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Two spatiotemporally distinct value systems shape
reward-based learning in the human brain
Elsa Fouragnan1, Chris Retzler1,2, Karen Mullinger3,4 & Marios G. Philiastides1

Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human

survival and adaptive actions. Yet, the neural underpinnings of the value systems that

encode different decision-outcomes remain elusive. Here coupling single-trial electro-

encephalography with simultaneously acquired functional magnetic resonance imaging, we

uncover the spatiotemporal dynamics of two separate but interacting value systems encoding

decision-outcomes. Consistent with a role in regulating alertness and switching behaviours,

an early system is activated only by negative outcomes and engages arousal-related and

motor-preparatory brain structures. Consistent with a role in reward-based learning, a

later system differentially suppresses or activates regions of the human reward network in

response to negative and positive outcomes, respectively. Following negative outcomes, the

early system interacts and downregulates the late system, through a thalamic interaction

with the ventral striatum. Critically, the strength of this coupling predicts participants’

switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway

in reward-based learning.
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I
magine picking wild berries in a forest when suddenly a swarm
of bees flies out from behind a bush. In a split second, your
motor system has already reacted to flee the swarm. This

automatic response constitutes a powerful survival mechanism
that allows efficient behaviour switching to escape from a
potential hazard in the environment. In turn, a separate and
more deliberate process of learning to avoid similar situations will
also occur, rendering future berry picking attempts less appealing.

The reinforcement sensitivity theory (RST) introduced by
Jeffrey Gray1 in the 1970’s was the first to describe two distinct
decision-outcome value systems that trigger avoidance behaviour
and orchestrate learning. According to RST, the first value system
quickly assesses whether an outcome is positive or negative to
alert an organism to take immediate action if required, while the
second estimates all relevant information necessary to adjust
future actions. In its initial form, the theory also postulated an
interaction between the two systems such that the quick
evaluation of outcome valence by the first system would
modulate the second system to update future value expectations1.

To date, and despite RST’s intuitive appeal, the biological
validity and neural underpinnings of the two value systems
(including their potential interactions) remain unclear. In line
with RST, recent human electroencephalography (EEG) data
revealed two temporally distinct processing stages of outcome
value; an early valence-sensitive process thought to be driven
by an automatic alertness response to negative outcomes2–4

and a later, more deliberate, assessment of the value
information required for learning and updating reward
expectations3. The poor spatial resolution of the EEG, however,
precludes a thorough characterization of the spatial generators
associated with each stage.

Conversely, functional magnetic resonance imaging (fMRI)
studies investigating a pure categorical response to positive versus
negative outcomes offer evidence of a distributed network of
activations in response to outcome valence5–10. The low temporal
resolution of the blood-oxygen-level-dependent (BOLD) signal,
however, precludes a rigorous assessment of the relative timing
and potential interactions between these activations. Here we
combine single-trial EEG with simultaneously acquired fMRI to
assign temporal order to these activations by mapping them onto
the two valuation systems identified earlier using stand-alone
EEG3. Our hypothesis is that endogenous trial-to-trial variability
in the two temporally distinct EEG components can be used to
form separate BOLD predictors (rather than using a categorical
predictor representing outcome valence) to tease apart the
cortical and subcortical networks associated with each system.

Separating these networks in time will also enable the
investigation of potential interactions between the two value
systems. We hypothesize that an early alertness system would
likely engage autonomic arousal and motor-preparatory
structures, whereas the late system would encompass regions
more directly involved in reward processing. Relatedly, recent
animal studies using optogenetics and electrophysiology have
started to examine the functional role of the thalamostriatal
pathway in mediating the interaction between these structures to
exert control over learning-related plasticity11,12. To date, most
animal and human neuroimaging studies have largely overlooked
this pathway and focused instead on the connections between the
dopaminergic system in the midbrain and its direct projection
sites in the striatum (STR) and prefrontal cortex13,14.

Here, in line with our hypotheses, we uncover two
spatiotemporally distinct but interacting outcome value systems
associated with learning in the human brain. We show that an
early system initiates a fast alertness response in the presence of
negative outcomes, while a later system controls reward learning
and value updating. Moreover, we show that the early system

downregulates the late system to promote avoidance learning
via a thalamostriatal interaction, imposing new constraints on
theories of reward processing and outcome evaluation.

Results
We collected simultaneous EEG–fMRI data from 20 participants
while they performed a probabilistic reversal-learning task3,8. On
each trial, subjects saw a pair of abstract symbols and through
feedback learned to select the symbol with the highest reward
probability. On reaching a predefined performance criterion, the
high reward probability was re-assigned to a different symbol in
the set and subjects had to enter a new learning phase (that is, a
‘reversal’ in reward contingencies was introduced; Fig. 1a).
Overall subjects achieved multiple reversals (20.4±2.1, see
Supplementary Note 1) during the course of the experiment
suggesting a high degree of engagement with the task. Overall,
participants’ responses were probabilistic based on expected
values assigned to each symbol on individual trials, in line
with the principles of a simple reinforcement-learning
mechanism (see Supplementary Methods).

Two temporally specific components of outcome value. To
identify temporally distinct neuronal components associated with
outcome value, we used single-trial multivariate discriminant
analysis on EEG signals locked to the delivery of the
decision-outcome15. Specifically, for each participant, we
estimated linear weighting of the EEG electrode signals (that is,
spatial filters) that maximally discriminated between positive
versus negative outcomes over several temporally distinct training
windows (equation (1)). Applying the estimated spatial filters to
single-trial data produced a measurement of the resultant
discriminating component amplitudes, which we later used to
parametrically modulate the amplitude of fMRI regressors
(Supplementary Fig. 1). These values represent the distance of
individual trials from the discriminating hyperplane and can be
thought of as a surrogate for the neuronal response variability
following positive and negative outcomes, with activity common
to both conditions removed15–18. Our discriminator was trained
to map positive component amplitudes to positive outcomes and
negative component amplitudes to negative outcomes.

To quantify the discriminator’s performance over time we used
the area under a receiver operating characteristic curve (that is, Az

value) with a leave-one-out trial cross validation approach.
Using this method, we identified two temporally distinct
EEG components discriminating between positive and negative
outcomes: an Early component peaked, on average, 219 ms
following the outcome whereas a Late component peaked, on
average, at 308 ms (Fig. 1b). Importantly, both components were
present in each individual participant (Supplementary Fig. 2a and
Supplementary Note 2), confirming our EEG data was of
sufficiently high quality after removal of MR-related artifacts
(see Methods). Control analyses revealed that neither of these
components arose due to outcome salience19 (that is, the
deviation from expectations estimated with a classical
reinforcement-learning model, Supplementary equations (1–3),
Supplementary Fig. 2b and Supplementary Note 3), the
contextual sequence of outcomes20 (that is, the ratio of positive
versus negative outcomes; Supplementary Fig. 2c and
Supplementary Note 4), or differences in the visual properties
of the outcome stimuli (Supplementary Fig. 2d and
Supplementary Note 5).

