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Abstract: Couette flow has been widely used in many industrial and research processes, such as 

viscosity measurement. For the study on thixotropic viscosity, step-loading, which includes (1) step 

shear stress and (2) step velocity conditions, is widely used. Transient stages of Couette flow under 

both step wall shear stress and step wall velocity conditions were investigated. The relative 

coefficient of viscosity was proposed to reflect the transient process. Relative coefficients of 

viscosity, dimensionless velocities and dimensionless development times were derived and 

calculated numerically. This article quantifies the relative coefficients of viscosity as functions of 

dimensionless time and step ratios when the boundary is subjected to step changes. As expected, 

in the absence of step changes, the expressions reduce to being functions of dimensionless time.  

When step wall shear stresses are imposed, the relative coefficients of viscosity changes from the 

values of the step ratios to their steady-state value of 1. but With step-increasing wall velocities, 

the relative coefficients of viscosity decrease from positive infinity to 1. The relative coefficients 

of viscosity increase from negative infinity to 1 under the step-decreasing wall velocity condition. 

During the very initial stage, the relative coefficients of viscosity under step wall velocity 

conditions is further from 1 than the one under step wall shear stress conditions but the former 

reaches 1 faster. Dimensionless development times grow with the step ratio under the step-rising 

conditions and approaches the constant value of 1.785 under the step wall shear stress condition, 

and 0.537 under the step wall velocity condition respectively. The development times under the 

imposed step wall shear stress conditions are always larger than the same under the imposed step 

wall velocity conditions.  

Key words: Couette flow; Boundary conditions; Step wall shear stress; Step wall velocity 

Nomenclature 

d distance between the two plates, m 

t time, s 

𝑡∗  characteristic time, 𝑡∗ = 𝑑2 𝜈⁄ , s 

𝑡̃ dimensionless time, 𝑡̃ = 𝑡 𝑡∗⁄  
td development time, s 
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𝑡̃𝑑                   dimensionless development time, 𝑡̃𝑑 = 𝑡𝑑 𝑡∗⁄  
𝑢  fluid velocity, m/s 

𝑢𝑤 bottom wall velocity, m/s 

𝑢̃ dimensionless velocity distribution 

𝑢𝑠  steady velocity distribution of stage (1), m/s 

ud  velocity after the flow field has developed, m/s 

u0  bottom wall velocity at stage (1), m/s 

u1 bottom wall velocity at stage (2) , m/s 

U  velocity during the developing period, m/s 

x  vertical spatial coordinate, m 

𝑥̃ dimensionless vertical spatial coordinate 

Greek Symbols 

n  eigen values

𝜀 step ratio 

𝛾̇  shear rate, s-1 

  dynamic viscosity of fluid, Pa·s

  fluid density, kg/m3

𝜏 shear stress, Pa 

𝜏𝑤 bottom wall shear stress, Pa 

𝜏0  bottom wall shear stress at stage(1) , Pa

𝜏1 bottom wall shear stress at stage(2) , Pa 

𝜏𝑑  developed shear stress, Pa

n  eigen values

𝜈  kinematic viscosity of fluid, m2/s 

𝜑 relative coefficient of viscosity, dimensionless 

𝜑𝜏 𝜑 under imposed wall shear stress condition, dimensionless 

𝜑𝑢 𝜑 under imposed wall velocity condition, dimensionless 

 

1 INTRODUCTION 

In fluid dynamics, Couette flow is the laminar flow of a viscous fluid in the space between two 

parallel plates, one of which is moving while the other one keeps static. The transient start-up of 

Couette flow between two parallel plates one of which moves suddenly under imposed constant 

velocity has been investigated by many researchers[1,2]. Bandyopadhyay and Mazumder [3] studied 

the longitudinal dispersion of passive contaminant in an incompressible fluid between a parallel 

plate channel oscillating wall velocities. Analytical solutions of transient Couette flows of 

Newtonian fluid with constant and time-dependent pressure gradients have been proposed by 

Mendiburu et al. [4]. But the boundary condition was always a constant velocity.  

There have been other researches on unsteady Couette flow of non-Newtonian fluid or under 

special situations. Exact solutions of unsteady Couette flows of generalized Maxwell fluid with 

fractional derivative were obtained by Wang and Xu[5] and Tan et al.[6]. Theoretical analysis of the 

velocity field and stress field of generalized second order fluid was presented by Xu and Tan[7]. 

Analytic solutions for unsteady unidirectional flows of an incompressible second grade fluid with 
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a free surface or a moving plate and the associated frictional forces were reported by Hayat et al.[8]. 

