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Abstract 

 

The concept of chewing gum for medical purposes provides discrete, convenient 

administration, the potential for buccal absorption and the avoidance of first pass metabolism 

or gastrointestinal degradation. This work contributes to the limited information available on 

the release of poorly soluble drugs from medicated chewing gum formulations. Lansoprazole 

was chosen as a model drug due to its poor solubility and instability (under acidic 

conditions), thus a chewing gum formulation would be of particular benefit avoiding 

gastrointestinal degradation. 

 

The solubility and stability of lansoprazole in artificial saliva was found to be dependent on 

the pH of the solution. An increase in pH caused an increase in solubility with a significant 

increase between pH 9 and pH 10. At pH 6, concentrations decreased over time confirming 

the acid instability of lansoprazole. The use of cyclodextrins as solubilisers and stabilisers for 

lansoprazole were investigated; complexed lansoprazole (with Mβ-CD, 1:1) resulted in a 9 

fold increase in solubility compared to free lansoprazole and remained stable at pH 6. 

 

Chewing gum formulations incorporating lansoprazole were prepared and the following 

excipients were investigated: Revolymer‟s
®
 hydrophilic polymer Rev7, buffering excipients 

and complexed lansoprazole (with Mβ-CD, 1:1). Drug diffusion from gum surfaces was 

found to be limited, highlighting the need for effective mastication to ensure the timely 

release of the drug. In vitro release was evaluated using the EP approved masticator. Various 

parameters were investigated including: the type of dissolution medium, pH, chew rate and 

sampling and replacement volumes. Significant differences in release after 30 minutes 

mastication were found for gums containing Rev7 and potassium carbonate (both of which 

contributed to increasing the hydrophilic capacity of the gum). These gums were also softer 

than other formulations due to a plasticising effect on the gum base elastomer resulting in 

softer, less cohesive gums. Complexation was not found to have an impact on in vitro drug 

release from gums.  

 

The study also assessed the buccal absorption of free lansoprazole and complexed 

lansoprazole (with Mβ-CD, 1:1) using porcine buccal mucosae. The highest partitioning 

coefficient was observed for free lansoprazole at pH 6.8 due to a lower ionised fraction in 

combination with a lower molecular weight. Complexed lansoprazole had the highest drug 

flux but also had the paradoxical effect of decreasing the permeability coefficient. 

 

Overall the study contributed to increasing the understanding of factors governing the release 

of a poorly soluble and unstable API, lansoprazole, from a medicated chewing gum 

formulation. The optimised formulation would contain lansoprazole, 8 % Rev7 and 

potassium carbonate to provide the maximum release of drug from the gum and also facilitate 

buccal absorption. 
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1.1 Oral drug delivery route 

 

The oral route is regarded as the most preferred route of drug delivery amongst clinicians and 

patients due to its convenient method of administration, correlating to high patient 

compliance and increased patient satisfaction (Shojaei, 1998). One major limitation of the 

oral administration route is the effect of first pass metabolism and pre-systemic degradation. 

To ensure therapeutic dosages are maintained after absorption, the dose of affected active can 

be increased to ensure bioavailability after metabolism. This contributes to a range of 

problems including possible side effects with the direct contact of high concentrations of the 

active with the epithelium and also the possible risk of over-dosing. 

 

The opportunity to develop a convenient oral delivery system, which can bypass first pass 

metabolism (thus avoiding hepatic circulation and associated degradation with acid liable/ 

susceptible drugs) whilst providing a sustained release delivery system, may be possible 

using medicated chewing gum as a form of drug delivery.  

 

1.1.1 Drug absorption through the oral mucosa 

 

The purpose of the oral mucosa is to provide a suitable barrier to protect the body from 

harmful substances; however it can also provide a route for absorption of suitable drugs (see 

chapter 5). The oral mucosa has been shown to be a reliable delivery route for a range of 

drugs including glyceryl trinitrate for which a rapid onset of action is required. The mouth 

and cheeks are lined with an epithelial layer, which provides a permeable membrane for rapid 

absorption due to its rich vascularity (Figure 1.1). The main absorption of the active occurs 

through the oral mucosa (buccal and sublingual), which means first pass metabolism can be 

avoided along with associated enzymatic degradation. This offers opportunity for drugs that 

are particularly susceptible in the acidic environment in the gastro-intestinal tract (GIT). This 

increased bioavailability may mean a lower dose can be administered resulting in fewer 

gastric side effects which may be related to the higher dosages in standard oral tablet 

formulations (Conway, 2007). 
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Figure 1.1 Cross section of the oral mucosa   

       (adapted from Shinkar et al., 2012) 

1.2 History of chewing gums 

 
 

Chewing gum as a pass-time has been around for thousands of years with the ancient Mayan 

Indians chewing chicle sourced from the Sabodilla trees. In 1892, William Wrigley invented 

his first brand of flavoured confectionary chewing gums “Wrigley‟s Spearmint”, providing 

the foundations for his thriving business (Rassing, 1996). The concept of chewing gum for 

medical purposes provides a discrete method for delivery and does not highlight the illness or 

need for medication for the individual. It can also contribute to delivering medicine on 

demand during peoples‟ busy lifestyles (Hyrup et al., 2005). One of the first official oral 

health gum patents was filed by William F Semple (in 1869), which stated the use of chewing 

gum for dental hygiene purposes (Khatun and Sutradhar, 2012). The first gum containing a 

medicated active was patented in 1924, Aspergum
®
 containing acetylsalicylic acid (aspirin) 

(Biswal and Anantkumar, 2013). One of the most notable recent successes is nicotine 

replacement gums which have greatly improved the acceptability of medicated gums.  
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1.3 Chewing gum as a drug delivery system 

 

The right delivery system can significantly impact success by providing product 

distinctiveness in the market, as evidenced with nicotine gums. An innovative drug delivery 

system can provide additional benefits to the patient including a discrete and convenient 

administration as well as the potential for buccal absorption, providing a rapid onset of 

action. It can also provide new business opportunities for drugs approaching their patent 

expiry. This has led to interest in the potential of chewing gum formulations containing a 

range of actives. A review by Chaudhary and Shahiwala lists recent collaborations between 

Fertin
 
(a market leader in medicated chewing gum development situated in Denmark) and 

Generex
 
Biotechnology

™
, focusing on developing a metformin-containing gum for the 

management of diabetes. Other examples include a functional gum containing Hoodia 

gordonii, a natural ingredient which helps controlled weight loss by releasing a compound 

(P57), similar to glucose, to stunt the appetite in the hypothalamus (Chaudhary and 

Shahiwala, 2010). 

 

As a drug delivery system chewing gum has many advantages over other oral administration 

forms; its main attributes include its convenient manner; being able to chew discretely at any 

time and any place and the exclusion of the requirement of water. There may also be a 

particularly high acceptance in the paediatrics market, as some children may be more inclined 

to chew rather than swallow (e.g. dysphagia). The sensory perception with regards to the 

flavour, taste and texture/chewability is another important concept. In order to ensure patient 

compliance, the gum needs to be pleasant to chew and various taste masking concepts may be 

employed to achieve this, whilst the gum base will be the main contributing factor in the 

texture of the gum. Replacement of sugar by bulk sweeteners (including polyols e.g. sorbitol 

and mannitol) in chewing gums has been a successful innovation, improving taste, texture 

and the healthier image of chewing gum (Khatun and Sutradhar, 2012). 

 

In general gums can be considered as a relatively safe dosage form as the gum can be 

removed from the mouth as desired to cease treatment. As the gastric mucosa is not exposed 

to high concentrations of the drug in its solid state, the potential of irritation and intolerance 

is reduced, compared to the risks involved with some oral formulations (e.g. formulations of 

NSAIDs). Also if the gum is swallowed, the risks of complications are reduced due to the 

requirement of masticatory forces needed for drug release. Some risk considerations include 
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the physical mechanics of increased chewing, including the potential of damaging teeth on 

hard gums and mandible muscle pain caused by extensive chewing.  

 

Additional functional qualities include the extended shelf life of gums; protection against 

oxidation can be maintained with the use of a sealed outer coating and the low water content 

(typically 2-5 % w/w) minimises microbial contamination (Chaudhary and Shahiwala, 2010; 

Biswal and Anantkumar, 2013).   

1.4 Formulation of medicated chewing gums 

 
 

Gum bases are generally lipophilic, influence the characteristic masticatory texture and feel 

to the user and typically contribute between 40 – 70 % of the total gum mass. The exact 

ingredients and formulation of gum bases are usually proprietary information and there is 

limited systematic technical information in the public domain, but they are normally inert and 

tasteless (Lee, 2001). Fertin Pharma (Denmark) specialises in the development of gum bases 

and manufactures Nicotinell
®
 and NiQuitin

®
 on behalf of its partner companies Novartis and 

GSK (Fertin Pharma, 2003). Revolymer has developed the Rev7
™

 polymer, gaining approval 

for human use as an ingredient incorporated into the gum base, up to a maximum of 8 %, 

conferring additional properties to the gum (2011/882/EU). The specific components of the 

gum base and the method of preparation are important factors controlling drug release from 

chewing gums (Morjaria et al., 2004). 

The soluble portions of a chewing gum formulation are generally comprised of fillers, 

sweeteners, flavouring and buffering excipients which contribute to the taste and texture of 

the gum (hydrophilic capacity can be described as the sum of the water soluble components) 

(see chapter 1; Table 1.1). Sugar substitutes/sugar alcohols (polyols) such as sorbitol, xylitol, 

maltitol and mannitol are the preferred sweeteners in sugar-free gums. They are also 

primarily used as bulking agents, ensuring even mixing resulting in a homogenous gum and 

can typically contribute between 40 - 60 % of the gum mass. Polyols may agglomerate and 

recrystallise whilst in the gum and a mixture of polyols can retard/prevent this by increasing 

dispersibility and reducing the risk of crystal morphology changes upon manufacturing and 

storage (Smewing, N.D). They vary in sweetness and hygroscopicity and can act as 

humectants, lowering the relative humidity and slowing the rate of moisture loss. The loss/ 
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absorption of moisture in gum formulations influences the texture and hence the shelf-life of 

gums (Smewing, N.D). 

1.4.1 Conventional/ kettle fusion manufacturing method  

 

The traditional manufacturing method for chewing gums involves the use of a kettle mixer/ Z 

blade mixer which heats the gum base, resulting in a phase change to molten state allowing 

for effective mixing (Figure 1.2). Excipients are added in stages and mixed for specific 

periods of time to ensure a homogenous formulation. The active drug is generally 

incorporated into the gum base at the start of the process before mixing with other excipients 

to ensure homogenous distribution throughout the samples (Rassing, 1996). It has been 

suggested that incorporating the active at the end of the manufacturing mixing process may 

increase the rate and extent of release, but this may also consequently have a negative effect 

on homogeneity (Rassing and Jacobesen, 2003). Modifying the form of the active, using 

blending components (such as aqueous sweeteners which soften the bulk mix and aid in a 

homogenous blend) and hydrophilic coatings can increase the release rate. Generally flavours 

are incorporated at the later stages limiting the level of exposure to stress (heat) due to the 

essential oils having relatively low boiling points and increased are relatively unstable and 

volatile. Limitations are also associated with using sensitive thermolabile actives as 

temperatures need to be sufficient to soften the gum base during mixing. The viscous nature 

of the molten gum base also contributes to difficulties in ensuring a homogenous distribution 

of active and dose accuracy may be compromised. Once mixed, the use of specialised rollers 

can be employed to ensure uniformity through consistent form, shape and weight during the 

later stages of processing (Pagare et al., 2012). 

 

Figure 1.2 The Z blade mixer 
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Kettles are made in a range of different capacities and this is something that should be 

considered when scaling up production to ensure adequate mixing. 

1.4.2 Direct compression method  

 

This cost effective technique utilises free flowing powders comprising a mixture of polyols, 

sugars and gum base, which can be directly compressed on a traditional tableting machine, 

thus reducing manufacturing time and costs (William and Millind, 2012). An example is 

Pharmagum
®
, which is available in 3 forms including Pharmagum

® 
M; which has a high gum 

base content, 50 % more than Pharmagum
®
 S; which consists of gum base and sorbitol and 

Pharmagum
®
 C containing gum base, mannitol and isomalt. However gums formed using 

direct compression are generally harder and subject to crumbling during chewing, which may 

provide an undesirable sensation to the user (William and Millind, 2012). 

A 3 layered chewing gum tablet was manufactured by direct compression, containing the 

active in the internal core, sandwiched between two external protective, anti-adherent layers 

of maltodextrin, to prevent adhesion to the machine‟s pistons and also potentially improve 

taste.  The gums were formulated using a range of drugs including ranitidine, caffeine and 

paracetamol and release was directly correlated with the drugs‟ physiochemical properties, 

specifically water solubility and also chewing efficiency and time (Maggi et al., 2005). The 

3-layer gum model was investigated further to include formulations containing fenoprofen 

calcium (100 mg) in the inner core (weighing 1.4 g) and maltodextrin in the two external 

sandwich layers (0.2 g). Optimised formulations contained freeze-dried complexes of the 

active with β-CD (1:1) and PVP as a water soluble polymer to enhance release. An in vivo 

study found that relative bioavailability was increased compared to commercial 200 mg 

capsules (166.06 %) and absorption rates were faster, presumably due to absorption via the 

buccal mucosa and avoidance of hepatic first pass metabolism. Thus, there is the potential to 

reduce the active administered dose in gum formulations compared to conventional 

formulations  (El-Assassy et al., 2012).   

Another method of formulation involves freezing, grinding and tabletting of excipients. The 

gum base and excipients are maintained in a cooled environment (typically 15 °C or lower) 

until brittle, then the mixture is ground and mixed to a fine powder. On warming to room 

temperature, the gum may self-adhere leaving minute air bubbles in the gum matrix. 
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Alternatively the powdered mix can be blended with additional excipients including binders 

and lubricants and then compressed (Gavaskar et al., 2011; Khatun and Sutradhar, 2012). 

1.4.3 Composition of chewing gums 

 

Within a chewing gum, materials can be grouped as water insoluble portions (gum base) and 

water soluble components (polyols and sugars) (Table 1.1). The chewing gum base is an 

important material comprising the majority of the gum‟s inert and insoluble portion. It is the 

major masticatory component in the finished product influencing both texture and elasticity 

(Khatun and Sutradhar, 2012). The composition of the gum, specifically the gum base mass 

percentage, has shown to be highly influential on the release of the active. A high gum base 

mass resulted in significantly lower release rates of salicylate compared to a lower gum base 

percentage. This was due to increasing the hydrophobic portion of the gum altering the 

lipophilic/hydrophilic capacity of the gum, thus binding lipophilic actives more tightly to the 

increased lipophilic gum base mass resulting in lower levels of release (Christrup and 

Rassing, 1988).  The hydrophilic capacity of the gum can be described as the sum of all the 

water soluble components.  

 

Standard gum bases consist of a mixture of elastomers: natural (e.g. chicle gum, jelutong gum 

and glycerol esters from pine resins) and synthetic resins, plasticisers (natural and synthetic 

waxes and hydrogenated vegetable oils), emulsifiers, waxes, fats and fillers. These provide 

the elasticity, softening and cohesion components of the gum. The particle size should be 

kept below 100 µm to avoid a gritty texture during chewing (Biswal and Anantkumar, 2013).  
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Table 1.1 Chewing gum components 

 

Water Insoluble 

Components 

Examples Functions 

Elastomers synthetic rubbers: butadiene, styrene co polymers, 

poly ethylene mixtures and poly iso butylene 

gum texture, cohesion 

and elasticity 

Plasticisers rosin esters, lanolin, glycerine, fatty waxes and 

propylene glycol 

textures, binding 

consistency 

Fillers talc, calcium carbonate and magnesium carbonate chewability and 

texture 

Water Soluble 

Components 

Examples Functions 

Softeners and 

emulsifiers 

glycerides optimise softness of 

gum 

Sweeteners sorbitol, aspartame and mannitol sweeteners to taste 

Flavourings essential oils taste 

    

(adapted from Gavaskar et al., 2011; Khatun and Sutradhar, 2012) 

Most medicated gums are designed to release the majority (>75%) of the active at around 20-

30 minutes. The release rate needs to be controlled effectively to achieve this. The 

physiochemical properties of the active (aqueous solubility, pKa and the potential distribution 

between chewing gum and saliva) will greatly influence its release (Rowe, 2003).  

Hydrophilic actives will generally be released rapidly and to slow release, the gum base 

content may be increased (increasing the lipophilic/hydrophilic balance of the gum) or 

encapsulation of the active may also be utilised (Rassing, 1994). If the active is lipophilic, it 

will be released slowly and incompletely due to adherence to the gum base; it will first 

partition from the lipophilic gum base into hydrophilic components of the gum before 

dissolving gradually into saliva.   

1.5 Additional health benefits with respect to chewing gum 

 

Various physiological effects have been reported with respect to chewing gum including 

increasing alertness, easing tension and stimulating salivary flow which increases the pH in 

the oral cavity resulting in improved dental health via a reduction in plaque acidgenicity 

(Karami-Nogourani et al., 2011). Chewing gum can stimulate an increase in salivary flow 
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(containing calcium and phosphates), which in turn causes an increase in pH and the 

buffering capacity of the mouth. This provides a positive effect on enamel demineralisation 

and remineralisation, with the bicarbonates contained in the stimulated saliva also helping to 

neutralise plaque acid.  

 

Chewing gums also increases the volume of saliva production; initial studies showed chewing 

sugar sweetened gum resulted in a total salivary volume of 32.2 mL, compared with chewing 

sorbitol sweetened gum (29.5 mL) and chewing paraffin 7.4 mL as a control (Frohlich et al., 

1992). This can also prove beneficial in the management of dry mouth (xerostomia) caused 

by hyposalivation. Other inherent effects reported include stress relief, weight management 

and improved concentration and focus (Chaudhary and Shahiwala, 2010). Working memory, 

tested by cognitive memory and recognition tests, was seen to improve during chewing of 

gum, based on a study on 75 healthy volunteers (Wilkinson et al., 2002). The study was later 

further expanded and it was suggested that memory was improved via insulin secretion, 

promoting glucose uptake, in response to chewing in food anticipation and the possibility of 

activation of neural pathways linked to memory and chewing (Scholey, 2004). 

 

There still may be some social and behavioural concerns over the acceptability of chewing 

gums as novel drug delivery vehicles. This may involve the ability to chew with elderly 

patients especially with orthodontic appliances and also the attitude to chewing gum overall. 

The elderly population may consider chewing gum to be rude and ill-mannered due to the 

decreased exposure in their generation. A questionnaire by Fertin examined opinions 

regarding novel medicated chewing gums and resulted in positive feedback from younger 

generations. End users of the survey expressed special interest in the following properties: 

1.6 Examples of medicated chewing gums 

 

A range of experimental formulations incorporating different actives have been studied or 

marketed including recent trends for functional ingredients including nutrients and vitamins 

(Table 1.2). A novel anti-microbial decapeptide (KSL) has shown success in pre-formulation 

studies suggesting it has potential application in a chewing gum formulation to inhibit dental 

plaque growth with in vitro/in vivo releases of 70 - 80 % over 20 minutes chewing  (Hee Na 

et al., 2005). The potential use of chewing gums for anti-plaque and other oral diseases is 

practical due to the gum preparation having extended residence time in the oral cavity. Other 
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recent work includes the incorporation of probiotics (Streptococcus salivarius) into a gum 

used to treat throat to ear infections and bad breath (Fayermann, 2010). This suggests that 

chewing gum formulations may provide an effective delivery route for macro molecules to 

the oral cavity and buccal membrane.  

Table 1.2 Worldwide marketed medicated gums 

 

Active Trade name & market Indications 

Calcium carbonate Chooz
®
 , USA neutralise stomach acid  

Vitamin C Endykay Vit.C
®
, UK general health 

Caffeine Stay alert
®
, USA alertness 

Guarana  Buzz gum
®
, UK alertness 

Fluoride Fluorette
®
, USA cariostatic 

Dimenhydrinate Travvel
®
, USA motion sickness 

Xylitol V6
®
, UK dental caries 

Chlorhexidine Vitaflo Chx
®
, USA tooth decay 

Nicotine Nicotinell
®
, UK Smoking cessation 

        

(adapted from Pagare et al., 2012) 

1.6.1 Nicotine replacement gums 

Nicotine is the main active ingredient that reinforces smoking behaviours due to its 

physiological effects on dopamine in the brain, therefore when people cease smoking nicotine 

withdrawal symptoms are observed (Aslani and Rafiei, 2012). The acceptance of medicated 

gums has been influenced by the success of nicotine gums used for smoking cessation. 

Nicotine replacement gum was first registered in 1978 and was available without prescription 

in 1995 (Khatun and Sutradhar, 2012). Gums are available in two dosages: 2 mg aimed at 

light smokers who want to avoid cravings for cigarettes and 4 mg nicotine gums targeted to 

give an initial rush of nicotine to satisfy the needs of heavier smokers. Users are advised to 

chew until the desired effect is achieved, the gum is designed to satisfy the initial craving at 

the start of the chewing process and then give sustained release for the duration of chewing.  

Nicotine 2 mg gums have a combination of sodium carbonate and sodium bicarbonate as an 

internal buffer, whereas 4 mg gums use sodium carbonate. This may be to raise the local pH 

to facilitate buccal absorption and also to mask the bitter taste.  A dosing regimen of between 

10-20 gums per day is advised with a gradual decrease over a period of 3-6 months. Popular 
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brands include Nicorette
®
 (GlaxoSmithKline) and Nicotinell

®
 (Novartis) available in a 

variety of flavours including: mint, cinnamon, fruit and original; with coatings to aid in 

masking the bitter taste of nicotine. Specific flavours can affect individuals differently, 

specifically with salivary flow rate, in response to mechanoreceptors (mechanical) and 

gustatory (taste) stimuli (Karami-Nogourani et al., 2011). In a patient study evaluating trial 

formulations of nicotine gums, cherry and eucalyptus trial formulations were preferred with 

aspartame as the sweetener to modify taste (Aslani and Rafiei, 2012). Shiffman (2009) 

identified the need for optimisation in effectively controlling release from commercially 

available gums to ease withdrawal symptoms by providing faster craving relief. The study 

evaluated the initial phases of chewing test gums in vivo by measuring early rises in plasma 

levels of nicotine. The optimised formulation (NHTG2) had a burst effect in the first ten 

minutes of chewing, delivering more nicotine compared to other formulations tested, 

including commercial Nicorette
®
 FreshMint

™
. It was suggested that the controlled release 

mechanism was an interaction  between gum base, nicotine and the buffering system, 

potassium carbonate (Shiffman et al., 2009). 

Nicotine is freely soluble in water with pKa values of 3.12 and 8.02. This contributes to a 

rapid release and thus there is a need for a controlled release preparation to provide sustained 

release for effective therapy using a gum. To achieve this, nicotine is bound to polacrilex to 

ensure sustained release necessary to facilitate effective buccal absorption providing relief of 

nicotine cravings (Figures 1.3 and 1.4). This also increases the distribution of nicotine 

ensuring even mixing of excipients. The first step in nicotine gum formulation is forming the 

nicotine cation exchange complex (nicotine polacrilex); a mixture of the ion exchanger 

(Amberlite IRP 64M) and nicotine. Amberlite IRP 64M contains weak acidic methacrylic 

acid polymers which bind to nicotine. The loaded nicotine polacrilex is added into the gum 

mixture as a pre mix (Rassing, 1996). 

 

 

 

 

 

nicotine  ion exchange resin  nicotine polacrilex 

Figure 1.3 Chemical structure of nicotine polacrilex 
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Figure 1.4 Schematic representation of nicotine polacrilex 

       (Images supplied by Revolymer
®
, 2011) 

1.6.1.1 Taste masking using buffering excipients 

 

The mastication of early nicotine chewing gum formulations resulted in a salivary pH of 

between 3 – 5. This caused an uncomfortable bitter, burning sensation to the individual. 

Lichtneckert (1973) reported in his patent that the addition of water soluble buffering agents 

such as alkali bicarbonates and hydro carbonates resulted in a salivary pH of 7.5 (usually 

between 8 -10) compared to pH 6.7 (normal saliva). This masked the taste and also improved 

bioavailability by increasing the availability of free base (non-ionised) nicotine readily 

available for absorption, ensuring nicotine was absorbed at a steady state (Lichtneckert et al., 

1973).   

1.7 Controlling release from chewing gums 

 

The initial development processes for a medicated gum can be tailored specifically to the 

active and the required release profile to ensure optimal concentrations are released into 

saliva. In vitro testing is a compendial requirement and can provide insights into 

discriminatory formulation factors which influence release of the active. An optimal release 

rate can be tailored to facilitate buccal permeability and subsequent systemic absorption, 

using modifying systems, e.g. embedding /coating techniques (Pagare et al., 2012). 

Information in monographs regarding in vitro testing is limited and is mainly related to QC 

applications (Gajendran et al., 2012). Once in vitro release is established for a range of 

conditions to aid in the formulation of optimised gum formulations, it can be used to predict 

in vivo release before the gum is tested by subjects during relevant chew out studies in 

product developmental stages.  

 

 

 

bound nicotine 

free nicotine 

hydrogen bond 
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Final developmental stages tend to specific market needs such as increasing compliance 

through optimising patient acceptability (Karami-Nogourani et al., 2011). The use of 

emulsifiers can optimise chewability and mouth feel, whereas the use of flavouring oils can 

improve taste (Pagare et al., 2012). CDs have been successfully applied to a range of drugs 

and foods to mask the taste of bitter actives and to increase patient compliance (Szejtli and 

Szente, 2005). Any changes to the formulation/manufacturing process are likely to impact the 

release of the drug and there is little information available in the literature on this. 

Nutravail Technologies formulated a bi-phasic nicotine delivery system (NHT gums) to 

address the initial craving periods of nicotine withdrawal by providing more rapid therapeutic 

effects to the users in order to improve compliance. The formulation contained a unique gum 

base and increased levels of buffering excipients to facilitate buccal delivery, resulting in an 

initial burst release followed by a sustained release period. The study compared commercially 

available Nicorette
®
 (which

 
contains nicotine polacrilex) with a formulation containing 

nicotine hydrogen tartrate in a rapid release formulation (NHT gums). The design aimed to 

increase compliance by balancing sensory effects with increased pharmacokinetic 

characteristics. The randomised crossover study evaluated the early absorption kinetics (after 

10 minutes chewing) of nicotine gum formulations containing different buffering excipients.  

There was a significant increase in nicotine uptake over the first 10 minutes for gums 

containing potassium carbonate. Nicotine levels were found to significantly rise above 

baseline after 4 minutes for gums containing potassium carbonate, after 6 minutes for gums 

containing sodium carbonate and after 8 minutes for commercial Nicorette
®
. The study 

concluded that buffering excipients can be used to effectively control nicotine release rates 

from medicated gums with potassium carbonate resulting in the most rapid release rate 

(Shiffman et al., 2009). The user sensation was also reported (via patient surveys) to be 

improved compared to previous formulations and was noted to be comparable to 

confectionary gums with regards to texture and chewability. The authors also recommended 

normal chewing techniques without the need for the parking strategy. 

Coatings have also been used to modify release of actives from gum formulations. A 

polyvinyl acetate gum base was coated with insoluble acrylic polymers, In vivo chew out 

studies found that the PVA matrix, in combination with coatings, retarded and controlled the 

release of highly soluble catechins during mastication from gums (Yang et al., 2004). 
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Specific modifying systems can also be used to optimise the drug release. For highly soluble 

drugs, a sustained release profile may be achieved by a range of modifying systems 

including:  

 

 Ion exchange resins, e.g. styrene-di vinyl benzene 

 Embedding, encapsulation/coatings e.g. spraying with hydrophilic/phobic coatings  

 Granulation-mixing with components e.g. polymers 

 Solubilisation- adding emulsifying components  

 Reducing particle size  

 

(Rassing, 1994; Gavaskar et al., 2011) 

1.7.1 In vitro release from chewing gums   

 

It has been over 30 years since medicated nicotine replacement gum was registered and its 

success has been instrumental in the inclusion of relevant specific monographs in 

pharmacopoeia. In 1991, the European Pharmacopoeia (EP) first defined a medicated gum as: 

“A solid, single dose preparation consisting of gum that is intended to be chewed but not 

swallowed, providing a slow steady release of the medicine contained after which it can be 

discarded” (European Pharmacopeia, 1998). Further relevant monographs were expanded to 

briefly describe the preparation of chewing gums and more specifically suitable modified 

dissolution (chewing) testing apparatus in the 3
rd

 edition of the European Pharmacopeia in 

2000 (Khatun and Sutradhar, 2012).  

 

The release of active from a medicated gum is similar to an extraction process and due to the 

complex mechanisms governing release there are minimum experimental in vitro settings 

proposed by regulatory bodies (Gavaskar et al., 2011). In vitro drug release testing can 

provide information on the influence of excipients on drug release and is a powerful 

screening tool in product development and optimisation in predicting in vivo performance 

(Gajendran et al., 2012). In vitro release is influenced by mechanical forces such as the 

chewing rate, providing the necessary shearing forces to expose new surfaces for contact with 



35 
  
 

the dissolution medium. In general, drug release is proportional to the aqueous solubility of 

the drug and the chew rate and inversely proportional to the mass of gum base. Other 

contributing factors include temperature, wettability and water permeation (Pagare et al., 

2012). There is normally a residual amount of drug expected in the chewed cud and this can 

be utilised as a tool for estimation of release by measuring residual content after in vivo chew 

out studies. 

 

The official EP compendial chewing apparatus (apparatus A) was designed by Christrup and 

Moller. Successful in vivo in vitro correlations of the release of water soluble actives from 

chewing gums have been published using the apparatus (Christrup and Moller, 1986). An 

alternative chewing gum release apparatus (apparatus B) with further adjustable settings 

including temperature, twisting angle and jaw distance was later proposed (Kvist et al., 

2000). Release from a range of formulations using official EP compendial apparatus A and 

apparatus B has shown correlations with in vivo chew out studies. Both apparatus are suitable 

for predicting drug release from medicated gums but it has been suggested that apparatus B 

may be more discriminating (due to the greater degree of fine tuning controls) and so is 

recommended for formulation optimisation (Gajendran et al., 2012). Specific release 

information parameters are not generally available on the public domain and are used solely 

for formulation development. Further product quality control performance tests can critically 

assess manufacturing variations for chewing gums and include content uniformity and 

uniformity of mass tests (William and Millind, 2012). This is described in further detail in 

chapters 2 and 4. 

1.7.2 Drug release and absorption from chewing gums 

 

The active is released from the gum by chewing (masticatory forces) and this provides 

renewable surfaces for contact between saliva and gum. Saliva dissolves through the gums 

hydrophilic components and subsequently the drug partitions out of the gum and dissolves 

into the saliva entering the oral cavity (Figure 1.5).  

 

The EP approved masticator replicates these conditions in vitro. After dissolution of the 

active into saliva it is available for local treatment in the mouth or it can be absorbed directly 

through the buccal mucosa or sub-lingual routes for a systemic effect via the jugular veins, 

reducing the lag time for onset. This is described in further detail in chapter 5. The absorption 
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of aspirin, caffeine and dimenhydrinate from chewing gums has been shown to be faster than 

from standard tablets (Khatun and Sutradhar, 2012). Any active swallowed will be dissolved 

in saliva and so will be bioready upon absorption (bypassing the disintegration and 

dissolution steps normally encountered with conventional tablets). Once in the blood, the 

active can be transported to the necessary receptor sites (Chaudhary and Shahiwala, 2010).  

 

It is generally thought that there are three main factors which can influence drug release from 

chewing gums: 

 Consumer controlled-  e.g. chew time, frequency, intensity and salivary flow   

 Production processes –specific composition and manufacturing processes  

 Drug related- physiochemical properties (aqueous solubility, pKa ) 

         (Imfeld, 1999) 

In order to facilitate permeability, a concentration gradient must be maintained in the buccal 

cavity for a period of time to drive absorption via passive diffusion mechanisms. Therefore 

variations in bioavailability from medicated gums can be explained by differences in patients‟ 

chewing patterns, time, frequency and intensity, swallowing variations and also saliva 

production. This can be reduced by patient training and instructional guidelines for proper 

chewing to maximise release and subsequent absorbance. Based on questionnaires, the 

average chewing time has been reported as 36 minutes (80 % of the population had a 20 

minute chew time) and the average chew rate was 60 chews per minute (Barabolak et al., 

1991). This formed the basis for the recommended guidelines for investigating in vitro 

release from chewing gums with settings of 60 chews per minute for a 30 minute mastication 

period. 
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Figure 1.5 Process of in vivo drug movement from gum formulation to site of action 

 

1.8 Rev7 polymer in chewing gum formulations 

 

Revolymer
®
 identified problems associated with the disposal of the waste material after 

chewing gum. Taking into consideration that 13.2 million Kg of gums were sold in the UK in 

2010, this can lead to serious problems to keep the environment clean and gum cud-free.  It is 

estimated that it costs about 3p to make a single gum unit, but costs 10p for its removal from 

unwanted surfaces such as streets. This led to fines for littering of gums to take this into 

account. It has been estimated that the annual cost for gum removal in the UK is £150m
 

(statistics supplied by Revolymer
®
, 2010).  

 

Revolymer
®
 has developed a specific amphiphilic polymer Rev7

™
;
 
when incorporated in to a 

chewing gum base it can provide functional benefits including increased chewability. The 

patented formulation of Rev7
 

has multi-factorial functions including increasing the 

hydrophilic component of the gum further control the release of actives as well as improving 

removability of the gum cud after usage (Farber et al., 2009). 
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RED   Hydrophobic backbone (PIP) 

BLUE   Hydrophilic grafts (MPEG) 

Figure 1.6 Incorporation of amphiphilic graft copolymer into the Rev7 

(Figure supplied by Revolymer
®
,
 
2012) 

1.8.1 Structural chemistry of Rev7
 
polymer 

 

Rev7 is a synthetic polymer and consists of branched polymers of mono 

methoxypolyethylene glycol (MPEG) grafted onto poly isoprene-graft-maleic anhydride 

(PIP-g-MA), and unreacted MPEG (< 35 %). The MPEG units are grafted onto the polymer 

backbone to impart hydrophilcity (Figure 1.6) (Farber et al., 2009).  This allows the surface 

chemistry to be modified and water to form a layer around the gum. Any bonds formed to 

surfaces can be easily removed by street cleaners and passing pedestrians, without the need of 

specialist equipment. The polymer also provides an improved chewy texture and a feeling of 

softness to the gum. 
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1.8.2 Revolymer
®
 gum base composition 

 

The gum base (which incorporates Rev7) contains:  

 Elastomers (water insoluble polymers) poly-isobutylene; a synthetic rubber (PIB) 

and polyvinyl acetate; a thermoplastic resin (PVA) - this gives the gum its texture and 

rubbery nature (Figure 1.7). 

 Plasticisers - used to soften the gum base and provide its chewy characteristics e.g 

castor oil or gylcerol 

 Waxes – used to soften the gum and also contributes to its elasticity 

 

              

Figure 1.7 Chemical structure of PIB and PVA 

  

1.9 Lansoprazole  

 
 

It has been estimated that more than 40 % of new drug candidates are lipophilic and have 

poor solubility. Lansoprazole (Figure 3.1) belongs to class II of the Biopharmaceutical 

Classification System (BCS) having low solubility and high permeability. It is a gastric acid 

inhibitor, which prevents the final step in acid production in the stomach. It is a weak base 

and is commercially marketed as a racemic mixture with both enantiomers inhibiting gastric 

acid production (Landes et al., 1995). The European Medical Agency (EMA) has identified 

lansoprazole as a drug in need of reformulating especially for use in paediatrics; a medicated 

gum formulation may be particularly suitable for this market (European Medical Agency, 

2007). Generic manufacturing companies of lansoprazole in the UK include: Actavis UK 

Ltd
®
 and Zentiva which produce 15 and 30 mg gastro resistant capsules and Zoton FasTab

®
 

preparations manufactured by Pfizer Limited.   

                                                          

(http://www.medicines.org.uk/emc/search/lansoprazole)   
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Lansoprazole (C16H14F3N3O2S) belongs to a class of compounds called proton pump 

inhibitors (PPIs) which inhibit gastric acid secretion regardless of the primary stimulus. PPIs 

are commonly used in the treatment of acid-related diseases, with the first introduction of 

omeprazole in 1989. This led the way for other PPIs including lansoprazole (1995), 

pantoprazole (1997) and rabeprazole (1999) (Shi and Klotz, 2008). PPIs are used in the 

therapy of gastric and duodenal ulcerative diseases, for the treatment of the heartburn and 

other symptoms associated with gastro oesophageal reflux disease (GORD), for the treatment 

of erosive oesophagitis (food pipe injuries) and long term treatment of pathological hyper 

secretory conditions, such as Zollinger-Ellison syndrome (Horn and Howden, 2005). The 

majority of gastric acid disorders are caused by an imbalance between pepsin and acid 

production (aggressive factors) and mucus  bicarbonate and prostaglandin production  

(defensive factors) (Taneja and Gupta, 2002). The ability of anti-secretory drugs to heal 

duodenal ulcers is directly correlated to their ability to maintain a pH above 3, accumulation 

in the most acidic place in body (parietal cells) and the acid- catalysed conversion due to 

specific chemistry of the drug (Tutunji et al., 2006). A pH of above 4 is required for healing 

of gastric ulcers and erosive oesophagitis (Kinner, 2012). 

 

The key mechanism of action of the PPIs involves direct inhibition of the proton pump 

(H
+
/K

+ 
adenosine triphosphate) via an enzyme present in the gastric parietal cells. These 

drugs are metabolised in the parietal cells to the active sulfenamide metabolite that directly 

inactivates the sulfhydryl group of the proton pump and thereby reducing hydrogen ion 

secretion. Absorption of the PPIs takes place in the proximal small intestine (Horn and 

Howden, 2005). PPIs will only inhibit actively acid secreting proton pumps and different 

PPIs bind to different sites on the proton pump which may explain differences in potency; 

with rabeprazole known to be the most potent and pantoprazole as the least (Kinner, 2012).  

 

All PPIs undergo hepatic metabolism and are extensively protein-bound (> 95 %). All of the 

currently available delayed-release PPI‟s have a short elimination half-life (t1/2) of between 1 

and 2 hours. All formulations have similar pharmacokinetics with the only difference being in 

bioavailability in the initial days of oral dosing (Horn and Howden, 2005).  
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Table 1.3 Relative bio availabilities of the PPIs 

 Esomeprazole Lansoprazole Omeprazole Pantoprazole 

Absolute bioavailability (%) 64-90 >80 40 77 

Time to peak plasma level (hours) 1.5 1.7 0.5-3.5 2-4 

          

(Horn and Howden, 2005) 

Lansoprazole has an absolute bioavailability of greater than 80%, time to peak plasma level  

is 1.7 hours, plasma half-life is 1.5 hours and it is 97 % protein bound (Table 1.3) (Horn and 

Howden, 2005). Lansoprazole is the only PPI suitable for children as young as one year old 

and is recommended for administration with fruit juices or applesauce. The recommended 

duration of treatment is short term for between 4 – 8 weeks. The effects are dose related and 

can last up to 24 hours as the elimination rate does not affect its acid suppression. Current 

medical information leaflets recommend consumption in the morning before food on an 

empty stomach to aid in absorption. 

