SYNTHESIS OF NOVEL RILUZOLE ANALOGUES

LUCY ALICE POWELL

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Huddersfield

January 2015
Copyright statement

i. The author of this thesis (including any appendices and/or schedules of this thesis) owns any copyright in it (the "Copyright") and she has given The University of Huddersfield the right to use such copyright for any administrative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made.

iii. The ownership of patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the "Intellectual Property Rights") and any reproductions of copyright works, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions.
ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that is universally fatal. The only drug that is currently FDA approved for the treatment of ALS is Riluzole (Figure 1), which improves life expectancy by a few months via an unknown mechanism.

Figure 1: Riluzole

This thesis describes the preparation of novel Riluzole analogues with the overall aim of improving neuroprotective activity against ALS. Two libraries are reported based respectively on the incorporation of tetrahydropyridine and 1,4-substituted-1,2,3-triazole functionality to the benzothiazole ring. Both of these functional groups have been reported in pharmaceutically active drugs either already on the market or in late clinical trials related to the treatment towards motor neuron diseases. Tetrahydropyridine analogues were synthesised in a five step process by the generation of a diamine intermediate, followed by reaction with Zincke salt, cyclisation and reduction (Scheme 1).

Scheme 1: Reagents and conditions: (a) 1.0 equiv. Br(CH$_2$)$_2$NH$_2$.HBr, toluene, reflux, 24 h, 65 %; (b) 1.0 equiv. N-(2,4-dinitrophenyl)pyridinium chloride, MeOH, RT - reflux, 20 h; (c) 1.0 equiv. Sodium p-toluenesulfonate, EtOAc, reflux, 12 h, 78 % (over two steps); (d) 12.0 equiv. KSCN, 1.0 equiv. Br$_2$, AcOH, RT, 16 h; (e) 2.8 equiv. NaBH$_4$, MeOH, 0 °C - RT, 16 h, 69 % (over two steps)

1,4-Substituted-1,2,3-triazole analogues were synthesised by reaction of a terminal alkyne with an azide Riluzole analogue with substoichiometric amounts of CuI (Scheme 2). The azide analogue was generated by carrying out a diazotransfer reaction on the diamine intermediate followed by cyclisation with KSCN and Br$_2$.

Scheme 2: Reagents and conditions: (a) 1.0 equiv. Br(CH$_2$)$_2$NH$_2$.HBr, toluene, reflux, 24 h, 65 %; (b) 1.2 equiv. Imidazole-1-sulfonyl azide hydrochloride, 2.3 equiv. K$_2$CO$_3$, 0.001 equiv. CuSO$_4$.5H$_2$O, MeOH, RT, 2 h, 63 %; (c) 12.0 equiv. KSCN, 1.0 equiv. Br$_2$, AcOH, RT, 2 h, 63 %; (d) 1.5 equiv. Terminal Alkyne, THF/H$_2$O, 1M CuSO$_4$, 1M NaAsc, 20 °C, 2 h, 35 - 98 %
TABLE OF CONTENTS

ABSTRACT ... 2

CHAPTER 1: INTRODUCTION .. 8
 1.1 Amyotrophic Lateral Sclerosis (ALS) .. 8
 1.2 Therapeutic Targets for the Treatment of ALS ... 12
 1.3 Riluzole .. 25
 1.4 1,2,3,6-Tetrahydropyridine .. 34
 1.5 1,4-Substituted-1,2,3-Triazole Moiety in a Variety of Drug Candidates 35

CHAPTER 2: PROJECT ... 39

CHAPTER 3: RESULTS AND DISCUSSION ... 40
 3.1 Tetrahydropyridine Synthesis .. 40
 3.1.1 Synthesis of Tetrahydropyridines without Functionality on the Tetrahydropyridine Ring .. 40
 3.1.1.1 Synthesis of Unfunctionalised Tetrahydropyridine Riluzole Derivatives via Sulfamidate Chemistry .. 43
 3.1.1.2 Synthesis of N-3 Riluzole Derivatives with Tetrahydropyridine Functionality via Aziridine Chemistry ... 45
 3.1.1.2.1 Ring-opening of Aziridines via O-Diphenylphosphinyl Protection to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives . 45
 3.1.1.2.2 Ring-opening of Aziridines via Buchwald-Hartwig Cross-Coupling to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives 47
 3.1.1.2.3 Generation of Aziridines via the Mitsunobu Reaction Followed by Ring-Opening to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives .. 49
 3.1.1.3 Zincke Reaction .. 50
 3.1.2 Synthesis of Functionalised Tetrahydropyridines .. 53
 3.1.2.1 Using the Zincke Reaction ... 53
 3.1.2.2 Using Grignard Reagents .. 57
 3.2 Synthesis of N-3 1,4-Substituted-1,2,3-Triazole Derivatives of Riluzole Using Click Chemistry ... 60

CHAPTER 4: CONCLUSIONS AND FUTURE WORK ... 70

CHAPTER 5: EXPERIMENTAL ... 74
ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Prof. Joseph Sweeney for the opportunity to carry out a PhD in his laboratory and for his constant supervision and guidance throughout. I would also like to say thank you for allowing me to have a month off to go travelling in New Zealand! Secondly I would like to thank Dr Duncan Gill for all his advice, guidance and learning classes he has provided over the years.

I would like to thank all analytic staff from both Reading and Huddersfield University who have helped make this millstone possible. A special thanks goes to Victoria Pugh, Department of Biology, University of Bradford who has carried out all biological testing. It was touch and go at one point but we did it, we got a novel library of Riluzole analogues!

Furthermore, I would like to extend my thanks to the members of our research group for their constant help and support throughout this PhD. A special thanks to Sam Moss and Anthony Walsh for their friendship and support throughout. You have been fantastic throughout and I will miss all the tea and coffee breaks we have had over the years, chatting about anything and everything. I would also like to include in this little thank you all researchers I have met at both Reading and Huddersfield University, who have made this PhD an enjoyable experience.

The only people left to thank are all my fantastic friends, family and boyfriend, you really have been my rock on this rollercoaster experience and I can’t thank you enough. Mum, Dad thank you for being there every step of the way through every decision I have made and pushing me to achieve my goals when I have had doubt. Thank you. One thing left to say is unfortunately Mum, 42 has not been the answer to any exam I have taken, yet!
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>ADME</td>
<td>Adsorption, Distribution, Metabolism and Excretion</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-Amino-3-hydroxy-5-methyl-4-isoxazoleproponic acid</td>
</tr>
<tr>
<td>AOP</td>
<td>Aryloxanyl pyrazolone</td>
</tr>
<tr>
<td>app</td>
<td>Apparent</td>
</tr>
<tr>
<td>Ar</td>
<td>Aromatic</td>
</tr>
<tr>
<td>ASP</td>
<td>Arylsulfanyl Pyrazolones</td>
</tr>
<tr>
<td>ATF3</td>
<td>Activating Transcription Factor 3</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>b</td>
<td>Broad</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood Brain Barrier</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2'-bis(Diphenylphosphino)-1,1'-binaphthyl</td>
</tr>
<tr>
<td>CAI</td>
<td>Carboxyamidotriazole</td>
</tr>
<tr>
<td>CDDO-EA</td>
<td>2-Cyano-3,12-dioxoolean-1,9-diene-28-oic acid-ethylamide</td>
</tr>
<tr>
<td>CDDO-TFEA</td>
<td>2-Cyano-3,12-dioxoolean-1,9-diene-28-oic acid-trifluoroethylamide</td>
</tr>
<tr>
<td>CHD</td>
<td>Cyclohexane-1,3-diones</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal Fluid</td>
</tr>
<tr>
<td>CuAAC</td>
<td>Copper$^\text{I}$ catalysed azide-alkyne cycloaddition</td>
</tr>
<tr>
<td>Cu$^{\text{II}}$(btsc)</td>
<td>Bis(thiosemicarbazonato)copper$^{\text{II}}$</td>
</tr>
<tr>
<td>CY</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>CPN-9</td>
<td>N-(5-(2-Pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethyl-phenoxy)acetamide</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DAO</td>
<td>D-Amino acid oxidase</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DEAD</td>
<td>Diethyl azodicarboxylate</td>
</tr>
<tr>
<td>DIEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-Dinitrophenyl</td>
</tr>
<tr>
<td>DPPF</td>
<td>1,1’-Bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>EAAT-2</td>
<td>Excitatory Amino Acid Transporter-2</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>Half Maximal Effective Concentration</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Definition</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>ED_{so}</td>
<td>Median Effective Dosage</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>fALS</td>
<td>Familial Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FU</td>
<td>Fluorescent Unit</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-Aminobutyric acid</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GLT</td>
<td>Glial Glutamate Transporter</td>
</tr>
<tr>
<td>HATU</td>
<td>1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate</td>
</tr>
<tr>
<td>Hex</td>
<td>Hexane</td>
</tr>
<tr>
<td>HO-1</td>
<td>Heme Oxygenase 1</td>
</tr>
<tr>
<td>HSP</td>
<td>Heat-Shock Protein</td>
</tr>
<tr>
<td>HTS</td>
<td>High-throughput Screen</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington’s Disease</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal injection</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal Kinase</td>
</tr>
<tr>
<td>log P</td>
<td>Partition Coefficient</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MAP2</td>
<td>Microtubule-associated Protein 2</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>MEK</td>
<td>Butanone</td>
</tr>
<tr>
<td>MND</td>
<td>Motor Neuron Disease</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting Point</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>Ms</td>
<td>Mesyl</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NAIP</td>
<td>Neuronal Apoptosis Inhibitory Protein</td>
</tr>
<tr>
<td>NaAsc</td>
<td>Sodium Ascorbate</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-aspartate</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>Nuclear Overhauser Effect</td>
</tr>
<tr>
<td>non</td>
<td>Nonet</td>
</tr>
<tr>
<td>Nrf2/ARE</td>
<td>NF-E2 related factor 2/antioxidant response element</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NSC</td>
<td>Neuroblastoma-Spinal Cord</td>
</tr>
<tr>
<td>Nu</td>
<td>Nucleophile</td>
</tr>
<tr>
<td>OATBs</td>
<td>Organic Ammonium Tribromides</td>
</tr>
<tr>
<td>PBP</td>
<td>Progressive Bulbar Palsy</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson Disease</td>
</tr>
<tr>
<td>PE</td>
<td>Petroleum Ether</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>PLS</td>
<td>Primary Lateral Sclerosis</td>
</tr>
<tr>
<td>PMA</td>
<td>Progressive Muscular Atrophy</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>quin</td>
<td>Quintet</td>
</tr>
<tr>
<td>PYT</td>
<td>Pyrimidine-2,4,6-triones</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>sALS</td>
<td>sporadic Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure Activity Relationship</td>
</tr>
<tr>
<td>sept</td>
<td>Septet</td>
</tr>
<tr>
<td>sext</td>
<td>Sextet</td>
</tr>
<tr>
<td>SG</td>
<td>Stress Granules</td>
</tr>
<tr>
<td>SOD1</td>
<td>Superoxide Dismutase Type-1</td>
</tr>
<tr>
<td>SR</td>
<td>Serine Racemase</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TARDBP</td>
<td>TAR DNA Binding Protein</td>
</tr>
<tr>
<td>TDP-43</td>
<td>Transactive Response DNA Binding Protein 43</td>
</tr>
<tr>
<td>TiN₃</td>
<td>Trifluoromethanesulfonyl azide</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>THPYy</td>
<td>Tetrahydropyridine</td>
</tr>
<tr>
<td>Ts</td>
<td>Tosyl</td>
</tr>
<tr>
<td>TSAO</td>
<td>tert-Butyldimethylsilylspiroaminooxathioledioxide</td>
</tr>
<tr>
<td>VDCC</td>
<td>Voltage Dependant Calcium Channels</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic Lateral Sclerosis (ALS) was first described in 1869.1 It is also referred to as ‘Lou Gehrig’s Disease’ in memory of the baseball player who died from ALS in 1941.2 ALS along with other neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s Disease are caused by a combination of events impairing normal neuronal functions (Figure 2).3,4

![Figure 2: Different factors associated with neurodegenerative disease](Reproduced with permission, from Sheikh (2013))

ALS is the degeneration of motor neurons, which leads to respiratory failure after three to five years through a combination of muscle weakness and wasting of upper and lower voluntary muscles.5,6 The exact mechanism by which disease progresses manifests for ALS is not known: a number of theories, which have been put forth will be outlined below.

(1) Autoimmune Considerations in ALS Patients

Over the last two decades a number of autoimmune considerations have been proposed as the underlying cause of ALS.7 There is growing evidence that unusual antibodies may be present in a significant number of patients with motor neuron disease (MND) and ALS, which are indicative of a pathogenic humoral effect.7,8 MND is a class of neurodegenerative disease which selectively affects upper and lower motor neurons. The following five disorders are grouped under this classification: ALS, Primary Lateral Sclerosis (PLS), Progressive Muscular
Atrophy (PMA), Progressive Bulbar Palsy (PBP) and Pseudobulbar Palsy. Conventional autoimmune symptoms/disorders, inflammation and/or antibodies are observed within affected cells, whereas in regards to ALS patients increased serum levels of antibodies are not recorded. Instead an increase of antibodies is reported within the nerves. It has been hypothesised that antibodies interact with the ganglioside-rich motor nerve terminals, which act as antigens, allowing antibodies to enter the motor neurons where they can then inflict damage. Additionally, the presence of IgG, a type of antibody in ALS motor neurons provides further evidence that these are autoimmune considerations to the pathogenesis of the disease. In ALS model systems IgG is found to enhance calcium currents, either by antibodies directly interacting with voltage-dependent calcium channels (VDCC) or by modifying calcium currents, which will both result in cell death due to increased cellular calcium levels. The higher concentrations of these antibodies leads to an increased number of T-cells, which leads to ALS patients generating T-cell-independent B-cell responses. These are generally harder to suppress than T-dependant responses, and could result in cellular degeneration without signs of inflammation.

Identification of the auto-antigens involved will help elucidate the mechanism further and also help in the development of designing rational therapies for molecular targets.

(2) Excessive activation of Glutamate in ALS Patients

ALS patients have been reported to have a three-fold higher concentration of cerebrospinal fluid (CSF), which can lead to cell death through excitotoxicity (Figure 3), which is an over activation of glutamate, aspartate, N-acetyl-aspartyl glutamate and N-acetylaspartate.

Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and is responsible for cell communication. Glutamate is synthesised from the reductive deamination of α-ketoglutarate by glutamate dehydrogenase and from the activation of amino-transferase on amino acids. Approximately 20 % of the glutamate pool is found in the presynaptic nerve terminal.

Neurotransmission is initiated by the presynaptic neuron being depolarised by the influx of Ca^{2+}, which then causes glutamate to diffuse across the synaptic cleft and activate the postsynaptic glutamatergic receptors. Excitatory signals are terminated by the removal of glutamate from the synaptic cleft with the help of Na^{+}-dependant glutamate transporters such as the excitatory amino acid transporter-2 (EAAT-2), which are present in astrocytic processes that envelop the synapse. These transporters are responsible for removing up to 94 % of glutamate from the synaptic cleft. Within the astrocytes, glutamate is converted to glutamine by glutamine synthetase and is subsequently returned to the neuron for glutamate re-synthesis.
Therefore an excessive activation of glutamatergic receptors located on the post-synaptic neuron due to an increase in glutamate increases the concentration of Ca\(^{2+}\) in the post-synaptic neuron. This in turn causes the activation of degenerative enzymes, for example phospholipase A, proteases and nitric oxide synthase.\(^{12}\) An increase in Ca\(^{2+}\) also causes mitochondrial function to be altered, resulting in the production of free radicals and impairing the production of adenosine triphosphate (ATP). Depletion of ATP combined with the production of nitric oxide and other free radical species results in the deactivation of the Na\(^{+}\)/K\(^{+}\) pump, raising intracellular Na\(^{+}\) concentrations, and subsequently results in neuronal depolarisation. The reverse operation of Na\(^{+}/Ca^{2+}\) exchange required to normalise intracellular Na\(^{+}\) concentrations further increases Ca\(^{2+}\) uptake, elevating already high levels of Ca\(^{2+}\) and increasing the likelihood of cell death.

Figure 3: The pathogenic process that triggers motor neuron degeneration in ALS patients (Reproduced with permission, from Pasinelli (2006)).\(^{13}\)

(3) Misfolding of Superoxide Dismutase Type-1 (SOD1) in ALS Patients
Superoxide dismutase type-1 (SOD1), also known as Cu/Zn superoxide dismutase is a free radical scavenger. Its function is the detoxification or dismutation of the superoxide anion to form hydrogen peroxide, which then in turn is converted to water through the action of catalase and glutathione peroxidase (Scheme 3).\(^{14}\) The activity of SOD1 plays a crucial role in the regulation of oxidative stress and in the protection against oxygen radical-induced cellular damage.
Misfolding of SOD1 can arise from mutations in the gene. The first mutations of SOD1 linked to ALS were reported in 1993. To date, 20% of familial ALS (fALS) and 1 - 4% of sporadic ALS (sALS) cases are likely to be caused by mutations in the SOD1 gene. The exact mechanism of how mutated SOD1 is linked to motor neuron death and ALS is unknown, but over the years a number of hypotheses have been proposed and investigated (Figure 4).

![Diagram of molecular mechanisms of motor neuron injury in ALS caused by mutated SOD1](image)

Figure 4: Molecular mechanisms of motor neuron injury in ALS caused by mutated SOD1 (Reproduced with permission, from Ferraiuolo (2011))

Protein misfolding of the SOD1 gene has resulted in the formation of mutated SOD1 genes. Mutations in the SOD1 gene has resulted in the reduction of cellular activity due to diminished stability, reducing the proteins half-life by 30 - 75%. Misfolded proteins cause an endoplasmic reticulum (ER) stress response (Figure 4) that attempts to correct the protein folding. If this ER correction process is not successful it can result in cell death. Mutations in the SOD1 gene can also lead to oxidative stress from an imbalance between the generation and removal of reactive oxygen species (ROS) as a result of the SOD1 gene being structurally damaged protein misfolding. It has been reported that the CSF of people with
ALS have higher levels of free radicals, which can impair cellular ability to cope with a toxic insult in cellular injury and neuronal death in non-replicating neurons during aging.15,16 Aggregates of mutant SOD1 found in the neuronal cell lines or in cultured primary motor neurons depolarise mitochondria, impairing calcium homeostasis and reducing ATP production, which as a result will result in apoptosis.13 Raised levels of intracellular Ca2+, more ROS, perturbation of mitochondria function and ATP production caused by mutant SOD1 can cause excitotoxicity, which will result in neuronal injury from excessive activation of glutamate receptors. Excess glutamate release can be counteracted by increased uptake by astrocytes, but when in the presence of mutated SOD1 there function is reduced and they secrete inflammatory mediators due to neuroinflammation.

