction it is
better to be aware of what appears to be a sensible choice for the methods. We

decided on a sensible choice of methods for ETD and these are shown in Figure 4.1.

Each of the desired methods shown in Figure 4.1 was made into a test file to
be used with opmaker1.1. A test file for the method discover_puncture is shown in

Appendix F. Results from running this file can be seen at the end of the test file.

102

. A method called fix_flat in which, on spotting a flat tyre, the motorist opens
the boot, takes out the pump, uses it to inflate the tyre, puts away the pump

and closes the boot.

. A method called discover_puncture which is similar to the first. Here the mo-
torist opens the boot, takes out the pump, finds he can’t inflate the tyre (so
discovers he has a puncture) and puts away the pump, leaving the boot open

because he knows he will need to get out more equipment.

. A method called fetch_tools in which the motorist fetches the jack and the

wrench from the open boot.

. A method called putaway_tools in which the jack and wrench are returned to

the boot.

. A method called unfasten_hub in which the wheel trim is removed, the wrench
is used to loosen the nuts, the jack is used to jack up the hub and the nuts are

undone and removed.

. A method called fasten_hub which reverses the process in point 5 above. Here
the nuts are put on and done up, the hub is jacked down, the nuts are tightened

and the wheeltrim is replaced.

. A method called change_wheel in which the spare wheel with its tyre is fetched
from the boot, the punctured tyre is lifted from the hub and put into the boot

and the spare is positioned on the hub.

Figure 4.1: A Sensible Choice of Methods for the Extended Tyre Domain

103

Starting with a complete domain without operators, each of the desired method
files was run with opmaker1.1 and the resulting new operators and method were
added to the new version of the domain. Eventually all the operators that were
in the GIPO-constructed domain were replicated in the new version of the domain,

which then contained the seven methods suggested in Figure 4.1.

4.2.4 Results of the Testing

The results from the eight aims of the testing are listed below:-

1. All the operators were built successfully

2. All operators were similar to the example domain

3. Meaningful methods did describe chunks of the full tyre change problem

4. Induced operators and methods were added to a partial domain to be later

tested further

5. The previously devised tasks were copied into the new version to complete the

full induced version of ETD

6. The full induced version was used for planning when the methods were unavail-

able and plan times were noted

7. The full induced version was used for planning when the methods and operators

were available and again plan times were noted

8. The times taken in item 6 and 7 were compared. Results of this comparison

can be seen in Table 4.2 in which task 11 is the full planning problem.

104

Task No. | Steps in Plan | Plan Correct? | Time for Operators | Time for Methods
1 8 Yes 1.01 secs 1.09 secs
2 7 Yes 1.43 secs 2.25 secs
3 6 Yes 0.85 secs 1.25 secs
4 1 Yes 0.00 secs 0.01 secs
5 3 Yes 0.01 secs 0.01 secs
6 3 Yes 0.02 secs 0.02 secs
7 3 Yes 0.01 secs 0.05 secs
8 3 Yes 0.01 secs 0.07 secs
9 4 Yes 0.15 secs 0.24 secs
10 16 Yes 2.67 secs 4.53 secs
11 24 Yes for methods no plan found 0.2 secs

Table 4.2: Comparison of Plan Times Using Operators and Methods

9. Improved planning efficiency using methods is demonstrated in Table 4.3. It

shows that replacing operators by methods as the plan steps increase keeps

plan times at around 0.02 seconds. Table 4.2 shows that plan times for just

operators increase and as the steps increase, and some plans cannot be solved

with operators alone.

Tasks for Testing

Tasks were devised to test that each section was working correctly and these were

constructed in two ways. The first way was to assume the domain was flat and only

allow the use of operators in the task. The second was to assume the domain was

hierarchical and allow the use of the method. Each of these was run with the planner.

The resulting times taken to reach a plan were recorded and are shown in Table 4.2.

105

Task No. | Steps in Plan | Time (Secs) | Operators Used | Methods Used
1 4 0.00 0 1
2 4 0.00 0 1
3 2 0.00 0 1
4 6 0.00 0 2
5 10 0.01 0 3
6 14 0.02 4 3
7 18 0.02 4 4
8 20 0.01 4 5
9 21 0.01 5 5
10 24 0.02 8 5

Table 4.3: HyHTN Plan Times Using Operators and Methods

Once each potential method had been tested as above, combinations of operators
and methods were tested to achieve increasingly large sections of the full problem.
Table 4.3 shows the ten different tasks that were tested on the Extended Tyre Domain.
The second column lists the number of plan steps in terms of operators used and needs
to be viewed in conjunction with the fifth column which lists the number of methods
used because each method consists of ordered sets of operators. The third column
lists the times taken to reach a successful plan using the HyHTN planner in every

case.

The Full Tyre-Change Problem

So far none of the tests performed tested the domain for the full tyre change problem.
As can be seen in Table 4.2 our results so far were showing that it was slower to use

a method than to use operators for plans with a small number of steps. These results

106

compared with what we found using HBC. As yet we had not tried to use the task
containing the full planning problem defined in section 4.2.2. Tasks for this full
problem were coded up in the two ways using for the first just operators and for the

second mostly methods and a few operators.

4.2.5 Results for the Full Problem
Using Just Operators

Using just operators was challenging because of the number of operator choices and
the number of objects available to instantiate those chosen operators. The task was

left running on a Sun Blade 100 overnight. After 20 hours no plan was found.

Using Operators and Methods

Each method, by the fact that it decomposes into an operator sequence, stipulates a
chunk of the plan to be achieved. Our task used 5 methods and 8 operators and the

planner found the plan shown below in (.02 seconds.

SOLUTION

open_container (boot)
fetch_pump (boot ,pump0)

find_puncture (pump0,tyrel)
putaway_pump (boot , pump0)
fetch_wrench(boot,wrench0)
fetch_jack(boot,jackO)
remove_trim(hubl,triml,wheell)
loosen(wrenchO,hubl,triml,nuts1)
jack_up(nuts1,hubl, jack0)

undo (wrenchO, triml,hubl, jackO,nutsl)
remove_wheel (triml,wheell, hubl, jackO)
fetch_wheel (boot,wheelb)
putaway_wheel (boot,wheell)

put_on_wheel (triml,wheelb, hubl, jack0)

107

do_up (wrenchO, triml,hubl, jackO,nuts1)
jack_down(nutsi,hubl, jackO)
tighten(wrenchO,hubl,triml,nuts1)
apply_trim(hubl,triml,_108198)
putaway_wrench (boot ,wrench0)
putaway_jack(boot, jack0)
fetch_pump (boot ,pump0)
inflate_tyre(pumpO,tyre2)
putaway_pump (boot , pump0)
close_container (boot)

END FILE

Results of Testing the Full Problem

Only one operator, apply_trim, was not fully instantiated and this did not affect
correct plan formation. We had shown that, for a more complex domain, the use of

hierarchical methods was a much more efficient way of planning.

4.2.6 Ideas for Improvements on the Opmaker System

It could well be argued that the efficiency of hierarchical planning comes at large cost
in terms of time to construct methods and tasks. Indeed when we were constructing
the example version of ETD we found this to be the case even using GIPO for some
of the task editing. Even when using opmaker1.1 to induce methods and operators
and even though initial action sequences can be rapidly achieved by ‘point and click’
means, it takes time to construct the example input material from which opmakerl.1
obtains the intermediate and goal states for the transitions as shown in chapter 3.
Whilst our opmaker1.1 system saved significant time spent on operator and method
construction, it needed to be more automated and less dependent on a knowledge
engineer’s input. We needed a system to speed up the induction process. The areas

that could potentially be speeded up were the construction of the action sequence

108

and the compiling of the example material. We argued that time could not be saved
constructing initial and goal states as they were necessary to the planning process
anyway and were already represented in a planning task. The editor provided by the
present opmakerl.1l system embedded in GIPO allows rapid construction of an initial
action sequence. Hence we decided to concentrate our efforts on the example input
material. In Section 4.3 of this chapter we discuss how the example input material
was generated automatically by the next phase of opmaker, speeding up the process

of induction.

4.3 Automatic Induction Without Intermediate State Information

We begin this section by recalling why we need example material for operator induc-
tion then we consider the argument for automatic generation of that example material
and briefly state why this line was adopted. We consider the ways that we can get all
the choices for the right hand side of state transitions for the operators and then we
discuss ways of narrowing those choices to obtain good quality input example sets.

Finally we show some resulting sets of example material.

4.83.1 The Need for Example Material

We recall that four main items of input were needed for opmaker1.0 and opmaker1.1

to induce operators. These were:-

A training sequence of actions

A set of initial states for all the objects in the training sequence

A partial domain (without operators and methods)

Numbered sets of example material, i.e. the user input.

109

When opmaker builds operators it obtains the post-transition states of the objects
from the example material and these are reflected in the right hand sides of the
operator transitions. We remind ourselves that some transitions are prevail transitions
in which the post-transition state is the same as the initial state and that the example
material we have met so far indicated the presence of a prevail transition to opmaker

by use of the ‘null’ clause.

For a typical initial sequence of

do_up (wrenchO,hubl, jackO,nutsl,triml),
jack_down (hubl, jackO0),
tighten(wrenchO,hubl,nutsl,triml),

apply_trim(hubl,triml,wheelb)
a suitable set of example material could be

% do_up(wrenchO,hubl, jack0,nutsl,triml)

input (1,wrenchO,null).

input (1,hubl,sclass(Hubl,hub, [jacked _up(Hubl,Jack0),fastened(Hub1)])).
input (1, jackO,null).

input(1,triml,null).

input(1,nutsl,sclass(Nutsl,nuts, [loose(Nutsl,Hub1)])).

% jack_down(hubl, jack0)
input(2,hubl,sclass (Hubl,hub, [on_ground (Hubl) ,fastened (Hub1)])).

input (2, jack0,sclass(Jack0, jack, [have_jack(Jack0)])).

% tighten(wrenchO,hubl,nutsl,triml)
input (3,wrenchO,null).
input(3,hubl,null).
input(3,triml,null).

input(3,nutsl,sclass(Nutsl,nuts, [tight (Nutsl,Hub1)])).

% apply_trim(hubl,triml,wheelb)

110

input (4,hubl,null).
input(4,triml,sclass(Triml,wheel_trim, [trim_on(Triml,Wheel5)])).

input (4,wheel5,null).

and this example material was coded by hand so prone to errors. When opmaker was
embedded into GIPO a series of questions were posed to the user who was effectively
being asked to supply the end state for each transition. Again this process depended

on the user making correct choices.

4.3.2 The Argument for Automatic Generation Without Intermediate State Infor-

mation

Consistency and accuracy. An effective automisation of the process of forming
the example input material would be a good way to ensure consistency and

accuracy of the input material.

Time saved. Furthermore this would speed up the process of induction by saving

the time taken to code and correct the examples by hand or by using GIPO.

Increase of abstraction. A further argument takes the line that automating the
process of generating the examples increases the abstraction of domain building
and removes more of the need for domain builders to be knowledge engineering

experts.

Autonomous Learning. An agent (system) should be able to learn and plan with-
out direct human intervention so that it can be of use in remote areas or those
where it is unsafe for the human to go. If an agent is given action sequences
as training material it can learn the knowledge it needs to plan safely and

efficiently.

111

Having given due consideration to these arguments it seemed clear that a good way

forward was to try to find some way of generating the example material automatically.

4.3.83 Generation of Fxamples

In later parts of this chapter we consider the process as a whole, so we view the
whole picture as being one of generating the operators and methods. Internal to the
system, however, the idea of having example material is useful to hang onto for de-
scriptive purposes. This material is generated automatically and used by opmaker2.0

to generate the operators and methods.

The domain substate classes in any OCL domain contain templates for sets of
states, and objects must be in one of these states at any one time. For example, in
Section 4.1.3, three states for a jack are listed. At any one time the jack must be
in one of those states and one only. If jack is in the state have_jack(J) a transition
can do one of two things - either leave jack’s state unchanged or change it to one of
the other states. The idea behind automatic generation of operators is to consider

possible alternative state combinations for the objects involved.

As a simple example suppose the initial sequence was

open_container (boot),

fetch_pump (boot ,pump0) ,
and the initial states for boot and pump0 were

ss(container,boot, [closed(boot)]),

ss (pump , pumpO, [pump_in (pump0,boot)])

then we can have the following possible example states:-
1. closed(boot) and pump_in(pump0,boot),

2. open(boot) and pump_in(pump0,boot),

112

3. open(boot) and have_pump(pump0),

4. closed(boot) and have_pump(pump0).

The first of these is effectively the prevail state where neither object changes state,
whilst the other three are potential outcomes, even though actually only item 2 can

be achieved in a single action.

Since each item in this sequence has only two possible states the possible combi-
nations for example material sets are 2 x 2 = 4. For a longer sequence of actions such
as that shown in Section 4.3.1 where more objects are involved the possible number

of potential example sets, even for this short sequence of four actions, is 2 654 208!

4.8.4 Heuristics to Reduce Choice

This number can be drastically reduced by using information we already have or can

easily obtain by:-

1. Making sure the initial sequence of actions includes information about which
objects will not change at each action. Figure 4.2 shows one system of tagging

objects that will not change in an example sequence.

2. Including heuristics that handle information in 1 above, for example if an object
is labeled as ‘changing’ (untagged), then its pre-action state is not available as

its post-action state.
3. Allowing goal states specified in the tasks to be used to narrow the search.

4. Using all the information in the substate classes to narrow the search - the only

allowable states are listed there.

113

do_up (@wrenchO,hubl,@jack0,nutsl,@triml),
jack_down (hubl, jack0),
tighten(QuwrenchO,@hubl,nutsl,@triml),

apply_trim(@hubl,triml,wheelb)

Figure 4.2: The Initial Sequence Tagged (with ‘@Q’) to Indicate Unchanging Objects

5. Using additional domain information, not previously used, to be declared in the

invariants where it is not already implied by the substate classes.

6. Where potential operators are seen as direct opposites of one another these are

declared e.g. do_up and undo.

4.3.5 Changes to Input to Indicate Unchanging Objects

We give, in Figure 4.2 a short sequence of actions as an example of typical user
input. The user has only to compose the sequence and decide whether objects will
be changed by the named action. In this sequence the ‘Q’ sign has been used by the

user to indicate unchanging objects.

4.3.6 Calculating Paths Through State Space

We now consider how items 1 - 4 listed in Section 4.3.4 above reduce the possible
paths through the state space and then go on to discuss the contribution made by
invariants. For the sequence in Figure 4.2 the first action has five objects. Three of
these, wrench(, jackO and trim1 are tagged so only the initial state can be selected. Of
the others, which must change state, hubl has three potential different states whilst
nutsl has two. Hence the different variants for the first action total 1 x 3 x 1 x 2 x
1 = 6. Similarly we can calculate that the second action has 3 x 2 = 6 variants and
the third has 1 x 1 x 2 x 1 = 2 variants. The fourth action with objects hubl, trim1

and wheel5 looks as though there is only one state each for hubl and trim1 but three

114

states for wheel5. States for wheel are state sets which include a value for trim and the
initial have_trim(trim1) state must change. The wheel state must be consistent with
the trim state so the only choice available is wheel _on(wheel5,hubl),trim_on(wheel5,
trim1). Hence our number of variants for the last action is 1 x 1 x 1 = 1. The
combined number of different example sets for this action sequence is therefore 6 x 6

x2x1="72.

4.8.7 Initial Results from Automatic Generation of Paths

Using experimental input and heuristics we found that tagged sequences, initial states
and partial domains could be used to generate several different paths. These were

counted and confirmed the number of 72 shown in the previous section.

This could still mean that, for longer action sequences, there would be very large
numbers of example sets. Also we had not taken account of any other restrictions in
the domain, for example the invariants. We decided, on this evidence that we needed

to use the information contained in the invariants.

To show how the different paths were reached we can see in Figure 4.3 that firstly
an object has a known initial state. Information about the final state may be missing.
The search for a path through the state space of potential interim states aims to find
a final state and fill in the details each step of the way. In the second diagram we
see the object’s trace tracked. In Figure 4.4 we consider the object hubl in the first
action from the sequence shown in Figure 4.2. We note that it is not tagged which
means it must change. In Figure 4.4 we see the potential paths one of which is not

available because it represents a prevail transition.

115

Object No. of | Substates Valid? No.
Substates Available

Wrench 2 have_wrench(Wr) Yes 1
wrench_in(Wr,C) Yes

Hub 4 on_ground(H),fastened (H) No 3
jacked _up(H,J),fastened (H) Yes
free(H),jacked_up(H,J),unfastened(H) | Yes
unfastened(H),jacked _up(H,J) Yes

Jack 3 have_jack(J) Yes 2
jack_in_use(J,H) Yes
jack_in(J,C) Yes

Nuts 3 tight(N,H) Yes 2
loose(N,H) Yes
have_nuts(N) Yes

Trim 2 trim_on_wheel (WT,Wh) Yes 1
have_trim(WT) Yes

Wheel 4 have_wheel(Wh),trim_off(Wh) No 1
wheel_in(Wh,C),trim_off(Wh) No
wheel_on(Wh,H),trim_off(Wh) Yes
wheel _on(Wh,H),trim_on(Wh,WT) Yes

Table 4.4: Table Showing Total States and States Available for the Action Sequence

in Figure 4.2 if States Must Change

116

1. For a Changing Object

Object in Initial State (KNOWN)

\ Possible paths from object’s
first state
Possible paths to object’s
final state

Object in Final State (May be UNKNOWN)

2. Tracking the Path of Object Changes

Initial State
\\

/ trace including any associations
J it makes

g

Final State

By finding the object’s

Figure 4.3: Changing States of an Object in a Sequence

117

Object name: hubl ~ Current state = unfastened(hubl),
jacked_up(hubl,jack0)

Action lep/ \\\

State 1 State 2 State 3 Same State

Not allowed

hubl is a changing object - it must change to one of these states

Figure 4.4: Changing States of hubl in a Sequence

Method Name Number of Examples in Set | Accuracy

fix_flat 2 1 accurate

1 not accurate

fetch_tools 1 accurate

discover_puncture 2 1 accurate

1 not accurate

unfasten_hub 1 accurate
change_wheel 1 accurate
attach_hub 1 accurate
putaway _tools 1 accurate

Table 4.5: Table Relating Numbers of Example Sets to Methods

118

4.3.8 The Use of the Invariants to Reduce the Search Space

Previously, using opmaker1.0, the partial domains used for induction had contained
invariants in the form of atomic invariants, implied invariants and inconsistent con-
straints. The substate classes also act like invariants in this respect by controlling the
transitions available. Of the invariants, only the atomic invariants were used in the
induction process. We needed to accurately define and use other knowledge contained

in the invariants as a further search heuristic.

Invariants were added where the constraints they represented were not already
represented in the substate classes and atomic invariants. Their function is to guide
the state space search for intermediate and goal states. The logic of the invariants is

shown in Figure 4.5.

At the same time the opmaker code was altered and extended in the following

ways.

e It took account of the invariants written as shown.

e All objects in the operators had an initial substate.

e There was a testing procedure on the invariants so that if any were incorrect

they could quickly be adjusted.

4.3.9 Results Using the Invariants

When using opmakerl.1 we needed to give numbered sets of examples to the system
as part of the input. The first phase of opmaker2.0 replicates these sets which can be
compared to the old example sets for accuracy and can also be counted to show how
accurate the state space search is. Test files were written to generate example sets
for each of the 7 desired methods for the Extended Tyre Domain shown in Figure

4.1. These were run in turn with the extended opmaker and the results are shown

119

1. Equivalence between hub fastened and nuts tight/loose on hub.

Y H:hub . [fastened(H) <= 3 N:nuts . (tight(N, H) V loose(N, H))]

2. Equivalence between jack_in_use and jacked_up.

Y H:hub .V J:jack . [jack_in_use(J, H) <= jacked_up(H, J)]

3. Equivalence between hub not free and wheel_on hub.

YV H:hub . [~ free(H) <= 3 W:wheel . wheel_on(W, H)]

4. Equivalence between trim_on_wheel and trim_on.

V T:wheel_trim .Y W:wheel . [trim_on_wheel(T, W) <= trim_on(W, T)]

5. Only a single set of nuts can be on a hub.

(tight(N1, H) V loose(N1, H))

YV H:hub .Y Ny:nuts .V Na:nuts . A = (N1 = Na)

(tight(N2, H) V loose(Na2, H))

6. Only a single wheel can be on a hub.

wheel_on(Wi, H)
Y H:hub .Y Wi:wheel .Y Wa:wheel . A = (W1 = W)

wheel_on(Wa, H)

7. Domain constraint: If nuts are tight on a hub then the hub must be on the ground.

YV H:hub . [(3 N:nuts . tight(N, H)) = on_ground(H)]

8. Domain constraint: if a trim is on a wheel, then the wheel is on a hub and the nuts are tight.

trim_on_wheel(T, W) =
VY W:wheel . 3 T:wheel_trim .

(3 H:hub . wheel_on(W ,H)) A (3 N:nuts . tight(N, H))

Figure 4.5: Invariants encoded in the Extended Tyre World

120

in Table 4.4. The accuracy of the recorded example sets was also noted. For each
method there was exactly one accurate example set for this domain. There were two
inaccurate example sets which relate to the methods fix_flat and discover_puncture.
In these cases the sense of the method was either that the tyre could be pumped up to
change it from flat to full or that it could not be filled with air and so was designated
punctured. However, in each case there were two other states for tyre apart from
flat, and, with no invariant guidance, we got two example sets. One of these gave
the final state for tyre as punctured(Ty) and the other gave it as full(Ty). These
were relatively trivial inaccuracies and could be resolved interactively with the user

selecting the correct version for the sense of the method.

4.4 How Opmaker2 Learns

In this section we show diagrammatically how the system is designed and we give a
formal algorithm for the opmaker2 system. The section concludes with a descriptive
‘walk-through’ of the algorithm using a chosen action sequence. This is similar to the

example given in a recent paper, [50].

4.4.1 A Diagrammatic Representation of the Opmaker2 System

Figure 4.6 gives an indication of the design of the system for inducing operators and
methods in opmaker2. In figure 4.6 the boxes at the top of the diagram indicate
the input to the opmaker2 system, whilst those at the bottom indicate output from
the system. The large ellipse is the opmaker2 system which includes two further
processes - ‘Generate’ and opmaker1 (described in Section 3.3). Generate is the new
process which uses the input of the partial domain, the invariants, the initial states
and optionally also the goal states, and the action sequence. Output from Generate is

two-fold. The example states represent the automatically generated intermediate and

121

‘Partial Domain ‘ ‘Invariants ‘ Initial (and optional ‘ Example Sequence

goal) states.

Opmaker2

o A
P
Intermediate States ‘ ‘ Operators ‘

/
Opmakerl

/

............. { Increased Domain‘ ‘ Methods

NS

Full Domain

Figure 4.6: Diagrammatic Representation of the Opmaker2 System

end state sets which opmakerl required as input to induce operators. Additionally
and optionally Generate will generate operators but not methods. Opmaker1 is still
required for the generation of methods and will generate a method for each input
action sequence and is able to use most of the input; namely the partial domain,
initial states and action sequence. In addition opmakerl uses the example sets output
from Generate and any operators from Generate to finally produce the more complete
domain with some of the operators and a method. Each iteration takes a fresh action
sequence so that a full set of operators and methods is built up and the final output

is the full domain.

122

4.4.2 Outline Design of the Opmaker2 Algorithm

In the following algorithm variables are shown in uppercase. Assignments and storage

of operators is undone on backtracking.

program opmaker2

In: a set of sorts,

AR A e I

a set of valid substate classes for each sort,

a set of objects,

initial and (optionally) final substates of objects,
state invariant conditions,

example sequence of actions.