 

Table 1.4 Physiochemical characteristics of lansoprazole 

 

  

Characteristics 

Drug candidate:  

Lansoprazole 

Appearance White to off white, odourless powder 

Thermal stability Around 170 °C 

Solubility Practically insoluble in water 

Sparingly soluble in ethanol 

Absorption  Oral dosing: C max =1.7 hours  

Half life 1.5 hours 

pKa 1.33, 4.15 and 8.84 

 

The physiochemical properties of lansoprazole particularly the thermal stability (required 

during the kettle mixing method) indicate that it would be suitable for formulation into 

chewing gums (Table 1.4). The characterisation of lansoprazole is described in detail in 

chapter 3. 
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1.9.1 Pathophysiology of ulcers 

 

Peptic ulcers can result from high levels of acid or pepsin in the gastric juice which can cause 

a discontinuity in the thickness of the duodenal or gastric mucosa. The reasons for reflux of 

acid, pepsin or bile from the stomach into the oesophagus can be multi-factorial and caused 

by lower oesophageal sphincter relaxations and reduced tone as well as abnormal acid 

clearance. One common described symptom of GORD (20 %) and peptic ulcers (10 - 15 %) 

is dyspepsia, defined as a recurrent or persistent discomfort or pain in the upper abdomen. 

The prevalence of people affected by peptic ulcers at some point is around 10 % of the 

population in developed countries (Kinner, 2012). The two main types of peptic ulcers are 

associated with aspirin and (NSAIDs: COX inhibitors can reduce mucosal prostaglandin 

production) and also those associated with Helicobacter pylori (H. pylori), gram negative 

spiral bacterium found in the gastric antrum of the stomach. The vast majority (95 %) of 

duodenal ulcers and 80 - 85 % of gastric ulcers are associated with H. pylori (Kinner, 2012). 

The pathophysiology of ulcers caused by H. pylori involves tissue damage caused by 

activation of the inflammatory cascade which alters gastrin (the hormone involved in 

stimulating gastric acid) homeostasis; causing hyperacidity.  

 

Lansoprazole demonstrates efficacy and a mechanism of action as an effective anti-microbial 

activity against H. pylori. Lansoprazole was 4-16 times more effective against H. pylori 

compared to omeprazole and pantoprazole and inhibited 90 % of organisms from 58 clinical 

isolates tested (Gremse, 2001). It was suggested that the secretory response is actively 

involved in host defence mechanisms (Kinner, 2012). Lansoprazole can be combined as part 

of a triple therapy for the eradication of H. pylori, example regimens include lansoprazole (30 

mg) combined with clarithromycin (500 mg) and amoxicillin (1 g) twice daily.  

1.9.2 Epidemiology, prevalence and indications of ulcers 

 

Heartburn occurs in 20 % of the population on a weekly basis in developed countries (Kinner, 

2012). Lansoprazole is licensed in over 60 countries including the US, UK, Europe, Japan 

and Canada with worldwide sales of $3.9 billion in 2000. It is considered to provide faster 

relief and more effective/superior treatment options than H2- receptor antagonists such as 

ranitidine. After 2 weeks of treatment with lansoprazole (30 mg/day) a healing rate of 74-78 

% was observed for duodenal ulcers compared with a healing rate of 46 - 60 % with 
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ranitidine (300 mg/day) (Landes et al., 1995). Lansoprazole (30 mg/day) has also been found 

to heal duodenal ulcers at a faster rate than omeprazole (20 mg/day) having an increased 

healing rate of 74 % compared to 58 % respectively over 2 weeks (Landes et al., 1995). 

Lansoprazole is indicated for long term treatment of healed reflux and ulcer disorders and 

also for hypersecretory conditions such as Zollinger-Ellison syndrome (caused by 

gastrinomas) resulting in an increased number of parietal cells in the stomach causing gastric 

mucosal hypertrophy and increased basal gastric acid secretion (Gremse, 2001). 

1.9.3 Mechanism of action of lansoprazole  

 

Following oral administration of the prodrug lansoprazole, due to the drug‟s (weak base)  

affinity, it is converted under the acidic conditions of the parietal canaliculus (pH close to 1), 

(Figure 1.8) (Pearce et al., 1996). It is rearranged by an acid catalysed conversion to a 

tetracyclic cationic sulfenamide active form and into a di-sulphide inactive form. The 

sulfenamide form covalently binds via di sulphide bonds to critical sulfhydryl groups (critical 

cysteines 813/822) on the H
+
/K

+
 -ATPase which causes prolonged inhibition of the proton 

pump at the secretory surface of gastric parietal cells (Horn and Howden, 2005). The amount 

of drug accumulated for conversion depends on the proton gradient between the cytoplasm of 

the parietal cell and the secretory canaliculus. The rate of conversion to active metabolite 

depends on the acidity of the intracellular space. Therefore the rate and extent of acid 

suppression depends on the acidity of the parietal cells, the duration of effective 

concentrations in the canaliculus and stability of the di-sulphide bond formed between the 

drug and proton pump (Bell et al., 2001). The conversion is irreversible and inhibition is dose 

related, causing a prolonged effect of gastric inhibition; 85 % inhibition after a 30 mg 

morning dose and 90 % after 7 days continuous treatment. This inhibits both basal and meal 

stimulated acid output and volume secretion due to the combined inhibition of histamine, 

gastrin and acetylcholine (Bell et al., 2001). The reduction in gastric acid secretion results in 

a negative feedback mechanism causing an increase in serum gastrin levels. The increase in 

pH of the stomach causes a reduction in stomach pepsin activity along with increases in 

serum pepsinogen (the precursor to pepsin) levels in response to meal stimulation under basal 

conditions. This affects both central and peripheral mediated gastric acid secretion due to the 

signalling pathway convergence of the different stimuli receptors at the proton pump. This 

contributes to an increase in the mean gastric pH and duration that the gastric pH remains 

above pH 3-4, which allows for subsequent healing (Taneja and Gupta, 2002). 
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 Figure 1.8 Parietal cell      

(adapted from Kinner, 2012) 

1.9.4 Pharmacokinetics of lansoprazole 

 

To prevent acid degradation of the acid labile drug, lansoprazole is administered orally as 

enteric coated granules to prevent acid decomposition and increase bioavailability. This can 

delay absorption with a maximum plasma concentration after 2-3 hours. The pH of the GIT is 

variable, dependent on times and physiological conditions (fed/fasting states) and this can 

lead to variations in pharmacokinetic profiles in individuals. Absolute bioavailability is 80-84 

% after absorption in the small intestine. Bioavailability is decreased (27 % reduction in 

bioavailability) when administered within 30 minutes of food compared with fasting states 

(Gremse, 2001). However bioavailability is inconsistent due to the variation of the genotype 

of CYP 2C19, acid degradation and limited water solubility (Lu et al., 2012). Onset of action 

is seen within 2-3 hours with an increase in gastric pH following a 15 mg dose. Inhibition is 

dose dependent with the concentration of active metabolites in the parietal cells contributing 

to the anti-secretory efficacy. Serum concentrations may be increased twofold following 

morning dosing regimens compared to evening. Therefore it is suggested to take lansoprazole 

before breakfast and before meals to take advantage of the meal induced activation of the 

pump. Its duration of action is 24 hours with no rebound actions following discontinuation 

(Bell et al., 2001).   

 



45 
  
 

Lansoprazole is distributed in the tissues of the parietal cells with an apparent oral volume of 

0.5 litres per kilogram following 30 mg administration and is 96 % albumin protein bound 

(Maisch and Smith, 2003).  

 

Lansoprazole is extensively metabolised in the liver by cytochrome P450 (enzymes CYP3A4 

and CYP2C19 via 5- hydroxylation and sulfoxidation) to two main inactive metabolites; 5 

hydroxylansoprazole and lansoprazole sulfone (Figure 1.9). These can be measured in plasma 

and are non-pharmacologically active. In the acidic environment of the parietal cells the pro 

drug metabolites are converted to its active sulphonamide derivatives (AG-1812 & AG-2000) 

which directly inhibit the H
+
/K

+
 -ATPase the terminal step in the acid secretion pathway 

(Maisch and Smith, 2003). The CYP2C19 shows genetic polymorphs yielding poor and 

extensive metabolisers (Niioka et al., 2008). Inter individual variability is greater in men 

compared to women (Pearce et al., 1996).   

 

Figure 1.9 Major metabolites of lansoprazole   (Pearce et al., 1996) 

The half life is 1.5 hours under normal renal functioning, 1.9 - 2.9 hours in elderly patients 

and 3.2-7.2 hours with hepatic function impairment. 

 

Lansoprazole sulphone 

5-Hydroxylansoprazole sulphone 

Lansoprazole sulphide 
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1.9.5 Side effects of lansoprazole 

 

Common GI side effects occur in < 5% including nausea, diarrhoea (caused by infection of 

Clostridium difficile) and stomach or abdominal pains have also been reported. Non GI-side 

effects include headaches and dermatological effects with a frequency of 1-3 % (Kinner, 

2012). 

1.9.6 Current formulations of lansoprazole 

 

At 25 °C the degradation half-life of lansoprazole is approximately 0.5 hour at pH 5.0 and 

approximately 18 hours at pH 7.0 (Ekype and Jacobsen, 1999). The polymeric enteric coating 

protects the acid labile drug from acid degradation and only dissolves at pH > 6 to allow 

absorption in the alkaline upper region of the small intestines. Initial formulations of 

lansoprazole were marketed by Takeda/TAP Pharmaceutical products and were available as 

15 mg and 30 mg delayed release capsules; enteric coated granules were filled in a hard 

gelatin capsule intended to be swallowed whole.   

 

Other modified formulations included delayed release orally disintegrating tablets (ODT); 

SoluTab
® 

(US) (Abbott Laboratories) and Zoton FasTab
®
 (UK) (Pfizer Ltd) and also as 

packet powders for suspensions when added to water. These flavoured formulations rapidly 

dissolve (< 60 seconds) releasing the gastro-resistant micro-engineered granules which are 

swallowed. The ODT formulations were found to be bioequivalent to capsules (Iwasaki et al., 

2004).  

 

Micronised particles have been proposed to increase surface area and the possible dissolution 

rate of lansoprazole.  It was suggested that the drug can be stabilised using a combination of 

carbonate salts (sodium carbonate and bicarbonate (1:1 molar ratio)) to neutralise the pH of 

the gastric fluid. Sodium bicarbonate (10 mL of 8.4 % solution) was sufficient to neutralise 

the gastric acid and to avoid drug degradation, however side effects included flatulence due 

to the production of gases with excess carbonates (Taneja and Gupta, 2002).  

 

An intravenous (IV) formulation was under review by TAP Pharmaceuticals, with the 

pharmacokinetic and pharmacodynamic profile being equivalent to oral forms with no 

significant differences in pH after 5 days of therapy. The IV route raised the pH significantly 
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higher after 1 hour and maintained a pH above 4 for a longer duration after administration 

compared to oral dosing (Maisch and Smith, 2003). 

 

Some modified suspensions have been developed utilising sodium bicarbonate to reduce acid 

degradation. Lansoprazole (3 mg/mL) was stable for 8 hours at 22 °C and 14 days at 4 °C 

compared with omeprazole (2 mg/mL) which was stable for 14 days at 22 °C and 45 days at 

4 °C (as suspensions in 8.4 % sodium bicarbonate solution when stored in amber coloured 

plastic syringes) (DiGiacinto et al., 2000). This technique was successfully used for 

omeprazole in an immediate release formulation, Zegerid
®
 developed by Santarus Inc and 

available for sale in the US. (Small, 2005). The powder formulation for oral suspension 

combined the PPI (available in 40 mg and 20 mg doses) with the antacid sodium bicarbonate 

(460 mg; to increase stability). The formulation also contains a suspending agent to avoid 

precipitation once mixed with water. The suspension is stable at room temperature for up to 2 

hours, however it is recommended that each dose is prepared immediately before 

administration. Pharmacokinetic testing showed the preparation rapidly increased pH, 

protecting against degradation and eliminating the need for enteric coatings and allowing 

rapid absorption within 30 minutes (Small, 2005). The preparation was significantly effective 

at reducing nocturnal gastric acidity when dosed before bedtime compared to pantoprazole. 

The preparation targeted nocturnal acid breakthrough (NAB) as 80 % of individuals 

experiencing heartburn have symptoms at night, during the first half of the sleeping period, 

with 29 % awakened by coughing and discomfort (Katz et al., 2007). The formulation 

provides a convenient and flexible treatment option with a quick on set of action which is 

beneficial for patients who suffers the discomfort of GORD at night. 

 

There are limited examples of lansoprazole in buccal delivery systems but omeprazole has 

been formulated as buccal tablets, prepared with bioadhesive polymers to increase buccal 

retention; however the stability of the PPI was low in saliva. Croscarmellose sodium (a super 

disintergrant) enhanced the release of omeprazole from the buccal tablet but decreased the 

bioadhesive forces and stability of the formulation (Yong et al., 2001). Buccal formulations 

of omeprazole containing (omeprazole/sodium alginate /HPMC/magnesium oxide) were 

stable for 4 h in human saliva and possessed increased buccal adhesion compared to other 

formulations (Choi and Kim, 2000). Both studies on buccal formulations suggested that 

stabilising lansoprazole in the oral cavity in saliva is challenging, however the time spent in 
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the mouth with chewing gums will be relatively short compared with buccal tablet 

formulations. HPMC oral films have been previously prepared containing omeprazole and L 

arginine (used as a stabiliser, 1:2) for potential buccal delivery for paediatric patients (Khan 

et al., 2015). 

 

1.10 Challenges for chewing gum formulations containing lansoprazole 

 

Due to lansoprazole‟s high sensitivity to acidic, chemical degradation and specific 

incompatibilities with excipients, stabilising the drug within the formulation is challenging. 

This is described in detail in Chapter 3. Historically, incorporation of buffering excipients as 

pH adjusters has been utilized in a range of formulations to maintain the micro-environmental 

pH and improve stability during manufacture and storage (Carstensen, 2000). In the case of 

alkaline stabilisers, sodium bicarbonate, sodium carbonate, and magnesium and calcium 

oxides are commonly used in solid formulations and are capable of providing pH > 7 

(Carstensen, 2000). Lansoprazole is unstable under strongly basic conditions, but its 

degradation is minimized under weakly basic conditions. Degradation of lansoprazole has 

been effectively minimised by using magnesium carbonate to produce a weakly basic pH 

(Tetsuro et al., 1992). The effects of different alkaline stabilisers on lansoprazole multi-

coated pellets found dibasic sodium phosphate provided the most stable microenvironment 

due to its optimal pH and high buffering capacity. Sodium carbonate was found to produce 

the fastest release rate and the authors suggested mechanisms relating to interactions between 

the drug causing disordering and resulting in an amorphous state of lansoprazole. Increases in 

porosity were also suggested with sodium carbonate (increasing drug release); but this also 

contributed to moisture uptake and subsequent drug degradation in the pellets (He et al., 

2010). Further work assessed four different alkaline stabilizers (including sodium carbonate, 

magnesium oxide and magnesium carbonate; added in equivalent weight ratios) in 

lansoprazole pellet formulations and found that inclusion of sodium carbonate produced the 

fastest release rate due to increased micropore formation which facilitated diffusion (He et 

al., 2011). The case study by Missaghi utilised multi-particulate dry powder layering and 

seal-coating technology which provided an isolation barrier against the outer aqueous enteric 

coating that had previously been observed to degrade the drug. This resulted in improved 
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stability and subsequent release from the oral solid formulations containing PPIs (Missaghi et 

al., 2010). 

The release of the buffering excipients (soluble fractions) will directly influence the local 

environment (salivary pH) and so this should be considered and carefully controlled to 

facilitate potential targeted absorption via the oral buccal membrane following drug release. 

The primary absorption mechanism is via passive diffusion, the rate and extent of absorption 

of which is pH dependent. The salivary pH will therefore affect the portion of unionised drug 

readily available for absorption, due to increased partitioning into the buccal membrane 

(Pagare et al., 2012) (see section 5.3.3.1 and Figure 5.4). 

Therefore the manipulation/control of the oral pH can affect drug delivery and this is 

exemplified by the range of formulations which incorporate buffering excipients, or pH 

adjusters, to facilitate absorption. Commercial Nicorette
® 

formulations contain different 

compositions of buffers (sodium carbonate and sodium bicarbonate) between the 2 mg and 4 

mg dosages; this is to ensure a similar pH increase to allow optimised conditions for nicotine 

release and absorption (Morjaria, 2004). As nicotine gums were chewed in vitro there was a 

corresponding increase in pH of the dissolution medium. The greatest pH increases were 

observed within the first 5 minutes of chewing, due to the increased  solubility of the 

buffering excipient and then gradually plateaued to a final value of around pH 8.4 (a total 

increase of 1.5 pH units) resulting in nicotine being predominately in its unionised form. The 

study reported an increase in nicotine release proportional to the increase in buffering 

excipient content (sodium carbonate); this was related to the increase in micro-pores in the 

gum matrix which are formed after dissolution of the buffer upon contact with saliva, leaving 

channels for subsequent drug release. The gums texture was also observed to change, 

resulting in a softer gum with increasing buffering excipient content (Morjaria, 2004).  

The masticatory actions of chewing a gum also affect the pH of the oral cavity. The pH of 

saliva was observed to increase during in vivo chewing of flavoured gums, due to the 

increased flow rate of saliva which leads to proportional increases in bicarbonates (Karami-

Nogourani et al., 2011).   

Other considerations include the increased solubility and stability of lansoprazole in a basic 

pH environment. Increases in pH of phosphate buffer were found to facilitate the dissolution 

of commercial lansoprazole capsules (as granules), with maximum dissolution observed at 
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pH 8. Dissolution was also dependent on digestion time and the ionic strength of the chosen 

medium (Ashraf et al., 2012).  

rapid onset of action, convenience, pleasant sensation on being chewed and the potential of 

high acceptance in the paediatric market from parents (Mehta et al., 2010). 

1.11 Positive functional effects of chewing gum on GORD 

 

It has been understood that the production of saliva provides a beneficial effect for sufferers 

of acidic reflux, as the bicarbonate helps neutralise acid and accelerates acidic clearance time 

protecting the gastric mucosa against acid induced effects. Chewing gum base for a 

prolonged period of time significantly increased salivary flow and clearance time in 10 

healthy individuals due to increased swallowing of saliva (Schonfeld et al., 1997). 

 

Chewing gum has been shown to be more effective than walking in reducing acid production 

after breakfast in patients with GORD. The reduction in acid was prolonged for one hour post 

walking but sustained for three hours post chewing gum (Avidan et al., 2001). Chewing gums 

containing 600 mg calcium carbonate were demonstrated to be more effective for reduction 

of heartburn than chewable tablets (1000 mg) (Collings et al., 2002).   The beneficial effects 

on reflux were due to chewing causing increased salivary flow, which increased the buffering 

capacity and salivary bicarbonate concentration as well as the rate of swallowing saliva.  

 

Some studies have also suggested that chewing gum may have a detrimental effect on reflux 

due to having a weak stimulating effect on gastric acid secretion. A study examining the 

effect of chewing gum on volume and pH of gastric content in 46 patients found no 

significant effect between non chewing gum patients and suggested this was due to the 

neutralising of the weak acid stimulation by the salivary bicarbonate (Dubin et al., 1994). 

1.12 Summary 

 

There is an increased demand for convenient and efficient drug delivery systems to fit into 

modern active lifestyles (Hyrup et al., 2005). The potential to improve various treatments 

using chewing gum as a novel drug delivery method presents great opportunities. The 

potential of a medicated chewing gum formulation containing lansoprazole will provide all 

the functional benefits that a chewing gum can provide including the rapid onset of action 
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with the potential of buccal delivery as well as increased salivary stimulation to neutralise 

gastric acidic. It will also provide an alternative convenient treatment strategy to increase 

compliance.  

 

The possible formulation of a stable novel delivery system for lansoprazole is challenging as 

lansoprazole belongs to BCS, class II, with solubility and stability being pH-dependent. It 

degrades in highly acidic /basic environments and is unstable under conditions of high 

temperature and high humidity (Tetsuro et al., 1992). To ensure success the drug must be 

released from the gum at a rate and extent that facilitates buccal absorption (Conway, 2007). 

Therefore the main challenges will be in stabilising the drug, increasing solubility in the oral 

environment and applying techniques to raise the pH of the saliva locally. 

1.12.1 Aims and objectives 

 

The main aim of this thesis was to incorporate a poorly soluble, acid-labile active 

(lansoprazole) into a chewing gum formulation for potential absorption across the buccal 

mucosa. This will contribute to the limited knowledge around the release of a poorly soluble 

active from a medicated chewing gum formulation. 

The study utilised the EP approved chewing apparatus to quantify in vitro release of 

lansoprazole from chewing gums leading to the production of a range of further optimised 

trial formulations. Various experimental chew machine settings were explored including 

choice of dissolution medium, sample replacement volumes, pH and chew rate to mimic 

different chew related physiological states in vivo. 

 

The study also assessed formulation considerations including the use of Rev7 technology, the 

effect of buffer excipients and the use of cyclodextrin complexation to enhance release of a 

poorly soluble active from medicated gums.  

The study contributed to the understanding of factors governing the release rate and extent of 

a poorly stable, poorly soluble drug from a novel medicated chewing gum formulation. The 

study also assessed the potential for buccal absorption of lansoprazole once released from the 

medicated gum in the oral cavity. 
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1.12.1.1 Drug-related objectives  

 Investigate the characterisation of lansoprazole particularly the solubility and stability 

in artificial saliva. 

 Investigate the use of cyclodextrins as a solubiliser and stabiliser for lansoprazole. 

 Utilise the in vitro Franz cell apparatus to provide an estimation of permeability of 

lansoprazole using artificial saliva through porcine buccal mucosa. 

1.12.1.2 Gum formulation objectives  

 

 Load required dose of stable active pharmaceutical ingredient (API) into a range of 

trial gum formulations - including investigating the effect of gum base mass 

percentage and also different excipients; Rev7 polymer, release modifiers 

(cyclodextrin as solubilisers) and buffering excipients. 

 Evaluate in vitro release of API from the gum using the EP approved masticator 

utilising a variety of test settings.  
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Chapter Two:  

General methods 
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Experimental methods  

All routinely used methods for this thesis are described in this chapter, including HPLC 

parameters. Any specific variations are detailed in the relevant chapters. 

2.1 HPLC analysis of lansoprazole and nicotine 

HPLC was the primary tool used for quantitative and qualitative analysis of drugs. 

Equipment 

The Shimadzu HPLC system was set up as follows: 

Pump:   LC-20AT SN: L201146 

Autosampler:  SIL-20A SN: L201646 

Oven:   CTO-10AS SN: 02120446 

UV Detector:  SPD-20AV SN: L20144473015 

2.1.1 HPLC parameters for the analysis of nicotine 

 

The method was based on a validated HPLC assay method used previously and was 

developed further in-house (Morjaria, 2004).  

Materials 

Nicotine hydrogen tartrate, ammonium phosphate monobasic, ammonium hydroxide and 

acetonitrile were all supplied by Sigma (Dorset, UK) and were of pharmaceutical, analytical 

or HPLC grade as appropriate. Double distilled water was generated in house using a Fison Fi 

Stream still (Birmingham, UK). 

Chromatographic conditions 

Column:  Waters Xterra RP-18 4.6 x150 mm, 3.5 µm  SN: W21631B022  

Mobile phase:  70 % ammonium phosphate buffer: 30 % acetonitrile (pH 8.5) 

Injection Volume:  20 µL 

Wavelength:  260 nm 

Flow rate:  1 mL/ minute 

Run time:  6.0 minutes 
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Methods 

Preparation of mobile phase 

Monobasic ammonium phosphate (6.7 g) was dissolved in approximately 950 mL double 

distilled water. The pH of this solution was then adjusted to pH 8.5 using ammonium 

hydroxide solution (3.0 % w/v).  The volume was then made to 1 L using distilled water. 

Preparation of nicotine standards 

Working standards of nicotine were prepared by serial dilution of a 100 µg/mL nicotine stock 

solution to produce serial dilutions of 80, 60, 40, 20 and 10 µg/mL. All standards were 

diluted using mobile phase. The stock solution was prepared by weighing 28.5 mg of nicotine 

hydrogen tartrate made up to 100 mL to produce a stock solution of 285 µg/mL of nicotine 

hydrogen tartrate equivalent to 100 µg/mL of nicotine. 

The calibration range was chosen to incorporate the maximum theoretical concentration of 

nicotine in chewing chamber from both strengths of nicotine gums (4 mg and 2 mg) once 

diluted 1:1 with mobile phase (Figure 2.1).  

 

 

 

Figure 2.1 Nicotine calibration curve (n = 5; mean ± s.d) 
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2.1.2 HPLC parameters for the analysis of lansoprazole 

 

The method was based on validated methods developed by (Ekype and Jacobsen, 1999; 

DiGiacinto et al., 2000; United States Pharmacopeia, 2007; Song et al., 2008; Idrees and 

Majdoleen, 2010; Hong et al., 2012). 

Materials 

Sodium phosphate and acetonitrile were supplied by Fisher Scientific (Loughborough, UK) 

and were of pharmaceutical, analytical or HPLC grade as appropriate. Ultra-pure water was 

generated in house (Huddersfield, UK). Lansoprazole was supplied by Discovery Fine 

Chemicals (Dorset, UK) and was used as received. 

Chromatographic conditions 

Column:  Waters Xterra RP-18 4.6 x150mm, 3.5µm SN: 02231262161 

Mobile phase:   45 % v/v acetonitrile: 55 % distilled water, (pH adjusted to pH 7.5 

using 0.1 M sodium phosphate) 

Wavelength:  285 nm 

Injection Volume:  5 µL 

Flow rate:  1.0 mL/ minute 

Temperature: 35 °C 

Run time:  10.0 minutes  

Preparation of lansoprazole standards  

Working standards of lansoprazole were prepared by serial dilution of a 200 µg/mL stock 

solution to produce 150, 100, 50 and 20 µg/mL lansoprazole solutions in mobile phase. The 

range was chosen to represent the maximum theoretical concentration of lansoprazole in 

chewing chamber from masticated gums: (15 mg) in 40 mL of dissolution medium assuming 

100 % release and dilution 1:1 with mobile phase (Figure 2.2). 
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Preparation of 200 µg/mL lansoprazole stock solution 

0.02 g of lansoprazole standard was weighed and made up to 100 mL using mobile phase 

(Mettler Toledo-analytical electronic balance). All glass volumetric flasks were wrapped in 

foil to restrict light exposure and were stored at 4°C. Standards were remade every 30 days to 

prevent errors due to any drug degradation.  

 

Figure 2.2 Lansoprazole calibration curve (n = 5; mean ± s.d) 

 

2.1.3 HPLC validation 

 

All HPLC validation tests and acceptance limits within this section were performed in 

accordance with guidelines in the International Conference of Harmonization, (ICH,1996) 

and as per general validation instrumentation guidelines given by Shimadzu Customer 

Support (Shimadzu Ltd, N.D). The HPLC system and method of lansoprazole determination 

were validated by evaluating linearity, precision, accuracy, limit of detection and limit of 

quantification. Accuracy can be defined as the proximity of measurements to the true value. 

Precision can be described as being able to get the same result for a particular sample every 

time, when analysis of that sample is repeated. 

System suitability testing is an integral part of all analytical procedures. The utilised method 

was checked for system suitability by determining the capacity factor (K ), Tailing factor (T) 

and number of theoretical plates (N).  
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The capacity K  is a measure of sample retention and sample separation (Eq. 2.1).  It accounts 

for the location of the peak of interest with respect to the void volume and the solvent front.  

For an ideal separation the capacity factor should be above 1.5 (Shimadzu Ltd, N.D). 

   
     
  

 

Equation 2.1 Capacity factor (K ) 

Where t0 - initial retention time (solvent front), tA - retention time of the analyte  

 

The tailing factor confirms the ideal calibration range (Eq. 2.2). Tailing tends to be more 

pronounced when the mobile phase is overloaded with a high analyte concentration. The 

calibration range used in the current method is 200 µg/mL to 20 µg/mL. The concentration 

range and injection volume were chosen based on the tailing factor. The recommended tailing 

factor for a good separation should not be more than 2 (Shimadzu Ltd, N.D). 

  
 

  
 

Equation 2.2 Tailing factor (T) 

Where W- width of the peak, f- flow rate (mL/min) 

The theoretical plate number (N) is a measure of column efficiency (Eq. 2.3). N remains 

constant for each plate on a chromatogram with a fixed set of defined conditions. Factors 

which may influence N include the particle size of column, molecular weight of analyte, flow 

rate of mobile phase, position of peak and column temperature. The greater the number of 

theoretical plates, the higher the efficiency of separation with good peak resolution and sharp 

symmetric peaks. The generally accepted criteria are > 2000 recommended for a good 

separation (Shimadzu Ltd, N.D). 

      (
  
    

)
 

 

      Equation 2.3 Number of theoretical plate (N) 

Where tA- retention time of the analyte, W0.5 – half the peak width  
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Linearity is the detectable range that obeys the Beer-Lambert Law, the linear relationship 

between absorbance and concentration of an absorbing species (Eq. 2.4). 

      

Equation 2.4 Linearity 

Where A is absorbance, Ɛ is the molar absorptivity, b is the path length and c is the 

concentration of the sample.  

The linearity of the method was tested to demonstrate a proportional relationship of response 

versus analyte concentration over the working range. The calibration curves were constructed 

with working concentration of 200 µg/mL to 20 µg/mL and linearity was evaluated between 

calibrations ran on the same day as well as over multiple days, all the experiments were 

carried out in triplicate.  

Interday validation was evaluated to determine variation that may arise from day to day 

working. A known concentration of lansoprazole solution was made and analysed on the first 

day and then was re analyzed on the following five consecutive days. The % R.S.D was 

accepted if it was < 1.0 % (Shimadzu Ltd, N.D). 

To determine the precision of the system, 6 multiple injections were made from the same vial 

for one concentration of lansoprazole and were analysed on the same day (intraday), under 

the same conditions. Acceptable % R.S.D was taken as < 1.0% (Shimadzu Ltd, N.D). 

To determine accuracy, a known concentration of lansoprazole was added to hexane and 

mobile phase (50 mL: 50 mL) and % recovery was measured. This was repeated five times to 

ensure accuracy. This also provided validation of the extraction method as well as testing 

accuracy of the HPLC method. Acceptable % RSD was taken as < 1.0% (Shimadzu Ltd, 

N.D).  

Selectivity and specificity are measures of the interference from substances which may be 

expected to be present, including other excipients, impurities and degradation products. As 

lansoprazole is acid labile it is important that the concentration of lansoprazole can be 

determined in the presence of its acid degradation products (Idrees and Majdoleen, 2010). 

This was demonstrated by identifying lansoprazole in presence of its acid induced 
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degradation products and also with using impurities A and B; which were purchased from the 

British Pharmacopeia (see Figure 3.5). 

Limit of detection (LOD) is the lowest concentration of an analyte which can be detected 

under the experimental conditions. Limit of quantification (LOQ) is the lowest level of 

analyte that can be accurately measured under the experimental conditions. The LOQ value 

was accepted if the % R.S.D was < 5% (Shimadzu Ltd, N.D).  

The limit of quantification (LOQ) and limit of detection (LOD) were calculated for 

lansoprazole. Three calibration runs were performed in triplicate and the calibration curve 

was constructed. The standard deviation of the y intercepts () and the slope of the regression 

lines (S) was calculated from the calibration curves. The following equations (Eq. 2.5) were 

used to calculate LOQ and LOQ: 

    
    

 
 

 

    
   

 
 

Equation 2.5 LOD and LOQ 

(Shimadzu Ltd, N.D and ICH, 1996) 

2.1.3.1 Validation of HPLC method for determination of nicotine 

 

Table 2.1 HPLC method validation for nicotine 

Test Values 

Result:  

R.S.Ds  Acceptance criteria 

Linearity (n=5) 0.999 ± 0.0003  0.03 % 

All R.S.Ds 

of less than 

Injection precision (n=5) 1928 ± 11.10 0.58 % 1.00% 

Repeatability (n=6) 387 ± 2.97 0.77 %   

 

All of the R.S.Ds were less than 1.0 % therefore the HPLC method was accepted as accurate 

and precise (Table 2.1). LOD was 0.273 µg/mL and LOQ was 0.826 µg/mL which were 

similar to those reported previously (Morjaria, 2004). 
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2.1.3.2 HPLC system suitability and method validation for determination of 

lansoprazole  

 

Table 2.2 System suitability for determination of lansoprazole 

Test Result Acceptance criteria 

Capacity factor (K ) 2.89 > 1.5 

Tailing factor (T) 0.35 < 2 

Number of theoretical plates (N) 2846 > 2000 

 

All of the results were accepted and showed that the system is suitable for detection of 

lansoprazole (Table 2.2). 

Table 2.3 HPLC method validation for lansoprazole 

Test Values 

Result:  

R.S.Ds  Acceptance criteria 

Linearity (n=5) 0.999 ± 0.004  0.026 % 

All R.S.Ds 

of less than 

Injection precision (n=5) 451833 ± 3155.2 0.70 % 1.00% 

Repeatability (n=6) 419162 ± 1625.25 0.39 %   

 

All of the R.S.Ds were less than 1.0%, the method was accepted as accurate and precise 

(Table 2.3). The accuracy was 0.97 %. LOD values were 0.267 µg/mL and LOQ was 0.809 

µg/mL.   

Both the nicotine and lansoprazole HPLC analysis methods were accurate and reproducible, 

as evidenced by the calibrations which show good linearity and reproducibility between the 

working standard ranges.  

2.2 In vitro release testing of chewing gums 

 

The specialised dissolution apparatus is designed to determine the active dosage form 

released from chewing gum by providing the masticatory mechanical shearing forces. The 

apparatus can simulate the necessary chewing forces for release; normal chewing forces 

during mastication of food substances can range from 70 to 150 Newtons with maximum 

biting forces of 500-700 Newtons (Crispian, 2002). 
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Figure 2.3 The European Pharmacopeia approved masticator (control panels) 

  

Figure 2.4 Cross-section of European Pharmacopeia approved masticator 

        (William and Millind, 2012) 
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Figure 2.5 Apparatus b, Double module (Wennergren masticator)    

(Hee Na et al., 2005)  

 

Figure 2.6 Apparatus b, Single module designed by Wennergren 

        (William and Millind, 2012) 

file:///F:/Jan%202015/Introduction%20feb%206%202015%20BRC%20CHECKED.docx%23_ENREF_20
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The compendial machine (masticator M36 or apparatus a) designed by Christrup and Moller, 

has been approved and was first briefly described by the EP in chapter 2.9.25 in 2002 for the 

purpose of product control of medicated gums and has been further refined in subsequent 

editions (European Pharmacopoeia, 2011) (Figures 2.3 and 2.4). There is an alternative 

design of in vitro testing apparatus (apparatus b) designed by Wennergren that is also well 

investigated and published in the European Pharmacopoeia as well as the United States 

Pharmacopeia (USP) (United States Pharmacopeia, 2011; Gajendran et al., 2012) (Figures 

2.5 and 2.6).  The chewing intensity is influenced by chewing frequency, distance between 

the chewing surfaces and the torsion angle (Kvist et al., 1999). The force will increase with 

decreasing distance between the pistons however apparatus a has fixed parameters (distance 

between jaws was 0.5 mm) whereas apparatus b has definable parameters including the 

torsion angle and distance between jaws. This allows for the capacity to fine tune the release 

profiles for gum formulations.  

 

2.2.1 Preparation of artificial saliva 

The method used was based on the recommendations from the EP and further adapted from 

previous reports optimized for in vitro - in vivo correlations (IVIVC) (Morjaria, 2004). 

Artificial saliva was prepared fresh daily and was based on the method developed by Parker 

(Table 2.4) (Parker et al., 1999). 

Table 2.4 Artificial saliva composition 

 

Components 

Quantity 

(mM per litre)                                   g/L 

KH2PO4 2.5                                          0.34 

Na2PHO4 2.4                                          0.43 

KHCO3 15                                           1.50 

NaCl 10                                           0.58 

MgCl2 1.5                                          0.14 

CaCl2 1.5                                          0.22 

Citric Acid 0.15                                        0.03 

pH adjusted to 6.7 with NaOH or HCl 

 (Adapted from Parker et al., 1999) 
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2.2.2 Preparation of phosphate buffer 

 

Phosphate buffer solution was prepared based on an in-house method at Revolymer. 

Potassium phosphate (0.2 M) was prepared by weighing 13.609 g of potassium di hydrogen 

phosphate and made to 500 mL using distilled water. 0.2 M sodium hydroxide was prepared 

by weighing 1.6 g of sodium hydroxide and made to 200 mL using distilled water.  

Potassium phosphate solution (250 mL, 0.2 M) was added to 28.5 mL of 0.2 M sodium 

hydroxide solution and made up to 1 L using distilled water. The pH of the buffer was 

checked and adjusted to pH 6.0 as necessary. 

2.2.3 In vitro release testing  

 

The EP recommends the following guidelines for testing release from gums: 20 mL of an 

unspecified buffer (pH close to 6), in a chewing chamber of 40 mL and with a chew rate of 

60 strokes per minute (European Pharmacopoeia, 2011). This was modified as per previous 

studies and in house Revolymer based methods (Morjaria, 2004) and the recommended 

volume for reproducible release studies was between 30 – 40 mL. This was based on the size 

of the chamber and ensuring a consistent contact between gum and medium. Studies showed 

that there was no significant difference between 20, 40 and 80 mL dissolution volumes on the 

release of nicotine from medicated gums (Morjaria, 2004). 

Dissolution medium was added (40 mL) and the temperature of the chewing chamber was set 

to 37 °C ± 0.5 °C with a chew rate of 60 chews per minute (standard settings). Once the 

medium had reached the desired temperature the gum was placed in the chewing reservoir 

after which the vertical piston (tongue) was re-assembled. 

Samples were taken at 0, 5, 10, 15, 20, 25 and 30 minutes and replaced with equal volumes of 

fresh dissolution medium using a needle and syringe (2 mL). The samples were diluted 1:1 

with mobile phase before being filtered through a 0.45 µm filter and the drug levels 

quantified using the relevant HPLC method. To correct the progressive dilution by sampling 

and replacement an equation was used to calculate the cumulative amount of drug accurately. 

The chewed cud was analysed for residual content after mastication to give a total drug load. 
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(Sample replacement volumes were increased to 20 mL during method development to take 

into the account the poor solubility of lansoprazole and to maintain sink conditions). 

The progressive sample dilution was accounted for due to the sampling and replacing of fresh 

dissolution medium to the chewing chamber (Eq. 2.6). 