(4) Accumulation of Transactive Response DNA Binding Protein 43 (TDP-43) in ALS Patients
TDP-43 is a cellular protein, encoded by the TARDBP gene, which is a modular DNA/RNA binding protein. TDP-43 is localised to the cytosol and the nucleus, and is involved in RNA splicing, gene transcription, microRNA processing, stabilisation and the transport of RNA.17 In 2008 mutations were identified in the TARDBP gene encoding TDP-43, the result of which is believed to be the accumulation of the protein in cytoplasmic inclusions, where it can take refuge in cytoplasmic RNAs in stress granules (SG).6,18 Therefore, neurons of ALS sufferers have decreased levels of TDP-43. The dysfunction of TDP-43 has been established as contributing towards up to 6.5 % of fALS cases, but the exact mechanism of how TDP-43 causes neurotoxicity in neurons is currently not fully understood.17

1.2 Therapeutic Targets for the Treatment of ALS
As described previously, there are several proposed mechanisms towards the understanding of ALS. To date, there is no single definitive mechanism for understanding how ALS manifests, which therefore widens the scope in finding a suitable drug target. There have been several drugs tested at phase III clinical trials in regards to their potent properties against ALS.19 Phase III clinical trials are performed on a large number of patients and all new treatments are compared against the best treatment currently available, which for ALS this is Riluzole (1, Figure 5). The following drugs shown in Figure 5 have all been subjected to phase III clinical trials;19

(1) Dexpramipexole (2) is highly related to Pramipexole, which is a treatment for Parkinson’s Disease (PD). Dexpramipexole has been shown to slow the progression of ALS by maintaining mitochondrial function in deteriorating motor neurons. However, in 2012 phase III trials completed on Dexpramipexole showed no statistically significant evidence with regards to Dexpramipexole slowing ALS disease progression.20

(2) Arimoclomol (3) is hypothesised to reduce the levels of protein aggregates identified as a possible cause of ALS in motor neurons. Arimoclomol is understood to boost the expression
of chaperones Hsp70 and Hsp90, which help newly synthesised proteins to fold properly. Phase II/III clinical trials are still ongoing.21

(3) Olesoxime (4) is understood to protect mitochondria in the motor neurons of ALS patients \textit{via} putative mitochondrial permeability transition pore modulators, which will result in the slowing of disease progression.22 Phase III clinical trails for Olesoxime were dropped due to a statistically insignificant increase in survival \textit{vs} placebo.23

(4) Ceftriaxone (5) is an antibiotic that protects cultured neurons from glutamate-induced excitotoxicity, brought about by reducing glutamate levels and increasing the expression of glutamate transporter EAAT-2. Phase III trials reported that this particular antibiotic had no effect on disease progression.24

(5) Edaravone (6) is a neuroprotective agent, which acts as a potent antioxidant and is also a strong scavenger of free radicals. These activities protect against oxidative stress and neuronal apoptosis.25 Treatment of patients with Edaravone has shown a reduction in CSF levels of 3-nitrotyrosine, a marker of oxidative stress. Edaravone is showing promising results in the slowing down of disease progression. Phase III trials are ongoing.

![Figure 5: A number of small molecules tested for their properties against ALS at phase III19](image)

\textbf{(1) Targeting Reduction in Glutamate Toxicity}

Riluzole (1) is an FDA approved drug, which is currently the only approved treatment for attenuating disease progression in ALS patients. Riluzole is hypothesised to inhibit the release of glutamate and to non-competitively inhibit postsynaptic \textit{N}-methyl-\textit{D}-aspartate (NMDA) and \textit{\alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.26 The modest success of Riluzole against ALS has highlighted the role of glutamate excitotoxicity in numerous disease states, which has put focus on further developing drugs which will target the modulation of glutamate signalling.

A potential approach in preventing excitotoxicity is to enhance glutamate reuptake, \textit{via} EAAT-2. EAAT-2 is a major glutamate transporter that removes glutamate from the synapse. An approach in increasing EAAT-2 activity is the development of a library of small molecules, which could enhance EAAT-2 expression. Colton \textit{et al.} developed and used a cell based
ELISA for EAAT-2 protein expression to screen a library of 140,000 small molecules: including compounds approved by the FDA, a purified natural products library, and compounds purchased from Peakdale, Maybridge Plc, Cerep, Bionet Research Ltd, Prestwick, Specs and Biospecs, ENAMINE, Life Chemicals, Inc, MicroSource Diversity System’s NINDS customs collection, Chemical Diversity Labs, Chembridge, and small molecules obtained from various academic institutions. This screen found 293 hits with 61 compounds showing a dose dependent increase in EAAT-2 expression. Three out of the 61 compounds tested were selected for further optimisation based on their low potency (EC$_{50} < 1 \mu$M), lack of toxicity and chemical traceability. It should be noted that the structures of these compounds has not been disclosed.

Xing et al. performed chemical optimisation on the identified three lead compounds to develop additional analogues for potential use as therapeutic agents. It was found through structure-activity relationship (SAR) studies that the thioether and pyridazine functionality are essential molecular components for increasing EAAT-2 protein levels. Thiopyridazine analogues can be synthesised via a four-step process (Scheme 4). Firstly, a known ketone in the presence of K$_2$CO$_3$ is reacted with glyoxylic acid to generate an aldol addition product. This is then directly reacted with hydrazine to yield pyridazinone 10. Reacting pyridazinone 10 with P$_2$S$_5$ and pyridine at 120 °C yields pyridazinethione 11, which is further converted to thiopyridazine 12 via alkylation.

Of the analogues synthesised in this study, several thiopyridazine derivatives (Figure 6) were found to exhibit an increase in EAAT-2 levels. The thiopyridazine derivatives were found to increase EAAT-2 levels greater than six-fold over endogenous levels in primary astrocytes at concentrations of less than 5 µM. Additionally, thiopyridazine derivative 15 was found to increase EAAT-2 levels three- to four-fold at a low EC$_{50}$ value, 0.5 µM. These compounds will prove useful for determining the biological mechanism for regulating EAAT-2 levels and also for further assessing the role of glutamate excitotoxicity in cellular systems, potentially in animal models of acute and chronic neurodegeneration.
In addition to finding small molecules which will enhance glutamate uptake through the increase of EAAT-2 levels, other studies have also reported that elevated levels of D-serine can also contribute to glutamate excitotoxicity. D-Serine serves as a co-agonist at the glycine site of the NMDA glutamate receptor. An increase in D-serine has been reported in the spinal cord of ALS patients. Usually excess D-serine is removed by D-amine acid oxidase (DAO) via metabolism, but ALS patients have been reported to have a reduction in DAO, which could account for these high levels of D-serine. Recently, a new mutation in DAO has been reported to contribute to fALS. This new mutation - R199W DAO is understood to inhibit DAO’s original function by increasing small protein-containing aggregates and reducing cell viability when expressed in neuroblastoma-spinal cord (NSC-34) cells, a motor neuron cell line. Therefore, finding small molecules which will contribute towards the reduction of D-serine either by enhancing the activation of DAO or the reduction of serine racemase (SR), which is responsible for D-serine synthesis, may be therapeutically beneficial.

(2) Targeting SOD1 Mutation

Developing a library of drugs which reduces SOD1 protein levels in ALS patients will reduce the levels of the mutated SOD1 gene, therefore resulting in cells building up a resistance to ALS-induced cellular death. Murakami et al. developed a high-throughput screen (HTS), which screened a total of 9600 small molecules. From this screen, 325 compounds were identified as hits, with only two compounds demonstrating selectivity in downregulating SOD1 protein levels without apparent cellular toxicity following secondary assays. One of the two compounds, 3-(1H-benzo[d]imidazol-2-yl)-6-chloro-4H-chromen-4-one, 052C9 (17, Figure 7), was put forward for further analysis due to its considerably lower EC_{50} and was also found to reduce phosphorylation of the transcription factor Nrf2, a known activator of cellular stress gene as well as an upregulator of SOD1 transcription.
Similarly, Wright et al. performed a HTS on 30,000 small molecules focusing on repressing SOD1 transcription. From this HTS 20 compounds were identified as hits. Compound 7687685 (18, Figure 7) from this HTS demonstrated both reduction in endogenous SOD1 protein levels in human cells and also repressed several other genes implicated in ALS. However, when in vivo studies of compound 18 were performed in SOD1 G93A transgenic mice, only a small reduction of SOD1 protein levels in spinal-cord extracts were recorded, suggesting that this would not be a useful treatment for ALS patients.

As previously stated, mutation in SOD1 has also been reported to lead to cellular toxicity through loss of function of the SOD1 protein whereby mutant proteins in intercellular inclusion lead to cellular dysfunction. Therefore compounds, which reduce the aggregation of SOD1 protein, could be found beneficial in protecting cells from neuronal damage. Benmohamed et al. performed a HTS on 50,000 small molecule compounds focusing on their ability to reduce mutant SOD1 aggregates in a cell-culture model. Hits from this HTS were then subjected to further screens and from this, three distinct chemical series were identified for further optimisation based on their ability to reduce both cellular toxicity and mutant SOD1 protein aggregation: arylsulfanyl pyrazolones (ASP) 21, cyclohexane-1,3-diones (CHD) 22 and pyrimidine-2,4,6-triones (PYT) 23.

The general method to generate ASP 21 is achieved in two-steps (Scheme 5). Thiophenol 19 and ethyl 4-chloroacetate 20 react via an S_N2 nucleophilic displacement to give β-ketoester, which is further treated with hydrazine to generate ASP 21.

A number of ASP analogues were synthesised as shown in Scheme 5 with different functionalised aromatic rings within the ASP scaffold. The first set of SAR studies carried out looked at para substitution on the aryl ring with electron-withdrawing and electron-donating
substituents of varying size. From this first study the only ASP compound that showed promising reduction in mutant SOD1 was an ASP analogue containing a chloro group at the para position of the aromatic ring with an EC$_{50}$ of 1.93 µM. Further studies focused on multiple substitutions on the aromatic ring, which included chloride as one of the substituents. These studies identified two promising compounds 24 and 25, which showed potent activity towards the reduction of mutant SOD1 (Figure 8).33

![Figure 8: Two ASP hit compounds 24 and 2533](image)

Both of these ASP compounds 24 and 25 have shown promising properties with good potency and the capability of the ASP scaffold to permeate into the brain. Penetration across the BBB is achievable with a minimum number of polar groups on a pharmaceutical compound, or the polar groups are temporarily masked. Even though compounds 24 and 25 exhibit good potency and the capability to cross the blood brain barrier (BBB), which is required for a drug targeting neurodegenerative diseases they have been report to have poor metabolic stability. It has been reported that the sulfur linker when in the presence of either microsomal or plasma enzymes is oxidised to the sulfoxide 29 hindering its ability to reduce SOD1 aggregation.34 The synthesis of compound 29 was confirmed by analysis of mass spectroscopy between compound 27 and nicotinamide adenine dinucleotide phosphate (NADPH), which reported the rate of formation of 29 in relation to the loss of 27. As metabolism of the sulfide linker is fast ASP compounds require microsomal and plasma enzyme protection. This was achieved by replacing the sulfur linker with either a sulfoxide, sulfone or ether linker. Potency of these different linkers increased (EC$_{50}$ decreases) in the order of ether > sulfide > sulfone >> sulfoxide (Figure 9).34

![Figure 9: Structures for the Ether, Sulfide Sulfone and Sulfoxide Linkers](image)

Replacement of the sulfur linker with an ether linker enhanced the reduction of SOD1 protein aggregates. Chen and co-workers investigated and reported the synthesis and activity of a number of aryloxanyl pyrazolones (AOP).34 Initial preparation of AOP 32 was achieved in a two-step process (Scheme 6, Pathway A). Phenol was reacted with ethyl 4-chloroacetooacetate to give intermediate \(\beta\)-hydroxyester 31 via an \(S_n2\) nucleophilic...
displacement. Intermediate 31 was then treated with hydrazine to give AOP 32. This two-step synthetic pathway was simple and direct, but was not efficient due to the instability of the enolate intermediates obtained. These issues were overcome by generating AOP 32 in a four-step process (Scheme 6, Pathway B). Phenol and 2-bromo-N-methoxy-N-methylacetamide were reacted together to generate hydroxamide 35. The hydroxamide intermediate was then reacted with ethyl acetate to generate intermediate β-hydroxyester 31, which was then further reacted with hydrazine to give AOP 32.

Scheme 6: Reagents and conditions for general synthesis of AOP compounds:

Pathway A

(a) 1.5 equiv. ethyl 4-chloroacetoacetate, 2.5 equiv. NaH, THF, DMF, -20 °C - 70 °C; (b) 1.0 equiv. NH₂NH₂, EtOH, RT, overnight, 2 - 30 % (over two steps);

Pathway B

(c) 1.0 equiv. N,O-dimethylhydroxylamine hydrochloride, 2.2 equiv. K₂CO₃, Et₂O, H₂O, RT, 30 mins, 74 %; (d) 1.0 equiv. NaOEt, EtOH, 70 °C, overnight; (e) 1.0 equiv. EtOAc, 2.3 equiv. LiHMDS, THF, -78 °C, overnight; (f) 1.0 equiv. NH₂NH₂, EtOH, RT, overnight, 2 - 27 % (over three steps)

After a number of AOP analogues containing mono or disubstituted functionality, such as aryl, alkyl or halide were successfully synthesised using Pathway B of Scheme 6 they were subjected to adsorption, distribution, metabolism and excretion (ADME) testing. The following analogue 36 was found to be the most potent within this library of AOPs generated by Chen and co-workers (Figure 10). Compound 36 showed promising results with good aqueous solubility, good BBB penetration, good metabolic stability and a life extension of G93A ALS mice of 13.3 % at 20 mg/kg. These initial findings show that AOP analogue 36 could be a novel drug candidate for the treatment of ALS.

Figure 10: AOP analogue 36

Tripper and co-workers reported that if R² on the pyrazolone ring 37 (Figure 11) is altered from a simple hydrogen bond AOP analogues become inactive, suggesting this position is essential for cellular activity. Varying the functionality of R¹ on the pyrazolone ring gave a number of active AOP analogues. Addition of sterically demanding substituents at R¹ had
little effect on the efficacy, suggesting the possibility of a large open pocket or corridor within the target structure. Overall, this study identified that when \(R^1 \) is a benzyl group, enhanced potency towards the reduction of mutant SOD1 is reported.\(^{35}\)

![Figure 11: Varying \(R^1 \) and \(R^2 \) substituents on the pyrazolone ring](image)

CHD analogues are generated over two-steps using the general method shown below (Scheme 7).\(^{36}\) Commercially available or previously synthesised aldehydes were used as starting materials, which were converted to intermediate 39 via the Wittig reaction. Intermediate 39 was then converted to CHD analogues 22 after Michael addition, cyclisation, hydrolysis and decarboxylation.\(^{37}\)

![Scheme 7: Reagents and conditions for the general synthesis of CHD compounds](image)

A number of CHD analogues synthesised by Zhang and co-workers containing functionality on the aromatic ring were found to be active candidates (Scheme 7, general procedure).\(^{36}\) All active CHD analogues were tested for their cell survival against the formation of mutant SOD1 aggregates. These mutant SOD1 aggregates are observed to be generated from treatment with proteasome inhibitor MG132. SAR studies lead to several conclusions: (1) electronic properties of the substituted groups do not affect the activity of analogues; (2) the meta position is much more important than the other positions; (3) the size of the meta-substituent is crucial; and (4) trifluoromethyl is a favoured substituent to increase potency. Over 120 analogues were obtained using Scheme 7, which lead to the discovery of CHD analogue 40, which has an EC\(_{50}\) of 0.70 µM (Figure 12).\(^{36}\)
Even though CHD analogue 40 showed favourable pharmacokinetics (PK), demonstrating high plasma stability, oral bioavailability and brain accumulation, it did not show any beneficial effects when tested in SOD1 G93A transgenic mice. Additional studies demonstrated that CHD analogue 40 exhibited minimal activity in primary cortical neurons due to low penetration of neuronal cells. Due to the poor therapeutic benefits demonstrated by compound 40 further SAR studies around this series were investigated, which lead to new chiral CHD analogues, such as 41. CHD analogue 41 exhibited enhanced activity of cortical neurons with good PK properties, whilst also retaining activity in the PC12 assay (Figure 13). Additionally this analogue was found to extend the life expectancy of an ALS mouse by 13 %, which is slightly longer than that previously reported for Riluzole using the same mouse model.

PYT analogues, such as 23 are synthesised in two-steps (Scheme 8, general procedure). Firstly commercially available S,S-dimethyl carbonodithioate and amines are reacted together to generate a urea intermediate 43. This urea intermediate is then further treated with malonic acid in an acetic acid/acetic anhydride medium generating PYT analogues 23.

Scheme 8: Reagents and conditions for the general synthesis of PYT compounds: (a) 2.1 equiv. RNH₂, MeOH, 60 °C, 24 h; (b) 1.0 equiv. (substituted) malonic acid, AcOH/Ac₂O (3:2), 60 °C - 90 °C, 4 h

PYT analogues were identified as novel potential drug candidates with good potency and ADME properties towards the reduction of SOD1 protein aggregation. PYT analogue 44 (Figure 14), was found to have a desirable combination of potency, ADME properties, low toxicity, brain penetration and oral bioavailability.
Conclusions drawn from the above three distinct chemical series, ASP 21, CHD 22 and PYT 23 identified initially from HTS preformed by Benmohamed et al. have all shown positive results towards the reduction of mutant SOD1 aggregation. In particular compound 36, which is a modification of the ASP library and has been reported to display an increased lifespan compared to controls. Reduction in mutant SOD1 aggregation will result in normal cell function, therefore reducing the chances of excitotoxicity, which is a proposed mechanism in contributing to ALS. Therefore, investigating these libraries further could help towards finding alternative methods in reducing disease progression for patients with ALS.

An alternative method to prevent the aggregation of SOD1 was to design a compound that acts as a pharmaceutical chaperone stabilising the SOD1 native dimer. Ray et al. tested a number of compounds from 15 commercially available libraries to find out their potential towards binding at the SOD1 dimer interface and stabilise the dimer. From this initial in silico screening 100 compounds were found to be hits, of which were further screened in SOD1 A4V aggregation assay. From this screening 15 compounds were identified to inhibit the aggregation of SOD1 A4V (most common ALS-causing mutation) proteins and other SOD1 mutants.

When the 15 hit compounds were tested for SOD1 protein-binding in the presence of human plasma, they showed poor binding affinity relative to other protein components in the plasma. Nowak et al. carried out a number of docking calculations on a database of small molecules to model the aggregation inhibitors at the dimer interface binding pocket. From these docking calculations 20 compounds were identified to have satisfactory docking constraints (hydrogen bonds). These hits were further tested for their ability to block aggregation of SOD1 and specifically bind SOD1 over blood plasma components. This screening resulted in at least six compounds (Figure 15) having high selectivity towards the blocking of SOD1 aggregation and were found to perform significantly better than original azauracil-based molecules tested in blood plasma. These six compounds indicate an excellent starting point towards the therapeutic development of ALS.
(3) Targeting TDP-43

Mutation in the TARDBP gene encoding TDP-43 is estimated to be responsible for up to 6.5% of fALS cases. TDP-43 mutations are highly toxic to the cell. One approach to reduce the pathology caused by mutant TDP-43 is to identify small molecules that inhibit the binding of TDP-43 to nucleotides. Cassel et al. developed a HTS assay to measure oligonucleotide binding to TDP-43. A total of 7360 small molecules which are known to disrupt oligonucleotide binding to TDP-43 protein were screened. From the HTS a series of 4-aminoquinoline derivatives (Figure 16) were tested for their ability to regulate TDP-43. Cassel et al. hypothesised that this series would stimulate caspase-7 mediated cleavage of TDP-43, affecting its cellular accumulation. Caspase-7 can mediate the reduction of TDP-43 protein levels via cleavage of the TDP-43 and subsequent clearance of the cleaved products by the proteasome. The 4-aminoquinoline derivatives shown in Figure 16 were found to bind to TDP-43 decreasing its association with oligonucleotide and increasing caspase-mediated cleavage of the protein. When these compounds were further tested in H4 cells they were found to modestly reduce intracellular levels of TDP-43 and proteins known to be regulated by TDP-43. Reduction of TDP-43 levels within motor neurons will prove to be beneficial towards ALS treatment as this will restore normal TDP-43 functions, including RNA transport. Therefore further development and validation of these small molecules could prove valuable for future therapeutic development.

\(\text{Figure 15: Compounds that selectively bind SOD1 over human plasma and inhibit A4V-SOD1 aggregation.} \)
Another mechanism to diminish TDP-43 toxicity in cells is the reduction of intracellular inclusions. Bis(thiosemicarbazonato)copperII complexes (CuII (btsc)s 56, Figure 17) were tested on treated SH-SY5Y cells with paraquat, which induces cellular stress through mitochondrial inhibition, leading to the formation of TDP-43 aggregates in the cytoplasm. The TDP-43-containing cellular inclusions are dependent on the activation of stress-induced kinases such as c-Jun N-terminal kinase (JNK). Results obtained for compound 56 and other copper complexes showed reduced stress-induced kinase activity and prevented TDP-43 aggregation. These copper complexes have previously demonstrated neuroprotective effects in mouse models of neurodegeneration, therefore making them beneficial in the treatment of ALS as they modulate kinase activity and reduce protein aggregation.