Definitions:

Obj.sort sort of object Obj

Obj.name — name of object Obj

Obj.substate(1) - ground substate of object Obj at step i
init identifier for initial state
final — identifier for final state

Obj.substate(init) — initial state of Obj

Obj.substate(final) final state of Obj
Act.prevail set of objects which are unchanged by action Act
Act.changing — set of objects which are changed by action Act

Sort.substate_classes set of substate classes for Sort

current:=init
next:=successor (init)
for each action Act in training sequence
for each object Obj in Act.prevail
Obj.substate(next) := Obj.substate(current)

123

7. end for

8. for each object Obj in Act.changing

9. if Obj doesn’t change again in rest of sequence

10. and final state of Obj is known,

11. Obj.substate(next) := object.substate(final)

12. else

13. choose Substate_class € (Obj.sort).substate_classes
14. Obj.substate :=bind(Substate_class, Obj, Act.prevail U Act.changing)
15. if Obj.substate(current)=0bj.substate(next)

16. backtrack to previous choice point

17. end if

18. end if

19. end for

20. if the global state U, Obj.substate(next)

21. is inconsistent with some invariant condition

22. then backtrack to last choice point

23. end if

24. Derive implied definition of operator and store with name Act.name
25. if operator is inconsistent with any previous definition then
26. backtrack to previous choice point

27. end if

28. current:=next

29. next:=successor(current)

30. end for

31. produce a method from the sequences of actions and states as in Opmaker

function bind(Substate_class, Obj0, Params)

124

32. Let ObjVar(be the variable placeholder for the object described by Substate_class

33. Let ObjVars be the the set of other free variables in Substate_class

34. form Bindings, a set such that

35. (ObjVar0, Obj0) € Bindings and

36. for each ObjVar € ObjVars, there is a pair (ObjVar, Obj) € Bindings
37. with choice of Obj € Params such that V.sort = Obj.sort

38. form ground substate S from Substate_class with Bindings

39. if no disequality constraints in S are broken

40. return S

41. else

42. backtrack to previous choice point

43. end if

4.4.3 A Description and Walk-Through of the Algorithm

The learning method is specified by the algorithm description at the start of Section

4.4.2. In outline, the method is:

1. Use a set of heuristics and inference to track the changing states of each object
referred to within a training example, taking advantage of the static, object-
state information and invariants within the domain model. Infer full details of

object transitions for each dynamic object.

2. Use the techniques of the original Opmaker algorithm [47] shown in Figure 3.3
to generalise object references and create parameterised operator schema from

the specific object transitions extracted in 1 from the training examples.

125

To illustrate the main innovations of the algorithm in Section 4.4.2, we will use
an example walk-though taken from the extended tyre domain. In this sequence a
changed wheel is secured on the hub and the vehicle is made ready for use. Assume

a training sequence is input into opmaker2 and this has components as follows:

name: do_up; prevail: wrench0, jack0, trim1; changing: hubl, nutsl
name: jack_down; changing: hubl, jack(
name: tighten; prevail: wrench(, hubl, trim1; changing: nutsl

name: apply_trim; prevail: hubl; changing: trim1, wheel5.

Prevail objects have to be present in a particular state during execution of the
action, but remain unaffected (wrench0 is available, jack0 is jacking up the wheel,

trim1 is hub1’s wheel trim and has to have been removed).

The ‘changing’ objects must change state (hubl becomes ‘fastened’ and nutsl are

‘done_up’).

Line 4 takes the first action in the training sequence shown above and identifies

the objects.

Line 5 identifies the prevail (unchanging) objects as wrench0, jackO and trim1.

It iterates through these and Line 6 makes prevail transitions from them.

Line 8 identifies the changing objects (hubl and nutsl) and takes them in turn
- the first of these is hubl.

Line 9 looks ahead to see if hubl will change again in a subsequent action and
finds that it does in the second action in the sequence. In the case of nutsl they
also change again in the third action when they are tightened. If we had chosen
an example where neither changing object changes again after the first action then

Lines 10 and 11 execute and a transition to the object’s final state is made.

126

We are still considering hubl and now Line 13 matches a suitable substate class
for the sort of the object (hub) and binds the variable to the object unless, Line 16,
it selects the objects next substate to be the current one. (This rules out making a

prevail transition for a changing object).

The current state of hubl is [unfastened(hubl), jacked_up(hubl)] and there are

four potential substate classes to select, which we name below as S1-4:

= [on_ground(h),fastened(h)],

[jacked _up(h,j),fastened(h)],

S3 = [free(h),jacked_up(h,j),unfastened(h)],
S4 = [unfastened(h),jacked_up(h,j)]

S2 =

Since hubl’s current state is not necessarily its final one but we know it must

change, there are 3 potential transitions.
(hub, h, [unfastened(h), jacked_up(h,j)] — [on_ground(h),fastened(h)])

(hub, h, [unfastened(h), jacked_up(h,j)] — [free(h),jacked _up(h.j),unfastened(h)])

(hub, h, [unfastened(h), jacked _up(h,j)] — [jacked _up(h.,j),fastened(h)])

Lines 20-23 of the algorithm check these transitions with the invariants, derive
potential end states and form a transition. This repeats for the other changing object,

nutsl.

Line 24 stores the definition of the operator and checks it against any previous

definition.

Example sets are formed by the stage of line 23. Operator descriptions are deliv-

ered by use of the whole algorithm.

127

Finally, a hierarchical method is generated by combining the 4 action schema
generated from the action sequence in a similar fashion to the original Opmaker

system [47].

4.5 Experiments and Results

In this section we discuss our testing process used on three different domains: the
Extended Tyre Domain, the Hiking Domain and a 7-block version of the well- known
Blocks World Domain [83]. We give details of the full planning problem devised for
each domain. We set down the aims of our testing and the criteria for success. Next
we list the results for each domain and discuss the implications of these. Finally we

draw our conclusions on these results.

4.5.1 The Extended Tyre Domain (ETD)

Details of this domain are given in section 4.1.2 where there is a statement of the full
planning problem. This domain had several invariants which have been implemented
in the search for example intermediate states. Sets of example material were generated

and these were tested using the test criteria detailed in section 4.5.4.

4.5.2 The Hiking Domain

Details of this domain are given in section 2.2.1. We identified the full hiking problem
for the purposes of this test as being the completion of one complete leg of the walk,
including the movement of the cars and personnel ready for the next day’s walk. Again
sets of example material were generated to be measured against our test criteria in

section 4.5.4.

128

4.5.8 The Blocks World Domain

We have made little reference to this frequently used and quoted domain so far. Our
OCL version of this domain has, where B, B1, B2 etc represent different blocks and

G represents the gripper, the following operators:-
1. grip_from_blocks(B,B1,G,B2) (a block is gripped from a pile of blocks)
2. grip_from_one_block(B,B1,G) (a block is gripped from one other block)
3. grip_from_table(B,G) (a block is gripped from the table)
4. put_on_blocks(B,G,B1,B2) (a block is put on a pile of more than one block)
5. put_on_one_block(B,G,B1) (a block is put on another)

6. put_on_table(B,G) (a block is put on the table)

The task we devised for this domain to use as a motivation for inducing the
operators is defined as follows:-

Beginning with a pile of 7 ordered blocks (block 1 on the bottom and 7 on the
top) the task is to move the blocks so that the three even numbered blocks form one
pile in order (bottom to top) of block 6, block 2 and block 4 whilst the four odd
numbered blocks form the pile ordered (bottom to top) of block 5, block 1, block 7

and block 3. The overall problem splits into 7 sections.

1. ‘position first even’ aims to place block 6 on the table.
2. ‘position first odd’ aims to place block 5 on the table.
3. ‘position second even’ aims to place block 2 on block 6.

4. ‘position second odd’ aims to place block 1 on block 5.

129

5. ‘position last even’ aims to place block 4 on blocks 6 and 2.
6. ‘position third odd’ aims to place block 7 on blocks 5 and 1.

7. ‘position last odd’ aims to place block 3 on blocks 5, 1 and 7.

Splitting this planning problem into seven methods is only one way to solve it but

will be sufficient to demonstrate that opmaker2 can be applied to other problems.

4.5.4 The Testing Criteria

Since induction sequences deliver several actions and a single method, initial se-
quences would be tailored to produce a meaningful method, and sufficient initial
sequences would be composed to cover all the major sub-tasks that could be required
by the domain. In each case the agent would begin with domain knowledge but have

sketchy knowledge about its potential actions.

The Aims of Testing

1. To produce example sets automatically from the domains given initial and goal
states (already declared in the task for the domain that is equivalent to that
contained in the initial sequence), a partial domain and the handcrafted (or

GIPO-crafted) action sequence.

2. To judge the efficiency of the system based on the number of example sets

obtained and the accuracy of their content.

3. To use the example material obtained and opmaker2 to to induce operators and

a method for each action sequence.

4. Using standard planners, to compare efficiency of planning using the new oper-

ators as opposed to the handcrafted ones.

130

Success Criteria

Success would be judged based on:-

1. Low numbers of example sets produced (ideally a single set) and accuracy of

their content.
2. The ability to use the example material to produce operators and methods.

3. The results of comparison between the operators and methods produced and

the hand-crafted versions.

4. Planning using the operator and method output of opmaker2 should be com-
parable in accuracy and efficiency to planning with the hand-crafted version.
(Since the aim of this work is efficiency in knowledge engineering, planning with

the new output does not need to be faster.)

5. Low numbers of invariants required. (Since these take time to construct there
is a trade off between time saved constructing examples and time spent con-

structing invariants.)

4.5.5 Results for the Extended Tyre Domain

This domain was used for the testing of the initial stages of the development of
opmaker2. Gradually during development extra tools were added which took account
of goal states, tagging of unchanging items in transitions, use of invariants and use of
‘opposite actions’. In the case of this last item we had noticed that sometimes extra
example sets were generated where actions were the opposites of others. When we
rectified this bug and declared actions to be opposite actions of others the numbers
of example sets reduced further. Examples of opposite actions could be jack_up and

jack_down, or apply_trim and remove_trim.

131

Findings

e By using the eight invariants shown in Figure 4.5 we obtained unique example

sets for all method sequences in ETD.

e In each case the example set for a method matched the hand-coded example

sets we had used with the opmakerl system.

e The example sets delivered a full set of operators and methods using the

opmaker?2 system.

e The operators and methods matched the hand-crafted versions.

e Planning using the induced operators and methods from opmaker2 matched
results for opmakerl, with the full plan using methods and operators taking a

similar time to complete an accurate plan.

e With this large domain there were eight invariants. This was more than were
required for the other domains we tested but the size of this domain was sig-

nificantly larger too.

Apart from the large number of invariants required we judged the tests using this

domain to be a success.

4.5.6 Results for the Hiking Domain

This domain differed from ETD by containing static objects. These were in the form
of locations modelled as static objects in OCL. During testing we found that they
could be identified as prevail objects in each action in the sequence, allowing the sense
that a tent could be ‘up’ at Keswick and ‘down’ at Keswick to be expressed. Places

possible were the hiking legs Keswick, Derwent, Helvelyn etc. and the alteration

132

meant that it was acceptable to have a transition from state 1 to state 1 so long as

the variable bindings changed.

Findings

e Low numbers (1 - 4) of example sets were produced for 4 of the potential
methods. The fifth was complicated by the fact that actions were repeated
frequently and gave large numbers of examples. This did not affect planning

since operators could be used in its place.

e A set of 4 methods and all operators could be reproduced.

e Operators and methods matched the hand-crafted ones.

e Planning using induced methods and operators produced similar results to use

of the hand-crafted alternatives.

e Only one invariant was required.

One difficulty was the final method which gave initially 168 example sets. However
the remainder of the domain gave good results although there were only two sets of
unique examples. One advantage was the low number of invariants required - for this

domain a single invariant was needed.

4.5.7 Results from the Blocks World Domain

Section 4.5.3 gives details of the operators to be replicated and the defined task. As
before test files were built and in each case, for this domain, a single solution set was
obtained. An example, where the gripper is represented by the name tom, is shown

below.

133

%% grip_from_blocks(block7,block6,@block5,tom)
input(1,block7,sclass(Block7,block, [gripped (Block7,Tom)])) .

input (1,block6,sclass(Block6,block, [on_block(Block6,Block5),clear (Blocks),
ne(Block6,Block5)]1)).

input(1,block5,null).

input(1,tom,sclass(Tom,gripper, [busy(Tom)])) .

%% put_on_table(block7,tom)
input(2,block7,sclass(Block7,block, [on_table(Block7),clear(Block7)])).

input(2,tom,sclass(Tom,gripper, [free(Tom)])) .

%% grip_from_blocks(block6,block5,@block4,tom)
input(3,block6,sclass(Block6,block, [gripped (Block6,Tom)])) .

input (3,block5,sclass(Block5,block, [on_block(Block5,Block4),clear (Block5),
ne(Block5,Block4)]1)).

input(3,block4,null).

input (3, tom,sclass(Tom,gripper, [busy(Tom)])) .

%% put_on_table(block6,tom)
input (4,block6,sclass(Block6,block, [on_table(Block6),clear(Block6)])).
input (4, tom,sclass(Tom,gripper, [free(Tom)])) .

Solutions = 1 7

With this particular domain we noted that an ‘ne’ clause (not equal) appeared in

the example material as can be seen in input 1 and input 3 above.

The ‘ne’ clause is part of the structure of the OCL language and is used to show

that the arguments are not the same, so that, as above,
ne(Block6,Block5b)
means that Block6 and Block5 are not equal (ne), i.e. they are different blocks.

This device is only used in domains where there are two objects of one sort listed

in a predicate as in

134

on_block(Block6,Blockb)
making the available substates for the object block to be

[gripped(B,G)]1,
[on_block(B,B1),clear(B) ,ne(B,B1)],
[on_block(B,B1),ne(B,B1)],
[on_table(B),clear(B)],

[on_table(B)]

In English these say, ‘A block may be gripped, or it may be on a block with no block
on top of it (i.e. clear), or it may be on a block with another on it, or it may be on
the table with no other block on it, or it may be on the table with another block on

it’.

Findings

e In every case a unique set of examples was given.

Operators and methods were generated.

Operators grip_from_table and put_on_table were accurate. Operators involv-
ing more than one block in their descriptions were not accurate. The variable

names for the blocks were not necessarily the ones intended.

Due to a lack of accurate induced operators planning was not attempted.

No invariants were required.

4.5.8 Our Conclusions From These Results

This little ‘ne’ clause was a difficulty when it came to using these example inputs to

induce the operators. Those operators which contained the ‘ne’ clause were incorrect

135

and so a method could not be formed. For now we have consigned the removal of this
bug to ‘Future Work’ and the reader is referred to Chapter 6 where ideas for this are

mentioned.

Despite this bug we have tried three different domains and been able to induce

example sets for input into the operator induction process from them all.

From the results obtained so far we can conclude that an agent, given a ‘working
stock’ of potential action sequences, and having domain knowledge and a ‘belief’
about the states of objects it ‘knows’ about will be able to generate its own examples
and use them to supply itself with parameterised actions to suit every possible object
combination. Since methods can be formed from the action sequences the agent
should be able to plan efficiently and autonomously and does so for most of our
results, so long as the number of operators is above about 12. For domains with

smaller numbers of operators there seems to be no advantage using methods.

4.5.9 Training Sets for Opmaker

Both versions of opmaker require training sets. For both versions it is possible to
induce a set of operators that replicate all the hand-crafted ones at one go. To do

this requires:

e for opmakerl - a full sequence containing at least one copy of all the original
operator names (or new equivalents) and parameters, plus user responses to

GIPO’s efforts to choose correct final states

e for opmaker2 - a full sequence as above.

So in this way a full set of operators can be induced with a single set of training

examples. However, since for each action sequence a method is produced, it is better

136

to use several small sequences which lead to a desirable set of methods. Training se-
quences are very quick to construct, especially using GIPO. It is possible to construct
a series of these for the solution to the full problem in less time than it would take
to hand-craft two or three operators - thus the system is effective at relieving the

‘knowledge acquisition bottleneck’.

Chapter 5

RELATED WORK

In this chapter work closely related to ours is reviewed and analysed. The chapter
begins with an historical overview of machine learning in the last thirty to forty
years. Subsequent sections look more closely at machine learning of rules in Section
5.2 and explanation based learning in Section 5.3. A brief review of theory revision
in Section 5.6 is succeeded by the longer Section 5.7 on operator induction. The
chapter concludes with a survey of some very recent, relevant work and a summary of
entries in the recent ICAPS competitions, Section 5.8. Whilst reviewing the related

literature, an analysis of where and why opmaker fits into the picture is discussed.

5.1 DMachine Learning - Historic

Some of today’s applications of Machine learning include predictive text, word pro-
cessing from speech, search engines, medical applications including diagnosis, detec-
tion of credit card fraud, stock market analysis, forensic applications, handwriting
recognition, game playing and robotics. There are good reasons why the ability of
machines to learn is desirable. In the context of artificial intelligence, it could be
argued that the ability to learn is a prerequisite for intelligence whether it be hu-
man, animal or mechanical. The arguments for human learning are clear enough;
humans use learning to progress through stages of life with increasing abilities such
as acquiring new knowledge, learning new skills and improvement through practice.
If machines learn like this, then, when the machine is switched off, a good percentage

of that learning should be retained, but in many cases that is not quite the case. In

138

many systems that learn there is a training period by which the system becomes more
expert, followed by a period of use where the results are significantly better than in
the early stages of training. On the next use the same training is required and the

system goes through the same learning process.

Machine learning has evolved over the last three or four decades. In the 1970’s re-
search into machine learning became more active and researchers were able to demon-
strate learning in a number of areas. Some of these achievements are given in the

paragraphs below.

P. H Winston

One such researcher, Winston, demonstrated a supervised learning task where the
challenge to the learner was to learn descriptions of structures such as an arch [84].
The learner was given a positive example in the form of two equal-sized upright blocks
(not touching), supporting a horizontal cross-member. A sequence of positive and
negative examples was given to the learner. One negative example was having the two
uprights touching, another had the cross-member below the uprights, whilst a positive
example was having a different shaped cross-member with only one long flat side.
After ‘observing’ the first example the learner formed a hypothesis about a correct
description of an arch. With subsequent examples this hypothesis was refined. For
each example a set of differences was identified between the example and the current
hypothesis, and the differences were used to either generalise the hypothesis, if the
example was positive, or to specialise the hypothesis, if the example were negative.
Winston concluded from this work that the best training sequence was a series of

‘near misses’ where only one concept was changed at once.

139

META-DENDRAL

Meta-DENDRAL [8] was an expert system that helped chemists determine how much
the mass spectrometric fragmentation depended upon substructural features. To do
this it discovered fragmentation rules for given classes of molecules. Meta-DENDRAL
derived these rules by using training instances consisting of sets of molecules with
known 3-D structures and known mass spectra. The system then used a Candidate
Elimination Algorithm. It first generated a set of highly specific rules which account
for a single fragmentation in a particular molecule. Then it used the training examples

to generalize those rules.

AQi11

Machine learning was applied to diagnosis of soybean disease in 1978 [52]. Agricul-
turalists were questioned about disease symptoms of soybean plants. The project
was to discover a set of classification rules for the diagnosis of the diseases. Classi-
fication rules were learned from training instances and consisted of sample patterns
and their correct classification derived from the experts. The researcher, Michalski,
represented discrimination rules as a modified version of propositional logic, which

includes conjunction, disjunction, and set-membership operators.

ID3

Originally devised by J. R. Quinlan in 1983, the ID3 algorithm spawned many
decision-tree methods for machine learning. The basic decision tree process looks
at the various attributes of the positive and negative examples. For example if the
decision was to do with people then attributes such as height, with instances tall
or short, hair-colour, with instances red, blonde and dark, and eye-colour, with in-
stances blue or brown, might be considered. An attribute is chosen at random to

form the root of the tree and a decision tree is built recursively on the root. Differ-

140

ent trees could be produced for the same set of examples by making different initial
and subsequent choices for the order in which the attributes were considered, and it
was found that some produced deep trees whilst others produced shallow but more
branching ones, and these shallow trees were said to be more efficient since decisions
were reached more quickly because they were at a higher level. The contribution
made by ID3 was the discovery that there were ways to compute a better initial
choice of attribute for the root of the tree. The proportion of positive to negative
examples for each attribute was to be calculated, the attribute with the highest ratio
was selected, and the tree was built recursively reapplying the same principles. There
was also a system called windowing to be used if there were very large numbers of
examples of training data. This selected a subset of training data to build the initial
decision tree. Remaining examples were then classified using the tree. If the tree
gave correct classifications for these examples then the initial tree was accepted as
the classification tree for all examples. If examples were found that could not be
classified by the initial tree then a subset of these were used along with the original
subset to compute a new tree and the process repeated until a tree was found to cover
all the examples. Quinlan applied this theory to the problem of learning end-of-game

chess rules [61].

MACROPS

Another form of learning, MACROPS, is demonstrated by the work of Fikes, Hart
and Nilsson [19]. We have previously seen that learning can occur when a system is
offered many examples of training data. In future sections of this chapter we shall
see that learning is possible from few examples, but Fikes et al were, in a sense,
ahead of their time, being able to demonstrate that learning could occur using just
a single example in the well-known blocks world. Operators [Definition 1.5] in the
world define a single action and four such operators are pick-up-from-table, pick-up-

from-block, put-down-on-table and put-down-on-block.

141

Initial state: block B on block C, block A on table

operator blocks

pick-up-from-block | B from C

put-down-on-table | B

pick-up-from-table | C

put-down-on-block | C on A

Goal state: block C on block A, block B on table

Table 5.1: Four Operators from Blocks World Showing the Completion of a Task

For example, if given three blocks A, B and C and a starting condition of block B
on top of block C with block A resting on the table, and a goal condition of block C
on top of block A, with B resting on the table, a single example for learning achieves

the goal state and consists of the actions shown in table 5.1.

The idea was that these actions could be clumped together to form one single
procedure as a kind of macro-operator which could be used whenever that particular
manoeuvre was required. So the process was to build a plan then learn it. The
problem was that learning that particular plan would not help to solve a similar
situation with blocks D, E and F. The learned details would be specific to the named
blocks in an identical configuration to the initial state. The system in MACROPS
was to generalise a successful macro by replacing the constants with suitable variables
and defining the preconditions and postconditions of the operation. The definition of
the preconditions would say when the macro could be applied, whilst the comparison
of the macro’s postconditions to any required goal state would determine whether the
macro was applicable in the given situation. Thus the system learned from a single

example. Other examples in incremental learning can be seen in the work of Wang

180] and Gil [24].

142

5.2 DMachine Learning and Induction of Rules

The machine learning required for the induction of operators is more specific than the
generalised topic of machine learning. Two theses written in 1996 by Tim Grant [26],
and Xuemei Wang [80], give very good overviews of these specific areas of machine

learning.

In [26], pages 50-52, Grant defines machine learning and induction generally, in
terms of the available literature and his own Planning Operator Induction (POI)
system. He opts for Carbonell’s definition of 1989 [9]:

“. . . learning can be defined operationally to mean the ability to perform new

tasks that could not be performed before or [to] perform old tasks better (faster, more

accurately, etc) as a result of changes produced by the learning process.”

Grant argues that this definition fits well with his own induction system and since
opmaker is able to induce methods, and we have shown that in some cases the use of
methods produced solutions to planning problems that could not be solved just using
operators, we have to agree that this is also a good basic definition for the learning

in our opmaker system.

In Chapter 7 of Wang’s thesis [80] she gives an excellent review of rule learning
in structural domains. She categorises four types of learning systems in structural

domains as

1. The type of learned knowledge
2. The source of learning
3. The learning algorithm

4. Initial knowledge

143

and describes her own system, OBSERVER, under these headings. Using this classi-

fication we can say, of opmaker:

1. Opmaker is a concept learning system, and the concepts learned are operators

and methods for hierarchical domains.

2. Opmaker learns from a partial domain which contains static knowledge about
objects in the sorts, predicates, substates and invariants, but no dynamic knowl-
edge in terms of operators. Also required is a named sequence of operators
together with the objects they will manipulate (equivalent to a plan-trace in
some other systems). Additionally opmaker1 requires user given positive exam-
ples which determine the intermediate and goal states for the new operators.