Unsteady Couette flows of a second grade fluid with space dependent viscosity, elasticity and 

density were investigated by Asghar et al.[9]. Velocity distributions for transient Couette flows of 

Oldroyed-B fluid between two infinite parallel plates have also been reported [10,11]. Lacaze et al.[12] 

presented solutions to describe the flows of a viscoplastic fluid subjected to constant and sinusoidal 

moving plate velocities in a relative wide cylindrical Couette device. Solutions for unsteady 

Couette flow through a porous medium or in a magnetic or electric field have also been reported 

[13-15]. Unsteady magnetohydrodynamics (MHD) Couette flow of a third-grade fluid in the presence 

of pressure gradient and Hall currents was discussed by Azram and Zaman [16]. Unsteady Couette 

flow through of a viscoelastic fluid through a parallel plate channel filled with a porous medium 

was studied by Attia et al.[17]. Makinde and Franks[18] studied transient reactive MHD Couette flow 

with temperature dependent viscosity and thermal conductivity. Boundary conditions of all above 

researches were either constant or time-dependent velocity at the moving wall. Imposed shear stress 

boundary conditions have never been considered.   

There have been some researchers paying their attention on boundary conditions of controlled 

tangential surface force or torque. Ting[19] discussed unsteady Couette flows of second-order fluids 

with constant tangential surface force. Considering inertia of rotation, Ravey et al[20] studied the 

transient motions of rotor based on an air-bearing viscometer filled with Newtonian fluids. 

Transient Couette flow of an Oldroyd fluid between two circular cylinders was investigated by 

Bernardin and Nouar[21] . The flow was induced by applying a constant torque to the inner cylinder 

with the outer cylinder kept stationary. Asymptotic analysis on acceleration and relaxation process 

near the inner cylinder was carried out to determine the time for inner cylinder and fluid to reach 

steady state.  

Muzychka and Yovanovich [22] investigated the transient stage of Couette flow between two 

parallel plates and proposed a compact expression to describe the time-dependent shear stress on 

the internal surface of moving plate. Emin Erdoǧan[2] concluded that the time required to attain the 

asymptotic values of the skin friction or volume flux of a Couette flow is 𝑑2 𝜈⁄  , where 𝑑 

indicates the gap between the two parallel plates and 𝜈 represents the kinematic viscosity of the 

fluid. There have been several reasonable time scales for Taylor vortex flow to reach fully 

developed in cylindrical Couette flow, such as 𝑡∗ = 𝑑2 𝜈⁄ , where 𝑑 indicates radial gap[23,24], 

𝑡∗ = 𝐻2 𝜈⁄ , where 𝐻 indicates gap length[25, 26], and a mixed time scale based on both 𝐻 and 

𝑑[27, 28], 𝑡∗ = 𝐻𝑑 𝜈⁄ . Another description of viscous time scale incorporating both the gap width 

and the distance between the endwalls of the system was recommended by Czarny and Lueptow 
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[29]. 

Couette flow has been used as the fundamental method for the measurement of viscosity[22]. 

Viscosity of time-dependent viscous fluid, such as thixotropic fluid, needs to be measured and 

recorded continuously. Step-loadings, either step shear stress or step shear rate are widely used to 

study the viscosity of thixotropic fluid [30-33]. The velocity distribution is not steady immediately 

after step-changing of boundary conditions. Only when the velocity gradient of fluid becomes time-

invariant, will the measured viscosity represents the actual one.  

In this article, transient Couette flow of an incompressible Newtonian fluid between two infinite 

parallel plates subjected to both step wall shear stress and step wall velocity boundary conditions 

are analyzed. The times needed for the velocity fields to allow for proper viscosity measurements 

called the “development times” are presented. For quantitative analysis on transient stage, we 

define the relative coefficient of viscosity 𝜑(𝑡) and dimensionless development time 𝑡̃𝑑 . The 

potential errors on viscosity measurements under different loading conditions are quantified and 

compared by examining these two parameters.   

The remainder of this article is divided into seven sections. The problem analyzed in this article 

is outlined in the next section. This is followed by the definitions of the dimensionless parameters 

used to identify the development times. Section 4 presents the governing equations, the initial 

condition and the boundary conditions for the problem described in Section 2. The velocity 

distributions are then listed in Section 5. The relative coefficient of viscosity and the dimensionless 

velocity are then obtained in Section 6. This is followed by discussion of the results. Some 

concluding remarks are given to conclude the article. 