 

 

 

Equation 2.6 Sampling replacement 

Where,  

Mt [n] is the current, cumulative mass released from the gum at time t, 

C[n] is the current concentration in the dissolution medium  

Σ {C[m]} is the summed total of the previous measured concentrations {m=1- (n-1)} 

Vr is the volume of dissolution medium and 

Vs is the volume of sample removed for analysis 

2.2.4 Chewing apparatus validation 

 

The masticator chewing rate was calibrated by hand to ensure it was accurate and 

reproducible, as the chew rate can influence the release of active from medicated gums (Kvist 

et al., 1999).  An electronic chew counter was installed and the chew rate was determined at 

set increments and tested for intra-day and inter-day variation. The acceptance criteria was 

less than 2.0 % R.S.Ds to be considered accurate (Shimadzu Ltd, N.D). Random chew rate 

checks were also preformed over the duration of the work. 

In order to investigate the intra-day variation, the chewing machine was switched on and the 

temperature of the chewing chamber was set (37 °C ± 0.5 °C) and allowed to equilibrate. The 

chew rate was selected, the chewing pistons switched on and the number of chews every 

minute was noted for 30 minutes.  After each run the chewing machine was switched off and 

was left for 15 minutes. The whole process was then repeated in triplicate for each chew rate 

1

1

. [ ] . [ ]

[ ]
1000

n

r s

m
t

V C n V C m

M n












67 
  
 

setting; 40, 60 and 80 chews per minute (cpm). For inter-day variation, the number of chews 

every minute for 10 minutes was noted for each interval setting twice a day for three days.   

 

2.2.4.1Results and discussion 

 

Table 2.5 Chew rate intra day validation over 30 minute periods 

Chew rate (cpm) Total chew count over 30 minutes Mean S.D R.S.D 

40  1220 1243.33 20.82 1.67 

  1250       

  1260       

60 1830 1856.67 25.17 1.36 

  1880       

  1860       

80 2442 2445.33 4.16 0.17 

  2444       

  2450       

 

 

 

Table 2.6 Chew rate inter-day validation over 10 minute periods 

 
Total chews over 10 minutes Mean S.D R.S.D 

Chew rate (cpm) Day 1 Day 2 Day 3 

   40 407 422 413 416.5 5.54 1.33 

 

418 420 419 

   

       60 610 615 622 621 7.16 1.15 

 

624 626 629 

   

       80 814 818 819 816.33 1.97 0.24 

 

815 817 815 

    

The chew rate was considered to be acceptable in all settings tested; R.S.Ds < 1.67 % (Table 

2.5 and 2.6). The accuracy increased as the chew rate increased as indicated with decreasing 

R.S.Ds. 
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2.2.4.2  In vitro release from nicotine chewing gums 

  

The masticator was investigated to ensure that it was providing the necessary masticatory 

forces for in vitro drug release from a chewing gum formulation. To evaluate in vitro release, 

a commercially available nicotine chewing gum (Nicorette
®
 (2 mg) BN: LL613A) was used.  

The standard masticator set up was used and artificial saliva was used as the dissolution 

medium. 

 

 

Figure 2.7 Release of nicotine from commercial Nicorette
®
 gums (2 mg) (n = 9; mean ± 

s.d) 

There was a steady increase in the release of nicotine over 30 minutes (Figure 2.7) (Appendix 

A). Most medicated gums are designed to release the majority of the active (> 75 %) after 20-

30 minutes of chewing (Rowe, 2003). This demonstrates that the masticator was capable of 

providing the necessary masticatory forces to predict the extent of active release from 

chewing gums.  

2.3 Quantification of nicotine in commercial gums 

Nicotine content was determined following solvent extract of the active from the gums. The 

method was based on previous reports (Morjaria, 2004). 

Method  

Ten gums were selected at random and were weighed (approximately 10 g) and placed in 

1000 mL volumetric flask. Tetrahyrdofuran (THF, 200 mL) was added and this was shaken 
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on a Varimax horizontal mixer at 135 shakes / minute for 90 minutes.   HCl (0.1M, 300 mL) 

was added and the flask was allowed to stand before shaking for a further 5 minutes.  This 

suspension was then centrifuged at 3000 rpm for 10 minutes. A sample (1.25 mL) of the 

supernatant was diluted to 50 mL using distilled water.  This was then analysed using HPLC 

parameters as described earlier. The method was repeated for composites of 5 gums and also 

single gum pieces to test for accuracy. 

Results 

The mean total drug loading in commercial gum samples (Nicorette
®
 2 mg) was found to be 

2.51 ± 0.10 mg of nicotine per gum, which was over estimated in comparison to the label 

claims.  

2.4 Quantification of lansoprazole in formulated gums 

 

Lansoprazole content of gums was determined using a modified extraction method avoiding 

acidic conditions. The residual drug content was also determined following in vitro release 

testing to account for mass balance (using the same method).  

50 mL of hexane was added to 50 mL of mobile phase (acetonitrile: water) (45:55) and a 

formulated gum was added to the solvent mix. The suspension was stirred (75 rpm) for 30 

minutes and then allowed to settle and divide into 2 separate phases on the bench for 30 

minutes. An aliquot was taken from the lower phase (containing the drug in mobile phase) 

and was filtered before being analysed by HPLC.  

In order to ensure efficiency of extraction, 50 mL of hexane was added to 40 mL of mobile 

phase. This solution was spiked with 10 mL of 200 µg/mL lansoprazole standard solution. 

The solution was stirred for 30 minutes and then allowed to settle and divide into 2 separate 

phases on the bench for 30 minutes. An aliquot was taken from the lower phase (containing 

the drug in mobile phase and filtered before being analysed using HPLC. This was repeated 

five times to determine reproducibility. 
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Table 2.7 Lansoprazole extraction spiking and recovery (n=5) 

Spiking 

experiment 

Recovery 

(%) 

1 95.99 

2 95.62 

3 93.65 

4 95.34 

5 94.72 

Mean ± s.d 95.07 ± 0.92 

 

The extraction method resulted in a mean recovery of 95.07 ± 0.92 % (n =5; mean ± s.d) 

(Table 2.7). 

 

2.5 Conclusion 

 

The HPLC methods were proven to be accurate and reproducible for the detection and 

quantification of lansoprazole and nicotine for the analysis of drug release from gums. The 

masticator was proven to be reproducible and was able to provide the necessary forces 

needed for in vitro drug release from gums. Gum extraction methods were proven to ensure 

the efficiency of extraction and can provide total drug loading and residual contents in gums 

after mastication.  
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Chapter Three: 

Drug solubility and stability 
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3.1 Introduction  

 
Figure 3.1 The structure of lansoprazole 

Lansoprazole (Figure 3.1) belongs to class II of the Biopharmaceutics Classification System, 

characterised by low solubility and high permeability due to its lipophilic nature.  It exists in 

two polymorphic forms designated as form A and form B. Form B is unstable and is 

completely converted to the stable form A under physical stress (milling) or even after some 

time at ambient temperature (Kotar et al., 1996). Lansoprazole has a Z shape crystal structure 

with the benzimidazole moiety and the pyridine ring being co-planar (Swamy and 

Ravikumar, 2007). 

 

The decreased stability of lansoprazole leads to an increased rate of transformation to the 

active forms lansoprazole sulfone and 5- hydroxy lansoprazole (Song et al., 2009). This is 

described in detail in section 1.7.3 and Figure 1.9. Lansoprazole had the fastest accumulation 

rate in the parietal cells and the highest rate of conversion amongst the other PPIs (Tutunji et 

al., 2006). Furthermore, lansoprazole degrades in pH‟s below 7 and highly basic 

environments (pH‟s above 10) (Kristl and Vrecer, 2000). It is unstable under conditions of 

high temperature above 180 °C. Lansoprazole is also photo-sensitive and is recommended to 

be protected from light and to be stored at 4 °C. Various studies have observed a significant 

decrease in concentration and also discoloration of the material noted on storage under such 

conditions (Tetsuro et al., 1992). Dissolution studies evaluating particle size found 

insignificant differences in dissolution rate when reducing particle size and this was due to 

the particles having a tendency to agglomerate (Kristl and Vrecer, 2000). The drug is stable 

javascript:modelesswin('imageViewer?doc='+parent.myTitle+'&img=uspnf/pub/images/v28230/cas-103577-45-3.gif',500,500);
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under high relative humidity‟s (75 % and 96 %) and does not bind water (only 0.02 % at 

96 %) or degrade under these conditions (Kristl and Vrecer, 2000).  

The need for further studies into reformulation of off-patent drugs (including lansoprazole) 

has been identified by the European Medicines Agency (EMA) since 2007; with particular 

emphasis for the paediatric market (European Medical Agency, 2007). Formulation of a 

stable delivery system for lansoprazole can be challenging due to the highly unstable drug 

with the main challenge in designing a pre-oral lansoprazole formulation being stability in 

presence of acids whist in solution and in the dosage form  (Kristl and Vrecer, 2000). 

3.1.1 Lansoprazole stability 

Drug degradation can occur by the following pathways: 

 

 Hydrolysis 

 Oxidation 

 Photolysis  

 Trace metal catalysis 

Hydrolysis and oxidation are the most common mechanisms of drug degradation for most 

drugs (Carstensen, 2000). Regulatory bodies, including the ICH, have set guidelines for stress 

testing for reporting, identifying and quantifying impurities and degradants to ensure patient 

safety and efficacy (ICH, 1996).  

Lansoprazole is the least stable from the class of benzimidazole proton pump inhibitors 

(PPIs), with omeprazole second and pantoprazole being the most stable (Ekype and Jacobsen, 

1999). At pH 7.5, both pantoprazole and omeprazole were stable, but lansoprazole still 

underwent limited degradation. This is due to the absence of substituents on the 

benzimidazole ring (compared with omeprazole and pantoprazole which have electron 

withdrawing groups attached). This increases the basicity of benzimidazole nitrogen and rates 

of degradation were directly dependent on the basicity of the benzimidazole nitrogen (Tutunji 

et al., 2006). The introduction of the tri-fluoroethoxy group and the sulfinyl group increase 

the acidic properties of the drug (Kristl, 2009).  
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Current lansoprazole formulations (15 and 30 mg) include enteric coated granules (which 

dissolve only in alkaline pH) filled in a gelatin capsule to protect the drug from degradation 

in the acid in the stomach (Ito et al., 2005 ; El-Sherif et al., 2006). Current formulations are 

described in detail in section 1.7.6. There is therefore a need for a pharmaceutical delivery 

system which protects the active substance both during storage as well as avoiding 

degradation during passage through the stomach.  Oral bioavailability of lansoprazole was 

improved by formulating solid dispersion pellets with the solubiliser PVP 

(polyvinylpyrrolidone) (1:1.75) using solvent evaporation in a fluid bed coater (Zhang et al., 

2008). The study reported an increase in dissolution rate (80 % within 5 minutes) compared 

to drug alone (5 % after 60 minutes). Another study also used solid dispersions of a novel 

polymer Soluplus
®
 to improve the dissolution rate of lansoprazole (Mendiratta et al., 2011). 

3.1.2 pH-dependant solubility of lansoprazole 

 

Lansoprazole is known to have pH-dependant solubility in aqueous solutions (Hong et al., 

2012) and there is a significant increase at pHs greater than 9 (Tetsuro et al., 1992). Kristl 

confirmed the pH- dependent stability of lansoprazole, displaying degradation first order rate 

constants and determining pKa values of (acidic) pKa1 =8.84 (dissociation from the protonated 

nitrogen atom N-1 on the benzimidazole ring) and (basic) pKa2 =4.15 (protonation from the 

pyridine moiety) & pKa3 =1.33 (protonated nitrogen atom N-3 on the benzimidazole ring) 

(Figure 5.4) (Kristl, 2009). Significant increases in solubility were found above pH 9, when 

lansoprazole was in its dissociated form. Limited solubility was displayed at low pHs and at 

neutral pH solubility was constant; where lansoprazole is in an unionised form and had low 

wettability/contact angles (Kristl and Vrecer, 2000). Lansoprazole was more stable at higher 

pH, as the pH increases the rate of degradation was found to decrease (Ekype and Jacobsen, 

1999). 

3.2 Characterisation of lansoprazole 

 

The pH-dependence on solubility and stability of lansoprazole (particularly important when 

designing a buccal delivery system) was characterised and compared with literature.  
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3.2.1 Methods  

3.2.1.1 Determination of lansoprazole pH-solubility profile 

 

The method was based on methods by Higuchi and Connors, (1965), Kristl and Vrecer, 

(2000) and  Mendiratta et al., (2011).To determine lansoprazole solubility at a range of pHs, 

artificial saliva was prepared as described in Chapter 2. The pH was adjusted using 0.1 M 

sodium hydroxide solution to the following pHs: 6, 7, 8, 9 and 10. Artificial saliva (10 mL) 

was fully saturated with an excess with lansoprazole (n=3). The vials were stirred at 250 rpm 

in a water bath at a controlled temperature of 25 °C and samples were taken at 8.5 hours and 

15.5 hours. All vials were protected from light. The sample suspensions were filtered (the 

first 1 mL was discarded) before being analysed by HPLC. The sample times were chosen to 

limit the possible effects of degradation at the lower pHs and to compare the possible effects 

of the increased pH on stability over time. It was presumed that any sampled drug would be 

replaced by more available free drug (Higuchi and Connors, 1965).  

 

3.2.1.2 Acid induced degradation studies 

 

The degradation of lansoprazole was induced to assess to ensure that the detection of 

lansoprazole was possible in presence of its degradation products (stability indicating 

method) as recommended by the literature (El-Sherif et al., 2006; United States 

Pharmacopeia, 2007; Srinivas et al., 2010). The instability under acidic conditions is due to 

proton attack on the sulfoxide group, the most fragile part of the lansoprazole molecule (Lu et 

al., 2012). The degradation of lansoprazole was initiated using hydrochloric acid and 

application of heat. This product was then combined with aliquots of lansoprazole working 

standard (see section 2.1.2) to ensure the potential identification of lansoprazole in presence 

of its acid-induced degradation products. Chromatogram resolution was assessed ensuring 

there was no interference from any additional peaks with the peak of interest (lansoprazole).   

Lansoprazole (20 mg) was added to 25 mL of 0.1 M HCl, the solution was stirred and heated 

at 40°C for 6 hours to ensure complete degradation. The solution was then neutralised using 

0.1M sodium hydroxide and made to 100 mL using mobile phase (final concentration 200 

g/mL). Aliquots of the degraded lansoprazole were added to lansoprazole working standard 

(100 µg/mL) to give the following percentages: 90, 80, 60, 50, 40, 20 and 1 % v/v 
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lansoprazole. The samples were analysed by HPLC to quantify lansoprazole in presence of its 

degradation products.  

Impurities A & B (Figure 3.2) were identified using British Pharmacopeia (BP) reference 

standards (purchased directly from the British Pharmacopoeia; Catalogue: 873 Batch: 3188). 

    

Impurity A (oxidation on N) (N oxide) 

 

Impurity B (X = SO2 ) (Sulphone)                        Impurity  C (X  =  S ) 

 

  Impurity D (R = OH)                         Impurity E (R = SH) 

Figure 3.2 Lansoprazole impurities  

(British Pharmacopeia, 2010) 

3.2.2 Results  

 

Figure 3.3 pH solubility profile of lansoprazole in artificial saliva (n=3; mean ± s.d) 

0

10

20

30

40

50

60

70

80

90

100

6 7 8 9 10

C
o

n
ce

n
tr

at
io

n
 o

f 
la

n
so

p
ra

zo
le

 
(µ

g/
m

L)
 

Solution pH 

8.5 hours

15.5 hours



77 
  
 

The solubility of lansoprazole is dependent on the pH of the solution, an increase in pH 

causes an increase in lansoprazole solubility (Figure 3.3) with a significant increase between 

pH 9 and 10 as seen previously (Kristl and Vrecer, 2000). At the lower pH, the concentration 

was decreased (by 26 % at pH 6) after 15.5 hours confirming the instability of lansoprazole at 

acidic pH (See Appendix A). This suggests that pH encountered in the mouth (pH 6.8) will 

lead to challenging conditions with regards to solubility and stability; however this will be 

limited due to the transient chewing time of the formulation whilst being chewed in the 

mouth. 

 

Figure 3.4 Recovered lansoprazole in the presence of its acid induced degradation 

products 

 

Only 0.23 % of lansoprazole remained following degradation in acid for 6 hours. The linear 

relationship in Figure 3.4 shows that lansoprazole can be separated from its degradation 

products. This demonstrates that the detection of lansoprazole is possible in presence of any 

of its degradation products using the HPLC method. This is also evident when looking at 

each chromatogram as each peak is fully resolved and there is no interference from any 

additional degradation peaks to the peak of interest. 
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Figure 3.5 HPLC  chromatogram with lansoprazole, impurity A and impurity B 

The chromatogram (Figure 3.5) matched the reference chromatogram and Relative Retention 

Times (RRT) recommended by the BP monograph, Impurity A RRT around 0.5 and Impurity 

B RRT around 1.2.  

Lansoprazole Retention time (RT) = 7.01 minutes 

Impurity A 

RT=4.52 minutes, (Actual RRT) = 0.64 

Impurity B 

RT=8.65 minutes, (Actual RRT) = 1.23 

(British Pharmacopeia, 2010) 

Impurities A (N oxide) and B (sulfone) were successfully identified using the HPLC method. 

These are consistent with other published data on lansoprazole impurities (Selenka et al., 

2007). 

3.3 Compatibility studies with gum base components  

Early formulations of lansoprazole gums (57 and 41 % gum base; H gums and L gums), 

containing 6 % Rev7 polymer and 15 mg of lansoprazole per gram of gum) developed a 

mottled violet/brown discolouration upon visual examination of the gums after 2 weeks 

(Figure 3.6). The formulation process is described in detail in Table 4.1. It was observed that 

an increased proportion of the 57 % gum base formulation (H gums) was discoloured 

compared with those containing 41 % gum base (L gums). The formation of a coloured 

product indicated possible instability (degradation products) as well as being an undesirable 

factor as gums lacked aesthetic appeal and also consumers may associate the effect with poor 

Impurity A Impurity B 

Lansoprazole  
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quality and a lack of content uniformity. This red complex colour has been detected 

previously in lansoprazole formulations (Tetsuro et al., 1992; DellaGreca et al., 2006; He et 

al., 2010).  

 

Gums were stored under a variety of conditions to investigate the impact of environmental 

factors on discolouration. Formulations were wrapped in foil to protect from light, stored at 

4°C and also under controlled humidity‟s. All of the conditions still resulted in appearance of 

coloured product and suggested a solid-solid interaction between an excipient in the gum and 

the drug. The coloured product developed even in a simple mixture of gum base, Rev7 and 

drug (lansoprazole loaded gum base), thus suggesting incompatibility between these 

components (Figure 3.7). 

 

 

 

Figure 3.6 The formation of a coloured product in lansoprazole gums A. Discoloured H 

gum, B. Discoloured lansoprazole loaded gum base and C. Non discoloured L gum 

 

Figure 3.7 The formation of a coloured product in lansoprazole loaded gum base 

compared with a non-discoloured gum  

A. Discoloured H gum B. Discoloured loaded gum base C. Non discoloured 
L gum 

Discoloured lansoprazole gumbases 

Non-discoloured gum 
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3.3.1 Videometer analysis of gums 

 

VideometerLab (Analytik, UK) is a multi-spectral imaging system which can be utilised to 

measure surface colour and chemical composition of solid samples. The Videometer is 

capable of scanning specimens using a range of different wavelengths from near infrared to 

soft ultraviolet. The technique was used on gums and combined with false colour imaging to 

emphasis the formation of a coloured product and any possible chemical changes.   

 

 

 

Figure 3.8 Discoloration in gums using Videometer (A and B. H gums, C and D. L gums 

and E and F. Non coloured gums)  

A. H gums B.     H gums 

C.    L gums D.    L gums 

E.   Non coloured gums F  Non coloured gums 
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The formation of coloured product was more extensive in formulations with increased gum 

base content (H gums) (Figure 3.8 A-F).  

 

3.3.2 Compatibility studies with commercial gum bases and  lansoprazole  

 

To further investigate the interaction between the gum base (RVG1T000799), Rev7 and 

lansoprazole, formulations were prepared using commercial gum bases. 

3.3.3 Bench top gum mixing method  

 

The gum base was warmed in a steel tray using an electric hot plate at 80°C until molten. The 

drug was added gradually and mixed using palette knives (approx. 5 minutes) to obtain a 

homogenous sample containing 15 mg lansoprazole per gram gum base. 

The following commercial gum bases were mixed with lansoprazole using bench top mixing: 

 DILL  containing BHA (anti-oxidant) 

 MAGNA (no anti-oxidant) 

 EURODENT containing Tocopherol (anti-oxidant) 

 

Figure 3.9 Commercial gum bases mixed with lansoprazole (A. Magna, B. Eurodent and 

C. Dill) 

No visual discolouration was observed in any of the formulations with commercial gum bases 

suggesting a specific incompatibility between Rev7 components and lansoprazole (Figure 3.9 

A-C).  

A. MAGNA B. EURODENT   C. DILL  
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3.3.4 Compatibility studies between Rev7 and lansoprazole 

 

Rev7 was heated until molten using the bench top mixing method and mixed with 

lansoprazole to contain 15 mg of lansoprazole per gram. 

 

Figure 3.10 The formation of a coloured product with Rev7 and lansoprazole after 2 

weeks (A. Discoloured Rev7, B. Discoloured Rev7and C. Rev7) 

The formation of a heavily coloured product was visible after minutes displaying a violet 

tinge and this increased after 24 hours with a deeper violet colour developing over time 

(Figure 3.10 A-C).  

Magnesium oxide (a glidant and pH adjuster) and EDTA (a chelating agent) were also mixed 

with Rev7 (additive: drug 1:1 and 3:1 w/w ratios) to try to minimise the formation of the 

coloured product (by chelating any free metal ions), however discolouration was still 

observed in all formulations. 

3.3.5 Compatibility studies between Rev7 components and lansoprazole 

 

Individual Rev7 components supplied by Revolymer
® 

(MPEG, LIR 403 & MERIT co 

polymer) were mixed using the bench top mixing method with lansoprazole to contain 15 mg 

of lansoprazole per gram. 

A. Discoloured Rev7 B. Discoloured Rev7 C. Rev7 
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Figure 3.11 The formation of a coloured product with individual Rev7 components and 

lansoprazole after 1 month (A. MPEG, B. LIR403 and C.MERIT co polymer)  

There was an immediate onset of the formation of a coloured product upon mixing with the 

Merit co polymer, however a small level of discolouration was observed with MPEG after 2 

weeks and LIR 403 after 3 months (Figure 3.11 A-C). 

3.3.6 The impact of discolouration on drug loading and content uniformity 

 

To investigate if the formation of the coloured product caused a decrease in drug content and 

resulted in any quantifiable degradation products, drug was extracted from formulated gums 

and lansoprazole content quantified using HPLC. Samples were chosen as either visibly 

discoloured or non-discoloured gums for both formulations (57 %, H and 41 %, L gums 

compositions). Lansoprazole was extracted as described in Chapter 2.  

Table 3.1 Drug content in discoloured and non-discoloured gums (H and L) (n= 4; mean 

± s.d) 

Sample Lansoprazole content 

(mg per g) 

 description 

Discoloured H gums 

 

15.36 ± 0.18 

 

Discoloured L gums 

 

15.13 ± 0.19 

 

Non-discoloured  H gums 

 

15.09 ± 0.16 

 

Non-discoloured  L gums 

 

14.57 ± 0.08 

 

 

A. MPEG 

B. LIR 403 

C. MERIT co polymer 
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The overall mean content of all gums (discoloured and non-discoloured) was 15.04 ± 0.33 mg 

of lansoprazole per gram of gum (n=8; mean ± s.d) (Table 3.1). The content uniformity 

ranged from 96.75 - 103.26 % for all gums tested. There was no major loss of active in any 

formulation and degradation products were less than 5 % for all formulations.  

 

3.3.7 Discussion of compatibility of lansoprazole with gum components 

 

Results suggested that there was a compatibility issue with the Rev7 polymer; specifically the 

Merit co polymer, which resulted in the formation of a coloured product. Information on 

specific components was limited due to company confidentiality. Further formulations 

containing 8 % Rev7 polymer did not display the violet discolouration and so it was 

speculated that this may have been due to batch to batch variations.  

Further attempts to extract the coloured component using solvent extraction and to further 

characterise the discoloured material using the HPLC-UV stability indicating method were 

unsuccessful. Possible incompatibilities resulting in formation of a coloured product have 

also been reported and assigned to an incompatibility with PEG (Tetsuro et al., 1992). 

However, there are no known current HPLC methods to characterise this coloured fraction 

(United States Pharmacopeia, 2007). This has been previously attempted but also failed due 

to the complexity and changeable nature of the material; it was suggested that the material 

consisted of a mixture of very labile degradation products (DellaGreca et al., 2006). A new 

lansoprazole impurity was identified as (des-(trifluoroethoxy) using mass spectrometry (MS), 

nuclear magnetic resonance (NMR) and fourier transform infrared spectroscopy (FTIR), but 

the study did not describe an associated colour production (Srinivas et al., 2010).  MS linear 

ion trap technology has also been used to identify degradation products but again the 

formation of a coloured product was not reported (Selenka et al., 2007). 
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3.4 The potential of cyclodextrins as solubilisers, stabilisers and penetration 

enhancers 

 

Cyclodextrin (CDs) represent an economical and practical method to improve undesirable 

physiochemical properties of problematic drugs (Bilensoy, 2011). CDs have seen a growing 

interest reflected in the increased popularity, particularly in formulation patents and 

publications over the last 10 years with a significant contribution using cyclodextrins as 

solubilisers and stabiliser (Messner et al., 2011). CDs have been used in chewing gums to 

improve drug release by increasing hydrophilicity and also for taste masking (Szejtli and 

Putter, 1993; Rassing, 1996 ; Chaudhary and Shahiwala, 2010). 

3.4.1 CD structure 

 

Figure 3.12 Structures of different CDs  

(Bilensoy, 2011) 

CDs are cyclic oligosaccharides which can contain six (α- CD), seven (β- CD), eight (γ- CD) 

(natural CDs) or more (α-1,4)-linked α-D-glucopyranose units (Figure 3.12 and Table 3.2). 

Molecular weights can range from 1000 to over 2000 Da. CDs occupy the shape of a 

truncated cone with hydroxyl functions orientated to the exterior of the cone. The central 

axial cavity has a skeletal lining of carbon and oxygen from the glucose residue. This gives 

the defining qualities of a lipophilic internal cavity and the ability to form an outer 
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hydrophilic exterior (hydration shell) due to hydrogen bonding between water and the 

hydroxyl groups on the CD. The cavity is occupied with water (inclusion water) resulting in 

an energetically unfavourable state, both in solution and crystalline states. β-CD contains 

approximately 14 % water as crystalline water (bound between CD molecules) and inclusion 

water (Szejtli and Szente, 2005). Further chemical modification of the hydrogen bond-

forming hydroxyl groups in CDs causes a decrease in intermolecular forces in the crystal 

lattice, which results in large increases in the aqueous solubility of CDs, transforming the 

crystalline CD into an amorphous mixture (Loftsson and Brewster, 1996). One example of 

CD derivative is randomly methylated β- CD (Mβ-CD), with an average of 1.8 methyl (-CH3) 

substitution per glucose repeat units, having a MW of 1312 Da and enhanced solubility of > 

500 mg/mL compared to methylated forms (Loftsson et al., 2002). The differences in CDs 

structure may result in differences in inclusion complex formations (Lu et al., 2012). 

Table 3.2 Properties of different CDs  

Cyclodextrin α β γ 

Glucopyranose units 6 7 8 

Molecular weight (Da) 972 1135 1297 

Internal Central cavity diameter (Á) 4.9 6.2 7.9 

Water solubility (at 25°C, g/100 mL) 14.5 1.85 23.2 

   (Anjana et al., 2013) 

There are currently a range of formulations containing CDs available in the European market 

(Table 3.3). The majority of marketed drug products employ the CD as a complexing agent, 

increasing aqueous solubility, stability and bioavailability of the parent drug with the multi-

functional drug carrier (Vyas et al., 2008). CDs can be particularly useful when 

bioavailability is limited due to limited dissolution compared to permeability, such as in cases 

with BCS class II drugs with low solubility and high permeability (Douroumis et al., 2013). 

Other uses include reducing irritation and eliminating undesirable smells and tastes via 

complexation and lack of interaction with sensory taste receptors (Szejtli and Szente, 2005). 

The initial discovery by Villers who isolated a bacterial digest from starch in1891, naming it 

cellulosine, was later expanded by Franz Schardinger who isolated two dextrins, α and β from 

potato starch. Major biotechnological advancements, particularly in genetic engineering in 

the 1970‟s, lead to improvements in the production of highly pure, affordable, pharmaceutical 

grade CDs (Brewster and Loftsson, 2007).  CDs are considered as having low toxicity and β-

CD was approved as a food additive by the FDA as generally regarded as safe (GRAS) in 
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2001. Notably formulations include a taste masking complex in nicotine chewing gums, 

Nicogum
®
 with β-CD (1:3, nicotine: β-CD). When chewing the gum, the dissolved sodium bi 

carbonate (buffering excipient) reacts with nicotine polyacrylate salt, releasing the water 

soluble nicotine base, which complexes with β-CD instantaneously in saliva to mask the 

bitter taste. The process is dynamic and complexation was predicted to be 99% (Szejtli and 

Szente, 2005). 

Table 3.3 Example β-CD formulations marketed in Europe  

Drug Trade name Formulation Company 

Cetirizine Cetrizin
™

 Chewable tablet Losan Pharma 

Diphenhydramine Stada travel
™

 Chewable tablet Stada 

Nicotine Nicorette
®

 Sublingual tablet Pfizer 

Omeprazole Omebata
™

 Tablet Betafarm 

 

(Brewster and Loftsson, 2007; Anjana et al., 2013) 

3.4.2 CD complexation methods 

 

Various methods to prepare complexes exist including co-precipitation, spray drying, freeze 

drying, co crystallisation, kneading and simple grinding (Szejtli and Szente, 2005; Carrier et 

al., 2007). Complexation may occur in the solid state due to the crystalline water in the CD 

however this is a slower process and depends on the mobility of the guest molecule (Szejtli 

and Szente, 2005). The method of complexation can affect complexation efficiency directly 

as well as the degree of amorphous content of the complexation. Using unionised drugs, 

additives such as ethanol, soluble co-polymers to act as a third component and also sonication 

to provide a super saturated solution, can increase complexation efficiency and stability 

(Loftsson and Brewster, 1996). A review of 28 randomly selected studies utilising CDs 

concluded that a combination of complicated factors may influence delivery enhancements of 

drug CD complexes (Carrier et al., 2007). The study by Arias (2000), involving γ-CD with 

omeprazole (2:1) found co-precipitation the most favourable method based on the increase in 

dissolution rate compared with freeze drying and spray drying (Arias et al., 2000).  
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There exists a dynamic equilibrium with the free drug and bound CD complex through self-

association. The guest molecule is mainly believed to be instantaneously released/ 

disassociated through dilution of the complex. However other release mechanisms include 

replacement by another molecule to fit the cavity or being transferred to an area of increased 

affinity which may occur when coming into close proximity to a lipophilic biological 

membrane such as the oral mucosa and other forms of partitioning of the drug (Brewster and 

Loftsson, 2007).   

In most cases, a 1:1 guest to host complex is formed (Brewster and Loftsson, 2007; Messner 

et al., 2011). The complex formation is independent of the chemical properties of the guest 

molecule and it is suggested that hydrogen bonding and Van de Waals forces are important in 

complex formation. Other system specific driving forces include the exclusion of high energy 

water bound in the CD cavity, release of conformational strain electrostatic charges, dipole-

dipole and hydrogen bonding (Carrier et al., 2007). Complex formation is associated with a 

large negative enthalpy change. The specific component that is included in the CD will 

influence the changes in physiochemical properties by the molecular shielding from the 

cavity. This can be analysed by molecular modelling, single crystal X ray analysis, 

calorimetric titrations and by NMR techniques (Loftsson et al., 2004; Jambhekar and 

Thomas, 2013). Molecular modelling has suggested that the benzimidazole ring was included 

in a complex formed between omeprazole and hydroxypropyl- β- CD. However the study 

showed that this complex did not protect against degradation from light, heat and humidity, 

suggesting that this may have been due to the specific orientation of the structure in the CD 

inclusion complex (Ramos et al., 2011).  

The following guidelines have been suggested for successful complexes based on favourable 

characteristics for the guest molecule: 

 Molecular weight between 100 – 400  

 Solubility less than 10 mg/mL 

 More than 5 atoms forming the skeleton of the molecule ensuring optimal geometry 

 Melting point below 250 °C 

 Drug Log P > 2.5 

 Low dose of drug < 100 mg              (Carrier et al., 2007) 
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All factors involve increasing geometric compatibility and the affinity of the guest to the CD 

cavity and hence increasing the driving force for complexation (Vyas et al., 2008; Jambhekar 

and Thomas, 2013). This suggests that a possible complex of lansoprazole and CD may be 

possible. The effects of CDs in chewing gum formulations have previously been investigated 

(Chaudhary and Shahiwala, 2010). Inclusion complexes of miconazole with hydroxypropyl- 

β-CD resulted in supersaturated solubility and increased stability. This correlated with an 

increased release (25 %) compared to drug alone (0.7 %); when tested during in vitro 

mastication testing  (Jacobsen et al., 1999).  

3.4.3 CD metabolism and toxicity 

 

CDs are resistant to enzymes which hydrolyse starch (α and β amylase). γ-CD is metabolised 

by saliva, whereas α-CD and β-CD remain intact and are metabolised by 

cyclomaltodextrinase, secreted from colonic bacteria (Carrier et al., 2007). CDs exhibit good 

overall oral safety profiles with Japan being the first country to approve the use of CD in the 

1980s (Shabir and Mohammed, 2010). Detailed toxicity studies in rats and dogs shows that 

CDs can be administered safely via the oral route, with no significant changes after prolonged 

use (Jambhekar and Thomas, 2013). Both α-CD and β-CD have monographs in the United 

States and European Pharmacopeia and are also included in the Handbook of Pharmaceutical 

Excipients (Bilensoy, 2011). β-CD and its derivatives are  more commonly used and are 

considered to have lower toxicity than γ- CD  (Shabir and Mohammed, 2010). 

3.4.4 CD solubility enhancement 

 

The CD can host a guest drug molecule and has the ability to form non-covalent inclusion 

complexes (Loftsson et al., 2002). No covalent bonds are formed or broken during 

complexation and the complex is able to readily disassemble when diluted in aqueous 

solutions. The complex of a poorly soluble drug has increased hydrophilicity compared to the 

drug alone; a change in physical state from crystalline to amorphous has been reported when 

using Mβ-CD and this will contribute to an increase in dissolution rate (Carrier et al., 2007). 

The interior cavity can provide a microenvironment for suitably sized drugs whilst the outer 

surface provides water soluble wetting properties (increased contact angles in solution) and 

molecular shielding during complexation (Figure 3.13). Bioavailability can also be increased 

due to the increase in solubility with complexed drug formulations compared to cases where 
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bioavailability is limited due to low solubility of the drug alone. The AUC of flurbiprofen 

increased by 1.7 fold on complexation with CDs (Carrier et al., 2007).  

Recent data also suggests that agglomeration and aggregation of CDs and complexes may 

also influence the ability to solubilise poorly water soluble drugs (He et al., 2008; Messner et 

al., 2011). Non-inclusion complexes may exist with the hydroxyl groups on the outer surface 

of the CD, forming hydrogen bonds forming drug aggregates. The study by Messner found 10 

out of 11 guest compounds formed aggregation compounds and suggested that the size of 

agglomeration increased with CD concentration (Messner et al., 2011). The aggregates 

readily disassociated on dilution and so were metastable due to weak solute-solute 

interactions.   

3.4.5 CD enhanced drug stability and safety 

 

Molecular shielding can protect the drug from reactive species and has the ability to protect 

against incompatibilities with non complexed excipients (Jambhekar and Thomas, 2013) 

(Figure 3.13). The cavity provides insulation of labile drugs against corrosive environments 

such as oxidation, heat and light, reducing degradation processes. The stabilizing effect is 

dependent on the inhibition of interaction with the specific functional group of the drug 

protected by inclusion in the CD cavity as well as the strength of the hydrophobic interactions 

(Shabir and Mohammed, 2010). One study with unionised aspirin and β-CD (1:1) used NMR 

to model the complexed product and suggested the benzene ring was located inside the cavity 

(Loftsson and Brewster, 1996). As the most susceptible component in lansoprazole is the 

sulfoxide group (under acidic conditions) this will need to be included in the cavity to ensure 

maximum protection. 

 

Figure 3.13 Molecular shielding during inclusion complexation  

(Bilensoy, 2011) 
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Increased safety profiles of complexes compared to drug alone can be achieved by reducing 

toxicity due to increased potency and efficacy caused by the increase in solubility. The 

included functional group of the drug is protected from direct contact with biological 

membranes and can therefore also reduce toxicity (Rajewski and Stella, 1996). Degradation 

of omeprazole was found to decrease following complexation with β -CD compared to drug 

alone, but this may have been formulation specific. It was suggested that this was due to the 

specific orientation and also the high liability of omeprazole which may have interacted with 

free hydroxyl groups on the CD (El-Badry et al., 2009).  

Bitter tastes and irritation can limit acceptance of dosage forms but this can be controlled if 

the specific component can be included in a complex formation. β -CD has a slightly sweet 

taste and is used in food/flavouring complexes. The ability to mask bitter drugs in saliva 

whilst in the oral cavity has been proven previously using β-CD and cetirizine (Szejtli and 

Szente, 2005). β-CD is also known to be particularly beneficial  in increasing shelf life by 

displaying increased microbiological purity and stability/protection from polymerisation and 

sublimation (Lindner, 2006).  

3.4.6 CD enhanced absorption across biological membranes 

 

There are four possible mechanisms reported by which CDs can enhance absorption: 

 Modifying the rate of drug release by acting as a potent drug carrier, increasing the 

availability and contact time of the drug at the surface of the barrier by increased 

wettability/ solubility of hydrophobic drugs. 

 Protecting against degradation of particularly unstable drugs. 

 Lowering the barrier function directly by membrane fluidisation by 

removing/solubilising membrane lipid components thereby modifying and facilitating 

absorption. β-CD has been shown to selectively remove cholesterol from rat intestines 

and hence modify absorption (Carrier et al., 2007).  

 Competitive CD complexation with other components to release the drug resulting in 

increased site specific delivery. 