Moreover, scalp topographies (Fig. 1b, equation (2)) revealed
broad and largely distinct spatial profiles for the two components,
providing initial support for the presence of separate generators
associated with each component. Furthermore, trial-by-trial

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9107

2 NATURE COMMUNICATIONS | 6:8107 | DOI: 10.1038/ncomms9107 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


amplitude variations in the two discriminating components were
largely uncorrelated (r¼ 0.09, P¼ 0.35 and r¼ 0.17, P¼ 0.24 for
positive and negative outcomes, respectively). Taking advantage
of the latter, we used the endogenous single-trial variability (STV)
in the component amplitudes (as highlighted in Fig. 1c for one
participant) to build two parametric EEG-informed fMRI
regressors to identify the brain networks correlating with each
of the Early and Late outcome value components.

Specifically, we built a general linear model (GLM) designed to
investigate the extent to which the BOLD signal across the whole
brain correlated with the EEG STV associated with each
component either positively or negatively (that is, revealing
regions activated more for positive compared with negative
outcomes and vice versa; Fig. 1d). Note that while deeper/
subcortical structures contribute less to the EEG signal, our
method can still expose these regions through correlations with
the cortical sources of the EEG STV. For comparison, we also
used a separate GLM in which we introduced a single categorical
BOLD predictor for outcome value (Fig. 1d), as was previously
done in stand-alone fMRI studies5. In both models, we included a
separate parametric regressor to absorb any unaccounted variance
in the degree of outcome salience (Supplementary Fig. 3 and
Supplementary Note 6; see Methods for full design details).

Conventional fMRI of outcome value. Our conventional fMRI
analysis using a single categorical outcome regressor (GLM 1;
Methods) revealed a distributed network of activations including

areas showing greater BOLD response for positive than negative
outcomes (Pos4Neg; Fig. 2a, red clusters) and areas showing the
opposite effect (Neg4Pos; Fig. 2a, blue clusters). Regions in
which the BOLD signal was greater for positive than negative
outcomes included areas of the human reward network5,6,8,9,21,
such as the ventromedial prefrontal cortex (vmPFC), the STR, the
amygdala and the dorsal posterior cingulate cortex (dPCC).
Regions in which the BOLD signal was greater for negative than
positive outcomes were overall less statistically reliable (surviving
only an uncorrected threshold) and included clusters in the
anterior mid-cingulate cortex (aMCC; often also labelled as dorsal
anterior CC), the supplementary motor area and dorsolateral
prefrontal cortex bilaterally. Overall these results agree with the
large body of literature reporting activations relating to the
contrast between positive versus negative outcomes5,6,10 (see
Supplementary Table 1 for whole-brain results).

EEG–fMRI reveals early and late outcome value systems. Even
though the conventional analysis revealed a distributed set of
activations for both the positive versus negative contrast and vice
versa, their relative timing and potential interactions remain
unclear. The main goal of our EEG-informed fMRI analysis
(GLM 2; Methods) was the assignment of temporal order to the
fMRI activations identified above by characterizing the extent to
which these could be explained by the Early and Late outcome
value EEG components. In this analysis, we capitalized on the
additional explanatory power afforded to us by the EEG STV
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Figure 1 | Experimental design and temporal characterization of separate outcome value systems. (a) Schematic representation of the experimental

paradigm. On each trial, two abstract symbols (selected from a larger set of three symbols) were presented for a maximum of 1.25 s. During this time,

subjects had to select, by pressing one of two buttons, the symbol that was most likely to lead to a reward. Once a decision was made, a random delay was

presented before the outcome was revealed. A tick and a cross were used to inform the participants of a positive (constant reward) and a negative (non-

rewarding) outcome, respectively. Participants (n¼ 20) performed 2 blocks of 170 trials each. (b) Multivariate discriminator performance (Az) during

positive versus negative outcome discrimination of outcome-locked EEG responses, averaged across subjects. Shaded error bars represent s.e. across

subjects. The dotted line represents the average Az value leading to a significance level of P¼0.01, estimated using a bootstrap test. Two outcome value

components (Early and Late) were revealed, with spatially distinct scalp topographies as estimated at time of maximum discrimination. (c) Single-trial

discriminant component maps, for a representative subject. The four panels represent the discriminator amplitudes for the Early and Late components for

positive and negative outcome trials using the training windows shown by the vertical white bars (solid: Early, dashed: Late). (d) Hypothetical value-related

BOLD effects showing either greater overall BOLD signal for positive than negative outcomes and vice versa (red and blue curves, respectively). Three

different BOLD predictors were used to model these effects: a conventional categorical regressor for positive versus negative outcomes and two parametric

regressors modulated by the single-trial variability (STV) in the discriminator amplitudes of positive and negative outcomes in each of the Early and Late

EEG components (extracted from subject-specific windows corresponding to the two components—solid and dashed windows, as seen in c).
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(that is, endogenous variability) in each component, which ought
to carry more information about the internal processing of
decision-outcomes than the stable (categorical) representation
of the external stimulus valence. Thus this approach could
provide a full spatiotemporal characterization of the networks
associated with outcome value, enable identification of latent
brain states (unobservable in the conventional analysis) and offer
mechanistic insights regarding the functional role of the relevant
networks.

Critically, we only found negative correlations with the EEG
STV in our Early value component, which absorbed virtually all
activations that appeared in the conventional analysis, exhibiting
greater response for negative compared with positive outcomes
(Fig. 2b, left panel; Supplementary Table 2). In addition,
we observed unique activation clusters (compared with the
conventional analysis) in the centromedial thalamus (CM-THAL)
bilaterally, the anterior insula (aINS), as well as along the
posterior MCC, extending to the dPCC. These areas were
significantly more activated compared with the conventional
analysis (paired t-tests, all Po0.05). This further confirms that
the endogenous variability in our electrophysiologically derived
measure of outcome value carries additional explanatory power
over and above its externally (stimulus) defined counterpart.
Conversely, we only found positive correlations with the EEG
STV in our Late value component, which absorbed exclusively the
activations that exhibited greater response for positive compared
with negative outcomes in the conventional analysis (Fig. 2b,
right panel; Supplementary Table 2). We also found activations in

the anteromedial and superior medial prefrontal cortices, as well
as the ventral PCC that were absent from the conventional
analysis. Direct comparisons between the EEG-informed and
conventional analysis in these regions revealed significant
differences (paired t-tests, all Po0.05), highlighting the
importance of exploiting the EEG STV to reveal latent brain
states.

Taken together, our results paint a striking spatiotemporal
picture of the underlying network. Specifically, our Early value
component arises from a network of regions implicated in
generating states of autonomic arousal that control immediate
behavioural responses, as well as adjustment and negative
outcome processing22–24. In contrast, our Late value component
is linked to brain regions that play a crucial role in reward
processing and value-guided learning9,21,25. Accordingly, our
findings appear consistent with our original two separate value
systems hypothesis, whereby an early automatic alertness
response to outcome valence is followed by a later process
involved in updating value information and guiding future
behaviours. This interpretation is supported further by evidence
that the Early system predicts response caution following negative
outcomes, while the Late system predicts value updating after
each outcome (see Supplementary Note 7).