 

 

2 PROBLEM DESCRIPTION  

When viscosity is measured in coaxial cylinder viscometer, fluid is kept in concentric cylindrical 

cylinders. One cylinder is kept stationary while the other rotates. This leads to an axisymmetric 

velocity distribution. Neglecting end effects, the velocity is a function of the radial coordinate. For 

the study on thixotropic viscosity, step-loading is widely used which include (1) step shear stress 

and (2) step shear rate conditions. In a rheometer, shear rate is imposed by setting the rotational 

speeds of the measuring system[34]. So imposed shear rate condition can be analyzed as the imposed 

velocity condition. The flow in the annulus can be modeled using flow between two infinite parallel 

plates as the ratio of the annulus gap between inner and outer cylinders to the radius of the inner 

cylinder is small. The remainder of this article presents analyses of flow between two flat plates 

used to calculate viscosity. 
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Fig.1 shows the schematic of the problems considered in this article. Couette flows between two 

parallel plates separated by a distance 𝑑  are analyzed. Transient laminar flows of an 

incompressible Newtonian fluid are induced by imposing different conditions on the bottom wall 

while the top wall remains stationary. The fluid is restricted to flow parallel to the two plates leading 

to a velocity field which is a function of vertical spatial coordinate 𝑥 and time 𝑡. The flow is 

steady under a specific wall shear stress 𝜏0 (𝜏0 ≠ 0) or velocity 𝑢0 (𝑢0 ≠ 0) in stage (1) and the 

velocity distribution could be described by 

𝑢𝑠(𝑥) =
𝜏0

𝜇
(𝑑 − 𝑥) (1) 

under the imposed wall shear stress condition and  

𝑢𝑠(𝑥) =
𝑢0

𝑑
(𝑑 − 𝑥) (2) 

under the imposed wall velocity condition. Here 𝑢𝑠 is the steady velocity of stage (1) and also the 

initial velocity of stage (2). At the beginning of stage (2), the wall shear stress jumps to 𝜏1 (𝜏1 ≠

𝜏0 > 0) or the wall velocity jumps to 𝑢1  (𝑢1 ≠ 𝑢0 > 0). Transient flows caused by the step 

boundary conditions are sought after in this article.  

 

Fig.1 Schematic of the problem 

3 BASIC DEFINITIONS 

3.1 Relative Coefficient of Viscosity 

There are two different ways to determine the fluid viscosity which include (1) imposing the 

shear stress and (2) imposing the shear rate. For a measuring system which is based on Couette 

flow shown in Fig.1, the shear rate 𝛾̇ is calculated from  

𝛾̇ ≡
𝑢𝑤

𝑑
=

𝑢(0, 𝑡)

𝑑
 (3) 

where 𝑢𝑤 is the wall velocity.  

For a Newtonian fluid, the wall shear stress 𝜏𝑤 can be determined from 
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𝜏𝑤 ≡ 𝜏(0, 𝑡) = −𝜇𝑎

𝜕𝑢(0, 𝑡)

𝜕𝑥
= 𝜇(𝑡) ∙ 𝛾̇ (4) 

where 𝜇(𝑡) is the calculated viscosity based on the measuring principle, 𝜇𝑎 is the actual dynamic 

viscosity of fluid and x is the distance normal to the plates (measured from the bottom wall) as 

shown in Fig.1. After an initial transient period where the velocity develops, the developed velocity 

𝑢(𝑥, 𝑡) is linear in 𝑥 and is related to the shear stress 𝜏(𝑥, 𝑡) by 

𝜏𝑑(0, 𝑡 > 𝑡𝑑) = 𝜇𝑎

𝑢𝑑(0, 𝑡)

𝑑
= 𝜇𝑎𝛾̇𝑑 (5) 

where 𝜏𝑑 is the developed shear stress, 𝑡𝑑 is the development time, 𝛾̇𝑑 is the developed shear 

rate. During the initial transient, the measured fluid viscosity can be different from the actual fluid 

viscosity. A relative coefficient of viscosity 𝜑(𝑡) is defined as 

𝜑(𝑡) ≡
𝜇(𝑡)

𝜇𝑎
 (6) 

Imposed wall shear stress 𝝉𝒘 

When wall shear stress is imposed, 𝜏(0, 𝑡) = 𝜏𝑑(0, 𝑡) = 𝜏𝑤 , 𝛾̇  is calculated from the wall 

velocity. Using Eq. (3) to Eq. (6), the relative coefficient of viscosity is then calculated through 

𝜑𝜏(𝑡) =
𝜏(0, 𝑡)𝑑 𝑢(0, 𝑡)⁄

𝜏𝑑(0, 𝑡)𝑑 𝑢𝑑(0, 𝑡)⁄
=

𝑢𝑑(0, 𝑡)

𝑢(0, 𝑡)
 (7) 

where the subscript 𝜏 denotes imposed wall shear stress. 

Imposed wall velocity 𝒖𝒘 

When the shear rate is imposed, the velocity of moving boundary is specified. Based on the ideal 

Couette problem shown in Fig.1, there will be 𝑢(0, 𝑡) = 𝑢𝑑(0, 𝑡) = 𝛾̇𝑑. Using Eqs.(4) and (5). 