Alternatively a way to reduce TDP-43-containing cytoplasmic inclusions (foreign substances contained within the cell membrane) is to induce autophagy, which can be achieved by using known pharmacological activators such as Tamoxifen (57), Carbamazepine (58), Spermidine (59), or Rapamycin (60, Figure 18). Autophagy is a process in which dysfunctional proteins and organelles are removed from the cell and then degraded by lysosomes. These compounds were trialled to see if they could enhance autophagy in disease models with TDP-43 proteinopathies. It was found that clearance of cytoplasmic TDP-43, along with a reduction in caspase activation and cellular death corresponded to an upregulation of these autophagic markers. The use of enhancing autophagy may reduce cellular death and behavioural dysfunction associated with TDP-43 mutations.
(4) TARGETING REDUCTION IN OXIDATIVE STRESS AND INFLAMMATION

Oxidative stress is the result of an imbalance between the production of ROS and cellular antioxidant defence systems, which play a crucial role towards neurodegenerative conditions. Several treatment strategies have focused on minimising the imbalance between the production of ROS and cellular antioxidant defence systems within cellular pathways. One method of reducing oxidative stress in the neurons is the upregulation of signalling through the NF-E2 related factor 2/ antioxidant response element (Nrf2/ARE) pathway, which is responsible for the upregulation of antioxidants and prosurvival genes and reduction of cell apoptosis under cytotoxic conditions. Neymotin et al. tested two triterpenoids, 2-cyano-3,12-dioxolean-1,9-diene-28-oic acid-ethylamide (CDDO-EA) and CDDO-trifluoroethylamide (CDDO-TFEA) for their ability to activate Nrf2/ARE signalling in cell culture and mouse models of ALS (Figure 19). Treatment of NSC-34 cells expressing SOD1 G93A with CDDO-TFEA gave elevated levels of Nrf2 and Nrf2 regulated genes. When and were orally administered to transgenic SOD1 G93A mice, results obtained showed an increase in Nrf2 expression and nuclear localisation. Both of these triterpenoid compounds activated the Nrf2/ARE system, which results in the reduction of oxidative stress in cell cultures and mice models of ALS therefore resulting in a neuroprotective response.

Kanno et al. used a virtual screening system to discover oxidative-stress reducing agents, which identified N-(5-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethyl-phenoxy)acetamide (CPN-9, Figure 19). Initial testing of CPN-9 gave highly cytoprotective properties against pharmacologically induced oxidative stress. Further testing of CPN-9 in a variety of cell-stress inducers all showed protection against cellular death when induced by oxidative-stress pathways only. Overall, CPN-9 showed resistance to oxidative stress through upregulation of the Nrf2/ARE transcriptional pathway and inhibition of cellular death. Treatment of transgenic mice expressing the hDOD1 H46R mutant gene with CPN-9
showed an increase in motor neuron function within the spinal cord and extended survival following disease onset.19,47

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{compounds.png}
\caption{Compounds developed to reduce oxidative stress and inflammation}
\end{figure}

Tanaka \textit{et al.} performed further studies into the reduction of oxidative stress in ALS utilising dopamine D4 receptor antagonist, L-745,870 (64, Figure 19) to selectively inhibit oxidative stress induced cell death. This compound was previously determined to upregulate neuronal apoptosis inhibitory protein (NAIP), BIRC1, a cytoprotective protein that improves oxidative stress induced cellular death.48 Treatment of (64) administered within the stomach of SOD1 H46R mice before symptom onset was discovered to delay symptom onset as determined by limb movement, rearing activity and foot clasping behaviours. It was also found that treatment with (64) delayed weight loss and motor dysfunction as examined by a balance-beam test.19,49

Further work within this group identified that dopamine D2 receptor agonist bromocriptine (65), an NAIP upregulating compound, reduced oxidative stress through the upregulation of antioxidant proteins, such as activating transcription factor 3 (ATF3) and heme oxygenase 1(HO-1). The delay in disease progression of compound (65) was identified by \textit{in vivo} studies of compound (65) administered to SOD1 H46R mice following symptom presentation. These studies indicate that the depletion of oxidative stress pathways through the upregulation of antioxidant genes can reduce disease progression in ALS models.19,50

\subsection*{1.3 Riluzole}
2-Amino-6-trifluoromethoxybenzothiazole also known as Riluzole and Rilutek (1), is a derivative of benzothiazole 66 (Figure 20). Riluzole is bicyclic and comprises of a benzene ring, fused to a five-membered ring containing a nitrogen and sulfur atom.1 Benzothiazole
derivatives were first identified in the 1950s as potential muscle relaxants, but were later investigated as anticonvulsant and neuroprotective agents. In 1995 Riluzole was approved by the FDA for the treatment of ALS and, to date, remains to be the only approved drug in suppressing ALS symptoms. Riluzole is taken twice a day with a fixed regimen of 50 mg dosages, prolonging life expectancy by approximately 3 - 6 months.

In the 1960s Yagupol'skii and Gandel'sman reported the first synthetic method of generating Riluzole, which was then patented by Rhône-Poulenc Rorer. The original method and commercial production of Riluzole is done in one-pot by reacting 4-trifluoromethoxyaniline, ammonium thiocyanate and a source of bromine together (Scheme 9).

Most pharmaceutical drugs are designed to have a single molecular targets, however the neuroprotective effects shown by Riluzole are thought to exert their effects through a number of interdependent pathways. The exact mechanism of action in which Riluzole slows disease progression is still unknown but it is understood that Riluzole both inhibits the release of glutamate and also non-competitively inhibits postsynaptic NMDA and AMPA receptors. Potential modes of action include (1) anti-glutamatergic actions (2) Ca$^{2+}$ channel blockade (3) Na$^+$ channel blockade and (4) GABAergic mechanisms.

PK studies of Riluzole have demonstrated variable drug exposure in addition to serum concentrations varying greatly for patients with ALS, following oral administration. This variation correlates to the concentrations of CYP isoform CYP1A2 found in ALS patients. The enzyme CYP1A2 converts Riluzole to N-hydroxyriluzole, via oxidative metabolism making the drug inactive. Individual dosing of Riluzole may lead to an increased efficacy in patients who are fast metabolisers and a decrease of side-effects in others who are slow metabolisers. This is not a feasible approach because, if a large variability exists within a group of individuals, it may be due to individual characteristics and variability. Studies have focused around creating Riluzole prodrugs that would exhibit higher stability in vivo. Prodrugs are inactive pharmaceutical medications, which when administered are converted to active pharmaceutical medications through a normal metabolic process, such as hydrolysis of an
ester. Prodrugs might be used over drug administration to improve ADME, bioavailability, selectivity and reduce undesirable side effects.

McDonnell et al. identified and screened 23 Riluzole prodrugs against glutamate toxicity in ALS and other disorder models. 19 Preparation of Riluzole prodrugs candidates are achieved by converting the endocyclic amine to single α-amino amide, carbamate, succinamide, and amide linkage from γ-aminobutyric acids (Scheme 10). 55

\[
\text{Scheme 10: Preparation of Riluzole prodrugs. Reagents and conditions: (a) 1.0 equiv. RCO}_2\text{H, 1.5 equiv. EDCl, DCM, RT, 4 days, 34 - 83 %; or 1.8 equiv. ROCOCI, 1.5 equiv. Et}_3\text{N, DCM, RT, 24 h, 13 - 77 %; or 1.0 equiv. RCO}_2\text{COR}_1, \text{DMF, RT, 24 h then 1.0 equiv. R}_1\text{R}_2\text{NH, 1.0 equiv. HATU, 1.0 equiv. Et}_3\text{N, DMF, RT, 24 h, 9 - 16 %; (b) 5.0 equiv. TFA, DCM, 2h if deprotection is required}^{55}
\]

These Riluzole prodrugs would be cleaved in the plasma by esterase and amidase enzyme to regenerate Riluzole. The stability of these analogues were tested in simulated gastric fluid, intestinal fluid and liver microsomes to determine whether the prodrugs would enter the plasma intact. Further, the cleavage of the Riluzole prodrug to Riluzole was analysed in the plasma. From this rigorous testing one compound was shown to be a Riluzole prodrug candidate for in vivo testing, the O-benzylserine derivative 69 (Figure 21). This prodrug showed good stability in in vitro intestinal and microsomal assays and was also able to withstand metabolism by CYP1A2. Development of this prodrug could help Riluzole to be a more effective treatment against ALS. 19, 55

\[
\text{Figure 21: O-benzylserine Riluzole prodrug 69}
\]

Both the 6- and 3-position of the core Riluzole structure offer attachment points for the incorporation of diversity generating substructures. Jimonet et al. reported the synthesis of several analogues of Riluzole (1) showing the crucial importance of the 6-substituent on benzothiazoles and the preparation of 3-substituted derivatives of Riluzole and their in vivo ‘antiglutamate’ activity. For all compounds synthesised in vivo antiglutamate activity was recorded as the median effective dosage (ED_{50}), which was calculated by injecting 6- and 3-substituted Riluzole derivatives (Table 1 and 2) into male rats that had been injected with 12.5 $\mu\text{M mol/kg}$ solution of L-glutamic acid in saline. The ED_{50} values obtained for each compound

27
was evaluated together with reference drugs for their ability to protect against seizures induced by intracerebroventricular administration of glutamic acid in rats.\(^{56}\)

(1) 6-Substituted Riluzole Derivatives

A number of 2-benzothiazolamines bearing various substituents in the 6-position were synthesised via a number of routes (Scheme 11), as one general method was not feasible. All 6-substituted Riluzole analogues generated are listed in Table 1.

Pathway C (Scheme 11) is one of two versatile routes to prepare 6-substituted Riluzoles analogues. This route generated analogues 1, 75, 76, 80, 82 - 95 (Table 1) via a one-pot reaction between an appropriate aniline and thiocyanogen, which is generated from bromine and an alkaline thiocyanate in an acetic acid medium. Pathway D (Scheme 11) generated analogues 78 and 79 (Table 1), which were achieved via an alternative route. This route went via intermediate phenylthiourea. Phenylthiourea was generated by reacting an appropriate aniline and thiocyanate together and on addition of bromine resulted in ring cyclisation, which generated 6-substituted Riluzole analogues. Pathways outlined in Scheme 11 did not generate Riluzole analogues 74 and 81 reported in Table 1. These two analogues were generated via further reactions to previously generated Riluzole analogues. Analogue 74 was generated by the reduction of analogue 77, which is commercially available and analogue 81 was generated by reacting commercially available 6-bromo Riluzole analogue with n-butyllithium and chlorotrimethylsilane, which was then followed by hydrolysis.

All 6-substituted-2-benzothiazolamines analogues 73 - 82 (Table 1) displayed very weak activity compared to that of Riluzole.\(^{56}\) These results suggest that electronic factors are relatively unimportant, as substitutions with electron-donating and electron-withdrawing groups at the 6-position did not increase antiglutamate activity when compared to analogue 72. Both chloro and trifluoromethoxy groups are known to deactivate the aromatic ring by an inductive electron withdrawal and also donate electrons by resonance. When the
trifluoromethoxy substituent of analogue 1 is replaced with a chloro substituent generating analogue 73 the activity is drastically reduced.57. This difference in activity has been seen in other medicinal drugs where a chloro substituent is replaced by such a ‘pseudohalogen’ resulting in an active compound; for example when the 7-chloro substituent in Diazepam is replaced with a trifluoromethoxy group.58 Therefore, Riluzoles in vivo activity depends essentially on non-electronic factors such as lipophilicity, which is the ability for a compound to dissolve in fats, oils, lipids and non-polar solvents.

All active 6-substituted Riluzole analogues fell into two sets: (a) analogues bearing large alkyl substituents or (b) analogues bearing a polyfluoroalkyl or a polyfluoroalkoxy substituents similar to that of Riluzole. A variety of alkyl chains varying in length and size were investigated to determine an optimum chain length related to antiglutamate activity. For linear substituents it was found that the most potent analogue was 86 and shortening or lengthening of this chain decreased the potency of Riluzole analogues. Altering the butyl chain with a branched chain such as 81 and 87 did not affect activity, but when the branched chain was shortened or lengthened this led to compounds with weaker activity 85 and 89. Analogues 93 - 95 contained a polyfluoroalkyl or a polyfluoroalkoxy substituents and showed strong antiglutamate activity, but when one or more of the fluorine groups were replaced with hydrogen, the activity decreased. These results are consistent with lipophilicity of the substituent at the 6-position being a major contributing factor for antiglutamate activity.

Table 1: Antiglutamate activity of 6-substituted-2-benzothiazolamines

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Reaction Pathway</th>
<th>ED50, mg/kg i.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OCF3</td>
<td>C</td>
<td>3.2</td>
</tr>
<tr>
<td>72a</td>
<td>H</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>73b</td>
<td>Cl</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>74b</td>
<td>NH2</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>CN</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>76</td>
<td>CO2Et</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>77a</td>
<td>NO2</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SO2Me</td>
<td>D</td>
<td>>10</td>
</tr>
<tr>
<td>79</td>
<td>OMe</td>
<td>D</td>
<td>>10</td>
</tr>
<tr>
<td>80</td>
<td>O-t-Bu</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>81b</td>
<td>SiMe3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>82</td>
<td>Me</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>83</td>
<td>Et</td>
<td>C</td>
<td>7</td>
</tr>
</tbody>
</table>
(2) 3-Substituted Riluzole Derivatives

Alkylation of 6-trifluoromethoxy-2-benzothiazolamine 1 occurred exclusively at the endocyclic nitrogen. Jimonet et al. published four different reaction pathways in which functionalisation was introduced to the endocyclic nitrogen of Riluzole (Scheme 12) generating a library of 3-substituted Riluzole analogues (Table 2).

Pathway E (Scheme 12) generates 3-substituted Riluzole derivatives via simple alkylation of Riluzole with commercially available alkylation reagents, in either an alcohol, methylethyl ketone, or dimethylformamide solution under reflux for several hours. The simplicity of this reaction and the availability of many alkylation agents allowed rapid synthesis of a large number of analogues 105 - 111, 113, 116 - 118, 121 and 124 - 126 (Table 2). Pathway F (Scheme 12) generates thiolate and amine functionalised 3-substituted Riluzole derivatives, such as 122 and 130 (Table 2), which cannot be generated via simple alkylation reaction of Riluzole. Riluzole is firstly alkylated with hydroxyethyl bromide. This is then followed by protection of the imine with a suitable electron-withdrawing group such as trifluoroacetyl. The hydroxyethyl chain is then activated with p-toluenesulfonyl chloride and reacted with either a thiolate or amine, generating either a thiolate or amine functionalised 3-substituted Riluzole analogue via an SN2 displacement reaction. Protection of the imine is essential otherwise intramolecular nucleophilic attack occurs between the nucleophilic imino and tosylate group forming an unwanted tricyclic derivative 97. Pathway G (Scheme 12) introduces functionality at the N-3 position before cyclisation, therefore reducing the generation of unwanted cyclised side-products experienced in other pathways. 4-Trifluoromethoxyaniline and 2-bromoethanol are reacted together generating an amino alcohol compound. This amino alcohol compound

<table>
<thead>
<tr>
<th></th>
<th>Substitution</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>n-Pr</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>85</td>
<td>i-Pr</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>86</td>
<td>n-Bu</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>87</td>
<td>t-Bu</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>88</td>
<td>n-Bu</td>
<td>C</td>
<td>7.5</td>
</tr>
<tr>
<td>89</td>
<td>t-Bu</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>90</td>
<td>n-Hex</td>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>91</td>
<td>n-Hep</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>92</td>
<td>COCF3</td>
<td>C</td>
<td>>10</td>
</tr>
<tr>
<td>93</td>
<td>OC2F5</td>
<td>C</td>
<td>2.5</td>
</tr>
<tr>
<td>94</td>
<td>C2F5</td>
<td>C</td>
<td>2.5</td>
</tr>
<tr>
<td>95</td>
<td>CF3</td>
<td>C</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*commercially available product from Aldrich; obtained via further reactions to existing Riluzole analogues
is then reacted with two equivalents of p-toluenesulfonyl chloride giving the ditosylate salt 101. Nucleophilic displacement of 101 with an appropriate amine, followed by hydrolysis and cyclisation gives analogues 127 - 130 (Table 2). Pathway H (Scheme 12) also adds functionality before cyclisation. Firstly ethenesulfonyl fluoride is reacted with 4-trifluoromethoxyaniline via a Michael addition to give 103. This is then converted to either a sulfonamide or sulfonic acid compound, such as 104, which is achieved via an Sn2 displacement between the sulfonyl fluoride compound and an appropriate amine or sulfonic acid. The final step in the pathway is ring-cyclisation yielding either a sulfonamide or sulfonic acid functionalised 3-substituted Riluzole analogue, such as analogues 114 and 115.

Scheme 12: Reagents and conditions: (a) 1.2 equiv. RX, EtOH, MEK or DMF, reflux, 24 h; (b) 1.0 eq. Br(CH₂)₂OH, EtOH, reflux, 1.5 h; (c) 1.1 equiv. TsCl, excess Py. 0 °C - RT, 90 % (over two steps); (d) 1.2 equiv. CF₃CO₂Et, 1.1 equiv. Et₃N, EtOH, RT, 18 h, 85 %; (e) 1.1 equiv. R¹R²NW, 1.0 equiv. NaHCO₃, DMF, 80 °C, 18 h or 1.1 equiv, R¹SNa, DMF, 80 °C, 18 h; (f) aq K₂CO₃, MeOH, RT, 5 h; (g) 1.0 equiv. Br(CH₂)₂OH, 160 °C, 1.5 h, 49 %; (h) 2.0 equiv. TsCl, 2.0 equiv. Et₃N, DCM, 0 °C - RT, 1.5 h, 55 %; (i) 2.1 equiv. R¹R²NH, 2.1 equiv. NaHCO₃, DMF, 80 °C, 18 h (j) HCl, aq AcOH, reflux; (k) 1.0 equiv. Br₂, 4.0 equiv. KSCN, AcOH, RT, 18 h; (l) 1.0 equiv. CH₂CHSO₂F, DMF, RT, 2 h, 75 %; (m) 8.0 equiv. R¹R²NH, acetone, reflux, 1 h or 8.0 equiv. AcOH, reflux, 1 h.

Riluzole analogues generated with N-3 functionality being small aliphatic chains, such as methyl 105, ethyl 106 and propyl 107 showed good antiglutamate activity, but the small variation in chain length did not drastically affect antiglutamate activity overall. When bulky alkyl and aromatic substituents were introduced, for example derivatives 108 and 109, potency decreased dramatically. N-3 Riluzole derivatives containing esters 111, amides 113, sulfonamides 114, carboxylic acid 112, sulfonic acid 115, and alcohol 116, functionality did not show improved potency compared to Riluzole.
Antiglutamate activity was shown to significantly increase when nitrogen or sulfur functionality was introduced to the N-3 position of Riluzole. For the sulfur substituents the most potent derivative was methylthioethyl 118, which gave an ED50 of 1 mg/kg i.p. Two other sulfur substituents similar to 118 were sulfoxide 119 and sulfone 120 all of which suggest that the active molecule in vivo is in fact a common metabolite. When the chain length to the thio group was increased or decreased or altered from the methylthio group to thiol or something bulkier, such as a phenyl ring (117, 121 and 122) this resulted in a loss of anticonvulsant activity. From the N-3 amino Riluzole substituents generated it was found that dimethylaminoethyl 124 and cyclic 125 substituted benzothiazoline analogues demonstrated good anticonvulsant potency over monoethylated substituents 123. Increasing the chain length from a two-carbon chain to a three-carbon chain for dimethylaminoethyl substituted benzothiazoline 126 or changing one of the methyl groups for an aromatic substituent 127 reduced potency. The last three entries of Table 2, 4-phenylpiperidinyl 128, 4-phenyl-1,2,3,6-tetrahydropyridyl 129, and 4-phenyl-piperazinyl 130 all show unexpectedly high levels of antiglutamate activity.