Mβ-CD was found to display superior properties with regards to solubility, stability and 

permeability of omeprazole over β-CD complexes for a buccal delivery system (Figueiras et 
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al., 2007a). Solubility in artificial saliva increased 1.7-(β-CD) and 3.4-(Mβ-CD) fold 

following complexation. Structure analysis using NMR and ROESY showed that the 

benzimidazole moiety was included within the CD. The pyridine ring was found to cause a 

repulsion effect due to its size, whereas the benzimidazole had a more favourable affinity, but 

this was dependent on the orientation of the methoxy group on the CD.  Increased stability of 

Mβ-CD complexes was reported to be due to the fact that the drug was included deeper 

within the cavity through the wider region of the CD (Figueiras et al., 2007b). Porcine buccal 

permeability studies with omeprazole found increases of 1.1 fold with complexed β -CD and 

a 1.7 fold increase with Mβ-CD. The increased permeability using the Mβ-CD complex was 

due to a solubilising effect on the membrane by the CD (Figueiras et al., 2009).  Permeability 

increased with the addition of a third component, the alkalising agent, L-arginine, which 

caused a significant increase in solubility and stability of omeprazole. The work suggested 

potential for novel buccal formulations of omeprazole complexed with Mβ-CD in the 

presence of L-arginine (Figueiras et al., 2010).  

3.5 Complexation of lansoprazole 

β-CD and Mβ-CD were studied for their potential to form inclusion complexes with 

lansoprazole. They were chosen due to their popularity amongst current formulations, 

increased solubilising effects, cavity size, reduced toxicity and cost.  

3.5.1 Complexation method 

 

β- CD (Lot: 30H3400) and Mβ-CD (Lot: A0273729) were supplied from Sigma (Dorset, UK) 

and were of pharmaceutical grade. 

The method of complexation was based on methods by Figueiras et al., (2007) and Ramos et 

al., (2011). The CD was dissolved in a basic hydro alcoholic aqueous solution (2:1 v/v 

distilled water: ethanol) at pH 10 ± 0.5 adjusted using 0.1M sodium hydroxide; to increase 

the solubility of lansoprazole (Figure 3.3). The required amount of lansoprazole was added 

and stirred for 48 hours in a tinted glass bottle at ambient temperature. The increased pH of 

the solution was necessary to increase the solubility and stability of lansoprazole. It was 

accepted that a decrease in drug affinity for the CD cavity would occur compared to the non-

ionised form of drug but the increase in solubility and stability was deemed more desirable. 
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The non-ionised form of lansoprazole would be more lipophilic and so would have a higher 

propensity to displace water in the CD cavity, but would have an overall limited total 

solubility in the aqueous solution. The resultant clear solution was frozen using liquid 

nitrogen and then immediately freeze dried at - 40 °C and 0.129 mbar (Edward Modulyo, 

UK) (approx. 48 hours). Freeze drying was chosen due to its avoidance of heat as a technique 

to sublime water and to dry the solution leaving a lyophilised amorphous product. Previous 

studies with acidic drugs have resulted in high yields of complexed drug  (Jambhekar and 

Thomas, 2013).  

Ratio of CD: lansoprazole 

In most cases a 1:1 guest to host complex is formed (Szejtli and Szente, 2005; Brewster and 

Loftsson, 2007; Messner et al., 2011; Jambhekar and Thomas, 2013). The work conducted by 

Figuieras also formed complexes of omeprazole and CDs in 1:1 molar ratios (Figueiras et al., 

2010). Both 1:1 and 3:1 molar ratios (CD: lansoprazole) were prepared. The 3:1 ratio may 

improve complex efficiency during complexation in aqueous solution of CDs, molar ratios 

greater than 1 resulted in greater than 90 % complexed drug yields (Szejtli and Szente, 2005).  

3.6 Characterisation of lansoprazole and complexed lansoprazole 

 

Analytical techniques such as phase solubility, X ray diffraction (XRD), FTIR and 

differential scanning calorimetry (DSC) can be used to characterise changes to indicate 

successful complex formation when compared to drug alone and physical mixtures. Solubility 

experiments are the most commonly used methods to study complexation (Anjana et al., 

2013). Physical mixtures (controls) were prepared by gently mixing components in a mortar 

with a pestle for a few minutes. It was accepted that physical mixing with grinding (addition 

of energy) can result in complex formation and this was accounted for (Carrier et al., 2007). 

Experiments were performed to evaluate successful complex formation of lansoprazole with 

the CDs: 

 Determination of solubility  

 Differential scanning calorimetry  
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 X Ray Diffraction  

 Fourier Transform Infrared Red  

 Scanning Electron Microscope (SEM) 

 Loading efficiencies of complexes 

3.6.1 Methods  

3.6.1.1 Determination of solubility of lansoprazole and complexed lansoprazole  

 

An increase in solubility was used as an indication for successful complex formation as used 

previously (Zheng et al., 2005; Brewster and Loftsson, 2007). In brief, the different CDs 

complex ratios were added in excess to 10 mL of artificial saliva while stirring at 250 rpm in 

a water bath at a controlled temperature of 25 °C. Samples were taken at 8.5 hours and 15.5 

hours to correspond with previous solubility data (section 3.2.1.1). All CD solubility 

experiments were conducted in triplicate and analysed by HPLC. Two pH conditions were 

assessed, pH 6 and pH 8, to reflect the physiological pH in the oral cavity before chewing 

(pH 6) and after chewing gum (pH 8).  

3.6.1.2 Loading efficiency of CD complexes 

 

Accurately weighed samples of the 1:1 Mβ-CD complex (10 mg) were used to determine 

drug loading in the complex. Samples were dissolved in 50 mL mobile phase (see section 

2.1.2) and drug content determined using HPLC. Samples were analysed in triplicate.  

3.6.1.3 DSC 

 

The thermal characteristics of pure drug and CDs, 1:1 physical mixtures and inclusion 

complexes were determined by DSC (Mettler Toledo DSC 822e). Ten milligrams of sample 

was weighed in aluminium pans and sealed. The instrument was calibrated using indium. The 

samples were heated from 50°C to 300°C with a heating rate of 10 °C per minute, nitrogen 

was purged at a flow of 30 mL /min. Samples were analysed in triplicate.  
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3.6.1.4 XRD 

 

Powder X Ray Diffractometry (Brucker AXS D2 phaser) was performed on pure drug and 

CDs and inclusion complexes (1:1) to evaluate any changes in crystalline/ amorphous 

structure. The voltage was set at 20k, with current at 5mA. Samples were scanned over 5.0°- 

50° 2 range with step sizes of 0.025 and step counting times of 2 seconds, at a temperature 

of 25 °C.  

3.6.1.5 FTIR  

 

FTIR (Nicolet 380) was used to characterise shifts in bands of absorbance for pure drug and 

CDs, 1:1 physical mixtures and inclusion complexes and were carried out using the FTIR-

ATR (Attenuated Total Reflectance) attachment. Attenuated total reflectance (ATR) was 

used with the diamond attachment. Scans were performed over 400 - 4000 cm
-1

 with a 4 cm
-1 

resolution.  

3.6.1.6 SEM 

 

The morphology of pure drug and CDs and inclusion complexes (1:1) were observed using 

SEM (JOEL JSM 6060LV, Joel UK Limited, Herts, UK). The sample was placed on carbon 

tape and plated/coated with gold and palladium (Au and Pd) to allow conducting of electrons.  
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3.6.2 Results  

 

 

Figure 3.14 Solubility of complexed lansoprazole in artificial saliva pH 6.1 after 8.5 

hours (n=3; mean ± s.d) 

 

Figure 3.15 Solubility of complexed lansoprazole in artificial saliva pH 6.1 after 15.5 

hours (n=3; mean ± s.d) 

Solubility was increased with all ratios of CDs compared to pure lansoprazole due to the 

increased wettability of CDs; the 1:1 Mβ-CD complex was the most soluble (134 µg/mL) and 

this was maintained up to 15 hours (134 µg/mL) (Figures 3.14 and 3.15). Solubility of the 

pure drug decreased over the 15 hour duration as seen previously due to degradation at the 

lower pH (Figure 3.4). Complexes formed at a 1:1 ratio maintained a consistent solubility 

over the time course whereas the solubility of the 3:1 complex decreased over time, this may 
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have been due to disassociation of the drug from the CD. Increasing CD concentration has 

been linked with an increase in degradation (El-Badry et al., 2009).  

 

Figure 3.16 Solubility of complexed lansoprazole in artificial saliva pH 8.2 after 8.5 

hours (n=3; mean ± s.d) 

 

Figure 3.17 Solubility of complexed lansoprazole in artificial saliva pH 8.2 after 15.5 

hours (n=3; mean ± s.d) 

As expected, an increased pH resulted in increased solubility (Figures 3.16 and 3.17).  All 

complexed forms had higher solubility than the drug. The highest mean solubility was 

observed with the 1:1 Mβ-CD (289 µg/mL). The 1:1 complexes maintained a constant 

solubility over the time of the study indicating increased stability.    

The Mβ-CD (1:1) gave an 9 fold increase in solubility (134 µg/mL) compared to lansoprazole 

alone at pH 6.1 and maintained solubility up to 15 hours at pH 6.1 suggesting increased 

stability due to possible molecular shielding. The increase in solubility is due to the 
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hydrophilic component in CD. The total amount of drug in solution was equal to free drug 

and complexed drug. The increase in wettability is due to increased surface 

contact/interaction with drug and artificial saliva. The Mβ-CD  complexed solution resulted 

in increased concentrations compared to β-CD complexed solution due to the increased 

solubilising effect of the modified Mβ-CD (Shabir and Mohammed, 2010). Freeze drying 

resulted in an amorphous complexed material, and the reduced crystallinity would have also 

contributed to increased solubility; this was previously observed in omeprazole inclusion 

complexes also (Figueiras et al., 2007b). 

Total lansoprazole drug recovery from prepared complexes was 91.26 ± 12.34 % (n=3; mean 

± s.d). The total amount of drug in solution was equal to free drug and complexed drug 

existing in a dynamic equilibrium. 

 

Figure 3.18 DSC thermograms of pure lansoprazole and cyclodextrins 

A sharp fusion endothermic peak at 180 ± 1.2°C was observed which corresponds to the 

melting point of the lansoprazole (178-182°C) (Figure 3.18). This is followed by an 

exothermic peak at 185 ± 1.3 °C (n=3; mean ± s.d) due to thermal decomposition, with a 

small shoulder at 195 ± 1.9 °C corresponding to previous studies (Zhang et al., 2008; 

Mendiratta et al., 2011; Lu et al., 2012). The CDs display broad endothermic peaks at onset 

temperature of 67 ± 2.3°C and a maximum at 113 ± 2.2 °C. Further smaller endothermic 

peaks were seen at 215 ± 0.9 °C and 286 ± 1.1 °C for β-CD. These effects are normally 
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associated with crystal water losses (dehydration) in the cyclodextrin (Szejtli and Szente, 

2005) and thermal decomposition at 250 °C by oxidation (Jambhekar and Thomas, 2013).   

 

Figure 3.19 DSC thermograms of physical mixtures of lansoprazole and cyclodextrin 

(1:1) 

The occurrence of the lansoprazole peak (178-182 °C) in the physical mixtures suggests that 

the drug was not included in a complex within the CDs (Figure 3.19). A broader peak for 

Mβ-CD suggests a possible solid state interaction or loss of drug crystallinity.  
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Figure 3.20 DSC thermograms of lansoprazole and CD complexes (1:1 and 3:1)  

The eradication of the signature lansoprazole peak at (178-182 °C) indicates formation of a 

complex due to the absence of crystal structure suggesting inclusion of the drug (observed for 

both Mβ-CD ratios and the β-CD (1:1) (Figure 3.20). This technique is commonly used to 

provide solid state characterisations during complexation by the absence of key peaks, which 

can signify transition of the guest into the CDs (Jambhekar and Thomas, 2013; Anjana et al., 

2013). The occurrence of the lansoprazole peak in the 3:1 β-CD suggests that not all the drug 

was included in the complex.  
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Figure 3.21 XRD spectrum of lansoprazole  

Sharp characteristics peaks were observed at a diffraction angle 214.9, 17.4, 17.9, 18.9, 

22.3, 24.9 and 27.9° and show the pure drug is in a crystalline state (Figure 3.21). 

 

Figure 3.22 XRD spectrum of Mβ-CD  
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The diffractogram did not show any distinct diffraction peaks indicating the hollow 

amorphous structure of the Mβ-CD (Figure 3.22) and agreed with previously reported data 

(Figueiras et al., 2007a).  

 

 

Figure 3.23 XRD spectrum of β-CD  

Figure 3.23 indicates the crystalline structure of the β-CD with a range of peaks intensities 

over 10 - 30°. 
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Figure 3.24 XRD spectra of complexed lansoprazole and CDs (1:1) 

The intensity of the finger print regions of lansoprazole at 17.4, 17.9, 18.9° were greatly 

reduced in the Mβ-CD complex (Figure 3.24). The Mβ-CD complex showed that the drug no 

longer existed in its crystalline state and had an amorphous structure as the result of 

inclusion. 

 

Figure 3.25 FTIR spectrum of lansoprazole 
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Characteristic peaks were identified for lansoprazole and agreed with previous data (Figure 

3.25) (Zhang et al., 2008; Mendiratta et al., 2011; Lu et al., 2012).  

Wavelength 

 (cm
-1

) Chemical groups 

749.8 aromatic stretching of C-H  

1038.3 sulfinyl (S=O) 

1117.4 ether band (-O-) 

1272.1 stretching vibrations of C-N (in the benzimidazole) 

1579.2  stretching vibrations of C=N (in the benzimidazole) 

2373.7 stretching of CH2 

3226.4 stretching vibrations of NH4 (amine)  

 

 

Figure 3.26 FTIR spectrum of β-CD 

The following characteristic peaks were identified for β-CD (Figure 3.26). 
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Figure 3.27 FTIR spectrum of Mβ-CD 

The FTIR analysis was preformed (June 2015) and the following characteristic peaks were 

identified for Mβ-CD (Figure 3.27). 
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Figure 3.28 FTIR spectra of physical mixtures of Mβ-CD and β-CD (1:1) 

The characteristic finger print regions of lansoprazole in both CD physical mixtures are 

visible (Figure 3.28). However Mβ-CD physical mixtures showed reduced intensity of the 

1117 ether band (-O-) 1163 and 1253 suggesting a degree of formation of complex. It was 

noted that the broad and intense bands of the CD (within the same wavelength range) may 

have masked the characteristic bands of the drug.  
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Figure 3.29 FTIR spectra of complexes of lansoprazole with β-CD and Mβ-CD (1:1) 

The decreased intensity and shifting of bands can indicate which groups are directly involved 

in formation of hydrogen bonds with the CD cavity (Anjana et al., 2013). The Mβ-CD 

complex showed decreased band intensities at 1579 (C=N benzimidazole ring), 1272 (C-N 

pyridine ring), 1117 (ether band) and 749 cm
-1

 (aromatic C-H) suggesting inclusion complex 

formation (Figure 3.29).  
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Figure 3.30 SEM images of A. lansoprazole,B. β-CD and C. Mβ-CD 

A. lansoprazole 

B. β-CD 

C. Mβ-CD  
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Lansoprazole is characterized by regular shaped crystals ranging from 25-70 µm in size. β-

CD presented irregular shaped crystal structures ranging from 10 - 200 µm in size. Mβ-CD 

presented spherical particles ranging from 5-20 µm in size (Figures 3.30 A, B and C). 

 

 

 

 

Figure 3.31 SEM images of complexed lansoprazole with A. Mβ-CD and B. β-CD  

A. Complexed lansoprazole with Mβ-CD 

B. Complexed lansoprazole with β-CD 
complex 

1 mm 
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Freeze drying resulted in changes in morphology in the crystalline drug to an amorphous 

complex. Complexed lansoprazole with Mβ-CD appeared to be less crystalline (compared to 

pure drug) with a visible fluffy appearance. Complexed lansoprazole with β-CD presented 

needle shaped crystals. Single components were not distinguishable amongst the aggregation, 

however this may have been due to the difference in magnification (Figures 3.31 A and B).  

3.6.3 Discussion of lansoprazole CD inclusion complexes 

 

The increase in solubility was due to the increased wettability of CD and also the reduction in 

drug crystallinity after freeze drying (Figure  3.24). The Mβ-CD (1:1) had a higher solubility 

than the other samples tested. This agreed with the data from Figueiras who found Mβ-CD 

displayed superior properties with regards to drug solubility and stability (and permeability) 

of omeprazole over β-CD complexes for a buccal delivery system (Figueiras et al., 2007a). 

The increased solubility may potentially result in increased release from chewing gum 

formulations due to reduced affinity of the drug for the lipophilic gum base. The solid state 

characterisations of Mβ-CD complexes confirmed that interactions were taking place between 

the guest (lansoprazole) and the host (CD); suggesting the formation of an amorphous 

inclusion complex through molecular encapsulation of the drug into the hydrophobic cavity 

of the CD through hydrogen bonding. Further work would involve further characterisation of 

the complexation to form a greater understanding of the complex formed between Mβ-CD 

and lansoprazole, including factors affecting the disassociation of the complexed form. NMR 

spectroscopy has been widely used to characterise complexes using β-CD and along with 

molecular mechanics/dynamics modelling and can be used to provide further evidence of 

complexation orientation (Zheng et al., 2005).   

Lansoprazole has previously been complexed with CD and hydroxypropyl -CD using a 

fluid bed coating method with solubility and stability improved for both complexes. 

Computational modelling suggested that the benzimidazole group was included in both CDs 

(Figure 3.32). However the hydroxypropyl- β-CD was more photostable compared to β-CD. 

It was suggested that this was due to the hydroxypropyl- β-CD forming a deeper inclusion 

complex providing molecular shielding to the sulfinyl moiety of lansoprazole (Lu et al., 

2012). 
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Figure 3.32 Schematic models of A. lansoprazole, B. β-CD and C. complexed 

lansoprazole: β-CD (1:1)   

(Lu et al., 2012) 

3.7 Formulation stability considerations in chewing gums 

 

There are three main factors that impact the stability of chewing gum formulations and 

consideration was given to each when manufacturing the gums.   

 Formulation method 

The manufacturing method employed for chewing gums used a heated Z blade mixer at 50 °C 

mixing at 40 rpm, to avoid extremes temperatures which could potentially accelerate 

decomposition of lansoprazole. 
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 Environmental 

Lansoprazole is sensitive to pH, light and moisture. Once made into a chewing gum 

formulation exposure to external factors can be further controlled using packaging and 

specific recommended storage conditions. All formulated gums were manufactured without 

coating or packaging and were stored in plastic containers throughout use. 

 Drug and excipient specific 

Lansoprazole is particularly unstable compared to other PPIs. The specific ratio of drug to 

excipients was 15 mg per 1 gram gum piece. The formation of a coloured product indicated 

possible instability; however drug content was not compromised in the presence of the 

coloured product once extracted. The use of alkaline stabilising compounds has been 

investigated previously and can be incorporated into gum formulations to help maintain the 

localised pH at a desirable range of the microenvironment (Tetsuro et al., 1992; He et al., 

2010; Lu et al., 2012). Buffering excipients were incorporated in gum formulations and upon 

release will increase the pH of saliva, which will increase the stability and solubility of 

lansoprazole.  

Moisture absorption was found to be a detrimental factor affecting stability of lansoprazole 

coated pellets (He et al., 2010). Generally chewing gums have a low water content, around 2-

5 % w/w (Rassing, 1996) hence the internal microenvironment is limited to solid-solid 

interactions due to limited moisture within the gum.  

3.7.1 Stability testing of gums  

 

Formulated gums were stored under ambient storage conditions in sealed transparent plastic 

containers prior to analysis. Gums were chosen at random and the drug extracted as described 

in Chapter 2. Both discoloured and non-discoloured gums (H and L) were included in the 

study and were chosen at random (n= 8). 
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Table 3.4 Drug content of gums (H and L) following storage under ambient conditions 

for 1 year (n= 8; mean ± s.d) 

Test Lansoprazole content 

 (mg per g) Gum 

H gums 

 

15.30 ± 0.41 

 

L gums 

 

14.66 ± 0.14 

 

Overall mean 

 

14.98 ± 0.44 

 

 

3.7.1.1 Discussion  

 

All gums tested showed acceptable content uniformity after 1 year with content ranging from 

96.87- 104.62 % (Table 3.4) and complied with EP guidelines recommending that solid 

dosage forms have a satisfactory content range of 100 ± 5 % (European Pharmacopoeia, 

2002; El-Assassy et al., 2012). There was no obvious difference between visually discoloured 

and non discoloured gums (as seen previously) with regards to drug content. The results 

showed that lansoprazole was stable in the medicated chewing gum formulations and there 

was no major loss of active and levels of degradation products were less than 5 % for all 

formulations. The overall content uniformity from all gum formulations is described in 

section 4.4.1. 

3.8 Conclusion  

 

The solubility and stability of lansoprazole in artificial saliva was found to be dependent on 

the pH of the solution, an increase in pH caused an increase in lansoprazole solubility with a 

significant increase between pH 9 and 10. At the lower pH, the concentration was decreased 

(by 26 % at pH 6) after 15.5 hours, confirming the acid instability of lansoprazole. The 

detection of lansoprazole was possible in presence of its degradation products and impurity A 

(N oxide) and impurity B (sulfone) were identified using the HPLC method.  

Gums (H and L) were tested for stability and showed acceptable content uniformity after 1 

year under ambient conditions with drug content ranging from 96.87- 104.62 %. However the 
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gums displayed a formation of a coloured product after formulation which was later found to 

be a compatibility issue with lansoprazole and the Rev7 polymer; specifically the Merit co 

polymer. Further formulations containing 8 % Rev7 polymer did not display the violet 

discolouration. 

Ratios of CD (β-CD and Mβ-CD) with lansoprazole were complexed using freeze drying 

resulting in an amorphous material. The solubility and solid state characteristics were 

investigated. The Mβ-CD (1:1) resulted in a 9 fold increase in solubility compared to 

lansoprazole alone at pH 6.1 and maintained solubility over 15 hours at pH 6.1 suggesting 

increased stability due to possible molecular shielding. The solid state characterisations of 

Mβ-CD complexes (1:1) confirmed that interactions were taking place between the guest 

(lansoprazole) and the host (CD); suggesting the formation of an inclusion complex through 

molecular encapsulation of the drug into the hydrophobic cavity of the CD through hydrogen 

bonding. 

It was decided to incorporate (Mβ-CD: lansoprazole, 1:1) into chewing gum formulations and 

investigate its effect on in vitro release. This is described in detail in Chapter 4. The effects 

on permeability of (Mβ-CD: lansoprazole, 1:1) compared to pure lansoprazole were also 

investigated. This is described in detail in Chapter 5.   
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Chapter Four 

Formulation development 

& 

in vitro release  
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4.1 Drug release from medicated chewing gums 

 

The process of active being released from a chewing gum formulation can be described as a 

patient controlled release, with the drug being released dependent on the patients‟ needs or 

chews. Dissolution of a drug from a gum is dependent on contact of the dissolution medium 

with the exposed area of the gum (which is renewed each time that the gum is chewed and so 

is constantly changing). Release will consist of processes involving partioning (dependent on 

the drugs affinity to the gum base) and diffusion (based on the resistance (texture) of the gum 

base and molecule weight of the drug) of the active from the gum base matrix into saliva 

(Figure 1.4). The partioning step will influence the amount, whereas diffusion will define 

how fast the active is released (Lee, 2001). The medium will penetrate/ingress into the gum 

and dissolve the gums‟ hydrophilic portions which will then diffuse out into the exterior bulk 

medium. The hydrophilicity of the chewing gum and its porosity will be controlling factors 

for release, influencing penetration of dissolution medium as well as the leaching out of the 

drug through channels or pores. Release will consist of a mixture of leaching and diffusion 

controlled mechanisms (both into and out of the gum beginning with the hydrophilic domains 

and then the lipophilic components) and will also be dependent on the mechanical 

forces/action of chewing. Confectionary gums have four phases of chewing consisting of the 

initial chew phase, intermediate chewing phase, the main extraction phase where most of the 

bulk sweeteners and flavourings are released and the final chewing phase, leaving the gum 

base and a low level of excipients once most of the sweeteners have been extracted (National 

Confectioners Association, 2010). 

General factors which will influence release from a medicated gum include physical forces, 

including: chew rate and temperature (causing textural changes; resulting in a softer gum) 

and also physiochemical interactions between the active and excipients (including the drug‟s 

affinity to the gum base/ lipophilic component). 

Factors affecting the release of the drug from a gum can be categorised into 3 general groups: 

 

 Patient chew related factors 

The physiological inter-individual variation can include the chew count, pH and volume of 

saliva which differs greatly between individuals. The normal chewing range is between 40-80 

chews per minute. An average of 60 chews per minute is recommended by relevant EP 
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guidelines when conducting in vitro mastication testing (European Pharmacopoeia, 2011). As 

the gum is chewed, its surface area is renewed which allows the drug to be released and so an 

increased chew rate will result in an increased exposed surface area and thus a greater extent 

of release would be expected.  

 

The pH of saliva can range from pH 5.8 - 7.4 (Shojaei, 1998). This can be further controlled 

and manipulated with the use of buffering excipients which will also be released alongside 

the drug, influencing the solubility of the active and facilitating absorption. The flow rate and 

volume of saliva will vary between individuals (see section 5.2.1) including stimulus effects, 

disease state, time of day, age and sex amongst other factors. Chemical stimuli (such as acids) 

and mechanical (chewing) can increase salivary flow rates, however there is large inter-

individual variation with parotid saliva flow. The average volume of saliva in the oral cavity 

ranges from 5- 10 mL and flow rates can range from 0.06 - 0.10 mL per minute whilst at rest 

compared to 0.43 - 0.66 mL per minute whilst chewing (Rudney et al., 1995; Yang et al., 

2004). Daily salivary flow is between 0.5 – 2 litres for healthy subjects (Shojaei, 1998). 

Saliva flow rate in response to chewing gums is shown to peak in the first minute and reduces 

as the gum base softens over time (Guinard et al., 1997).   

 

 Formulation specific gum properties 

Formulation considerations, specifically gum base properties, will have an influence on the 

release of active from chewing gums. The lipophilic/ hydrophilic capacity can be adjusted by 

altering the percentage gum base mass and composition (Hyrup et al., 2005). This will cause 

varying adherence of the drug to the corresponding section of the gum. Rates of hydration are 

also important factors to consider as they will measure the rate of absorption of saliva into the 

gum matrix and will directly influence release (National Confectioners Association, 2010). 

 

 Physicochemical properties of the active 

The specific physiochemical properties of the drug will influence its release. These include 

the aqueous solubility of drug in saliva (Imfeld, 1999; Ochoa et al., 2008). One study 

suggested that poorly soluble drugs can be entirely released but may require an extended 

period of time and so release will be at a slower rate and possibly incomplete during the 30 

minute mastication period, and this may have to be extended to ensure complete release 

(Maggi et al., 2005). The drug‟s pKa will also have an influence on the release as well as the 
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absorption of the drug, with unionised species being absorbed more effectively (Figure 5.4). 

The drug stability in the oral environment will also need to be considered. This is described 

in chapter 3. 

 

Lipophilic drugs will have increased distribution and affinity in the lipophilic components of 

the gum and will subsequently be released slowly and incompletely (Jeckelmann and 

Haefliger, 2010). The active‟s relative affinity for the two phases, soluble (sugars) and 

insoluble (gum base), will influence release characteristics, with hydrophobic compounds 

having increased binding interactions with the gum base resulting in slower rates and extent 

of release whilst masticating. Mechanisms of release of cinnamaldehyde from chewing gum 

have been related to the specific gum base to water partition coefficient (cLog P). This 

compares the distribution and binding affinity of the flavouring agent between the gum base 

and the soluble phases (aqueous phase). The study involved a modified shake flask method; 

the gum base was ground to reduce particle size and suspended in saturated water (containing 

the flavouring agent). Results found that compounds with a low cLog P (higher distribution 

in the aqueous phases) were found to release at an increased rate and extent when formulated 

into medicated gums compared with compounds with a high cLog P (higher distribution in 

the insoluble portion). The study concluded that gum base affinity was a major factor 

impacting release kinetics from medicated gum formulations. The authors suggested a two 

stage model for release of the flavouring agent (based on in vivo chew out studies), with an 

initial rapid phase during the dissolution from the soluble sugar alcohol phases (sorbitol) 

followed by a diffusion controlled mechanism with sustained release from the insoluble gum 

base (Potineni and Peterson, 2008).  Similar findings were reported for menthol release from 

chewing gums where  the rate limiting factor was found to be the diffusion of the active from 

the insoluble gum base portion (Yoshii et al., 2007).  

 

The transfer of active from lipophilic gum base to saliva will be dependent on the partition 

co-efficient. As the octanol/water partition of lansoprazole is high (Log P = 2.7), the drug 

will favour the gum base and so dissolution into saliva may be limited.  



119 
  
 

4.1.1 Measuring drug release from chewing gums 

4.1.1.1 In vivo release 

 

In vivo studies to monitor release from chewing gums normally involve chew out studies. 

These involve a panel of tasters and chewers to chew gums following specific protocols 

controlling duration, chew rate and intensity; however this can be highly variable between 

subjects (Kvist et al., 1999). Generally a 30 minute chewing duration has been recommended 

for use in clinical trials based on a survey involving 4000 volunteers who had a mean 

chewing time of 36 minutes (Barabolak et al., 1991). During the mastication process, the 

active is released into the saliva and absorbed through the oral mucosa or swallowed and 

absorbed in the gastrointestinal tract. Estimated drug release can be calculated by analysing 

the residual drug content and further data can be obtained via blood samples to provide 

pharmacokinetic evaluations. Training of volunteers with specific chew rates per minute and 

chew durations has been recommended in order to standardize such tests (Yang et al., 2004). 

 

Disadvantages of in vivo chew out studies include the lack of standardisation and control of 

chew-related physiological factors including physical chewing stress, clench times, frequency 

and physiological differences in the flow and composition of saliva between subjects.  This 

has led to large inter-individual variations. Also the ethical issues and costs involved in 

obtaining human volunteers have to be considered (Morjaria et al., 2004). 

 

An example of relevant pharmacokinetic data achieved from an in vivo chew out study 

involving 84 healthy subjects in a double blind, randomized parallel study comparing 

caffeine administration in a chewing gum formulation with a capsule formulation. The results 

showed that the rate of absorption was significantly faster with gums than capsules and both 

had comparable extent of absorption. The study also suggested dual absorption routes for the 

active with the primary route being absorption through the buccal mucosae and also some 

absorption after being swallowed in the GI tract (Kamimori et al., 2002). 

 

A novel evaluation of in vivo chew out studies involved a compressed three layer tablet with 

a gum core (3TabGum
®

) which incorporated model drugs such as ascorbic acid. It trialled a 

novel method involving yellow dyes acting as a tracer for drug release and found good 

correlations with release of drugs and dyes in vivo. It concluded that the use of dyes could 
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provide an indicator of the necessary chewing time needed to complete drug delivery from 

evaluation of the colour loss of the residual gum. It also identified how individual chewing 

performance can influence drug release and displayed a high degree of variability amongst 

the volunteers (Ochoa et al., 2008). Another novel method to study in vivo release was used 

to explore the release kinetics of actives from chewing gum into saliva using Direct Analysis 

in Real Time Mass Spectrometry (DART). Subjects were asked to provide saliva samples 

after consumption of a flavoured chewing gum. Release profiles achieved a range of differing 

plateau stages (where the rate of  release was constant) and this was attributed to the varying 

amounts of saliva secreted between subjects (Jeckelmann and Haefliger, 2010). 

 

Variability between individuals was found in a translational chew study trialling the use of a 

chewing gum assessment method to evaluate masticatory ability, efficiency and performance 

between individuals. The study focused on 20 volunteers perceived to have normal 

masticatory efficiency, who chewed samples of 2 coloured confectionary chewing gums for 

different chew cycles. The mixing fraction of the 2 multi-coloured gums was analysed using 

digital image processing and was shown to provide reliable quantifiable data to assess 

chewing efficiency. The study recommended this method as an alternative to the food chew 

and sieve test (separating particles based on size to assess efficiency)  for evaluating chewing 

efficiency in clinics (Schimmel et al., 2007). 

4.1.1.2 In vitro release 

 

Drug dissolution is an important tool in academic development, drug development and 

quality control. The value of in vitro release testing is well established for a range of dosage 

forms, allowing correlations between in vitro and in vivo conditions. Different techniques and 

apparatus are used on a case by case basis specific to the dosage form or product type. Each 

method must demonstrate accuracy, reproducibility and precision to allow for relevant 

interpretations of in vivo performance (Siewart et al., 2003). The drug‟s release from the 

formulation is an essential first step in the absorption and bioavailability of the drug. 

However for release testing of gums, chewing/masticatory forces are essential for release by 

providing the renewable surfaces necessary for release and so the use of standard dissolution 

apparatus would be limited. The European Pharmacopeia describes a stainless steel 3 piston 

apparatus to provide the shearing forces and activity necessary to continuously expose the 



121 
  
 

interior of the gum to the surrounding dissolution medium to promote drug release (Figure 

4.1) (European Pharmacopoeia, 2011).  

 

Figure 4.1 Schematic diagram of the EP masticator  

 (Morjaria et al., 2004) 

In 2008, the European Pharmacopeia published a monograph to describe suitable apparatus to 

apply mechanical kneading to study in vitro release of drugs from chewing gums (European 

Pharmacopoeia, 2011). A number of other non-compendial devices have been reported that 

also mimic the chewing action necessary for release from gums with various improvements 

and versatility. One such development, designed by Kvist and Wennergren (apparatus B), can 

contain up to 6 chambers. The chewing machine is constructed with glass vessels capable of 

containing up to 70 mL of dissolution medium. This allows visual inspection of the process 

during chewing. The chewing mechanism is dependent on 2 vertical pistons which can 

“chew” at up 120 strokes per minute. The pistons have removable, sand-blasted jaws at the 

surface which can be replaced to ensure the gum is uniformly kneaded and does not stick to 

the pistons. The test cell can be removed to aid in cleaning compared with the EP masticator 

which has a fixed chamber and so is time consuming to clean (Kvist et al., 2000). Further 

details are included in Chapter 2 (Figures 2.5 and 2.6). One study advises release testing on 

both apparatus (EP approved and apparatus B-Kvist and Wennergren) to ensure sound 

interpretation of the in vitro release data to have meaningful predictions for in vivo studies 

(Gajendran et al., 2008). Another system variation uses Teflon plungers and claims to have a 

good correlation with in vivo chew out studies (Rider et al., 1992).  Comparable release 

correlations have been made with in vitro and in vivo release testing of chewing gums 

containing KSL (an antimicrobial agent). The active was released steadily with 70 – 80 % 

released after 20 minutes in both conditions (Hee Na et al., 2005). 
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The EP masticator has been adapted from the original designs by Christrup and Moller 

(Christrup and Moller, 1986) (Figures 2.2 and 2.3). It consists of a temperature-controlled 

chewing chamber; housing the location where the gum is chewed by two electronically-

controlled horizontal pistons (“jaws”) powered by compressed air. The two pistons transmit 

twisting and pressing forces to the gum, while a third vertical piston, operates alternately to 

the two horizontal pistons ensuring that the gum stays in the appropriate position (“tongue”) 

(Figure 4.2). The distances between the jaws are adjustable; a distance of 1.0 mm was set 

between the horizontal pistons allowing a uniform force to be applied between experimental 

runs. Each piston has indentations at the chewing surface to prevent the adhesion of the gum 

to its surface. The temperature of the chamber was maintained at 37 ± 0.5°C and the variable 

chew rate can be set up to a maximum of 83 chews per minute. The European Pharmacopoeia 

guideline recommends using 20 mL of an unspecified buffer (at approximately pH 6) with a 

chewing chamber volume of 40 mL and a chew rate of 60 chews per minute (European 

Pharmacopoeia, 2011). However 40 mL of dissolution medium was used due to the size of 

the chewing chamber as established by previous studies (Morjaria, 2004). There are limited 

guidelines on monitoring the release from the gum (i.e. directly from the dissolution medium 

or from the gum‟s residual content) and the studies in this thesis used a combination of the 

two where appropriate. Previous work performed on the chewing machine showed that in 

vitro release profiles were similar to in vivo chew out studies and that artificial saliva pH 6.7 

showed good correlation to real saliva obtained from human subjects (Morjaria, 2004) in 

testing for in vitro release from prepared nicotine gums. This is described in detail in Chapter 

2. 
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Figure 4.2 The European Pharmacopeia approved masticator 

The specialised dissolution apparatus is designed to test release of the active from chewing 

gum by providing the necessary masticatory forces needed for release.  

4.2 Methods 

 

A range of chewing gum formulations was assessed utilising in vitro release testing to 

discriminate between formulation variables and to evaluate release governing factors for a 

poorly soluble drug from a chewing gum formulation. 

4.2.1 Formulation of lansoprazole chewing gum 

 

All lansoprazole gums were prepared at the Revolymer site (Mostyn, UK) using the 

conventional kettle mixing method (at 50 °C). Initial lansoprazole chewing gum formulations 

were prepared to assess the effects of varying the lipophilic/hydrophilic capacity on release. 

This was achieved by varying the gum base mass percentage (57 % w/w (H) and 41% w/w 

(L) compositions).  

Vertical piston 
acts as a 
tongue 

Horizontal 
pistons acts 

as teeth 

Chewing reservoir 
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Lansoprazole was loaded at a dose equivalent to the conventional 15 mg capsule formulation. 

A low level of flavouring (3 % peppermint oil) was used to minimise the risk of any 

interactions with lansoprazole. All formulated gums were rolled to a uniform thickness before 

being cut to size. The gums were all sectioned using the same method (resulting in similar 

size, shape and weight) and so had a similar surface area to ensure a fair test and 

reproducibility. Talc was sparingly added to the working surfaces during cutting to minimise 

adhesion. This resulted in uniform gum pieces weighing approximately 1 gram.  

To load the gum base with active, 25 g of lansoprazole (BN: 71878, Discovery Chemicals) 

was added to 650 g of pre-warmed gum base (RVG1T000799) containing 6 % Rev7 in the Z 

blade mixer. This was mixed for 30 minutes at a speed of 20 rpm at a temperature of 50°C. 

412 g of the loaded gum base was removed, leaving a quantity of 263 g remaining in the 

mixer. The excipients were added sequentially to make the 41 % w/w lansoprazole gum and 

were mixed at a speed of 40 rpm at a temperature of 50 °C (Table 4.1). 

The theoretical drug load for each gum weighing approximately 1 gram was 15 mg of 

lansoprazole per gum piece.  
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Table 4.1 Preparation of lansoprazole chewing gum formulations (L gum batches) 

Stages Ingredient 

 

Percent 

(%) 

Quantity 

(g) 

Duration of mixing 

(Time in minutes) 

1 Loaded gum 

base 

 

41 

 

263.3 

 
3 

 Sorbitol 27 177.5 
 

2 Maltitol 1 6.5 
 

 Aspartame 1 6.5 2  

3 Mannitol 1.5 9.8 
 

 Xylitol 1.5 9.8 5 

 Maltitol 1 6.5 
 

4 Sorbitol 3.9 25.4 7 

5 Mannitol 2.5 16.3 
 

 Xylitol 2.5 16.3 
 

 Maltitol 1 6.5 3 

6 Flavour 1 6.5 
 

 Sorbitol 3.9 25.4 
 

 Flavour 0 0 
 

 Menthol 1 6.5 2 

7 Sorbitol 3.9 25.4 
 

 Na2Co3 3 19.5 5 

 Flavour 3 19.5 4 

 

 
Total 

100% 

Total 

646.8  g 

Total 

time 31 min 

 

The excipients were added in a staged approach (stages 1-7) as shown in Table 4.1 and mixed 

for set periods based on Revolymer in-house protocols. Each stage had a calculated minimum 

mass of excipients to ensure the required bulk density resulting in efficient mixing.  