The relative coefficient of viscosity can be evaluated as 

𝜑𝑢(𝑡) =
−𝜇𝑎

𝜕𝑢(0, 𝑡)
𝜕𝑥

𝑢𝑑(0, 𝑡)
𝑑

⁄

𝜇𝑎
=

− 𝜕𝑢(0, 𝑡) 𝜕𝑥⁄

𝑢𝑑(0, 𝑡) 𝑑⁄
 (8) 

where the subscript 𝑢 denotes imposed wall velocity. 

3.2 Dimensionless Velocity 

Here we define the dimensionless velocity under different boundary conditions as 

𝑢̃(𝑥, 𝑡) =
𝑢(𝑥, 𝑡)

𝑢𝑠(0)
 (9) 

where 𝑢𝑠(0) is 𝑢𝑠(𝑥) at 𝑥 = 0. Using Eqs.(1) and (2), there are 𝑢𝑠(0) = 𝜏0𝑑 𝜇⁄  under the 

imposed wall shear stress condition and 𝑢𝑠(0) = 𝑢0 under the imposed wall velocity condition.  

4 MATHEMATICAL MODEL 

4.1 Governing Equation  
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The Navier-Stokes equation for the fluid velocity u = u(x, t) can be written as  

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
 (10) 

where t is the time, x is the vertical spatial coordinate. Note that a velocity field which satisfies the 

momentum equation (Eq. 10) also satisfies the continuity equation. As a result, the continuity 

equation is not listed. 

4.2 Initial Conditions 

Imposed wall shear stress  

For a step shear stress condition, the initial condition for 𝑡 = 0 can be described as 

𝑢(𝑥, 0) = 𝑢𝑠(𝑥) =
𝜏0

𝜇
(𝑑 − 𝑥), 0 ≤ 𝑥 ≤ 𝑑 (11) 

Imposed wall velocity  

For a step-changing wall velocity condition, the initial condition can be described as 

𝑢(𝑥, 0) =
𝑢0

𝑑
(𝑑 − 𝑥), 0 ≤ 𝑥 ≤ 𝑑 (12) 

4.3 Boundary Conditions 

In this article, the top wall is always kept stationary and can be written as 

𝑢(𝑑, 𝑡) = 0, 𝑡 > 0 (13) 

Imposed wall shear stress  

When step-changing occurs, a constant shear stress 𝜏1 which is different with 𝜏0 is imposed 

on the lower wall suddenly. The boundary condition can be written as  

𝜏(0, 𝑡) = −𝜇
𝜕𝑢(0, 𝑡)

𝜕𝑥
= 𝜏1 (14) 

Imposed wall velocity  

When step-changing occurs, a constant velocity 𝑢1 which is different with 𝑢0 is imposed on 

the lower wall suddenly. The boundary condition could be written as  

𝑢(0, 𝑡) = 𝑢1 (15) 

5 SOLUTIONS OF THE VELOCITY DISTRIBUTIONS 

5.1 Imposed Wall Shear Stress 

It was observed experimentally that after an initial development time period, say t = td, the 

velocity can be described by 

𝑢(𝑥, 𝑡 > 𝑡𝑑) ≡ 𝑢𝑑(𝑥, 𝑡) =
𝜏1

𝜇
(𝑑 − 𝑥) (16) 

where 𝑢𝑑 is the developed solution. We can express the velocity field as a superposition of the 

developing solution 𝑈(𝑥, 𝑡) and the developed solution as  
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𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) + 𝑢𝑑(𝑥, 𝑡) (17) 

Using Eqs.(16) and (17), the solution can be written as 

𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) +
𝜏1

𝜇
(𝑑 − 𝑥) (18) 

Now we seek the developing solution 𝑈(𝑥, 𝑡) to find the velocity for the problem. Eq. (A8) 

provides the solution of 𝑈(𝑥, 𝑡). Using Eq. (A8) and Eq. (18), the final solution is 

𝑢(𝑥, 𝑡) = −
2(𝜏1 − 𝜏0)

𝜇𝑑
∑

1

𝛽𝑛
2

∞

𝑛=0

exp(−𝜈𝛽𝑛
2𝑡) cos 𝛽𝑛𝑥 +

𝜏1

𝜇
(𝑑 − 𝑥) (19) 

where 𝛽𝑛 is given in Eq.(A9).  

