

University of Huddersfield Repository

Shackleton, Philip

Benchmarks for rail vehicle dynamics simulation

Original Citation

Shackleton, Philip (2015) Benchmarks for rail vehicle dynamics simulation. In: FRA Vehicle-Track Simulation Software Workshop, 30 June - 01 July 2015, Volpe Center, Cambridge, MA. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/25381/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

FRA VTI Modelling Best Practices Workshop

Dr Phil Shackleton

Cambridge, MA 30th June – 1st July 2015

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

University of HUDDERSFIELD Institute of Railway Research

IRR – Structure and team

Institute of Railway Research:

• Management Team

Centre for Innovation in Rail

• 17 Researchers + 1 MSc administrator

RSSB Strategic Partnership

- 1 Professor
- 9 Researchers

IRR Research

- 6 Research staff
- 2 Professors

IRR Core Research Areas

Wheel-Rail Interaction: Modelling wheel-rail contact and resulting damage (wear, rolling contact fatigue corrugation etc). Methods of optimising the interface for heavy rail, light rail and metro systems.

Railway Vehicle Dynamics: Vehicle track interaction, derailment analysis, vehicle acceptance procedures and performance optimisation for heavy rail, light rail and metro vehicles.

Track-system Dynamics: Modelling of complete trackforms and vehicle interaction. Predictions of force distributions, track and fixing response and structural resistance. Trackform design and failure mode investigations.

Instrumentation and Condition Monitoring: Vehicle and track mounted measurement systems, condition monitoring and asset life optimisation.

Railway Safety and Risk:, safety/risk modelling, data trend analysis, safety system development, societal risk (e.g. modal shift), SPAD analysis, integrating engineering and risk tools.

Veh.Track.Interaction Research Tools

- Vampire
- Vi-Rail
- Simpack

- Coupled vertical/lateral dynamics (Matlab)
- Flexible Track System Model (VI-Rail)

Track system modelling

• FTSM (VI-Rail and Matlab)

New test facility for 2016

New test facility for 2016

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

Why Benchmark?

- Verification
- Identify and quantify the effects of approximations, simplifications and compromises made
 - Range and sensitivity of input parameters
 - Implementation
 - Ease of use
 - Speed
 - Computational resources
 - Versus accuracy

Why Benchmark?

- Provide reassurance & confidence in the use of the software tools
 - When multiple codes with differing approaches, background or philosophies agree
 - Support increased use (e.g. in design and acceptance)
 - Reduce physical testing
- Provide a platform for developers to corroborate/validate new codes and methods
 - Could/can also propagate errors or bad practice or:
 - Lead to good matches in only one area
- Identify gaps in performance or knowledge and opportunities
 - Drive future developments

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

Benchmarks for Rail Dynamics

- ERRI B176/3 (1993)
- Multi-body computer codes in vehicle system dynamics (1993)
- Models of railway track and vehicle/track interaction (1994-6)
- Manchester benchmarks for rail vehicle dynamics (1998/9)
- Benchmark test for models of railway track dynamic behaviour (2004/5)
- LD Benchmark (2008)
- Manchester Contact Benchmark (2008)
- Miscellaneous research articles

Multi-body computer codes in vehicle system dynamics (1993)

Kortüm, W. & Sharp, R.S.

- Area covered:
 - Wheel-rail contact forces
 - Vehicle dynamics vehicle response
- Aimed to ascertain:
 - The process used to solve the problem
 - The level of skill required
 - The time taken
 - The resources required and efficiency
- Conclusions (rail dynamics specifically):
 - Contact modelling approach has a strong influence on the dynamic result
 - The approach used for modelling the springs should be done very carefully for the different arrangements used in practice
 - High frequency components play a major part in output. Similar filtering should be used when comparing signals
- Conclusions (benchmarking general)
 - The values of benchmarking lie in:
 - The precise specification of the problem
 - The provision of a "correct" solution to which the new solutions can be compared
 - The exposure of key open modelling areas, which are shown as crucial to obtaining good results but which are not circumscribed by conventional wisdom
 - Recording results which relate the method, skill, effort and resource necessary as well the ability to solve the problem

Models of railway track and vehicle/track interaction (1994-6)

Knothe, K. & Grassie, S.L.