To manufacture H gums, 263 g of loaded gum base was added with an additional 104 g of 

pre-warmed loaded gum base (total quantity of 367 g) into the Z blade mixture at the 

beginning. The amount of sorbitol was decreased accordingly. 

 4.2.2 Impact of gum base content on lansoprazole gum formulations 

 

The aim of this study was to evaluate the effects of gum base composition by manufacturing 

two different gum base mass formulations (H and L gums) (varying the lipophilic/hydrophilic 

capacity). This would allow initial release parameters to be evaluated and would allow a 

starting basis for further optimised formulations. The effect of pH of dissolution medium 

(phosphate buffer) was also assessed. 



126 
  
 

Two preliminary batches of lansoprazole-loaded gums (containing 15 mg of lansoprazole per 

gum), with 6 % Rev7 polymer incorporated into the gum base, were prepared to provide 

initial data on the release of lansoprazole from chewing gums. Each gum, weighing 

approximately 1 gram, contained 15 mg of lansoprazole to allow dose equivalence to the 

enteric capsule formulations available. 

Release was tested using the standard masticator set up as described in chapter 2. Standard 

conditions were utilised as a starting point, i.e. phosphate buffer, 60 chews / min, 37 °C and 2 

mL sampling with replacement volume. All gums were tested in triplicate. 

To assess method development and chew-related factors, the pH of the dissolution medium 

was adjusted to pH 6.0 and then pH 8.0 by addition of 0.1M HCl or NaOH.  

4.2.3 Formulation variables (L gum batches) 

 

Further experimental gum formulations were produced (all containing 41% w/w gum base) 

with variables (Table 4.2). 

 The influence of complexed drug with MβCD (1:1) (drug alone versus complexed 

drug) 

 The influence of Rev7 polymer (8 % Rev7  versus 0 % Rev7) 

 The influence of buffering excipients (potassium carbonate versus sodium carbonate)  

Table 4.2 Formulation variables (L gums batches)  

Code Drug 

form 

Rev7
 

(%) 

Buffering 

excipients 

L,8,Na lansoprazole 8 Na2CO3 

L,8,K lansoprazole 8 K2CO3 

C,8,Na complexed 8 Na2CO3 

C,8,K complexed 8 K2CO3 

L,0,Na lansoprazole 0 Na2CO3 

L,0,K lansoprazole 0 K2CO3 

C,0,Na complexed 0 Na2CO3 

C,0,K complexed 0 K2CO3 
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4.2.3.1 Factors affecting in vitro release from L gum batches  

A series of experiments was conducted to determine the formulation and method variables 

affecting release. This included a range of chew related factors such as choice of dissolution 

medium, pH of dissolution medium, sample replacement volume and chew rate.  

Standard conditions were utilised as a starting point to allow a direct comparison to 

previously tested gums. In order to study the impact of dissolution medium on release it was 

decided to compare phosphate buffer pH 6.0 and artificial saliva at pH 6.7 utilising the 

standard masticator set up, 60 chews / min, 37 °C and 2 mL sampling and replacement 

volume. Content uniformity was determined using solvent extraction. This is described in 

chapter 2.This method was also used to determine residual content post-mastication.  

To ensure sink conditions prevailed throughout the entirety of further experiments, sample 

volumes were subsequently increased from 2 mL to 20 mL. It was noted that this dilution 

factor would also affect the buffering capacity and pH of the dissolution medium during 

chewing. 

To further investigate method developmental factors and promote increased release the 

effects of pH was evaluated; the pH of artificial saliva was increased to pH 8.0 (the sampling 

and replacement volumes were kept at 20 mL).  

To investigate the effects of chew rate, the chew rate was increased to the maximum chew 

rate of 83 chews per minute (maintaining the pH of artificial saliva at pH 8.0 and the 

sampling and replacement volumes at 20 mL).  

ANOVA statistical analysis was performed on maximum release after 30 minutes from all 

gum formulations, Post Hoc LSD testing was used and significance was the at the 95 % 

confidence level. Independent t-tests were performed between experimental conditions to 

assess significant differences (using SPSS, version 20, Chicago). 

4.2.4 Surface diffusion from lansoprazole chewing gums  

 

A study on diffusion of drug from the surface of gums was performed to allow the evaluation 

of mastication/chewing of the gum and the importance of renewal of surface areas essential 

for effective drug release from chewing gums. 
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Gums were weighed and placed in a beaker containing 40 mL of artificial saliva stirred at 300 

rpm at ambient temperatures. 1.5 mL was removed and replaced with fresh dissolution 

medium at 0, 5, 10, 20, 30, 60 minutes and 24 hours. All gum formulations were tested in 

duplicate with the mean being reported. 

For rapidly disintegrating gums (L,8,K and C,8,K), a modified (smaller volume vessels) USP 

dissolution bath apparatus with 250 mL of saliva, at a stirring rate of 150 rpm and a 

temperature of 37 °C was employed. This would limit potential contact/collisions of the 

stirrer to the gums.  

4.2.5 Surface morphology of chewing gums 

 

The surface morphology (texture and roughness) of un chewed formulated gums (L,8,K) was 

examined using scanning electron microscopy (SEM) to detect any micropores/ channels for 

ingress and drug release upon contact with saliva.  

Samples were mounted on aluminium stubs using double sided carbon tape and coated under 

vacuum (using a sputter coater) with gold and palladium (Au and Pd) through the use of an 

Emscope SC 500 (Emscope Engineering Limited, Hertfordshire UK). The study was carried 

out under magnification with a JOEL JSM 6060LV (Joel UK Limited, Herts, UK). 

4.2.6 Texture evaluation 

 

In addition to product manufacturing control tests including content and mass uniformity 

other sensory tests are needed due to the extended contact time in the oral cavity. The taste of 

the active can impact sensory taste buds and can often be unpleasant therefore additional 

sensory parameters are measured continuously until satisfactory results are available. These 

can include product feel, evaluation of flavours/sweeteners and texture analysis. This can be 

conducted throughout the developmental phases in a variety of ways including evaluation 

taste panels and also texture analysers (Gajendran et al., 2008).  

4.2.6.1 Texture profile analysis  

Texture profile analysis (TPA) is an objective method of sensory analysis with defined 

textural parameters  (Szczesniak, 1963). It was later adapted by Bourne to compress standard 

sized food samples (Bourne, 1978).  
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The textural characteristics of food can be described mechanically by the following 

parameters: 

 Hardness 

 Chewiness  

 Cohesiveness 

 Adhesiveness  

(Szczesniak, 1966) 

The TPA performs recognition of multiple parameters and then produces a texture profile 

which can be useful in on testing between samples. In vivo correlations are difficult to 

measure because of the range of forces involving shearing, compression, tearing, cutting, 

piercing, grinding and as well as the lubricating component with saliva all at body 

temperature. The test has been shown to correlate well with sensory parameters and involves 

compressing a piece food in a reciprocating motion (simulating actions of the jaw) and 

produces a force over time curve. Chewiness can be measured in terms of the energy required 

to masticate the solid food.  

The TA.XT plus texture analyser (Stable Micro Systems, UK) was utilised for TPA at 

ambient temperatures. The following in built method was utilised to compare the hardness of 

chewing gum pellets, the method was similar to one used previously to test medicated 

nicotine gums (Morjaria et al., 2004). Unchewed gums were chosen at random from each 

optimised formulation and were tested in triplicate with the initial penetration in the centre of 

each gum. Texture analysis was performed on gums to assess differences in hardness of first 

penetration (g), chewiness (g/sec) and area under curve (positive energy; cohesion and 

negative; adhesion).  

A 2 mm cylinder probe (P/2) was utilised with a 25 kg load cell and a heavy duty platform 

(HDP/90) with a blank plate. The gum was placed centrally below the testing probe, the 

probe approached the sample at a speed of 10.0 mm/s and once a 5g force was exhibited the 

system measured the resistance in compression force as the probe penetrated through the 

gum. The probe measured up to a penetration distance of 3 mm after the trigger point.  
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Data Analysis was obtained by in built macros, which analysed the profile curve once 

obtained to quantify the 4 parameters of interest; hardness, chewiness, cohesion and 

adhesion. The hardness parameter was calculated by the mean penetration energy from the 

area under the curve between 2 mm – 3 mm, force was plotted against time  to give the initial 

bite (hardness of first penetration). On withdrawal, a negative peak is shown measuring 

adhesion of the gum. Chewiness was calculated by the TPA based on the following macros 

calculation:  

Force 2 x (Area 4:6 / Area 1:3) x (Time diff 4:5 / Time diff 1:2)  

(Stable Micro Systems, UK) 

4.3 Results and Discussion  

4.3.1 Content uniformity of formulated lansoprazole gums 

 

Content uniformity for all gums tested was found to be in the range of 14.51 -15.49 mg/g 

(96.75 - 103.26 %). This complied with EP guidelines recommending that solid dosage forms 

have a satisfactory content range of 100 ± 5 % (European Pharmacopoeia, 2002; El-Assassy 

et al., 2012). The manufacturing process provided a homogenous material with each gum 

piece containing the required dose (equivalent doses of lansoprazole 15 mg) and content 

uniformity was achieved throughout all the formulations. 
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4.3.2 Impact of gum base (57 % w/w and 41 % w/w gum base mass) on in vitro 

release 

 

 

Figure 4.3 The effect of pH on release from gums (H gums)  

Increasing pH increased the rate of release for H gums (containing 57 % w/w gum base). The 

maximum release was at pH 8 with 12.29 ± 1.23 % after 30 minutes (Figure 4.3).  

 

Figure 4.4 The effect of pH on release from gums (L gums)  

An increase in pH of dissolution medium caused an increase in release as observed 

previously, however the difference was less pronounced than that found for formulations with 

a higher gum base content. The maximum release was at pH 8 with 13.97 ± 0.44 % after 30 

minutes (Figure 4.4). 
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Figure 4.5 The effect of gum base content on release at pH 6.0 

At pH 6.0, the L gum (41 %) released more lansoprazole, reaching a maximum of 12.11 ± 

0.62 % after 30 minutes (Figure 4.5). 

 

Figure 4.6 The effect of gum base content on release at pH 8.0 

As pH of the dissolution medium was increased, the impact of amount of gum base in the 

formulation on release was reduced (Figure 4.6).  

4.3.2.1 Discussion of the impact of gum base content on release 

 

The drug was released slowly from both formulations and was stable over the 30 minute 

release period, as indicated by less than 5 % degradation products on HPLC chromatograms 
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(See Appendix A). The maximum drug released was 14 % after 30 minutes from L gums at 

pH 8.0.  

The amount of gum base contained in the formulation was found to significantly impact 

release (P<0.05). The percentage of drug released after 30 minutes was higher for those gums 

with a reduced lipophilic component (L gums with 41 % w/w gum base).  This is due to the 

lipophilic nature of the drug and consequent affinity to the gum base, hence release was 

incomplete and gradual; this was further retarded with gums with higher gum base content. 

This is in agreement with other studies which suggested that increasing the lipophilic 

capacity of the gum will retain more lipophilic drug after mastication (Maggi et al., 2005). 

This is due to increased binding between the gum base and the lipophilic active (El-Assassy 

et al., 2012). Rassing also observed a low release of less than 5 % after 30 minutes with a 

poorly water soluble drug (Rassing, 1996). Lipophilic actives will generally be released 

slowly and to increase the release, the gum base content may be decreased (decreasing the 

lipophilic/hydrophilic balance of the gum).  It is possible to manufacture a gum with a lower 

gum base composition to increase release, however, in practice, a gum containing less than 

20 % gum base will have inadequate chewing properties and may crumble upon chewing 

(Maggi et al., 2005). Increased drug solubility at higher pH may have contributed to the faster 

release (Figure 3.3) as described in chapter 3. 

4.3.3 Diffusion of lansoprazole from  surface of chewing gums (L gums) 

 

 

Figure 4.7 Mean drug diffusion from gum surfaces (without mastication) 
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Release was limited without mastication (Figure 4.7). The release of drug from gums was 

1.10 ± 0.55 % after 60 minutes and 10.46 ± 1.64 % after 24 hours. The increased variability 

at 60 minutes was due to gums L,8,K and C,8,K (both containing potassium carbonate), with 

values of 1.88 and 2.07 % respectively. The release of drug from all other gums was lower 

(0.80 ± 0.14 %). It was also noted that gums containing Rev7 released more drug after 24 

hours; (11.80 ± 0.83 % compared to gums without Rev7; 9.13 ± 0.92 %). This may be due to 

the hydrophilicity of Rev7 (see section 1.6).  

The main components of chewing gum are a mixture of waxes, emulsifiers and elastomers 

which constitute the gum base. The gum base is an insoluble solid and so diffusion of drugs 

through the total gum thickness should be low. Diffusion primarily occurs from the surface of 

the gum in contact with the dissolution medium. The increased release at 24 hours may have 

been due to prolonged penetration of dissolution medium through micropores in the gum 

matrix; allowing an increased level of contact between internal surfaces of the gum causing 

drug to leach out from the surface. 

It can be concluded that drug diffusion from the surface of the gum is limited and mastication 

is necessary to facilitate adequate release from gums, providing renewable surfaces and 

increasing contact with dissolution medium with fresh internal surfaces of the gum. This also 

suggests that gums may be less prone to accidental overdosing if swallowed whole providing 

that the gum is not metabolised or degraded by in the GI tract. 
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4.3.4 Surface morphology of chewing gums  

 

 

 

Figure 4.8 A & B. SEM images of L,8,K gums showing the surface micro pore structure  

The SEM images (Figures 4.8 A and B) identified the range of possible pores/cavities on the 

surface of the unchewed gum that may provide channels for saliva to penetrate/ingress and 

diffuse into the gum thus facilitating release.  

4.8 A. 
L,8,K 

4.8 B. 
L,8,K 
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4.3.5 In vitro release from lansoprazole chewing gum (L gums batches)  

4.3.5.1 In vitro release from lansoprazole chewing gum (2 mL replacement) 

 

Figure 4.9 Drug release from gums containing 8 % Rev7 in phosphate buffer pH 6.0 

(n=3; mean ± s.d) 

L,8,K and C,8,K (containing potassium carbonate) displayed a burst release with the majority 

of the drug release occurring within the first 5-10 minutes followed by a plateau phase with 

limited drug release (Figure 4.9). Gums containing sodium carbonate released less drug after 

30 minutes of mastication. The maximum amount released was observed with L,8,K,  

25.4  %, after 30 minutes. There was a significant difference in the amount of drug released 

release between L,8,K and C,8,K and all other gums (P < 0.01). 

 

Figure 4.10 Drug release from gums without Rev7 in phosphate buffer pH 6.0 (n=3; 

mean ± s.d) 
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C,0,K had the highest release, 12.5 % after 30 minutes of mastication (Figure 4.10). Overall 

drug release was markedly less than for L,8,K and C,8,K but was similar to L,8,Na and 

C,8,Na (containing 8 % Rev7). This showed that Rev7 increased the extent of drug release 

from gums containing potassium carbonate but not from those containing sodium carbonate, 

thus suggesting a specific interaction between the components.  

Drug release from all gums increased steadily over the 30 minute mastication period using 

phosphate buffer pH 6.0. L,8,K and C,8,K (containing Rev7 and potassium carbonate) 

released more drug than all other gums tested (Figure 4.11). In the presence of Rev7, the drug 

form, i.e. complexed drug versus drug alone did not impact in vitro drug release, however the 

choice of buffering excipients, influenced release with potassium carbonate increasing release 

compared to sodium carbonate.   

 

Figure 4.11 Drug release from gums containing 8 % Rev7 in artificial saliva pH 6.7 

(n=3; mean ± s.d) 

Maximal drug release occurred within the first 5 minutes for L,8,K and C,8,K (containing 

potassium carbonate) followed by a plateau phase during the remaining 25 minutes due to 

compromised sink conditions due to drug saturation (Figure 4.11). L,8,Na and C,8,Na 

increased steadily, consistent with release observed in phosphate buffer pH 6.0. 
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Figure 4.12 Drug release from gums without Rev7 in artificial saliva pH 6.7 (n=3; mean 

± s.d) 

C,0,Na released more drug, almost 30 % after 30 minutes, however release from C,0,K did 

not increase after 10 minutes due to compromised sink conditions and limitations in solubility 

(Figure 4.12). The buffering excipients (sodium carbonate and potassium carbonate) did not 

result in different release profiles (L,0,Na and L,0,K). An increase in drug release was 

observed from all gums when tested in artificial saliva pH 6.7 compared to phosphate buffer 

at pH 6.0 with mean (%) releases of 25.71 ± 6.80 and 14.99 ± 5.36 respectively. As the pKa 

of lansoprazole is 8.84, therefore increases in solubility are more pronounced as the ionisation 

increases exponentially above the pKa (Table 1.4 and Figure 3.4).  

L,8,K and C,8,K (containing Rev7 and potassium carbonate)  had more extensive drug 

release compared to all other gums tested which was consistent with the study using 

phosphate buffer at pH 6.0 (Figure 4.9 and 4.10). Significant differences in release were 

found between gums, L,8,K and C,8,K were significantly different from all other gums (P < 

0.01) but not from each other.  

The impact of complexation was evident for gums without Rev7, gums containing 8 % Rev7 

highlighted differences in buffering excipients, i.e. potassium carbonate and sodium 

carbonate.  L,8,Na resulted in the lowest release from all other formulations with a maximal 

release of 17.6 % after 30 minutes mastication.  
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4.3.5.1.1 The effect of dissolution medium on drug release  

 

 

Figure 4.13 The effect of dissolution medium on release from gums containing 8 % Rev7  

with chew rate of 60 chew/min and 2 mL replacement volume (n=3; mean ± s.d) 

 

Figure 4.14 The effect of dissolution medium on release from gums without Rev7 with 

chew rate of 60 chew/min and 2 mL replacement volume (n=3; mean ± s.d) 

Drug release increased in artificial saliva pH 6.7 compared to phosphate buffer at pH 6.0 with 

all gum formulations (Figures 4.13 and 4.14). All gums (apart from L,8,K and C,8,K) 

released 10 - 15 % in phosphate buffer at pH 6.0. Artificial saliva was a more discriminating 

medium. Significant differences (using t tests) were found between the two dissolution 

mediums (P < 0.01).  
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4.3.5.2 In vitro release from lansoprazole chewing gum (20 mL replacement) 

 

 

Figure 4.15 Drug release from gums containing 8 % Rev7 in artificial saliva pH 6.7 (20 

mL replacement volume) (n=3; mean ± s.d) 

Drug release was 54.1 and 44.8 % for L,8,K and C,8,K respectively at 30 minutes (Figure 

4.15). An increase in the extent of release was observed in comparison to the 2 mL 

replacement volume method for both gums. Drug release from L,8,K and C,8,K  showed less 

of a plateau phase as seen previously and more drug was released after the initial burst 

period. L,8,Na and C,8,Na showed limited release, as seen previously, with increased 

replacement volume having no effect on release. Gums (with 8% Rev7) containing potassium 

carbonate had a similar profile (independent of drug type (L,8,K and C,8,K) compared to 

gums containing sodium carbonate (L,8, Na and C,8,Na) and so can be paired together in 

groups. 
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Figure 4.16 Drug release from gums without Rev7 in artificial saliva pH 6.7 (20 mL 

replacement volume) (n=3; mean ± s.d) 

Release from all gums increased steadily over the 30 minute period and drug release was 

consistent with release observed previously with the 2 mL replacement volume (Figure 4.16). 

Gums (without Rev7) containing lansoprazole also had similar profiles (independent of 

buffering excipients (L,0,Na and L,0,K) compared to gums containing the complex form 

(C,0,K and C,0,Na) and so can be paired together in groups. This suggests both complexed 

and uncomplexed drug had similar profiles irrespective of buffering excipients in the absence 

of Rev7 polymer. C,0,Na released the most drug, 26.03 % after 30 minutes of mastication.  

Significant differences in release were found between gums (P < 0.01). L,8,Na, L,8,K and 

C,8,K were significantly different to all other gums (P < 0.01). L,8,Na resulted in the lowest 

release from all other formulations with a maximal release of 12.2 % after 30 minutes 

mastication consistent with the 2 mL replacement volume.  

4.3.5.2.1 The effect of sample replacement on drug release 

 
 

The maximum concentration in the 40 mL chamber (assuming 100 % release) from the 15 

mg gum would be 375 µg/mL lansoprazole, the maximum solubility during phase solubility 

studies was 131.94 µg/mL. 131.94 µg/mL / 375 µg/mL X 100 % = 35.18 % which correlated 

with the maximum releases after 30 minutes from (L,8,K 35.62 ± 3.77 and C,8,K 35.08 ± 

1.61 %; mean ± s.d). This showed that sink conditions were compromised and that the 

method must be adapted for the release of poorly soluble actives. Increasing the sample and 
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replacement volume to 20 mL ensured drug solubility could not be a limiting factor by 

maintaining sink conditions. 

 

Figure 4.17 The effect of sampling and replacement volumes (2 mL and 20 mL) on 

release from L,8,K  

Increasing the sample and replacement volume resulted in the most significant increases in 

the extent of drug release from L,8,K. The increase in release for L,8,K is shown in Figure 

4.17. 

4.3.5.3 In vitro release from lansoprazole chewing gum (pH 8.0 and 20 mL 

replacement) 

 

  

Figure 4.18  Drug release from gums containing 8 % Rev7 in artificial saliva pH 8.0 (20 

mL replacement volume) (n=3; mean ± s.d) 
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The extent of drug release increased with L,8,K and C,8,K to 65.24 and 63.33 % after 30 

minutes mastication. The initial burst release (at 5 minutes) increased to 29.17 and 31.75 % 

respectively in at higher pH (artificial saliva pH 8 and 20 mL replacement volumes) (Figure 

4.18). Significant differences in maximum release were found between L,8,K and C,8,K and 

all other gums,  but not from each other (P < 0.01).  L,8,Na showed a decrease in release with 

limited release of 9.16 % and C,8,Na also showed limited release of 20.12 %. Both release 

profiles again showed a slow steady release and were consistent to results seen previously. 

The distinction between the two groups (L,8,K /C,8,K and  L,8,Na/C,8,Na) was more 

pronounced.  

 

Figure 4.19  Drug release from gums without Rev7 in artificial saliva pH 8.0 (20 mL 

replacement volume) (n=3; mean ± s.d) 

 

Complexation increased drug release, extending it to 32.8% for C,0,K (Figure 4.19). The 

paired relationship between the two groups (L,0,Na and L,0,K) and (C,0,K and C,0,Na) was 

also more pronounced consistent with  (Figure 4.19). Significant differences in maximum 

release were found between these sets of gums (P < 0.01).  L,8,Na released the lowest amount 

of drug and was significantly different from all other gums, other than L,0,Na (P < 0.01). 

This suggested that sodium carbonate may retarded release of the drug, independently from 

Rev7. 
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4.3.5.3.1 The effect of pH of artificial saliva on drug release 

 

The pH increase is caused by the release of buffering excipients from the formulation and can 

impact drug release (Morjaria, 2004). The control of salivary pH should be considered to 

facilitate passive diffusion of unionised drugs for the potential absorption via the buccal 

membrane (see section 5.3.3.1).  

Table 4.3 pH change during 30 minutes in vitro mastication 

 

Gum 

 

Phosphate buffer pH 6.0 

(after 30 minutes mastication) 

Artificial saliva pH 6.7 

(after 30 minutes mastication) 

% released  pH change % released pH change 

L,8,Na 12.24 ± 0.04 0.43 17.6 ± 0.45 1.96 

L,8,K 25.38 ± 2.02 0.39 35.62 ± 3.77 1.77 

C,8,Na 12.26 ± 0.82 0.47 21.27 ± 1.66 1.89 

C,8,K 21.00 ± 0.49 0.37 35.08 ± 1.61 1.75 

L,0,Na 11.40 ± 0.40 0.46 24.11 ± 3.85 2.12 

L,0,K 11.96 ± 0.56 0.37 22.24 ± 1.50 1.96 

C,0,Na 10.98 ± 1.38 0.47 29.06 ± 2.50 2.15 

C,0,K 12.57 ± 0.43 0.38 20.73 ± 2.70 1.74 

** Only 2 mL sample replacement experiments were reported due to the increased replacement volume (20 mL) 

having a diluting effect on pH measurements over the duration 

The mean pH change after 30 minutes mastication with formulated gums was 0.42 ± 0.04 pH 

units for phosphate buffer pH 6.0 and 1.92 ± 0.16 pH units for artificial saliva at pH 6.7 

(Table 4.3). This showed that the phosphate buffer retained its buffering capacity (ability to 

maintain a pH range regardless of stimulation of ions) at pH 6.0. The buffering strength of 

artificial saliva was 38 mM which was relatively low compared to the strength of phosphate 

buffer which was 200 mM. The solubility of lansoprazole is pH dependent and is increased 

above pH 8 (Figure 3.4) the increase in pH after 30 minutes mastication of approximately 2 

pH units would account for an increase in solubility of lansoprazole and this may have 

contributed towards the increased drug release from formulations. 
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Figure 4.20  The effect of pH on release from gums containing 8 % Rev7 with chew rate 

of 60 chew/min, artificial saliva and 20 mL replacement volume (n=3; mean ± s.d) 

Increases in pH of artificial saliva resulted in increased drug release from L,8,K and C,8,K, 

(containing potassium carbonate) whereas minor differences were observed for L,8,Na and 

C,8,Na. (Figure 4.20) In the presence of Rev7 and potassium carbonate an increase in pH of 

artificial saliva resulted in an increase in the extent of drug release. 

 

Figure 4.21 The effect of pH on release from gums without Rev7 with chew rate of 60 

chew/min, artificial saliva and 20 mL replacement volume (n=3; mean ± s.d) 

In the absence of Rev7, gums which contained complexed drug (C,0,K and C,0,Na) resulted 

in increased drug release and were more influenced by the increase in pH than those with 

uncomplexed/free drug (Figure 4.21). Gums containing drug alone (L,8,Na, L,0,Na and 
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L,0,K) had increased release at the lower pH of 6.7 compared to pH 8.0. This may suggest a 

retarding interaction/mechanism within the gum formulations. 

In the absence of Rev7, gums containing complexed drug were influenced more by the 

increasing of the pH of artificial saliva irrespective of the buffer excipient. In the presence of 

Rev7, gums containing potassium carbonate released more drug at the higher pHs compared 

to gums containing sodium carbonate. 

The mean % release over all formulations increased in artificial saliva pH 6.7 and pH 8.0 

(27.20 ± 14.07 and 31.58 ± 21.14 respectively after 30 min) when compared with phosphate 

buffer pH 6.0. Increases in pH of phosphate buffer facilitated the dissolution of commercial 

lansoprazole capsules (as granules) with maximum dissolution observed at pH 8 (Ashraf et 

al., 2012).  No significant differences were found when comparing all the gum formulations 

(using t tests) between pH 6.7 and pH 8.0 of artificial saliva (P >0.05). 

 

 

Figure 4.22  The effect of pH of artificial saliva on release from L,8,K  

 

Both release curves looked similar in shape; however the increased pH (pH 8.0) resulted in an 

increased burst effect in the initial stages (Figure 4.22). 
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4.3.5.4 In vitro release from lansoprazole chewing gum (83 chews per min) 

 
 

 

Figure 4.23  Drug release from gums containing 8 % Rev7 with chew rate of 83 

chews/min in artificial saliva pH 8.0 (20 mL replacement volume) (n=3; mean ± s.d) 

Increasing the chew rate from 60 to 83 chews per minute increased the release from L,8,Na 

and C,8,Na. The extent of drug release from L,8,Na doubled (20.97 % after 30 minutes) 

compared to the previous 60 chew/min settings (Figure 4.23). Increases in chew rate resulted 

in minimal increases of the extent of drug release from L,8,K and C,8,K possibly due to 

interactions with the lipophilic base. 

 

Figure 4.24  Drug release from gums without Rev7 with chew rate of 83 chews/min in 

artificial saliva pH 8.0 (20 mL replacement volume) (n=3; mean ± s.d) 
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Minor differences in release were observed between the paired groups gums L,0,Na and 

L,0,K (containing lansoprazole) and gums C,0,K and C,0,Na (containing complexed drug) 

(Figure 4.24). L,0,Na and L,0,K had increased drug release (doubled) when compared to the 

previous setting of 60 chews per minute. 

L,8,Na was again significantly different to all other gums and released less drug after 30 

minutes compared to all other formulations (P < 0.05). L,8,K and C,8,K were significantly 

different to all other gums (P < 0.01) but not from each other and consistently released more 

drug after 30 minutes. Significant differences in release (without Rev7) were found between 

C,0,Na and L,0,K and L,0,Na (P < 0.05). 

ANOVA statistical analysis on maximum release after 30 minutes found the following 

significant differences between formulation variables: significant differences between 8% 

Rev7 and 0 % Rev7
 
(P < 0.01) and significant differences between buffering excipients; 

sodium carbonate and potassium carbonate (P < 0.01).  

4.3.5.4.1 The effect of chew rate on drug release 

 

 

Figure 4.25  The effect of chew rate on release from gums containing 8 % Rev7 with 

artificial saliva pH 8.0 and 20 mL replacement volume (n=3; mean ± s.d) 

Increasing the chew rate had little effect on extending release from L,8,K and C,8,K (Figure 

4.25); this may have been due to the maximum release of drug being reached as it is expected 

that gums will always retain a percentage of active after mastication due to adherence to the 
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lipophilic gum base. L,8,Na and C,8,Na were affected by chew rate with increased release at 

the faster chew rate of 83 chews per minute.  

 

Figure 4.26  The effect of chew rate on release from gums without Rev7 with artificial 

saliva pH 8.0 and 20 mL replacement volume (n=3; mean ± s.d) 

In the absence of Rev7, release increased with increasing chew rate (Figure 4.26). This is due 

to the increased mechanical forces and renewable areas caused by chewing. However L,8,K 

and C,8,K had similar release at both chew rates and may have reached the maximum 

releases.  

Mean maximum releases for release in artificial saliva pH 8.0 at 60 chews per minute 

compared to 83 chew per minute were 31.58 ± 21.14 % and 41.68 ± 15.37 % respectively. 

No significant differences (using t tests) were found between 60 chews per minute and 83 

chews per minute in artificial saliva pH 8.0 (P > 0.05). 

 

Figure 4.27  The effects of chew rate on release from L,8,K  
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Increasing the chew rate did not have any significant effect on the release from L,8,K 

(conducted using artificial saliva pH 8.0 and 20 mL sample and replacement volumes) 

(Figure 4.27). 

 

4.3.5.5  Overall results summary 

  

Ten different gum formulations were prepared to provide in vitro release data necessary for 

development of medicated gums containing lansoprazole. Preliminary formulations showed 

release was retarded with increasing gum base due to increasing lipophilicity of the gum. 

Eight further gums were formulated to evaluate the influence of the form of the active (drug 

alone or complexed drug with MβCD 1:1), internal buffering excipients and the inclusion of 

Rev7 polymer. Drug diffusion from gum surfaces was found to be limited, highlighting the 

need for effective mastication to ensure timely release of the drug. In vitro release was then 

evaluated with the use of the EP approved masticator.  

The individual will contribute towards a range of factors whilst chewing the gum in vivo 

(including differing volumes of saliva and chew rates) therefore a range of parameters were 

investigated such as type of dissolution medium, sampling and replacement volumes, the pH 

of the medium and lastly chew rate (See Appendix A). The dissolution medium should 

ideally represent physiological conditions at the site of administration (Siewart et al., 2003), 

therefore dissolution testing was conducted in phosphate buffer pH 6.0 and artificial saliva 

(pH 6.7 and pH 8.0) satisfying EP guidelines of an unspecified buffer at around pH 6 

(European Pharmacopoeia, 2011).  

L,8,K and C,8,K (containing Rev7
 
and potassium carbonate) consistently released more drug 

than the other gum formulations, reaching a maximum of 67.5 % and 63.3 % for L,8,K and 

C,8,K respectively.  They also partially disintegrated after 60 minutes when in surface 

diffusion studies whilst all other formulations remained intact. There was also some diffusion 

of drug from these gums without chewing. These differences may have been due to specific 

physical interactions between potassium carbonate within the gum base leading to formation 

of micropores in the gum matrix, allowing increased penetration/ingress of dissolution 

medium into the gum. 
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The following settings: 60 chews per minute, artificial saliva pH 8.0 with 20 mL sample and 

replacement volumes-(ensuring sink conditions), allowed discrimination of formulation 

differences (Figures 4.17 and 4.18).  Gums containing potassium carbonate (L8K and C8K) 

had a biphasic release. This may be due to initial leaching (from the hydrophilic domains) 

followed by sustained release, as a consequence of the diffusion controlled release from 

within the lipophilic gum base. Previous studies also found an increased burst release with 

nicotine gums containing potassium carbonate compared to sodium carbonate in the initial 

chewing stages (Shiffman et al., 2009). 

L,8,Na and C,8,Na (containing sodium carbonate) showed a limited release after 30 minutes 

of 9.16 ± 0.33 % and 20.12 ± 0.28 % respectively; both profiles showed a gradual steady 

linear increase over time compared with the burst release of L,8,K and C,8,K. C,8,Na  

contained the drug in complexed form and the increase in solubility/hydrophilic capacity of 

the gum may have influenced the initial increased burst release rate after 5 minutes compared 

with L,8,Na (drug alone). L,8,Na consistently released less drug after 30 minutes throughout 

all the conditions tested which suggested a mechanism to retard release from the gum. 

Formulations incorporating 8 % Rev7 were influenced by the type of buffering excipients, 

with potassium carbonate increasing drug release compared to sodium carbonate. 

Formulations without Rev7 were influenced by the form of the drug, whether complexed or 

uncomplexed and increased release was observed with the complexed drug form. The 

complexity in understanding  release mechanisms and release kinetics in gums is still not 

fully understood and a range of authors suggest an complex interactions between the gum 

base, drug and internal buffering systems (Cherukuri et al., 2002; Pinney et al., 2005; Chau et 

al., 2008; Shiffman et al., 2009).  

The study by Lu evaluated ternary systems of lansoprazole and βCD (1:1) with the solubility 

enhancing effects of two polymers (PVP and PEG 6000). Increasing polymer concentrations 

(2-10%) increased release due to specific interactions (intermolecular hydrogen bonds) 

formed between polymer and drug (Lu et al., 2012). 

The increased extent of release of the poorly soluble drug may have resulted from increasing 

the hydrophilic capacity of the gum (Rev7) and a greater extent and rate of micropore 

formation (potassium carbonate). The combined effect could increase release due to lowering 
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the adherence of the poorly soluble drug to the lipophilic components of the gum and also 

increasing contact between the gum and dissolution medium. 

4.4.6 The effect of formulation components on lansoprazole release 

 

4.4.6.1 The effect of Rev7 polymer  

 

Rev7
 
is known to improve the hydrophilic capacity of the chewing gum base (Farber et al., 

2009), this may increase release and form a softer gum as softer gums will require less force 

to penetrate and renew surface areas compared to harder gums.  

 

Figure 4.28  The effect of Rev7 polymer on release from gums containing complexed 

drug and potassium carbonate (C,8,K and C,0,K) in artificial saliva pH 6.7 (2 mL 

replacement volumes)  

The increase in burst release in the initial stages (5 minutes) of chewing demonstrates the 

effect of Rev7 with increasing release from the hydrophilic components via leaching (Figure 

4.28). The release of active from the hydrophilic components of the gum is typically 

displayed in the initial stages of chewing. The subsequent release profile is super imposable 

after 5 minutes suggesting that subsequent release of complexed drug is via diffusion 

controlled mechanisms from the lipophilic regions of the gum. As sink conditions were 

compromised this would have limited release also causing a plateau.  
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Figure 4.29  The effect of Rev7 polymer on release from gums containing lansoprazole 

and potassium carbonate (L,8,K and L,0,K)  in artificial saliva pH 6.7 (2 mL sampling 

and replacement)  

The inclusion Rev7 increases release (Figure 4.29) and suggests that the hydrophilic capacity 

of Rev7 dominates whether drug is complexed or not. Release of lansoprazole in gums 

without Rev7 was slow and steady. This is in contrast to the burst release displayed with the 

complexed drug form (Figure 4.30), suggesting that complexation contributes to the burst 

release in the initial stages of mastication.  

 

Figure 4.30  The effect of Rev7 polymer on release from gums containing complexed 

drug and sodium carbonate (C,8,Na and C,0,Na) in artificial saliva pH 6.7 (2 mL 

sampling and replacement)  

Rev7
 
was observed to retard the release of active in the presence of sodium carbonate as 

buffering excipient (Figure 4.30). The release profiles of complexed drug were similar in the 
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initial stages and differences were more pronounced after 10 minutes (predominately the 

diffusion controlled area) suggesting that there was an increase in adherence and binding of 

complexed drug to the lipophilic gum base containing Rev7
 
polymer  and sodium carbonate. 

 

Figure 4.31  The effect of Rev7 polymer on release from gums containing lansoprazole 

and sodium carbonate (L,8,Na and L,0,Na)  in artificial saliva pH 6.7 (2 mL sampling 

and replacement)  

Rev7
 
was consistent in retarding the release of active in the presence of sodium carbonate 

(Figure 4.31). Both profiles displayed a steady release similar in the initial stages with 

differences occurring at the later stages of the mastication process. 

The effect of Rev7
 
was highly influenced by the type of buffering excipient; sodium 

carbonate release was retarded whilst in the presence of potassium carbonate release was 

faster.  

4.4.6.2 The effect of buffering excipients  

 

The role of the buffering excipient is to increase local pH of the saliva in the oral cavity, 

facilitating diffusion, as well increasing solubility and enhancing stability. Upon mastication, 

the water-soluble buffer dissolves leaving channels and micropores in the gum. This 

facilitates ingress of the dissolution medium and enhances release. L,8,K and C,8,K 

(containing potassium carbonate and Rev7)
 
consistently released most drug after 30 minutes.  
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Table 4.4 Physiochemical properties of sodium carbonate and potassium carbonate 

 

 Na2CO3  K2CO3  

RMM  106 138 

Density (g/cm
3
) 0.97 0.86 

Molar concentrations  

(3 g were added )  

0.028 0.0217 

pKa    6.37 & 10.25 

 (carbonic acid)  

Solubility at 20
°
C 

in water (g/L) 

215  1120  

 

Equivalent weight ratios were added of each buffering excipient to all formulations. A 

fivefold increase in solubility is found when comparing potassium carbonate with sodium 

carbonate (Table 4.4). This can facilitate increased channel production and similar results 

were found for lansoprazole pellet formulations (Wei et al,. 2010). There are also small 

differences in density and molar concentrations. Generally, as soluble excipients are added to 

the gum, the texture of the gum will also change becoming increasingly soft.  