Table 2: Antiglutamate activity of 3-substituted-2-imino-benzothiazolamines

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Reaction pathway</th>
<th>ED50, mg/kg i.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1³</td>
<td>H</td>
<td>E</td>
<td>3.2</td>
</tr>
<tr>
<td>105</td>
<td>Me</td>
<td>E</td>
<td>5.0</td>
</tr>
<tr>
<td>106</td>
<td>Et</td>
<td>E</td>
<td>5.0</td>
</tr>
<tr>
<td>107</td>
<td>n-Pr</td>
<td>E</td>
<td>4.5</td>
</tr>
<tr>
<td>108</td>
<td>n-Bu</td>
<td>E</td>
<td>10.0</td>
</tr>
<tr>
<td>109</td>
<td>CH₂Ph</td>
<td>E</td>
<td>> 10</td>
</tr>
<tr>
<td>110</td>
<td>(CH₂)₂Ph</td>
<td>E</td>
<td>> 10</td>
</tr>
<tr>
<td>111</td>
<td>CH₂CO₂Me</td>
<td>E</td>
<td>> 10</td>
</tr>
<tr>
<td>112²</td>
<td>CH₂CO₂H</td>
<td></td>
<td>> 10</td>
</tr>
<tr>
<td>113</td>
<td>CH₂CONH₂</td>
<td>E</td>
<td>7.0</td>
</tr>
<tr>
<td>114</td>
<td>(CH₂)₂SO₂NH₂</td>
<td>H</td>
<td>6.0</td>
</tr>
<tr>
<td>115</td>
<td>(CH₂)₂SO₂H</td>
<td>H</td>
<td>> 10</td>
</tr>
<tr>
<td>116</td>
<td>(CH₂)₂OH</td>
<td>E</td>
<td>8.0</td>
</tr>
<tr>
<td>117</td>
<td>CH₃SMe</td>
<td>E</td>
<td>3.0</td>
</tr>
<tr>
<td>118</td>
<td>(CH₂)₂SMe</td>
<td>E</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>((\text{CH}_2)_2\text{SOMe})</td>
<td>1.1</td>
</tr>
<tr>
<td>120</td>
<td>((\text{CH}_2)_2\text{SO}_2\text{Me})</td>
<td>1.8</td>
</tr>
<tr>
<td>121</td>
<td>((\text{CH}_2)_2\text{SPh})</td>
<td>E</td>
</tr>
<tr>
<td>122</td>
<td>((\text{CH}_2)_3\text{SMe})</td>
<td>F</td>
</tr>
<tr>
<td>123</td>
<td>((\text{CH}_2)_2\text{NHMe})</td>
<td>>10</td>
</tr>
<tr>
<td>124</td>
<td>((\text{CH}_2)_2\text{NMe}_2)</td>
<td>E</td>
</tr>
<tr>
<td>125</td>
<td>(\text{NMe}2)</td>
<td>E</td>
</tr>
<tr>
<td>126</td>
<td>((\text{CH}_2)_2\text{NMe}_2)</td>
<td>E</td>
</tr>
<tr>
<td>127</td>
<td>((\text{CH}_2)_2\text{N(Me)}\text{CH}_2\text{Ph})</td>
<td>G</td>
</tr>
<tr>
<td>128</td>
<td>(\text{G})</td>
<td>G</td>
</tr>
<tr>
<td>129</td>
<td>(\text{G})</td>
<td>2.2</td>
</tr>
<tr>
<td>130</td>
<td>(\text{F})</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*commercially available product from Aldrich; could not be obtained directly from Riluzole thus compound 112 was prepared in two-steps after acidic hydrolysis of the benzothiazoline precursor 111; sulfoxide 119 and sulfone 120 were prepared from their respective thioethers via oxidation with mCPBA.

In conclusion a library of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines were successfully evaluated for their antiglutamate properties against seizures induced by intracerebroventricular administration of glutamic acid in rats. For the 6-substituted-2-benzothiazolamine library two sets of products were found to be active, compounds bearing a large but not too large alkyl substituent 86 and compounds bearing a polyfluoroalkyl or a polyfluoroalkoxy substituent 93 - 95. Active analogues from this library suggest that 6-substituted-2-benzothiazolamine possess excitatory amino acid antagonist activity, which could result in some of the analogues synthesised from this library exhibiting interesting anticonvulsive and neuroprotective properties similar to Riluzole. For the 3-substituted-2-imino-benzothiazolines it was shown that a variety of analogues could be synthesised via a number of pathways (Scheme 12) and a number of these analogues showed similar or elevated activity compared to Riluzole. Benzothiazoline analogues exhibiting strong antiglutamate activity were found to bear heteroatoms in the \(\beta\)-position of the alkyl substituent, which included the cycloalkylamino- 125, ethylamino- 124, and uncharged or oxidised alkylthioethyl-benzothiazoline analogues 118.

Other methods investigated towards enhancing Riluzoles antiglutamate activity included a combination therapy with Neramexane in which both active ingredients are administered as a single pharmaceutical composition. Neramexane is categorised as either an NMDA

33
antagonist or an NMDA receptor antagonist, therefore containing neuroprotective properties which inhibit the effects of excessive glutamate at the NMDA receptors to nerve cells. Initial studies were carried out on mice with an overexpression of the SOD1 gene mutation present in ALS patients. Initial results from this study showed that a combination therapy containing both Riluzole and Neramexane retarded disease progression. This study was carried forward and tested in 150 patients suffering from ALS. Results obtained from this study concluded that a combination therapy containing both Riluzole and Neramexane reduced disease progression to a greater extent than Riluzole.61

1.4 1,2,3,6-Tetrahydropyridine

One of the first reported synthesis of a tetrahydropyridine (THPy) was of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP 132), which was discovered in the late 1970s as a trace impurity in a synthetic fentanyl derivative known as meperidine.62 It is a potent neurotoxin in the domaminergic system, which produced Parkinson-like symptoms amongst other side effects.63 MPTP is generated through the rearrangement of 3,6-dimethyl-6-phenyl-tetrahydro-1,3-oxazine (131) using either sulphuric or hydrochloric acid (Scheme 13). Under relatively mild conditions 1-methyl-4-phenyl-4-piperidinol 133 was also obtained as a minor product.64,65

The reduction of N-alkylpyridiniums with sodium borohydride is a widely used method for the synthesis of pharmacologically interesting THPys 136,64,66 Unfunctionalised N-alkylpyridiniums 135 can be synthesised either via SN2 nucleophilic displacement between pyridine and an alkyl or aryl halide or via the Zincke reaction (Scheme 14).67,68

Scheme 13: Synthesis of MPTP

Scheme 14: Synthesis of THPy Conditions and reagents: Pathway I (a) excess Py, reflux, 24 h; (b) 2.8 equiv NaBH₄, MeOH, RT, 18 h;

Pathway J (c) MeOH, RT - reflux, 24 h; (d) 2.8 equiv. NaBH₄, MeOH, RT, 18 h
The Zincke reaction is a versatile method that allows the synthesis of pyridinium salts that cannot be made by direct N-functionalisation of pyridines. Zincke reported the preparation of pyridinium salts and their reactions with primary amines in a series of papers between 1903 and 1905. The mechanism by which the Zincke reaction occurs is, that a primary amine reacts with a highly electrophilic N-2,4-dinitrophenylpyridinium salt 138, resulting in the ring-opening of 138 to afford dianil salts 141 and 142. Reacting dianil salt 142 with another equivalent of primary amine generates 143 alongside the release of 2,4-dinitroaniline. Cyclisation of 139 results in the generation of pyridinium salt 135 (Scheme 15).

The THPy moiety is present in a variety of pharmaceutical compounds, including dopamine autoreceptor agonists, GABA uptake inhibitors as anticonvulsant and sedatives, muscarinic agonists in the treatment of AD and non-steroidal anti-inflammatory drugs (NSAIDs). Dopamine autoreceptor agonists, GABA uptake inhibitors and Muscarinic agonists which contain THPy moiety were reported to maintain healthy neurotransmission, which had previously been damaged by a dysfunction within the nervous system through excessive neurotransmission, which can lead to a variety of neurodegenerative diseases such as, AD, PD and ALS. NSAIDs containing THPy functionality report the reduction of inflammation from a biological response by protecting the body from infection and reducing tissue damage through injury. As stated early the exact mechanism in which ALS progresses in unknown, but through a number of proposed theories it is thought to be a combination of pathways including autoimmune, excitotoxicity, misfolding of the SOD1 gene and accumulation of TDP-43. Therefore tetrahydropyridine moiety incorporated with Riluzole could potentially enhance antiglutamate activity as both have been reported to reduce inflammation and regulate neurotransmission to a healthy level.

1.5 1,4-Substituted-1,2,3-Triazole Moiety in a Variety of Drug Candidates
The term ‘click chemistry’ was first conceived by Sharpless and co-workers in 2001, who laid out a set of high benchmarks which needed to be met if a reaction was to be termed a ‘click’ reaction. These benchmarks were; ‘the reaction must be modular, wide in scope, give very high yields, and be stereospecific (but not necessarily enantioselective). The required
process characteristics include simple reaction conditions, readily available starting materials and reagents, the use of no solvents or a solvent that is benign (such as water) or easily removed, and simple product isolation.72

The Huisgen cycloaddition, also known as the 1,3-dipolar cycloaddition, is a reaction between an azide and a terminal alkyne, which generates 1,4- and 1,5-substituted-1,2,3-triazoles (Scheme 16).73 The Huisgen cycloaddition reaction does not quite fit the ‘click’ reaction criteria as for the past 40 years this reaction has suffered from a lack of selectively yielding a mixture of 1,4- and 1,5-regioisomers due to activation energies of the two triazoles being very similar in energy 25.7 kcal/mol and 26.0 kcal/mol.74 Furthermore, this transformation required heating and long reaction times to achieve completion, and the resulting regioisomers obtained require the use of potentially laborious separation techniques.73 In 2002 Medal, then Sharpless, discovered that Cui salts could be used to catalyse the Huisgen cycloaddition, which allowed the reaction to be regioselective and also eliminated the harsh reaction conditions previously reported.75 The reaction could also now be performed at room temperature (RT) with very short reaction times (Scheme 16). The copperi catalysed azide-alkyne cycloaddition (CuAAC) is a close fit to the definition of ‘click chemistry’.75

![Scheme 16: The 1,3-dipolar cycloaddition between azides and alkynes](image)

The CuAAC reaction to generate 1,4-substituted-1,2,3-triazoles tolerates most organic functional groups and shows a wide scope with respect to alkyne and azide reactants. The reaction proceeds in a variety of solvents, tolerates a wide range of pH values, and performs well over a broad temperature range.76 The use of Cui in the 1,3-dipolar cycloaddition reaction lowers the activation barrier of the uncatalysed process by as much as 11 kcal/mol, which is sufficient to explain the incredible rate enhancement observed under Cui catalysis.76

The CuAAC reaction proceeds via a stepwise sequence on the basis of calculation and kinetic studies.76 Although thermal cycloaddition of azides and alkynes occurs through a concerted [2+3] cycloaddition mechanism, DFT calculations on monomeric copper acetylide complexes indicate that the concerted mechanism is strongly disfavoured. Overall a concerted mechanism is disfavoured as the calculated activation barrier for the cycloaddition
between an appropriate azide and copper-acetylene π complex is similar to the uncatalysed process, 25.7 kcal/mol.74,76 The stepwise catalytic cycle compared to the uncatalysed process lowers the activation energy by as much as 11 kcal/mol.76 The catalytic sequence begins with the coordination of the alkyne to the Cu$^\text{i}$ species, forming a copper acetylide intermediate 151. Cu$^\text{i}$ is generated from an in situ reduction of Cu$^\text{II}$, such as CuSO$_4$.5H$_2$O with sodium ascorbate or ascorbic acid. Introduction of the azide to this copper acetylide intermediate 151 generates an acetylide-azide complex 152. The terminal nitrogen on the azide of the acetylide-azide complex 152 attacks the C-2 carbon of acetylide forming a six-membered Cu$^\text{III}$ metallocycle 153. This is followed by ring contraction, which results in the generation of a copper triazolide intermediate 154 which on elimination yields the 1,4-substituted-1,2,3-triazole 148 upon protonation (Scheme 17).76 Formation of 1,4-substituted-1,2,3-triazoles is confirmed by nuclear overhauser effect (NOE) data as only the 1,4-substituted-1,2,3-triazole gives NOE interactions to both substituents for the triazole proton and no NOE between the substituents. NOE is the transfer of nuclear spin polarization from one nuclear spin population to another via cross-relaxation.

There are a few 1,2,3-triazole containing molecules on the market or in the last stages of clinical trials, which include the anti-cancer compound carboxyamidotriazole (CAI 155), the nucleoside derivative non-nucleoside reverse transcriptase inhibitor tert-butyldimethylsilylspiroaminothiolatedioxide (TSAO 156), β-lactam antibiotic tazobactum (157) and the cephalosporine cefatrizine (158, Figure 22).77 Triazole moiety has been incorporated into a wide variety of therapeutically interesting drug candidates to date, which includes anti-inflammatory agents, CNS stimulants, sedatives, anti-anxiety and antimicrobial agents as well as showing anti-fungal activity.78 Compounds containing 1,2,3-triazole moiety have also shown a wide range of pharmacological uses such as anti-malarial, analgesic, anti-
inflammatory, anti-convulsant, anti-neoplastic, anti-malarial, anti-viral, anti-proliferative and anti-cancer activities.78

![Figure 2: Potential pharmaceuticals based on 1,2,3-triazoles](image)

1,2,3-Triazole functionality is an attractive connectivity unit in drug discovery because of its stability against metabolic degradation and capable hydrogen bond acceptors from the N(2) and N(3) of the triazole ring (Figure 23).79 Hydrogen bonding is a favourable property in relation to the binding of biomolecular targets and can also improve the overall solubility of the pharmaceutically active compound.77

![Figure 23: 1,4-substituted-1,2,3-triazole](image)

In conclusion, click chemistry has had a dramatic and diverse impact on drug discovery and development in generating novel 1,4-substituted-1,2,3-triazole, which can be achieved via combinational chemistry. Triazole moiety can be found in a range of pharmaceutically active compounds including CNS treatments.
CHAPTER 2: PROJECT

To date Riluzole (1) is the only approved neuroprotective drug on the market, which prolongs the life expectancy of ALS patients via an unknown mechanism. While Riluzole is the only neuroprotective compound against ALS it has relatively low efficacy. This low efficacy means better therapies need to be investigated, which this thesis will do by modifying the chemical structure of Riluzole in the aim of producing a compound that has beneficial properties of Riluzole, but is predicted to be more effective in people living with ALS. This will be achieved by looking into designing two novel synthetic routes incorporating tetrahydropyridine 159 and 1,4-substituted-1,2,3-triazole 160 moiety at the N-3 position of Riluzole (Figure 24). Once simple synthetic methods have been developed for these two N-3 Riluzole libraries all pure N-3 Riluzole derivatives generated will be tested at Bradford University for their antiglutamate activity and compared to Riluzole.

\[\text{Figure 24: N-3 Riluzole Derivatives containing tetrahydropyridine and 1,4-substituted-1,2,3-triazole moiety} \]
CHAPTER 3: RESULTS AND DISCUSSION

All N-3 Riluzole compounds synthesised were synthesised in accordance with Lipinski’s rule of five, which are as follows; (1) the molecule being synthesised does not exceed a molecular weight of 500 g/mol\(^1\), (2) there are no more than five hydrogen bond donor groups, (3) there are no more than ten hydrogen bond acceptors, and (4) there is a calculated log P value of less than +5 (log P is a measure of drug’s lipophilicity).\(^8\) Pure N-3 Riluzole compounds obtained were then biological tested for their antiglutamate activity compared to Riluzole by Victoria Pugh who is carrying out a PhD at the University of Bradford, ‘Evaluation and Mechanism of Novel Neuroprotective Compounds for the Treatment of Motor Neurone Disease’.

3.1 Tetrahydropyridine Synthesis

The addition of tetrahydropyridine functionality to the N-3 position of Riluzole as reported by Jimonet and co-workers compound 129 has shown an increase of antiglutamate activity compared to Riluzole by approximately an EC\(_{50}\) of 1.0 mg/kg. Therefore synthesising a library of N-3 Riluzole analogues containing tetrahydropyridine moiety could result in an increase in antiglutamate activity reducing motor neuron damage, which could potentially lead to an increase in life expectancy for ALS patients.

3.1.1 Synthesis of Tetrahydropyridines without Functionality on the Tetrahydropyridine Ring

In 1999 Jimonet and co-workers reported the synthesis of a number of N-3 substituted Riluzole compounds, including 2-imino-3-[2-(4-phenyl-1,2,3,6-tetrahydro-1-pyridyl)-ethyl]-6-trifluoromethoxy-benzothiazoline 129 with higher antiglutamate activity than Riluzole (Scheme 18).\(^5\) Scheme 18 shows a direct route to generating N-3 Riluzole analogues with tetrahydroprpyridine moiety, which can be further adopted to generating 3-(2-(4,5-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazole-2-imine 159, which is the starting point towards generating a library of N-3 Riluzole analogues with the aim of enhancing Riluzoles antiglutamate activity.
Compound 129 was synthesised in four-steps starting from 4-trifluoromethoxyaniline 67. Reacting 4-trifluoromethoxyaniline with 2-bromoethanol generated amino alcohol 100 via an S_N^2 reaction. Compound 100 was further reacted with two equivalents of p-toluenesulfonyl chloride to give the ditosylated amino alcohol 101. Reacting compound 101 with 4-phenyl-1,2,3,6-tetrahydropyridine resulted in the displacement of OTs, which followed by acidic desulfonylation gave compound 161. The final step in the generation of compound 129 was achieved by reacting compound 161 with KSCN and Br$_2$.

Cyclisation of compound 161 was achieved by firstly reacting a secondary amine with KSCN to form the thiourea intermediate 162, which then in the presence of Br$_2$ underwent an electrophilic addition at sulfur to afford 163 as an intermediate. This intermediate is then attacked by the π system of the aromatic ring to give 164, which is followed by rapid re-aromatisation to form the benzothiazole ring (Scheme 19).
In generating compound 159 the first two-steps of Jimonet and co-workers pathway (Scheme 18) were repeatable, but nucleophilic displacement between OTs and pyridine to generate the pyridinium intermediate was unsuccessful with only starting material being recovered from the reaction between compound 101 and pyridine, the nucleophile. Altering the OTs for an iodide leaving group via the Finklestein reaction generated compound 165 in high yield (Scheme 21).

The first-halogen exchange was reported in the mid 1800s by Perkin. However, the process became known as the Finklestein reaction after a number of systematic studies on the reaction were conducted by Finklestein several decades later, in 1910. The reaction proceeds by S_N2 substitution of the leaving group, typically bromide or chloride, with an iodide (Scheme 20). The reaction exploits the differing solubilities of sodium halide salts in acetone. Sodium chloride and sodium bromide are not soluble in acetone, so therefore precipitate out of the reaction mixture, thus driving the reaction to completion.

\[
\begin{align*}
X^- + R-X' & \rightleftharpoons X-R + X'^- \\
X &= I, R = 1^o \text{ and } 2^o \text{ alkyl, allyl, benzyl and } X' &= Cl, Br, OMs, OTs
\end{align*}
\]

Scheme 20: The mechanism of the Finklestein reaction

The pyridinium intermediate was then reduced with sodium borohydride to generate tetrahydropyridine intermediate 166 via a double iminium reduction. Desulfonylation of the secondary amine with strong acid to yield 167 was unsuccessful with only starting material
being recovered (Scheme 21). Despite repeating this reaction, the desulfonylation was unsuccessful, which precluded the cyclisation pathway required to prepare an N-3 unsubstituted tetrahydropyridine derivative of Riluzole.

\[\text{Scheme 21: Reagents and conditions: (a) 1.0 equiv. Br(CH}_2)_2OH, 160 °C, 1.5 h, 36%; (b) 2.0 equiv. TsCl, 2.0 equiv. Et}_3N, DCM, 0 °C, 1.5 h, 48%; (c) 2.0 equiv. NaI, acetone, reflux, 60 h, 97%; (d) excess Py, reflux, 20 h, (e) 2.8 equiv. NaBH}_4, MeOH, 0 °C - RT, 42 h, 71% (over two steps); (f) HCl, aq. AcOH, reflux, 3 h, 0%} \]

Repetition of Jimonet and co-workers methodology to generate N-3 Riluzole analogues with tetrahydropyridine moiety was unsuccessful as desulfonylation of compound 167 was found to retard this synthetic pathway, even though Jimonet and co-workers have reported the generation of a number Riluzole analogues using this route. Therefore alternative routes, which don’t require protecting groups within the reaction pathway, should be investigated, such as the generation of sulfamidate and aziridine intermediates.