Early and late responses to positive and negative outcomes.
Thus far, we demonstrated how the two value systems respond
differentially across positive and negative outcomes (that is,
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Figure 2 | Spatiotemporal characterization of the Early and Late value systems. (a) A distributed network of activations including areas showing greater

BOLD response for positive than negative outcomes (red clusters, mixed-effects (n¼ 20), Z42.57, corrected) and areas showing greater BOLD response

for negative than positive outcomes, albeit at a more lenient threshold (blue clusters, mixed-effects (n¼ 20), Z41.67 uncorrected) using a conventional

categorical outcome regressor (Supplementary Table 1). (b) A parametric regressor, based on the EEG STV in the Early value component, absorbed all

activations that appeared in the conventional analysis in (a) exhibiting greater response for negative compared with positive outcomes (blue clusters)

and additional unique activation clusters showing the same overall response profile (Neg4Pos; Supplementary Table 2). A parametric regressor based on

the EEG STV in the Late value component, absorbed exclusively the activations that exhibited greater response for positive compared with negative

outcomes in the conventional analysis in (a) (red clusters), including additional unique clusters showing the same overall response profile (Pos4Neg;

Supplementary Table 2). All activations represent mixed-effects (n¼ 20) and are rendered on the standard MNI brain at Z42.57, corrected using a

resampling procedure (minimum cluster size¼ 76 voxels; see Methods).
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overall Neg4Pos for the Early system and Pos4Neg for the
Late one). However, the extent to which positive and negative
outcomes could separately explain the BOLD responses
associated with each of the two systems remains unclear as
conventional fMRI studies using a categorical predictor of out-
come valence can only capture relative changes across conditions.
Here we capitalized instead on the endogenous trial-by-trial
variability in response to identical outcomes (that is, either
rewarded or non-rewarded) to understand how the Early and
Late systems respond separately to positive and negative
outcomes.

Specifically, we demeaned the EEG STV for each system and
outcome type separately to obtain trial-to-trial residual
fluctuations (that is, EEG rSTV as illustrated in Supplementary
Fig. 1c) in which the overall contribution of the categorical value
contrast and any task-independent baseline effects were removed.
We used these endogenous fluctuations to build four new
parametric fMRI regressors in a new GLM analysis (Fig. 3a,
EarlyNeg, EarlyPos, LateNeg and LatePos, GLM 3; Methods). We
hypothesize that regions responding to each outcome type
separately should continue to covary with the EEG rSTV in the
relevant regressors above.

Interestingly, we found that regions of the Early system
correlated with the endogenous variability related to negative
outcomes only (that is, higher EEG rSTV leading to higher
BOLD), including major clusters in the CM-THAL and aMCC
reported earlier (Fig. 3b left, Supplementary Tables 3 and 4). This
result suggests that the Early system is primarily activated by
negative events. This is consistent with previous reports
implicating the thalamo-cingulate pathway in avoidance control
by alerting an organism of non-rewarding or undesirable
outcomes and re-orienting behaviour towards alternative
actions23,26,27. In contrast, regions associated with the Late
system correlated significantly with the endogenous variability
resulting from both negative and positive outcomes (that is, for
negative outcomes: smaller EEG rSTV leading to lower BOLD; for
positive outcomes: higher EEG rSTV leading to higher BOLD),
including prominent activations in the STR and vmPFC (Fig. 3b
right, Supplementary Table 3). This finding indicates that the Late
system suppresses or activates these regions in response to
negative and positive outcomes, respectively, an activity pattern
consistent with the role of the dopaminergic system in motivating
both avoidance and approach learning9,14.

Early and late system interaction mediates learning. Having
established the presence of two separate value systems, with
distinct outcome-related response profiles, we turned to the
question of whether the Early (alertness) system interacts with the
Late (reward related) system to aid learning to avoid choices that
previously led to negative outcomes, as proposed by the original
RST1. To quantify potential interactions, we adopted a connecti-
vity approach using a psychophysiological interaction analysis
(PPI)28. As a seed region for the PPI analysis, we selected the
CM-THAL for three main reasons: (1) the CM-THAL is one of
the most prominent activations uniquely correlating with the
EEG STV in our Early value component, (2) recent animal studies
suggested that the CM-THAL exerts state-control over learning-
related plasticity11,12 and (3) the CM-THAL is a major hub with
strong connections to regions appearing in both the Early and
Late systems23,27,29. We designed the PPI analysis to identify
brain areas in the Late system that increase their connectivity
with the thalamus following negative outcomes (see Methods).

This connectivity analysis revealed a significant inverse
coupling between the thalamus and the ventral STR cluster we
found in the Late system, which corresponds to the nucleus
accumbens (NAcc), a known projection site of the dopaminergic

system13 (Fig. 3c). Specifically, as the thalamic response in the
Early system increased following negative outcomes, NAcc
activity in the Late system decreased. The relative timing of
these activations as captured by the EEG suggests that the
interaction proceeds from the CM-THAL (Early) to the NAcc
(Late). We further confirmed the directionality of this interaction
using dynamic causal modelling analysis30,31 (Supplementary
Fig. 4a and Supplementary Methods). Interestingly, this coupling
was not evident in the EEG signal itself likely because these
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and positive outcomes and their interaction. (a) Demeaning the EEG STV
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trial-to-trial residual fluctuations (EEG rSTV) in which the overall

contribution of the categorical value contrast was removed (bottom

panels). This manipulation introduced four new fMRI regressors to examine

the extent to which negative and positive outcomes could explain the BOLD

responses associated with each of the Early and Late systems separately.

(b) The regions of the Early system correlated with the residual fluctuations

related to negative outcomes only (that is, higher EEG rSTV leading to

higher BOLD). Group regression coefficients from the CM-THAL and aMCC

are shown for illustration (Supplementary Tables 3 and 4). Direct

comparisons revealed significant differences in the response profile

between positive and negative outcomes. In contrast, regions of the Late

system correlated with the residual fluctuations in both negative and

positive outcomes. Group regression coefficients from the STR and vmPFC

are shown for illustration (Supplementary Tables 3 and 4). Error bars

represent s.e. across subjects. (c) The CM-THAL of the Early system

exhibited a strong inverse coupling with a striatal cluster in the NAcc

belonging to the Late system, following negative outcomes (n¼ 20). The

NAcc activation is shown at Z42.57, Po0.05 corrected, on the standard

MNI template. (d) Participants that exhibited stronger (more negative)

thalamostriatal coupling and hence stronger downregulation of the NAcc

showed a higher rate of switching behaviour following negative outcomes

(r¼0.73; Po0.001) and higher negative learning rates (r¼0.77;

Po0.001), estimated using a classical reinforcement-learning model.