 

Figure 4.32  The effect of buffering excipients on release from gums containing complex 

and Rev7 (C,8,K and C,8,Na) in artificial saliva pH 6.7 (2 mL replacement volume)  

The increased burst release effect of potassium carbonate can be observed over the first 5 

minutes of mastication (initial stages) compared with sodium carbonate (Figure 4.32). A 

similar burst release was previously observed by Shiffman with nicotine gum formulations 

containing potassium carbonate (Shiffman et al., 2009). 
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4.4.6.3 The effect of drug form 

 

Complexation with MβCD (1:1) resulted in a 9 fold increase in solubility; the enhancement in 

solubility can be explained by the reduction in crystallinity caused by the inclusion of the 

complex and by the freeze drying method resulting in the increased wettability of the drug.    

Formulations without Rev7 highlighted differences in the drug with the complexed form 

increasing the extent of release (Figure 4.18). C,0,K and C,0,Na (containing complexed drug) 

had a higher burst release effect than the equivalent formulations, C,0,K released 32.76 ± 

1.76 % after 30 minutes (containing complexed drug with potassium carbonate). L,0,Na 

(containing drug alone and sodium carbonate) had a slow and steady release dominated by a 

diffusion mechanism. 

4.4.7 Texture analysis of lansoprazole chewing gum formulations  

 

During mastication the gum‟s texture changes from a hard solid (necessary for stability and 

storage) to a softer gum over the first initial minutes of chewing (1-3 minutes). This is caused 

by the ingress of saliva (hydration) and the release of soluble components such as sweeteners 

and flavourings. The gum then reaches a final firmer stage once the soluble components are 

all extracted and leaving the lipophilic gum base (Lee, 2001). The gum base provides the 

functional textural properties of the overall gum (see section 1.2.1 and Table 1.1). The 

heterogeneous morphology of the gum base (due to some components not being miscible 

with each other) contributes to the unique characteristics of each different component 

providing further tailored functionality in the gum. This can be controlled via manufacturing 

processes including the mixing intensity-time and temperature and the adding sequence of 

components. The elastomers contained in the gum base provide the structure and elasticity 

due to long polymer chain entanglements, while plasticisers in the gum base regulate 

cohesion and softness due to separating the polymer chains in the elastomer (Lee, 2001).       

Texture analysis can provide information regarding the feel of the gum and excipients can be 

added to modify the mouth feel including vegetable oil products such as glycerine to soften 

the gum and maintain flexibility. The gum must maintain integrity and remain intact 

throughout the chewing cycle to maintain the required sustained release to facilitate buccal 

absorption (Morjaria et al., 2004). The inclusion of Rev7
 
polymer will modify this texture 

(softening) and the subsequent release parameters due to increasing the hydrophilic 
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component (via MPEG) (Farber et al., 2009). In the experiments, no sugar coating was used 

and this may restrict comparisons with marketed products. 

 

 

Figure 4.33 Texture analysis profile for L,8,Na  

 

The initial measurement was made in the centre of each gum (black line) with 4 subsequent 

penetrations on each corner of the gum, however only the initial penetration in the centre was 

reported due to the compromised surface integrity after deformation from the first point. This 

is evident in the following 4 points which are markedly decreased (Figure 4.33 and Figure 

4.34).  
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Figure 4.34 Texture analysis profile for C,8,K  

Hardness was found to decrease with gums containing Rev7
 
and potassium carbonate (L,8,K 

and C,8,K) (Figure 4.33 and Figure 4.34). Hardness can be directly related to release and a 

softer gum will lead to more surface contact with the dissolution medium leading to increased 

diffusivity and a greater extent of release.   
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Table 4.5 Texture analysis of lansoprazole L gums 

Test  

Gum 

Hardness 

 of 
Chewiness 

Positive 

cohesion 

Negative 

adhesion 

first 

penetration 
(g/second) (g/second) (g/second) 

(force in g) 
 

    

L,8,Na         

Mean 1697.41 5345.93 4100.46 -4.09 

s.d 41.13 414.88 86.61 1.99 

L,8,K         

Mean 1226.70 4234.02 3150.13 -2.81 

s.d 53.47 300.08 75.19 1.09 

C,8,K         

Mean 1291.99 4592.13 3233.49 -4.24 

s.d 187.02 1550.15 606.16 2.65 

C,8,Na         

Mean 1912.31 5857.69 4935.80 -4.11 

s.d 73.01 625.81 146.48 0.73 

L,0,Na         

Mean 2062.38 6825.59 5184.77 -4.21 

s.d 187.87 1032.21 318.66 1.83 

L,0,K         

Mean 2161.21 6722.48 5634.48 -5.27 

s.d 102.87 948.85 357.26 2.51 

C,0,K         

Mean 2098.29 6143.67 5500.82 -4.90 

s.d 117.52 1361.54 93.71 2.23 

C,0,Na         

Mean 2007.76 5371.58 5139.97 -4.24 

s.d 137.14 2075.49 266.10 0.57 

 

Inclusion of Rev7 polymer decreased hardness, without Rev7, hardness is consistent 

irrespective of any other formulation differences (Table 4.5). However release was increased 

with formulations containing the complexed form of lansoprazole suggesting that the increase 

in solubility may have influenced the increased extent of release. Complexation influenced 

release in the absence of Rev7 polymer. 

For gums containing 8 % Rev7, there is a marked decrease in hardness for L,8,K and C,8,K 

(irrespective of drug form) both formulations contained potassium carbonate. There was also 

no significant change in the extent of drug release from L,8,K and C,8,K which showed that 

the form of drug did not affect the extent of release in the presence of Rev7 polymer.  
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Figure 4.35  Correlations between gum hardness and release in artificial saliva pH 8.0 

(20 mL replacement)  

 

Figure 4.36  Correlations between gum cohesion and release in artificial saliva pH 8.0 

(20 mL replacement)  

The less cohesive and softer gums (L,8,K and C,8,K) consistently resulted in the highest 

release of drug during in vitro mastication (Figures 4.35 and 4.36). ANOVA statistical 

analysis found significant differences in hardness and cohesion between 8 % and 0 % Rev7 

polymer (P < 0.01) (see Appendix B). Cohesion can be described as an attraction process that 

occurs between similar molecules as a result of chemical bonds formed between components 

in the gum. These are interactions that bind the gum mass together (Fraunhofer, 2012). 

Cohesive gums will therefore release the drug more slowly. Significant differences in 

hardness were found between L,8,K and C,8,K which were significantly different from all 

other gums (P < 0.01) but not from each other. This suggested that potassium carbonate had a 
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plasticising effect on the gum base (elastomer) to modify the texture (physical interaction), 

resulting in softer gums, which can be directly related to release via increased renewable 

surfaces during mastication. Potineni (2008) suggested a specific plasticising effect is needed 

on the polymeric phase (PVA) of the gum base to increase the release of flavourings and 

sugar alcohols from chewing gums (Potineni and Peterson, 2008). The texture of nicotine 

gums was observed to change producing a softer gum with increasing buffering excipient 

content (sodium carbonate), this was also shown to be proportional to nicotine release. This 

was related to the increase of micro pores in the gum matrix, formed after dissolving of the 

buffer upon contact of saliva, leaving channels for subsequent drug release (Morjaria, 2004).  

4.5 General discussion 

  

Studying the in vitro release profiles of a range of gum formulations allowed discriminatory 

evaluations to be made to optimise the developmental phases of a chewing gum containing a 

poorly soluble drug, lansoprazole. 

Various method developments and chew related factors were assessed to represent the range 

of inter-individual variability seen within in vivo studies. This resulted in a range of 

discriminating factors and illustrated the importance of in vitro assessment using a range of 

experimental conditions. The extent of release was initially limited using 40 mL of phosphate 

buffer at pH 6.0 (standard conditions- 60 chews / min, 37 °C and 2 mL sampling and 

replacement volumes). Artificial saliva (pH 6.7) increased release for all formulations and 

was a more discriminating medium, significant differences were found between the two 

dissolution mediums (P < 0.01). One of the limitations of the masticator was the ability to 

remove saturated dissolution medium to replicate in vivo conditions resulting from 

swallowing or absorption of the active and maintaining sink conditions (particularly 

important when assessing poorly soluble drug actives). This was overcome by increasing 

sampling and replacement volumes which maintained sink conditions and ensured that 

solubility would not limit release. This would also have affected the local pH. However it 

was accepted that the buffering excipient would be released along with the drug and so the 

buffering capacity would be maintained. This resulted in the increased extent of release from 

L,8,K to a maximum of 54.1 % after 30 minutes. It was then decided to increase the pH of the 

artificial saliva from pH 6.7 to pH 8.0, as this was previously shown to increase drug release. 
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This further increased drug release from L,8,K to 65.24% after 30 minutes. The last 

parameter evaluated was increasing the chew rate from 60 to 83 chews per minute. This had a 

limited effect on increasing drug release on L,8,K  with a maximum release of 67.46 % after 

30 minutes. 

There were clear differences in release following inclusion of Rev7 and potassium carbonate 

when compared to all formulations and release parameters tested (P < 0.05) (see Appendix 

B).  Rev7 is known to increase the hydrophilic capacity of the chewing gum base (Farber et 

al., 2009) and this is why it increased release due to increasing the contact of dissolution 

medium to the gum.  

Surface diffusion studies from formulated gums (containing 41 % w/w gum base) highlighted 

the limited release of active from surfaces and the need for mastication. However L,8,K and 

C,8,K (both containing potassium carbonate) partially disintegrated after 60 minutes whilst 

all other formulations remained intact under the same conditions. This may have been due to 

the potassium carbonate near surface domains reacting to the dissolution medium. These 

differences may have been due to potassium carbonate leading to an increased extent of 

micropores formation in the gum matrix and this was further explored using SEM. The 

increased release mechanism would involve increased water permeation with 

penetration/ingress of dissolution medium into the gum matrix; resulting in a greater extent of 

drug release via leaching. This would be in agreement with Wei who suggested mechanisms 

relating to differences in porosity with regards to explaining differences in release rates using 

different alkaline stabilisers in lansoprazole pellet formulations (Wei et al,. 2010). The study 

by He also suggests mechanisms relating to increases in porosity and interactions between the 

drug causing disordering and resulting in an amorphous state of lansoprazole in pellet 

formulations (He et al., 2010). This was further assessed with four different alkaline 

stabilizers and concluded that the inclusion of sodium carbonate produced the fastest release 

rate due to increased micropore formation which facilitated diffusion in lansoprazole pellet 

formulations (He et al., 2011).  

Gum texture will also affect release. Softer gums will require less force to penetrate and 

renew surface areas compared to harder gums which will have a reduced renewal of surface 

area at the same force. Texture analysis showed that L,8,K and C,8,K were significantly 

softer than all other gums tested and had less cohesion. Potassium carbonate in the presence 

of Rev7 polymer had a plasticising effect (physical interactions) within the gum base. There 



163 
  
 

was no significant difference in the extent of drug release from L,8,K and C,8,K which 

showed that the form of drug did not affect the extent of release. Also as potassium carbonate 

has a 15 fold increase in solubility (compared to sodium carbonate), the number and 

formation of channels will be of a greater extent and at a faster rate upon contact with saliva, 

which will directly influence release of active from the gum. In addition to micropore 

formation the increased hydrophilicity and wettability of potassium carbonate will dissolve 

the gums‟ hydrophilic portions at a greater rate which will then diffuse out into the exterior 

bulk medium in a rapid burst release. This is in agreement with the study by Shiffman which 

found that buffering excipients can be used to effectively control nicotine release rates from 

medicated gums with potassium carbonate resulting in the most rapid release rate in the initial 

phases of mastication (Shiffman et al., 2009). 

Differences regarding chew related parameters were observed when comparing formulations 

containing Rev7 and without Rev7. Formulations containing Rev7 could be split into two 

groups (pairs) which were influenced by the type of buffering excipients, with potassium 

carbonate having an increased release compared to sodium carbonate. This may have been a 

result of the increased solubility of potassium carbonate compared to sodium carbonate 

resulting in an increased rate of release of the buffer along with the active. The concept of the 

influence of buffering excipients has been discussed previously but many studies show mixed 

opinions on the effect caused (Rassing, 1996; Cherukuri et al., 2002; Shiffman et al., 2009). 

Formulations without Rev7 were greatly influenced by the form of drug, with complexation 

increasing release. The effects of buffering excipients were less apparent compared to the 

significant differences observed with formulations containing Rev7. C,0,K and C,0,Na had an 

increased extent of release when 20 mL sampling and replacement volumes were used 

ensuring no limits in solubility and sink conditions. L,0,Na and L,0,K (containing drug alone) 

doubled in the extent of release when tested at the increased chew rate compared to C,0,K 

and C,0,Na. 

L,8,K and C,8,K consistently released more drug over the duration of the studies. Both gums 

had similar releases showing that the form of the drug (complexed and drug alone) had less 

influence than the buffering excipient when used in the presence of Rev7. C,0,Na had the 3
rd

 

greatest extent of release, which was interesting as it had a greater extent of release compared 

to gums containing Rev7 and sodium carbonate. This showed that complexation did have an 
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effect on increasing release in the absence of Rev7. This could be due to the increased 

solubility that was observed with complexed lansoprazole. 

The faster chew rate increased release from all gums, (except C,8,K) suggesting that the 

maximum extent of drug release during mastication may have been reached. The choice of 

dissolution medium is an important factor to consider as all gums tested with phosphate 

buffer at pH 6.0 (other than L,8,K and C,8,K) had similar release after 30 minutes.  

Differences in formulations were only highlighted when using artificial saliva at pH 6.7.  

Minimum variations were seen amongst each gum formulation tested in triplicate with 

standard deviations of 1.76 % over all parameters tested, showing a high degree of 

standardisation and reproducibility. There were only 5 datasets with standard deviations 

greater than 3.0 % over all the tests. Chewing gum sticking to the surfaces of the piston can 

introduce some variation, affecting the uniform forces exerted on the gums during chewing 

and subsequent release. Another interesting observation was found with L,8,Na; this 

formulation consistently had the lowest release of all the formulations tested at each 

parameter. This may have been due to specific interactions with the drug and other excipients 

and this would need to be explored further. It was decided that the application of release 

kinetics was unsuitable due to the constantly changing shape of the gum cud during chewing. 

4.5.1 Conclusion  

 

Various chew related factors were assessed on the EP approved masticator representing a 

range of inter individual variability seen within in vivo studies. This resulted in a range of 

discriminating factors and illustrated the importance of assessing in vitro release using a 

range of experimental conditions. This allowed an increased understanding of release 

dynamics and influential contributing factors which can be used in product development 

before in vivo testing. The complexity of release mechanisms are still not fully understood 

and will require more work to increase understanding from chewing gum formulations. 

This work contributes to the limited information available on release of poorly soluble drugs 

from medicated chewing gum formulations and focussed on identifying factors governing the 

release of a poorly soluble active (lansoprazole) from gum formulations. Various chewing 

gum formulations were considered and the effect on the extent of in vitro release was 
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observed. Significant differences in release after 30 minutes in vitro mastication were found 

in gums containing Rev7 and potassium carbonate (both of which contributed to increasing 

the hydrophilic capacity/domains of the gum). Significant differences were also observed in 

hardness in gums containing Rev7 and potassium carbonate due to physical interactions 

causing a plasticising effect on the gum base resulting in softer, less cohesive gums which 

was correlated with increased release rates from these gum formulations. Therefore in the 

case of formulation optimisation, I would recommend 8 % Rev7 and potassium carbonate to 

achieve optimum release. 

A combination of mechanism relating to gums containing Rev7 and potassium carbonate 

(L,8,K and C,8,K) were proposed including textural changes due to physical interactions in 

the gum base, increasing the hydrophilic capacity of the gum and the increased solubility of 

the buffering excipient (leading to an increase in the rate and extent of micro pore formation 

in the gum matrix after dissolving of the buffer upon contact of saliva) all of which 

contributed to increasing the release of the poorly soluble drug lansoprazole from chewing 

gum formulations.   
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Chapter Five: 

Diffusion through buccal mucosa 
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5.1 Drug delivery via oral mucosae 

 

Oral drug delivery is the preferred route for drug delivery by both patients and clinicians if 

appropriate due to increased compliance, ease of administration and low costs. The key 

parameters of the biopharmaceutics classification system (BCS) controlling oral absorption 

are solubility/dissolution and permeability. Within the oral cavity, systemic delivery (Figure 

5.1) can be classified into two main categories based on site of delivery, sublingual and 

buccal. 

The sublingual route involves absorption into the systemic circulation through the lining of 

the floor of the mouth. Although the membrane is relatively more permeable than the buccal 

mucosa, it is washed constantly by saliva (Table 5.1), limiting the dosage formulations to 

short delivery periods with highly permeable drugs, e.g. sublingual sprays. 

Buccal delivery describes administration through the mucosal lining of the lateral walls of the 

cheeks. It is readily accessible and has fast cellular recovery. The rich blood supply ensures 

rapid absorption and bypasses the first pass effect. It is also suitable for sustained release 

formulations and is well supplied with lymphatic drainage and vascular blood supply. In 

general, oral mucosal permeability is in the following order sublingual > buccal > palatal 

based on relative thickness of the tissue and degree of keratinisation (Shojaei, 1998 and Sohi 

et al., 2010).   

In this project, the main anticipated route of drug absorption is buccal delivery through the 

oral mucosae once the drug is released from the medicated chewing gum into saliva. 

 

Figure 5.1 The oral cavity 

         (Sohi et al., 2010) 
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5.1.1 Buccal absorption and chewing gum formulations 

 

Buccal absorption allows advantageous effects seen with medicated chewing gum 

formulations including faster onset of action compared to the normal administration of a 

tablet by the oral route. As the buccal mucosa has to be resistant to tissue damage by the 

frequent exposure to food materials, there is a relatively high rate of cell turnover when 

compared to skin, thus allowing for faster recovery (Shojaei, 1998).  

A precondition for oral absorption is that the drug is in solution prior to absorption therefore 

low aqueous solubility can limit bioavailability. The release of active during the action of 

chewing provides the sustained release to facilitate delivery through the buccal membrane. 

Once the active is in the oral environment it will have good accessibility to the oral mucosa 

which has a total area of 200 cm
2
 and to the epithelium of the buccal mucosa which has an 

area of  50 cm
2 

(Kokate et al., 2009 and Sohi et al., 2010). 

Nicotine replacement gum is indicated for regular use to reduce overall withdrawal symptoms 

and cravings for nicotine. The „parking strategy‟ recommended by the manufacturers of  

Nicorette
®
 (GlaxoSmithKline Consumer Healthcare) involves chewing the gum until the 

desired release of nicotine and flavouring is achieved and then a time of (parking) pressing 

the gum to the side of the cheek to aid absorption until the flavour declines. This is followed 

by continual cycles of chewing and parking until the craving relief effects are achieved. This 

strategy facilitates improved permeability by placing the gum in close proximity to the tissue 

at times when the active is readily available at a high local concentration to ensure maximum 

absorption. 

Factors controlling the rate and extent of drug permeability are highly complex. They can be 

affected by physiological factors (salivary stimulus- flow rate), physiochemical factors 

(salivary composition- pH) and dosage forms (buccal adhesion formulations). They can also 

be influenced by the properties of the barrier as well as specific drug-related properties. The 

main limitations in buccal delivery are the uncontrolled salivary flow and subsequent 

swallowing, „wash out effect‟, and also the relatively small surface area of the oral mucosae 

(Patel et al., 2012).  
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5.2 The buccal mucosa 

 

Figure 5.2 Cross section of the buccal mucosa 

(Patel et al., 2011) 

The buccal mucosa (Figure 5.2) is composed of 3 main sections:  

 Oral epithelium 

This acts as the penetration barrier and is located in the upper third of the membrane (Patel et 

al., 2011). It is a relatively thick (250 – 280 µm), non-keratinised, stratified and squamous 

epithelium. It has three defining layers: basal layer, an intermediate layer and a superficial 

layer (Kulkarni et al., 2010). It consists of polar lipids such as cholesterol sulphate and 

glucosyl ceramides (Shojaei, 1998). 

 Lamina propia  

It provides mechanical support and consists of underlying connective tissue (similar to the 

dermis of skin) and is separated from the epithelium by a basement membrane (Sohi et al., 

2010). 

 Sub-mucosa  

The sub-mucosa is attached to underlying muscle and contains minor salivary glands. This 

section also contains the extensive capillary network (Kokate et al., 2009). 
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5.2.1 The oral environment 

 

The physiological environment in the oral cavity is based on salivary composition, volume 

and pH (Table 5.1). Saliva is secreted by the major salivary glands (parotid and sub-maxillary 

provide the watery secretions, whereas sublingual produce viscous secretions) and minor 

salivary glands. It is the main protective fluid/lubricator reducing abrasion by food and 

chemicals and allows for remineralisation of tooth enamel. Saliva comprises 99 % water and 

1 % organic and inorganic materials such as potassium bicarbonate and calcium carbonate 

(Patel et al., 2011). Increased salivary flow will facilitate drug dissolution but this can lead to 

a decrease in permeability due to involuntary swallowing „wash out‟ causing drug loss (Sohi 

et al., 2010).    

Epithelial cells in the oral environment are surrounded by mucus, which may be free or 

attached to the cell surface (Figure 5.3). Mucus can act as an additional physical barrier with 

a thickness of 40-300 µm (Patel et al., 2011). Mucus is an intercellular ground substance 

consisting of proteins and carbohydrates; the key glycoprotein is mucin (1 - 5%), although 

most of mucus is water (90 - 95 %). This matrix acts as a lubricant as well as playing a role in 

cell-cell adhesion.  

Table 5.1 Physiological conditions of the human oral cavity  

 

Parameters Physiological range 

pH of saliva 5.5 to 7.0 

Volume of saliva (continuous available volume) 696 ±312 μL 

Daily total secretion 0.5 – 2 L 

Viscosity of saliva 1.09 ±0.11 (m Pa.s) 

Protein in saliva 0.70 ± 0.30 (mg/mL) 

Amylase in saliva 325 ± 199 (IU/mL) 

 

 

 (adapted from Patel et al., 2012) 
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5.3 Transport pathways across the oral mucosa 

The two main passive transport permeation pathways across the oral mucosae are the 

paracellular and transcellular routes (Figure 5.3). Permeants will use the route with least 

hindrance dependent on their physiochemical properties and drugs can permeate by the 

lipoidal or aqueous pathway. The intercellular space is filled with 50 % polar lipids and the 

aqueous pathway involves transport through the intercellular spaces and cytoplasm. The 

lipoidal pathway involves transcellular transport through intercellular lipids by partitioning 

through the cell membrane with intracellular spaces posing as the major barrier.  Generally 

routes can usually contain a combination of the two due to the stratified structure of the 

membrane (Kokate et al., 2009).  

 

 Figure 5.3 Possible routes of drug transport  

(Patel et al., 2011) 

5.3.1 General drug diffusion across a membrane 

 

Drug movement occurs mainly via passive diffusion and this can be described as the random 

movement of molecules from a high concentration to a low concentration (down a 

concentration gradient) until an equilibrium is reached. Typically a lag time is initially 

observed (non-steady state) followed by a linear phase representing a balance between exit 

and entry of the drug (steady state) through the membrane. As the drug will be dissolved in 

saliva upon release from the gum, it will be readily available for absorption. The drug needs 

to be released at a rate and extent to facilitate buccal absorption and minimise any „wash out‟ 

effects. The release of active from chewing gums is described in detail in chapter 4.  

The initial stages of drug absorption involve partitioning and can be estimated by the partition 

coefficient (K or Log P value). 

Paracellular route 
Transcellular route 
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The partition coefficient is a measure of the drug‟s intrinsic lipophilicity and is taken as the 

ratio of the drug partitioning in the lipophilic phase (oil phase) from the aqueous phase. The 

standardised shake flask method (Kow) uses octanol/water as the two separate phases and is 

performed at a neutral pH. It is inversely proportional to molecular weight and aqueous 

solubility.  

Drug movement can be described via the use of equations: 

The simplified model of movement through a membrane following passive diffusion can be 

described by Fick‟s first law of diffusion (Eq. 5.1): 

At

m
J


  

Equation 5.1 Drug flux 

Where, 

∆m = change in mass 

A = area  

t = time        

This can be defined as the change in mass of an entity moving through a given cross-sectional 

area during a given period of time.  

The steady state flux is achieved when the movement (entry/exit) of the drug is equal and this 

can be manipulated as follows (Eq. 5.2): 

DSS C
h

KD
J


  

Equation 5.2 Steady state flux (Jss) 

Where, 

Jss = steady state flux 

CD = concentration at donor site 

D = diffusion co efficient  
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K = partition coefficient 

h = path length (thickness) 

The equation shows that drug flux is proportional to the concentration gradient. Diffusion 

will occur in the direction of the lowest concentration down a concentration gradient. 

Therefore the flux will correspond to the slope of the steady state diffusion curve and will be 

a positive value as the movement will occur down a concentration gradient. The drug flux is 

described as a rate and the units are in (µg.cm
2
/minute). 

The steady state Flux (Eq.5.2) can be further manipulated to provide the permeability 

coefficient (Kp) (Eq.5.3). The units are in cm/minute, this eliminates the need to measure 

difficult parameters such as the diffusion coefficient:  

d

ss
p

C

J
k   

Equation 5.3 Permeability coefficient (Kp) 

Where,  

Jss = steady state flux 

Cd = initial concentration from donor compartment 

However various limitations have been identified including the exclusion of ionised drugs as 

the equation only considers the partition coefficient (Log P) and molecular weight. Due to the 

increased polar lipid composition in the buccal mucosa, incorporation of Log D has been 

shown to be a better correlation, compared to Log P, as it considers lipophilicity and 

ionisation (Kokate et al., 2009). The distribution/diffusion co efficient (Log D) is another 

measure of intrinsic lipophilicity, it also considers the extent of ionisation of the drug and is 

considered to be a better descriptor of partioning and lipophilicity at a given pH (Kokate et 

al., 2008). 
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Equation 5.4 Transcellular drug flux 
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Where, 

  = fraction of surface area 

DT  = diffusion coefficient in the intracellular spaces 

KT = partition coefficient between the lipophilic regions and hydrophilic regions 

 CD = drug concentration at donor site 

hT = path length         (Sohi et al., 2010) 

Equation 5.4 shows that drug flux is directly proportional to the partition coefficient and 

diffusion coefficient and inversely proportional to the path length/thickness. It also recognises 

that drug movement is through a series of lipophilic and hydrophilic regions using 

partitioning and diffusion to transverse through the stratified cell membrane and intercellular 

spaces and cytoplasm.   

5.3.2 Factors controlling drug diffusion: barrier properties  

 

The physiochemical properties of the barrier as well as its thickness will influence 

permeability. It is generally accepted for most drugs that movement is by passive diffusion 

and does not include active processes.  

Specialised carrier mediated transport mechanisms in the oral mucosae have been reported 

for nutrients and some drugs (Patel et al., 2011). This includes the stereo specific transport of 

D-glucose which has a saturation limit, not normally characteristic of passive diffusion (Sohi 

et al., 2010). The review outlined by Sohi also describes the active uptake of anti-bacterial 

agent (minocycline) after 8 to 40 fold higher intra cellular levels were found compared to 

extracellular levels (Sohi et al., 2010). Other carrier mediated processes in the human buccal 

cavity include sodium ion dependent active transport mechanisms for the transport of L–

ascorbic acid (Sadoogh-Abasian and Evered, 1979).    

The rate limiting permeability barrier in skin is located in the intra cellular regions of the 

stratum corneum, whereas the rate limiting mucosal barrier in oral mucosae is known to exist 

in the oral epithelium (Figure 5.2) (Kulkarni et al., 2010). Skin is regarded as less permeable 

than oral mucosae and sublingual regions (floor of the mouth) are significantly more 

permeable than all other regions (Kulkarni et al., 2010). The buccal mucosa is 4 – 4000 times 
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more permeable than skin (Shojaei, 1998 and Kokate et al., 2009). The wide range reflects 

the regional differences in permeability throughout the oral cavity.  

5.3.2.1 Keratinised and non-keratinised regions in the oral cavity 

 

The superficial epithelial cells in the oral cavity can be divided into two types (keratinised 

and non-keratinised) dependent on the function of the area (Figure 5.1). Keratinised regions 

(such as the masticatory mucosa, gingival and hard palate) contribute to harder surfaces in 

areas which undergo masticatory stress and this contributes to higher resilience to the 

abrasion. This layer can act as a major penetration barrier to some drugs (Sohi et al., 2010).  

It is categorised with a thick lamina propia and the mucosa is tightly bound to the underlying 

periosteum. Non keratinised regions such as the buccal mucosa, sit on a relatively thin and 

elastic lamina propia and sub mucosa (Patel et al., 2011).  

Isotopic labelling was used to assess morphological variations in thickness and permeability 

of keratinised and non-keratinised regions of porcine oral mucosae. The results showed that 

the buccal mucosae had a significantly thicker total epithelium (772 ± 20 µm) compared to 

skin and other oral regions (gingival, sublingual). The specific rate limiting permeability 

barrier was contained in the upper third portion of the epithelium (282 ± 17 µm). The main 

difference in permeability between the skin and oral mucosae was considered to be due to 

hydration levels, with buccal regions being bathed in fluids (saliva) compared to skin (Squier 

and Hall, 1985). Similar regions containing the rate limiting permeability barrier have been 

reported in the upper portion  (250 – 280 µm) of the epithelium of the buccal mucosa (Kokate 

et al., 2009 and Kulkarni et al., 2010). 

5.3.2.2 Regional permeability differences in the oral cavity 

 

Permeability differences within oral mucosae can be attributed to the intercellular materials, 

derived from membrane coating granules (MCGs) between tissues (Patel et al., 2011). MCGs 

are located in intermediate cells and are formed when cells differentiate (Sohi et al., 2010). 

During formation they fuse and discharge their contents into intercellular spaces. These 

MCGs extrude glycolipids and lipids that control the cohesion of the epithelium cells (Kokate 

et al., 2009). This discharge forms a barrier permeability barrier in both keratinised and non-

keratinised tissues. The penetration of tracer molecules was shown to coincide with high 

levels of MCGs (volume and density) adjacent to the plasma membranes of the epithelium 
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cells (Shojaei, 1998). In the oral cavity, MCGs are thought to play a more significant role in 

controlling permeability compared to keratinisation (Patel et al., 2011). 

MCGs are more abundant in skin epidermis compared to oral epithelium. It has also been 

observed that different types of MCGs exist with those in keratinised epithelium comprising a 

series of parallel lamellae, similar to MCGS in skin epidermis. Non-keratinised oral regions 

contain MCGs with a different morphology, consisting of an amorphous core enclosed by a 

membrane correlating with differences in patterns of glycolipids such as cholesterol esters  

(Squier and Hall, 1985 and Shojaei, 1998).  

5.3.3 Factors controlling drug diffusion: drug related properties  

 

Drug absorption involves a combination of events and factors, the drug must first partition 

into the lipid bilayer (cell membrane) and then traverse into the interior of the cells including 

cytoplasm and intercellular spaces (hydrophilic barrier). The final hurdle is an enzymatic 

barrier prior to reaching the mucosa. The buccal regions have less enzymatic activity 

(proteolytic) and enzymes present (including dehydrogenases, esterases, aminopeptidases and 

carboxypeptidases) compared to the GI tract, however more research is required to fully 

characterise all the different levels and types of enzymes present in the human buccal 

mucosae (Patel et al., 2011).  

The drugs physiochemical properties will influence its absorption pathway as follows: 

 Size has an inverse relationship with permeability and increasing molecular size 

inhibits absorption. Generally molecular weights of less than 500 Daltons are 

preferred. 

 Ionisation/charge, permeation is favoured by non-ionised drugs through the 

transcellular route due to the increase in lipid solubility and this follows the pH-

partitioning theory characteristic of passive diffusion. The degree of ionisation 

depends on the drug‟s pKa and the pH of the environment.  

 Lipophilicity, the drugs partition coefficient, dictates the route taken, with a highly 

lipophilic drug traversing through the transcellular pathway. However cytoplasm and 

intercellular spaces will pose a major barrier for highly lipophilic drugs; so a partition 

coefficient of less than 5 is recommended (Kokate et al., 2009). 
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5.3.3.1 Diffusion related properties of lansoprazole  

 

Upon release and partitioning from the chewing gum formulation, during chewing, the active 

must dissolve in saliva, before partitioning into the membrane. The next stage will involve a 

series of traversing, partitioning and diffusing through the membrane components before 

absorption into systemic circulation (see chapter 1, Figure 1.4).  

 

Figure 5.4 Sites of protonation for lansoprazole  

The factors that will contribute towards permeability for lansoprazole are lipophilicity and 

solubility. The drug solubility and stability is pH dependent and degradation occurs at acidic 

pHs (see section 3.2.2). Lansoprazole has 3 pKas; 1.33 and 4.15 both of which will be un-

ionised at physiological pHs in the oral cavity (Table 1.4 and section 3.1.2). The pKa of 8.84 

(acidic-protonated nitrogen atom N-1 on the benzimidazole ring) will be subject to 

protonation at physiological pHs (Figure 5.4). The pH partitioning theory by Henderson-

Hasselbach (H-H) predicts the extent of ionisation and charge as a function of pH and 

fraction of dissociation and can be described by Eq. 5.5: 

For weak acids; 

])/[]log([ HAApKapH   

 

For weak bases; 

])/[]log([  BHBpKapH  

Equation 5.5 pH partitioning theory by Henderson-Hasselbach 

pKa= 8.84 

pKa= 1.33 

pKa= 4.15 
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 At pH 6.8, 1 % of lansoprazole will be ionised and at pH 8.6, 40 % will be ionised. This will 

impact the absorption as permeation is favoured by non-ionised drugs. 

5.4 Penetration enhancers in buccal delivery 

 

The buccal transmembrane route is highly desirable due to the by-passing of first pass 

metabolism and capacity for increased bioavailability and pharmacological activity. The 

barrier function of the mucosa limits the penetration and slows the diffusion of drugs; 

however this can be overcome by enhancers. A clinical accepted enhancer (chemical or 

physical) must have reproducible actions, minimise membrane irritation, damage and toxicity 

as well as being able to significantly enhance permeability. It should also allow the 

membrane to return back to its original properties to maintain barrier functioning and 

integrity.  

Some enhancers can interact with the membrane increasing the fluidisation of the membrane 

Examples include surfactants such as sodium dodecyl sulphate (SDS), which acts on the lipid 

components of the membrane to increase fluidisation and bile salts, such as sodium cholate, 

which can reduce barrier functioning by extracting lipids from the mucosal surface. The 

effects can be concentration dependent (below critical micelle concentration) but are specific 

to the different pathways for each permeant used. Fatty acids such as lauric acid and alcohols 

such as ethanol can disrupt intercellular lipid organisation and packing.  

 

Other enhancers may interact with the drug and dosage form to modulate increases in 

partitioning (K), diffusivity (D) and concentrations at the mucosal surface (donor) of the drug 

which will lead to increased permeability. Propylene glycol (PG) has the ability to act as a 

drug vehicle and permeates across the membrane whilst carrying the drug (Santos et al., 

2009).  

 

5.4.1 Cyclodextrins as penetration enhancers 

 

Cyclodextrins (CDs) have been reported to increase penetration and also the enhance stability 

of actives (see section 3.4.6). Studies involve increasing absorption and drug bioavailability 

of hydrophobic drugs by enhancing the drug‟s solubility in the complexed form (Davis and 
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Brewster, 2004 and Brewster and Loftsson, 2007). A drug that is poorly soluble in saliva will 

have a lower concentration gradient compared to a drug-cyclodextrin complex with a 

corresponding higher solubility; this will facilitate absorption. Complexation with CDs (β and 

γ- CD) enhanced sublingual bioavailability of testosterone, the rapid dissolution and 

reversibility of complex formation allowed efficient absorption. Both CDs improved 

dissolution with the γ- CD being superior with a 9 fold increase in solubility compared to 

testosterone alone (Pitha et al., 1987).  

Cyclodextrins have been proposed as penetration enhancers for omeprazole delivery via the 

buccal mucosa. Methylated β-cyclodextrin (Mβ- CD) was found to be more effective with a 

1.7 fold increase in permeation compared to a 1.1 fold with β-cyclodextrin (Figueiras et al., 

2009). The increased solubility observed with Mβ- CD complexation was suggested to 

contribute to increasing the drug flux due to super-saturation of the drug in the solution 

(Santos et al., 2009). The presence of L-arginine with beta-cyclodextrin further increased the 

solubility and stability of omeprazole, although an increase in solubility was not observed 

with the methylated derivative. It was suggested that L-arginine forced a significant 

desolvation of omeprazole by establishing hydrogen bonds with the drug molecules 

(Figueiras et al., 2010).  

 

The formation of inclusion complexes can increase the solubility of drugs  (Rajewski and 

Stella, 1996 and Sohi et al., 2010). Complex formation is dependent on the drug properties 

with non-covalent hydrogen bonding and Van de Waals forces forming the inclusion 

complex. The specific cavity size of the cyclodextrin and the free drug fraction will influence 

the increase in apparent solubility of the drug and hence the bioavailability (Rajewski and 

Stella, 1996). 

 

Cyclodextrins can increase permeability due to modification of the mucosal membrane 

(Carrier et al., 2007); free cyclodextrin may disrupt membrane components to increase the 

transport properties and facilitate absorption thorough the membrane (see section 3.4.6). It 

has been suggested that cyclodextrins can fluidise the membrane by solubilising specific lipid 

components of the membrane  and was the mechanism for enhancement of absorption of 

testosterone across  the sublingual membrane (Rajewski and Stella, 1996).  
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Other benefits include increased stability and protection of the drug in the inclusion complex; 

which could protect the drug from mucosal metabolic barrier (proteases and peptidases) 

during penetration or enzymatic degradation in the presence of saliva. 

5.5 Determination of buccal absorption of drugs  

The bioavailability of drugs following buccal delivery can be studied using a variety of 

methods:   

5.5.1 In vivo human testing 

 

The most common method for in vivo human studies is the buccal absorption test, which 

involves swirling a sample in the mouth for 15 minutes. The absorbed content is calculated 

from the missing fraction after expulsion. Some limitations include the inability to specify the 

absorption site accurately, individual variability, accidental swallowing and dilution with 

saliva. However analysis of plasma levels after the test can provide a direct indication of 

bioavailability. Other examples involve drug circulated perfusion chambers which can be 

attached directly to the site of interest (Kokate et al., 2009). 

5.5.2 In vitro testing  

 

Permeability models can determine the barrier nature of biological tissues in a controlled 

environment to predict absorption. There are two main types of static permeability apparatus: 

the horizontal and the vertical set up. The permeable membrane is sandwiched between two 

cells, the donor and the receiver/receptor compartments with the sampling port (Figure 5.5). 