- Models of railway track and vehicle/track interaction (1994-6)
 - Split into high and low frequency
- Low frequency
 - Calculation of quantities for ride quality and track loading
 - Passenger coach
 - No references for results?
- High Frequency
- Aim:
 - Enable users to see the agreement between models for rigorously stipulated conditions
 - High frequency realm of noise, corrugation and track component damage
- Conclusions
 - The detail of the vehicle model appeared to be relatively significant
 - The Low Frequency model [MBD model] gave relatively poor correlation of most quantities
 - Time domain models benefited from accounting for low frequency phenomena [bow wave]
 - Difficulty in assessing the degree of correlation was noted
 - Both time and frequency domain models gave reasonable correlation (above exception)
 - Could not conclude calculations were accurate due to absence of experimental data

Manchester Benchmarks for Rail Vehicle Simulation (1998/9)

Iwnicki, S.

- Area covered:
 - Vehicle dynamics vehicle response
- Aims:
 - To allow assessment of the suitability of the various software packages that now exit for simulation of vehicle dynamics
 - To explore the possibility of an approved list of packages to be used interchangeably by railway organisations
- It did not aim to:
 - Provide accurate validation of the software packages
- Conclusions:
 - It was difficult to draw clear conclusions
 - Generally good agreement between packages was noted
 - Users should have confidence of a similar result using an alternative package
 - The treatment of contact patch elasticity requires further work
 - There is no agreement on the method used to determine the exact location of the contact patch and the point at which the contact forces act
 - Those variations did not lead to large differences in the overall results and are insignificant
 - The case may exist where these small differences become important

Benchmark test for models of railway track dynamic behaviour (2004/5)

Leong, J., Murray, M., Steffens, D.

Area covered:

- Vehicle and track dynamics
- Rail and track response

Aim:

- Examine the capabilities of available track dynamics models against measurements of real track behaviour
- Assist railway engineers in selecting the railway dynamic model that would be most suitable for their specific requirements

Conclusion:

- None of the benchmark participants were able to produce results that were consistently comparable to either:
 - Field data
 - Other models
- Each model had particular strengths and the practising engineer must consider those strengths for a given need

LD Benchmark (2008)

Marquis, B. & Pascal, J.-P.

Area covered:

- The benchmark involved the computation of contact forces resulting from elastic impact of wheel flanges on stiff track
- Typical of conditions associated with higher speed derailments

Aim:

- Analyse normal contact force calculations and modelling of flanging with impacts
- Understand how different modelling assumptions influence the results
- Promote technology transfer to produce more consistent predictions

Conclusions:

- For flanging impacts results are very sensitive to input parameters
 - Parametric studies are required for assessing derailment risk for the studied mechanism
- When input parameters and modelling assumptions were the same good agreement between codes was observed

Figure 5. Normal forces of exercise 3S, initial lateral velocity = 1 m/s.

Manchester Contact Benchmark (2008)

Shackleton, P. & Iwnicki, S.

Area covered:

- Investigate the difference in wheel rail contact parameters predicted by different models
- Investigate the effects of the different contact models on dynamic vehicle simulations

Aim:

- Allow an informed choice of wheel-rail contact model for railway simulations
- To help inspire direction for future wheel-rail contact research

Conclusions:

- The method of constraint for the wheelset was not specified and differing implementations affected the results presented
- For certain applications (such as wear calculations) results could be significantly affected by the contact model used
- The second part of the benchmark "Case B" to investigate the effects on dynamic vehicle simulation – was never undertaken

Figure 13. The contact patch shapes and position at the right wheel-rail interface size for Case A1.1 new profiles 20 kN load. The contact positions are defined in the local rail coordinate system (0 mm lateral displacement).

Research articles

- A multitude of comparative research
- Not necessarily set out as a benchmark exercise they can often partially serve the purposes of one
- Normally the work sets out to prove a specific point
 - Scenarios can be quite specific
 - Emphasis often on the benefits of new methods over existing
 - A balanced comparison not always presented
 - The consequences for the general case may not be obvious
- Identify and fill gaps in the state of the art
- Help drive best practices
- Can help justify more comprehensive benchmarking exercises

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

Conclusions from recent benchmarks

- Vehicle dynamic response
 - Good agreement in multi-body dynamic response can be achieved
 - Where the benchmark conditions are clearly specified and interpreted in the same way
 - Differences in output are normally attributed to differing modelling philosophies
 (e.g. contact model) or differing interpretation of specifications
 - Subjective factors such as user skill required, ease of implementation and time required to construct models are not well compared
 - There appears to be little need for further verification of multi-body codes themselves
 - Simulation packages and codes provide correct answers for the given input parameters

Conclusions from recent benchmarks

Wheel-rail contact

- There is agreement that the contact model or philosophy used affects the outcome of dynamic simulations
- In certain areas can be significant
 - E.g. post-processing for wear and RCF prediction, high speed derailment
- Quantification of the errors/variation expected in dynamic vehicle response is not well established
 - E.g. what level of sophistication is necessary for derailment analysis, gauging, curving, etc.
 - How do errors attributable to wheel-rail contact compare to other errors and uncertainties (e.g. component degradation, tolerances, etc.)