(e) Graphical illustration of the two outcome value systems. Our data

suggests that controlling reward learning might extend beyond the direct

influence of the dopaminergic system, though future work would be

required to elucidate the specific neuromodulatory pathways driving the

two systems and their interactions.
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regions form only a small subset of the overall activations
associated with each system, highlighting the complementary
nature and the importance of integrating the two neuroimaging
modalities.

The dynamics of this thalamostriatal inverse coupling is
consistent with a mechanism of value updating, which in turn
can alter future choice behaviour27,32–35. To test this
interpretation and establish a direct link between the strength
of this coupling and participants’ behaviours, we performed an
additional analysis. Specifically, we correlated the strength of the
thalamostriatal coupling (regression coefficient from the PPI
analysis) from each participant with individual switch patterns
(fraction of switches following a negative outcome) and with
learning rates associated with negative outcomes33 (as estimated
with a classical reinforcement-learning model, Supplementary
equations (1–3)). We hypothesized that those individuals
exhibiting stronger (more negative) thalamostriatal coupling
would be showing a higher rate of switching behaviour and,
correspondingly, would be weighing recent negative outcomes
more strongly (that is, show a higher learning rate in the model).
Our findings confirmed this hypothesis (Fig. 3d), showing that
the strength of the thalamostriatal coupling was a significant
predictor of behavioural switches and learning rates (Po0.001
and Po0.001, respectively). The strength of this coupling
remained a significant predictor of behaviour even after
accounting for the individual activity of the CM-THAL and the
NAcc (P¼ 0.0045 and P¼ 0.0019, for behavioural switches and
learning rates, respectively). These findings offer the first instance
in the human brain where the thalamostriatal pathway is directly
linked to switching behaviour and updating value expectations in
line with animal literature12,36.

Finally, we also looked at whether the CM-THAL covaried
positively with other regions within the Early system itself and
found that it was functionality connected to the aMCC and
the aINS (Supplementary Fig. S3b), consistent with known
connectivity patterns between these regions37,38. Repeating the
PPI analysis with either the aMCC or aINS as seeds confirmed
this connectivity profile within the Early system. Interestingly,
however, only the CM-THAL showed a significant inverse
coupling with the Late system as discussed above. These
findings suggest that following negative outcomes, the
CM-THAL interacts both with structures controlling early
autonomic responses, as well as those activated later to update
value information, acting as a major hub between the Early and
Late systems37,38.

Discussion
Here we integrated EEG and fMRI data by exploiting the trial-by-
trial variability in the two neuroimaging modalities to provide a
characterization of the global network dynamics associated with
outcome value during reward-based learning in humans.
Correlating electrophysiological and haemodynamic measures
allowed ‘static’ fMRI activations (resulting from temporal
averaging and the slow dynamics of conventional fMRI) to be
absorbed by temporally specific components of outcome value.
This in turn offered temporal order to the underlying networks
and enabled a rigorous characterization of relevant network
interactions.

This approach led to the identification of two separate but
interacting neural value systems associated with learning in the
human brain. More specifically, our data suggests that a fast
(Early) system processes mainly negative decision-outcomes and
appears to serve a dual role. Specifically, it appears to initiate a
fast alertness response in the presence of negative outcomes,
while in parallel downregulates the response profile of a slower

(Late) reward-related system to promote avoidance learning.
Conversely, positive decision-outcomes primarily activate
the brain network associated with the Late system, consistent
with a role in approach learning and value updating, without a
corresponding contribution from the Early system. The presence
of these separate value systems suggests that different
neurotransmitter pathways might modulate each system and
facilitate their interaction (see illustration in Fig. 3e).

The brain regions associated with the Early system, such as the
CM-THAL, the aMCC and neighbouring premotor regions, are
known target sites of ascending noradrenergic and serotonergic
projections, from the locus coeruleus and the raphe nucleus,
respectively, that regulate alertness responses39. Although
largely speculative, this observation indicates a possible role of
these pathways in modulating the activity of the Early system,
which appears to act as an ‘interrupt’ signal of on-going activity
in the Late system to first address an immediate challenge in the
environment35. This idea is supported further by evidence
showing that the onset time of the Late system (in the EEG)
shifts later in time with the strength of the Early system
(Supplementary Fig. 4b and Supplementary Note 8). Moreover,
the profile of the Early EEG component is in line with
the feedback-related negativity40,41, which was recently
shown to respond to serotonergic rather than dopaminergic
modulation42,43. Taken together, these findings suggest that the
fast initial response of the Early system might not be facilitated by
dopamine.

In contrast, the brain regions associated with the Late system
(for example, vmPFC, STR, dPCC) have consistently been linked
to the dopaminergic pathway14,19,44,45 and its role in learning. In
particular, the incremental response profile we observed along the
negative/positive outcome dimension (that is, decreases and
increases in BOLD activity following negative and positive
outcomes, respectively) is in line with the distinct roles of the
D1 and D2 dopamine receptor subtypes, which have been shown
to drive approach (D1 stimulation after a positive outcome) and
avoidance learning (D2 suppression after a negative outcome),
respectively44, in the appetitive domain. These findings also
suggest that the Late EEG component, which is largely consistent
with a P300-type evoked response referred to as feedback-related
positivity46,47, could be under dopaminergic control, although
this hypothesis remains to be tested.

Notably, recent evidence from animal electrophysiology
suggests that the midbrain neurons mediating the avoidance
learning highlighted above behave markedly different following
negative outcomes depending on whether the outcome involved
an omission of reward or a true loss/punishment48,49. Our work
focuses on appetitive reinforcement and therefore positive and
negative outcomes represent rewards and non-rewards,
respectively. Whether or not our results extend to the aversive
domain (for example, receiving punishments) remains unclear,
though unpublished stand-alone EEG data from our lab using
monetary gains and losses in an otherwise identical task yielded
similar results (that is, an early and a late outcome value
components).

Importantly, we also showed that the observed decrease of
striatal activity in the Late system (NAcc), following negative
outcomes is regulated by an increase in thalamic activity in
the Early system (CM-THAL). Correspondingly, recent
animal studies have suggested that a direct CM-THAL/NAcc
interaction might play a major role in inhibiting the activity of the
network involved in motivational learning11,12,27,36. In line with
these animal studies, our work suggests that the Early value
system exerts state-control over the Late system to promote
switching behaviours and avoidance learning via a similar
thalamostriatal pathway.
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It has long been known that the STR, in particular the NAcc,
receives glutamatergic inputs from the CM-THAL50,51, however,
the functional role of this interplay in reward learning has long
been neglected13,14. Importantly, the glutamatergic inputs in the
NAcc have a reliable inhibitory effect on striatal cholinergic
interneurons51 that in turn suppress D2 receptors in the STR52,53.
One hypothesis could be that this thalamostriatal interplay is part
of an extended circuitry including regions of the brainstem, such
as the VTA, the primary source of dopamine-releasing neurons13,
and medial prefrontal cortex that regulate negative reinforcement
learning. Though this interpretation is still putative, we hope that
future studies, including high-resolution fMRI of the brainstem54

and more invasive electrophysiological experiments, will elucidate
the precise role of this neuromodulatory pathway and the
interactions of the two value systems.