5.2 Imposed Wall Velocity 

After an initial development time period say t = td, the velocity can be written as 

𝑢(𝑥, 𝑡 > 𝑡𝑑) ≡ 𝑢𝑑(𝑥, 𝑡) =
𝑢1

𝜇
(𝑑 − 𝑥) (20) 

Using Eqs. (17) and (20), the velocity could be written as  

𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) +
𝑢1

𝑑
(𝑑 − 𝑥) (21) 

According to the solution in Eq. (B4), the final solution can be written as 

𝑢(𝑥, 𝑡) = −
2(𝑢1 − 𝑢0)

𝑑
∑

1

𝜉𝑛
exp(−𝜈𝜉𝑛

2𝑡)sin 𝜉𝑛𝑥

∞

𝑛=1

+
𝑢1

𝑑
(𝑑 − 𝑥) (22) 

where 𝜉𝑛 is given in Eq. (B5).  

6 SOLUTIONS OF 𝝋(𝒕) AND 𝒖̃(𝒙, 𝒕)  

In the article, we use the relative coefficient of viscosity 𝜑(𝑡) defined in Eq. (6) and the 

dimensionless velocity 𝑢̃(𝑥, 𝑡) defined in Eq. (9) to describe the transient state of the Couette flow 

process. 

6.1 𝝋(𝒕) and 𝒖̃(𝒙, 𝒕) Under Imposed Wall Shear Stress Condition  

Using Eqs.(1), (9), (19) and (A9), we can obtain the dimensionless velocity under the imposed 

step wall shear stress condition as 

𝑢̃(𝑥̃, 𝑡̃) = −
8(𝜀𝜏 − 1)

𝜋2
∑

1

(2𝑛 + 1)2

∞

𝑛=0

exp [−
(2𝑛 + 1)2𝜋2

4
𝑡̃] cos

(2𝑛 + 1)𝜋

2
𝑥̃ + 𝜀𝜏(1

− 𝑥̃) 

(23) 

where shear stress step ratio 𝜀𝜏 = 𝜏1 𝜏0⁄ , dimensionless vertical spatial coordinate 𝑥̃ = 𝑥 𝑑⁄ , 

dimensionless time 𝑡̃ = 𝜈𝑡 𝑑2⁄ , among which . When 𝜀𝜏 > 1, it’s a step-rising shear stress and 

when 𝜀𝜏 < 1, it’s a step-decreasing shear stress. 
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Using Eqs. (7), (19) and (A9), we can describe the relative coefficient of viscosity under the 

imposed step wall shear stress condition by  

𝜑𝜏(𝑡̃) =
1

−
8

𝜋2 (1 −
1
𝜀𝜏

) ∑
1

(2𝑛 + 1)2
∞
𝑛=0 exp [−

(2𝑛 + 1)2𝜋2

4 𝑡̃] + 1
 

(24) 

From Eq.(24), we can get that the relative coefficient of viscosity is a function of dimensionless 

time 𝑡̃  and shear stress step ratio 𝜀𝜏 . From ∑ [1 (2𝑛 + 1)2⁄ ]∞
𝑛=0 = 𝜋2 8⁄ , we can find that 

𝜑𝜏(𝑡 → 0) = 𝜀𝜏. Based on lim
𝑡̃→+∞

exp[−(2𝑛 + 1)2𝜋2𝑡̃ 4⁄ ] = 0, we have 𝜑𝜏(𝑡 → +∞) = 1.  

When Couette flow starts from rest under an imposed wall shear stress, we can have 𝜀𝜏 → ∞. 

Then Eq. (24) can be written as  

𝜑𝜏(𝑡̃) =
1

−
8

𝜋2 ∑
1

(2𝑛 + 1)2
∞
𝑛=0 exp [−

(2𝑛 + 1)2𝜋2

4 𝑡̃] + 1
 

(25) 

Eq.(25) describes the relative coefficient of viscosity during the transient stage of Couette flow 

which starts suddenly from rest under an imposed wall shear stress. Obviously, 𝜑𝜏(𝑡̃) is only 

relevant to the dimensionless time 𝑡̃ when the fluid is initially stationary at 𝑡 = 0.  

When the wall shear stress is removed suddenly from a steady Couette flow, we can get 𝜀𝜏 = 0. 

And we also find that 𝜏𝑑 = 𝑢𝑑 = 0. So the definition of 𝜑𝜏(𝑡) in Eq. (7) would lose its meaning. 

In actual operation of viscosity measurement, this corresponds to the situation where the 

measurement has ended and thus no meaningful solutions are obtained.  