Track dynamics

- Consistently comparable output from codes has not been demonstrated
- Different codes providing different answers low confidence in outputs might be inferred
 - Complex models require a wide range of precise inputs (which might not be precisely known)
 - There is not wide agreement in the modelling approach/assumptions/philosophy used
- Opportunity for quantifying the influence of track model on vehicle response

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

- Wheel-rail contact more could be done
 - Relating wheel-rail contact model to variation in dynamic or quasi-static vehicle response
 - Quantify differences expected in wear and RCF calculations
 - Provide guidance for use in asset life management
 - Increase confidence in asset life predictions
- Latest benchmark for vehicle dynamics packages is somewhat dated
 - Is there a clear need to repeat benchmark?
 - Benchmarking simulation codes against measurement data is lacking
- Benchmark modelling techniques and element representation
 - E.g. varying detail of friction suspension and effects in accuracy observed
 - Identify the optimum detail versus modelling efficiency balance

- Track model
 - Far less validation for track
 - Influence of track model on vehicle response
 - Consequences of variation in higher frequency output for post processing activities (e.g. S&C damage)
 - Innotrack recommended further benchmark studies to build on work of Leong and Steffens

- The representation and necessity of vehicle flexible bodies
 - Required modes for differing uses
 - Requisite accuracy of modal data

- Quantification of the effects of the subjective and uncertainty factors associated with developing a validated vehicle model
 - DynoTrain sought to reduce the influence of subjectivity on validation
 - Simulation versus measurement data
 - No published simulation-simulation comparisons?
 - Effects of residual subjectivity
 - Correlation between independent models could further increase confidence
 - Particularly near limit cases
 - Reality of imperfect validation and/or test data
 - Fitting model response to test data
 - Non-unique solutions (e.g. sway tests matching)
 - Vertical CoG or suspension geometry?
 - Consideration of uncertainties and unknowns

- Quantification of effects associated with input data qualities
 - Guide best practices
 - Requirements to avoid ambiguous implementation
 - Frequency content and resolution of time and distance data
 - Data pre-processing e.g. worn profile smoothing or resampling
 - Spatial resolution of measured rail profiles
- Methods used to quantify benchmark results
 - Frequency content and resolution of time and distance data
 - Data post-processing
 - E.g. filtering and statistical representation
 - Quantifiable correlation metrics
 - Comparators for expertise and user time required
 - Help drive cost reduction for end users
 - Increase use
 - Lower skill level
 - Shorter time or greater productivity

- Precision or variation which is more informative:
 - Likely dependent on the specific realm of simulation
- Given finite resources we might aim to:
 - Solve one (or a small number) of scenarios very precisely
 - More useful for improving understanding the problem
 - Solve wide variations of a scenario less precisely
 - Can account for a range of uncertainty and real world variation
- Which combinations of sophistication are appropriate?
- Consider:
 - Nominal scenario high precision (top left)
 - Fringe scenario with variation (top right)
 - Fringe scenario high precision (bottom left)
 - Nominal scenario with high precision and compensation for variations and uncertainties OR:
 - Nominal scenario with variation (bottom right)

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

Benchmark requirements

A need

- Verification
- Instil greater confidence in the application
- Drive future developments
- Identify gaps and deficiencies in the state of the art
- Guide best practice

Subject

- Benchmarking the entire vehicle-track dynamic system would be ambitious
 - Conclusions would be difficult to draw
- A small or isolated benchmark subject allows clearer comparisons and conclusions
 - Increased difficulty in relating conclusions to the more complex case

Benchmark conditions

- Clearly defined
- Unambiguous (unless desired...)
- Unwanted effects from 'externalities' of the subject must be controlled or removed

Benchmark requirements

- Participants/contributors
 - Most larger benchmarks have been an open call for contributions
 - Distribute workload
 - Ensure expert implementation of codes
 - Removes the inference of any partiality