3.1.1.1 Synthesis of Unfunctionalised Tetrahydropyridine Riluzole Derivatives via Sulfamidate Chemistry

Cyclic sulfamidates are synthetically versatile electrophiles, which can be directly synthesised from readily available 1,2- and 1,3-amino alcohols. Generating these cyclic sulfamidate intermediates in the generation of N-3 Riluzole tetrahydropyridines will remove previous problems highlighted by Jimonet and co-workers experimental procedure. Pyridine then reacts at the C-O bond of the sulfamate, which followed by desulfonylation and re-aromatisation yields an N-3 Riluzole tetrahydropyridine.

Constrained 1,2-amino alcohols, such as prolinol, are directly reacted with sulfuryl chloride to yield cyclic sulfamidates.\[^{83}\] Using this as a generalised method for the synthesis of cyclic sulfamidates from 1,2- and 1,3-amino alcohols is not feasible as this process can result in competitive chlorination and aziridination.\[^{83}\] A two-step approach is preferred instead. Firstly 1,2- and 1,3-amino alcohols are treated with thionyl chloride in the presence of imidazole generating 1,2- and 1,3-cyclic sulfamidites 169 in a highly efficient manner. Cyclic sulfamidite
then undergoes oxidation with RuO₄ or RuCl₃ and NaIO₄ in aqueous solvent to yield the cyclic sulfamidate 170. A number of alternative oxidising agents reported in the literature, such as m-CPBA and KMnO₄ have been tested previously, but reagents RuO₄ or RuCl₃ and NaIO₄ have been reported as the most effective systems giving yields greater than 80 % (Scheme 22).

Nucleophilic attack directed towards cyclic sulfamidates occurs exclusively at the oxygen-bearing carbon via an S_n2 nucleophilic substitution (Scheme 23). The reactivity of cyclic sulfamidates is similar to activated aziridines and azetidines, but not through ring strain. Cyclic sulfamidates can undergo ring-opening with a variety of nucleophiles, such as sulfur, oxygen, nitrogen, carbon and halogen nucleophiles. From here on in, this thesis will focus solely on the ring-opening of cyclic sulfamidates with nitrogen nucleophiles.

Zhang and co-workers reported the facile synthesis of functionalised chiral ionic liquids via ring-opening of sulfamidates with pyridine (Scheme 23). This reaction is of relevance to generating 3-(2-(4,5-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazole-2-imine 159 as an uncyclised pyridinium ionic liquid will be generated as one of the intermediate compounds in the synthesis towards obtaining compound 159. The generation of an uncyclised pyridinium compound can be obtained by generating a sulfamidate compound from compound 100, which is then ring-opened with pyridine. This uncyclised pyridinium intermediate will then undergo re-aromatisation and reduction to yield compound 159. Pyridine behaves like a tertiary aliphatic or aromatic amine in reactions that involve bond formation through the lone pair of electrons on the nitrogen ring. Pyridine attacks the C-O bond of the sulfamidate generating the desired pyridinium cation.

The reactivity of cyclic sulfamidates is similar to activated aziridines and azetidines, but not through ring strain. Cyclic sulfamidates can undergo ring-opening with a variety of nucleophiles, such as sulfur, oxygen, nitrogen, carbon and halogen nucleophiles. From here on in, this thesis will focus solely on the ring-opening of cyclic sulfamidates with nitrogen nucleophiles.

Scheme 22: Reagents and conditions: (a) 1.1 equiv. SOCl₂, 2.2 equiv. Et₃N, 4.0 equiv. imidazole, DCM, RT, 12 h; (b) 0.1 mol % RuCl₃, 1.1 equiv. NaIO₄, MeCN/H₂O, RT, 12 h

Nucleophilic attack directed towards cyclic sulfamidates occurs exclusively at the oxygen-bearing carbon via an S_n2 nucleophilic substitution (Scheme 23). The reactivity of cyclic sulfamidates is similar to activated aziridines and azetidines, but not through ring strain. Cyclic sulfamidates can undergo ring-opening with a variety of nucleophiles, such as sulfur, oxygen, nitrogen, carbon and halogen nucleophiles. From here on in, this thesis will focus solely on the ring-opening of cyclic sulfamidates with nitrogen nucleophiles.

Zhang and co-workers reported the facile synthesis of functionalised chiral ionic liquids via ring-opening of sulfamidates with pyridine (Scheme 23). This reaction is of relevance to generating 3-(2-(4,5-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazole-2-imine 159 as an uncyclised pyridinium ionic liquid will be generated as one of the intermediate compounds in the synthesis towards obtaining compound 159. The generation of an uncyclised pyridinium compound can be obtained by generating a sulfamidate compound from compound 100, which is then ring-opened with pyridine. This uncyclised pyridinium intermediate will then undergo re-aromatisation and reduction to yield compound 159. Pyridine behaves like a tertiary aliphatic or aromatic amine in reactions that involve bond formation through the lone pair of electrons on the nitrogen ring. Pyridine attacks the C-O bond of the sulfamidate generating the desired pyridinium cation.

Scheme 22: Reagents and conditions: (a) 1.1 equiv. SOCl₂, 2.2 equiv. Et₃N, 4.0 equiv. imidazole, DCM, RT, 12 h; (b) 0.1 mol % RuCl₃, 1.1 equiv. NaIO₄, MeCN/H₂O, RT, 12 h

169 then undergoes oxidation with RuO₄ or RuCl₃ and NaIO₄ in aqueous solvent to yield the cyclic sulfamidate 170. A number of alternative oxidising agents reported in the literature, such as m-CPBA and KMnO₄ have been tested previously, but reagents RuO₄ or RuCl₃ and NaIO₄ have been reported as the most effective systems giving yields greater than 80 % (Scheme 22).
The synthesis of cyclic sulfamidates with 1,2-amino alcohols followed by ring-opening with pyridine was adopted as a route for preparing Riluzole derivatives with tetrahydropyridine substituents at the N-3 position. Compound 100 was treated with thionyl chloride in the presence of pyridine to generate cyclic sulfamidite intermediate 174 (Scheme 24). This reaction was attempted numerous times but only starting material was recovered from the reaction.

\[
\text{Scheme 24: Reagents and conditions: (a) 3.3 equiv. SOCl}_2, \text{ excess Py. DCM, 0 °C - RT, 1.5 h, 0 %}
\]

Reasoning behind why this reaction was unsuccessful could be due to the trifluoromethoxy group having electron deficient characteristics, which will in turn result in the lone pair of the nitrogen delocalising within the electron deficient aromatic ring. Delocalisation of the nitrogen lone pair within the electron deficient ring will in turn retard cyclisation and sulfamidite generation, as nucleophilic attack between the nitrogen and the sulfurochloridite is less likely to occur.

3.1.1.2 Synthesis of N-3 Riluzole Derivatives with Tetrahydropyridine Functionality via Aziridine Chemistry

Aziridine functionality represents one of the most valuable three-membered ring systems in modern synthetic chemistry due to its widely recognised versatility as a significant building block for chemical bond elaborations and functional group transformations. Synthesising aziridine intermediates in the generation of N-3 Riluzole tetrahydropyridine will remove the use of protecting groups and also the number of steps required to get to the desired tetrahydropyridine product. Also, aziridines are very constrained three-membered rings, which readily ring-open with a variety of nucleophiles, which include carbon, oxygen, sulfur, and nitrogen heteroatoms. Over the years a number of different synthetic methods have been published regarding the synthesis of aziridines and this thesis focuses on three.

3.1.1.2.1 Ring-opening of Aziridines via O-Diphenylphosphinyl Protection to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives

In 1993 Sweeney and co-workers first reported the preparation of N-phosphinyalted aziridine 176, which was efficiently prepared from 1,2-hydroxyamines via a three-step process (Scheme 25).
Scheme 25: Reagents and conditions: (a) 1.0 equiv. Ph₂POCl, 1.0 equiv Et₃N, DCM, 0 °C - RT, 4 h; (b) 1.1 equiv. TsCl, 3.0 equiv Et₃N, 0 °C - RT, 18 h; (c) 2.0 equiv. NaH, THF, 0 °C - RT, 24 h, 52 % (over three steps).

N-phosphinylated aziridines 176 are generated from 1,2-amino alcohols 175. 1,2-Amino alcohols 175 was reacted with one equivalent of *p*-toluenesulfonyl chloride, and then one equivalent of diphenylphosphonic chloride to give 2-((diphenylphosphoryl)amino)ethyl-4-methylbenzenesulfonate. This was further treated with NaH resulting in the cyclisation of 2-((diphenylphosphoryl)amino)ethyl-4-methylbenzenesulfonate to yield *N*-phosphinylated aziridine 176 in good yield. Small quantities of *N*-tosylaziridine 177 are also generated as a byproduct of this reaction. This byproduct 177 is speculated to have been generated by incomplete phosphinylolation generating *N*,*O*-ditosylated compounds which upon treatment with base yields the undesired aziridine 177. Alternatively the phosphinyl group migrates from the nitrogen to the oxygen during tosylation, which then upon cyclisation with base will yield the undesired aziridine 177.

Sulfonyl groups are commonly used as activating groups for aziridines due to their excellent activation properties for ring-opening reactions with a variety of nucleophiles. When these *N*-tosylaziridines are ring-opened they yield sulfonamides, which then require harsh conditions to achieve desulfonylation. However as discussed earlier desulfonylation of the nitrogen on compound 177 has proven to be unsuccessful, which is what this chemistry will be applied to. Diphenylphosphinyl groups have similar activating effects to toluenesulfonyl group as the P=O bond is highly polar and compared to sulfonyl groups diphenylphosphonic groups can be easily removed because there is a smaller interaction between the phosphorus and lone pair on the nitrogen. Therefore, *N*-P bonds can be cleaved under much milder conditions (Scheme 26).

Scheme 26: Reagents and conditions: (a) 2.0 equiv. Ph₂POCl, 3.0 equiv. Et₃N, THF, 0 °C - RT, 5 h; (b) excess NaH, THF, 0 °C - RT, 24 h, 99 % (over three steps) (c) Nu; (d) excess BF₃OEt₂, MeOH, DCM, RT, 18 h, 68 - 92 % (over two steps)

Scheme 25 shows a plausible experimental procedure to generate *O*-diphenylphosphinoylated compounds with 1,2-amino alcohols, which can then be cyclised via nucleophilic attack with a nucleophilic amine generated by using a strong base, such as NaH.
to generate aziridines. Scheme 26 reports a repeatable deprotection procedure to regenerate free amines. These experimental procedures were applied to amino alcohol 100 in the aim of generating Riluzole derivatives with tetrahydropyridine substituents at the N-3 position from a secondary amine instead of a primary amine, which has been reported in the above schemes 25 and 26. Reacting compound 100 with one equivalent of diphenylphosphonic chloride successfully gave compound 182 in moderate yield (Scheme 27). Further reacting compound 182 with two equivalents of NaH did not generate the desired N-aryl aziridine 183 only starting material was recovered (Scheme 27). After numerous attempts this method was sidelined.

As discussed in section 3.1.1.1 the generation of a sulfamidate intermediate 174 in the preparation of generating N-3 Riluzole analogues with tetrahydropyridine moiety was unsuccessful due to the nitrogen lone pair not being available for nucleophilic attack, as a result of the nitrogen being delocalised in the electron deficient ring. The reasoning provide for compound 174 is also true for aziridine 183 not being generated.

3.1.1.2 Ring-opening of Aziridines via Buchwald-Hartwig Cross-Coupling to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives

Palladium-catalysed carbon-nitrogen bond-forming reactions have received considerable attention in recent years, with the first reported synthesis of palladium-catalysed amination of aryl halides being published by Kosugi et al. in 1983.\(^{92}\) Using this methodology to generate a Riluzole aziridine intermediate 183 between an aryl halide and aziridine will remove previous issues experienced in which cyclisation has not occurred due to the nitrogen lone pair being delocalised within the electron deficient ring preventing nucleophilic attack.

Buchwald and Hartwig concurrently investigated both the mechanistic and synthetic process of the palladium-catalysed amination of aryl halides 10 years after it was first reported. In 1995 both Hartwig and Buchwald separately reported the replacement of tin reagents for either alkoxide or silylamide bases as the generation of tin amides, are known to be toxic, thermally unstable, air-sensitive and can only be applied to electron-neutral aryl halides.\(^{92}\) Exploration of alkoxide bases, such as NaO\(^{18}\)Bu, K\(_2\)CO\(_3\) and Cs\(_2\)CO\(_3\) by Buchwald and co-workers reported that they could be applied to the palladium-catalysed amination between a variety of electron-withdrawing and electron-donating aryl bromides with either primary or secondary amines.\(^{93}\) In 1996 Hartwig and Buchwald published a number of back-to-back
papers in which the palladium catalyst is complexed with chelating phosphine type ligands such as BINAP and DPPF.92 It was reported that these palladium complexes catalysed the amination of aryl bromides and iodides with primary alkyl amines, cyclic secondary amines, and anilines. Overall, BINAP is the preferred ligand of choice as amination between either alkyl amines or alkyl halides can be applied to a number of electron-rich, electron-poor, hindered, unhindered or neutral aryl bromides, iodides or amines and will give high yields.

Buchwald proposed the catalytic cycle by which palladium-catalysed cross-coupling amination generates new C-N bonds between suitable amines and aryl halides.94 Firstly, Pd(0) undergoes oxidative addition with a suitable aryl halide to generate 189, which is followed by amine addition to give 191. The introduction of an alkoxide base generates 192 a Pd(II)-aryl amide, which is then reductively eliminated to generate a new C-N bond and also the regeneration of the Pd(0) catalyst (Scheme 28).

\begin{align*}
Pd_2(dba)_3 + BINAP & \xleftrightarrow{184} \xrightarrow{186} (BINAP)Pd(dba) \xrightarrow{188} ArBr \xrightarrow{193} (BINAP)Pd(0) \xrightarrow{187} (BINAP)Pd(II)(Ar)(Br) \xrightarrow{192} (BINAP)Pd(II)(Ar)[N(R)R'] \xrightarrow{189} HN(R)R' \xrightarrow{190} HN(R)R' \xrightarrow{191} NaO\textsubscript{t}Bu \xrightarrow{194} NaBr
\end{align*}

Scheme 28: The catalytic cyclic for the formation of C-N bonds

Palladium-catalysed amination reactions between aryl halides and aziridines were not reported until 2003 where Yudin and co-workers described the reaction between cyclohexeneimine 194 and a variety of electron-withdrawing and electron-donating groups at the para and ortho potion of the aryl halide (Scheme 29).95,96 Palladium cross-coupling conditions reported by Yudin and co-workers are of interest towards the synthesis of compound 183 as electron-withdrawing aryl halides can be reacted with aziridines.

\begin{align*}
\text{194} \quad \text{NH} & \quad \xrightarrow{a} \quad \text{195} \quad \text{Br} \quad \text{196} \\
\text{194} & \quad \text{NH} \quad + \quad \text{195} \quad \text{Br} \quad \xrightarrow{a} \quad \text{196} \\
\text{R} & \quad p-\text{NO}_2 \quad \text{p-CN}
\end{align*}

Scheme 29: Reagents and conditions: (a) 2 mol % Pd\textsubscript{2}(dba)_3, 2 mol % BINAP, 1.4 equiv. 1BuONa, toluene, 50 °C - 80 °C, 2 - 24 h, 76 - 96 %
The experimental procedure reported by Yudin and co-workers was adapted to synthesising N-3 tetrahydropyridine Riluzole analogue. As previously discussed the generation of a Riluzole aziridine intermediate via intramolecular cyclisation has not been successful due to the nitrogen lone being delocalised within the electron deficient aromatic ring. The generation of a Riluzole aziridine intermediate using Yudin and co-workers methodology removes intramolecular cyclisation and instead palladium catalysed cross-coupling between 4-trifluoromethoxy bromobenzene and aziridine will be attempted. Palladium cross-coupling between 4-trifluoromethoxy bromobenzene and aziridine, which was generated in situ by reacting 2-chloroethylammonium bromobenzene chloride with 0.02 M sodium hydroxide solution did not generate compound 183 (Scheme 30). 4-Trifluoromethoxy bromobenzene was seen to be fully consumed, but product peaks were not observed in the crude \(^1\)H NMR. Overall the \(^1\)H NMR obtained was inconclusive.

\[
\text{Scheme 30: Reagents and conditions: (a) 2.0 equiv. 0.02 M aq NaOH, H}_2\text{O, 50 °C, 45 mins}^{97}; \text{ (b) 2 mol }\%	ext{, }\text{Pd}_2(\text{dba})_3, 2 \text{ mol }\%	ext{ rac-BINAP, 1.4 equiv. }\text{Na}^1\text{OBu, toluene, 50 °C, 12 h, 0 %}
\]

Reasoning for the lack of success with this reaction could be related to the conditions used to cross-couple aziridine with 4-trifluoromethoxy bromobenzene, as Yudin and co-workers only reported palladium cross-coupling with substituted or kinetically stable aziridines, such as cyclohexeneimine 194. Cross-coupling with aziridine has proven to be problematic firstly due to its low basicity (the \(pK_a\) of the aziridinium ion is 8.0, whereas that of a secondary amine is ca. 11) and secondly its inherent ring strain of approximately 111 kJ mol\(^{-1}\). Low basicity of the aziridine results in weak bond formation of the amine within the aziridine and activated palladium catalyst, which means the generation of palladium mediated \(N\)-arylated compounds are less likely to be generated. Palladium mediated \(N\)-arylated products are less likely to be generated from aziridines having low basicity instead of aziridines being ring-opened because of the ring strain associated which results in the generation of unwanted ring-opened products. Ring-opening of aziridines can be induced by either nucleophilic attack at the carbon or Lewis acid coordination at the nitrogen. In general, ring-opening reactions of aziridines and \(N\)-arylaziridines can be achieved under relatively mild conditions.

3.1.1.2.3 Generation of Aziridines via the Mitsunobu Reaction Followed by Ring-Opening to Generate Unfunctionalised Tetrahydropyridine Riluzole Derivatives

Mitsunobu conditions have been widely reported for the synthesis of aziridines from 1,2-amino alcohols. In 1984 Pfister reported the synthesis of aziridines via intramolecular dehydrogenation of 2-aminoethanol using a combination of DEAD and triphenylphosphine
Since then a number of aziridines have been generated from 1,2-amino alcohols using this methodology.\(^\text{102}\)

![Scheme 31](image)

Scheme 31: Reagents and conditions: (a) 1.5 equiv. DEAD, 1.5 equiv. PPh\(_3\), THF/Et\(_2\)O, 0 °C - RT, 2 h, 18 %

Using Mitsunobu reaction conditions to generate a Riluzole aziridine intermediate will remove issues previously experienced with protecting groups reported by Jimonet and co-workers methodology, which did not successfully generate an N-3 Riluzole analogue with tetrahydropyridine moiety as desulfonylation was not repeatable. Applying the following methodology to compound 100 did not yield a Riluzole aziridine intermediate 183 only starting material was recovered (Scheme 32).

![Scheme 32](image)

Scheme 32: Reagents and conditions: (a) 1.4 equiv. DEAD, 2.0 equiv. PPh\(_3\), THF/Et\(_2\)O, 0 °C - RT, 24 h, 0 %

The three-step intramolecular Mitsunobu reaction in which the amino alcohol 100 is converted to a Riluzole aziridine intermediate 183 was as stated above unsuccessful. The recovery of starting material could be the result of the trifluoromethoxy group attached at the para position of aniline being electron withdrawing with a hammett value of \(\sigma_p = 0.35 \).\(^\text{103}\) Having an electron deficient aromatic ring attached to the nitrogen will reduce intramolecular S\(_{N2}\) nucleophilic displacement between the nitrogen and the activated alcohol reducing the chances of generating a Riluzole aziridine intermediate.