In conclusion, we demonstrated that capitalizing on the
endogenous variability in electrophysiologically derived measures
of outcome value, recorded simultaneously with fMRI, offered
critical new insights, otherwise unobservable with each modality
alone. As such our general research approach opens up new
avenues for the investigation of the neural systems underlying
reward-based decision making in humans. Crucially, our
findings also have the potential to further improve our
understanding of how everyday responses to rewarding or
stressful events can affect our capacity to make optimal decisions,
as well as facilitate the study of how mental disorders—such as
chronic stress, obsessive-compulsive-disorder, post-traumatic
disorder and depression—affect learning and strategic planning.

Methods
Participants. Twenty-four subjects participated in the experiment. Four were
removed from the analysis for excessive head movements inside the scanner. The
remaining 20 subjects (8 males), aged between 18–31 years (mean¼ 21 years,
s.d.±2.6), were included in all subsequent analyses. All were right handed, had
normal or corrected-to-normal vision and reported no history of psychiatric,
neurological or major medical problems, and were free of psychoactive medications
at the time of the study. Written informed consent was obtained in accordance
with the School of Psychology Ethics Committee at the University of Nottingham.

Stimuli display. We used a set of 12 abstract symbols that were adapted from our
previous experiment3. In addition to these symbols, we used a tick and a cross to
provide positive and negative feedback, respectively. The stimuli (180� 180 pixels),
feedback symbols (125� 125 pixels) and fixation cross (30� 30 pixels) were
equated for luminance and contrast. A Windows Professional 7, 64 bit-based
machine (3 gb RAM) with an nVidia (Santa Clara, CA) graphics card and
Presentation software (Neurobehavioral Systems Inc., Albany, CA) controlled the
stimulus display. Images were projected with an EPSON EMP-821 projector
(refresh rate: 60 Hz, resolution: 1280� 1024 pixels) onto a screen which was 2.3 m
from the subject (projection screen size: 120� 90 cm). Stimuli and feedback
symbols were subtended 4�� 4� and 3�� 3� of visual angle, respectively.

Reversal-learning task. The experiment consisted of 2 blocks of 170 trials each
(340 trials in total). The two blocks were separated by a break. At the beginning of
each block, subjects were shown a screen with three symbols. For each block, a
different triplet was chosen randomly from the larger set of 12 symbols. Subjects
were told that their goal was to identify the symbol with the highest reward
probability. They were also informed that in the course of each block, the highest
reward probability might shift to one of the other two symbols and that they would
have to adjust their choices accordingly. Each rewarded trial earned them 1 point,
while unrewarded trials earned them 0 points. Subjects were also told that they
would receive a fixed payment for participation (d15 per hour) and an additional
amount (up to a maximum of d45) based on the outcome of a random subset of
trials selected at the end of the experiment (excluding ‘lost’ trials—see below). No
further details regarding the mapping between earned points and the final payoff
were given to the subjects.

Each trial began with the presentation of a central fixation cross for a random
delay in the range 1–4 s (mean delay 2.5 s). To ensure alertness during the
experiment and minimize saccades, subjects were instructed to focus on the central
fixation. Two of the three symbols were then placed to the left and to the right of
the fixation cross for 1.25 s. During this time, subjects had to choose one of the
symbols by pressing the left or right button on a fORP MRI compatible response
box (Current Design Inc., Philadelphia, PA, USA) using their right index or middle
finger, respectively. When subjects indicated their choice, the fixation cross

flickered for 100 ms to signal that the response was registered successfully. Next,
the decision outcome was presented after a second random delay in the range 1–4 s
(mean delay 2.5 s). Positive and negative outcomes were provided by placing a tick
or a cross, respectively, in the centre of the screen for 650 ms. Trials, in which
subjects failed to respond within the 1.25 s of the stimulus presentation, were
followed by a ‘lost trial’ message and were excluded from further analysis. Figure 1a
summarizes the sequence of these events. To increase detection power and
estimation efficiency in the fMRI analysis, the sequence of these events and the
timing of the two delay periods were optimized using a genetic algorithm55,56.

At any one point in the course of the experiment, one of the three symbols was
associated with a ‘high’ reward probability of 0.7 (that is, good symbol) compared
with the remaining two symbols (that is, bad symbols), each of which had a reward
probability of 0.3. Participants were naive about the exact reward probabilities
assigned to the symbols and they were told to learn to choose the good symbol
through trial and error and by taking into account the decision-outcome on each
trial. To detect when subjects learned to choose the symbols with the higher reward
probability, we defined a learning criterion. Specifically, subjects were thought to
have learned the good symbol when they chose it in five out of the last six trials.
Every time the learning criterion was reached, a reversal was introduced by
randomly changing the reward contingencies across the three symbols (that is, the
‘high’ reward probability was re-assigned to a different symbol). To make reversals
less predictable, we included additional trials (that is, buffer trials) after the
learning criterion was reached that followed a Poisson process, such that there was
a probability of 0.3 that a reversal took place on any given post-learning criterion
trial (with a minimum of 1 and a maximum of 8 trials) and before participants
entered a new learning phase.

To prevent subjects from searching for non-existent patterns and to reduce
cognitive load, we presented the three possible pair combinations of the three
symbols in a fixed order (that is, AB, BC, CA)—though the presentation side of the
symbols on the screen (left or right) of the fixation cross was randomized. Subjects
were explicitly informed about this manipulation. Another key component of this
paradigm was that we presented stimulus pairs chosen from a pool of three
symbols. This manipulation served two important purposes. First, it encouraged
subjects to engage in an exploration phase to identify the most rewarding symbol
after reversals occurred. Second, it forced the subjects to choose between the two
least rewarding symbols (in every third trial, when the two were presented
together) even when they had learned the task. Overall, when deciding between the
two bad symbols subjects chose the one that carried the highest expected value as
estimated based on past reward history (Supplementary Fig. 2b). This manipulation
ensured a more balanced number of positive and negative outcomes.

Training. Two weeks prior to the main experiment, participants were invited to
complete a full set of trials on the main task. This training session was designed to
familiarize participants with the task and identify those individuals that understood
the probabilistic nature of the task, whom we invited back for the main experiments.
The day of the simultaneous EEG-fMRI scanning session, prior to the main experi-
ment, all subjects completed an additional 100 trials to remind them of the main task.