Opmaker?2 effectively deduces its own positive examples from the domain.

3. The learning algorithm is a deductive and inductive process for opmaker2.

Opmaker1 was purely inductive.

4. Initial knowledge for learning assumes correct partial domain knowledge includ-

ing substates, tasks and invariants but no operators or methods.

A good overview of machine learning, and induction in particular, can be found in
Shavlik and Dietterich, 1990 [68]. More recently some of the text books on machine
learning cover data mining ideas and are not particularly relevant to the subject
matter in this thesis, but the reader is also referred to two text books which help to

place machine learning in the context of other issues in artificial intelligence [41, 75].

In their survey [89], Zimmerman and Kambhampati present an analysis of research
work done in the last thirty years on machine learning, as it relates to planning. They

aim to develop a broad perspective of the work done in order to build a projection of

144

potentially profitable areas for further research. As such this is a useful starting point
for new researchers in the field. They identify three phases where learning techniques
might be applied: (i) learning and improving a given domain theory (ii) learning
during the process of finding a valid plan and (iii) learning during the execution of a
plan. For opmaker2, which is essentially a mixed initiative approach, the goal is to

learn or improve domain theory (phase (i)).

Langley and Simon [36] have classified machine learning into five basic paradigms.
One of these is rule induction of certain condition-action rules. Arguably operator
induction is a good example of rule induction. They submit that theory revision
combines the emphasis, on background knowledge, of analytical methods with the
emphasis, on heuristic search, of rule induction. When considering operator induction
itself there is little literature available and what there is will be discussed in a later
section. The reason for this appears to be the fact that in many knowledge bases
for planning, the operators together with the conditions under which they may be
applied are the knowledge base and, whilst application rules may be induced, the
operators must exist first. The case for object centred planning has already been

presented in section 2.1.1.

In [22] Garland, Ryall and Rich show, in their Collagen system, that learning task
models can be achieved by training examples and support from a domain expert.

Their ‘task models’ are similar to OCL; methods in the following ways:

e they show a complete recipe to achieve some task
e they show orderings of the steps to achieve the task
e they are developing a graphical user interface to aid construction

e the orderings of the steps contain primitive and non-primitive stages

145

e they list constraints that apply to the various steps

e user/expert guidance is required for the detail.

The notable differences between the Collagen and GIPO are in what is to be
achieved. Collagen develops a task model by first defining a list of actions, though
this is not essential, and the list may change over time. A major part of the task
model development is defining the hierarchy of the actions. Whilst they agree that
in all non-trivial domains identifying the correct set of abstract non-primitive actions
is challenging, they do not actually have to go so far as as specifying the operators’
details. This is where the learning occurs, using opmaker in GIPO. The need in task
modelling is only to determine appropriate actions and having done this the expert
can train the system by adding to the model definition any variations which would
also produce different valid models. By contrast GIPO makes no assumption that
actions exist and the user defines, interactively, a sequence of desirable actions to be

constructed into both primitive and non-primitive, hierarchical operators.

Collagen assumes operators exist and learns by using positive evidence and the
lack of negative evidence in building its task models. Opmaker learns by generalising

operators from previously induced examples.

5.2.1 Learning from Examples

The usual mechanism for machine learning is the use of positive and negative exam-
ples. Whilst it was thought to be advantageous to use both kinds of example, many
systems use only one kind of example. In particular Vere’s [78] Maximal Unifying
Generalisation (1987), and Wang’s [80] OBSERVER system learn from just positive
examples, whilst Grant’s [26] POI system learns from positive examples and uses a
default rule to provide negative information which boosts the positive training in-

stances. Opmaker?2 is similar. It uses positive examples in the initial sequence and

146

it deduces further examples from the domain substates, tasks and invariants, which
serve to restrict the positive examples of the intermediate and final-states for the
operators.

5.2.2 Heuristics

Porter and Kibler [59] use Experimental Goal Regression (EGR). With prompts from
a user the learning system uses these to form heuristic rules to guide subsequent prob-
lems. As in our opmaker2 system, the learner can generate examples, but, whereas
opmaker2 uses domain knowledge and invariants, EGR makes small changes to a
training instance supplied by a teacher. Once the learner is able to solve the prob-

lems it will then classify the examples as positive and negative.

5.3 Explanation Based Learning (EBL)

In his thesis, Grant [26] differentiates between systems that learn
e Control knowledge e.g. rules
e Domain knowledge e.g. operators

e Plans and plan segments e.g. schemas and subgoal sequences

EBL approaches have been used in the above, in particular in learning control

knowledge and plans. Notable amongst these are:-

Prodigy [10] Carbonell and Gil’s system learns from failures, successes and inter-

actions to derive rules for these.

GERRY [90] learns from constraints in scheduling problems to produce variable

ordering heuristics.

147

Theo-Agent [3] learns rules from planning problems and operators.

Stepping Stone [64] which uses EBL and induction to learn subgoal sequences

from goals and operators.

BAGGER [67] which learns schemas or generic plans from operators and a planning

problem.

ARMS 1988 [66] which learns by observing a single task performed by an expert
and constructing the explanation based on domain theory and the solution. The
generalisation of this produces new operator schema. In the sense that learning

is from a single example, opmaker resembles ARMS.

Nejati, Langley and Konik [56] have a system similar to ARMS [1988] which
learns from observing sequences of operators which are experts problem solu-

tions. However in their system hierarchical task networks are learned.

Planning in real-world situations can require necessarily complex planning opera-
tors which can be considered as control loops in a much larger system. In their work,
Levine and DeJong [39] describe how EBL is applied to the aquisition of operator de-
scriptions in such a planning domain. An ‘operator design module’ is used to collect
information from background knowledge, and the authors illustrate the method with

a complex flight simulator domain, where the focus is the aircraft ‘takeoff’ operator.

5.3.1 Other Techniques

In addition to EBL systems we mention here some other techniques which are rel-
evant to our work. Most learn operators whilst two notable ones learn invariants.
Learning invariants could become an idea for future work on our system, since invari-

ants have proved to be useful for some domains in reducing the output of erroneous

148

operators. Puget’s LIFE system, [60], outputs invariants by examining states. When
our invariants were constructed (see Figure 4.5), the states and substate sets had to
be examined to discover which eventualities were covered by the substates. Those not
covered had to be handcrafted accordingly. In their work on invariants, the authors
of [54] show that operators need not necessarily be the source from which invariants
are derived. They argue that where knowledge does not include the operators they
can be ‘discovered’ by analysing reachable states, rather in the way that generate
tracks available substates in opmaker2. However their system is different in that it

computes factors measuring the potential of states to make a good invariant.

The other systems under this heading learn operators. Two of these systems do
so by using the before and after states in much the same way as opmakerl, where
the initial states were given input, whilst the goal states were prescribed by the
domain expert in the examples given to the system. Of these two systems, Diffy-S
[34] used constructive induction, whilst THOTH [78] used generalisation, to achieve

their results.

One further system, Operator Learner [13], learns from a set of partial operators
that are edited by experts. Using induction the system supplies as much of the missing
data as possible, e.g. preconditions, and evaluates and monitors user’s planning
choices. By contrast, opmaker begins with no operators but, like Operator Learner,

it uses induction.

5.4 A View on Domain Theories

Huffman, Pearson and Laird [32] present a very useful analysis of pre 1992 Explanation-
Based Learning systems. Their analysis shows that one of the major problems with
EBL systems is the requirement of a complete and correct domain theory for learning

to occur. They argue that the construction of any nontrivial domain to this degree

149

of completeness and correctness is a near impossible task due to the frame problem.
Even in the closed-world system, by which everything not specifically stated as true

is assumed to be false, construction of domains is notoriously difficult.

They define two complementary tasks performed by EBL systems as analysis and

generation tasks.

Analysis tasks involve explaining or understanding some observed example as
in Wang “Learning by observation and practice” [79]. In analysis tasks, the system
observes a sequence of states ending at a goal and reasons about the observation to
infer that a consistent sequence of operations like the one observed will bring about
that goal. It will then use such a sequence of states as part of its planning if the same

goal is required.

Generation tasks involve constructing (as opposed to observing) a plan. Here
the system is given initial and goal states. It may also have to be given any additional
details necessary in order to perform planning. The system then plans a sequence of

operations leading from initial to goal state.

Both require knowledge of the performable operations in the domain, their appli-
cability and their effects. Thus the analysis task can be seen as a more constrained
version of the generation task and the concentration of their argument is on the

generation tasks.

The domain theory is seen as simply the system’s knowledge of operators, their
preconditions and their effects. Each time the system makes an inference it can be
viewed as learning an operator. Any additional knowledge within the domain is used
to guide the search through the states of the problem space. This additional material,

they argue, is not regarded as part of the domain but as part of the search control.

The recent thrust of the research here at Huddersfield has been directed towards

150

the construction of better domain theories by the development of a tools package
aimed at removing most of the difficulty and uncertainty of domain construction. By
comparison, in this system, not the operators but the objects are the focus of the

system’s knowledge.

Using GIPO the resulting domains are nearer to the targets of completeness and
accuracy, described in OCL, an object centred language which can be translated to
other description languages. (OCL concentrates on describing the ‘world’ from the
point of view of the objects in it and the states in which these objects can exist,

rather than focusing on the operators as in traditional KB systems.

An Example

An operator causes an action to happen - e.g. “Put the red button in the blue box”.
In a knowledge base that ‘knows’ about operators there will be the knowledge that
one operator puts the button in the box, plus a range of preconditions such as the
button should be red, should be being held, should fit in the box which should be blue
etc. There will also be a range of effects held in the knowledge base such as the hand
becomes empty or the box becomes full. By contrast in a system that ‘knows’ about
objects, the system knows that the button can be in different states, e.g. it can be
red, it can be in the blue box, it can be held, it can be on the table, it can be attached
to a coat - the number of different states being, at least in part, determined by other
objects in the system like box, hand, table, coat and even non-concrete objects like
colour. The operators are induced when an object changes its state - in this case the
button changes from the state of being held to the state of being in the box, but the
state of being red remains unchanged for the button whilst the box state remains

blue. The box changes from the state of being empty to the state of being full.

Table 5.2 shows a comparison between the operator centred and the object centred

151

approach.

This ‘object first” approach allows for the construction of more accurate and com-
plete domain theories in a closed world situation, as it is often easier to envisage the

concrete states of objects than the potential results of some action.

152

Huffman, Pearson and Lairds view model of
pre-1992 Explanation Based L earning systems

Aspects of simil-
arity or difference

Huddersfield University’s present system of
domain knowledge acquisition

Centred around the operators, their

Centred around the objects and their states of

preconditions and effects. Knowledge existance. Contains some operators and can
induce others from the knowledge base.
Base
Always incomplete due to the frame problem Allows for a more complete knowledge base
Difficult to refine without complete Should be easier to refine because the theory
knowledge. Refinement isvirtually complete - however any 'bugs
may be more difficult to detect.
Difficult to learn from an incomplete domain. Learning Y et to be researched - should be easier.
Almost impossible to build accurately and) Easy to build using tools packages within
completely. Domains GIPO.
Huffman, Pearson and Lairds goal: to develop Use induction to produce operators. Use
auniversal weak method for domain theory Goals these to refine the domain theory.
refinement.
Analysis of the refinement task Required Analysis of the refinement task isthe
starting point.
Search control knowledge not regarded as Search control not in the knowledge base.
part of the knowledge base since it affects Different algorithms can be used to search
efficiency not correctness. Knowledge depending on whether speed or efficiency are
additional most desirable.
to the knowledge
Without good search control more of the base Without good search control more of the
search spaceisinvolved to solve the problem search spaceisinvolved to solve the problem
Can affect the accuracy of the results of Can affect the accuracy of the results of
search so are required in the knowledge Constraints search so are required in the knowledge

base.

base.

Table 5.2: A Comparison of the Operator Centred and the Object Centred Approach

153

Types of domain theory imperfections

What our system does

Overgenera Preconditions.

An operator precondition is missing, or an overgeneral
test isused (e.g. "fruit" instead of "banana").

Overspecific Preconditions

An extra, unnecessary precondition is present, overly
restricting the set of situations in which the operator
is applicable;

Incomplete Postconditions

The planner is unaware of some effect of an operator.

Extraneous Postconditions

The planner incorrectly believes that an operator will
produce some effect which it does not.

Missing operators

An entire operator is absent from the domain theory.

Objects are described as existing in certain states or have
been left in those states by the action of some previous
operator. Listsof allowable’substates' for all objects

are defined in the domain building process and these form
the preconditions for the operators.

Preconditions should always be accurate under the terms of

how the domain is defined. If a substate has been
described to be over specific then the domain has not been

correctly modelled.

The effect of some operator is to change the substate of the
object primarily concerned in the operator. However other
objects may be less directly concerned and their substates
may change too as aresult of the operator. Their

potential substates should be recorded within the domain.

The substates alowable should always be in the goal state
of the operator so effects are predictable from a subset of
the allowable substates

Missing operators can be induced from the domain
theory given some example input from the user

Table 5.3: Domain Theory Imperfections and the Object Centred Approach

154

Again an example will help to illustrate the point. Possible effects of the action of
closing the door could be causing a temporary draught, it bangs, it breaks, it closes,
it hits someone coming through it etc. By considering the states of the door it is

easier to narrow the choices - the door can be open or closed.

5.5 An Analysis of the Types of Domain Theory Imperfections

Huffman, Pearson and Laird [32] present an analysis of past research in the area
of correcting and extending domain theories by presenting a characterisation of the
problem based on the types of knowledge deficiencies present in theories and the types

of performance errors that can result.

Table 5.3 contains, on the left, their analysis, and on the right how our system

reacts to these problems.

This work had implications for our later work when we concentrated on the refine-

ment of domain theory extended with operators induced by the opmaker algorithm.

5.6 Theory Revision

A related work, a PhD thesis by Douglas Pearson[57], details one system of correcting
operator preconditions and changing the domain knowledge. This uses techniques
similar to the work of Wang [79], Gil [24] and DesJardins [13]. For a review of this
topic including EBL in the planning area the reader is also referred to Minton and

Zweben [53].

Research has been published from The University of Huddersfield on theory re-
vision using a different context. In this work, “The Automated Refinement of a Re-
quirements Domain Theory”, a large air-traffic domain was studied and interpreted

into the modelling language. When theory revision was applied to the domain model

155

several ‘bugs’ were identified and eliminated in a potentially safety-critical domain
[48] [49]. There are differences between this work and ours in that theory revision
was mainly numeric whilst our work adds or revises operators - state transitions of

objects.

5.7 Induction of Operators

We can track the progress of opmaker through our publications at various stages.
In [46] we see opmaker beginning to induce operators for both flat and hierarchical
domains. At this stage some of the operators for hierarchical domains would be wrong
because of the inheritance problem. A later publication [47] details how opmakerl
was integrated into GIPO. We can see that ideas for merging operator descriptions
were emerging in [62] these ideas allow opmaker to handle repetitions of operators.
In the next published work [44], we see the introduction of the hybrid hierarchical
planner HyHTN;, and its integration into GIPO, whilst in [63] the idea that induction
sequences need to be carefully chosen by the domain engineer to model separate tasks,
begins to emerge. This work also introduced HBC and suggested how hierarchies of
methods could be built. The work in [50] details the introduction of opmaker2 and

includes work detailed in Chapter 4.

For a very detailed and useful survey on the whole topic of operator induction the

reader is referred to Xuemei Wang’s thesis [80].

Induction of operators is not the only aspect of knowledge engineering when it
is applied to planning. Various other types of knowledge can be acquired, such as
knowledge of the current state of a domain, knowledge of suitable goal states for the
domain and knowledge about the domain model. Operator induction belongs to the

latter category.

156

Until recent years knowledge acquisition has been done manually, but starting
with GIPO there has been a growth in systems that acquire the knowledge in a
structured shift towards automation. Certainly, it could be argued that the ICAPS
Knowledge Engineering Competition has added fuel to this. (The reader will see
more on the ICAPS competition in Section 5.8.) Opmaker, being a mixed initiative

system, has benefited from and contributed to this shift in thinking.

Whilst operator induction is the subject of this thesis, other methods have been
applied to learning operators, as we showed earlier in the section on EBL, Section

5.3. Genetic algorithms have also been tried.

We turn our attention again to the closely related research by Tim Grant [26]. In
his PhD thesis Grant takes as his motivating theme the simple question, “Where do

planning operators come from?”.
Under this theme, [26] page 14, he raises the related questions

e How does a developer formulate a set of planning operators for a new domain?

Is this difficult? Is it a transferable skill?

e How can the developers (and the users) be sure that the set of planning opera-

tors is complete, correct and precise?

e What are the consequences of having incomplete, incorrect, or imprecise domain
knowledge? In particular, what happens if the domain knowledge is distributed

over multiple agents?
These questions are very relevant to our work and neatly summarise our objectives.

The stance taken by Huffman, Pearson and Laird [32] is that most domains employ

an explanation-based learning system that requires a domain knowledge based around

157

the operators. The operators have to be part of the domain and then plans can be
formed and learning can take place. This uses a system of generating ‘explanations’
for planning attempts then using these to update the knowledge base, but it assumes

the presence of the operators in the knowledge base.

By contrast, by asking his question, Tim Grant [26] takes the stance that the
operators need not necessarily exist. He cites the example of expert systems where
there has been progress in automating the formulation of production rules by induc-
tion from examples, and argues that it should also be possible to induce planning
operators from examples. This would save the domain development specialist long

hours of tedious work.

Grant has developed a system based on Chen’s [11] entity relationship modelling
notation, which describes the states of the objects around which it is centred and
uses the constraints that arise out of this form of modelling to induce operators. The

‘examples’ used to generate the operators are the observed states.
Our work compares and contrasts with Grant’s in the following ways.

e our work is done in the context of an existing knowledge engineering tools

environment and benefits from and contributes to this.

e constraints were not present in the sample material given to opmakerl. In
opmaker2 constraints are present in the form of invariants only if they are

required.

e examples come from the user using an interactive tool (GIPO) for development
in the form of clicking, typing a name and dragging and dropping objects into
the newly named operator shell. These ‘shells’ are built up into an example

sequence of desirable operators.

158

e the development language, OCL, differs from the language Grant developed but

remains object based. Differences are minor and are documented in [27].

e operators will be used to refine the domain theory e.g. by the addition of
constraints. Here the constraints will come last whereas Grant begins with

them to build his operators.

e Grant’s work also included inheritance; see his thesis [26] page 105 and section

4.10, pages 155-8.

e using OCL allows for the extension of our system to cover hierarchical domains.
Further work by Tim Grant can be seen later in Section 5.9.1.

Another very useful research was done by Xuemei Wang [79, 80] whose system
builds operators incrementally from experimentation and practice. Unlike our system
which accepts examples from a non-expert domain builder, in Wang’s system the
sample material comes from observation of an expert. Whilst training takes place the
domain knowledge can be incorrect or incomplete in the ways described by Huffman,
Pearson and Laird [32] and therefore planning must be able to take place on this
incomplete domain so a system of integrating planner repair, learning and execution

is required.

Wang’s system [79, 82, 81, 80] OBSERVER, takes, as input, the domain descrip-
tion language and expert solution traces and some initial operators are generated and
learned. These can be refined by further observation until the refinement is sufficient
to allow planning to take place. OBSERVER is then given practice problems similar
to our OCL ‘Tasks’, and initial plans can be formed using the learned operators.
Plans formed are run and result in either successful executions or unsuccessful exe-

cutions. These can be considered to be the necessary positive and negative examples

159

required in theory refinement. Unsuccessful executions can be used to repair plans
and also used along with successful executions to refine operators. Refined operators
are used to build a more complete system of operators and these operators are the

eventual output of the system.

There are some obvious similarities to our system, the main difference being that
using opmaker integrated with GIPO accepts example material from non-experts and
uses the restraints of a question and response system to allow non-domain experts to
create domains and make and use operators as part of a complete package of domain
creation tools. Whilst Wang was limited to flat domains, our recent improvement of
the algorithm to generate operators for hierarchical domains makes opmaker a useful

and credible tool for building domains of any degree of complexity.

5.8 ICAPS 2005 and 2007 Competitions on Knowledge Engineering for

Planning and Scheduling

In 2005 the competition was introduced to the International Conference on Auto-

mated Planning and Scheduling (ICAPS). This competition had the following aims:

e Promote the knowledge-based and domain modeling aspects of planning and

scheduling
e Accelerate knowledge engineering research in Al planning and scheduling

e Encourage the development and sharing of prototype tools or software platforms
that promise more rapid, accessible, and effective ways to construct reliable and

efficient planning and scheduling systems.

It is interesting to see and compare the work of contemporaries in this field. There

were seven entries in each of the 2005 and 2007 competitions, including GIPO itself

160

in 2005, and in this section we can explore the 2005 entries and one from 2007 in

some detail.

1. The argument used by Borrajo et al [6] to support their work is that whilst
domain independent planners can be given increased efficiency by the use of
heuristics (which may fail in some domains), domain dependent planners require
additional control knowledge to be added to the domain to make planning more
efficient. This control knowledge can be acquired automatically using a tool that
is able to learn search control knowledge and formulate it into control rules. The
authors appear to claim that the result of learning this control knowledge builds
up macro-operators by using both an EBL system and an inductive-deductive
approach. The system uses an explanation trace to find search routes leading to
good solutions and these are then formulated into control rules. This is similar

to Minton and Zweben [53] although the latter’s approach was purely EBL.

The deductive side of this approach depends on retaining learned rules from
all decisions that were effectively the second and third alternatives tried on
each occasion and therefore more specific than the first. Each retained rule was
then ascribed a utility factor calculated from the time saved by using the rule,
the probability that the rule would match, and the matching time cost. An
acceptable utility factor could be predefined by the user and rules with a lower

utility factor could then be discarded.

2. Like the GIPO system the Tailor tool featured in the work by Jim Blythe and
Varun Ratnaker [4], allows for interaction with users who are not KE experts.
Tailor allows for end users to modify procedure definitions by offering a set

of plausible modifications and demonstrates these in use so that the user may

161

backtrack if required. The system will then analyse the effect of these modifica-
tions and will offer warnings of potential problems and advice for fixing them.
However Tailor is a fundamentally different system from GIPO in that it relies
on modification of an existing domain rather than having the potential to build
a new one. The system was tested by novices using sets of instructions found
on the web. However these instructions had to be translated by experts into
the correct format for Tailor to accept. Thus we conclude that a novice cannot

use Tailor to build a new domain from scratch as is the case with GIPO.

. NASA contributed to the competition with Patrick Daley et al’s work on a de-
bugging system, PlanWorks, for constraint based planning systems [12]. Besides
being developed for debugging, PlanWorks also has potential as a knowledge
capture system and can also be used as an end-user operations tool. PlanWorks
was developed for the constraint based planning system EUROPA, (Extensible
Universal Remote Operations Planning Architecture), developed at NASA. As
the planner makes decisions each activity is logged and the unique key is passed
down to PlanWorks which uses a MySQL database system back-end to log and
keep track of relationships and produce ER-type diagrams enabling users to see
the relationships between entities in the plan. The user can use this and other
facilities for debugging during planning. These ideas are similar to the use of
the stepper in GIPO where the user can manually step through a set task to
test the validity of the domain under construction. There are other similarities
to GIPO since PlanWorks allows for many different views of the domain under
consideration, but the essential difference is that PlanWorks is not primarily a
domain construction tool but rather a tool for debugging a domain. However
the NASA team claim that the present system is a precursor to a visual model

building tool planned for the near future.

162

4. Stefan Edelkamp and Tilman Mehler [16] have adopted a very similar argu-
ment for their development of their planning ModPlan workbench to the one
used to develop GIPO. Differences lie in the approach as the authors claim
that developing a domain model is an iterative process and have designed their
acquisition tool around this fact, whereas using GIPO to develop a domain is a
largely serial process so long as the modeller is reasonably competent. However
the theory revision of the generated operators is still iterative. The other main
difference between the two systems is the initial approach since only GIPO is
object oriented. A further difference lies in the fact that the final ‘product’ has
different emphasis. The workbench system is aimed at producing plans by learn-
ing domains along the way whereas GIPO produces a largely complete domain
‘oven-ready’ for planning. ModPlan is an integrated environment for domain
modelling, static analysis, plan finding and validation and plan visualisation

producing domains in a temporal version of PDDL.