3.1.1.3 Zincke Reaction

The Zincke reaction is an amine exchange process in which primary amines are converted to pyridinium salts using \(N-(2,4\)-dinitrophenyl) pyridinium chloride 138 (Scheme 33).\(^\text{104}\)

![Scheme 33](image)

Scheme 33: Zincke Reaction Reagents and Conditions: (a) 2.0 equiv R-NH\(_2\), EtOH, reflux, 12 h
Incorporating the Zinccke reaction into the synthesis of N-3 Riluzole with tetrahydropyridine moiety will remove focus from previous chemistry, which so far has focused on the secondary amine attached to an electron deficient aromatic ring. All reaction pathways so far focusing on the secondary amine attached to an electron deficient ring have ended in failure therefore taking a new approach could result in success. The aim is to generate a diamine compound which will react with N-(2,4-dinitrophenyl) pyridinium chloride via Zinccke reaction conditions generating an uncyclised pyridinium compound 204. Once this intermediate has been generated it will then undergo cyclisation and reduction to generate an N-3 Riluzole tetrahydropyridine analogue (Scheme 34).

Scheme 34: Reagents and conditions: (a) 1.0 equiv. Br(CH₂)₂NH₂.HBr, toluene, reflux, 24 h, 65 %; (b) 1.0 equiv. N-(2,4-dinitrophenyl) pyridinium chloride, MeOH, RT - reflux, 20 h; (c) 1.0 equiv. sodium p-toluene sulfonate, EtOAc, reflux 12 h, 78 % (over two steps); (d) 12.0 equiv. KSCN, 1.0 equiv. Br₂, AcOH, RT, 16 h; (e) 2.8 equiv. NaBH₄, MeOH, 0 °C - RT, 16 h, 69 % (over two steps)

Firstly 4-trifluoromethoxyaniline underwent an S₉2 nucleophilic displacement with 2-bromoethylamine hydrobromide to generate diamine 203. The diamine 203 is then reacted with N-(2,4-dinitrophenyl) pyridinium chloride 138 under Zinccke reaction conditions to yield an uncyclised pyridinium salt 204, which proceeds via Scheme 15, found on pg. 36. Reacting compounds 203 and 67 together generates a ring-opened dianil salt. Reacting ring-opened dianil salt with another equivalent of compound 203 results in the generation of a diamine chain and the release of 2,4-dintroaniline. The diamine chain then undergoes cyclisation to yield compound 204 after counter-ion exchange. Compound 204 then undergoes cyclisation with the following reagents KSCN and Br₂ under acidic conditions to generate intermediate 205, which is then reduced in situ with NaBH₄ to yield compound 159 (Scheme 34).

Uncyclised pyridinium 204 is generated over uncyclised tetrahydropyridine as cyclisation of the latter has been reported to yield a dibromopiperidine ring. Optimisation studies of cyclising uncyclised pyridinium 204 to the crude intermediate 205 were investigated as
following the exact experimental procedure reported by Jimonet and co-workers gave a 1:1 ratio of 204 and 205. This optimisation study focused on varying the equivalents of KSCN and Br₂, and also looked at using alternative bromine source (Table 3). All other variables time, temperature and solvent were kept constant throughout this study.

Table 3: Varying the equivalents of KSCN, Br₂ or PhCH₂NMé₃Br₃ source

<table>
<thead>
<tr>
<th>Entry</th>
<th>KSCN</th>
<th>Br₂</th>
<th>PhCH₂NMé₃Br₃</th>
<th>204:205 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0 eq</td>
<td>1.0 eq</td>
<td>-</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>8.0 eq</td>
<td>1.0 eq</td>
<td>-</td>
<td>1:4</td>
</tr>
<tr>
<td>3</td>
<td>12.0 eq</td>
<td>1.0 eq</td>
<td>-</td>
<td>1:8</td>
</tr>
<tr>
<td>4</td>
<td>4.0 eq</td>
<td>2.0 eq</td>
<td>-</td>
<td>1:1</td>
</tr>
<tr>
<td>5</td>
<td>8.0 eq</td>
<td>2.0 eq</td>
<td>-</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>12.0 eq</td>
<td>2.0 eq</td>
<td>-</td>
<td>1:4</td>
</tr>
<tr>
<td>7</td>
<td>4.0 eq</td>
<td>-</td>
<td>1.0 eq</td>
<td>1:2</td>
</tr>
<tr>
<td>8</td>
<td>8.0 eq</td>
<td>-</td>
<td>1.0 eq</td>
<td>1:3</td>
</tr>
<tr>
<td>9</td>
<td>12.0 eq</td>
<td>-</td>
<td>1.0 eq</td>
<td>1:5</td>
</tr>
<tr>
<td>10</td>
<td>4.0 eq</td>
<td>-</td>
<td>2.0 eq</td>
<td>1:1</td>
</tr>
<tr>
<td>11</td>
<td>8.0 eq</td>
<td>-</td>
<td>2.0 eq</td>
<td>1:1</td>
</tr>
<tr>
<td>12</td>
<td>12.0 eq</td>
<td>-</td>
<td>2.0 eq</td>
<td>1:4</td>
</tr>
</tbody>
</table>

* ¹H NMR were run in CDCl₃ after working up the reaction

Entries 1-6 in Table 3 vary the equivalents of KSCN and Br₂. Ratios of starting material 204 to crude intermediate 205 were determined by comparing proton integration corresponding to the two compounds after work-up with all ¹H NMRs run in CDCl₃. The highest conversion of 204 to 205 used twelve equivalents of KSCN and one equivalent of Br₂, entry 3. Entries 7-12 of Table 3 vary the equivalents of KSCN and an alternative bromine source, trimethylphenylammonium tribromide (PhCH₂NMé₃Br₃), which is an organic ammonium tribromide (OATB). OATBs compared to liquid bromine have higher molecular weights so are found as crystalline solids. Advantages of using OATBs over liquid bromine include higher stability and accurate masses as OATBs are less volatile and take solid forms. Overall for
all entries in Table 3 a trend can be observed, increasing the equivalents of KSCN from four to twelve equivalents increases the conversion of 204 to 205. Altering the equivalents of bromine from one to two equivalents shows no enhanced improvement in conversion of compound 204 to crude intermediate 205. Also altering the bromine source from Br₂ liquid to an OATB showed no improvement in conversion from 204 to 205. To conclude this optimisation study has reported that the reaction conditions required for a high conversion of compound 204 to intermediate 205 requires twelve equivalents of KSCN and one equivalent of Br₂, entry 3.

Riluzole derivative 159 was obtained in a four-stage synthesis from 4-trifluoromethoxyaniline with an overall yield of 13%. Biological testing on compound 159 was not conducted as standard column chromatography failed to give sufficiently pure compound.

3.1.2 Synthesis of Functionalised Tetrahydropyridines

3.1.2.1 Using the Zincke Reaction
Generating an N-3 Riluzole tetrahydropyridine analogue was successful using Zincke reaction chemistry. The synthesis of N-3 Riluzole tetrahydropyridine analogues with substitution on the tetrahydropyridine ring can be generated using the same method describe for compound 159 but instead substituted Zincke salts are used. Synthesising a variety of substituted N-3 Riluzole tetrahydropyridine analogues will produce a variety of N-3 Riluzole substituted tetrahydropyridine analogues, which can be tested for their antiglutamate activity against Riluzole in the aim of generating an analogue with greater antiglutamate activity.

Substituted Zincke salts are generated by reacting a substituted pyridine with 1-chloro-2,4-dinitrobenzene (Scheme 35). The substituted Zincke salt 208 is then reacted with a primary amine to yield a substituted pyridinium compound, which when reduced yields a substituted tetrahydropyridine. When generating a substituted Zincke salts there are a few important aspects to consider: (1) pyridines with functionality at either the 2- or 6-position do not generate Zincke salts as this retards primary amine attack due to unfavourable steric effects, (2) generation of Zincke salts between 1-chloro-2,4-dinitrobenzene and pyridines with strongly electron deficient functionality, with R being CN, or NO₂ or where R¹ is also CN or NO₂ are not obtainable due to the pyridines lone pair being pulled towards the electron deficient functional group so therefore stopping SNAr substitution, and (3) Zincke salts with the following substituted pyridines having R as Br or COOEt or R¹ as COOEt can be obtained but require elevated temperatures.⁶⁸
The rate in which pyridinium salts are generated via the nucleophilic substitution between a substituted Zincke salt and a primary amine are determined by the functionality on the Zincke salt \(208\). It has been reported that the reaction between primary amines and mildly electron-deficient Zincke salts generates pyridinium salts quickly as fast ring-opening of the Zincke salt has been recorded. Whereas, reacting primary amines with electron-rich Zincke salts generates pyridinium salts slowly as slow ring-opening of the Zincke salt has been recorded. This sluggish reaction with electron-rich Zincke salts can be overcome by raising the reaction temperature, changing the solvent the reaction is run in, or changing the Zincke salts counteranion from chloride to dodecyl sulfate. Altering the Zincke salts counter-ion will lower nucleophilic anion properties, which will then allow Zincke salts to dissolve in a broader range of organic solvents.\(^{68,106}\)

Zincke salts \(209\) entries 1-6 of Table 4 were generated via an \(S_{N}Ar\) substitution between 1-chloro-2,4-dinitrobenzene and substituted pyridines giving moderate to high yield 49 - 92 %. These Zincke salts generated were then reacted with diamine \(203\) to give crude uncyclised substituted pyridinium salts, which then underwent counter-ion exchange with sodium \(p\)-toluenesulfonate to yield pure uncyclised substituted pyridinium tosylate salts \(210\ a - f\) in low to good yields over two-steps. Having substitution at the 3-position of the pyridinium tosylate salts decreased in yield as you increased the alkyl chain. Whereas, substitution at the 4-position of the pyridinium tosylate salt decreased in yield as the alkyl chain was increased and using bulkier groups increased the yield. Overall compound \(210\ f\) gave the best yield of pyridinium tosylate salt 89 %.
Table 4: Results obtained from the reaction of compound 203 with substituted zincke salts

![Chemical structure](image)

Reagents and conditions: (a) 1.0 equiv. Zincke salt, solvent, RT - reflux, 18 h; (b) 1.0 equiv. sodium p-toluenesulfonate, EtOAc, reflux, 12 h, 18 - 89 % (over two steps)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Zincke Salt 209</th>
<th>Solvent</th>
<th>Time (hrs)</th>
<th>Compound</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 107</td>
<td>Me H</td>
<td>n-butanol</td>
<td>18<sup>a</sup></td>
<td>210a</td>
<td>41</td>
</tr>
<tr>
<td>2 108</td>
<td>H Me</td>
<td>n-butanol</td>
<td>18<sup>b</sup></td>
<td>210b</td>
<td>73</td>
</tr>
<tr>
<td>3 107</td>
<td>Et H</td>
<td>MeOH</td>
<td>18<sup>b</sup></td>
<td>210c</td>
<td>18</td>
</tr>
<tr>
<td>4 106</td>
<td>H Et</td>
<td>MeOH</td>
<td>18<sup>b</sup></td>
<td>210d</td>
<td>63</td>
</tr>
<tr>
<td>5 110</td>
<td>Ph H</td>
<td>EtOH</td>
<td>18<sup>b</sup></td>
<td>210e</td>
<td>44</td>
</tr>
<tr>
<td>6 111</td>
<td>t-Bu H</td>
<td>n-butanol</td>
<td>18<sup>b</sup></td>
<td>210f</td>
<td>89</td>
</tr>
</tbody>
</table>

^a = Refluxed; ^b = 2 hrs RT-16 hrs reflux

All uncyclised pyridinium tosylate salts were subjected to ring cyclisation with KSCN and Br₂ under an acidic medium. The following uncyclised pyridinium tosylate salts 210 a, d and e successfully yielded crude ring cyclised pyridinium salt 211 a - c. These crude ring cyclised pyridinium salts were then subjected to in situ reduction with NaBH₄ to yield crude N-3 functionalised tetrahydropyridine Riluzole derivative 212 a - c as oils (Table 5). Yields for compounds 212 a - c were calculated from crude mixtures after work-up. Following on from observation observed for the uncyclised pyridinium tosylate salts similar trends were seen. For tetrahydropyridine Riluzole analogues containing substitution at the 4-position it was observed that compound 212 c gave a higher crude yield than 212 a with a crude yield of 68 % compared 30 %. For the tetrahydropyridine Riluzole analogue containing substitution at the 3-position a crude yield of 69 % was obtained.
CHAPTER 3: RESULTS AND DISCUSSION

Table 5: Synthesis of N-3 substituted tetrahydropyridine derivatives of Riluzole

<table>
<thead>
<tr>
<th>Entry</th>
<th>Uncyclised pyridinium tosylate 210</th>
<th>Compound</th>
<th>Yield (%) (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (\text{R}^1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Me H</td>
<td>212a</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>H Et</td>
<td>212b</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Ph H</td>
<td>212c</td>
<td>68</td>
</tr>
</tbody>
</table>

\(^a\) isolated crude yield after reaction work-up

Reagents and conditions: (a) 12.0 equiv. KSCN, 1.0 equiv. \(\text{Br}_2\), AcOH, RT, 16 h; (b) 2.8 equiv. \(\text{NaBH}_4\), MeOH, 0 °C - RT, 16 h, 30 - 69 % crude (over two steps)

Crude proton NMRs of compounds 212 a - c were obtained by running the sample in CDCl\(_3\) after worked-up. The crude proton NMR results obtained for compounds 212 a - c show that the ring cyclised pyridinium previously synthesised have successfully undergone reduction as a broad singlet is found in the region between 6.5 and 4.5 ppm, which corresponds to the alkene region (Figure 25). Compound 212 c, which contains the phenyl substituent at the para position was observed further downfield compared to the other two analogues due to its aromatic functionality. The other distinct region within these crude \(^1\text{H}\) NMRs is between 7.5 and 6.5 ppm, which corresponds to the benzothiazole ring formation as prior to cyclisation this splitting pattern is not observed. The \(^1\text{H}\) NMRs are going from two doublets in the aromatic region, which corresponds to the four aromatic protons attached to the trifluoromethoxy group of the uncyclised compound 210 a, d and e to two doublets and a singlet, which corresponds to the three protons of the benzothiazole ring.
N-3 functionalised tetrahydropyridine Riluzole derivatives were obtained via the Zincke reaction from 4-trifluoromethoxyaniline in moderate yields. Biological testing of compounds 212 a - c has not been reported because the following tetrahydropyridine Riluzole derivatives could not be purified via simple column chromatography. Column chromatography was not a viable method of purification because of their polarity. The following solvent, MeOH moved these compounds of the baseline, but in doing so this did not remove any possible impurities or improve the physical appearance of the compounds.

3.1.2.2 Using Grignard Reagents

The Zincke reaction method described in section 2.1.2.1 has provided a viable method to generating an N-3 Riluzole containing tetrahydropyridine functionality. This synthetic pathway described, Scheme 34 can be modified to incorporate a Grignard reaction, which can then go on to generate a library of N-3 Riluzole tetrahydropyridine analogues with substitution at the 2-position, which is not possible via substituted Zincke salts. Having substitution at the 2-position as well as the 3- and 4-position via substituted Zincke salt reactions will provide a variety of analogues to be tested for their antiglutamate activity compared to Riluzole and
having substitution at the ortho, para and meta position will highlight any possible trends observed when biologically tested.

In 1909 Freund and Bode reported the formation of 1,2- and 1,4- dihydropyridines by reacting pyridine with a range of suitable Grignard reagents. Since this first report, a number of publications have described the addition of carbon nucleophiles to pyridinium salts at the 2-, 4- and 6-position generating 2-, 4- and 6-functionalised dihydropyridine intermediates. N-alkyl dihydropyridine intermediates are further reduced to tetrahydropyridines or piperidines due to the intermediate dihydropiperidines being unstable. Nucleophiles that have been reported to have undergone nucleophilic addition with pyridine and N-alkyl pyridinium salts, include alkyllithium reagents such as phenyllithium and tert-butyllithium which react exclusively at the 2-position; Grignard reagents which, depending on the bulkiness of the Grignard reagent, react at either the 2- or 4-position; and lithium organocuprates which react solely at the 4-position. The remainder of this subchapter will focus on the reaction between N-alkyl pyridinium salts and Grignard reagents.

Guillotea-Bertin and co-workers reported the synthesis of 2-functionalised tetrahydropyridines by reacting pyridinium salt 214 with suitable Grignard reagents (Scheme 36). This is achieved by firstly alkylating the pyridinium salt with a suitable Grignard reagent, which yields an unstable 1,2-dihydropyridine 215. The unstable 1,2-dihydropyridine is then reduced with NaBH₄ affording tetrahydropyridine 216 as the major product and 217 and 218 as the minor products. Guillotea-Bertin and co-workers observed that regioselective attack at the 2-position of the pyridinium ring decreases with relatively hindered Grignard reagents, such as benzyl and isopropylmagnesium bromide which attack predominately at the 4-position of the pyridinium ring, resulting in the formation of piperidines 218 as the major product, after reduction.

Guillotea-Bertin and co-workers methodology was applied to the synthesis of N-3 Riluzole analogues with 2-substituted tetrahydropyridines. Firstly compound 204, which is generated by reacting diamine 203 with Zincke salt, 2,4-dinitrophenyl pyridinium chloride followed by a counter-ion exchange is ring cyclised generating N-3 Riluzole pyridinium salt 205.
salt 205 is then alkylated with one of the following Grignard reagents, methylmagnesium bromide, ethylmagnesium chloride or phenylmagnesium chloride (Table 6). This is followed by in-situ reduction to generate N-3 Riluzole 2-substituted tetrahydropyridine analogues.

Table 6: Synthesis of 2-substituted tetrahydropyridines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Grignard Reagent (R)</th>
<th>Compound</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeMgBr</td>
<td>220a</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>EtMgCl</td>
<td>220b</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>PhMgCl</td>
<td>220c</td>
<td>0</td>
</tr>
</tbody>
</table>

Reagents and conditions: (a) 12.0 equiv. KSCN, 1.0 equiv. Br₂, AcOH, RT, 16 h; (b) 3.0 equiv. RMgX, THF, -20 °C - 0 °C, 3 h; (c) 6.0 equiv. NaBH₄, 90 % aq MeOH, reflux, 1 h, 0 - 62 % (over three steps)

Running the reaction in THF/Toluene as reported by Guillotea-Bertin solely yielded compound 205. It was observed that compound 205 did not dissolve in this solvent system, which gives indication into why only compound 205 was recovered. Running the reaction solely in THF rectified solubility issues previously experienced and successfully yielded crude N-3 Riluzole 2-substituted tetrahydropyridines. Alkylating compound 205 with methylmagnesium bromide and ethylmagnesium chloride successfully generated N-3 Riluzole analogues with 2-substituted tetrahydropyridines. Crude yields obtained indicate that increasing the alkyl chain of the Grignard reagent increases the percentage yield of 2-substituted tetrahydropyridines. Alkylating compound 205 with phenylmagnesium chloride does not yield N-3 Riluzole 2-phenyl tetrahydropyridine and starting material is not recovered (Figure 26). The crude ¹H NMR for the alkylation of compound 205 with phenylmagnesium chloride followed by in-situ reduction does not show the two protons corresponding to the alkene region of the tetrahydropyridine ring. This distinct alkene region of the tetrahydropyridine ring is observed for compounds 220 a and b, highlighted in the black box, Figure 26. Guillotea-Bertin and co-workers have previously discussed that the alkylation of pyridinium salts with hindered Grignard reagents, such a phenylmagnesium chloride do not yield 2-substituted tetrahydropyridines, but instead generate 4-substituted piperidine rings, which would highlight why an alkene region is not seen for compound 220 c. Due to compound 220 c crude ¹H NMR being unclear mass spectrometry was performed to determine whether one of these
products had been generated, however mass spectrometry analysis did not detect the mass of the N-3 4-substituted piperidine Riluzole or the masses for compound 205.

In summary, crude 2-substituted tetrahydropyridine Riluzole derivatives can be generated in four-steps from 4-trifluoromethoxyaniline, with methyl and ethyl Grignard reagents. Purification of these crude 2-substituted tetrahydropyridine compounds via simple column chromatography has proven difficult, as pure samples for biological testing was not achievable. Purifying compounds 220 a and b using HPLC successfully generated a pure sample of compound 220 a, but when compound 220 b was purified using the same HPLC solvent system the compound was found to break down on the column. Overall this synthetic method to generate a library of novel N-3 substituted tetrahydropyridine Riluzole derivatives is not versatile as bulky Grignard reagents do not yield the desired tetrahydropyridine analogues and also a versatile purification method has not be achieved.