Electrophysiological data acquisition. EEG was collected simultaneously with
the fMRI data using an MR-compatible EEG amplifier system (BrainAmps
MR-Plus, Brain Products, Germany) and recorded using Brain Vision Recorder
(BVR; Version 1.10, Brain Products, Germany) with a 5-kHz sampling rate. Data
underwent online (hardware) filtering with a band-pass filter of 0.016–250 Hz. The
EEG cap consisted of a 64 Ag/AgCl scalp electrodes positioned according to the
international 10–20 system of electrode positioning. Reference and ground
electrodes were embedded in the EEG cap and placed along the midline (reference
electrode: between electrode Fpz and Fz, ground electrode: between electrode Pz
and Oz). Each electrode had in-line 10 kO surface-mount resistors to ensure subject
safety. All leads were twisted for their entire length and bundled together to
minimize inductive pick-up. All input impedances were kept below 20 kO
(including the 10 kO surface-mount resistors on each electrode). Acquisition of the
EEG data was synchronized with the MR data acquisition (Syncbox, Brain
Products, Germany) and MR-scanner triggers were collected separately to enable
offline removal of MR gradient artifacts. Scanner trigger pulses were lengthened to
50 ms using an in-house pulse stretcher to facilitate accurate capture by the BVR.
Experimental event codes were also synchronized with the EEG data and collected
using the BVR software.

To minimize the MR gradient artifacts, we ensured that electrodes Fp1 and Fp2
were at the isocentre of the MR scanner in the z-direction57 when placing
participant’s in the scanner. We achieved this, by aligning these two electrodes with
the laser beam used to position the participants inside the bore. A 32-channel
SENSE head coil incorporated an access port, which allowed the cables from the
EEG cap to run along a straight path out of the scanner and helped to ensure there
were no wire loops, minimizing the risk of RF heating of the EEG cap and
associated cables and induce EEG artifacts. In addition, the cabling was isolated
from scanner vibrations as much as possible to minimize induced artifacts, through
the use of a cantilevered beam58.

EEG pre-processing. We performed EEG pre-processing offline using Matlab
(Mathworks, Natick, MA). EEG signals recorded inside an MR scanner are

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9107 ARTICLE

NATURE COMMUNICATIONS | 6:8107 | DOI: 10.1038/ncomms9107 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


contaminated with gradient artifacts and ballistocardiogram (BCG) artifacts due to
magnetic induction on the EEG leads. We first removed the gradient artifacts.
Specifically, from each functional volume acquisition we subtracted the average
artifact template constructed using the 80 volumes centred on the volume-of-
interest using in-house Matlab software. We repeated this process for as many
times as there were functional volumes in our data sets. We subsequently applied a
10-ms median filter to remove any residual spike artifacts. Next, we removed
standard EEG artifacts by applying a 0.5-Hz high-pass filter to remove DC drift, 50
and 100 Hz notch filters to remove electrical line noise, and 100 Hz low-pass filter
to remove high frequency artifacts not associated with neurophysiological pro-
cesses. These filters were applied together, non-causally to avoid distortions caused
by phase delays.

BCG artifacts share frequency content with the EEG and as such are more
challenging to remove. Here to avoid loss of signal power in the underlying EEG,
we adopted a conservative approach based on our previous work59,60. Specifically,
we only removed a small number of subject-specific BCG components using
principal component analysis (see below) and relied instead on our single-trial
classifiers (see single-trial EEG analysis section) to identify discriminating
components that are likely to be orthogonal to the BCG. Note that this approach is
robust to the presence of BCG artifact residuals due, specifically, to the multivariate
nature of our classification techniques. BCG principal components were extracted
from the data after the data were first low-pass filtered at 4 Hz to extract the signal
within the frequency range where BCG artifacts are observed, and then subject-
specific principal components (average number of components across subjects: 2.3)
were determined. The sensor weightings corresponding to those components were
projected onto the broadband data and subtracted out.

Eye-movement artifact removal. Prior to the main experiment, we asked our
participants (while in the scanner) to complete an eye-movement calibration task
during which they were instructed to blink repeatedly on the appearance of a
fixation cross in the centre of the screen and then to make several horizontal and
vertical saccades according to the position of the fixation cross. The fixation cross
subtended 0.6�� 0.6� of visual angle. Horizontal saccades subtended 30� and
vertical saccades subtended 22�. This exercise enabled us to determine linear EEG
sensor weightings corresponding to eye blinks and saccades (using principal
component analysis) such that these components were projected onto the broad-
band data from the main task and subtracted out61.

Single-trial EEG analysis. We applied a linear multivariate classifier to EEG data
locked to the time of decision outcome, using the sliding window method in refs
15–18. Specifically, we found a projection of the multidimensional EEG signal,
xi(t), where i¼ {1yT} and T is the total number of trials, within a short time
window that achieved maximal discrimination between positive and negative
outcome trials. All time windows had a width of N¼ 60 ms and the window centre
t was shifted from � 100 to 600 ms relative to outcome onset, in 10-ms
increments. We used a regularized Fisher discriminant analysis (see below for
details)62 to learn the spatial weighting, w(t), that maximally discriminated
between positive and negative outcomes, arriving at the one-dimensional
projection yi(t), for each trial i and a given window t:

yiðtÞ ¼
1
N

Xt¼tþN=2

t¼t�N=2
wðtÞ?xiðtÞ ð1Þ

where yi(t), is organized as a vector of single-trial discriminator amplitudes
(1�Trials), the spatial filter, w(t), is organized as a vector with as many weights as
there are channels in the data (1� 64) and data, xi(t), is organized as a matrix, with
dimensions (64�Trials/Samples). ? is used to indicate a transpose operator. We
adopted this approach to identify all time windows t yielding significant
discrimination performance in the outcome period and used the resultant single-
trial component amplitudes, yi(t), to construct parametrically modulated BOLD
predictors for our fMRI analysis as discussed below (see fMRI analysis section).
Note that in separating the two groups of trials, the classifier was designed to map
positive and negative discriminant component amplitudes to positive and negative
outcomes, respectively. As such brain regions in the fMRI that correlated positively
with the EEG STV showed an overall stronger response to positive rather than
negative outcomes, whereas regions that correlated negatively showed the opposite
effect (that is, stronger response to negative rather than positive outcomes).

The projection vectors w at each time window t were estimated as: w¼ Sc

(m2–m1) where mi is the estimated mean of condition i and Sc¼ 1/2(S1þ S2) is the
estimated common covariance matrix (that is, the average of the condition-wise
empirical covariance matrices, Si ¼ 1=ðT � 1Þ

PT
j¼1 ðxj �miÞðxj �miÞ? , with

T¼ number of trials). To treat potential estimation errors, we replaced the
condition-wise covariance matrices with regularized versions of these matrices:
~Si ¼ 1� lð ÞSi þ lnI, with lA[0, 1] being the regularization term and n the average
eigenvalue of the original Si (that is, trace(Si)/64). Note that l¼ 0 yields
unregularized estimation and l¼ 1 assumes spherical covariance matrices. Here we
optimized l for each participant using a leave-one-out trial cross validation
procedure (l’s, mean±s.e.: 0.028 ±0.05) across the entire post-outcome period.