5. Vaquero et al’s itSIMPLE tool [77] concentrates on producing a system that
ultimately creates real world domains that are portable. The authors have spot-
ted an anomaly with the modelling languages used amongst different research
groups and industry and tried to redress this using Unified Modelling Language
(UML) [14] to build an original model of the domain to be represented. The
code is then stored in XML (Extensible Markup Language) files [7] and can be
made compatible with PDDL 2.1 [21]. UML is an object oriented modelling
language generally represented in diagrammatic form. It allows a visual repre-
sentation and includes invariant modelling. It is interesting that despite using
an object oriented model the authors still concentrate on modelling operators
in the STRIPS style, with add and delete lists [[20]]. This is probably because
they are aiming to produce models in the main in PDDL so this model only

partly bridges the gap between other planning model languages. However since

163

OCL is translated into PDDL by GIPO this anomaly can be overlooked. There
is an argument that the use of XML gives a more modern feel and approach
to planning and may give some protection from redundancy of the system as
it ages. It certainly allows access by a web browser and many of the most re-
cently developed languages will be able to read its files thus greatly increasing
its portability. The itSIMPLE tool will also incorporate the use of Petri Nets
[55] which provide a tree model for checking and selecting planning heuristics.
This addition will increase compatibility with current manufacturing processes
and allow it to be a tool for the next generation of planning. At present the
itSIMPLE system is still experimental and is incomplete unlike GIPO which
has already reached its third release but the basic ideals of a universal plan-
ning language with complete portability might indicate a way toward greater

commercial use of planning.

. Kangheng Wu et al [86] have taken planning on into the realms of automatically
discovering action models. The system finds macro-operators for plan comple-
tion by using observation of previously successful plans. Their ARMS system
learns from gathered knowledge on the statistical distribution of frequent sets
of actions in a set of example plans. Using a model built as a propositional
satisfiability problem it then uses a SAT solver to learn the action models. In
the first phase, the ARMS algorithm finds frequent action sets from plans that
share common parameters and it also finds predicate-action relations giving a
start point for preconditions and STRIPS style add and delete lists. These can
then be used to devise an initial set of constraints which ensure correct plan-
ning. In the second phase, the ARMS algorithm converts the constraints into a
weighted SAT representation [5]. The solution of this SAT problem produces an
action model. Further action models are produced and refined by the iterations

of the process.

164

There are some similarities with the opmaker system of incrementally refining
operators which make this system interesting. Whereas with opmaker we con-
centrate on refining short operator sequences, here the energies go into refining
operator sets. This is comparable to opmaker2.0 allowing hierarchical operators
to be defined for more complex domains. Of course there are differences too,
not least the fact that our operators are produced from complete knowledge

and are object oriented rather than in STRIPS format.

. The final entry to the competition was the Huddersfield University paper on
GIPO [71]. In this the author describes the GIPO environment and suggests
that GIPO should be useful as a modelling tool irrespective of the final mod-
elling language. The object oriented approach is a very visual way of repre-
senting the domain and GIPO as a tool exploits this by offering the knowledge
engineer different ways of visualising what she is building. The paper describes
the function of many of the tools within GIPO including, new for the third re-
lease, an object life history editor. This allows the user to draw state machines
and the argument for its inclusion has some similarities to the use of UML in
the itSIMPLE tool [77] detailed above in paragraph 5. Also described in this
work is the application of opmaker for inducing operators which has now been
encoded into GIPO. Using opmaker the knowledge engineer has to supply a list
of names and parameters for actions required to complete a predefined task.
Then GIPO uses a series of questions to remove any ambiguities and produces

a complete set of operators for the specific task.

This new version of GIPO also includes tools for engineering HTN planning.
There are special tools for validation and planning including a stepper which
allows a user to step through an action sequence and to correct any errors to

the newly constructed domain. A typical example may be a missing invariant

165

which allows a faulty operator to be constructed.

Overall this was a very strong field for the competition and the competition itself
has promoted interest in this field of research. The winner was the GIPO system

developed at Huddersfield University by Ron Simpson.

In the 2007 Planning Competition one author, [29], argues for a change of di-
rection for the competition itself. He defines a ‘tough nut’ as a domain which can
be addressed, language-wise, by existing planning techniques, but cannot be solved
efficiently. The argument is for adding a track to the competition in which awards

are made

e for the ‘tough nut’ which survives the longest

e for the first technique which solves a problem

and would keep track of these challenges and solutions. Perhaps this would be a

means for resolving problems with our version of Blocks World?

5.9 Further Work in Knowledge Engineering

Model-lite

In their paper on Model-lite Planning [88] the authors detail a system for planning
where the domain model is incomplete. Whilst their aims are quite different to ours
there are some similarities to our approach. They aim to produce action sequences
(plans) by use of a probabilistic model for planning using incomplete domains. Thus
both their system and ours begin with lack of operator knowledge. However, in their
case the aim is to achieve valid operators from existing incomplete domain models

whereas we begin with no operators.

166

The other interesting facet of Model-lite Planning is the use of invariants to model
the domain constraints. The authors use invariants to supply the detail lacking in
their operators and these invariants thus enable them to control planning. In our
case we have been constructing and using invariants to prune potential intermediate

substates for transitions induced by opmaker2.

Learning Recursive HTN-Method Structures for Planning

In their machine learning paper the authors [87] tackle the issue of learning HTN

methods by looking at three problems:-

e acquiring logical relationships between high-level tasks and low level actions

(i.e. task descriptions and available operators)

e learning pre and post conditions of primitives in STRIPS or PDDL action mod-

els

e acquiring decomposition structures of HTN methods from observed action traces

from input of multiple action sequences for multiple tasks.

The authors focus on matching sub-sequences to tasks assuming no knowledge of
observed states achieved by low-level actions. The output consists of pairs of action
sequences and the high-level tasks achieved by them. As with our system they begin
with action sequences and defined tasks (ours are defined in terms of initial states and
goal states). Unlike ourselves they do not use lists of potentially available substates.
The first phase is matching sub-sequences of actions from examples to tasks, using
probability and hand tuning. In the second phase sets of recursive methods are
learnt from these with the focus on learning the decomposition of the methods. They
assess their success by comparing learnt methods to hand-crafted ones. The system

only required about 40 training sets. Once learned they were fine tuned by domain

167

experts by hand. By contrast our system induces both primitives and a method using
substate lists and invariants and requires only an initial action sequence. The induced

primitives form the decomposition of the method.

CaMeL

The authors of Learning Preconditions for Planning [33] describe their CaMeL system
which aims to aid domain building by learning the preconditions from HTN methods.
They present a proof theorem about CaMel’s soundness, completeness and conver-
gence, and show some empirical results. These claim that CaMeL converges fastest
on HTN’s that are needed most often - thus enabling it to be useful even before

convergence.

In their paper [31] the authors share our argument that the major hurdle for
HTN planning use is the acquisition of the HT'N domain descriptions. They present
a compelling argument that encoding ‘task models’, which contain knowledge about
how to decompose tasks into subtasks is really difficult and time consuming. Their
solution is HTN — MAKER (Hierarchical Task Networks with Minimal Additional
Knowledge Engineering Required) an off-line incremental algorithm for learning task
models. Learning is based on the input of a STRIPS domain model, a STRIPS plan
and task definition. In an upward manner as variables are incrementally substituted,
it becomes possible to learn a set of methods, where the first encapsulates the previous
operator, the next the two previous operators and so on. In this way the methods
that are shortest and simplest are learned first and these can then be learned and
used as subtasks in methods that encapsulate longer sections of the plan. This idea

has some similarities with our own thinking. These are

e The CaMeL team agree that acquisition of HTN planning domain descriptions

is a major hurdle for HT'N planning.

168

e They build methods with a bottom up approach.

Semantics for High Level Actions

In their paper [42] Marthi et al argue for a system of high-level actions (HLA’s) which
can be refined downwards into simple action sequences in many ways, following the
lines of human mind planning where a high level action would be the first choice and

as planning proceeds the details of simpler actions begin to emerge.

Their starting point seems to be the knowledge of simple (primitive) actions and
some high-level ‘desires’. This system works in a top-down forward search way, search-
ing for a suitable action sequence to define the HLA. Our system, by contrast, begins
with no actions but a human designed action sequence which translates into prim-
itive action schema and a single high level action which has, as its decomposition,
the initial action sequence. Their system is illustrated by an interesting version of
blocks world which used a variant of a STRIPS-like symbolism. The description of
the workings of the domain suggest a 1 dimensional table the width of a block and
of set length upon which the blocks are stacked by a suspended gripper. The gripper
can only pick up a block from the right or left sides and to effect a pick-up the gripper
must be facing the block. The blocks are stacked on the table and on each other at
various levels. However, the gripper can only be turned if it is above the level of
the blocks. Thus this version of the blocks world has many actions associated with
manipulating the gripper such as raising, lowering, moving, turning right or left, and
picking up and putting down the blocks. These additions allow for much longer plans
to be formed for relatively few objects and the authors include an apparently simple
three blocks problem which requires 50 steps to solve. Further work on our system
could well include the ideas in this domain which will extend plan steps quite quickly

to large numbers.

169

Using their implemented algorithm the authors are able to demonstrate consistent
improvement in running time as stages in the process are added for problems requiring

up to 90 steps in planning.

5.9.1 Very Recent Publications

Two very recent publications (December 2007) support our work directly and are very
closely allied to it. In the first of these [28] we look at another interactive domain
editing and planning system for building domains which delivers domain descriptions
in PDDL. In the second [27] a system of inducing operators by relying on the use of

invariants is the subject of some interesting work in a multi-agent system.

VLEPpO

The VLEPpO (Visual Language for Enhanced Planning problem Orchestration) do-
main modelling system [28] was developed in response to a need to have a similar
system to GIPO for building domains modelled in PDDL. The authors express the
view that a visual tool similar to the graphical life history editor in GIPO is needed to
help domain builders build domains in the latest versions of PDDL without the need
for familiarity with either PDDL or OCL and without having to translate between
them. There are fundamental differences in the structure of the languages which
mean that direct translation is effective only into the more basic versions of PDDL
from OCL which does not yet handle temporal planning for example. VLEPpO also
allows the user to plan by using web services. In a later stage of development it is
planned to develop an extention into HT'N planning. We welcome the introduction

of VLEPpO and will watch with interest how it develops.

170

POI

In his work in the past [26] Grant has shown how he can induce operators from a
knowledge of inconsistent constraints. In this latest work [27] he shows how this
system, Planning Operator Induction (POI), extends to a multi-agent system. The
work is based on representations of operators and constraints which between them
model the domains so the modelling process is fundamentally different from ours. In
this work we assume there is complete domain knowledge and known initial and goal
states. Planning is, however, made more complex by the fact that the agents initially
do not have complete knowledge and have to share parts of their own knowledge
with other agents before planning can take place effectively. In this context planning
requires the application of machine learning techniques to the acquisition of plan-
ning operators. It also includes an element of Model-lite planning [88], and requires
knowledge sharing concepts. The author presents a good assessment and diagram-
matic model of planning in this context where an initially complete domain model
is shown to be capable of receiving and assimilating sensory feedback. Because this
initial domain model is distributed across several agents who, as a set, have complete
knowledge, individual agents will have only partial knowledge and must share this
knowledge for planning to be successful. The emphasis in [27] is on how the recipient

agent assimilates the knowledge another agent has given it into its own knowledge.

5.10 Summary

All this recent literature shows many attempts to make computers simulate tasks the
human brain is already good at. In their work [31] the authors show how humans learn
by tackling simple tasks and gradually building up to move onto more complex ones.
By contrast, when planning the authors of [42], Semantics for High-level Actions, say
that humans plan top down, by looking at the overall task first, which is split down

into simpler tasks and eventually into simple operations. Opmaker builds operators

171

first then constructs methods from the newly induced operators. In planning the
HyHTN [44] planning algorithm in GIPO uses methods, where they are available, in

preference to operators, so priority is given to chunking in the way that humans plan.

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Limitations of this Research

This work contains a number of assumptions and limitations to restrict the scope and
scale of the research which have been necessary to identify the specific project. These

are:-
1. The work has only been applied to planning domains constructed in the OCL

planning language which enforces an object based approach.

2. The work includes action modelling of ‘instantaneous actions’ only. Durative

actions or those depending on resource availability have not been modelled.
3. Planners used have been restricted to Hoffmann’s FF [30] and HyHTN [44].

4. Objects modelled have been concrete items rather than abstract concepts such

as jobs or marital status.

5. The work reported depends on the availability of at least a partial domain with
which to work. Often we begin with a full model, in which case operators

contained in the full model can be used for comparison purposes.

6. We assume that the space of states is restricted in that objects are pre-conceived

to be a fixed set of plausible states.

7. Some knowledge engineering problems remain - more work is required to use

the acquired methods in an HTN network for larger domains.

173

6.2 Summary

This thesis has studied how knowledge engineering is used to construct knowledge
bases for planning. Different planning domain languages are used for this and up till
now the knowledge engineer has needed to be an expert in the particular language
she uses. However, this in itself is a barrier to the wider use of planning since it
takes a long time to become an expert. Additionally, in the past, planning domains
have taken a lot of time to construct because of the high degree of accuracy required
especially when constructing the operators. The aim of this work, specified in Section
1.9, has been to increase the efficiency of domain construction by the automatic
induction of planning domain operators using an object based knowledge capture

system, and making particular use of the knowledge already contained.

We have shown that opmaker1.0 was capable of inducing operators for domains
with flat sort structures and could, additionally, induce a single method for every
input sequence. Initially this system was error-prone because the examples required
for the induction were hand coded and erroneous material could be used to create
meaningless operators. For example before the inheritance problem was solved it was
possible to induce operators with empty prevail or necessary transitions. Our system

of checking induced operators relied on people who themselves can make errors.

One of the advantages of this system being embedded in GIPO was that the
constraints of working with an editor reduce the chance of introducing erroneous data.
When opmaker1 was embedded into GIPO this represented a big step forward because
GIPO contained many validation checks to screen out most errors. At that stage,
however, GIPO still required some knowledge of planning from the engineer. Now
GIPO has a graphical ‘Life History’ editor which allows for much greater abstraction
and students of artificial intelligence can, with a little instruction, create new domains

without ever seeing the OCL language. Basically this means that GIPO is getting

174

towards its target of allowing non-experts to use planning as a tool.

With the new opmaker2.0 system, operator creation becomes one step easier too.
The hand-coding of the example material was an area likely to introduce bugs into the
system. Opmaker2.0, with its automatic generation of the intermediate states, ruled
out these kinds of errors. Some engineering problems remain. The system still needs
to be integrated into GIPO. There are a few factors that need further consideration.
Whilst we can choose the initial sequences carefully to induce meaningful methods,
more work is required to learn and use those methods when building up the HTN
network for larger domains. We need to implement opmaker2.0 in the Life History

editor of GIPO which, as yet, only engineers flat domains.

Despite these problems, we have shown the great power of a system able to create,
learn and use its own planning operators. More than this when considering automatic
operator induction using GIPO there is the potential to engineer, validate and use
HTN planning without the expert knowledge that was once mandatory for the en-
gineer. An autonomous system that plans and creates its own operators, perhaps

working in some remote area, is close to reality.

This thesis began by examining the area of artificial intelligence into which this
work fits. We saw, in Chapter 1, how knowledge engineering is essential to the field
of AI by creating the database on which it is based. Planning is seen as a challenging
problem and accurate representation of the planning domain and in particular the
operators is essential to enable planning to be accurate. In the discussion of the
‘knowledge acquisition bottleneck’ [18], we saw the difficulty of hand-constructing
operators to reasonable time-scales. The chapter also gives several definitions which
would be required throughout the thesis. There was a discussion of the process of
induction of operators, which model actions in the domains. Opmaker was intro-
duced. The end of this chapter showed the aim of this research and discussed the

contributions it makes to planning knowledge.

175

Chapter 2 was concerned with explaining to the reader how a detailed domain is
constructed in the OCL language. We saw, in various steps, how the static knowl-
edge for the knowledge base is engineered both by hand and by using GIPO. Several
domains were introduced in the chapter and we saw how to use some of the con-
struction tools in GIPO to construct domain parts like sort trees, atomic invariants
and operators. Later in the same chapter we saw how to use opmakerl in GIPO to
construct an operator sequence and we saw the dialogue that GIPO begins with the
user to resolve any intermediate state conflicts. In later chapters we would show that

opmaker2 was capable of resolving these conflicts by drawing on domain knowledge.

In Chapters 3 and 4 we saw the two distinct stages of opmaker development.
Chapter 3 gives an overview of the opmaker algorithm and also the algorithm in
more detail. It explains how well it worked and gives some experimental results
before going on to explain how these were tarnished, for domains with hierarchical
sort structures, by the inheritance problem. In Chapter 4 we discuss the reasons for
developing opmaker further and again give an algorithm. We show how this might
work with reference to a tyre domain which serves as an example throughout the

chapter. Finally we discuss experimental results.

Chapter 5 discusses literature and work done in this area of planning. It begins
with some of the recent ‘historical’ work showing how induction of operators arose.
Later it shows how we can categorise our system of operator induction in terms of
the other work which has been done. The chapter concludes with some very recent
work and reports on the achievements of those taking part in the bi-annual Planning

Competition.

176

6.3 Contributions

Contributions are detailed in Chapter 1, Section 1.10. Here we summarise where
these contributions are to be found bearing in mind the aims of this research stated

in Section 1.9.

1. Contribution 1 - Induction of Hierarchical Models is demonstrated in
Chapters 3 and 4 where we show how methods can be induced from the ini-
tial sequences given to the system. We show that a sensible choice of action
sequences helps to build hierarchical operators which can be used effectively in

planning for the completion of whole tasks.

2. Contribution 2 - Evidence of Efficiency of Hierarchical Models is
demonstrated in Chapters 3 and 4. We show that development time for opera-
tors and methods is minimised by the induction process and this is particularly
the case when the opmaker2.0 system is used and user input is greatly reduced.
We see, in Chapter 3, that hierarchical systems do not always produce faster
plan times but in Chapter 4, Table 4.3 we show that as the plans get longer and

the number of objects in the domains increase then they become more efficient.

3. Contribution 3 - Towards True Agent Autonomy is demonstrated in the
second half of Chapter 4 where the idea of complete autonomy is discussed
in a system which generates its own intermediate states using heuristics and
invariants, and uses its knowledge to output accurate HTN methods for each
novice or expert defined input sequence. The desirability of a remote agent
acquiring its own planning knowledge with user input reduced to a minimum is

also discussed.

4. Contribution 4 - New Versions of Experimental Domain Knowledge

are shown in Chapters 2, 3 and 4 where we discuss new versions of older domains

177

- the Hierarchical Briefcase Domain (Chapter 3) and the Extended Tyre Domain
(Chapter 4). Chapter 2 also discusses a relatively new experimental domain in

the Hiking Domain, introduced in 2001 [46].

6.4 Further Work
Suggestions for further work include the following.

1. Since a set of operators can be induced to fit the demands of a chosen task, then
in that sense we can say they are a complete set for that particular problem.
However another task may require some different operators for its completion.
We could argue that the space of unknown tasks is unknown and, therefore,
there is no such thing as a complete set of operators for a domain. However,
the beauty of a system such as opmaker2 is that so long as the new task can
be modelled, and the expert can compose a sequence to complete the task,
then a further set of operators for that task can be induced. This argument
could be strengthened if we could say that any necessary invariants could be
constructed and added dynamically to the static domain knowledge. This idea

gives a pointer for a future direction.

2. When using HyHTN, the hierarchical OCL planner, there seems to be a crossover
point (about 12 steps) beyond which hierarchical operators produce faster plan
times than non-hierarchical ones, whether or not the domains used contained
induced operators and methods as opposed to hand-crafted ones. Currently
our evidence is that hierarchical domains do produce faster plan times, but this

area requires further investigation and could make a useful project for research.

3. This work could be extended to capturing domains with durative actions, or

other, more expressive formulations for action.

178

4. The theoretical limitations on the content of the methods that are created from

Opmaker2, as compared to hand-crafted HTN operators, should be investigated.

5. The Opmaker2 system should be extended to deal with model maintenance, so
that old operator schema can be refined in the presence of new example solution

sequences.

6. A rigorous investigation should be conducted into the resilience of our approach

in the face of errors in training tasks or in the partial domain model.

7. Investigations should be conducted into whether

e This work will extend to the operator centred rather than the object cen-

tred approach.
e This work can be replicated using other forms of machine learning.

e The work offers a forum for planning with uncertainty or incomplete in-

formation.

e The chunking of operators can be automated.

8. The evaluation of opmakerl, currently available in GIPO, should be done using
groups of non-experts (students) to create flat domains in different ways, such

as:i-

By hand

Using the operator constructor in GIPO

Using the opmaker tool embedded in GIPO

Using the graphical life-history editor in GIPO

9. The embedding of the hierarchical induction process into GIPO is a clear re-

quirement for the completion of the GIPO tool set.

10.

11.

12.

13.

14.

179

The induction of methods for the Translog Domain including testing and eval-

uation would give useful confirmation of current results.

A collaborative system where two agents induce methods and act together to

solve a single plan would offer a challenge to teams taking the work further.

Further analysis of results using opmaker2 is required. These results could be

shown graphically or in a table similar to Table 4.2.

Analysis of which sorts of domain are suitable to be HTN should be attempted,
bearing in mind we have shown conditional domains to be problematic and

domains where there are many instances of the same sort in an operator as in

blocks world.

It would be of interest to use GIPO for the construction and use of the unusual
version of blocks detailed in Section 5.9 [42], i.e. in a very complex domain.
Opmaker2 could then induce more complex operators and methods and results

of experimentation on this domain would make a useful addition to planning.

Appendix A

A FULL CODING OF THE VERSION OF THE HIKING
DOMAIN BUILT USING GIPO

All rights reserved. Use of this software is permitted for non-commercial research
purposes, and it may be copied only for that use. All copies must include this
copyright message. This software is made available AS IS, and neither the GIPO
team nor the University of Huddersfield make any warranty about the software or its
performance.

Automatically generated OCI Domain from GIPO Version 1.0

Author: scomner Institution: University of Huddersfield Date created: Tue Jul
22 15:01:56 BST 2003 Date last modified: Description:GIPO constructed domain

for thesis using fit and tired.

domain_name (newhiking) .

% Sorts

sorts(primitive_sorts, [car,person,tent,place,couple]).

% Objects

objects(car, [carl,car2]).

objects(person, [sue,fred]).

objects(tent, [tentl]).

objects(place, [keswick,helvelyn,fairfield,honister,derwent]).

objects(couple, [couplel]).

% Predicates

predicates([

at_tent(tent,place),
at_person(person,place),
at_car(car,place),
partners(couple,person,person),
tired(person),

fit (person),

up(tent),

down(tent),

walked (couple,place),

next (place,place)]).

% Object Class Definitions
substate_classes(car,Car, [
[at_car(Car,Place)]]).
substate_classes(tent,Tent, [
[at_tent(Tent,Place) ,up(Tent)],
[at_tent(Tent,Place) ,down(Tent)]]).
substate_classes(person,Person, [
[at_person(Person,Place),fit(Person)],
[at_person(Person,Place),tired(Person)]]).
substate_classes(couple,Couple, [

[walked(Couple,Place)]]).

% Atomic Invariants
atomic_invariants ([
next (keswick,helvelyn),
next (helvelyn,fairfield),
next (fairfield,honister),
next (honister,derwent),

partners(couplel,sue,fred)]).