6.2 𝝋(𝒕) and 𝒖̃(𝒙, 𝒕) Under Imposed Wall Velocity Condition  

According to Eqs. (2), (9), (22) and (B5), we can obtain the dimensionless velocity under the 

imposed step wall velocity condition as  

𝑢̃(𝑥̃, 𝑡̃) = −
2(𝜀𝑢 − 1)

𝜋
∑

1

𝑛
exp(−𝑛2𝜋2𝑡̃) sin𝑛𝜋 𝑥̃

∞

𝑛=1

+ 𝜀𝑢(1 − 𝑥̃) (26) 

where velocity step ratio 𝜀𝑢 = 𝑢1 𝑢0⁄ . When 𝜀𝑢 > 1, it’s a step-rising velocity and when 𝜀𝑢 < 1, 

it’s a step-decreasing velocity. Using Eqs.(8) , (22) and (B5), we can describe the relative coefficient 

of viscosity under the imposed step wall velocity condition by 

𝜑𝑢(𝑡̃) = 1 + 2 (1 −
1

𝜀𝑢
) ∑ exp(−𝑛2𝜋2𝑡̃)

∞

𝑛=1

 (27) 

From Eq.(27), we can find that the relative coefficient of viscosity is a function of dimensionless 

time 𝑡̃  and velocity step ratio 𝜀𝑢 . Since lim
𝑡̃→0+

∑ exp(−𝑛2𝜋2𝑡̃)∞
𝑛=1 → +∞ , it follows that 

𝜑𝑢(0+) → +∞  when 𝜀𝑢 > 1  and 𝜑𝑢(0+) → −∞  when 𝜀𝑢 < 1 . According to 
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lim
𝑡̃→+∞

∑ exp(−𝑛2𝜋2𝑡̃)∞
𝑛=1 = 0, we can write 𝜑𝑢(+∞) = 1.  

When Couette flow starts from rest under an imposed wall velocity, we can have 𝜀𝑢 → ∞. Then 

Eq.(27) can be written as  

𝜑𝑢(𝑡̃) = 1 + 2 ∑ exp(−𝑛2𝜋2𝑡̃)

∞

𝑛=1

 (28) 

Eq.(28) describes the relative coefficient of viscosity during the transient stage of Couette flow 

which starts suddenly from rest under an imposed wall velocity. Obviously, 𝜑𝑢(𝑡̃) is only relevant 

to 𝑡̃ when the fluid is initially stationary at 𝑡 = 0. When the moving wall of steady Couette flow 

ceases suddenly, we can get 𝜀𝑢 = 0 and 𝑢𝑑 = 0. The definition of 𝜑𝑢(𝑡) in Eq.(8) loses its 

meaning and this situation won’t be considered either.  

7 RESULTS AND DISCUSSION 

7.1 Comparison of 𝒖̃(𝒙, 𝒕) under different boundary conditions 

From Eqs. (23) and (26), we can find that the dimensionless velocity 𝑢̃  is a function of 

dimensionless time 𝑡̃, dimensionless vertical spatial coordinate 𝑥̃ and step ratios 𝜀. Fig.2 shows 

the developments of the dimensionless velocities for step ratios of 0.1 and 10. The fluid velocity 

near the wall changes instantly under step velocity conditions and transient effect of changed 

velocity spreads along 𝑥̃ axial, so a significantly non-monotonic velocity profile which increases 

first and then decreases with 𝑥̃ occurs under the step-decreasing wall velocity condition (Fig.2a), 

but fluid velocity always decreases with 𝑥̃  under step-increasing velocity condition (Fig.2b). 

Under step wall shear stress conditions, velocity gradient near the wall changes immediately after 

shear stress steps and spreads along 𝑥̃ axial. So velocity of fluid changes gradually rather than 

instantly. The dimensionless velocity 𝑢̃  is always a monotone decreasing function of 

dimensionless vertical spatial coordinate 𝑥̃ under the step wall shear stress conditions (Fig.2c and 

Fig.2d). After a step-decreasing velocity happens, shear stress during the transient stage on the 

inner surface of moving wall may be opposite to the former steady one because of the non-

monotonic velocity profile and the corresponding relative coefficient of viscosity 𝜑𝑢(𝑡)  is 

negative which is coincident with the conclusion obtained by Eq. (27). 
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 (a)                                          (b) 

 

 (c)                                            (d) 

Fig.2 Dimensionless velocity distributions under different step boundary conditions 

(a)step-decreasing shear stress 𝜀𝜏 = 0.1; (b) step-increasing shear stress 𝜀𝜏 = 10;  

(c) step-decreasing velocity 𝜀𝑢 = 0.1; (d) step-increasing velocity 𝜀𝑢 = 10 

7.2 Comparison of 𝝋(𝒕) under different boundary conditions 

Sudden step of wall velocity creates an infinite velocity gradient of fluid near the wall leading 

to an infinite 𝜑(𝑡) based on Eq.(8). Different from the step velocity conditions, fluid velocity 

remains the same at the exact moment when wall shear stress steps and then changes gradually. So, 

no extremely large sudden changes occur in the fluid velocity and its gradient at the wall. As a 

result, 𝜑(𝑡)  is always finite. The relative coefficient of viscosity 𝜑(𝑡)  under different step 

boundary conditions is shown in Fig.3. From Fig.3(a), we can find that 𝜑(𝑡) decreases versus 

time under the step-rising boundary condition. During the very initial stage, 𝜑𝑢(𝑡) is always larger 

than 𝜑𝜏(𝑡) because 𝜑𝑢(𝑡) decrease from +∞ but 𝜑𝜏(𝑡) decrease from 𝜀𝜏. It can be seen that 