The donor cell contains the saturated drug, whereas the receptor cell represents systemic 

circulation after absorption of the drug.   

Both apparatus offer a controlled environment and can be used for prediction of permeability 

parameters on isolated tissues, including the actual amount of drug diffused and also the rate 

of drug diffusion (Patel et al., 2012). Advantages of in vitro testing include the reduced costs 

compared to in vivo. Usually only a small amount of tissue is needed due to the small surface 

areas exposed for penetration. Also relevant factors can be explored including the effects of 

pH on permeability. Disadvantages include the time consuming methods and possible 

variability between replicates. A large number of samples may be required to overcome any 

variations and to provide an accurate estimation of transmembrane flux.  
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The isolated tissue placed in the in vitro set up should be as fresh as possible to maintain 

integrity and viability. The Ussing chamber has a system which circulates carbogen gas 

(95 % O2 and 5% CO2) to maintain tissue viability and voltage.  

Benefits of the horizontal system include the ability to stir both chambers to ensure limited 

unstirred water layers. Both compartments are the same size and shape and a large volume of 

medium is needed to cover the membrane completely on both sides of the cells.  

 

Figure 5.5 Vertical Franz cell apparatus  

(http://www.permegear.com/franz.htm)  

A specific advantage is the effect of gravity due to the apparatus being in a vertical position 

however a limitation can arise with the formation of an unstirred water layer in the donor 

compartment. The effects of this unstirred water layer involve interactions with the buccal 

interface and this may result in an additional barrier for penetration or act as a concentrated 

drug depot type effect to increase movement via increased concentration gradient (Loftsson 

and Brewster, 1996). To limit this effect an effective stirring rate is required which will be 

specific to the set up apparatus.  

The EpiOral
™

 is a human cell culture model and has shown good biochemical and 

histological correlations with human buccal epithelium. The tissue model consists of cultured 

human derived buccal epithelial cells forming a differentiated 3D multi layered model with 

an organised basal cell layer (Agarwal et al., 2005). The tissue has relevant protein 

expressions, lipid content and structure (including cytokeratin‟s and anti-microbial peptides) 

(Walle et al., 2006). The tissue has high reproducibility and provides an easy to handle 

effective alternative to animal tissue.  
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A vertical type Franz cell was used in this work with a diffusional surface area of 2.77cm
2
,
 
a 

donor volume of 10 mL and a receptor volume of 30 mL to maintain sink conditions. The 

maximum agitation or stirring rate of the receptor compartment was set at 450 rpm to 

minimise boundary layer effects. 

5.5.2.1 Selection of buccal membrane 

 

The use of animal buccal epithelium as a model for predicting transbuccal absorption in 

humans is acceptable due to similarity in lipid composition, thickness and degree of 

keratinisation (Patel et al., 2012). 

Table 5.2 Buccal mucosae comparisons from different species of mammals  

Models 

 

 

Tissue 

structure 

 

Buccal membrane 

thickness 

(μm) 

(mean ± s.d) 

Permeability constant for 

tritiated water 

(×10
7
 cm/min) 

(mean ± s.d) 

Human Non-keratinised 580 ± 90 579 ± 122 

Dog Non-keratinised 126 ± 20 1045 ± 37 

Hamster Keratinised 115.3 ± 11.5 Not available 

Pig Non-keratinised 772 ± 150 634 ± 60 

Rabbit Partially keratinised 600 Not available 

Rat Keratinised Not available Not available 

Monkey Non-keratinised 271 ± 50 1025 ± 154 

 

(adapted from Patel et al., 2012)  

The biological differences in tissues can result in unreliability with regards to permeability 

predictions in humans and careful consideration should be given to tissue selection from 

animal species to ensure integrity and viability of data. The buccal tissue of pigs, dogs and 

monkeys has been used extensively due to its non-keratinised nature, although the tissue from 

dogs and monkeys is thinner and therefore presents a reduced diffusion path length (Patel et 

al., 2012) (Table 5.2).  
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Table 5.3 Human and porcine buccal constituents  

Lipid  

type 

Pig 

( % w/w) 

Human 

( % w/w) 

Cholesterol 2.04 23.7 

Cholesterol esters 0.41 7.4 

Cholesteryl sulfate 0.61 --- 

Fatty acids 1.08 9.2 

Ceramides 0.08 0.4 

Glycosylceramides 1.59 13.8 

Triglyceride 0.47 ---- 

Sphingomyelin 1.63 7.7 

Phosphatidylcholine 1.75 18.4 

Phosphatidylserine 1.13 0.8 

Phosphatidylinositol 0.6 1.8 

Phosphatidylethanolamine 1.66 16.8 

Phospholipids (total) 13 45.5 

( 

adapted from Patel et al., 2012) 

Porcine tissue resembles human buccal mucosa in terms of structure and composition (Table 

5.3). Similar permeability constants were found between pigs and humans due to the non- 

keratinised nature and similar thicknesses of the tissues (Table 5.2). Porcine buccal tissue is 

the most frequently used animal model and has been extensively used for in vitro experiments 

due to the low cost and accessibility (Kokate et al., 2009; Patel et al., 2012). 
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5.6 Method 
 

5.6.1 Preparation and dissection of porcine tissue 

 

Fresh porcine tissue (Hampshire cross large white, weighing between 90 – 100 kg being 

approximately 6 months old) was obtained from the abattoir (L Wood & Sons, Huddersfield) 

directly after slaughtering and experiments were conducted within 24 hours. The buccal 

tissue was dissected from the pigs head after the middle cheek section was cut away from the 

rest of the head with a knife. The mucosal membrane was removed from the connective tissue 

using a surgical scalpel and scissors to a thickness of 500 ± 50 µm corresponding to the rate 

limiting penetration barrier in the upper third segment of the tissue (Kulkarni et al., 2010). 

The method and region of buccal tissue was kept consistent to maintain reproducibility. 

A significant increase in permeability was reported using tissues stored at - 20 °C by 

Kulkarni et al., (2010). This was attributed to the freezing process at - 20 °C; ice crystals are 

formed in an uncontrolled manner within the tissue and caused permanent damage (observed 

upon histological visual examinations) (Lee et al., 2002). Due to the damaging effects of 

freezing and thawing on tissue integrity, experiments were conducted within 2 hours of 

killing or within 20 hours of killing after being stored at 4 °C overnight (due to the nature of 

experiments and availability of fresh tissue). Studies have shown that porcine buccal mucosa 

retained its integrity at 4 °C for up to 24 hours compared to other conditions such as storage 

at - 20 °C (Lee et al., 2002; Kulkarni et al., 2010). 

5.6.2 Determination of membrane thickness 

 

Membrane thickness was measured using two spacers of known thickness used to sandwich 

the tissue between and digital callipers (Whitworth: LIN 6747113) (total thickness of 

spacers= 0.83 mm). 

Membrane thickness = total sandwiched thickness – thickness of spacers  

To validate this method, the thickness of silicone membrane (0.13 mm) was measured. Two 

different batches of silicone membrane (Silatos silicone sheeting Ref 7458 Lot: 1003090) 

were used to validate the reproducibility and accuracy of the method. The thickness of the 

membrane was measured and compared with manufacturer specifications.  
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As thickness is inversely proportional to permeability (Equation 5.4) and to ensure that the 

membrane contained the rate limiting penetration barrier in the upper third section, thickness 

of porcine buccal tissue (dissected from three different pigs) was measured and five replicate 

measurements were taken from each tissue sample (n=5). 

5.6.3 Partition coefficient of lansoprazole into porcine buccal tissue 

The effect of pH and complexation on partitioning of lansoprazole from saturated solutions 

into porcine buccal tissue was studied. The method was based on a method by Nair et al., 

(1997) and Ungphaiboon and Maitani, (2001). 

Saturated solutions of pure lansoprazole and complexed lansoprazole (1:1 with Mβ-CD) were 

prepared by adding an excess of drug to artificial saliva at pH 6.8 (mean physiological pH in 

oral cavity) and pH 8.65 (pH value after 30 minutes in vitro release of buffering excipient 

from gums) before filtering (0.45 µm) prior to use. Buccal tissue portions of similar surface 

area, thickness and weight were taken from two pigs‟ cheeks and were added to 25 mL of the 

saturated solutions. 

Duplicate samples were placed in a shaking water bath at 37 °C at 275 shakes per minute 

(Grants GLS Aqua 12 plus). Amber vials were used to protect against possible photo 

degradation. A control sample containing 25 mL saturated solution with no tissue was also 

analysed to monitor the stability of the saturated solution. Samples were collected after 2 

hours to correspond with the relatively short in vitro release experiments (30 minute) and in 

vivo chewing times. The samples were diluted with mobile phase (1:1) before being filtered 

through a 0.45 µm filter and quantified using the HPLC method described in Chapter 2.  

The partition coefficient (Log P) was calculated using Equation 5.6  

a

ab

C

CC
K


  

Equation 5.6 Partition coefficient (Log P) 

Where,  

Cb = concentration before (control)  

Ca = concentration after exposure to buccal tissue  

 (Ungphaiboon and Maitani, 2001) 
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5.6.4 Buccal permeability studies  

 

Permeability through porcine buccal mucosa using vertical Franz cells was studied in 

artificial saliva at pH 6.8 and pH 8.6, using saturated solutions of: 

 Lansoprazole 

 Complexed lansoprazole (1:1 with Mβ-CD) 

 

The method was based on methods by Kokate et al., (2009) and Kulkarni et al., (2010). 

Artificial saliva was prepared (as described in Chapter 2) to mimic in vivo conditions and was 

used in both compartments to minimise diffusion controlled by osmosis. The saturated 

solutions were prepared by adding an excess of drug/ complex to 100 mL of artificial saliva 

at the required pH, stirred at ambient temperature for a minimum of six hours and filtered 

(0.45 µm) before use. Artificial saliva (30 mL) at pH 7.4 (simulating the pH of systemic 

circulation) was added to each of the receptor cells and the temperature was maintained at 37 

± 0.5°C using heated water jackets. The stirring speed was set to 450 rpm which was the 

maximum speed to minimise effects of any unstirred water layers. Once the tissue was 

mounted with the exterior surface (epithelium) facing towards the donor compartment and the 

connective tissue side facing towards the receptor, it was left to equilibrate for 45 minutes, 

before 10 mL of filtered saturated solution (finite dose) was added to each of the donor 

compartments. All cells were carefully observed for visible leaks and air bubbles which 

would affect permeability results. The tissue was visually inspected at the end to ensure there 

were no holes or lesions in the membrane also. Samples (2 mL) were taken at  0, 15, 30, 45, 

60, 75, 90 and 120 minutes from the receptor compartment and replaced with equal volumes 

of artificial saliva at pH 7.4, pre warmed at 37 °C, dilutions were accounted for using 

Equation 2.6. The samples were diluted with mobile phase (1:1) before being filtered through 

a 0.45 µm filter and quantified using the stability-indicating HPLC method described in 

Chapter 2. Sink conditions were maintained throughout experiments as 10 mL of saturated 

solution were added to each donor compartment; the volume in the receptor compartment 

was 30 mL and was continually diluted after sample replacement. 

The steady state flux (Jss) was calculated using Fick‟s first law of diffusion by measuring the 

slope of the linear portion of the graph of cumulative drug diffusion (µg/cm²) over time 

(minutes) once a steady state was achieved (Dias et al., 2007). Typically the first and the last 
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points (0 and 120 minutes) were disregarded to calculate the linear section from the 

remaining time points (15 - 90 minutes) this excluded the initial lag phase. Lag/burst times 

were estimated from the intercept value from the straight line equation. The permeability 

coefficient (Kp) was calculated by dividing the flux by donor concentration (Korinth et al., 

2004). Statistical testing was calculated using SPSS (Chicago, U.S) and used Independent-

Samples Mann-Whitney T Tests (see Appendix B). 

5.7 Results 

 

The mean thickness of Sample 1 of silicone membrane sheeting was 0.14 ± 0.01 mm (n = 5; 

mean ± s.d). The mean thickness of Sample 2 of silicone membrane sheeting was 0.12 ± 0.01 

mm (n = 5; mean ± s.d). The overall mean thickness of the two silicone membrane sheets was 

0.13 ± 0.01 mm (n = 10; mean ± s.d), which agreed with the manufacturers specifications of a 

thickness of 0.13 mm (Table 5.4). This showed that the method was accurate and could be 

used to determine the thickness of porcine buccal membranes. 

Table 5.4 Buccal tissue thickness measurements 

 
Sample 1 Sample 2 Sample 3 

 

0.55 0.48 0.54 

 

0.49 0.55 0.45 

 

0.46 0.53 0.49 

 

0.48 0.52 0.51 

 

0.52 0.47 0.47 

Thickness in mm 

(n =5; mean ± s.d) 
0.50 ± 0.03 0.51 ± 0.03 0.49 ± 0.04 

 

The overall mean thickness of porcine buccal tissue from three pig samples was 0.50 ± 0.03 

mm or 501 µm (n=15; mean ± s.d) (Table 5.4). The dissected buccal membrane contained the 

rate limiting mucosal epithelium barrier/ functioning layer (in the upper third portion (500 ± 

50 µm) (Figure 5.2) and would provide suitable tissue samples to allow the determination of 

permeability (Kulkarni et al., 2010).  

 

 



188 
  
 

Table 5.5 Partition coefficient of lansoprazole in artificial saliva and porcine buccal 

mucosae 

Test 

conditions 

Concentration 

of 

lansoprazole 

 

(µg/mL) 

 

Partition 

coefficient 

 

(Log P) 

 
Lansoprazole at  pH 6.8  

   
15 0.32  

Complexed lansoprazole 

at  pH 6.8     
133 0.12 

Lansoprazole at pH 8.6   

   
38 0.24 

Complexed lansoprazole  

at pH 8.6    
255 0.13 

 

All sample tissues weighed between 1.40 – 1.53 grams and were paired to normalise results 

to minimise variations between the duplicates. The drug was stable at all conditions with less 

than 3 % breakdown products observed, however different peaks were seen compared to in 

vitro release data, which suggested this may have been due to the buccal tissue. The highest 

partition coefficient was for free lansoprazole at pH 6.8 (Table 5.5). The drug had a lower 

ionised fraction at pH 6.8 (1 %) (see section 5.4.7 and Figure 5.4). The partition coefficient 

halved with complexed lansoprazole at the same pH, therefore complexation reduced 

partitioning into the buccal membrane due to the increase in solubility (hence reduced its 

lipophilicity) along with the accompanying increase in molecular size and weight of the 

inclusion complex. Complexed lansoprazole did not enhance the partitioning of lansoprazole 

in porcine buccal mucosae. 

At pH 8.6, there was a decrease in the partition coefficient with free lansoprazole; this was 

because at the higher pH the drug is more ionised (40 %) which is known to decrease the 

partitioning of the drug due to decreasing its lipid solubility. Complexed lansoprazole had a 

similar partition coefficient at both pHs suggesting that effects of ionisation were limited due 

to molecular shielding in the inclusion complex. 

The saturated solutions showed similar concentrations as seen previously (see section 3.6.2), 

solubility increased with increasing pH and complexed lansoprazole had the highest 
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solubility. However increasing aqueous solubility is inversely proportional to permeability 

due to decreasing the intrinsic lipophilicity of lansoprazole (Beig et al., 2013).  

5.7.1 Buccal permeability of lansoprazole 

 

Table 5.6 Permeability of lansoprazole through porcine buccal mucosa   

Time after 

sacrifice 

(hours) 

n 

 

R
2 

 

Concentration 

(µg/mL) 

 

Flux (Jss) 

(µg.cm
2
/minute) 

 

(Kp) 

(cm/minute) 

 

2 7 0.989 13.50 0.268 0.0198 

20 8 0.994 13.24 0.259 0.0196 

 

The permeability of free lansoprazole at pH 6.8 was studied using excised tissue from the 

same pig. The drug flux and permeability coefficient was similar at both time points studied 

(Table 5.6). This suggested that the tissue maintained its integrity and viability with regards 

to permeability over both the time points after sacrifice. This agreed with previous data where 

porcine buccal tissue kept its integrity over 24 hours (Lee et al., 2002 and Kulkarni et al., 

2010). There was no significant difference in drug flux and permeability coefficient between 

experiments preformed after 2 hours and 20 hours after sacrifice (P > 0.05). 

 

Figure 5.6 Cumulative drug diffusion of lansoprazole at pH 6.8 (n=15; mean ± s.d)  
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The diffusion of lansoprazole at pH 6.8 displayed a small burst effect at 0.4 minutes and 

reached a maximum cumulative drug diffusion of 27.9 µg/cm
2
 after 120 minutes (Figure 5.6).  

 

Figure 5.7 Cumulative drug diffusion of complexed lansoprazole at pH 6.8 (n=15; mean 

± s.d) 

The diffusion of complexed lansoprazole at pH 6.8 displayed a burst effect up to 4.9 minutes 

(Figure 5.7). The maximum cumulative drug diffusion increased to 39.4 µg/cm
2
 after 120 

minutes when compared to free lansoprazole.  

 

Figure 5.8 Cumulative drug diffusion of lansoprazole at pH 8.6 (n=15; mean ± s.d) 
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The diffusion of lansoprazole at pH 8.6 displayed a burst effect at 5.2 minutes (Figure 5.8). 

The maximum cumulative drug diffusion was 36.5 µg/cm
2
 after 120 minutes which was 

higher than that at the lower pH.  

 

Figure 5.9 Cumulative drug diffusion of complexed lansoprazole at pH 8.6 (n=15; mean 

± s.d) 

The diffusion of complexed lansoprazole at pH 8.6 displayed a burst effect at 3.2 minutes 

(Figure 5.9). The overall highest cumulative drug diffusion was observed; 55.5 µg/cm
2
 after 

120 minutes. 

Table 5.7 Summary of lansoprazole buccal permeability results 

Test  

conditions 

Flux 

(Jss) 

Permeability coefficient  

(Kp) 

Lag/burst 

release time 

(µg.cm²/min) (cm/min) (minutes) 

Lansoprazole at pH 6.8  

(n=15)  
0.264   0.020  0.44   

Complexed lansoprazole at  

 pH 6.8 (n=17)  
0.340   0.010  4.91   

Lansoprazole at pH 8.6   

(n=15)  
0.278   0.008  5.19   

Complexed lansoprazole at 

pH 8.6  (n=15)  
0.517   0.009  3.16    
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5.7.1.1 Lag times and burst effects 

 

The regression coefficient (R
2
)
 
values for all experiments ranged from 0.988 to 0.998 and the 

intercept was taken as a consideration of lag times (Table 5.7). The lag time is the time taken 

for drug concentration to become uniform throughout the membrane before diffusion can 

begin, the majority of the drug diffusion curves showed short lag times and a burst effect of 

permeability ranging from 0.44 – 5.19 minutes due to a combination of drug related factors 

including lipophilicity and also the barrier related properties of the buccal membrane. The 

first 30 minutes of permeation is of high interest due to the short chewing time of the gum by 

the patient; therefore lag times will need to be short to facilitate maximum possible diffusion 

over the chewing cycle, future work would involve evaluating the first initial phases of 

permeability during 0 - 30 minutes.   

5.7.1.2 Flux (Jss) for lansoprazole and complexed lansoprazole 

 

Drug flux was significantly different between free lansoprazole and complexed lansoprazole 

(P = 0.03). The flux increased with complexed lansoprazole compared to free lansoprazole at 

both pHs; this was due to the increased concentration gradient (9 fold increase in solubility 

with complexed lansoprazole) which is a driving force during passive diffusion. The highest 

flux was seen with complexed lansoprazole at pH 8.6 (Table 5.8), this correlated with the 

highest solubility and therefore highest concentration gradient. Similar results were reported 

for caffeine, whereby an increase in solubility related to an increase in drug flux through 

human skin. The permeation of caffeine was dependent on the solvent vehicle chosen with 

decanol and octanol promoting higher flux, it was suggested that the solvent vehicle altered 

the fluidisation of the skin (Dias et al., 2007). 

The flux for free lansoprazole remained constant under varying pHs, whereas the flux for 

complexed lansoprazole increased with the higher pH, possibly due to solubility and 

concentration gradient increases at the accompanying pHs and also possible protection from 

ionisation of the free drug in the inclusion complex.  
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5.7.1.3 Permeability coefficient for lansoprazole and complexed lansoprazole  

 

The permeability coefficient (Kp) is a function of drug flux divided by the donor 

concentration. The highest permeability coefficient was observed with free lansoprazole at 

pH 6.8 and this halved when comparing complexed lansoprazole at the same pH. The data 

agreed with the partition coefficient data previously seen, which showed that free 

lansoprazole at pH 6.8 had the highest partition coefficient (Log P) value compared to other 

forms. The permeability coefficient was also observed to half when comparing the 

permeability of the lipophilic drug progesterone with complexed forms (Hβ-CD, 1:1) across 

Caco-2 cells (Beig et al., 2013).   

Complexation was shown to increase solubility but also increased molecular size and weight 

(inversely proportional to partioning and permeability) as the drug is incorporated into the 

inclusion complex form. This contributed to an overall negative effect on permeability 

through the transcellular pathway following passive diffusion.  This has been seen previously 

with other complexed drugs such as progesterone complexed with HP-βCD (Carrier et al., 

2007). There were no significant differences in the permeability coefficients of free and 

complexed lansoprazole (P > 0.05).  

Increasing pH decreased the permeability coefficient of free lansoprazole due to increasing 

the ionised fraction of the drug from 1 % at pH 6.8 to 40 % at pH 8.6. This showed that the 

trade-off between increasing solubility and the concentration gradient was negligible 

compared to the increased in the ionised fraction of the drug causing reduced lipophilicity, as 

ionised particles will have reduced penetration via the transcellular pathway. 

When comparing complexed lansoprazole at the two pHs the permeability coefficient was 

similar suggesting that cyclodextrins may shield against the effects of ionisation.  

5.7.2 Discussion 

 

Previous studies have reported similar effects with a decrease in permeability after 

complexation with Hβ-CD to improve solubility of the lipophilic drug progesterone (Dahan 

and Miller, 2012), this paradoxical effect was due to a decreased free drug fraction available 

for permeability. A dynamic equilibrium exists with complexed lansoprazole (bound within 

inclusion complexes) and free lansoprazole through self-association. The association and 

file:///F:/Jan%202015/Chapter%20Three%20stability%20and%20solubility%205%20mar%202015%20BC%20(1).docx%23_ENREF_5
file:///F:/Jan%202015/Chapter%20Three%20stability%20and%20solubility%205%20mar%202015%20BC%20(1).docx%23_ENREF_5
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dissociation of drug from CDs is considered to be rapid in comparison to dissolution and 

permeability (Beig et al., 2013). The mechanism behind the decreased permeability can be 

explained by the microencapsulation of drug at molecular level by the inclusion complex 

formation. This will directly decrease the drug free fraction which translates to a lower 

concentration gradient and driving force for membrane permeability (Dahan and Miller, 2012 

and Beig et al., 2013). A solubility-permeability balance is needed to maximise absorption 

and that the use of solubility increasing techniques is factored against the possible loss in 

permeability. A mass transport model has been proposed to predict the effective intestinal 

permeability based on the concentration of cyclodextrin. The mathematical model considers 

other contributing factors such as the unstirred water layer (UWL) (an aqueous boundary 

layer), however it does not consider interactions between free cyclodextrin and membrane 

(Dahan et al., 2010). The authors found that permeability decreased with increasing 

cyclodextrin concentration (decreasing free drug). The role of the UWL can be investigated 

by assessing differences in rotation speed, (Beig et al., 2013). 

 

Variability‟s in data sets increased over the duration of time and may have occurred due to 

the tissue losing its integrity over time other variations included biological inter individual 

variability between the animals. Pigs have a tendency to damage buccal linings due to their 

chewing behaviour and this can cause the composition of the buccal membrane to change 

(scarring) which would have affected permeability. To ensure integrity, the tissue can be 

examined using microscopy to give visual histological assessment and also with the use of a 

tracer/biomarker such as fluorescein to ensure the barrier functioning of the epithelium 

(Kristl, 2009).  

There is a lack of standardised methods and guidance in evaluating delivery system IVIVCs 

prior to clinical evaluations (Patel et al., 2012). Sources of variability may have arisen from 

the dissecting methods. Any underlying connective tissue would have caused an additional 

stagnant layer which would decrease permeability. The technique required practice using 

surgical scissors and was difficult and time consuming. The use of a dermatome to section an 

area of uniform thickness may improve reproducibility.  

Further work involves testing other relevant apparatus possibly a flow-through Franz cell 

apparatus, this would ensure there is no accumulation of the drug in the receptor cell. The use 

of an Ussing chamber would explore permeability with increased tissue integrity due to the 
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circulation of carbogen gas and possibly provide more information on the role of the unstirred 

water layer. Also as the process of absorption of drug after release from chewing gum is 

dynamic, increasing the sampling times over the initial 30 minute period i.e. every 5 minutes 

for first 30 minutes would identify and represent relevant short term absorption pathways.  

In vivo studies would allow the possible combined absorption effects of different regions e.g 

sublingual and would provide a realistic evaluation of absorption. Also the combination of 

chewing factors (e.g. parking strategy) can be employed to improve localisation of the gum to 

the cheek which would also improve absorption. Relevant pharmacokinetic and 

pharmacodynamic data on absorption, distribution, metabolism and elimination of the drug 

can be gathered with regards to the novel buccal absorption mechanism of the drug.  

5.8 Conclusion 

 

The buccal mucosa is the target site of delivery during release from chewing gum 

formulations. The partitioning of lansoprazole between artificial saliva and porcine buccal 

mucosae resulted in free lansoprazole at pH 6.8 having the highest partitioning coefficient. 

This was due to a lower ionised fraction at the lower pH and also a lower molecular weight 

compared to complexed lansoprazole. Complexed lansoprazole had the highest drug flux 

through porcine buccal membrane but also had the paradoxical effect of decreasing the 

partition coefficient and the permeability coefficient. Careful consideration must be taken 

when optimising a formulation. Increases in solubility will cause adjustments to other 

important parameters and an overall detailed picture must be gathered to ensure successful 

formulations. An optimal balance should be found between increased solubility and 

permeability to maximise absorption on a case-by-case basis. An ideal formulation would 

release the drug at a rate and extent to facilitate buccal absorption.   
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Chapter Six: 

General conclusions and future work 
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6.1 General Conclusion 

 

There is an increased demand for convenient drug delivery systems to fit into modern active 

lifestyles and the potential to manage and improve on various treatments using medicated 

chewing gums presents great opportunities. An innovative drug delivery system can 

significantly impact success by providing product distinctiveness in the market. The concept 

of chewing gum for medical purposes provides discrete, convenient administration, the 

potential for buccal absorption and the avoidance of first pass or GI degradation. 

Lansoprazole was chosen as a model drug due to its characteristics including poor solubility 

and instability (under acidic conditions). It has also been identified as being in need of 

reformulation for the paediatric market, so a chewing gum formulation may be of particular 

benefit for this API to increase compliance and also avoid degradation in the GI tract. 

Chewing gums were developed incorporating lansoprazole for potential targeted absorption 

across the buccal mucosa and investigated the use of Revolymer‟s
®
 hydrophilic polymer 

Rev7, the effect of buffering excipients and the use of β-cyclodextrin complexation to assess 

the effects on release of the active. 

The solubility and stability of lansoprazole in artificial saliva was found to be dependent on 

the pH of the solution, an increase in pH caused an increase in solubility with a significant 

increase between pH 9 and 10. At the lower pHs, concentrations decreased over time 

confirming the acid instability of lansoprazole. The use of cyclodextrins as solubilisers and 

stabilisers for lansoprazole were investigated; complexed lansoprazole (with Mβ-CD, 1:1) 

resulted in a 9 fold increase in solubility compared to free lansoprazole and remained stable 

at low pHs. Solid state characterisation of Mβ-CD complexes confirmed that interactions 

(benzimidazole region of the drug was included in the CD cavity) were taking place between 

the guest (lansoprazole) and the host (CD); giving further evidence to support the formation 

of inclusion complexes through molecular encapsulation of the drug.  

 

In vitro release of lansoprazole from gums was evaluated using the EP approved masticator 

and utilised a variety of discriminatory test settings. Significant differences in release after 30 

minutes in vitro mastication were found from gums containing Rev7 and potassium carbonate 

(L,8,K and C,8,K). Significant differences were also observed in hardness in the same gums 

due to physical interactions causing a plasticising effect on the gum base resulting in softer, 
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less cohesive gums. A combination of mechanisms controlling release from gums containing 

Rev7 and potassium carbonate were proposed including textural changes due to physical 

interactions in the gum base elastomer, the hydrophilic capacity of the gum and the solubility 

of the buffering excipient, which may have led to an increase in the rate and extent of 

micropore formation in the gum matrix upon contact with saliva when compared to the other 

formulations.  

 

To ensure success of the formulation the active must be released at a rate and extent to 

facilitate buccal absorption. The study assessed the buccal absorption of free lansoprazole 

and complexed lansoprazole (with Mβ-CD, 1:1) using porcine buccal mucosae. The highest 

partitioning coefficient was observed for free lansoprazole at pH 6.8 due to a lower ionised 

fraction in combination with a lower molecular weight. Complexed lansoprazole had the 

highest drug flux but also had the paradoxical effect of decreasing the permeability 

coefficient. 

Overall the study contributed to increasing the understanding of factors governing the release 

of a poorly soluble and unstable API, lansoprazole, from a medicated chewing gum 

formulation. Significant differences in hardness and release after 30 minutes in vitro 

mastication were found from gums containing Rev7 and potassium carbonate (L,8,K and 

C,8,K). The highest partitioning coefficient was observed for free lansoprazole at pH 6.8, 

whereas complexed lansoprazole (Mβ-CD: lansoprazole, 1:1) had the highest drug flux but 

also had the paradoxical effect of decreasing the permeability coefficient. 

6.2 Future Work 

 

The complexity of release mechanisms from chewing gum formulations are still not fully 

understood and require further work to increase this understanding. Further experiments 

exploring the drugs affinity for different gum bases and excipients could be conducted 

utilising partition coefficient (cLog P) experiments. Further refinements to represent in 

vitro/in vivo conditions would involve incorporating artificial saliva containing specific 

combinations of polyols and buffering excipients (representative in the gum formulation), 

which are also readily released alongside the drug. The use of a pycnometer may provide 

information into the density and relative surface porosity of gums which would provide 

further evidence of any physical interactions between excipients in the gum to increase the 
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understanding of release mechanisms and to further discriminate between formulations. 

Further formulation considerations would involve exploring the effect of other buffering 

excipients, e.g. magnesium carbonate and evaluating physical interactions and the effects on 

release. 

Further evaluations on in vitro release methods involve exploring apparatus B to compare 

release, the use of different biorelevant media, chew rates (less than 60 chews per minute) 

and increasing the duration of mastication. In vitro testing using a flow through system would 

eliminate the need for sample replacement. During the mastication process, the gum texture 

changes due to the gum contacting saliva and the leeching out of soluble excipients. Texture 

analysis of masticated gums would provide an insight into this phenomenon. Characterising 

gums after mastication would allow a complete picture including mass changes due to the 

loss of soluble excipients resulting in harder gums.  

In vivo studies provide the most informative evaluations of buccal delivery systems in human 

volunteers, including the extent of the washing out effect (due to swallowing) and the total 

bioavailability after absorption in the oral cavity, allowing a full comparison to current 

formulations. In vitro/ in vivo correlations would involve chew out studies and measurements 

of residual gum contents to indicate in vivo release performance. In vivo studies would also 

allow the combined absorption effects of different regions of the oral cavity e.g sublingual. 

Also the use of chewing instructions/factors (e.g. parking strategy) can be employed to 

improve localisation of the gum to the cheek which would also affect absorption. Relevant 

pharmacokinetic data on absorption and distribution of the drug could be gathered with 

regards to the novel buccal absorption route. Sensory characteristics can also be evaluated 

including overall mouth feel and taste to evaluate compliance.      
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Appendix A: Experimental raw data 
 

Table A1 In vitro release from commercial 2 mg Nicorette
®
 gums (n=9; mean ± s.d)  

Time  (minutes) Nicotine released (%)   

0 0 ± 0.1 

5 37.7 ± 5.1 

10 64.3 ± 7.7 

15 78.3 ± 9.2 

20 88.3 ± 8.2 

25 97.9 ± 7.4 

30 101.2 ± 7.1 

 

HPLC example chromatograms of lansoprazole  

 

Figure A1 In vitro release from gums in artificial saliva pH 6.7 at 30 minutes  

The following peaks were identified solvent front at 2.77 minutes, lansoprazole at 6.96 

minutes and degradation breakdown products at 8.62 minutes (1.17 %). 
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Figure A2 In vitro buccal permeability (pH 6.7) at 2 hours sampling time 

The following peaks were identified solvent front at 2.73 minutes, lansoprazole peak at 6.8 

minutes and degradation products/ buccal by products at 3.62 minutes (2.5 %) and 4.58 

minutes (0.32 %).  

 

Table A2: The effect of pH on solubility of lansoprazole (n = 3; mean ± s.d)  

8.5 

hours 

Mean concentration of  

lansoprazole (µg/mL)   
15.5 

hours 

Mean concentration of  

lansoprazole (µg/mL) 

pH 6 14.87 ± 1.39   pH 6 10.94  ± 0.68 

pH 7 14.58  ± 2.20   pH 7 12.91  ± 0.86 

pH 8 16.35  ± 1.44   pH 8 15.34  ± 3.06 

pH 9 29.94 ± 0.56   pH 9 26.05  ± 1.78 

pH 10 89.70  ± 0.68   pH 10 91.65  ± 1.58 
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Table A3: The solubility of complexed lansoprazole (n= 3; mean ± s.d)  

 

pH 6, 

8.5 hours 

Mean concentration of  

lansoprazole (µg/mL) 

 

pH 8, 

8.5 hours 

Mean concentration of  

lansoprazole (µg/mL) 

1:1 βCD 49.34 ± 3.30 

 

1:1 βCD 278.87 ± 5.45 

1:1 MβCD 133.94 ± 4.38 

 

1:1 MβCD 288.80 ± 7.65 

3:1 βCD 65.34 ± 2.44  

 

3:1 βCD 64.97 ± 3.56 

3:1 MβCD 64.97 ± 1.70 

 

3:1 MβCD 168.72 ± 4.98  

Lansoprazole 14.33 ± 2.19 

 

Lansoprazole 25.06 ± 2.50 

 

 

pH 6, 

15.5 hours 

Mean concentration of  

lansoprazole (µg/mL) 

 

pH 8, 

15.5 hours 

Mean concentration of  

lansoprazole (µg/mL) 

1:1 βCD 47.26 ± 3.23 

 

1:1 βCD 228.91 ± 4.98 

1:1 MβCD 134.36 ± 4.65 

 

1:1 MβCD 287.39 ± 8.23 

3:1 βCD 29.32 ± 2.85 

 

3:1 βCD 48.69 ± 4.89 

3:1 MβCD 19.78 ± 1.40 

 

3:1 MβCD 145.28 ± 3.65 

Lansoprazole 8.33 ± 2.80 

 

Lansoprazole 23.06 ± 2.30 

 

Table A4: In vitro release from L gums and H gums (n= 3; mean ± s.d)  

H gums  pH 6   

 

 H gums pH 8 

      

Time 

(minutes) 

 

Lansoprazole 

released  

(%)  

 

  

Time 

(minutes) 

 

Lansoprazole 

released 

 (%)  

 

0 0 ± 0.00 

  

0 0 ± 0.01 

5 1.04 ± 0.16   

 

5 2.06 ± 0.39 

10 2.60 ± 0.13   

 

10 4.54 ± 0.56 

15 4.67 ± 0.25   

 

15 7.11 ± 0.81 

20 5.96 ± 0.18   

 

20 9.01 ± 1.17 

25 7.48 ± 0.39   

 

25 10.84 ± 0.89 

30 8.95 ± 0.71   

 

30 12.29 ± 1.23 
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L gums pH 6   

 

 L gums pH 8 

  

     

Time 

(minutes) 

 

Lansoprazole 

released 

 (%)  

 

  

Time 

(minutes) 

 

 Lansoprazole 

released  

(%)  

 

0 0 ± 0.01   

 

0 0 ± 0.01 

5.0 2.64 ± 0.30   

 

5 4.06 ± 1.61 

10.0 5.56 ± 0.34   

 

10 6.06 ± 0.26 

15.0 7.79 ± 0.45   

 

15 8.74 ± 0.27 

20.0 9.23 ± 0.40   

 

20 10.50 ± 0.61 

25.0 10.53 ± 0.34   

 

25 12.51 ± 0.69 

30.0 12.11 ± 0.62   

 

30 13.97 ± 0.44 

 

 

Table A5: Diffusion from surfaces of formulated gums (n= 2)  

Time 

(minutes) L,8,Na L,8,K C,8,K C,8,Na L,0,Na L,0,K C,0,K C,0,Na Mean 

0 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00  

5 0.08 0.63 0.34 0.06 0.15 0.04 0.04 0.15 0.19  

10 0.39 0.88 0.50 0.64 0.21 0.25 0.23 0.25 0.42  

20 0.60 1.02 1.01 0.87 0.27 0.35 0.40 0.37 0.61  

30 0.76 1.24 1.34 0.92 0.61 0.56 0.55 0.57 0.82  

60 0.86 1.88 2.07 0.95 0.64 0.80 0.79 0.79 1.10  

1440 11.33 11.21 13.00 11.64 8.08 9.87 9.94 8.65 10.46  
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Table A6: In vitro release from L gum batches (n=3; mean ± s.d) 

 

 

Coding key Drug form Rev7
 

(%) 

Buffering 

excipients 

 Lansoprazole released after 30 minutes (%)  

 

  Phosphate  

buffer pH 6.0 

Artificial saliva  

pH 6.7 

20 mL replace  

pH 6.7 

20 mL replace 

pH 8 

20 mL replace 

 pH 8 83 chews 

L,8,Na lansoprazole 8 Na2CO3 12.24 ± 0.04 17.6 ± 0.45 12.2 ± 1.64 9.16 ± 0.33 20.98 ± 0.63 

L,8,K lansoprazole 8 K2CO3 25.38 ± 2.02 35.62 ± 3.77 54.1 ± 1.87 65.24 ± 1.68 67.46 ± 0.94 

C,8,Na complex 8 Na2CO3 12.26 ± 0.82 21.27 ± 1.66 18.69 ± 0.60 20.12 ± 0.28 29.49  ± 1.22 

C,8,K complex 8 K2CO3 21.00 ± 0.49 35.08 ± 1.61 44.8 ± 1.89 63.33 ± 6.17 61.21 ± 2.37 

L,0,Na lansoprazole 0 Na2CO3 11.40 ± 0.04 24.11 ± 3.85 18.82 ± 2.24 12.8 ± 0.16 33.44  ± 2.25 

L,0,K lansoprazole 0 K2CO3 11.96 ± 0.56 22.24 ± 1.50 20.27 ± 2.83 17.44 ± 0.98 35.97  ± 1.17 

C,0,Na complex 0 Na2CO3 10.98 ± 1.38 29.06 ± 2.50 26.03 ± 2.11 31.8 ± 1.43 44.21  ± 1.84 

C,0,K complex 0 K2CO3 12.57 ± 0.43 20.73 ± 2.70 22.74 ± 1.58 32.76 ± 1.75 40.72  ± 7.92 

 
  Total release (%) 14.99 ± 5.36 25.71 ± 6.80 27.20 ± 14.07 31.58 ± 21.14 41.68 ± 15.37 

** All experiments were performed with artificial saliva, 2 mL replacement and 60 chews per minute unless stated otherwise. 
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Appendix B: Statistical analysis 

Normality testing 

Tests of Normality 

Gums 
Shapiro-Wilk 

Statistic df Sig. 