% Implied Invariants

181

182

% Inconsistent Constraints

% Operators
operator (take_down(Person0,Tent0,Place0),
% prevail
[se(person,Person0, [at_person(Person0,Place0) ,fit(Person0)])],
% necessary
[
sc(tent,TentO, [at_tent (Tent0,Placel) ,up(Tent0)]=>[at_tent (Tent0,Placel) ,down(Ten
t0)1,
% conditional
(1.
operator (drive_tent (Person0,Tent0,Place0,Placel,Car0),
% prevail
I,
% necessary
[
sc(person,Person0, [at_person(Person0,Place0) ,fit(Person0) ,next(Place0,Placel)]=>

[at_person(Person0,Placel) ,fit(Person0)]),

sc(tent,Tent0, [at_tent(Tent0,Place0l),down(Tent0) ,next(Place0,Placel)]=>[at_tent(

Tent0,Placel) ,down(Tent0)]),

sc(car,Car0, [at_car(Car0,Place0) ,next (Place0,Placel)]=>[at_car(Car0,Placel)])],
% conditional
(1.
operator (drive (Person0,Place0,Placel,Car0),
% prevail
1,
% necessary
[
sc(person,Person0, [at_person(Person0,Place0) ,fit(Person0) ,next(Place0,Placel)]=>

[at_person(Person0,Placel) ,fit(Person0)]),

183

sc(car,Car0, [at_car(Car0,Place0) ,next (Place0,Placel)]=>[at_car(Car0,Placel)])],
% conditional
(1.
operator (put_up(Person0,Tent0,Place0),
% prevail
[se(person,Person0, [at_person(Person0,Place0) ,fit(Person0)])],
% necessary
[
sc(tent,Tent0, [at_tent (Tent0,Place0),down(Tent0)]=>[at_tent(Tent0,Placel) ,up(Ten
t0) D1,
% conditional
(1.
operator (drive_passenger (Person0,Personl,Place0,Placel,Car0),
% prevail
I,
% necessary
[
sc(person,Person0, [at_person(Person0,Place0) ,fit(Person0) ,ne(Person0,Personl) ,ne

xt (Placel,Place0)]=>[at_person(Person0,Placel) ,fit(Person0)]),

sc(person,Personl, [at_person(Personl,Place0),fit(Personl) ,next(Placel,Place0)]=>

[at_person(Personl,Placel),fit(Personl)]),

sc(car,Car0, [at_car(Car0,Place0) ,next (Placel,Place0)]=>[at_car(Car0,Placel)])],
% conditional
(1.
operator (walk_together (PersonO,Personl,Tent0,Couple0,Place0,Placel),
% prevail
[se(tent,TentO0, [at_tent (Tent0,Placel) ,up(Tent0)])],
% necessary
[

sc(person,Person0, [at_person(Person0,Place0) ,fit(Person0) ,ne(Person0,Personl) ,ne

184

xt (Place0,Placel)]=>[at_person(Person0,Placel) ,tired(Person0)]),

sc(person,Personl, [at_person(Personl,Place0) ,fit(Personl) ,next(Place0,Placel)]=>

[at_person(Personl,Placel) ,tired(Personl)]),

sc(couple,Couple0, [walked (CoupleO,Place0) ,next (Place0,Placel)]=>[walked(Couplel,
Placel)])],
% conditional
(1.
operator (sleep_couple(Person0,Personl,Tent0,Place0),
% prevail
[se(tent,TentO, [at_tent (Tent0,Placel) ,up(Tent0)])],
% necessary
[
sc(person,Person0, [at_person(Person0,Place0) ,tired(Person0) ,ne(Person0,Personi)]

=>[at_person(Person0,Placel) ,fit (Person0)]),

sc(person,Personl, [at_person(Personl,Place0) ,tired(Personl)]=>[at_person(Personl
,Place0) ,fit (Personl)])],
% conditional
(1.
operator (drive_tent_passenger (Person0,Personl,Tent0,Place0,Placel,Car0),
% prevail
1,
% necessary
[
sc(person,Person0, [at_person(Person0,Place0),fit(Person0) ,ne(Person0,Personl) ,ne

xt (Placel,Place0)]=>[at_person(Person0,Placel) ,fit(Person0)]),

sc(person,Personl, [at_person(Personl,Place0),fit(Personl) ,next(Placel,Place0)]=>

[at_person(Personl,Placel) ,fit(Personi)]),

sc(tent,Tent0, [at_tent (Tent0,Place0l) ,down(Tent0) ,next (Placel,Place0)]=>[at_tent(

185

Tent0,Placel) ,down(Tent0)]),

sc(car,Car0, [at_car(Car0,Place0) ,next (Placel,Place0)]=>[at_car(Car0,Placel)])],
% conditional

1.

% Methods

% Domain Tasks
planner_task(1,
% Goals
[
se(couple,couplel, [walked(couplel,helvelyn)]),
se(car,carl, [at_car(carl,helvelyn)]),
se(tent,tentl, [at_tent(tentl,helvelyn) ,up(tentl)]),
se(car,car?2, [at_car(car2,keswick)]),
se(person,sue, [at_person(sue,helvelyn) ,tired(sue)]),
se(person,fred, [at_person(fred,helvelyn),tired(fred)])],
% INIT States
[
ss(car,carl, [at_car(carl,keswick)]),
ss(car,car2, [at_car(car2,keswick)]),
ss(person,sue, [at_person(sue,keswick) ,fit(sue)]),
ss(person,fred, [at_person(fred,keswick) ,fit(fred)]),
ss(tent,tentl, [at_tent(tentl,keswick) ,up(tentl)]),
ss(couple,couplel, [walked(couplel,keswick)])]).
planner_task(2,
% Goals
[
se(couple,couplel, [walked(couplel, helvelyn)]),
se(car,carl, [at_car(carl,helvelyn)]),
se(car,car2, [at_car(car2,helvelyn)]),

se(tent,tentl, [at_tent(tentl,helvelyn) ,down(tentl)]),

186

se(person,sue, [at_person(sue,helvelyn) ,fit(sue)]),
se(person,fred, [at_person(fred,helvelyn),fit(fred)])],
% INIT States
[
ss(couple,couplel, [walked(couplel,helvelyn)]),
ss(car,carl, [at_car(carl,helvelyn)]),
ss(tent,tentl, [at_tent(tentl,helvelyn) ,up(tentl)]),
ss(car,car2, [at_car(car2,keswick)]),
ss(person,sue, [at_person(sue,helvelyn) ,tired(sue)]),

ss(person,fred, [at_person(fred,helvelyn),tired(fred)])]).

Appendix B

A TEST FILE FROM THE HIKING DOMAIN

% This code is a typical test file designed to run with the induction code which
% includes the $opmaker$ algorithm. It consists of an action sequence, a set of
% initial states for the objects, example training material and a partial

% domain in which the substates are in single set format. Added to the end is

% the output given by the induction process.

:- multifile input/3.
:- dynamic input/3.
:- multifile planner_task/3.

:— dynamic planner_task/S.
% ACTION SEQUENCE

tl :- sequops([
putdown(tentl,fred,keswick),
load(fred,tentl,carl,keswick),
getin(sue,keswick,carl),
drive(sue,carl,tentl,keswick,helvelyn)

1.
htn(move_tent).
% INITIAL STATES

planner_task(_,_,

[

188

ss(car,carl, [at (carl,keswick)]),
ss(car,car?2, [at (car2,keswick)]),
ss(couple,couplel, [walked(couplel, keswick)]),
ss(person,sue, [fit (sue,keswick)]),
ss(person,fred, [fit (fred,keswick)]),
ss(tent,tentl, [up(tentl,keswick)])

D.

% EXAMPLE INPUTS

% putdown(tentl,fred,keswick)
input(1,tentl,sclass(Tent,tent, [down(Tent,Place)])).

input(1,fred,null).

% load(fred,tentl,carl,keswick),
input(2,fred,null).
input(2,tentl,sclass(Tent,tent, [loaded(Tent,Car,Place)])).

input(2,carl,null).

% getin(sue,keswick,carl),
input (3, sue,sclass(Person,person, [in(Person,Car,Place)])).

input(3,carl,null).

% drive(sue,carl,tentl,keswick,helvelyn),

input (4, sue,sclass(Person,person, [in(Person,Car,Place)])).
input(4,carl,sclass(Car,car, [at (Car,Place)])).

input (4,tentl,sclass(Tent,tent, [loaded(Tent,Car,Place)])).

% PARTIAL DOMAIN DESCRIPTION

domain_name (hiking) .

189

% Sorts

sorts(primitive_sorts, [car,person,tent,place,couple]).

% Objects

objects(car, [carl,car2]).
objects(tent, [tentl]).
objects(person, [sue,fred]).
objects(couple, [couplel]).

objects(place, [keswick,helvelyn,fairfield,honister,derwent]) .

% Predicates

predicates ([
up(tent,place),
down (tent,place),
loaded(tent,car,place),
in(person,car,place),
fit (person,place),
tired(person,place),
at(car,place),
partners(couple,person,person),
walked (couple,place),

next (place,place)]).

% 0Object Class Definitions

substate_classes([

person(Person,

[
[tired(Person,Place)],
[fit (Person,Place)],
[in(Person,Car,Place)]

D,

couple(Couple,

L
[walked(Couple,Place),

partners(Couple,Personl,Person2)]

D,

tent (Tent,

[

[up(Tent,Place)],
[down(Tent,Place)],
[loaded(Tent,Car,Place)]
D,

car(Car,
[
[at(Car,Place)]
D
.

% Atomic Invariants

atomic_invariants([
partners(couplel,sue,fred),
next (keswick,helvelyn),
next (helvelyn,fairfield),
next (fairfield,honister),

next (honister,derwent)]).

% OUTPUT GIVEN BY INDUCTION PROCESS

/*

states created..

operator (putdown(Tentl,Fred,Keswick),

190

191

[se(person,Fred, [fit (Fred,Keswick)])],

[sc(tent,Tentl, [up(Tentl,Keswick)] => [down(Tentl,Keswick)])],
[

).

operator (load(Fred,Tent1,Carl,Keswick),
[se(person,Fred, [fit (Fred,Keswick)]),

se(car,Cari, [at (Carl,Keswick)])],

[sc(tent,Tentl, [down(Tentl,Keswick)] => [loaded(Tentl,Carl,Keswick)])],
[

).

operator (getin(Sue,Keswick,Carl),

[se(car,Carl, [at(Carl,Keswick)])],
[sc(person,Sue, [fit (Sue,Keswick)] => [in(Sue,Carl,Keswick)])],
[]

).

operator (drive(Sue,Carl,Tentl,Keswick,Helvelyn),

1,

[sc(person,Sue, [in(Sue,Carl,Keswick) ,next (Keswick,Helvelyn)] =>
[in(Sue,Carl,Helvelyn)]),

sc(car,Carl, [at(Carl,Keswick)] => [at(Carl,Helvelyn)]),
sc(tent,Tentl,[loaded(Tentl,Carl,Keswick)] => [loaded(Tentl,Carl,Helvelyn)])],
[

).

% name

method (move_tent (Fred,Sue,Carl,Tentl),
% dynamic constraints
[se(person,Fred, [fit (Fred,Keswick)]),

se(person,Fred, [fit (Fred,Keswick)])],

192

% list of necessary transitions
[sc(person,Sue, [fit (Sue,Keswick)] => [in(Sue,Carl,Helvelyn)]),
sc(car,Carl, [at(Carl,Keswick)] => [at(Carl,Helvelyn)]),
sc(tent,Tentl, [up(Tentl,Keswick)] => [loaded(Tentl,Carl,Helvelyn)])],
% static constraints
[next(Keswick,Helvelyn)],
% temporal constraints
[before(1,2) ,before(2,3) ,before(3,4)],
% decomposition
[putdown(Tentl,Fred,Keswick),
load(Fred,Tent1,Carl,Keswick),
getin(Sue,Keswick,Carl),
drive(Sue,Carl,Tentl,Keswick,Helvelyn)]
).
*/

Appendix C

FULL LISTING OF THE HIERARCHICAL BRIEFCASE

/%%

*/

DOMAIN (HBC)AS DEVELOPED USING GIPO

A1l rights reserved. Use of this software is permitted for non-commercial

research purposes, and it may be copied only for that use. All copies must
include this copyright message. This software is made available AS IS, and
neither the GIP0 team nor the University of Huddersfield make any warranty

about the software or its performance.
Automatically generated OCL Domain from GIPO Version 2.0

Author: Beth Richardson

Institution: University of Huddersfield

Date created: Fri Oct 07 14:19:51 BoxST 2005

Date last modified: 2006/10/04 at 12:46:18 PM BST

Description:
Briefcase world has additional containers - a lunch box and a pencil box.
These fit in the briefcase and themselves can contain, respectively,
sandwiches and a pencil. Additional activities include

pack and unpack lunch, pack and take an object to work and pack suit.

domain_name (hier_briefcase).

option(hierarchical).

% Sorts

194

sorts(primitive_sorts, [briefcase,suitcase,lunch_box,pencil_box,thing,place]).
sorts(carrier, [bag,box]) .
sorts(bag, [briefcase,suitcase]).

sorts (box, [lunch_box,pencil_box]) .

% Objects

objects(briefcase, [bcl]).

objects(suitcase, [scl]).

objects(lunch_box, [1b1]).

objects(pencil_box, [pbl]).

objects(thing, [cheque,suit,dictionary,sandwiches,pencil]).

objects(place, [home,office]).

% Predicates

predicates([
at_thing(thing,place),
outside(thing),
at_carrier(carrier,place),
in_bag(thing,bag),
in_box(thing,box),
box_in_bag(box,bag),
box_outside(box),
fits_in(thing,bag),
safe_in(thing,box),

goes_in(box,bag)]).

% Object Class Definitions
substate_classes(carrier,Carrier, [
[at_carrier(Carrier,Place)]]).
substate_classes(thing,Thing, [
[outside(Thing) ,at_thing(Thing,Place)],
[in_bag(Thing,Bag) ,at_thing(Thing,Place)],

[in_box(Thing,Box),at_thing(Thing,Place)]]).

195

substate_classes(box,Box, [
[box_in_bag(Box,Bag)],
[box_outside(Box)]1]).

% Atomic Invariants

atomic_invariants ([
fits_in(cheque,bcl),
fits_in(dictionary,bcl),
fits_in(suit,scl),
fits_in(cheque,scl),
fits_in(dictionary,scl),
goes_in(1bl,bcl),
goes_in(pbl,bcl),
safe_in(pencil,pbl),

safe_in(sandwiches,1b1)]).

% Implied Invariants
implied_invariant ([in_box(Thing,Box) ,box_in_bag(Box,Bag) ,at_carrier(Bag,Place)],
[at_thing(Thing,Place) ,at_carrier (Box,Place)]).

implied_invariant ([in_box(Thing,Box) ,box_in_bag(Box,Bag)], [in_bag(Thing,Bag)]).

% Inconsistent Constraints
inconsistent_constraint([at_thing(Thing,Place),at_thing(Thing,Placel),ne(Placel,
Place)]).
inconsistent_constraint([at_carrier(Carrier,Place),at_carrier(Carrier,Placel) ,ne
(Placel,Place)]).
inconsistent_constraint([in_bag(Thing,Bag),in_bag(Thing,Bagl) ,ne(Bagl,Bag)]).
inconsistent_constraint([in_box(Thing,Box),in_box(Thing,Box1) ,ne(Box1,Box)]).
inconsistent_constraint([in_bag(Thing,Bag) ,outside(Thing)]).
inconsistent_constraint([in_box(Thing,Box) ,outside(Thing)]).
inconsistent_constraint([in_bag(Thing,Bag),at_carrier(Carrier,Place),at_thing(Th
ing,Placel) ,ne(Placel,Place)]).

inconsistent_constraint([in_box(Thing,Box),at_carrier(Carrier,Place),at_thing(Th

196

ing,Placel) ,ne(Placel,Place)]).
inconsistent_constraint ([outside(Thing) ,fits_in(Thing,Bag)]).
inconsistent_constraint([outside(Thing) ,safe_in(Thing,Box)]).

inconsistent_constraint ([box_outside(Box) ,goes_in(Box,Bag)]).

% Operators
operator (put_in_box (Box,Place,Thing),
% prevail
[se(box,Box, [box_outside(Box) ,at_carrier (Box,Place)])],
% necessary
[
sc(thing,Thing, [outside(Thing) ,at_thing(Thing,Place)]=>[in_box(Thing,Box),at_thi
ng (Thing,Place) ,safe_in(Thing,Box)])],
% conditional

1.

operator (put_box_in_bag(Bag,Place,Box),
% prevail
[se(bag,Bag, [at_carrier(Bag,Place)])],
% necessary
[
sc(box,Box, [box_outside(Box) ,at_carrier (Box,Place)]=>[box_in_bag(Box,Bag),at_car
rier (Box,Place),goes_in(Box,Bag)])],
% conditional
[
sc(thing,Thing, [in_box(Thing,Box) ,at_thing(Thing,Place)]=>[in_box(Thing,Box) ,at_

thing(Thing,Place),safe_in(Thing,Box)]1)]).

operator (put_thing_in_bag(Bag,Place,Thing),
% prevail
[se(carrier,Bag, [at_carrier(Bag,Place)])],

% necessary

[

197

sc(thing,Thing, [outside(Thing) ,at_thing(Thing,Place)]=>[in_bag(Thing,Bag) ,at_thi
ng(Thing,Place) ,fits_in(Thing,Bag)])],
% conditional

1.

operator (move(Carrier,Place,Placel),
% prevail
a,
% necessary
[
sc(carrier,Carrier, [at_carrier(Carrier,Place)]=>[at_carrier(Carrier,Placel) ,ne(P
lacel,Place)])],
% conditional
[
sc(box,Box, [box_in_bag(Box,Bag) ,at_carrier(Box,Place),goes_in(Box,Bag)]=>[box_in

_bag(Box,Bag) ,at_carrier (Box,Placel) ,goes_in(Box,Bag) ,ne(Placel,Place)]),

sc(thing,Thing, [at_thing(Thing,Place),fits_in(Thing,Bag),in_bag(Thing,Bag)]=>[at

_thing(Thing,Placel) ,fits_in(Thing,Bag),in_bag(Thing,Bag) ,ne(Placel,Place)]),

sc(thing,Thingl, [in_box(Thingl,Box) ,at_thing(Thingl,Place)]=>[in_box(Thingl,Box)
,at_thing(Thingl,Placel) ,ne(Placel,Place)])]).

operator (take_out_box(Bag,Place,Box),
% prevail
[se(bag,Bag, [at_carrier(Bag,Place)])],
% necessary
[
sc(box,Box, [box_in_bag(Box,Bag) ,at_carrier(Box,Place) ,goes_in(Box,Bag)]=>[box_ou
tside(Box) ,at_carrier (Box,Place)])],
% conditional
[
sc(thing,Thing, [in_box(Thing,Box) ,at_thing(Thing,Place),safe_in(Thing,Box)]=>[in

198

_box(Thing,Box) ,at_thing(Thing,Place),safe_in(Thing,Box)])]).

operator (empty_box (Box,Place,Thing),

% prevail

[se(box,Box, [box_outside(Box) ,at_carrier (Box,Place)])],

% necessary

[
sc(thing,Thing, [in_box(Thing,Box) ,at_thing(Thing,Place),safe_in(Thing,Box)]=>[ou
tside(Thing) ,at_thing(Thing,Place)])],

% conditional

.

operator (take_out (Bag,Place,Thing),

% prevail

[se(bag,Bag, [at_carrier(Bag,Place)])],

% necessary

[
sc(thing,Thing, [at_thing(Thing,Place),in_bag(Thing,Bag),fits_in(Thing,Bag)]=>[ou
tside(Thing) ,at_thing(Thing,Place)])],

% conditional

.

% Methods
YELITS
*
*/
method (pack (Suit,Place,Bag),
% pre-condition
[
1,
% Index Transitions

[

199

sc(thing,Suit, [outside(Suit),at_thing(Suit,Place)]=>[in_bag(Suit,Bag),at_thing(S
uit,Place)])],
% Static
[
fits_in(Suit,Bag)],
% Temporal Constraints
[
before(1,2)],
% Decomposition
[
achieve(ss(bag,Suitcase, [at_carrier(Suitcase,Place)])),
put_thing_in_bag(Bag,Place,Thing)]
).
YELI TS
*
*/
method (pack_lunch(Sandwiches,Place,Lunch_box,Bag),
% pre-condition
[
1,
% Index Transitions

[

sc(thing,Sandwiches, [outside(Sandwiches),at_thing(Sandwiches,Place)]=>[in_box(Sa

ndwiches,Lunch_box),at_thing(Sandwiches,Place)]),

sc(lunch_box,Lunch_box, [box_outside(Lunch_box) ,at_carrier (Lunch_box,Place)]=>[bo
x_in_bag(Lunch_box,Bag) ,at_carrier(Lunch_box,Place)])],
% Static
[
safe_in(Thing,Lunch_box),
goes_in(Lunch_box,Bag)],

% Temporal Constraints

200

[
before(1,2)],
% Decomposition
[
put_in_box (Box,Place,Thing),
put_box_in_bag(Bag,Place,Box)]
).
VEET TS
*
*/
method (unpack_lunch(Lunch_box,Bag,Place,Sandwiches),
% pre-condition
[
1,
% Index Transitions

[

sc(lunch_box,Lunch_box, [box_in_bag(Lunch_box,Bag) ,at_carrier(Lunch_box,Place)]=>

[box_outside(Lunch_box) ,at_carrier (Lunch_box,Place)]),

sc(thing,Sandwiches, [in_box(Sandwiches,Lunch_box) ,at_thing(Sandwiches,Place)]=>[
outside(Sandwiches),at_thing(Sandwiches,Place)])],
% Static
[
safe_in(Thing,Lunch_box),
goes_in(Lunch_box,Bag)],
% Temporal Constraints
[
before(1,2)],
% Decomposition
[
take_out_box(Bag,Place,Box),

empty_box (Box,Place,Thing)]

201

YEET TS
*
*/
method (pack_and_take(Thing,Place,Bag,Placel),
% pre-condition
[
1,
% Index Transitions

[

sc(thing,Thing, [outside(Thing) ,at_thing(Thing,Place)]=>[in_bag(Thing,Bag) ,at_thi
ng (Thing,Placel) ,ne(Placel,Place)])],
% Static
[
fits_in(Thing,Bag)],
% Temporal Constraints
[
before(1,2)],
% Decomposition
[
pack(Suit,Place,Bag),
move (Carrier,Place,Placel)]
).
YELI TS
*
*/
method (take_lunch_to_work(Sandwiches,Place,Placel,Lunch_box,Briefcase),
% pre-condition
[
1,
% Index Transitions

[

202

sc(thing,Sandwiches, [outside(Sandwiches),at_thing(Sandwiches,Place)]=>[outside(S

andwiches),at_thing(Sandwiches,Placel) ,ne(Placel,Place)]),

sc(box,Lunch_box, [box_outside (Lunch_box) ,at_carrier (Lunch_box,Place)]=>[box_outs

ide(Lunch_box) ,at_carrier (Lunch_box,Placel) ,ne(Placel,Place)]),

sc(bag,Briefcase, [at_carrier(Briefcase,Place)]=>[at_carrier(Briefcase,Placel) ,ne

(Placel,Place)])],

% Static
[
1,
% Temporal Constraints
[
before(1,2),
before(2,3)],
% Decomposition
[
pack_lunch(Sandwiches,Place,Lunch_box,Bag),
move (Carrier,Place,Placel),
unpack_lunch(Lunch_box,Bag,Place,Sandwiches)]
).
/ k%%
*
*/

method (take_lunch_and_item_to_work(Bag,Place,Placel,Lunch_box,Thing,Sandwiches),
% pre-condition
[

1,
% Index Transitions

[

sc(briefcase,Bag, [at_carrier(Bag,Place)]=>[at_carrier (Bag,Placel) ,ne(Placel,Plac