𝜑𝑢(𝑡) approaches 1 faster than 𝜑𝜏(𝑡), so the development time 𝑡𝑑  under the step-rising wall 

velocity condition is shorter than the one under the step-rising wall shear stress condition. After a 

development time 𝑡𝑑 , 𝜑(𝑡)  equals 1 which means that the calculated viscosity is the actual 
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viscosity of fluid. We will examine the development in more detail later in this article. Fig.3(b) 

shows the relative coefficient of viscosity 𝜑𝑢(𝑡) under step wall velocity conditions. We can see 

that 𝜑𝑢(𝑡) decreases from +∞ to 1 when step-rising velocity occurs but increases from −∞ to 

1 under the step-decreasing velocity condition. Fig.3(c) shows the relative coefficient of viscosity 

𝜑𝜏(𝑡) under step wall shear stress conditions. We can see that 𝜑𝜏(𝑡) decreases from 𝜀𝜏  to 1 

when 𝜀𝜏 > 1 but increases from 𝜀𝜏 to 1 when 𝜀𝜏 < 1. From Fig.3(b) and Fig.3(c) we can find 

that the development time 𝑡𝑑 for 𝜑(𝑡) reaching 1 is slightly different with each other when the 

step ratio 𝜀 changes. So the development time will be discussed in the following part of the article.  

 

(a)                              (b) 

 

(c) 

Fig.3 𝜑(𝑡) under different step conditions: (a) Comparison of 𝜑(𝑡) between step-rising wall shear stress and 

velocity conditions; (b) 𝜑(𝑡) under step-increasing and step-decreasing wall velocity conditions; (c) 𝜑(𝑡) under 

step-increasing and step-decreasing wall shear stress conditions 

 

7.3 Comparison of 𝒕̃𝒅 under different boundary conditions 

The dimensionless development time 𝑡̃𝑑  is introduced to indicate the time period for the 

transient flow to reach steady state. For quantitative analysis, we define the developed state as 
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|𝜑(𝑡̃ ≥ 𝑡̃𝑑) − 𝜑(+∞)|

𝜑(+∞)
≤ 1% (29) 

where 𝜑(+∞)  indicates the relative coefficient of viscosity when 𝑡̃ → +∞  so there is 

𝜑(+∞) = 1. According to Eq. (29), 𝑡̃𝑑 could be described as 

|𝜑(𝑡̃𝑑) − 1| = 1% (30) 

According to Eqs.(25) and (30), we can get that 𝑡̃𝑑 = 1.785 under the imposed step wall shear 

stress condition when 𝜀𝜏 → ∞. And from Eqs. (28) and (30), we can find that 𝑡̃𝑑 = 0.537 under 

the imposed step wall velocity condition when 𝜀𝑢 → ∞. 

Based on Eqs. (24), (27) and (30), we calculated the dimensionless development time 𝑡̃𝑑 

numerically and change laws of 𝑡̃𝑑 versus step ratio 𝜀 were shown in Fig.4. We can find that 𝑡̃𝑑 

grows with 𝜀 when 𝜀 > 1 under both imposed step wall shear stress and velocity conditions. 

Under the imposed step wall shear stress condition, 𝑡̃𝑑 increases to a constant of 1.785 and under 

the imposed step wall velocity condition, 𝑡̃𝑑 increases to a constant of 0.537. So we believe that 

𝑡̃𝑑 does not change with the step ratio 𝜀 when 𝜀 is large enough.  

 

Fig.4 𝑡̃𝑑 vs. step ratio 𝜀 under different boundary conditions 

The dimensionless development time 𝑡̃𝑑  keeps increasing as the step ratio 𝜀 decreases and 

does not seem to be a constant value when 𝜀 < 1. We believe this is concerned with the definition 

of 𝜑(𝑡) and criteria of transient flow being developed. It has been declared that definition of 𝜑(𝑡) 

would lose its meaning when 𝜀 = 0, so the transient stage of Couette flow when 𝜀 → 0 would be 

ignored here.  

It has been found that fluid velocity changes gradually rather than instantly under step wall shear 

stress conditions. Slower velocity variation leads to longer time period for reaching steady state. 