 

L,8,Na 0.750 3 0.762 

L,8,K 0.990 3 0.809 

C,8,K 0.750 3 0.0607 

C,8,Na 0.893 3 0.363 

L,0,Na 0.850 3 0.842 

L,0,K 0.995 3 0.862 

C,0,K 0.818 3 0.157 

C,0,Na 1.000 3 0.964 

a. Lilliefors Significance Correction 

 

When looking at release after 30 minutes in vitro mastication in phosphate buffer, the 

significance was above 0.05 from all gums using the Shapiro-Wilk test for normality. 

Parametric testing ANOVA (uni-variate interaction with post hoc LSD tests) and t tests were 

used to calculate significance differences, with release after 30 minutes in vitro mastication 

between formulations and experimental in vitro conditions. The following assumptions were 

considered; all formulations were independent, equal in variance and contained sample 

groups of equal sizes.  

ANOVA testing: Impact of gum base content on in vitro release from 

lansoprazole gum formulations (H gums and L gums) 

Tests of Between-Subjects Effects 

Dependent Variable: Release 

Source Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 49.827a 3 16.609 15.927 0.000 

Intercept 1878.362 1 1878.362 1801.256 0.000 

composition 18.278 1 18.278 17.528 0.002 

pH 21.140 1 21.140 20.272 0.001 

composition * pH 1.445 1 1.445 1.385 0.266 

Error 10.428 10 1.043   

Total 1903.714 14    

Corrected Total 60.255 13    

a. R Squared = .827 (Adjusted R Squared = .775) 

Significant differences in release after 30 minutes were found between H and L gums as a 

result of changing pH of dissolution medium and gum base composition (P < 0.01). 
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ANOVA with LSD post hoc testing  with optimised 41 % w/w percentage gums:  

In vitro release in phosphate buffer pH 6.0 

ANOVA 

 

 Sum of Squares df Mean Square F Sig. 

Between Groups 588.512 7 84.073 79.703 0.000 

Within Groups 14.768 14 1.055   

Total 603.279 21    

Significant differences in release of active after 30 minutes in phosphate buffer pH 6.0 were 

found between gums (P < 0.01). 

Post Hoc Tests Multiple Comparisons 

LSD 

(I) Batch (J) Batch Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K -13.13667* .93756 .000 -15.1475 -11.1258 

C,8,K -8.75667* .93756 .000 -10.7675 -6.7458 

C,8,Na -.02000 .93756 .983 -2.0309 1.9909 

L,0,Na .84500 1.02705 .424 -1.3578 3.0478 

L,0,K .27667 .93756 .772 -1.7342 2.2875 

C,0,K -.33000 .93756 .730 -2.3409 1.6809 

C,0,Na 1.26000 .93756 .200 -.7509 3.2709 

L,8,K 

L,8,Na 13.13667* .93756 .000 11.1258 15.1475 

C,8,K 4.38000* .83858 .000 2.5814 6.1786 

C,8,Na 13.11667* .83858 .000 11.3181 14.9152 

L,0,Na 13.98167* .93756 .000 11.9708 15.9925 

L,0,K 13.41333* .83858 .000 11.6148 15.2119 

C,0,K 12.80667* .83858 .000 11.0081 14.6052 

C,0,Na 14.39667* .83858 .000 12.5981 16.1952 

C,8,K 

L,8,Na 8.75667* .93756 .000 6.7458 10.7675 

L,8,K -4.38000* .83858 .000 -6.1786 -2.5814 

C,8,Na 8.73667* .83858 .000 6.9381 10.5352 

L,0,Na 9.60167* .93756 .000 7.5908 11.6125 

L,0,K 9.03333* .83858 .000 7.2348 10.8319 

C,0,K 8.42667* .83858 .000 6.6281 10.2252 

C,0,Na 10.01667* .83858 .000 8.2181 11.8152 

C,8,Na 

L,8,Na .02000 .93756 .983 -1.9909 2.0309 

L,8,K -13.11667* .83858 .000 -14.9152 -11.3181 

C,8,K -8.73667* .83858 .000 -10.5352 -6.9381 

L,0,Na .86500 .93756 .372 -1.1459 2.8759 

L,0,K .29667 .83858 .729 -1.5019 2.0952 

C,0,K -.31000 .83858 .717 -2.1086 1.4886 
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C,0,Na 1.28000 .83858 .149 -.5186 3.0786 

L,0,Na 

L,8,Na -.84500 1.02705 .424 -3.0478 1.3578 

L,8,K -13.98167* .93756 .000 -15.9925 -11.9708 

C,8,K -9.60167* .93756 .000 -11.6125 -7.5908 

C,8,Na -.86500 .93756 .372 -2.8759 1.1459 

L,0,K -.56833 .93756 .554 -2.5792 1.4425 

C,0,K -1.17500 .93756 .231 -3.1859 .8359 

C,0,Na .41500 .93756 .665 -1.5959 2.4259 

L,0,K 

L,8,Na -.27667 .93756 .772 -2.2875 1.7342 

L,8,K -13.41333* .83858 .000 -15.2119 -11.6148 

C,8,K -9.03333* .83858 .000 -10.8319 -7.2348 

C,8,Na -.29667 .83858 .729 -2.0952 1.5019 

L,0,Na .56833 .93756 .554 -1.4425 2.5792 

C,0,K -.60667 .83858 .481 -2.4052 1.1919 

C,0,Na .98333 .83858 .261 -.8152 2.7819 

C,0,K 

L,8,Na .33000 .93756 .730 -1.6809 2.3409 

L,8,K -12.80667* .83858 .000 -14.6052 -11.0081 

C,8,K -8.42667* .83858 .000 -10.2252 -6.6281 

C,8,Na .31000 .83858 .717 -1.4886 2.1086 

L,0,Na 1.17500 .93756 .231 -.8359 3.1859 

L,0,K .60667 .83858 .481 -1.1919 2.4052 

C,0,Na 1.59000 .83858 .079 -.2086 3.3886 

C,0,Na 

L,8,Na -1.26000 .93756 .200 -3.2709 .7509 

L,8,K -14.39667* .83858 .000 -16.1952 -12.5981 

C,8,K -10.01667* .83858 .000 -11.8152 -8.2181 

C,8,Na -1.28000 .83858 .149 -3.0786 .5186 

L,0,Na -.41500 .93756 .665 -2.4259 1.5959 

L,0,K -.98333 .83858 .261 -2.7819 .8152 

C,0,K -1.59000 .83858 .079 -3.3886 .2086 

*. The mean difference is significant at the 0.05 level. 

 

In vitro release in artificial saliva pH 6.7 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Between Groups 644.053 7 92.008 14.622 0.001 

Within Groups 50.340 8 6.293   

Total 694.393 15    

Significant differences in release of active in artificial saliva pH 6.7 (2 mL replacement) were 

found between gums (P < 0.01). 
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Post Hoc Tests Multiple Comparisons 

LSD 

(I) Batch (J) Batch Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K -18.01500* 2.50849 .000 -23.7996 -12.2304 

C,8,K -17.48000* 2.50849 .000 -23.2646 -11.6954 

C,8,Na -3.66500 2.50849 .182 -9.4496 2.1196 

L,0,Na -6.51000* 2.50849 .032 -12.2946 -.7254 

L,0,K -4.64000 2.50849 .102 -10.4246 1.1446 

C,0,K -3.13000 2.50849 .247 -8.9146 2.6546 

C,0,Na -11.45500* 2.50849 .002 -17.2396 -5.6704 

L,8,K 

L,8,Na 18.01500* 2.50849 .000 12.2304 23.7996 

C,8,K .53500 2.50849 .836 -5.2496 6.3196 

C,8,Na 14.35000* 2.50849 .000 8.5654 20.1346 

L,0,Na 11.50500* 2.50849 .002 5.7204 17.2896 

L,0,K 13.37500* 2.50849 .001 7.5904 19.1596 

C,0,K 14.88500* 2.50849 .000 9.1004 20.6696 

C,0,Na 6.56000* 2.50849 .031 .7754 12.3446 

C,8,K 

L,8,Na 17.48000* 2.50849 .000 11.6954 23.2646 

L,8,K -.53500 2.50849 .836 -6.3196 5.2496 

C,8,Na 13.81500* 2.50849 .001 8.0304 19.5996 

L,0,Na 10.97000* 2.50849 .002 5.1854 16.7546 

L,0,K 12.84000* 2.50849 .001 7.0554 18.6246 

C,0,K 14.35000* 2.50849 .000 8.5654 20.1346 

C,0,Na 6.02500* 2.50849 .043 .2404 11.8096 

C,8,Na 

L,8,Na 3.66500 2.50849 .182 -2.1196 9.4496 

L,8,K -14.35000* 2.50849 .000 -20.1346 -8.5654 

C,8,K -13.81500* 2.50849 .001 -19.5996 -8.0304 

L,0,Na -2.84500 2.50849 .290 -8.6296 2.9396 

L,0,K -.97500 2.50849 .708 -6.7596 4.8096 

C,0,K .53500 2.50849 .836 -5.2496 6.3196 

C,0,Na -7.79000* 2.50849 .015 -13.5746 -2.0054 

L,0,Na 

L,8,Na 6.51000* 2.50849 .032 .7254 12.2946 

L,8,K -11.50500* 2.50849 .002 -17.2896 -5.7204 

C,8,K -10.97000* 2.50849 .002 -16.7546 -5.1854 

C,8,Na 2.84500 2.50849 .290 -2.9396 8.6296 

L,0,K 1.87000 2.50849 .477 -3.9146 7.6546 

C,0,K 3.38000 2.50849 .215 -2.4046 9.1646 

C,0,Na -4.94500 2.50849 .084 -10.7296 .8396 

L,0,K 
L,8,Na 4.64000 2.50849 .102 -1.1446 10.4246 

L,8,K -13.37500* 2.50849 .001 -19.1596 -7.5904 
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C,8,K -12.84000* 2.50849 .001 -18.6246 -7.0554 

C,8,Na .97500 2.50849 .708 -4.8096 6.7596 

L,0,Na -1.87000 2.50849 .477 -7.6546 3.9146 

C,0,K 1.51000 2.50849 .564 -4.2746 7.2946 

C,0,Na -6.81500* 2.50849 .026 -12.5996 -1.0304 

C,0,K 

L,8,Na 3.13000 2.50849 .247 -2.6546 8.9146 

L,8,K -14.88500* 2.50849 .000 -20.6696 -9.1004 

C,8,K -14.35000* 2.50849 .000 -20.1346 -8.5654 

C,8,Na -.53500 2.50849 .836 -6.3196 5.2496 

L,0,Na -3.38000 2.50849 .215 -9.1646 2.4046 

L,0,K -1.51000 2.50849 .564 -7.2946 4.2746 

C,0,Na -8.32500* 2.50849 .011 -14.1096 -2.5404 

C,0,Na 

L,8,Na 11.45500* 2.50849 .002 5.6704 17.2396 

L,8,K -6.56000* 2.50849 .031 -12.3446 -.7754 

C,8,K -6.02500* 2.50849 .043 -11.8096 -.2404 

C,8,Na 7.79000* 2.50849 .015 2.0054 13.5746 

L,0,Na 4.94500 2.50849 .084 -.8396 10.7296 

L,0,K 6.81500* 2.50849 .026 1.0304 12.5996 

C,0,K 8.32500* 2.50849 .011 2.5404 14.1096 

*. The mean difference is significant at the 0.05 level. 

 

In vitro release in artificial saliva pH 6.7 with 20 mL sample replacement 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Between Groups 2940.137 7 420.020 111.710 0.000 

Within Groups 30.079 8 3.760   

Total 2970.216 15    

Significant differences in release of active in artificial saliva pH 6.7 (20 mL 

replacement) were found between gums (P < 0.01). 

Post Hoc Tests Multiple Comparisons  

LSD 

(I) Batch (J) Batch Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K -41.89500* 1.93905 .000 -46.3665 -37.4235 

C,8,K -32.59500* 1.93905 .000 -37.0665 -28.1235 

C,8,Na -6.48500* 1.93905 .010 -10.9565 -2.0135 

L,0,Na -6.61500* 1.93905 .009 -11.0865 -2.1435 

L,0,K -8.07000* 1.93905 .003 -12.5415 -3.5985 
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C,0,K -10.53500* 1.93905 .001 -15.0065 -6.0635 

C,0,Na -13.83000* 1.93905 .000 -18.3015 -9.3585 

L,8,K 

L,8,Na 41.89500* 1.93905 .000 37.4235 46.3665 

C,8,K 9.30000* 1.93905 .001 4.8285 13.7715 

C,8,Na 35.41000* 1.93905 .000 30.9385 39.8815 

L,0,Na 35.28000* 1.93905 .000 30.8085 39.7515 

L,0,K 33.82500* 1.93905 .000 29.3535 38.2965 

C,0,K 31.36000* 1.93905 .000 26.8885 35.8315 

C,0,Na 28.06500* 1.93905 .000 23.5935 32.5365 

C,8,K 

L,8,Na 32.59500* 1.93905 .000 28.1235 37.0665 

L,8,K -9.30000* 1.93905 .001 -13.7715 -4.8285 

C,8,Na 26.11000* 1.93905 .000 21.6385 30.5815 

L,0,Na 25.98000* 1.93905 .000 21.5085 30.4515 

L,0,K 24.52500* 1.93905 .000 20.0535 28.9965 

C,0,K 22.06000* 1.93905 .000 17.5885 26.5315 

C,0,Na 18.76500* 1.93905 .000 14.2935 23.2365 

C,8,Na 

L,8,Na 6.48500* 1.93905 .010 2.0135 10.9565 

L,8,K -35.41000* 1.93905 .000 -39.8815 -30.9385 

C,8,K -26.11000* 1.93905 .000 -30.5815 -21.6385 

L,0,Na -.13000 1.93905 .948 -4.6015 4.3415 

L,0,K -1.58500 1.93905 .437 -6.0565 2.8865 

C,0,K -4.05000 1.93905 .070 -8.5215 .4215 

C,0,Na -7.34500* 1.93905 .005 -11.8165 -2.8735 

L,0,Na 

L,8,Na 6.61500* 1.93905 .009 2.1435 11.0865 

L,8,K -35.28000* 1.93905 .000 -39.7515 -30.8085 

C,8,K -25.98000* 1.93905 .000 -30.4515 -21.5085 

C,8,Na .13000 1.93905 .948 -4.3415 4.6015 

L,0,K -1.45500 1.93905 .475 -5.9265 3.0165 

C,0,K -3.92000 1.93905 .078 -8.3915 .5515 

C,0,Na -7.21500* 1.93905 .006 -11.6865 -2.7435 

L,0,K 

L,8,Na 8.07000* 1.93905 .003 3.5985 12.5415 

L,8,K -33.82500* 1.93905 .000 -38.2965 -29.3535 

C,8,K -24.52500* 1.93905 .000 -28.9965 -20.0535 

C,8,Na 1.58500 1.93905 .437 -2.8865 6.0565 

L,0,Na 1.45500 1.93905 .475 -3.0165 5.9265 

C,0,K -2.46500 1.93905 .239 -6.9365 2.0065 

C,0,Na -5.76000* 1.93905 .018 -10.2315 -1.2885 

C,0,K 

L,8,Na 10.53500* 1.93905 .001 6.0635 15.0065 

L,8,K -31.36000* 1.93905 .000 -35.8315 -26.8885 

C,8,K -22.06000* 1.93905 .000 -26.5315 -17.5885 

C,8,Na 4.05000 1.93905 .070 -.4215 8.5215 

L,0,Na 3.92000 1.93905 .078 -.5515 8.3915 
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L,0,K 2.46500 1.93905 .239 -2.0065 6.9365 

C,0,Na -3.29500 1.93905 .128 -7.7665 1.1765 

C,0,Na 

L,8,Na 13.83000* 1.93905 .000 9.3585 18.3015 

L,8,K -28.06500* 1.93905 .000 -32.5365 -23.5935 

C,8,K -18.76500* 1.93905 .000 -23.2365 -14.2935 

C,8,Na 7.34500* 1.93905 .005 2.8735 11.8165 

L,0,Na 7.21500* 1.93905 .006 2.7435 11.6865 

L,0,K 5.76000* 1.93905 .018 1.2885 10.2315 

C,0,K 3.29500 1.93905 .128 -1.1765 7.7665 

*. The mean difference is significant at the 0.05 level. 

 

In vitro release in artificial saliva pH 8.0 with 20 mL sample replacement 

ANOVA 

 

 Sum of Squares df Mean Square F Sig. 

Between Groups 6657.557 7 951.080 161.524 0.000 

Within Groups 47.105 8 5.888   

Total 6704.662 15    

Significant differences in release of active in artificial saliva pH 8.0 (20 mL replacement) 

were found between gums (P < 0.01). 

Post Hoc Tests Multiple Comparisons  

LSD 

(I) Batch (J) Batch Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K -56.07500* 2.42655 .000 -61.6706 -50.4794 

C,8,K -54.17000* 2.42655 .000 -59.7656 -48.5744 

C,8,Na -10.96000* 2.42655 .002 -16.5556 -5.3644 

L,0,Na -3.64000 2.42655 .172 -9.2356 1.9556 

L,0,K -8.28000* 2.42655 .009 -13.8756 -2.6844 

C,0,K -23.60000* 2.42655 .000 -29.1956 -18.0044 

C,0,Na -22.64000* 2.42655 .000 -28.2356 -17.0444 

L,8,K 

L,8,Na 56.07500* 2.42655 .000 50.4794 61.6706 

C,8,K 1.90500 2.42655 .455 -3.6906 7.5006 

C,8,Na 45.11500* 2.42655 .000 39.5194 50.7106 

L,0,Na 52.43500* 2.42655 .000 46.8394 58.0306 

L,0,K 47.79500* 2.42655 .000 42.1994 53.3906 

C,0,K 32.47500* 2.42655 .000 26.8794 38.0706 

C,0,Na 33.43500* 2.42655 .000 27.8394 39.0306 

C,8,K L,8,Na 54.17000* 2.42655 .000 48.5744 59.7656 
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L,8,K -1.90500 2.42655 .455 -7.5006 3.6906 

C,8,Na 43.21000* 2.42655 .000 37.6144 48.8056 

L,0,Na 50.53000* 2.42655 .000 44.9344 56.1256 

L,0,K 45.89000* 2.42655 .000 40.2944 51.4856 

C,0,K 30.57000* 2.42655 .000 24.9744 36.1656 

C,0,Na 31.53000* 2.42655 .000 25.9344 37.1256 

C,8,Na 

L,8,Na 10.96000* 2.42655 .002 5.3644 16.5556 

L,8,K -45.11500* 2.42655 .000 -50.7106 -39.5194 

C,8,K -43.21000* 2.42655 .000 -48.8056 -37.6144 

L,0,Na 7.32000* 2.42655 .017 1.7244 12.9156 

L,0,K 2.68000 2.42655 .302 -2.9156 8.2756 

C,0,K -12.64000* 2.42655 .001 -18.2356 -7.0444 

C,0,Na -11.68000* 2.42655 .001 -17.2756 -6.0844 

L,0,Na 

L,8,Na 3.64000 2.42655 .172 -1.9556 9.2356 

L,8,K -52.43500* 2.42655 .000 -58.0306 -46.8394 

C,8,K -50.53000* 2.42655 .000 -56.1256 -44.9344 

C,8,Na -7.32000* 2.42655 .017 -12.9156 -1.7244 

L,0,K -4.64000 2.42655 .092 -10.2356 .9556 

C,0,K -19.96000* 2.42655 .000 -25.5556 -14.3644 

C,0,Na -19.00000* 2.42655 .000 -24.5956 -13.4044 

L,0,K 

L,8,Na 8.28000* 2.42655 .009 2.6844 13.8756 

L,8,K -47.79500* 2.42655 .000 -53.3906 -42.1994 

C,8,K -45.89000* 2.42655 .000 -51.4856 -40.2944 

C,8,Na -2.68000 2.42655 .302 -8.2756 2.9156 

L,0,Na 4.64000 2.42655 .092 -.9556 10.2356 

C,0,K -15.32000* 2.42655 .000 -20.9156 -9.7244 

C,0,Na -14.36000* 2.42655 .000 -19.9556 -8.7644 

C,0,K 

L,8,Na 23.60000* 2.42655 .000 18.0044 29.1956 

L,8,K -32.47500* 2.42655 .000 -38.0706 -26.8794 

C,8,K -30.57000* 2.42655 .000 -36.1656 -24.9744 

C,8,Na 12.64000* 2.42655 .001 7.0444 18.2356 

L,0,Na 19.96000* 2.42655 .000 14.3644 25.5556 

L,0,K 15.32000* 2.42655 .000 9.7244 20.9156 

C,0,Na .96000 2.42655 .703 -4.6356 6.5556 

C,0,Na 

L,8,Na 22.64000* 2.42655 .000 17.0444 28.2356 

L,8,K -33.43500* 2.42655 .000 -39.0306 -27.8394 

C,8,K -31.53000* 2.42655 .000 -37.1256 -25.9344 

C,8,Na 11.68000* 2.42655 .001 6.0844 17.2756 

L,0,Na 19.00000* 2.42655 .000 13.4044 24.5956 

L,0,K 14.36000* 2.42655 .000 8.7644 19.9556 

C,0,K -.96000 2.42655 .703 -6.5556 4.6356 
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* The mean difference is significant at the 0.05 level. 

 

In vitro release in artificial saliva pH 8.0 with 20 mL sample replacement and 83 chews 

per minute 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Between Groups 3461.745 7 494.535 48.900 0.000 

Within Groups 80.906 8 10.113   

Total 3542.651 15    

Significant differences in release of active in artificial saliva pH 8.0 (20 mL replacement) and 

83 chews per minute were found between gums (P < 0.01). 

Post Hoc Tests Multiple Comparisons  

LSD 

(I) Batch (J) Batch Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K -46.48000* 3.18013 .000 -53.8134 -39.1466 

C,8,K -40.23000* 3.18013 .000 -47.5634 -32.8966 

C,8,Na -8.51000* 3.18013 .028 -15.8434 -1.1766 

L,0,Na -12.46500* 3.18013 .004 -19.7984 -5.1316 

L,0,K -14.99000* 3.18013 .002 -22.3234 -7.6566 

C,0,K -19.74500* 3.18013 .000 -27.0784 -12.4116 

C,0,Na -23.23500* 3.18013 .000 -30.5684 -15.9016 

L,8,K 

L,8,Na 46.48000* 3.18013 .000 39.1466 53.8134 

C,8,K 6.25000 3.18013 .085 -1.0834 13.5834 

C,8,Na 37.97000* 3.18013 .000 30.6366 45.3034 

L,0,Na 34.01500* 3.18013 .000 26.6816 41.3484 

L,0,K 31.49000* 3.18013 .000 24.1566 38.8234 

C,0,K 26.73500* 3.18013 .000 19.4016 34.0684 

C,0,Na 23.24500* 3.18013 .000 15.9116 30.5784 

C,8,K 

L,8,Na 40.23000* 3.18013 .000 32.8966 47.5634 

L,8,K -6.25000 3.18013 .085 -13.5834 1.0834 

C,8,Na 31.72000* 3.18013 .000 24.3866 39.0534 

L,0,Na 27.76500* 3.18013 .000 20.4316 35.0984 

L,0,K 25.24000* 3.18013 .000 17.9066 32.5734 

C,0,K 20.48500* 3.18013 .000 13.1516 27.8184 

C,0,Na 16.99500* 3.18013 .001 9.6616 24.3284 

C,8,Na 

L,8,Na 8.51000* 3.18013 .028 1.1766 15.8434 

L,8,K -37.97000* 3.18013 .000 -45.3034 -30.6366 

C,8,K -31.72000* 3.18013 .000 -39.0534 -24.3866 

L,0,Na -3.95500 3.18013 .249 -11.2884 3.3784 
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L,0,K -6.48000 3.18013 .076 -13.8134 .8534 

C,0,K -11.23500* 3.18013 .008 -18.5684 -3.9016 

C,0,Na -14.72500* 3.18013 .002 -22.0584 -7.3916 

L,0,Na 

L,8,Na 12.46500* 3.18013 .004 5.1316 19.7984 

L,8,K -34.01500* 3.18013 .000 -41.3484 -26.6816 

C,8,K -27.76500* 3.18013 .000 -35.0984 -20.4316 

C,8,Na 3.95500 3.18013 .249 -3.3784 11.2884 

L,0,K -2.52500 3.18013 .450 -9.8584 4.8084 

C,0,K -7.28000 3.18013 .051 -14.6134 .0534 

C,0,Na -10.77000* 3.18013 .010 -18.1034 -3.4366 

L,0,K 

L,8,Na 14.99000* 3.18013 .002 7.6566 22.3234 

L,8,K -31.49000* 3.18013 .000 -38.8234 -24.1566 

C,8,K -25.24000* 3.18013 .000 -32.5734 -17.9066 

C,8,Na 6.48000 3.18013 .076 -.8534 13.8134 

L,0,Na 2.52500 3.18013 .450 -4.8084 9.8584 

C,0,K -4.75500 3.18013 .173 -12.0884 2.5784 

C,0,Na -8.24500* 3.18013 .032 -15.5784 -.9116 

C,0,K 

L,8,Na 19.74500* 3.18013 .000 12.4116 27.0784 

L,8,K -26.73500* 3.18013 .000 -34.0684 -19.4016 

C,8,K -20.48500* 3.18013 .000 -27.8184 -13.1516 

C,8,Na 11.23500* 3.18013 .008 3.9016 18.5684 

L,0,Na 7.28000 3.18013 .051 -.0534 14.6134 

L,0,K 4.75500 3.18013 .173 -2.5784 12.0884 

C,0,Na -3.49000 3.18013 .304 -10.8234 3.8434 

C,0,Na 

L,8,Na 23.23500* 3.18013 .000 15.9016 30.5684 

L,8,K -23.24500* 3.18013 .000 -30.5784 -15.9116 

C,8,K -16.99500* 3.18013 .001 -24.3284 -9.6616 

C,8,Na 14.72500* 3.18013 .002 7.3916 22.0584 

L,0,Na 10.77000* 3.18013 .010 3.4366 18.1034 

L,0,K 8.24500* 3.18013 .032 .9116 15.5784 

C,0,K 3.49000 3.18013 .304 -3.8434 10.8234 

* The mean difference is significant at the 0.05 level. 
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Interaction between experimental in vitro conditions - t tests 

The effect of dissolution medium phosphate buffer pH 6.0 vs saliva pH 6.7 

 

Independent Samples Test 

 Levene‟s Test for 

Equality of Variances 

t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Release 

Equal variances 

assumed 
1.815 .186 5.437 36 0.000 10.72506 1.97266 6.72432 14.72579 

Equal variances not 

assumed 

  

5.234 27.582 0.000 10.72506 2.04917 6.52465 14.92546 

Significant differences in release from gums were found between phosphate buffer pH 6.0 

and saliva pH 6.7 (P < 0.01). 

ANOVA with LSD post hoc testing on optimised 41 % w/w percentage gums  

 Texture profile analysis  

Hardness 

ANOVA 

 

 Sum of Squares df Mean Square F Sig. 

Between Groups 2822781.935 7 403254.562 26.153 0.000 

Within Groups 246703.386 16 15418.962   

Total 3069485.322 23    

 

Significant differences in hardness were found between gums (P < 0.01). 

Post hoc Multiple Comparisons 

LSD 

(I) Batch (J) Batch Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K 470.70700* 101.38692 .000 255.7763 685.6377 

C,8,K 405.41733* 101.38692 .001 190.4867 620.3480 

C,8,Na -214.90500 101.38692 .050 -429.8357 .0257 

L,0,Na -364.97900* 101.38692 .002 -579.9097 -150.0483 

L,0,K -463.80600* 101.38692 .000 -678.7367 -248.8753 

C,0,K -400.88133* 101.38692 .001 -615.8120 -185.9507 

C,0,Na -310.35433* 101.38692 .007 -525.2850 -95.4237 
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L,8,K 

L,8,Na -470.70700* 101.38692 .000 -685.6377 -255.7763 

C,8,K -65.28967 101.38692 .529 -280.2203 149.6410 

C,8,Na -685.61200* 101.38692 .000 -900.5427 -470.6813 

L,0,Na -835.68600* 101.38692 .000 -1050.6167 -620.7553 

L,0,K -934.51300* 101.38692 .000 -1149.4437 -719.5823 

C,0,K -871.58833* 101.38692 .000 -1086.5190 -656.6577 

C,0,Na -781.06133* 101.38692 .000 -995.9920 -566.1307 

C,8,K 

L,8,Na -405.41733* 101.38692 .001 -620.3480 -190.4867 

L,8,K 65.28967 101.38692 .529 -149.6410 280.2203 

C,8,Na -620.32233* 101.38692 .000 -835.2530 -405.3917 

L,0,Na -770.39633* 101.38692 .000 -985.3270 -555.4657 

L,0,K -869.22333* 101.38692 .000 -1084.1540 -654.2927 

C,0,K -806.29867* 101.38692 .000 -1021.2293 -591.3680 

C,0,Na -715.77167* 101.38692 .000 -930.7023 -500.8410 

C,8,Na 

L,8,Na 214.90500 101.38692 .050 -.0257 429.8357 

L,8,K 685.61200* 101.38692 .000 470.6813 900.5427 

C,8,K 620.32233* 101.38692 .000 405.3917 835.2530 

L,0,Na -150.07400 101.38692 .158 -365.0047 64.8567 

L,0,K -248.90100* 101.38692 .026 -463.8317 -33.9703 

C,0,K -185.97633 101.38692 .085 -400.9070 28.9543 

C,0,Na -95.44933 101.38692 .360 -310.3800 119.4813 

L,0,Na 

L,8,Na 364.97900* 101.38692 .002 150.0483 579.9097 

L,8,K 835.68600* 101.38692 .000 620.7553 1050.6167 

C,8,K 770.39633* 101.38692 .000 555.4657 985.3270 

C,8,Na 150.07400 101.38692 .158 -64.8567 365.0047 

L,0,K -98.82700 101.38692 .344 -313.7577 116.1037 

C,0,K -35.90233 101.38692 .728 -250.8330 179.0283 

C,0,Na 54.62467 101.38692 .597 -160.3060 269.5553 

L,0,K 

L,8,Na 463.80600* 101.38692 .000 248.8753 678.7367 

L,8,K 934.51300* 101.38692 .000 719.5823 1149.4437 

C,8,K 869.22333* 101.38692 .000 654.2927 1084.1540 

C,8,Na 248.90100* 101.38692 .026 33.9703 463.8317 

L,0,Na 98.82700 101.38692 .344 -116.1037 313.7577 

C,0,K 62.92467 101.38692 .544 -152.0060 277.8553 

C,0,Na 153.45167 101.38692 .150 -61.4790 368.3823 

C,0,K 

L,8,Na 400.88133* 101.38692 .001 185.9507 615.8120 

L,8,K 871.58833* 101.38692 .000 656.6577 1086.5190 

C,8,K 806.29867* 101.38692 .000 591.3680 1021.2293 

C,8,Na 185.97633 101.38692 .085 -28.9543 400.9070 

L,0,Na 35.90233 101.38692 .728 -179.0283 250.8330 

L,0,K -62.92467 101.38692 .544 -277.8553 152.0060 

C,0,Na 90.52700 101.38692 .385 -124.4037 305.4577 

C,0,Na L,8,Na 310.35433* 101.38692 .007 95.4237 525.2850 
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L,8,K 781.06133* 101.38692 .000 566.1307 995.9920 

C,8,K 715.77167* 101.38692 .000 500.8410 930.7023 

C,8,Na 95.44933 101.38692 .360 -119.4813 310.3800 

L,0,Na -54.62467 101.38692 .597 -269.5553 160.3060 

L,0,K -153.45167 101.38692 .150 -368.3823 61.4790 

C,0,K -90.52700 101.38692 .385 -305.4577 124.4037 

*. The mean difference is significant at the 0.05 level. 

 

Cohesion 

ANOVA 

 

 Sum of Squares df Mean Square F Sig. 

Between Groups 20538333.365 7 2934047.624 33.022 0.000 

Within Groups 1421607.406 16 88850.463   

Total 21959940.771 23    

Significant differences in cohesion were found between gums (P < 0.01). 

Post hoc Multiple Comparisons 

LSD 

(I) batch number (J) batch number Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

L,8,Na 

L,8,K 950.33233* 243.37963 .001 434.3906 1466.2741 

C,8,K 866.97700* 243.37963 .003 351.0352 1382.9188 

C,8,Na -835.33067* 243.37963 .003 -1351.2724 -319.3889 

L,0,Na -1084.30633* 243.37963 .000 -1600.2481 -568.3646 

L,0,K -1534.01400* 243.37963 .000 -2049.9558 -1018.0722 

C,0,K -1400.35433* 243.37963 .000 -1916.2961 -884.4126 

C,0,Na -1039.50300* 243.37963 .001 -1555.4448 -523.5612 

L,8,K 

L,8,Na -950.33233* 243.37963 .001 -1466.2741 -434.3906 

C,8,K -83.35533 243.37963 .736 -599.2971 432.5864 

C,8,Na -1785.66300* 243.37963 .000 -2301.6048 -1269.7212 

L,0,Na -2034.63867* 243.37963 .000 -2550.5804 -1518.6969 

L,0,K -2484.34633* 243.37963 .000 -3000.2881 -1968.4046 

C,0,K -2350.68667* 243.37963 .000 -2866.6284 -1834.7449 

C,0,Na -1989.83533* 243.37963 .000 -2505.7771 -1473.8936 

C,8,K 

L,8,Na -866.97700* 243.37963 .003 -1382.9188 -351.0352 

L,8,K 83.35533 243.37963 .736 -432.5864 599.2971 

C,8,Na -1702.30767* 243.37963 .000 -2218.2494 -1186.3659 

L,0,Na -1951.28333* 243.37963 .000 -2467.2251 -1435.3416 

L,0,K -2400.99100* 243.37963 .000 -2916.9328 -1885.0492 



219 
  
 

C,0,K -2267.33133* 243.37963 .000 -2783.2731 -1751.3896 

C,0,Na -1906.48000* 243.37963 .000 -2422.4218 -1390.5382 

C,8,Na 

L,8,Na 835.33067* 243.37963 .003 319.3889 1351.2724 

L,8,K 1785.66300* 243.37963 .000 1269.7212 2301.6048 

C,8,K 1702.30767* 243.37963 .000 1186.3659 2218.2494 

L,0,Na -248.97567 243.37963 .322 -764.9174 266.9661 

L,0,K -698.68333* 243.37963 .011 -1214.6251 -182.7416 

C,0,K -565.02367* 243.37963 .034 -1080.9654 -49.0819 

C,0,Na -204.17233 243.37963 .414 -720.1141 311.7694 

L,0,Na 

L,8,Na 1084.30633* 243.37963 .000 568.3646 1600.2481 

L,8,K 2034.63867* 243.37963 .000 1518.6969 2550.5804 

C,8,K 1951.28333* 243.37963 .000 1435.3416 2467.2251 

C,8,Na 248.97567 243.37963 .322 -266.9661 764.9174 

L,0,K -449.70767 243.37963 .083 -965.6494 66.2341 

C,0,K -316.04800 243.37963 .212 -831.9898 199.8938 

C,0,Na 44.80333 243.37963 .856 -471.1384 560.7451 

L,0,K 

L,8,Na 1534.01400* 243.37963 .000 1018.0722 2049.9558 

L,8,K 2484.34633* 243.37963 .000 1968.4046 3000.2881 

C,8,K 2400.99100* 243.37963 .000 1885.0492 2916.9328 

C,8,Na 698.68333* 243.37963 .011 182.7416 1214.6251 

L,0,Na 449.70767 243.37963 .083 -66.2341 965.6494 

C,0,K 133.65967 243.37963 .590 -382.2821 649.6014 

C,0,Na 494.51100 243.37963 .059 -21.4308 1010.4528 

C,0,K 

L,8,Na 1400.35433* 243.37963 .000 884.4126 1916.2961 

L,8,K 2350.68667* 243.37963 .000 1834.7449 2866.6284 

C,8,K 2267.33133* 243.37963 .000 1751.3896 2783.2731 

C,8,Na 565.02367* 243.37963 .034 49.0819 1080.9654 

L,0,Na 316.04800 243.37963 .212 -199.8938 831.9898 

L,0,K -133.65967 243.37963 .590 -649.6014 382.2821 

C,0,Na 360.85133 243.37963 .158 -155.0904 876.7931 

C,0,Na 

L,8,Na 1039.50300* 243.37963 .001 523.5612 1555.4448 

L,8,K 1989.83533* 243.37963 .000 1473.8936 2505.7771 

C,8,K 1906.48000* 243.37963 .000 1390.5382 2422.4218 

C,8,Na 204.17233 243.37963 .414 -311.7694 720.1141 

L,0,Na -44.80333 243.37963 .856 -560.7451 471.1384 

L,0,K -494.51100 243.37963 .059 -1010.4528 21.4308 

C,0,K -360.85133 243.37963 .158 -876.7931 155.0904 

*. The mean difference is significant at the 0.05 level. 
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Buccal mucosal permeability t tests (Mann-Whitney) 

Comparison of free lansoprazole versus complexed lansoprazole (mean ± s.d) 

Parameter Lansoprazole Complexed lansoprazole P value 

Flux (µg/mL/cm
2
) 0.55 ± 0.12 0.85 ± 0.33 0.030 

Permeability coefficient (KP) (µg/mL) 0.025 ± 0.014 0.019 ± 0.004 0.792 

Significant differences in flux were found between free lansoprazole and complexed 

lansoprazole (P < 0.05). 

 

Comparison of Killing Time (mean ± s.d) 

Parameter 2 hours 20 hours P value 

Flux (µg/mL/cm
2
) 0.75 ± 0.16 0.69 ± 0.38 0.177 

Permeability coefficient (KP) (µg/mL) 0.024 ± 0.010 0.020 ± 0.010 0.247 

No significant differences in permeability were found between porcine tissues after time of 

sacrifice (P > 0.05). 

 

Comparison of pH conditions (mean ± s.d) 

Parameter pH 6.8 pH 8.6 P value 

Flux (µg/mL/cm
2
) 0.63 ± 0.13 0.79 ± 0.38 0.662 

Permeability coefficient (KP) (µg/mL) 0.028 ± 0.011 0.016 ± 0.004 0.052 

No significant differences in permeability were found between pH conditions (P > 0.05). 
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