We quantified the performance of the discriminator for each time window
using the area under a receiver operating characteristic curve, referred to as an Az

value, using a leave-one-out trial procedure63. To assess the significance of the

discriminator, we used a bootstrapping technique where we performed the
leave-one-out test after randomizing the trial labels. We repeated this
randomization procedure 1,000 times to produce a probability distribution for Az,
and estimated the Az leading to a significance level of Po0.01. In addition, we
implemented a separate temporal-clustering procedure using a similar
randomization test. Specifically, we repeated the procedure above, each time
identifying the maximum number of continuous time steps surviving the Az

significance threshold found with the original bootstrapping technique described
above. This in turn enabled us to produce a null distribution for the maximum
number of continuous temporal windows and estimate a temporal cluster size
leading to a significance level of Po0.05 (individually for each participant, average
temporal cluster threshold: 4.7 time steps±2.1).

Given the linearity of our model, we also computed scalp topographies of the
discriminating components resulting from equation (1) by estimating a forward
model as:

aðsÞ ¼ xðsÞyðsÞ
yðsÞ?yðsÞ

ð2Þ

where yi(t) is now shown as a vector y(s), where each row is from trial i, and xi(t)
is organized as a matrix, x(s), where rows are channels and columns are trials, all
for time window t. These forward models can be viewed as scalp plots and
interpreted as the coupling between the discriminating components and the
observed EEG15,17,59. Code for the linear discriminant analysis described above is
available at: http://liinc.bme.columbia.edu/downloads/lr1.2_plugin.tar.gz

To visualize the temporal profile of the resultant discriminating components
across individual trials, we also constructed discriminant component maps (as seen
in Fig. 1c). To do so, we applied the spatial weighting vectors, w(t) from a time
window, t, which led to significant discrimination performance between positive
versus negative outcomes, to an extended time window (100 ms before until 600 ms
after the outcome). Each row of one such discriminant component map represents
a single trial across time (see, for example, Fig. 1c).

MRI data acquisition. BOLD data sets were acquired on a 3 T Philips Achieva
MRI scanner (Philips, Netherlands). Functional Echo-Planar-Imaging (EPI) data
were acquired using an 32-channel SENSE head coil with SENSE factor 2.3 with an
anterior–posterior fold over direction, 40 slices of 68� 68 voxels with in-plane
resolution of 3� 3 mm and slice thickness of 3 mm and a flip angle of 80�.
Repetition time (TR) was 2.5 s with an echo time (TE) of 40 ms. Slices were
acquired in an interleaved order. In total, two separate runs of 468 volumes each
were acquired corresponding to the two blocks of trials in the main experimental
task. Anatomical images were acquired using a MPRAGE T1-weighted sequence
that yielded images with a 1� 1� 1 mm resolution (160 slices of 256� 256 voxels;
TR: 8.2 ms, TE: 3.7 ms). A B0 map was acquired using a multi-shot gradient echo
sequence with TE¼ 2.3 ms and delta TE¼ 5 ms with 3-mm isotropic resolution,
68� 68� 32 matrix, TR 383 ms, flip angle 90�, which was subsequently used to
correct for distortion of the EPI data due to B0 inhomogeneities for each
participant.

fMRI pre-processing. The first five volumes from each fMRI run (pre-task period)
were discarded to ensure a steady-state MR signal, and the remaining 463 volumes
were used for the statistical analysis. Initial fMRI data pre-processing was per-
formed using the FMRIB’s Software Library (Functional MRI of the Brain, Oxford,
UK) and included head motion correction, slice-timing correction, high-pass fil-
tering (4100 s), and spatial smoothing (with a Gaussian kernel of 8 mm full-width
at half maximum). Registration of EPI images to standard space (Montreal
Neurological Institute, MNI) was performed using FMRIB’s Non-linear Image
Registration Tool with a 10-mm warp resolution64. The registration procedure
involved transforming the EPI images into an individual’s high-resolution space
(with a linear six-parameter rigid body transformation) prior to transforming to
standard space. Finally, we performed B0 unwarping to correct for signal loss and
geometric distortion due to B0 field inhomogeneities in the EPI images65.

fMRI analysis. Whole-brain statistical analyses of functional data were performed
using a multilevel approach within the framework of a GLM, as implemented in
FSL (using the FEAT module66):

Y ¼ Xbþ e ¼ b1X1 þb2X2 þ . . . þbN XN þ e ð3Þ

where Y is a T� 1 (T time samples) column vector containing the times series data
for a given voxel, and X is a T�N (N regressors) design matrix with columns
representing each of the psychological regressors convolved with a canonical
haemodynamic response function (double-g function). b is a N� 1 column vector
of regression coefficients (commonly referred to as betas or parameter estimates)
and e a T� 1 column vector of residual error terms.

A first-level analysis was performed to analyse each subject’s individual runs,
which were then combined using a second-level analysis (fixed effects). Finally,
to combine data across subjects a third-level, mixed-effects model was used
(FLAME 1), treating participants as a random effect. Time-series statistical analysis
was carried out using FMRIB’s improved linear model with local autocorrelation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9107

8 NATURE COMMUNICATIONS | 6:8107 | DOI: 10.1038/ncomms9107 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://liinc.bme.columbia.edu/downloads/lr1.2_plugin.tar.gz
http://www.nature.com/naturecommunications


correction67. In total, we performed three different GLM analyses using this
framework (see below).

Conventional fMRI analysis of outcome value—GLM 1. We first ran a
conventional fMRI analysis designed to identify the brain networks responding
differentially to positive and negative outcomes using a simple categorical regressor
for outcome valence. Specifically, locking at the time of outcome (that is, when the
tick/cross appeared) we included four boxcar regressor with a duration of 100 ms
for each regressor event: (1) an unmodulated regressor (all event amplitudes set to
1); (2) a simple categorical regressor for outcome valence (amplitudes set to þ 1 for
positive and � 1 for negative outcomes); (3) a fully parametric regressor whose
event amplitudes were modulated by the unsigned prediction error (PE) estimates
from a RL model (to control for salience effect) and (4) an unmodulated regressor
for all lost trials. In addition we included an unmodulated regressor of no interest
at the time of stimulus presentation (that is, decision phase) and six nuisance
regressors, one for each of the motion parameters (three rotations and three
translations).

EEG-informed fMRI analysis of outcome value—GLM 2. In this analysis, we
capitalized on the EEG STV in two highly discriminating components of outcome
value (Fig. 1b; Early and Late). Specifically, we used the resulting trial-by-trial
amplitude estimates of yi(t) (equation (1)) for each component to build two
separate BOLD predictors (Supplementary Fig. 1). Our hypothesis is that the
endogenous trial-by-trial variability in these two components carries more infor-
mation about the internal processing of decision-outcomes than the
stable (categorical) representation of the external stimulus valence (in GLM 1). As
such this approach could enable both separation of the relevant fMRI activations
(as seen in the conventional analysis above), identification of latent brain states
(activations unobserved in the conventional analysis) and assignment of temporal
order to the underlying networks. We therefore replaced the categorical valence
regressor in the conventional analysis above (GLM 1) with two fully parametric
regressors modulated by the EEG STV in each of the Early and Late discriminating
components of outcome value. We set the onset time of these regressors at the time
of outcome. Shifting these to the actual times of the Early and Late components
(as seen in the EEG) yielded identical results due to the sluggish nature of the
haemodynamic response function. Dissociating the contribution of the two
components was driven exclusively by amplitude modulation of our regressor
events. The rest of the design was identical to GLM 1. To account for the shared
variance between the two EEG-informed regressors, we also performed two
supplementary analyses. Specifically, we repeated GLM 2 while orthogonalizing the
regressor for the Early EEG component with respect to the one for the Late EEG
component and vice versa. We found that in both designs, the activations
correlating with the Early and Late components remained identical to those in the
original model (See Supplementary Note 9).