From Fig.4 we can find that 𝑡̃𝑑 under the imposed step wall shear stress condition is always larger 

than the one under the imposed step wall velocity condition when a same step ratio is applied.  
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8 CONCLUDING REMARKS 

In this article, the initial transient of Couette flows between two infinite parallel plates, subjected 

to both imposed step wall shear stress and step wall velocity boundary conditions were investigated. 

It was observed that  

1. The dimensionless velocity 𝑢̃ is always a monotone decreasing function of 𝑥̃ under the step 

wall shear stress conditions and step-rising wall velocity condition. But under the step-decreasing 

velocity condition, 𝑢̃ increases first and then decreases with 𝑥̃ and the corresponding shear stress 

on the inner surface of moving wall is opposite to the former steady one.  

2. Normally, 𝜑(𝑡) is a function of dimensionless time 𝑡̃ and step ratio 𝜀. When the fluid is 

initially stationary at 𝑡 = 0, 𝜑(𝑡) is only relevant to the dimensionless time 𝑡̃. 𝜑𝜏(𝑡) changes 

from 𝜀𝜏 to 1 gradually with 𝑡̃ under the step wall shear stress conditions. Under the step wall 

velocity conditions, 𝜑𝑢(𝑡) decreases from +∞ to 1 with 𝑡̃ when 𝜀𝑢 > 1 and increases from 

−∞ to 1 with t̃ when 𝜀𝑢 < 1. 𝜑𝑢(𝑡) is further from 1 than 𝜑𝜏(𝑡) during the very initial stage 

but reaches 1 faster during the transient stage. Based on this and whenever possible, it is 

recommend that step change in shear rate be used experimentally to measure the fluid viscosity. 

3. 𝑡̃𝑑 grows with 𝜀 when 𝜀 > 1 and approaches to the constant value of 1.785 under the step 

wall shear stress condition, 0.537 under the step wall velocity condition respectively. When 𝜀 < 1, 

𝑡̃𝑑 keeps increasing as the step ratio 𝜀 decreases. 𝑡̃𝑑 under the imposed step wall shear stress 

condition is always larger than the one under the imposed step wall velocity condition. 
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APPENDIX A 

Based on Eq.(18), the spatial and temporal gradients of the solution are  

𝜕𝑢

𝜕𝑥
=

𝜕𝑈

𝜕𝑥
−

𝜏1

𝜇
 (A1) 

and 

𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑈

𝜕𝑥2
 (A2) 

and 
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𝜕𝑢

𝜕𝑡
=

𝜕𝑈

𝜕𝑡
 (A3) 

Using Eqs. (A2) and (A3), the governing equation Eq. (10) becomes 

𝜕𝑈

𝜕𝑡
= 𝜈

𝜕2𝑈

𝜕𝑥2
 (A4) 

The initial condition is obtained by substituting Eq. (18) into Eq. (11) to give 

𝑈(𝑥, 0) =
𝜏0 − 𝜏1

𝜇
(𝑥 − 𝑑) (A5) 

From Eqs.(13) and (18), boundary condition at x = d is 

𝑈(𝑑, 𝑡) = 0 (A6) 

From Eqs. (14) and (A1), the boundary condition at x = 0 is 

𝜕𝑈

𝜕𝑥
= 0 (A7) 

The solution of 𝑈 could be obtained as  

𝑈(𝑥, 𝑡) = −
2(𝜏1 − 𝜏0)

𝜇𝑑
∑

1

𝛽𝑛
2

∞

𝑛=0

𝑒−𝜈𝛽𝑛
2𝑡 cos 𝛽𝑛𝑥 (A8) 

where 

𝛽𝑛 =
(2𝑛 + 1)𝜋

2𝑑
  , 𝑛 = 0,1,2 … (A9) 

 

APPENDIX B 

The initial condition is obtained by substituting Eq. (21) into Eq. (12) to give 

𝑈(𝑥, 0) =
𝑢0 − 𝑢1

𝑑
(𝑑 − 𝑥) (B1) 

From Eqs.(13) and (21), boundary condition at x = d is 

𝑈(𝑑, 𝑡) = 0 (B2) 

From Eqs.(15) and (21), the boundary condition at x = 0 is 

𝑈(0, 𝑡) = 0 (B3) 

According to Eqs.(A2) to (A4) and Eqs.(B1) to (B3), 𝑈 could be solved and expressed as 

𝑈(𝑥, 𝑡) = −
2(𝑢1 − 𝑢0)

𝑑
∑

1

𝜉𝑛
𝑒−𝜈𝜉𝑛

2𝑡sin 𝜉𝑛𝑥

∞

𝑛=1

 (B4) 

where 

𝜉𝑛 =
𝑛𝜋

𝑑
    (𝑛 = 1,2,3 … ) (B5) 
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