- Appropriate comparison methods and metrics
 - Measurement or experimental data increases scope of activity, however:
 - "...validation examples may alter from a model justification to a justification and correction of the measurement inexactness." (Polach & Evans)
 - Validation metrics in DynoTrain did not provide sufficient contribution towards objective and reliable validation – the same ought to apply to corroborative comparisons
 - Statistically derived metrics (EN14363)
 - Draw out pertinent conclusions

- Overview of the Institute of Railway Research (IRR)
- Why benchmark?
- Recent benchmarking exercises
- Key learning points
- Gaps and opportunities
- Benchmark requirements

Bibliography

- D1.3.6 The state of the art of the simulation of vehicle track interaction as a method for determining track degradation rates. Part 2 High Resolution models and the level of validation generally, Innotrack project deliverable, July 2009.
- D5.5 Final report on model validation process, Dynotrain project deliverable. WP5 Model building and validation, June 2013
- ERRI B176/3, Benchmark problem Results and assessment, B176/DT290, Utrecht 1993. Note: Original text not obtained but cited in several references below.
- EN 14363:2005, Railway applications—Testing for the acceptance of running characteristics of railway vehicles—Testing of running behaviour and stationary tests, CEN, Brussels, 2005.
- GM/RT2I4I, Issue 3, Resistance of Railway Vehicles to Derailment and Roll-Over, RSSB, London, June 2009.
- GM/RC 2641, Issue 2, Recommendations for Vehicle Static Testing, RSSB, London, June 2009.
- GM/TT 0088, Issue 1, Permissible Track Forces for Railway Vehicles, British Railways Board, October 1993.
- Grassie, S., L., Models of Railway Track and Vehicle/Track Interaction at High Frequencies: Results of Benchmark Test, Vehicle System Dynamics, 1996.
- Iwnicki, S., Manchester Benchmarks for Rail Vehicle Simulation, Vehicle System Dynamics 30(3-4), 295-313, 1998
- Iwnicki, S., Results of the Manchester Benchmarks, Vehicle System Dynamics, Supplement 31, 2-12, 1999
- Kortüm, W., Sharp, R.S. (editors), Multibody computer codes in vehicle system dynamics, Vehicle System Dynamics Supplement 22, Swets & Zeitlinger 1993.
- Knothe, K., Benchmark Test for Models of Railway Track and of Vehicle/Track Interaction in the Low Frequency Range, Vehicle System Dynamics Supplement, 24, 363-379, Swets & Zeitlinger, 1995.
- Leong, J., Murray, M., Steffens, D., Examination of Railway Track Dynamic Models Capabilities Against Measured Field Data, International Heavy Haul Conference Specialist Technical Session, High Tech in Heavy Haul, Kiruna, Sweden 2007.
- Marquis, B., Pascal, J.-P., Report on a railway Benchmark simulating a single wheelset without friction impacting a rigid track, Vehicle System Dynamics, 46(1-2), 93-116, Taylor & Francis 2008.
- Polach, O., Böttcher, A., A New Approach to Define Criteria for Rail Vehicle Model Validation, 23rd International Symposium on Dynamics of Vehicle on Roads and Tracks, Qingdao, China, 2013.
- Polach. O, Evans. E. Simulation of Running Dynamics for Vehicle Acceptance: Application and Validation, 2nd International Conference on Railway Technology: Research, Development and Maintenance (RAILWAYS 2014), Corsica, 2014
- Shabana, A. A., Sany, J. R., A Survey of Rail Vehicle Track Simulations and Flexible Multibody Dynamics, Nonlinear Dynamics 26: 179–210, Kluwer Academic Publishers 2001
- Shackleton, P., Iwnicki, S., Comparison of wheel-rail contact codes for railway vehicle simulation: an introduction to the Manchester Contact Benchmark and initial results, Vehicle System Dynamics, 46(1-2), Taylor & Francis, 2008.
- Steffens, D. M., Identification and Development of a Model of Railway Track Dynamic Behaviour Doctoral Thesis, Queensland University of Technology, 2005.
- Vollebregt, E. A.H., Iwnicki, S. D. Xie, G., Shackleton, P., Assessing the accuracy of different simplified frictional rolling contact algorithms, Vehicle System Dynamics, 50(1), 1-17, Taylor & Francis 2012.
- Wilson, N., Fries, R., Witte, M., Ilaigermoser, A., Wrang, M., Evans, J., Orlova, A., Assessment of safety against derailment using simulations and vehicle acceptance tests: A comparison of the state-of-the-art worldwide, Vehicle System Dynamics. 49(7), 1113-1157, 2011.