EEG-informed fMRI valence analysis—GLM 3. Demeaning the EEG STV for
each value system and outcome type separately produced trial-to-trial residual
fluctuations (EEG rSTV) in which the overall contribution of the categorical value
contrast was removed (Supplementary Fig. 1c). This manipulation introduced four
new fMRI regressors (Fig. 3a, EarlyNeg, EarlyPos, LateNeg and LatePos) to
examine the extent to which negative and positive outcomes could explain the
BOLD responses associated with each of the Early and Late systems (as identified in
GLM 2) separately. The main motivation for this analysis rests with the idea that
regions responding to each outcome type separately should continue to covary with
the EEG rSTV (that is, electrophsyiologically derived endogenous variability) in the
relevant regressors above. We therefore replaced the categorical valence regressor
in the conventional analysis above (GLM 1) with four fully parametric regressors
modulated by the EEG rSTV as described above. The rest of the design was
identical to GLM 1/2.

The three GLM models highlighted above were selected to offer a hierarchically
principled approach to illustrate what can be gained when the analysis proceeds
from using a conventional (categorical) fMRI contrast (GLM 1), to using multiple
single-trial EEG-informed predictors to absorb the activations appearing in the
conventional analysis and offer temporal order to the relevant networks (GLM 2),
to finally showing how the temporally specific activations identified in the previous
step respond separately to positive and negative outcomes (GLM 3).

Resampling procedure for fMRI thresholding. In order to properly correct the
fMRI statistical maps for multiple comparisons, we used a resampling procedure
that took into account the a priori statistics of the trial-to-trial variability in all of
our fully parametric regressors (that is, EEG-derived regressors and model-based
unsigned PE regressor) in a way that trades off cluster size and maximum voxel
Z-score68. Specifically, we maintained the overall distributions of the EEG
discriminating components (yi(t) values for the Early and Late components), as
well as the trial-by-trial variability of the unsigned PE regressor from the RL model,
while removing the specific trial-to-trial correlations in individual experimental
runs. Thus for each resampled iteration and each regressor type, all trials were
drawn from the original y-value and |PE| distribution, however, the specific values
were mixed across trials and runs. In other words, each subject had the same

resampled run y-values and |PE|’s for a given iteration, though the resulting
regressors for each subject were different given that each had a random sequence of
regressor amplitude events.

This procedure was repeated 100 times. For each of the 100 resampled
iterations, a full 3-level analysis (run, subject and group) was performed. Our
design matrix included the same regressors of non-interest used in all our GLM
analyses. In turn this allowed us to construct the null hypothesis H0, and establish
a joint threshold on cluster size and Z-score based on the cluster outputs from the
permutated parametric regressors. Specifically, we extracted cluster sizes from all
activations exceeding a minimal cluster size (10 voxels) and Z-score (2.57 per
voxel) for both positive and negative correlations with the permuted parametric
regressors. Finally, we examined the distribution of cluster sizes (number of voxels)
for the permuted data and found that the largest 5% of cluster sizes exceeded 76
voxels. We therefore used these results to derive a corrected threshold for our
statistical maps, which we then applied to the clusters observed in the original data
(that is, Z¼ 2.57, minimum cluster size of 76 voxels, corrected at P¼ 0.05).

Extracting time-series data. Time-series data from subject-specific clusters of
interest were extracted for a PPI (see below). Specifically, we first identified clusters
of interest at the group level (that is, in standard space) by applying the cluster
correction procedure described above. We subsequently back-projected these
clusters from standard space into each individual’s EPI (functional) space by
applying the inverse transformations as estimated during registration (see fMRI
pre-processing section). Each cluster was then checked against the relevant
(regressor specific) statistical maps in individual brains (at a slightly more lenient
threshold of Po0.01 uncorrected, cluster size 410 voxels (90 mm3)) to ensure that
the inverse-transformation was performed properly. Finally, average regression
coefficient or time-series data from all voxels in the back-projected clusters in each
subject were computed and normalized for each of the positive and negative
regressors.

PPI analysis. Using the procedure described above, we extracted time-series data
from individual clusters in the CM-THAL (bilaterally) of the Early value system,
which served as a seed region (that is, physiological regressor—PHY) for a PPI
analysis28,69. This analysis was primarily designed to investigate the potential
interaction of the Early and Late systems following negative outcomes. As such, the
increase in correlation between the CM-THAL and potential regions of the Late
system should be specific for the task in which this coupling is relevant; that is, it
should be greater during processing of negative compared with positive outcomes
(since the Early system engages only after negative outcomes). Therefore our
psychological (PSY) task regressor was constructed such that negative outcomes
were weighted þ 1 and positive outcomes were weighted � 1 (using the EEG STV
in the Early system to modulate the regressor amplitudes instead yielded identical
results, see Supplementary Note 10). The PPI analysis thus included the following
regressors during the outcome phase: (1) an unmodulated regressor (all event
amplitudes set to 1), (2) the PHY regressor, (3) the PSY regressor and (4) the
interaction regressor (PHY�PSY). The rest of the design was identical to GLM 1/
2/3. Correction for multiple comparisons was performed on the whole brain using
the outcome of the resampling procedure as described earlier. Finally, we note that
we used this analysis to also search for increased coupling within the Early system
itself following negative outcomes.

Thalamostriatal connectivity predicting behaviour. To test whether the strength
of the connectivity between the CM-THAL and NAcc as identified in our PPI
analysis (see PPI analysis section; Fig. 3c) could predict participants’ choice
behaviour, we performed the following between-subject correlation analyses: we
correlated the individual PPI regression coefficients from subject-specific NAcc
clusters with (1) the fraction of switch choices away from the symbol that led to a
negative outcome (the next time that symbol was offered) and (2) the individual
negative learning rates from the RL model (representing individual tendencies to
weigh recent negative outcomes more strongly). In addition, to confirm that it was
not the activity of the individual regions (CM-THAL and NAcc driving the cor-
relations above), we performed a separate regression analysis. Specifically, in
addition to the strength of the thalamostriatal coupling (PPI coefficients), we also
included the activity of the CM-THAL and NAcc as separate predictors of switches
and negative learning rates, respectively. The results of these analyses are depicted
in Fig. 3d in the main text.
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