203

e)l),

sc(lunch_box,Lunch_box, [box_outside(Lunch_box) ,at_carrier(Lunch_box,Place)]=>[bo

x_outside(Lunch_box) ,at_carrier (Lunch_box,Placel) ,ne(Placel,Place)]),

sc(thing,Thing, [outside(Thing) ,at_thing(Thing,Place)]=>[outside(Thing) ,at_thing(
Thing,Placel) ,ne(Placel,Place)]),

sc(thing,Sandwiches, [outside(Sandwiches) ,at_thing(Sandwiches,Place)]=>[outside(S
andwiches),at_thing(Sandwiches,Placel) ,ne(Placel,Place)])],

% Static

[

fits_in(Thing,Bag),

safe_in(Sandwiches,Lunch_box),

goes_in(Lunch_box,Bag)],

% Temporal Constraints

[

before(1,3),

before(2,3),

before(3,4),

before(3,5)],

% Decomposition

[

put_thing_in_bag(Bag,Place,Thing),

pack_lunch(Sandwiches,Place,Lunch_box,Bag),

move(Carrier,Place,Placel),

take_out (Bag,Place,Thing),

unpack_lunch(Lunch_box,Bag,Place,Sandwiches)]

% Domain Tasks

% HTN Domain Tasks

204

htn_task(1,

goal(

pack(Suit,Place,Bag)],

% Temporal Constraints

[
1,
% Static constraints
[
D,
% INIT States

[

ss(thing,suit, [outside(suit),at_thing(suit,home)]),

ss(suitcase,scl, [at_carrier(scl,home)])]).
htn_task(2,

goal(

pack_lunch(Sandwiches,Place,Lunch_box,Bag)],

% Temporal Constraints

[
1,
% Static constraints
[
D,
% INIT States

[

ss(thing,sandwiches, [outside(sandwiches),at_thing(sandwiches,home)]),

ss(briefcase,bcl, [at_carrier(bcl,home)]),

ss(lunch_box,1bl, [box_outside(1lbl) ,at_carrier(1bl,home)])]).
htn_task(3,

goal(

unpack_lunch(Lunch_box,Bag,Place,Sandwiches)],

% Temporal Constraints

[
1,
% Static constraints
[
D,
% INIT States

[

ss(briefcase,bcl, [at_carrier(bcl,office)]),

ss(lunch_box,1bl, [box_in_bag(lbl,bcl),at_carrier(lbl,office)]),

ss(thing,sandwiches, [in_box(sandwiches,1bl) ,at_thing(sandwiches,office)])]).

htn_task(4,

goal(

pack_and_take(suit,home,scl,office)],

% Temporal Constraints

[
1,
% Static constraints
[
D,
% INIT States

[

ss(thing,suit, [outside(suit),at_thing(suit,home)]),

ss(suitcase,scl, [at_carrier(scl,home)])]).
htn_task(5,

goal(

move (bcl,home,office)],

% Temporal Constraints

[

205

206

% Static constraints
[
D,
% INIT States
[
ss(briefcase,bcl, [at_carrier(bcl,home)])]).
htn_task(6,

goal(

pack_lunch(sandwiches,home,1bl,bcl),
move (bcl,home,office),
unpack_lunch(1lbl,bcl,office,sandwiches)],
% Temporal Constraints
[
before(1,2),
before(2,3)],
% Static constraints
[
D,
% INIT States
[
ss(briefcase,bcl, [at_carrier(bcl,home)]),
ss(lunch_box,1bl, [box_outside(1lbl) ,at_carrier(1bl,home)]),
ss(thing,sandwiches, [outside(sandwiches) ,at_thing(sandwiches,home)])]).
htn_task(7,

goal(

put_thing_in_bag(bcl,home,dictionary),
take_out(bcl,office,dictionary),

move (bcl,home,office),
put_in_box(pbl,home,pencil),
put_box_in_bag(bcl,home,pbl),

take_out_box(bcl,office,pbl),

207

empty_box(pbl,office,pencil)],
% Temporal Constraints
[
before(1,3),
before(3,2),
before(5,3),
before(3,6),
before(4,5),
before(6,7)],
% Static constraints
[
D,
% INIT States
[
ss(briefcase,bcl, [at_carrier(bcl,home)]),
ss(thing,pencil, [outside(pencil) ,at_thing(pencil,home)]),
ss(pencil_box,pbl, [box_outside(pbl) ,at_carrier (pbl,home)]),
ss(thing,dictionary, [outside(dictionary),at_thing(dictionary,home)])]).
htn_task(8,

goal(

put_thing_in_bag(bcl,home,cheque),
pack_lunch(sandwiches,home,1bl,bcl),
move (bcl,home,office),
unpack_lunch(1lbl,bcl,office,sandwiches),
take_out(bcl,office,cheque)],

% Temporal Constraints

[

before(1,3),
before(2,3),
before(3,5),
before(3,4)],

% Static constraints

208

D,
% INIT States
[
ss(briefcase,bcl, [at_carrier(bcl,home)]),
ss(lunch_box,1bl, [box_outside(1lbl),at_carrier(1lbl,home)]),
ss(thing,sandwiches, [outside(sandwiches) ,at_thing(sandwiches,home)]),
ss(thing,cheque, [outside(cheque) ,at_thing(cheque,home)])]).
htn_task(9,

goal(

put_thing_in_bag(bcl,home,cheque),
put_in_box(1bl,home,sandwiches),
put_box_in_bag(bcl,home,1bl),
move (bcl,home,office),
take_out_box(bcl,office,1bl),
empty_box(1bl,office,sandwiches),
take_out(bcl,office,cheque)],

% Temporal Constraints

[

before(1,2),
before(2,3),
before(3,4),
before(4,5),
before(5,6),
before(6,7)],

% Static constraints

[
D,

% INIT States

[

ss(briefcase,bcl, [at_carrier(bcl,home)]),

ss(lunch_box,1bl, [box_outside(1lbl) ,at_carrier(1bl,home)]),

209

ss(thing,sandwiches, [outside(sandwiches),at_thing(sandwiches,home)]),

ss(thing,cheque, [outside(cheque) ,at_thing(cheque,home)])]).

Appendix D

TEST FILE WITH RESULTS FROM HBC SHOWING
THE SORT TREE CODE IS WORKING

/* THIS FILE REPLICATES THE TASK FOR PACK LUNCH AND TAKE TO
WORK Task 6 in my original domain */

:- multifile input/3.
:- dynamic input/3.
:- multifile planner_task/3.

:— dynamic planner_task/B.

% Sequops below details the task to be achieved and names the operators.
% Arguably it is equivalent to the goal state (part of the task editor

% in GIPO)

tl :- sequops([
put_in_box(sandwiches,1bl,home),
put_box_in_bag(bcl,home,sandwiches,1bl),
move (bcl,sandwiches,1bl,home,office),
take_out_box(1bl,sandwiches,bcl,office),
empty_box(1bl,sandwiches,office)

.

% Labels the method produced

htn(pack_and_take_lunch_to_work) .

% details initial states for all the dynamic objects equivalent to GIPQ’s

% initial states in the task editor

planner_task(_,_,

[

ss(thing,sandwiches, [outside(sandwiches),
at_thing(sandwiches,home)]),

ss(thing,pencil, [outside(pencil),
at_thing(pencil,home)]),

ss(thing,dictionary, [outside(dictionary),
at_thing(dictionary,home)]),

ss(thing,cheque, [outside(cheque),
at_thing(cheque,home)]),

ss(thing,suit, [outside(suit),
at_thing(suit,home)]),

ss(box,1bl, [at_carrier(1bl,home),box_outside(1lb1)]),

ss(box,pbl, [at_carrier(pbl,home) ,box_outside(pbl)]),

ss(carrier,bcl, [at_carrier(bci,home)]),

ss(carrier,scl, [at_carrier(scil,home)])

D.

/* The example inputs are the equivalent of GIPO asking which state

an object is in after the action. These inputs are numbered, one for every
operator heading in sequops. For each dynamic object in the operator heading
there is an input line where, if the object does not change state, null
implies there is no state change and prompts a prevail clause.

At present you have to put any object in the operator heading which is
conditional and, because opmaker does not yet deal correctly with conditional
domains an extra necessary transition is created for it which gets round the

problem for now. */

. EXAMPLE INPUTS

%put_in_box(sandwiches,1bl,home)
input(1,sandwiches,sclass(Thing,thing, [in_box(Thing,Box),
at_thing(Thing,Place)])).

input(1,1bl,null).

211

%put_box_in_bag(bcl,home,sandwiches,1lbl)
input(2,bcl,null).
input (2, sandwiches,null).

input(2,1bl,sclass(Box,box, [box_in_bag(Box,Bag)])).

Ymove (bcl,sandwiches,1bl,home,office)
input(3,bcl,sclass(Bag,carrier, [at_carrier(Bag,0ffice)])).
input (3, sandwiches,sclass(Thing,thing, [in_box(Thing,Box),
at_thing(Thing,0ffice)])).

input(3,1b1,sclass(Box,carrier, [at_carrier(Box,0ffice)])).

input(3,1bl,sclass(Box,box, [box_in_bag(Box,Bag)])).

Y%take_out_box(1bl,sandwiches,bcl,office)
input(4,1bl,sclass(Box,box, [box_outside(Box)])).
input (4, sandwiches,null).

input(4,bcl,null).

%empty_box(1bl,sandwiches,office)
input(5,1b1,null).
input (5, sandwiches,sclass(Thing,thing, [outside(Thing),

at_thing(Thing,0ffice)])).

/3% ok ke ok sk o sk ok ke ok sk ok sk ok sk sk sk K ok sk sk ok ok ok ok K s ok o ok ok sk ke ok sk ok sk sk ok sk sk ok ok sk ok K ok ok ok ok ok ko ok ok ko ok K ok kK
This section is a listing of the domain sorts, objects, predicates, statics
substate classes, invariants and constraints (axioms) and excluding methods,

operators and tasks.
sk ook ok ok ok ok ok ok ok ok ok ok ok ook sk ok sk sk ok ok o o o o o ok ok sk sk sk sk sk ok sk ok ok ok ok o o o ok ok ok ok ok sk sk sk sk sk ok ok o ok o o o o ok ok ok ok Kok sk ok ok okok /
domain_name (hier_briefcase).

option(hierarchical).

% Sorts

212

213

sorts(non_primitive_sorts, [bag,box,carrier]).

sorts(primitive_sorts, [briefcase,suitcase,lunch_box,pencil_box,thing,place]).
sorts(carrier, [bag,box]) .

sorts(bag, [briefcase,suitcase]).

sorts (box, [lunch_box,pencil_box]) .

% Objects

objects(briefcase, [bcll).

objects(suitcase, [scl]).

objects(lunch_box, [1b1]).

objects(pencil_box, [pbl]).

objects(thing, [cheque,suit,dictionary,sandwiches,pencil]).

objects(place, [home,office]).

% Predicates

predicates([

% dynamic
at_thing(thing,place),
outside(thing),
at_carrier(carrier,place),
in_bag(thing,bag),
in_box(thing,box),
box_in_bag(box,bag),
box_outside(box),

% static
fits_in(thing,bag),
safe_in(thing,box),

goes_in(box,bag)]).

% Object Class Definitions

substate_classes([

carrier(C,

[at_carrier(C,L)]

D,

thing (T,

[
[outside(T) ,at_thing(T,L)],
[in_bag(T,Bag),at_thing(T,L)],
[in_box(T,Box),at_thing(T,L)]

D,

box (Box,

[
[box_in_bag(Box,Bag)],
[box_outside (Box)]

D

D.

/* to fit with the opmaker method the substate classes have to be in the

above. This section shows how they would normally appear.

substate_classes(carrier,Carrier, [

[at_carrier(Carrier,Place)]]).

substate_classes(thing,Thing, [

[outside(Thing) ,at_thing(Thing,Place)],
[in_bag(Thing,Bag) ,at_thing(Thing,Place)],
[in_box(Thing,Box) ,at_thing(Thing,Place)]]).

substate_classes(box,Box, [
[box_in_bag(Box,Bag)],
[box_outside(Box)]]). */

% Atomic Invariants

format

214

215

atomic_invariants([
fits_in(cheque,bcl),
fits_in(dictionary,bcl),
fits_in(suit,scl),
fits_in(cheque,scl),
fits_in(dictionary,scl),
goes_in(1b1l,bcl),
goes_in(pbl,bcl),
safe_in(pencil,pbl),
safe_in(sandwiches,1b1)]).

% Implied Invariants

% Inconsistent Constraints
inconsistent_constraint([at_thing(Thing,Place),at_thing(Thing,Placel),
ne(Placel,Place)]).
inconsistent_constraint([at_carrier(Carrier,Place),at_carrier(Carrier,Placel),
ne(Placel,Place)]).
inconsistent_constraint([in_bag(Thing,Bag),in_bag(Thing,Bagl) ,ne(Bagl,Bag)]).
inconsistent_constraint([in_box(Thing,Box),in_box(Thing,Box1) ,ne(Box1,Box)]).
inconsistent_constraint([in_bag(Thing,Bag) ,outside(Thing)]).
inconsistent_constraint([in_box(Thing,Box) ,outside(Thing)]).
inconsistent_constraint([in_bag(Thing,Bag),at_carrier(Carrier,Place),
at_thing(Thing,Placel) ,ne(Placel,Place)]).
inconsistent_constraint([in_box(Thing,Box) ,at_carrier(Carrier,Place),
at_thing(Thing,Placel) ,ne(Placel,Place)]).
inconsistent_constraint([outside(Thing) ,fits_in(Thing,Bag)]).
inconsistent_constraint([outside(Thing) ,safe_in(Thing,Box)]).

inconsistent_constraint ([box_outside (Box),goes_in(Box,Bag)]).

/* RESULTS from running this test file with opmaker

states created..

216

operator (put_in_box (Sandwiches,Lbl,Home),

[se(lunch_box,Lbl, [box_outside(Lbl),at_carrier(Lbl,Home),safe_in(Sandwiches,Lbl)
»I1,

[sc(thing,Sandwiches, [outside(Sandwiches) ,at_thing(Sandwiches,Home)] =>
[in_box(Sandwiches,Lbl),at_thing(Sandwiches,Home)])],

[

).

operator (put_box_in_bag(Bcl,Home,Sandwiches,Lbl),

[se(briefcase,Bcl, [at_carrier(Bcl,Home) ,goes_in(Lb1l,Bcl),safe_in(Sandwiches,Lbl)
D,

se(thing,Sandwiches, [in_box(Sandwiches,Lbl) ,at_thing(Sandwiches,Home)])],
[sc(lunch_box,Lbl, [box_outside(Lb1)] => [box_in_bag(Lb1,Bc1)])],

1

).

operator (move (Bcl,Sandwiches,Lbl,Home,0ffice),

a1,

[sc(briefcase,Bcl, [at_carrier(Bcl,Home) ,goes_in(Lb1l,Bcl),safe_in(Sandwiches,Lbl)
] => [at_carrier(Bcl,0ffice)]),

sc(thing,Sandwiches, [in_box(Sandwiches,Lbl) ,at_thing(Sandwiches,Home)] =>
[in_box(Sandwiches,Lbl) ,at_thing(Sandwiches,0ffice)]),

sc(lunch_box,Lbl, [at_carrier(Lbl,Home) ,box_in_bag(Lbl,Bcl)] =>
[at_carrier(Lbl,0ffice),box_in_bag(Lbl,Bc1)])],

[]

).

operator (take_out_box(Lbl,Sandwiches,Bcl,0ffice),

[se(thing,Sandwiches, [in_box(Sandwiches,Lbl) ,at_thing(Sandwiches,0ffice),goes_in
(Lb1,Bcl),safe_in(Sandwiches,Lb1)]),

se(briefcase,Bcl, [at_carrier(Bcl,0ffice)])],

[sc(lunch_box,Lbl, [box_in_bag(Lbl,Bcl)] => [box_outside(Lb1)])],

[

operator (empty_box(Lbl,Sandwiches,0ffice),

217

[se(lunch_box,Lbl, [box_outside(Lbl) ,at_carrier(Lbl,0ffice),safe_in(Sandwiches,Lb

DD,

[sc(thing,Sandwiches, [in_box(Sandwiches,Lbl) ,at_thing(Sandwiches,0ffice)] =>
[outside(Sandwiches) ,at_thing(Sandwiches,0ffice)])],

[]

).

% name
method (pack_and_take_lunch_to_work(Sandwiches),
% dynamic constraints
I,
% list of necessary transitions
[sc(thing,Sandwiches, [outside(Sandwiches) ,at_thing(Sandwiches,Home)] =>
[outside(Sandwiches) ,at_thing(Sandwiches,0ffice)])],
% static constraints
[goes_in(Lb1l,Bcl),
safe_in(Sandwiches,Lbl)],
% temporal constraints
[before(1,2),before(2,3) ,before(3,4) ,before(4,5)],
% decomposition
[put_in_box(Sandwiches,Lbl,Home),
put_box_in_bag(Bcl,Home,Sandwiches,Lbl),
move (Bcl,Sandwiches,Lbl,Home,0ffice),
take_out_box(Lbl,Sandwiches,Bcl,0ffice),

empty_box(Lbl,Sandwiches,0ffice)]

*/

Appendix E

THE GIPO-CONSTRUCTED EXTENDED TYRE
DOMAIN INCLUDING EXTRA TASKS

All rights reserved. Use of this software is permitted for non-commercial research
purposes, and it may be copied only for that use. All copies must include this
copyright message. This software is made available AS IS, and neither the GIPO
team nor the University of Huddersfield make any warranty about the software or its
performance.

Automatically generated OCL Domain from GIPO Version 2.0

Author: Beth Richardson Institution: University of Huddersfield Date created:
April 2000 Date last modified: 2006/11/01 at 03:16:13 PM GMT Description: This
tyre domain has extra objects and actions. Now, instead of just two wheels there are
five with five tyres, four wheel trims and four named hubs. There are also four sets of
wheel nuts. The pump now has a use. If a tyre is low it may be ‘flat’ or ‘punctured’.

If it is flat then a prevail of inflate_tyre is have(pump).

domain_name (tyre_extended) .
option(hierarchical).

% Sorts

sorts(primitive_sorts, [container,nuts,hub,pump,wheel,wrench, jack,wheel_trim,tyre]).

% Objects
objects(container, [boot]) .

objects(nuts, [nutsl,nuts2,nuts3,nuts4]).

219

objects (hub, [hubl,hub2,hub3,hub4]) .
objects (pump, [pump0]) .

objects(wheel, [wheell,wheel2,wheel3,wheeld,wheelb]).
objects(wrench, [wrench0]) .

objects(jack, [jack0]).

objects(wheel_trim, [triml,trim2,trim3,trimé]).

objects(tyre, [tyrel,tyre2,tyre3,tyre4,tyreb]).

% Predicates

predicates ([
closed(container),
open(container),
tight (nuts,hub),
loose(nuts,hub),
have_nuts(nuts),
on_ground (hub),
fastened (hub),
jacked_up (hub, jack),
free(hub),
unfastened (hub),
have_pump (pump) ,
pump_in (pump, container),
have_wheel (wheel),
wheel_in(wheel,container),
wheel_on(wheel,hub),
have_wrench(wrench),
wrench_in(wrench,container),
have_jack(jack),
jack_in_use(jack,hub),
jack_in(jack,container),
trim_on(wheel_trim,wheel),
trim_off (wheel_trim),

fits_on(tyre,wheel),

220

full(tyre),
flat(tyre),

punctured(tyre)]).

% Object Class Definitions
substate_classes(container,C, [
[closed(C)],
[open(C)11).
substate_classes(nuts,N, [
[tight (N,H)],
[loose(N,H)],
[have_nuts(N)]]).
substate_classes(hub,H, [
[on_ground (H) ,fastened(H)],
[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J) ,unfastened(H)],
[unfastened (H),jacked_up(H,J)]1]1).
substate_classes(pump,Pu, [
[have_pump (Pu)],
[pump_in(Pu,C)]1]).
substate_classes(wheel,Wh, [
[have_wheel(Wh)],
[wheel_in(Wh,C)],
[wheel_on(Wh,H)]1]).
substate_classes(wrench,Wr, [
[have_wrench(Wr)],
[wrench_in(Wr,C)]1).
substate_classes(jack,J, [
[have_jack(J)],
[jack_in_use(J,H)],
[jack_in(J,C)11).
substate_classes(wheel_trim,WT, [

[trim_on(WT,Wh)],

[trim_off (WT)11).
substate_classes(tyre, Ty, [
[fits_on(Ty,Wh)],

[full(Ty)]1,
[flat(Ty)]1,
[punctured(Ty)]1]1).

% Atomic Invariants

atomic_invariants([
fits_on(tyrel,wheell),
fits_on(tyre2,wheel?),
fits_on(tyre3,wheel3),
fits_on(tyred,wheeld),

fits_on(tyreb,wheelb)]).

% Implied Invariants

% Inconsistent Constraints
inconsistent_constraint ([have_nuts (N),tight(N,_)]).
inconsistent_constraint ([have_nuts(N),loose(N,_)]).
inconsistent_constraint([loose(_,H),tight(_,H)]).
inconsistent_constraint ([unfastened(H),tight(_,H)]).
inconsistent_constraint ([unfastened(H),loose(_,H)]).
inconsistent_constraint ([wheel_in(Wh,_) ,wheel_on(Wh,_)]).
inconsistent_constraint ([wheel_in(Wh,_) ,have_wheel(Wh)]).
inconsistent_constraint([jack_in(J,_) ,have_jack(J)]).

inconsistent_constraint ([pump_in(Pu,_) ,have_pump(Pu)]).

inconsistent_constraint ([wrench_in(Wr,_) ,have_wrench(Wr)]).

inconsistent_constraint ([open(C),closed(C)]).
inconsistent_constraint ([full(Ty),flat(Ty)]).
inconsistent_constraint ([full(Ty),punctured(Ty)]).
inconsistent_constraint([flat(Ty) ,punctured(Ty)]).

inconsistent_constraint([fastened(H) ,unfastened(H)]).

221

222

inconsistent_constraint([jacked_up(H,J),on_ground(H)]).
inconsistent_constraint([free(H) ,wheel_on(_,H)]).
inconsistent_constraint ([free(X),fastened(X)]).
inconsistent_constraint ([free(X) ,tight (Nuts,X)]).
inconsistent_constraint([free(X),loose(Nuts,X)]).
inconsistent_constraint ([wheel_on(W1,X) ,wheel_on(W2,X),ne(W1,W2)]).
inconsistent_constraint ([wheel_on(W,H1) ,wheel_on(W,H2) ,ne(H1,H2)]).
inconsistent_constraint ([wheel_on(W,H1) ,have_wheel(W)]).
inconsistent_constraint([jacked_up(H,J),jack_in(J,_)]1).
inconsistent_constraint([jacked_up(H,J) ,have_jack(J)]).
inconsistent_constraint ([fastened(H) ,have_nuts(N)]).
inconsistent_constraint([jack_in_use(J,_),jack_in(J,_)]).
inconsistent_constraint([jack_in_use(J,_) ,have_jack(J)]).
inconsistent_constraint([jack_in_use(J,H),on_ground(H)]).
inconsistent_constraint([trim_on(WT,Wh),loose(N,H)]).
inconsistent_constraint ([trim_on(Wheel_trim,Wheel), jack_in_use(Jack,Hub)]).
inconsistent_constraint ([trim_on(Wheel_trim,Wheel) ,have_nuts(Nuts)]).
inconsistent_constraint ([trim_on(Wheel_trim,Wheel),free(Hub)]).

inconsistent_constraint([trim_on(Wheel_trim,Wheel) ,unfastened(Hub)]).