3.2 Synthesis of N-3 1,4-Substituted-1,2,3-Triazole Derivatives of Riluzole Using Click Chemistry

1,2,3-Triazoles generated to date have a lot of interest in drug discovery including combinational chemistry. Therefore click chemistry will be investigated to generate a library
of N-3 Riluzole 1,4-substituted-1,2,3-triazole analogues.79 The 1,2,3-triazole nucleus has diverse biological activities including anticancer, antifungal, antibacterial, antituberculosis and antiviral. Triazoles exhibit both basic and acidic properties and are also found to be very stable to metabolic and chemical degradation making them rather inert to severe hydrolytic, oxidising and reducing conditions, even at high temperatures.79 All these properties described above for triazole moiety are favourable characteristics in designing novel pharmaceutically active compounds. Triazole analogues synthesised within this thesis will be tested for their antiglutamate activity against Riluzole.

1-4-Substituted-1,2,3-triazole derivatives of Riluzole \textbf{160} will be generated as follows firstly 4-trifluoromethoxyaniline \textbf{67} will undergo S\textsubscript{N}2 nucleophilic displacement with 2-bromoethylamine hydrobromide to generate diamine \textbf{203}. Diamine \textbf{203} then undergoes diazotransfer with imidazole-1-sulfonyl azide hydrochloride to yield azide \textbf{222}. Imidazole-1-sulfonyl azide hydrochloride \textbf{221} is synthesised in two-steps. Firstly equimolar amounts of sulfuryl chloride and sodium azide are reacted together to yield chlorosulfonyl azide, which is then reacted an excess of imidazole generating the diazotransfer reagent in moderate yield, 48 \%.117 Azide \textbf{222} is then ring cyclised in the presence of KSCN and Br\textsubscript{2} to yield azide \textbf{223}. Azide \textbf{223} will then be reacted with a terminal alkyne in the presence of substoichiometric amounts of CuI, which is generated \textit{in situ} to yield a 1,4-substituted-1,2,3-triazole Riluzole analogue \textbf{160} (Scheme 37).118 The catalytic cycle by which 1,4-substituted-1,2,3-triazoles are synthesised is shown on pg. 38 Scheme 17.
Conversion of diamine 203 to azide 222 is obtained via a diazotransfer instead of nucleophilic displacement with an azide anion because an azide anion could result in the formation of elimination products or products with the incorrect stereochemical configuration.117 Ruff120 first described the conversion of primary amines to azides using the following diazotransfer reagent, trifluoromethanesulfonyl azide (TfN\textsubscript{3}) in the presence of catalytic amounts of CuII, which generates organic azides in high yields and preserves any existing stereochemistry.121,122 However, using TfN\textsubscript{3} as a diazotransfer reagent in the conversion of primary amines to azides has some major drawbacks which include its explosive nature, relatively poor shelf life, difficulty in extraction from polar compounds and the expense of the starting material trifluoromethanesulfonic anhydride in generating TfN\textsubscript{3}.117 Hanessian and Vatèle reported diazotransfer reactions with the diazotransfer reagent imidazole-1-sulfonyl azide hydrochloride, which resulted in the conversion of primary amines to azides.117,123 Imidazole-1-sulfonyl azide hydrochloride is reported to have similar reactivity to that of trifluorosulfonates, but compared to TfN\textsubscript{3}, imidazole-1-sulfonyl azide hydrochloride has a longer shelf life and is less expensive to prepare.
Azide 223 was successfully generated in three-steps starting from 4-trifluoromethoxyaniline 67 (Scheme 37). Reacting azide 223 with a number of terminal alkynes including alkyl chains, cyclic alkyls, alkyl esters, alkyl benzenes, heterocycles and electron-donating and electron-withdrawing aromatic rings in the presence of substoichiometric amounts of CuI generated in situ between copper sulfate and sodium ascorbate successfully generated 1,4-substituted-1,2,3-triazole N-3 Riluzole analogues 160 (Table 7). All reactions were run at 20 °C and reactions were monitored by TLC.

Table 7: Synthesis of N-3 1,4-substituted-1,2,3-triazole Riluzole compounds

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne (R)</th>
<th>Compound</th>
<th>Time (hrs)**</th>
<th>Yield (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>160a</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>160b</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>160c</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>160d</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>160e</td>
<td>2</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>160f</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>160g</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>160h</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>160i</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>160j</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Reagents and conditions: (a) 1.5 equiv. Terminal Alkyne, THF/H₂O, 1.0 equiv. 1M CuSO₄, 2.0 equiv. 1M NaAsc, 20 °C, 2 h, 27 - 98 %
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td>160k</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>160l</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>160m</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>160n</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>160o</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>160p</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>160q</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>160r</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>160s</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>160t</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>160u</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>160v</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>160w</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>160x</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>160y</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>160z</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>160aa</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>160ab</td>
<td>2</td>
</tr>
<tr>
<td>Number</td>
<td>Structure</td>
<td>Reference</td>
<td>R1</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>160ac</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>160ad</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>160ae</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>160af</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>160ag</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>160ah</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>160ai</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>160aj</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>160ak</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>160al</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>160am</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>160an</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>160ao</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>160ap</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>160aq</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>160ar</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>160as</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>160at</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>160au</td>
<td>2</td>
</tr>
</tbody>
</table>
CHAPTER 3: RESULTS AND DISCUSSION

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td></td>
<td>160av 2 50</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>160aw 2 59</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>160ax 2 59</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>160ay 2 58</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>160az 2 67</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>160ba 2 98</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>160bb 2 44</td>
</tr>
</tbody>
</table>

* completion of reaction was monitored via TLC; * isolated yields after column chromatography

All 1,4-substituted-1,2,3-triazole N-3 Riluzole analogues were generated in moderate to high yields. Altering the alkyne chain length for the benzyl group analogues 160 a - c showed that the highest yielding analogue had a chain length of two with 50 %. Percentage yields obtained between azide 223 and alkynes containing electron-withdrawing aromatic rings varied from 35 - 74 % with analogue 160 ap being the lowest and analogue 160 as being the highest yielding. Compound 160 at was not included due to its molecular mass being greater than 500 g/mol⁻¹. Percentage yields obtained between azide 223 and alkynes containing electron-donating aromatic rings varied from 27 - 75 % with analogue 160 s being the lowest and analogue 160 ad being the highest yielding. No major trends are observed between electron-withdrawing and electron-donating groups. Analogues with the same functionality positioned at the para, meta or ortho position have shown higher yields at the meta position. Increasing the ring size of the cycloalkyl alkyne decreases percentage yield and increasing branched alkyne alkyl chains also decreases the percentage yield of 1,4-substituted-1,2,3-triazole N-3 Riluzole analogues obtained.

All triazole compounds 160 a - bb were subjected to biological testing in primary cortical neurons cultured from E15 Swiss mouse embryos. All compounds were made up to 1 µM concentrations in DMSO and after 30 mins alone on the cultivated cortical neuron cells a 100 µM concentration of kainate in water was added. This was left for 18 hrs at 37 °C in an incubator with 5 % CO₂ levels. Each compound was repeated four times generating a total of 24 MAP2 images per experimental condition. Measurement of the neuroprotective activity for each triazole compound was measured by all cells being incubated with a primary antibody, which selectively binds to MAP2 proteins in the neuron. The cells were then further incubated
with a fluorescent secondary antibody, which will selectively bind to primary antibodies. Therefore when fluorescent light is shone on the cell the fluorescent secondary antibodies will be visible in regards to parts of the cell where MAP2 is present. The more fluorescence observed corresponds to less of the cell being damaged by kainate (Figure 27).

![Figure 27: (A) less fluorescents means more cell damage; (B) more fluorescents means less cell damage](image-url)

Figures 28 - 31 which present preliminary data obtained for subjecting compounds 160 a - bb to primary cortical neurons cultured from E15 Swiss mouse embryos, method described above were obtained from Bradford University. The data is shown in two ways; (1) Figure 28 and 29 focus on the raw averages of MAP2 fluorescence normalised to kainate, and (2) Figure 30 and 31 look at each drug treatment normalised to a cortical neuron cell treated with kainate. All 1,4-substituted-1,2,3-triazole compounds 160 are compared to that of kainate because kainate has similar properties to glutamate in which they both act on the same post-synaptic receptors and if either kainate or glutamate is generated in excess they will both cause a negative response known as excitotoxicity.

![Figure 28: Raw Averages Perimeters for Compounds 160 a - bb](image-url)
Figures 28 and 29 record the fluorescence emitted for each triazole compound treated with kainate on cortical neuron cells and are compared to a cortical neuron cell treated with only kainate. Compounds emitting more fluorescence than kainate (Figure 28) are of potential interest as higher emissions of fluorescence recorded on cortical neuron cells means less of the cell has been damaged by an excess of kainate. Figure 29 develops on Figure 30 by
stating that any compounds with fluorescent error bars overlaying the error bar of kainate, shown by the blue line are not of interest. Overall these two Figures report the success of five compounds 160\text{g}, i, r, ae and ah which have shown high fluorescence and cell protection in cortical neurons, so will therefore be considered for future biological testing. Figures 30 and 33 standardise kainate to one fluorescent unit (FU). All compounds fluorescence is compared to the fluorescence emitted from a cortical neuron treated with only kainate standardised to 1 FU. Compounds emitting fluorescence below the red line of kainate (Figure 30) have low cell protection levels compared to kainate so are therefore not of interest for future biological testing. Figure 31 includes fluorescent error bars for each compound treated with kainate and all results that have error bars that either overlay or are below the red line of kainate which has been standardised to 1 FU show cell protection similar to or worse than cortical neuron cells treated with kainate. From these two Figures the following compounds 160\text{g}, i, u, ae, ah, au and ax have shown high fluorescence against kainate and will be put forward for future biological testing.

In conclusion, a library of 1,4-substituted-1,2,3-triazole N-3 Riluzole compounds were successfully synthesised in four-steps using diazotransfer and click chemistry in moderate to high yields. All analogues synthesised were biologically tested for their antiglutamate activity against Riluzole with eight analogues expressing higher antiglutamate activity over Riluzole (Figure 32). These analogues range from heterocyclic compounds 3- and 4-pyridine and 2-thiophene to aromatic rings with electron-donating groups 2-aniline, 4-anisole and 4-ethyl benzene and electron-withdrawing groups 4-bromo benzene and 4-benzoic acid. There are no obvious trends, such as substitution observed at one position on the ring. These hits show substitution at all positions and also a range of donating and withdrawing substitutions as well as heterocycles exhibiting antiglutamate activity greater than Riluzole.

![Figure 32: Hit 1,4-substituted-1,2,3-triazole N-3 Riluzole Analogues](image-url)
CHAPTER 4: CONCLUSIONS AND FUTURE WORK

The aim of this thesis was to generate two novel N-3 Riluzole libraries, one with tetrahydropyridine moiety and the other containing 1,4-substituted-1,2,3-triazole moiety. Once this had been achieved all pure N-3 analogues from the two novel libraries would be tested for their antiglutamate activity and compared to Riluzole.

A number of routes were investigated in generating N-3 Riluzole analogues with tetrahydropyridine moiety. Routes, which looked at nucleophilic displacement or attack with pyridine between a tosyl, sulfamidite or aziridine, were all unsuccessful (Schemes 21, 24, 27, 30 and 32). Attempts at generating the following azide 183 from 4-trifluoromethoxyaniline 67 using Mitsunobu (Scheme 32), Buchwald-Hartwig cross-coupling (Scheme 30) or protection chemistry (Scheme 27) were unsuccessful therefore retarding nucleophilic attack to yield the uncyclised pyridinium compound 205. The synthesis of a sulfamidite compound from the sulfamidate 174, which is generated from 4-trifluoromethoxyaniline 67 to yield the uncyclised pyridinium compound 205 after nucleophilic attack with pyridine was also unsuccessful (Scheme 24). Reasoning's into why these synthetic routes were unsuccessful are due to the aromatic ring being electron-deficient which was hindering the nitrogen's lone pair from reacting with the necessary group to allow ring cyclisation to yield either the aziridine or sulfamidite intermediate after oxidation of the sulfamidate. However, generating a diamine compound 203 from 4-trifluoromethoxyaniline 67 and then reacting it with a suitable Zincke salt overcame previous issues generating an N-3 Riluzole analogues with tetrahydropyridine moiety (Scheme 38). This synthetic route generated tetrahydropyridine rings with functionality at the 3- and 4-position. Limited functionality at the 2-position was achieved by reacting the ring-cyclised pyridinium salt generated by reacting diamine 203 with 2,4-dinitrophenyl pyridinium chloride 138 with a suitable Grignard reagent followed by in-situ sodium borohydride reduction (Scheme 38).
Even though these synthetic routes were successful and could generate a range of tetrahydropyridine analogues with functionality at the 2,- 3- and 4-position these compounds proved difficult to purify to the standards required for biological testing. Future purification into rectifying this problem could look at either improving the ring-cyclised pyridinium intermediate 205, which could be achieved by improving its crystallinity. This can be achieved by altering the bromine counter-ion for either a tosylate or tetraphenylborate counter-ion. Or, alternatively looking at generating N-3 Riluzole tetrahydropyridine analogues as salts, which has been reported in the literature, such as Jimonet and co-workers synthesising 2-imino-3-[2-(4-phenyl-1,2,3,6-tetrahydro-1-pyridyl)-ethyl]-6-trifluoromethoxy-benzothiazoline 129 as the dihydrochloride salt. 56

A number of N-3 Riluzole triazole analogues were generated in a four-step process from 4-trifluoromethoxyaniline 67 in moderate to high yields (Scheme 39). All Riluzole analogues generated were biologically tested in cortical neuron cells at Bradford University and their antiglutamate activity was compared to Riluzole. Compounds which expressed increased antiglutamate activity over Riluzole were triazole analogues 160 g, i, r, u, ae, ah, au and ax (Figure 32).
CHAPTER 4: CONCLUSIONS AND FUTURE WORK

Scheme 39: Reagents and conditions: (a) 1.0 equiv. Br(CH$_2$)$_2$NH$_2$.HBr, toluene, reflux, 24 h, 65 %; (b) 1.2 equiv. Imidazole-1-sulfonyl azide hydrochloride, 2.3 equiv. K$_2$CO$_3$, 0.001 equiv. CuSO$_4$.5H$_2$O, MeOH, RT, 2 h, 25 %; (c) 12.0 equiv. KSCN, 1.0 equiv. Br$_2$, AcOH, RT, 2 h, 63 %; (d) 1.5 equiv. Terminal Alkyne, THF/H$_2$O, 1.0 equiv. 1M CuSO$_4$, 2.0 equiv. 1M NaAsc, 20 °C, 2 h, 27 - 98 %

Future work on these hit eight compounds will include optimisation studies looking at finding an optimum potency required for maximum neuron protection. Concentrations that will be tested are 100 nM, 500 nM, 2 µM and 5 µM. Once this has been achieved the hit compounds will be subjected to testing in primary spinal cord motor neurons cultured from E15 Swiss mouse embryos. Alongside finding the optimum potency for N-3 Riluzole triazole analogues optimisation studies on the CuAAC reaction need to be investigated as well as generating more 1,4-substituted-1,2,3-triazole analogues derived from the existing hit compounds (Figure 33).

Figure 33: Potential 1,4-substituted-1,2,3-triazole derivatives of Riluzole, which could be of future interest
For hit compound 160 r a focus will be put into looking at whether varying the alkyl chain of the ether linkage at the para position of the aromatic ring will improve neuronal protection 160 bc. For the two pyridine analogues 160 g and 160 i a range of functional groups ranging from electron-withdrawing to electron-donating groups at the ortho, meta and para position attached to 3- and 4-pyridine will be investigated 160 bd and 160 be. For hit compound 160 ax carbonyl functionality of the benzoic acid will be altered to see if this improves neuron protection. Changing benzoic acid to benzoate 160 aw has already been generated (Table 7) and was found to drastically reduced neuronal protection. Alternative benzyl carbonyl functionality 160 bf generated will include a variety of benzyl alkyl ketones and benzoaldehyde.

Optimisation of the CuAAC reaction will look at removing column chromatography purification in the case of this reaction being scaled up. This could either be achieved by finding a versatile crystallisation method that can be applied to all 1,4-substituted-1,2,3-triazole Riluzole analogues or varying the equivalents of terminal alkyne added to the reaction, until there isn't an excess observed in the crude \(^1\)H NMR.
CHAPTER 5: EXPERIMENTAL

Spectroscopy
NMR spectra were recorded on either a Bruker 400 or 500 MHz Ultrashield Plus spectrometer with the stated deuterated solvent. Chemical shifts (δ) in ¹H NMR are reported in ppm, downfield from TMS, and as in ¹³C NMR, are referenced to the residual solvent peak. Multiplicities are reported as a singlet (s), doublet (d), triplet (t), quartet (q) and combinations thereof, or multiplet (m). Coupling constants (J) are quoted in Hertz and rounded to the nearest 0.5 Hz. All ¹³C resonances were assigned via distortionless enhancement by polarisation transfer (DEPT) experiments. Melting points were recorded on a Stuart melting point apparatus, model smp10 and are uncorrected. Infrared spectra were recorded using Nicolet 380 FTIR spectrometer. Mass spectroscopy was performed using an Agilent 6210 100SL-TOF LC/MS.

Reagents
Reagents were purchased from Sigma Aldrich, Fischer Scientific and TCI. They were used as supplied or, purified in accordance with the procedures of Perrin and Armarego.¹²₄ Acetonitrile and dichloromethane were distilled from CaH₂ under an atmosphere of nitrogen. Tetrahydrofuran was distilled from sodium wire and benzophenone under an atmosphere of nitrogen.

Chromatography
Thin layer chromatography (TLC) was carried out using Merck silica gel 60 F₂₅₄ aluminium sheets. Visualisations of the developed plates were carried out by UV quenching at 254 nM. Column chromatography was carried out using silica gel 60Å, particle size 63-200 µM obtained from Fischer Scientific.

Caution: When handling sodium azide or any organic azide use a blast screen, as these compounds are potentially explosive. Also seek appropriate safety guidelines outlined from Sigma Aldrich or wherever purchased whenever handling.
5.1 Synthesis of N-3 Unfunctionalised and Functionalised Tetrahydropyridine Derivatives of Riluzole

2-((4-(Trifluoromethoxy)-phenyl)amino) ethanol 100

A solution of 4-trifluoromethoxyaniline (0.8 mL, 5.65 mmol, 2.0 equiv.) and 2-bromoethanol (0.2 mL, 2.82 mmol, 1.0 equiv.) was stirred at 160 °C for 1.5 h. Once cooled 20.0 mL DCM was added to the reaction mixture and the resulting precipitate was filtered off. The filtrate was collected and concentrated under reduced pressure to yield a crude orange/brown oil. The crude oil was purified via column chromatography using 4:6 EtOAc:CY to yield 2-((4-(trifluoromethoxy)-phenyl)amino) ethanol (100, 0.23 g, 1.02 mmol, 36 %) as a dark orange oil; Rf 0.22 (4:6 EtOAc:CY).

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3372, 2947, 2883, 1617, 1516, 1250; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.04 (2H, d, J = 8.0 Hz, H-3’ and H-5’), 6.61 (2H, d, J = 8.0 Hz, H-2’ and H-6’), 4.09 (1H, bs, NH), 3.85 (2H, t, J = 4.0 Hz, H-2), 3.30 (2H, t, J = 4.0 Hz, H-1), 1.65 (1H, bs, OH); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 46.2 (C-1), 61.2 (C-2), 113.4 (C-2’ and C-6’), 122.5 (C-3’ and C-5’), 140.7 (ArC), 140.9 (ArC), 147.1 (Ar(OCF\(_3\))) ; MS m/z [M+H]+ C\(_9\)H\(_{11}\)F\(_3\)NO\(_2\) requires 222.07, found 220.07.

