University of Huddersfield Repository

Shackleton, Philip, Bezin, Yann, Crosbee, David, Molyneux-Berry, Paul and Kaushal, Aniruddha

The Spectrum Bogie

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/25380/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Problem definition:
- The Spectrum train aimed to exploit the Low Density High Value (LDHV) goods market for containerised loads
- High speed (up to 160 km/h) was necessary to integrate with passenger services, with potentially lower axle load, fragile cargo, and an articulated wagon design
- An optimised running gear design was required

Aim:
Produce a novel bogie concept with:
- High speed stability
- Safe running (compliant with Standards)
- Good ride quality
- High curving performance (low track damage)

Process:
- Review of existing bogie designs and identify an appropriate base concept
- Determine initial values for suspension component parameters (lengths, stiffnesses, damping rates etc.)
- Construct a mathematical vehicle model (in Vampire) to optimise those parameters for the required performance
- Implement an iterative optimisation process with dynamic simulations to achieve the aims
- Produce a CAD model of the viable bogie concept

Base Concept:
- A review of existing bogie designs led to a chosen base concept
 - Trailing arm primary suspension
 - Coil spring
 - Viscous damped
 - UIC secondary suspension
 - Standard centre bowl and side-bearer arrangement
 - Axle mounted disc brakes
 - Required to operate alongside passenger stock
 - Dictated external axle boxes

Initial Parameters:
- Initial parameters can be determined a number of ways:
 - Calculation from fundamental principles
 - Application of accepted vehicle design principles
 - Engineering judgement/application of experience
 - Derivation: for example the trailing arm bush parameters were determined by calculating their influence on primary yaw stiffness

\[KY_{Y_{BY}} = \frac{\rho Y_{BY}}{2}, \quad KY_{Y_{BX}} = Y_{BY_{2}} - KY_{Y_{BX}} \]
- \(K \) – Stiffness in given direction
- \(\rho \) – Wheelset yaw angle
- \(Y_{BY} \) – Trailing arm bush semi-aperture
- \(KY_{Y_{BX}} \) – Trailing arm bush longitudinal and lateral directions

Analysis and optimisation:
- The vehicle parameters were used to create a Vampire multi-body dynamics model

Mathematical Vehicle Model:
- The vehicle parameters were used to create a Vampire multi-body dynamics model

Final Bogie Design:

What was achieved?
- A novel bogie concept was developed - featuring conventional/proven suspension components and technologies, but in a novel arrangement and application. Swing links were introduced to the UIC secondary suspension to improve lateral ride and stability.
- Improved dynamic performance with reductions of between 8% and 16% in Variable Usage Charge compared to a conventional Y-series container vehicle (calculated with Network Rail’s Variable Track Access Charge Calculator)