% Operators

operator (open_container(C),
% prevail
1,
% necessary
[sc(container,C, [closed(C)]=>[open(C)]1)],
% conditional
(1.

operator (close_container(C),
% prevail
1,
% necessary

[sc(container,C, [open(C)]=>[closed(C)]1)],

223

% conditional
(1.
operator (fetch_jack(C,J),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc(jack,J, [jack_in(J,C)]=>[have_jack(J)]1)],
% conditional
(1.
operator (fetch_wheel(C,Wh),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc(wheel,Wh, [wheel_in(Wh,C)]=>[have_wheel(Wh)])],
% conditional
(1.
operator (fetch_wrench(C,Wr),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc(wrench,Wr, [wrench_in(Wr,C)]=>[have_wrench(Wr)])],
% conditional
(1.
operator (fetch_pump(C,Pu),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc (pump,Pu, [pump_in (Pu,C)]=>[have_pump(Pu)])],
% conditional
(1.
operator (putaway_wheel (C,Wh),
% prevail

[se(container,C, [open(C)]1)],

224

% necessary
[sc(wheel,Wh, [have_wheel (Wh)]=>[wheel_in(Wh,C)1)],
% conditional
(1.
operator (putaway_wrench(C,Wr),
% prevail
[se(container,C, [open(C)])],
% necessary

[sc(wrench,Wr, [have_wrench(Wr)]=>[wrench_in(Wr,C)]1)1,

% conditional
(1.
operator (putaway_jack(C,J),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc(jack,J, [have_jack(J)]=>[jack_in(J,C)]1)],
% conditional
(1.
operator (putaway_pump (C,Pu),
% prevail
[se(container,C, [open(C)])],
% necessary
[sc (pump,Pu, [have_pump (Pu)]=>[pump_in(Pu,C)])],
% conditional
(1.
operator (loosen (Wr,H,WT,N),
% prevail
[se(wrench,Wr, [have_wrench(Wr)]),
se(hub,H, [on_ground (H) ,fastened(H)]),
se(wheel_trim,WT, [trim_off (WT)]1)],
% necessary
[sc(nuts,N, [tight (N,H)]=>[1loose(N,H)]1)],

% conditional

225

(1.
operator (tighten(Wr,H,WT,N),
% prevail
[se(wrench,Wr, [have_wrench(Wr)]),
se(hub,H, [on_ground (H) ,fastened(H)]),
se(wheel_trim,WT, [trim_off(WT)]1)],
% necessary
[sc(nuts,N, [loose(N,H)]1=>[tight (N,H)]1)],
% conditional
(1.
operator (jack_up(N,H,J),
% prevail
[se(nuts,N, [loose(N,H)]1)],
% necessary
[sc(hub,H, [on_ground (H) ,fastened (H)]=>[jacked_up(H,J) ,fastened(H)]),
sc(jack,J, [have_jack(J)]=>[jack_in_use(J,H)]1)],
% conditional
(1.
operator (jack_down(N,H,J),
% prevail
[se(nuts,N, [loose(N,H)])],
% necessary
[sc(hub,H, [jacked_up(H,J) ,fastened (H)]=>[on_ground (H) ,fastened(H)]),
sc(jack,J, [jack_in_use(J,H)]=>[have_jack(J)]1)],
% conditional
(1.
operator (do_up (Wr,WT,H,J,N),
% prevail
[se(wrench,Wr, [have_wrench(Wr)]),
se(wheel_trim,WT, [trim_off (WT)]1)],
% necessary
[sc(hub,H, [unfastened(H), jacked_up(H,J)]=>[jacked_up(H,J) ,fastened(H)]),

sc(nuts,N, [have_nuts(N)]=>[loose(N,H)]1)],

226

% conditional
(1.
operator (remove_wheel (WT,Wh,H,J),
% prevail
[se(wheel_trim,WT, [trim_off (WT)]1)],
% necessary
[sc(wheel,Wh, [wheel_on(Wh,H)]=>[have_wheel(Wh)]),
sc (hub,H, [unfastened (H),jacked_up(H,J)]=>[free(H),jacked_up(H,J) ,unfastened(H)])],
% conditional
(1.
operator (put_on_wheel (WT,Wh,H,J),
% prevail
[se(wheel_trim,WT, [trim_off(WT)]1)],
% necessary
[sc(wheel,Wh, [have_wheel(Wh)]=>[wheel_on(Wh,H)]),

sc(hub,H, [free(H) ,jacked_up(H,J) ,unfastened (H)]=>[unfastened(H),jacked_up(H,J)]1)],

% conditional
(1.
operator (undo (Wr,WT,H,J,N),
% prevail
[se(wrench,Wr, [have_wrench(Wr)]),
se(wheel_trim,WT, [trim_off (WT)]1)],
% necessary
[sc(hub,H, [jacked_up(H,J) ,fastened (H)]=>[unfastened (H), jacked _up(H,J)]),
sc(nuts,N, [loose(N,H)]=>[have_nuts(N)])],
% conditional
(1.
operator (apply_trim(H,WT,Wh),
% prevail
[se(hub,H, [on_ground (H) ,fastened(H)])],
% necessary
[sc(wheel_trim,WT, [trim_off(WT)]=>[trim_on(WT,Wh)]1)],

% conditional

1.

operator (remove_trim(H,WT,Wh),

% prevail
[se(hub,H, [on_ground (H) ,fastened(H)])],

% necessary

[sc(wheel_trim,WT, [trim_on(WT,Wh)]=>[trim_off(WT)]1)],

% conditional

1.

operator (inflate_tyre(Pu,Ty),

% prevail

[se (pump,Pu, [have_pump(Pu)])],

% necessary

[sc(tyre, Ty, [flat(Ty)]1=>[full(Ty)1)],
% conditional

1.

operator (find_puncture (Pu,Ty),

% prevail

[se (pump,Pu, [have_pump(Pu)])],

% necessary

[sc(tyre,Ty, [flat(Ty)]=>[punctured(Ty)]1)],
% conditional

1.

% Methods

/ %Kk

* The pump is used to re-inflate the tyre and then returned to the boot.

method (fix_flat(Ty),

% pre-condition

[

% Index Transitions

[

227

).

sc(tyre,Ty, [flat(Ty)1=>[full(Ty)1)],

% Static

[

% Temporal Constraints

[
before(1,2),
before(2,3),
before(3,4),
before(4,5)],

% Decomposition

[

open_container (C),
fetch_pump(C,Pu),
inflate_tyre(Pu,Ty),
putaway_pump(C,Pu),

close_container (C)]

VEET TS

* The pump is used to discover that the flat tyre won’t inflate so it is

classified as punctured. The pump is then returned to the boot.

*/

method (discover_puncture(Ty),

% pre-condition

[

% Index Transitions

[

sc(tyre, Ty, [flat(Ty)]=>[punctured(Ty)]1)],

% Static

[

% Temporal Constraints

228

229

[
before(1,2),
before(2,3),
before(3,4)],
% Decomposition
[
achieve(ss(container,C, [open(C)])),
fetch_pump(C,Pu),
find_puncture (Pu,Ty),
putaway_pump (C,Pu)]
).
VEET TS
* The jack and wrench needed to change the wheel are fetched.
*/
method (fetch_tools(Wr,C,J),
% pre-condition

[

% Index Transitions

[

sc(wrench,Wr, [wrench_in(Wr,C)]=>[have_wrench(Wr)]),
sc(jack,J,[jack_in(J,C)]=>[have_jack(J)])],

% Static

[

% Temporal Constraints

[

before(1,2),

before(1,3)],

% Decomposition

[

achieve(ss(container,C, [open(C)])),

fetch_jack(C,J),

230

fetch_wrench(C,Wr)]
).
YELI TS
* The jack and wrench are put away in the boot.
*/
method (putaway_tools(Wr,C,J),
% pre-condition

[

% Index Transitions

[

sc(wrench,Wr, [have_wrench(Wr)]=>[wrench_in(Wr,C)]1),
sc(jack,J, [have_jack(J)]=>[jack_in(J,C)1)],

% Static

[

% Temporal Constraints
L
before(1,2),
before(1,3)],
% Decomposition
[
achieve(ss(container,C, [open(C)])),
putaway_wrench(C,Wr),
putaway_jack(C,J)]
).
VELIT:
* The wheel trim is removed and the wheel nuts are loosened. After jacking
up the car the wheel nuts are undone and removed.
*/
method (unfasten_hub(N,H,J,WT,Wh),
% pre-condition

[

231

se(wrench,Wr, [have_wrench(Wr)])],
% Index Transitions
[
sc(nuts,N, [tight (N,H)]=>[have_nuts(N)]),
sc(hub,H, [on_ground (H) ,fastened (H)]=>[unfastened (H) ,jacked_up(H,J)]),
sc(jack,J, [have_jack(J)]=>[jack_in_use(J,H)]),
sc(wheel_trim,WT, [trim_on(WT,Wh)]=>[trim_off(WT)]1)],
% Static
[

% Temporal Constraints
[
before(1,2),
before(2,3),
before(3,4),
before(4,5)],
% Decomposition
[
fetch_tools(Wr,C,J),
remove_trim(H,WT,Wh),
loosen(Wr ,H,WT,N),
jack_up(N,H,J),
undo (Wr,WT,H,J,N)]
).
YELI TS
* The wheel nuts are applied and done up, then the jack is lowered and the
wheel nuts tightened. Finally the wheel trim is replaced.
*/
method (fasten_hub(N,H,J,WT,Wh),
% pre-condition
[
se(wrench,Wr, [have_wrench(Wr)])],

% Index Transitions

232

[
sc(nuts,N, [have_nuts(N)]=>[tight (N,H)]),
sc(hub,H, [unfastened (H),jacked_up(H,J)]=>[on_ground(H) ,fastened(H)]),
sc(jack,J,[jack_in_use(J,H)]=>[have_jack(J)]),
sc(wheel_trim,WT, [trim_off (WT)]=>[trim_on(WT,Wh)]1)],

% Static

[

% Temporal Constraints
[
before(3,4),
before(4,5),
before(1,2),
before(2,3)],
% Decomposition
[
achieve(ss(hub,H, [unfastened(H) , jacked_up(H,J)]1)),
do_up (Wr,WT,H,J,N),
jack_down(N,H,J),
tighten(Wr,H,WT,N),
apply_trim(H,WT,Wh)]
).
/ k%%
* The punctured wheel is removed and replaced by the spare.
*/
method (change_wheel (Whl,H,Wh2),
% pre-condition
[
1,
% Index Transitions
[
sc(wheel,Wh1, [have_wheel (Wh1)]=>[wheel_on(Whi1,H)]),
sc(wheel,Wh2, [wheel_on(Wh2,H) ,ne(Wh2,Wh1)]=>[have_wheel (Wh2) ,ne(Wh2,Wh1)]1)1],

233

% Static

[

% Temporal Constraints

[

before(2,3),

before(1,2)],
% Decomposition

[

achieve(ss(hub,H, [unfastened(H) , jacked_up(H,J)]1)),
remove_wheel (WT,Wh,H,J),

put_on_wheel (WT,Wh,H,J)]

% Domain Tasks
planner_task(1,
% Goals
[
se(container,boot, [closed(boot)]),
se(wheel,wheell, [wheel_on(wheell,hubl)]),
se(tyre,tyrel, [full(tyrel)l),
se(wheel_trim,triml, [trim_on(triml,wheell)]),
se(hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
se (pump , pumpO, [pump_in (pump0,boot)]),
se(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
se(jack, jack0, [jack_in(jackO,boot)])],
% INIT States
[
ss(container,boot, [closed(boot)]),
ss(wheel ,wheell, [wheel_on(wheell,hubl)]),
ss(wheel ,wheel?2, [wheel_on(wheel2,hub2)]),

ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),

234

ss(wheel,wheel4, [wheel_on(wheel4,hub4)]),
ss(wheel,wheelb, [wheel_in(wheel5,boot)]),
ss(tyre,tyrel, [flat(tyrel)]),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(jack, jackO, [jack_in(jackO,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss (pump , pumpO, [pump_in (pumpO,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)])]).

planner_task(2,

% Goals

[

se(container,boot, [closed(boot)]),
se(wheel,wheell, [wheel_in(wheell,boot)]),
se(wheel,wheelb5, [wheel_on(wheel5,hubl)]),
se(tyre,tyrel, [punctured(tyrel)]),
se(wheel_trim,triml, [trim_on(triml,wheel5)]),
se(hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
se (pump , pumpO, [pump_in (pumpO,boot)]),
se(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
se(jack, jack0, [jack_in(jackO,boot)]),
se(nuts,nutsl, [tight (nutsl,hub1)])],

% INIT States

[

ss(container,boot, [closed(boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld,hubd)]),
ss(wheel,wheelb5, [wheel_in(wheel5,boot)]),
ss(tyre,tyrel, [flat (tyrel)l),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(jack, jack0, [jack_in(jackO,boot)]),

ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),

235

ss (pump , pumpO, [pump_in (pumpO,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hub4)])]).

planner_task(3,

% Goals

[

se(container,boot, [closed(boot)]),
se(tyre,tyrel, [full(tyrel)]),
se(wheel,wheell, [wheel_on(wheell,hub4)]),
se(wheel ,wheel4, [wheel_in(wheel4d,boot)]),
se(wheel_trim,trim4, [trim_on(trim4,wheell)])],

% INIT States

[

ss(wheel,wheell, [wheel_in(wheell,boot)]),
ss(tyre,tyrel, [flat(tyrel)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(tyre,tyre2, [full(tyre2)]),
ss(wheel_trim,trim2, [trim_on(trim2,wheel2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(tyre,tyre3, [full(tyre3)]1),
ss(wheel_trim,trim3, [trim_on(trim3,wheel3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld,hubd)]),
ss(tyre,tyre4, [punctured(tyred)]),
ss(wheel_trim,trim4, [trim_on(trim4,wheeld)]),
ss(wheel,wheelb5, [wheel_on(wheel5,hubl)]),
ss(tyre,tyreb, [full(tyre5)1),
ss(wheel_trim,triml, [trim_on(triml,wheel5)]),
ss(container,boot, [closed(boot)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),

ss(nuts,nuts2, [tight (nuts2,hub2)]),

236

ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hubd)]),

ss (pump , pumpO, [pump_in (pumpO,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss(jack, jackO, [jack_in(jackO,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
ss (hub,hub2, [on_ground (hub2) ,fastened (hub2)]),
ss (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
ss (hub,hub4, [on_ground (hub4) ,fastened (hub4)])]).

planner_task(4,

% Goals

[

se(wheel,wheelb5, [wheel_on(wheel5,hub3)]),

se (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
se(wheel_trim,trim3, [trim_on(trim3,wheel5)]),
se(wheel,wheel3, [wheel_in(wheel3,boot)]),
se(nuts,nuts3, [tight (nuts3,hub3)])],

% INIT States

[

ss(wheel_trim,trim3, [trim_off(trim3)]),
ss(tyre,tyre3, [punctured(tyre3)]),

ss (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),

ss (pump, pumpO, [have_pump (pump0)]),
ss(container,boot, [open(boot)]),
ss(tyre,tyreb, [full(tyre5)1),

ss(wheel,wheelb, [wheel_in(wheel5,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss(jack, jackO, [jack_in(jackO,boot)]),

ss(nuts,nuts3, [tight (nuts3,hub3)1)]).

% HTN Domain Tasks

htn_task(1,

237

goal(

open_container (boot) ,
fetch_pump (boot ,pump0),
inflate_tyre (pump0,Ty),
putaway_pump (boot , pumpO0) ,
close_container(boot)],
% Temporal Constraints
[
before(1,2),
before(2,3),
before(3,4),
before(4,5)],
% Static constraints
[
D,
% INIT States
[
ss(container,boot, [closed(boot)]),
ss(wheel ,wheell, [wheel_on(wheell,hubl)]),
ss(wheel ,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel,wheel4, [wheel_on(wheel4,hub4)]),
ss(wheel,wheelb5, [wheel_in(wheel5,boot)]),
ss(tyre,tyrel, [flat(tyrel)]),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss (hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss (pump , pumpO, [pump_in (pump0,boot)]),
ss(jack, jackO, [jack_in(jackO,boot)])]).

/* Experimental set of domain tasks designed to cover the main tasks for which the methods were

% Domain Tasks

planner_task(1,

h
L

h
[

plann
h
L

Goals

se(container,boot, [closed(boot)]),
se(wheel,wheell, [wheel_on(wheell,hubl)]),
se(tyre,tyrel, [full(tyrel)l),
se(wheel_trim,triml, [trim_on(triml,wheell)]),
se(hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
se (pump , pumpO, [pump_in (pump0,boot)]),
se(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
se(jack, jack0, [jack_in(jack0O,boot)])],

INIT States

ss(container,boot, [closed(boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel ,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld,hubd)]),
ss(wheel,wheelb5, [wheel_in(wheel5,boot)]),
ss(tyre,tyrel, [flat (tyrel)l),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(jack, jack0, [jack_in(jackO,boot)]),
ss(wrench,wrenchQ, [wrench_in(wrenchO,boot)]),
ss (pump , pumpO, [pump_in (pump0,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)])]).
er_task(2,

Goals

se(container,boot, [closed(boot)]),
se(wheel,wheell, [wheel_in(wheell,boot)]),

se(wheel,wheelb, [wheel_on(wheel5,hubl)]),

238

239

se(tyre,tyrel, [punctured(tyrel)]),
se(wheel_trim,triml, [trim_on(triml,wheel5)]),
se(hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
se (pump , pumpO, [pump_in (pumpO,boot)]),
se(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
se(jack, jack0, [jack_in(jackO,boot)]),
se(nuts,nutsl, [tight (nutsl,hub1)])],

% INIT States

[

ss(container,boot, [closed(boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel ,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld4,hubd)]),
ss(wheel,wheelb5, [wheel_in(wheel5,boot)]),
ss(tyre,tyrel, [flat (tyrel)l),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(jack, jack0, [jack_in(jackO,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss (pump , pumpO, [pump_in (pumpO,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hub4)])]).

planner_task(3,

% Goals

[

se(container,boot, [closed(boot)]),
se(tyre,tyrel, [full(tyrel)l),
se(wheel,wheell, [wheel_on(wheell,hub4d)]),
se(wheel,wheel4, [wheel_in(wheel4,boot)]),

se(wheel_trim,trim4, [trim_on(trim4,wheell)])],

240

% INIT States

[

ss(wheel,wheell, [wheel_in(wheell,boot)]),
ss(tyre,tyrel, [flat (tyrel)l),

ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(tyre,tyre2, [full(tyre2)]),
ss(wheel_trim,trim2, [trim_on(trim2,wheel2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(tyre,tyre3, [full(tyre3)]1),
ss(wheel_trim,trim3, [trim_on(trim3,wheel3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld4,hubd)]),
ss(tyre,tyre4, [punctured(tyred)]),
ss(wheel_trim,trim4, [trim_on(trim4,wheeld)]),
ss(wheel,wheelb5, [wheel_on(wheel5,hubl)]),
ss(tyre,tyreb, [full(tyre5)1),
ss(wheel_trim,triml, [trim_on(triml,wheel5)]),
ss(container,boot, [closed(boot)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hub4)]),

ss (pump , pumpO, [pump_in (pump0,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss(jack, jack0, [jack_in(jackO,boot)]),

ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
ss (hub,hub2, [on_ground (hub2) ,fastened (hub2)]),
ss (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
ss (hub,hub4, [on_ground (hub4) ,fastened (hub4)])]).

planner_task(4,

% Goals

[

se(wheel,wheelb5, [wheel_on(wheel5,hub3)]),

se (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),

241

se(wheel_trim,trim3, [trim_on(trim3,wheel5)]),
se(wheel,wheel3, [wheel_in(wheel3,boot)]),
se(nuts,nuts3, [tight (nuts3,hub3)])],

% INIT States

[

ss(wheel_trim,trim3, [trim_off (trim3)]),
ss(tyre,tyre3, [punctured(tyre3)]),

ss (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),

ss (pump, pumpO, [have_pump (pump0)]),
ss(container,boot, [open(boot)]),
ss(tyre,tyreb, [full(tyreb5)]),

ss(wheel ,wheelb5, [wheel_in(wheel5,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss(jack, jackO, [jack_in(jackO,boot)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]1)]).

planner_task(5,

% Goals

[

se(container,boot, [open(boot)]),
se(hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
se(wheel_trim,triml, [trim_on(triml,wheell)]),
se(tyre,tyrel, [punctured(tyrel)]),
se(wheel,wheell, [wheel_on(wheell,hubl)]),
se(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
se(wheel,wheel3, [wheel_on(wheel3,hub3)]),
se(wheel,wheel4, [wheel_on(wheel4,hub4)]),
se(wheel,wheelb5, [wheel_in(wheel5,boot)]),

se (pump , pumpO, [pump_in (pumpO,boot)]),
se(jack, jackO, [have_jack(jack0)]),
se(wrench,wrenchO, [have_wrench(wrench0)])],

% INIT States

[

242

ss(container,boot, [closed(boot)]),
ss (hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(tyre,tyrel, [flat(tyrel)]),
ss(jack, jackO, [jack_in(jackO,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss (pump , pumpO, [pump_in (pumpO,boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel ,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel ,wheel4d, [wheel_on(wheeld,hub4d)]),
ss(wheel,wheelb5, [wheel_in(wheel5,boot)])]).
planner_task(6,
% Goals
[
se(nuts,nutsl, [have_nuts(nuts1)]),
se (hub,hubl, [free(hubl), jacked_up(hubl, jackO) ,unfastened (hubl)]),
se(wheel,wheell, [have_wheel (wheell)]),
se(wheel_trim,triml, [trim_off (triml1)]1)],
% INIT States
[
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hub4)]),
ss (hub,hubl, [on_ground (hubl) ,fastened (hubl)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel,wheel4, [wheel_on(wheel4,hub4)]),
ss(wheel ,wheelb5, [wheel_in(wheel5,boot)]),
ss(wrench,wrenchO, [have_wrench(wrench0)]),

ss(jack,jackO, [have_jack(jack0)]),

243

ss(wheel_trim,triml, [trim_on(triml,wheell)]),
ss(wheel_trim,trim2, [trim_on(trim2,wheel2)]),
ss(wheel_trim,trim3, [trim_on(trim3,wheel3)]),
ss(wheel_trim,trim4, [trim_on(trim4,wheeld)]),
ss(tyre,tyrel, [punctured(tyre1)1)]).
planner_task(7,
% Goals
[
se(tyre,tyrel, [punctured(tyrel)]),
se(wheel_trim,triml, [trim_off(triml)]),
se(jack, jack0, [jack_in_use(jackO,hub1)]),
se(wrench,wrenchO, [have_wrench(wrench0)]),
se(wheel,wheell, [have_wheel (wheell)]),
se (hub,hubl, [free(hubl), jacked_up(hubl, jackO) ,unfastened (hubl)]),
se(nuts,nutsl, [have_nuts(nuts1)]),
se(container,boot, [open(boot)])],
% INIT States
[
ss(container,boot, [closed(boot)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hubd)]),
ss (hub,hubl, [on_ground (hubl) ,fastened (hub1)]),
ss (pump , pumpO, [pump_in (pumpO,boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3)]),
ss(wheel,wheel4, [wheel_on(wheel4,hub4)]),
ss(wheel,wheelb, [wheel_in(wheel5,boot)]),
ss(wrench,wrenchQ, [wrench_in(wrenchO,boot)]),
ss(jack, jack0, [jack_in(jackO,boot)]),

ss(wheel_trim,triml, [trim_on(triml,wheell)]),

*/

ss(wheel_trim,trim2, [trim_on(trim2,wheel2)]),
ss(wheel_trim,trim3, [trim_on(trim3,wheel3)]),
ss(wheel_trim,trim4, [trim_on(trim4,wheeld)]),

ss(tyre,tyrel, [flat(tyrel)])]).

244

Appendix F

A TYPICAL TEST FILE TO GENERATE THE METHOD
DISCOVER_PUNCTURE IN THE EXTENDED TYRE
DOMAIN

/* Experimental file to produce a method for the actions

open (boot)
- fetch_pump
- find_puncture

- putaway_pump

from tyre_extended world. The method will be called discover_puncture. */

:- multifile input/3.

:- dynamic input/3.

:- multifile planner_task/3.

dynamic planner_task/3.

sequence ([

open_container (boot),
fetch_pump (@boot, pump0) ,
find_puncture (@pump0,tyrel),

putaway_pump (@boot , pump0)

D.

htn(discover_puncture).

246

opposites(_,_):-fail.

planner_task(_,
% Goal
[
se(container,boot, [open(boot)]),
se (pump , pumpO, [pump_in (pump0,boot)]),
se(tyre,tyrel, [punctured(tyrel)])
1,
% Initial state
[
ss(container,boot, [closed(boot)]),
ss(wheel,wheell, [wheel_on(wheell,hubl),trim_on(wheell,trimil)]),
ss(wheel,wheel?2, [wheel_on(wheel2,hub2) ,trim_on(wheel2,trim2)]),
ss(wheel,wheel3, [wheel_on(wheel3,hub3) ,trim_on(wheel3,trim3)]),
ss(wheel,wheel4, [wheel_on(wheeld4,hub4) ,trim_on(wheeld,trim4)]),
ss(wheel,wheel5, [wheel_in(wheel5,boot) ,trim_off (wheelb)]),
ss(tyre,tyre2, [full(tyre2)]),
ss(tyre,tyrel, [flat(tyrel)]),
ss(wheel_trim,triml, [trim_on_wheel (triml,wheell)]),
ss(wheel_trim,trim2, [trim_on_wheel (trim2,wheel2)]),
ss(wheel_trim,trim3, [trim_on_wheel (trim3,wheel3)]),
ss(wheel_trim,trim4, [trim_on_wheel (trim4,wheeld)]),
ss(nuts,nutsl, [tight (nutsl,hubl)]),
ss(nuts,nuts2, [tight (nuts2,hub2)]),
ss(nuts,nuts3, [tight (nuts3,hub3)]),
ss(nuts,nuts4, [tight (nuts4,hub4)]),
ss (pump , pumpO, [pump_in (pump0,boot)]),
ss(jack,jackO, [jack_in(jack0O,boot)]),
ss(wrench,wrenchO, [wrench_in(wrenchO,boot)]),
ss(hub,hubl, [on_ground (hubl) ,fastened (hub1)]),

ss (hub,hub2, [on_ground (hub2) ,fastened (hub2)]),

247

ss (hub,hub3, [on_ground (hub3) ,fastened (hub3)]),
ss (hub,hub4, [on_ground (hub4) ,fastened (hub4)])
n.

/%%

* All rights reserved. Use of this software is permitted for non-commercial

* research purposes, and it may be copied only for that use. All copies must
* include this copyright message. This software is made available AS IS, and
* mneither the GIPO team nor the University of Huddersfield make any warranty

* about the software or its performance.

* Automatically generated OCL Domain from GIPO Version 2.0

* Author: Beth Richardson

* Institution: University of Huddersfield

* Date created: April 2000

* Date last modified: 2006/10/25 at 03:52:11 PM BST

* Description:

* This tyre domain has extra objects and actions. Now, instead of just two

* wheels there are five with five tyres, four wheel trims and four named

* hubs. There are also four sets of wheel nuts. The pump now has a use. If

* a tyre is low it may be ’flat’ or ’punctured’. If it is flat then a prevail of
* inflate_tyre is have(pump).

*/

domain_name (tyre_extended) .

% Sorts

sorts(primitive_sorts, [container,nuts,hub,pump,wheel,wrench, jack,wheel_trim,tyre]).

% Objects
objects(container, [boot]) .

objects(nuts, [nutsl,nuts2,nuts3,nuts4]).

248

objects (hub, [hubl,hub2,hub3,hub4]) .
objects (pump, [pump0]) .

objects(wheel, [wheell,wheel2,wheel3,wheeld,wheelb]).
objects(wrench, [wrench0]) .

objects(jack, [jack0]).

objects(wheel_trim, [triml,trim2,trim3,trimé]).

objects(tyre, [tyrel,tyre2,tyre3,tyre4,tyreb]).

% Predicates

predicates ([
closed(container),
open(container),
tight (nuts,hub),
loose(nuts,hub),
have_nuts(nuts),
on_ground (hub),
fastened (hub),
jacked_up (hub, jack),
free(hub),
unfastened (hub),
have_pump (pump) ,
pump_in (pump, container),
have_wheel (wheel),
wheel_in(wheel,container),
wheel_on(wheel,hub),
have_wrench(wrench),
wrench_in(wrench,container),
have_jack(jack),
jack_in_use(jack,hub),
jack_in(jack,container),
trim_on(wheel,wheel_trim),
trim_off (wheel),

fits_on(tyre,wheel),

249

full(tyre),
flat(tyre),
punctured(tyre),
have_trim(wheel_trim),

trim_on_wheel (wheel_trim,wheel)]).

% Object Class Definitions
substate_classes([
container(C,
[
[closed(C)],
[open(C)]
D
nuts (N,
[
[tight (N,H)],
[loose(N,H)],
[have_nuts(N)]
D,
hub (H,
[
[on_ground (H) ,fastened(H)],
[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J) ,unfastened(H)],
[unfastened (H), jacked_up(H,J)]
D,
pump (Pu,
[
[have_pump (Pu)],
[pump_in(Pu,C)]
D
wheel (Wh,
[

250

[have_wheel (Wh) ,trim_off (Wh)],
[wheel_in(Wh,C),trim_off(Wh)],
[wheel_on(Wh,H),trim_off(Wh)],
[wheel_on(Wh,H),trim_on(Wh,WT)]
D,
wrench (Wr,
L
[have_wrench(Wr)],
[wrench_in(Wr,C)]
D
jack(J,
[
[have_jack(J)],
[jack_in_use(J,H)],
[jack_in(J,C)]
D,
wheel_trim(WT,
L
[trim_on_wheel (WT,Wh)],
[have_trim(WT)]
D
tyre(Ty,
[
[full(Ty)],
[flat(Ty)],
[punctured(Ty)],
[fits_on(Ty,Wh)]
D
.

% Atomic Invariants
atomic_invariants([

fits_on(tyrel,wheell),

251

fits_on(tyre2,wheel?),
fits_on(tyre3,wheel3),
fits_on(tyred,wheeld),

fits_on(tyreb,wheelb)]).

% Implied Invariants

% Inconsistent Constraints

% Equivalences between predicates

% (note redundancy of predicates sometimes has useful side-effect of

% of enforcing 1:1 relationships)

invariant(all(H:hub,fastened(H)<==>ex(N:nuts,tight (N,H)\/loose(N,H)))).
invariant(all(H:hub,all(J:jack, jack_in_use(J,H)<==>jacked_up(H,J)))).
invariant(all(H:hub, “free(H)<==>ex(W:wheel,wheel_on(W,H)))).

invariant(all(T:wheel_trim,all(W:wheel,trim_on_wheel(T,W)<==>trim_on(W,T)))).

% Hub may only have one set of nuts attached
invariant(
all(H:hub,all(N1:nuts,all(N2:nuts,
(tight (N1,H)\/loose(N1,H)) /\
(tight (N2,H)\/loose(N2,H))
==>(N1=N2))))).

% Hub may only have one wheel attached.
invariant(all(H:hub,all(Wl:wheel,all(W2:wheel,
wheel_on(W1,H)/\wheel_on(W2,H)==>(W1=W2))))).

% If the nuts are tight then the hub must be on the ground.

invariant(all(H:hub, ex(N:nuts,tight(N,H)) ==> on_ground(H))).

% If a trim is on a wheel, then the wheel is on a hub and

% the nuts are tight.

252

invariant (
all(W:wheel,ex(T:wheel_trim,trim_on_wheel(T,W))==>

ex(H:hub,wheel_on(W,H) /\ex(N:nuts,tight(N,H))))).

/*

OUTPUT - the correct set of operators and a method

operator (fetch_pump (Containerl,Pump?),
[se(container,boot, [open(Containerl)])
1,
[sc(pump,Pump2, [pump_in(Pump2,Container1)]=>[have_pump (Pump2)])
1,
[

operator (find_puncture (Pumpl,Tyre2),
[se (pump, pumpO, [have_pump (Pump1)])
1,
[sc(tyre,Tyre2, [flat(Tyre2)]=>[punctured(Tyre2)])
1,
[

operator (open_container(Containerl),
a1,
[sc(container,Containerl, [closed(Containerl)]=>[open(Containeri)])
1,
[]

operator (putaway_pump (Container1l,Pump2),

[se(container,boot, [open(Containeri)])

1,
[sc(pump,Pump?2, [have_pump (Pump2)]=>[pump_in (Pump2,Containerl)])
1,
[
).
*/
% name

method (discover_puncture (Tyrel,Boot,Pump0),
% dynamic constraints
[se (pump, PumpO, [pump_in (Pump0,Boot)])],
% list of necessary transitions
[sc(tyre,Tyrel, [flat (Tyrel)] => [punctured(Tyrel)]),
sc(container,Boot, [closed (Boot)] => [open(Boot)])],
% static constraints
1,
% temporal constraints
[before(1,2) ,before(2,3),before(3,4)],
% decomposition
[open_container(Boot),
fetch_pump(Boot ,Pump0),
find_puncture (PumpO,Tyrel),

putaway_pump (Boot ,Pump0)]

253

1]

BIBLIOGRAPHY

M. Aben, J. Balder, and F. van Harmelen. Support for the formalisa-
tion and validation of kads expertise model. Technical report, KADS-

11/M2/UvA /DM2.6a/1.0, ESPRIT, 1994

Scott Andrews, Brian Kettler, Kutluhan Erol, and James Hendler. Um translog:
A planning domain for the development and benchmarking of planning systems.
Technical report, Dept. of Computer Science, University of Maryland, College
Park, MD 20742, USA 301.405.1000, 1995.

J. Blythe and T. M. Mitchell. On becoming reactive. Segre, pages 255 257, 1989.

Jim Blythe and Varun Ratnaker. Helping end users modify procedures by in-
struction. In Proceedings of the International Conference for Knowledge Engi-

neering in Planning and Scheduling, Monterez, 2005.

B. Borchers and J. Furman. A two-phase exact algorithm for max-sat and
weighted max-sat problems. Journal of Combinatorial Optimization 2, 4:299

306, 1999.

Daniel Borrajo, Susana Fernandez, Raquel Fuetetaja, and Juan D. Arias. Tool
for automatically acquiring control knowledge for planning. In Proceedings of the
International Conference for Knowledge Engineering in Planning and Schedul-

ing, Monterez, 2005.

7]

[10]

[11]

[13]

[14]

255

T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Exten-
sible markup language (xml) 1.0 - fourth edition world wide web consortium,

recommendation rec-xml-20060816. http://www.w3.org/TR/REC-xml/, 2006.

B. G. Buchanan and T. M. Mitchell. Model-directed learning of production rules.

In Pattern-Directed Inference Systems. Academic Press, 1978.

J. G. Carbonell. Introduction: Paradigms for machine learning. Artificial Intel-

ligence, 40:1-9, 1989.

Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: the operator
refinement method. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1990.

P. P.-S. Chen. The Entity-Relationship Model: Towards a Unified View of Data.
In ACM Transactions on Database Systems, volume 1, pages 9 36. ACM Press,
1976.

Patrick Daley, Jeremy Frank, Michael latauro, Conor McGann, and Will Taylor.
Planworks: A debugging environment for constraint based planning systems.
In Proceedings of the International Conference for Knowledge Engineering in

Planning and Scheduling, Monterez, 2005.

Marie desJardins. Knowledge development methods for planning systems. In
AAAi-9/ Fall Symposium Series: Planning and Learning: On to Real Applica-
tions, New Orleans, LA, USA, 1994. AAAL

F.D. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML:
The Catalysis Approach. Addison-Wesley, United States of America and Canada,
1999.

[15]

[16]

[17]

18]

[19]

[21]

[22]

23]

256

S. Edelkamp and J. Hoffmann. Pddl2.2: The language for the classical part of
the 4th international planning competition? In Proceedings of the ICAPS, 2004.

Stefan Edelkamp and Tilman Mehler. Knowledge acquisition and knowledge en-
gineering in the ModPlan workbench. In Proceedings of the International Con-

ference for Knowledge Engineering in Planning and Scheduling, Monterez, 2005.

D. Bernard et al. Remote Agent Experiment: Deep Space 1. Technical report,

National Aeronautics and Space Administration, 2000.

E. Feigenbaum and P. McCorduck. The Fifth Generation. Addison-Wesley,
Reading, MA, 1983.

R. Fikes, P. Hart, and N Nilsson. Learning and executing generalised robot

plans. Artificial Intelligence, 3:251 288, 1972.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
for theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61 — 124, 2003.

Garland, Tyall, and Rich. Learning hierarchical task models by defining and re-
fining examples. In Proceedings of the First International Conference on Knowl-

edge Capture, 2001.

A. Gerevini and D. Long. Plan constraints and preferences in pddl3: The lan-
guage of the fifth international planning competition. Technical report, The

University of Brescia, Italy, August 2005.

257

[24] Y. Gil. Acquiring Domain Knowledge for Planning by Ezperimentation. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, 1992.

[25] GIPO. Graphical interface for planning with objects.
http://compeng.hud.ac.uk/Artform/projects/planform/gipo, 2003.

[26] T. J. Grant. Inductive Learning of Knowledge-Based Planning Operators. PhD
thesis, de Rijksuniversiteit Limburg te Maastricht, Netherlands, 1996.

[27] T.J. Grant. Assimilating planning domain knowledge from other agents. In
Proceedings of the 26th Workshop of the UK Planning and Scheduling Special
Interest Group, 2007.

(28] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas.
Vleppo: A visual language for problem representation. In Proceedings of the

26th Workshop of the UK Planning and Scheduling Special Interest Group, 2007.

[29] J. Hoffmann. A ”tough nuts” track for the ipc. In Proceedings of the ICAPS,
2007.

[30] Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan genera-
tion through heuristic search. Journal of Artificial Intelligence Research, 14:253
302, 2001.

[31] C. Hogg and H. Munoz-Avila. Learning hierarchical task networks from plan
traces. In Proceedings of the ICAPS’07 Workshop on Artificial Intelligence Plan-
ning and Learning, 2007.

32]

33]

[34]

[35]

[36]

[38]

39]

258

S. B. Huffman, D. J. Pearson, and J. E. Laird. Correcting imperfect domain
theories: A knowledge-level analysis. In S. Chipman and A. Meyrowitz, editors,

Kluwer Academic Press., 1992.

O. Ilghami, D.S. Nau, H. Munoz-Avila, and D.W. Aha. Learning preconditions
for planning from plan traces and htn structure. Computational Intelligence 21,

4:88 143, 2005.

C. M. Kadie. Diffy-s:learning robot operator schemata from examples. In Pro-
ceedings of the 5th International Conference on Machine Learning, San Mateo,

California, USA, 1988. Morgan Kaufmann.

D. E. Kitchin. Object-centred Generative Planning. PhD thesis, School of Com-
puting and Mathematics, University of Huddersfield, UK, 1999.

Pat Langley and Herbert A. Simon. Applications of machine learning and rule

induction. Communications of the ACM, 38(11):54-64, 1995.

S. LaVoie, D. Alexander, C. Avis, H. Mortensen, C. Stanley, and L. Wainio.
Vicar user’s guide, version 2, jpl internal document d 41 86. Technical report,
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
1989.

D.B. Lenat and R. Davis. Knowledge-Based Systems in Artificial Intelligence.
McGraw-Hill, New York, 1982.

Geoffrey Levine and Gerald DeJong. Explanation-based acquisition of planning
operators. In Proceedings of the Sizteenth International Conference on Auto-

mated Planning and Scheduling, pages 152-161, California, 2006.

[40]

[41]

[42]

[43]

[45]

[46]

[47]

259

D. Liu and T. L. McCluskey. The OCL Language Manual, Version 1.2. Techni-
cal report, Department of Computing and Mathematical Sciences, University of

Huddersfield, UK, 2000.

G. F. Luger and W. A. Stubblefield. Artificial Intelligence: Structures and Strate-
gies for Complex Problem Solving. The Benjamin/Cummings Publishing Com-
pany, Inc., California, 1993.

B. Marthi, J. Wolfe, and S. Russell. Semantics for high-level actions. In Pro-
ceedings of the International Conference on Automated Planning and Scheduling,

ICAPS 2007, 2007.

T. L. McCluskey and D. E. Kitchin. A Tool-Supported Approach to Engineering
HTN Planning Models. In Proceedings of 10th IEEE International Conference
on Tools with Artificial Intelligence, 1998.

T. L. McCluskey, D. Liu, and R. Simpson. Gipo ii: Htn planning in a tool-
supported knowledge engineering environment. In Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling, 2003.

T. L. McCluskey and J. M. Porteous. Engineering and Compiling Planning
Domain Models to Promote Validity and Efficiency. Artificial Intelligence, 95:1—
65, 1997.

T. L. McCluskey and N. E. Richardson. The induction of operator descriptions
from examples and structural domain knowledge. In Proceedings of the 20th
Workshop of the UK Planning and Scheduling Special Interest Group, pages 181—
192, 2001.

T. L. McCluskey, N. E. Richardson, and R. M. Simpson. An Interactive Method

for Inducing Operator Descriptions. In Proceedings of the 7th International Con-

[53]

[54]

260

ference on Artificial Intelligence Planning and Scheduling Systems (aips-2002),
2002.

T. L. McCluskey and M. M. West. Towards the automated debugging and
maintenance of logic-based requirements models. In ASE ’98: Proceedings of the

13th IEEFE International Conference on Automated Software Engineering, 1998.

T. L. McCluskey and M. M. West. The Automated Refinement of a Requirements
Domain Theory. Journal of Automated Software Engineering, Special Issue on

Inductive Programming, 6:195 218, May 2001.

T.L. McCluskey, S.N. Cresswell, N.E. Richardson, and M.M. West. Opmaker2:
Efficient action schema acquisition. In Proceedings of the 26th Workshop of the
UK Planning and Scheduling Special Interest Group, 2007.

P. Meseguer and A. D. Preece. Assessing the role of formal specifications in
verification and validation of knowledge-based systems. In Proceedings of the
3rd International Conference on Achieving Quality in Software, pages 317 328,
London, 1996. Chapman and Hall.

R. S. Michalski. Pattern recognition as rule-guided inductive inference. In
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 349—
361, 1980.

S. Minton and M. Zweben. Machine Learning Methods for Planning. Morgan

Kaufmann, San Francisco, California, 1993.

Proshanto Mukherji and Lenhart K. Schubert. Discovering planning invariants
as anomalies in state descriptions. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS 2005), Monterey,
US, 2005.

[55]

[56]

[58]

[59]

[60]

[61]

[62]

[63]

261

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77, 4:541 580, 1989.

Negin Nejati, Pat Langley, and Tolga Konik. Learning hierarchical task networks
by observation. In ICML ’06: Proceedings of the 23rd international conference
on Machine learning, pages 665—672, New York, NY, USA, 2006. ACM.

D. J. Pearson. Learning procedural planning knowledge in complex environments.
PhD thesis, Computer Science and Engineering, The University of Michigan,
1996.

Planform. An open environment for building planners.

http://compeng.hud.ac.uk/Artform/projects/planform/, 2007.

Bruce W. Porter and Dennis F. Kibler. Experimental goal regression: A method

for learning problem-solving heuristics. Mach. Learn., 1(3):249 285, 1986.
J-F. Puget. Learning invariants from explanations. Segre, pages 200-204, 1989.

J. R. Quinlan. Learning efficient classification procedures and their application
to chess end games. In Machine Learning: An artificial intelligence approach,

Los Altos, CA:, 1983. Morgan Kaufmann.

N. E. Richardson. Towards comparing and merging induced operator descrip-
tions. In Proceedings of the 21st Workshop of the Planning and Scheduling Special
Interest Group, University of Delft, Netherlands, 2002.

N. E. Richardson, T. L. McCluskey, and M. M. West. Towards inducing htn
domain models from examples. In Proceedings of the 25th Workshop of the

Planning and Scheduling Special Interest Group, The University of Nottingham,
UK, 2006.

[64]

[65]

[66]

[68]

[69]

[71]

262

D. Ruby and D. Kibler. Learning to plan in complex domains. Segre, pages
180 182, 1989.

S. Russell. Efficient memory-bounded search algo-rithms. In Proceedings of the

ECAI 1992.

A. M. Segre. Machine Learning of Robot Assembly Plans. Kluwer Academic
Publishers, Boston, MA, 1988.

J. W. Shavlik. An empirical analysis of ebl approaches for learning plan

schemata. Segre, pages 183 187, 1989.

J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan
Kaufmann Publishers Inc., San Mateo, CA, USA, 1990.

Herbert A. Simon. Search and reasoning in problem solving. Artificial Intelli-

gence, 21:7 29, 1983.

R. M. Simpson, T. L. McCluskey, W. Zhao, R. S. Aylett, and C. Doniat. GIPO:
An Integrated Graphical Tool to support Knowledge Engineering in AT Planning.
In Proceedings of the 6th Furopean Conference on Planning, 2001.

R.M. Simpson. Gipo graphical interface for planning with objects. In Proceed-
ings of the International Conference for Knowledge Engineering in Planning and

Scheduling, Monterez, 2005.

Artificial Intellegence Students. Gipo student domains.
http://compeng.hud.ac.uk/planform/gipo/, 2006.

A. Tate. Roots of spar - shared planning and activity representation. The
Knowledge Engineering Review, Special Issue on ”Putting Ontologies to Use”,

13(1):121-128, 1998.

[74]

[77]

78]

[79]

[80]

[81]

263

A. Tate, S. T. Polyak, and P. Jarvis. TF Method: An Initial Framework for
Modelling and Analysing Planning Domains. Technical report, University of

Edinburgh, UK, 1998.

E. Turban and J. E. Aronson. Decision Support Systems and Intelligent Systems.
Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1998.

F. van Harmelen and M. Aben. Structure-preserving specification languages for
knowledge-based systems. International Journal of HumanComputer Studies,

44:187 212, 1996.

Tiago Stegun Vaquero, Flavio Tonidandel, and Jose Reinaldo Silva. The it-
simple tool for modeling planning domains. In Proceedings of the International

Conference for Knowledge Engineering in Planning and Scheduling, Monterez,

2005.

S. Vere. In Pattern Directed Inference Systems. Academic Press, New York,

1978.

X. Wang. Learning by Observation and Practice: An Incremental Approach
for Planning Operator Acquisition. In Proceedings of the 12th International

Conference on Machine Learning, 1995.

X. Wang. Learning Planning Operators by Observation and Practice. PhD thesis,
Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,

Pittsberg, PA 15213, 1996.

X. Wang. Planning while learning operators. In Proceedings of the Third Inter-
national Conference on AI Planning Systems, Edinburgh, Scotland, 1996.

82]

83]

[84]

[85]

[86]

87]

38

264

X. Wang and M. Veloso. Learning planning knowledge by observation and prac-
tice. In ARPA/ Rome Laboratory Knowledge-Based Planning and Scheduling

Initiative, Tucson, Arizona, 1994.

T. Winograd. Understanding Natural Language. Academic Press, New York,
USA, 1972.

P. H. Winston. Learning structural descriptions from examples. In The Psychol-

ogy of Computer Vision, pages 157 209, New York, 1975. McGraw-Hill.

M. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages:
A survey. In Proceedings of ECAI ATAL Workshop, pages 1-39, 1994.

Kangheng Wu, Qiang Yang, and Yunfei Jiang. Arms: Action-relation modelling
system for learning action models. In Proceedings of the International Conference

for Knowledge Engineering in Planning and Scheduling, Monterez, 2005.

Q. Yang, R. Pan, and S. J. Pan. Learning recursive htn-method structures for
planning. In Proceedings of the ICAPS’07 Workshop on Artificial Intelligence

Planning and Learning, 2007.

Sungwook Yoon and Subbarao Kamphampati. Towards model-lite planning: A
proposal for learning and planning with incomplete domain models. In Proceed-
ings of the ICAPS’07 Workshop on Artificial Intelligence Planning and Learning,
2007.

Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated

planning: looking back, taking stock, going forward. Al Mag., 24(2):73 96, 2003.

M. Zweben, E. Davis, B. Daun, E. Draschler, M. Deale, and M. Eskey. Learning

to improve constraint-based scheduling. Artificial Intelligence, 58:1-3, 1993.