2-(4-Methyl-N-(4-(trifluoromethoxy)phenyl)phenylsulfonylamido)ethyl-4-methylbenzenesulfonate 101

To a cooled solution amino alcohol 100 (2.00 g, 9.05 mmol, 1.0 equiv.) and Et\(_3\)N (2.5 mL, 18.09 mmol, 2.0 equiv.) in 40.0 mL DCM was added p-toluenesulfonyl chloride (3.45 g, 18.09 mmol, 2.0 equiv.) portion-wise. After 5 h of stirring at 0 °C the reaction mixture was warmed to RT, diluted with 40.0 mL DCM and washed with 40.0 mL H\(_2\)O. The organic layers were combined, dried over MgSO\(_4\), filtered and concentrated under reduced pressure to yield a crude orange oil. The crude oil was recrystallised with 100 % EtOH to yield 2-(4-methyl-N-(trifluoromethoxy) phenyl) phenylsulfonylamido)ethyl-4-methylbenzenesulfonate (101, 2.28 g, 4.30 mmol, 48 %) as a colourless solid; m.p. 92 - 95 °C (Lit.\(^{50}\) m.p. 88 °C)

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3026, 2952, 1502, 1350, 1251, 1160; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.69 (2H, d, J = 8.0 Hz, TsH-2 and TsH-6), 7.44 (2H, d, J = 8.0 Hz, TsH-2’ and TsH-6’), 7.33 (2H, d, J = 8.0 Hz, TsH-3 and TsH-5), 7.26 (2H, appd, J = 8.0 Hz, TsH-3’ and TsH-5’), 7.09 (2H, d, J = 8.0 Hz, TsH-2’ and TsH-6’), 7.04 (2H, d, J = 8.0 Hz, H-2’ and H-6’), 4.09 (1H, bs, NH), 3.85 (2H, t, J = 4.0 Hz, H-2), 3.30 (2H, t, J = 4.0 Hz, H-1), 1.65 (1H, bs, OH); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 46.2 (C-1), 61.2 (C-2), 113.4 (C-2’ and C-6’), 122.5 (C-3’ and C-5’), 140.7 (ArC), 140.9 (ArC), 147.1 (Ar(OCF\(_3\))) ; MS m/z [M+H]+ C\(_9\)H\(_{11}\)F\(_3\)NO\(_2\) requires 222.07, found 220.07.
Hz, H-3’’ and H-5’’), 6.96 (2H, d, J = 8.0 Hz, H-2’’ and H-6’’), 4.13 (2H, t, J = 4.0 Hz, H-2), 3.80 (2H, t, J = 4.0 Hz, H-1), 2.45 (6H, d, J = 12.0 Hz, Ts(CH₃)); ¹³C NMR (100MHz, CDCl₃) δ; 21.5 (Ts(CH₃), 21.6 (Ts(CH₃)), 49.9 (C-1), 67.4 (C-2), 119.0 (ArC), 121.4 (C-3’’ and C-5’’), 127.7 (Ts-C-2’’ and Ts-C-6’’), 127.9 (Ts-C-2 and Ts-C-6), 129.7 (Ts-C-3’’ and Ts-C-5’’), 129.9 (Ts-C-3 and Ts-C-5), 130.4 (C-2’’ and C-6’’), 132.5 (ArC), 134.5 (ArC), 137.6 (ArC), 144.2 (ArC), 145.2 (ArC), 148.6 (Ar(OCF₃)); MS m/z [M+H]+ C₂₃H₂₅F₉NO₅S₂ requires 530.08, found 530.09.

N-(2-Iodoethyl)-4-methyl-N-(4-trifluoromethoxy)phenyl)benzenesulfonamide 165

A solution of 101 (0.40 g, 0.76 mmol, 1.0 equiv.) and NaI (0.23 g, 1.51 mmol, 2.0 equiv.) in 20.0 mL acetone stirred at reflux for 60 h. This was then cooled and concentrated under reduced pressure to yield a crude pale yellow solid. The crude solid was purified via column chromatography using 5:5 PE 40-60 °C:EtOAc to yield N-(2-iodoethyl)-4-methyl-N-(4-(trifluoromethoxy)phenyl)benzenesulfonamide (165, 0.26 g, 0.54 mmol, 71 %) as a pale yellow solid; Rf 0.91 (5:5 PE 40-60 °C:EtOAc), m.p. 97 - 99 °C

IR νmax/cm⁻¹ 3056, 2806, 1504, 1352, 1272, 1154; ¹H NMR (400MHz, CDCl₃) δ; 7.40 (2H, d, J = 8.0 Hz, TsH-2 and TsH-6), 7.21 (2H, d, J = 8.0 Hz, TsH-3 and TsH-5), 7.11 (2H, d, J = 8.0 Hz, H-3’’ and H-5’’), 7.03 (2H, d, J = 8.0 Hz, H-2’’ and H-6’’), 3.77 (2H, t, J = 8.0 Hz, H-1’’), 3.11 (2H, t, J = 8.0 Hz, H-2’’), 2.37 (3H, s, Ts(CH₃)); ¹³C NMR (100MHz, CDCl₃) δ; 1.2 (C-2’’), 21.6 (Ts(CH₃)), 53.4 (C-1’’), 120.4 (C-3’’ and C-5’’), 126.5 (Ts-C-2 and Ts-C-6), 128.6 (Ts-C-3 and Ts-C-5), 129.3 (C-2’’ and C-6’’), 134.8 (ArC), 137.2 (ArC), 144.1 (ArC), 146.0 (ArC), 148.8 (Ar(OCF₃)); MS m/z [M+Na]+ C₁₆H₁₅F₉NO₅S₂Na requires 507.97, found 507.97.

N-(2-(4,5-Dihydropyridinyl)ethyl)-4-methyl-N-(4-(trifluoromethoxy)phenyl)benzenesulfonamide 166

A solution of 165 (0.40 g, 0.82 mmol, 1.0 equiv.) in 5.0 mL pyridine was stirred at reflux for 20 h. This was then cooled and concentrated under reduced pressure to yield the crude pyridinium salt as a deep brown solid. To a cooled solution of the crude pyridinium salt (0.48 g, 0.93 mmol, 1.0 equiv.) in 12.5 mL MeOH at 0 °C was added NaBH₄ (0.10 g, 2.60 mmol, 2.8
equiv.) portion-wise. This was brought to RT and left to stir for a further 42 h. The reaction mixture was then diluted with H₂O and washed five times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield N-(2-(4,5-dihydropyridinyl)ethyl)-4-methyl-N-(4-(trifluoromethoxy)phenyl)benzenesulfonamide (166, 0.29 g, 0.66 mmol, 71%) as an orange oil.

IR νmax/cm⁻¹ 3038, 2920, 1660, 1505, 1349, 1258, 1155; **¹H NMR** (400MHz, CDCl₃) δ: 7.50 (2H, d, J = 8.0 Hz, TsH-2 and TsH-6), 7.37 (2H, d, J = 8.0 Hz, TsH-3 and TsH-5), 7.26 (2H, d, J = 8.0 Hz, H-3" and H-5"), 7.21 (2H, d, J = 8.0 Hz, H-2" and H-6"), 5.64 (1H, dt, J = 4.0 Hz and 8.0 Hz, H-5'), 5.54 (1H, dt, J = 4.0 Hz and 8.0 Hz, H-4'), 3.62 (2H, t, J = 4.0 Hz, H-1) 2.87 (2H, appq, J = 4.0 Hz, H-6"), 2.58 - 2.52 (4H, m, H-2' and H-2''), 2.35 (3H, s, Ts(CH₃)), 2.03 - 2.02 (2H, m, H-3'); **¹³C NMR** (100MHz, CDCl₃) δ: 21.5 (Ts(CH₃)), 26.0 (C-2'), 48.5 (C-1), 50.1 (C-2'), 52.7 (C-3"), 56.4 (C-6"), 121.3 (C-3" and C-5"), 124.9 (C-5"), 125.1 (C-4"), 127.7 (TsC-2 and TsC-6), 129.5 (TsC-3 and TsC-5), 130.3 (C-2" and C-6"), 135.0 (ArC), 137.9 (ArC), 143.7 (ArC), 145.5 (ArC), 148.4 (Ar(OCF₃)); **MS** m/z [M+H]+ C₂₁H₂₆F₃N₂O₃S requires 441.14, found 441.15.

2-((4-(Trifluoromethoxy)phenyl)amino)ethyl Diphenylphosphinate 182

To a cooled solution of 100 (0.25 g, 1.13 mmol, 1.0 equiv.) in 10.0 mL DCM was added diphenylphosphonic chloride (0.2 mL, 1.13 mmol, 1.0 equiv.) dropwise. After stirring at 0 °C for an hour the reaction mixture was warmed to RT and stirred for a further 4 h. This was then diluted with H₂O and washed twice with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield a crude orange oil. The crude oil was purified via column chromatography using 1:1 EtOAc:Hex to yield 2-((4-trifluoromethoxy)phenyl)amino)ethyl diphenylphosphinate (182, 0.45 g, 1.07 mmol, 94%) as an off-white solid; Rf 0.13 (1:1 EtOAc:Hex), m.p. 85 - 89 °C

IR νmax/cm⁻¹ 3280, 3051, 2974, 1614, 1532, 1506, 1273, 1024; **¹H NMR** (400MHz, CDCl₃) δ: 7.82 - 7.76 (4H, m, ArH), 7.55 - 7.51 (2H, m, ArH), 7.47 - 7.41 (4H, m, ArH), 7.01 (2H, d, J = 7.5 Hz, H-3' and H-5'), 6.56 (2H, d, J = 7.5 Hz, H-2' and H-6'), 4.23 (2H, quin, J = 5.0 Hz, H-2), 3.44 (2H, t, J = 5.0 Hz, H-1); **¹³C NMR** (100MHz, CDCl₃) δ: 44.4 (C-1), 64.0 (C-2), 113.1 (C-2' and C-6'), 119.5 (ArC), 122.4 (C-3' and C-5'), 128.6 (ArCH), 130.1 (ArC), 131.6 (ArCH), 132.5 (ArCH), 140.5 (Ar(OCF₃)), 146.6 (ArC); **MS** m/z [M+H]+ C₂₁H₂₆F₃N₂O₃S requires 422.11, found 422.11.
CHAPTER 5: EXPERIMENTAL

\textbf{\textit{N-(4-Trifluoromethoxy)phenyl}ethane-1,2-diamine 203}\(^{105}\)

A solution of 4-trifluoromethoxyaniline (2.7 mL, 20.00 mmol, 2.0 equiv.) and 2-bromoethylamine hydrobromide (2.05 g, 10.00 mmol, 1.0 equiv.) in 10.0 mL toluene was stirred at reflux overnight. Once cooled the reaction mixture was diluted with 13.0 mL 30 \% NaOH solution and washed twice with toluene. The organic layers were combined, dried over Na\(_2\)SO\(_4\), filtered and concentrated under reduced pressure to yield a crude deep orange oil. The crude oil was purified via column chromatography using 9:1 DCM:MeOH with 1.25 \% NH\(_2\)OH to yield \textit{N-(4-trifluoromethoxy)phenyl}ethane-1,2-diamine (203, 1.43 g, 6.50 mmol, 65 \%) as a pale orange oil; \textit{R} \(_f\) 0.42 (9:1 DCM:MeOH with 1.25 \% NH\(_2\)OH).

\textbf{\textit{IR }ν_{\text{max}}/\text{cm}^{-1}:} 3317, 3040, 2938, 1614, 1514, 1252; \textit{\textbf{\textit{1H NMR}} (400MHz, CDCl\(_3\)) \textit{δ};} 7.03 (2H, d, J = 9.0 Hz, H-3' and H-5'), 6.58 (2H, d, J = 9.0 Hz, H-2' and H-6'), 4.23 (1H, bs, NH), 3.16 (2H, t, J = 6.0 Hz, H-1), 2.97 (2H, t, J = 6.0 Hz, H-2), 1.70 (2H, bs, NH\(_2\)); \textit{\textbf{\textit{13C NMR}} (100MHz, CDCl\(_3\)) \textit{δ};} 40.8 (C-2), 46.3 (C-1), 113.0 (C-2' and C-6'), 122.4 (C-3' and C-5'), 140.4 (Ar(OCF\(_3\))), 147.2 (ArC), 147.5 (ArC); \textit{\textbf{\textit{MS m/z [M+H]^+}}} \textit{C}_{11}\text{H}_{12}F_{3}N_{2}O requires 221.08, found 221.10.

\textbf{Formation of Zincke Salts}

\textbf{\textit{N-(2,4-Dinitrophenyl)pyridinium Chloride 138}\(^{104}\)}

1-Chloro-2,4-dinitrobenzene (10.01 g, 49.42 mmol, 1.0 equiv.) was added portion-wise to pyridine (4.0 mL, 49.42 mmol, 1.0 equiv.). This was stirred at 95 \(^\circ\)C for an hour. Once cooled the precipitate was triturated with acetone and filtered to yield \textit{N-(2,4-dinitrophenyl)pyridinium chloride (138, 11.83 g, 42.09 mmol, 85 \%)} as an off-white powder; \textit{m.p.} 212 - 216 \(^\circ\)C (Lit.\(^{104}\) m.p. 193 - 194 \(^\circ\)C).

\textbf{\textit{IR }ν_{\text{max}}/\text{cm}^{-1}:} 3040, 1617, 1537, 1477, 1343; \textit{\textbf{\textit{1H NMR}} (400MHz, D\(_2\)O) \textit{δ};} 9.34 (2H, dd, J = 1.0 Hz and 6.0 Hz, H-2 and H-6), 9.31 (1H, d, J = 5.0 Hz, H-3'), 8.99 (1H, tt, J = 5.0 Hz and 10.0 Hz, H-4), 8.95 (1H, dd, J = 5.0 Hz and 10.0 Hz, H-5'), 8.44 (2H, dd, J = 7.0 Hz and 8.0 Hz, H-3 and H-5), 8.34 (1H, d, J = 10 Hz, H-6'); \textit{\textbf{\textit{13C NMR}} (100MHz, D\(_2\)O) \textit{δ};} 122.6 (C-3'), 128.4 (C-3 and C-5), 130.5 (C-5'), 131.1 (C-6'), 138.6 (ArC), 142.8 (ArC), 145.4 (C-2 and C-6), 149.1 (C-4), 149.6 (ArC); \textit{\textbf{\textit{MS m/z [M]+}} \textit{C}_{11}H_{8}N_{2}O_{4} requires} 246.05, found 246.05.
N-(2,4-Dinitrophenyl)-4-methylpyridinium Chloride 209a[^107]

![Structure of N-(2,4-Dinitrophenyl)-4-methylpyridinium Chloride 209a]

To a solution of 4-picoline (1.0 mL, 9.87 mmol, 1.0 equiv.) in 20.0 mL MeOH was added 1-chloro-2,4-dinitrobenzene (2.00 g, 9.87 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 96 h. Once cooled the reaction mixture was concentrated under reduced pressure to yield a crude black tar. The crude tar was purified via column chromatography via a gradient moving from 9:1 DCM:MeOH to 100% MeOH to yield N-(2,4-dinitrophenyl)-4-methylpyridinium chloride (209a, 1.63 g, 5.51 mmol, 56%) as a black solid; \(R_f \) 0.22 (9:1 DCM:MeOH to 100% MeOH), \textbf{m.p.} 82 - 84 °C (Lit.[^107] m.p. 142 - 145 °C).

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3002, 2942, 1609, 1537, 1467, 1339; \(^1\)H NMR (400MHz, MeOD) \(\delta \); 9.28 (1H, d, \(J = 2.5 \) Hz, H-3'), 9.13 (2H, d, \(J = 7.0 \) Hz, H-2 and H-6), 8.93 (1H, dd, \(J = 3.0 \) Hz and 8.5 Hz, H-5'), 8.31 (1H, d, \(J = 8.5 \) Hz, H-6'), 8.24 (2H, d, \(J = 6.5 \) Hz, H-3 and H-5), 2.89 (3H, s, CH\(_3\)(Py)); \(^1^3\)C NMR (100MHz, MeOD) \(\delta \); 21.4 (CH\(_3\)(Py)), 121.8 (C-3'), 128.5 (C-3 and C-5), 129.7 (C-5'), 131.3 (C-6'), 138.6 (ArC), 143.3 (ArC), 144.5 (C-2 and C-6), 149.7 (ArC), 164.1 (ArC); MS m/z [M\(^+\)] \(\text{C}_{12}\text{H}_{10}\text{N}_4\text{O}_4^+ \) requires 260.07, found 260.07.

N-(2,4-Dinitrophenyl)-3-methylpyridinium Chloride 209b[^108]

To a solution of 3-picoline (0.5 mL, 4.94 mmol, 1.0 equiv.) in 10.0 mL acetone was added 1-chloro-2,4-dinitrobenzene (1.00 g, 4.94 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h. Once cooled the reaction mixture was filter to yield N-(2,4-dinitrophenyl)-3-methylpyridinium chloride (209b, 1.01 g, 3.90 mmol, 79%) as an off-white solid; \textbf{m.p.} 221 - 223 °C (Lit.[^108] m.p. 206 - 207 °C).

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3056, 2914, 1531, 1475, 1342; \(^1\)H NMR (400MHz, MeOD) \(\delta \); 9.30 (1H, bs, H-3'), 9.22 (1H, bs, H-2), 9.13 (1H, d, \(J = 6.0 \) Hz, H-6), 8.94 (1H, d, \(J = 8.5 \) Hz, H-5'), 8.81 (1H, d, \(J = 8.0 \) Hz, H-4), 8.32 - 8.28 (2H, m, H-5 and H-6'), 2.71 (3H, s, CH\(_3\)(Py)); \(^1^3\)C NMR (100MHz, MeOD) \(\delta \); 17.1 (CH\(_3\)(Py)), 121.8 (C-3'), 127.4 (C-5), 129.7 (C-5'), 131.2 (C-6'), 138.8 (ArC), 140.2 (ArC), 143.0 (C-6), 143.2 (ArC), 145.2 (C-2), 149.2 (C-4), 149.8 (ArC); MS m/z [M\(^+\)] \(\text{C}_{12}\text{H}_{10}\text{N}_4\text{O}_4^+ \) requires 260.07, found 260.07.

[^107]: Chapter 5: Experimental
[^108]: Chapter 5: Experimental
N-(2,4-Dinitrophenyl)-4-ethylpyridinium Chloride 209c107

To a solution of 4-ethylpyridine (0.6 mL, 5.43 mmol, 1.1 equiv.) in 5.0 mL PE 40-60 °C was added 1-chloro-2,4-dinitrobenzene (1.00 g, 4.94 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 96 h. Once cooled the reaction mixture was filter to yield \textit{N}-(2,4-dinitrophenyl)-4-ethylpyridinium chloride (209c, 1.06 g, 3.43 mmol, 75 %) as a black solid; \textbf{m.p.} 154 - 157 °C (Lit.107 \textbf{m.p.} 133 - 135 °C)

\textbf{IR} \nu_{\text{max}}/\text{cm}^{-1}: 3019, 2971, 1540, 1463, 1345; \textbf{\textit{1}H NMR} (400MHz, MeOD) δ; 9.29 (1H, d, \textit{J} = 3.5 Hz, H-3'), 9.16 (2H, d, \textit{J} = 6.0 Hz, H-2 and H-6), 8.93 (1H, dd, \textit{J} = 3.0 Hz and 8.5 Hz, H-5'), 8.31 (1H, d, \textit{J} = 8.5 Hz, H-6'), 8.28 (2H, d, \textit{J} = 6.0 Hz, H-3 and H-5), 3.20 (2H, \textit{q}, \textit{J} = 8.5 Hz, \textit{CH}_2\text{CH}_3(\text{Py})), 1.50 (3H, t, \textit{J} = 7.5 Hz, \textit{CH}_3\text{CH}_2(\text{Py})); \textbf{\textit{13}C NMR} (100MHz, MeOD) δ; 12.5 (\textit{CH}_2\text{CH}_3(\text{Py})), 29.1 (\textit{CH}_2\text{CH}_2(\text{Py})), 121.9 (C-3'), 127.5 (C-3 and C-5), 129.8 (C-5'), 131.3 (C-6'), 138.7 (ArC), 143.4 (ArC), 145.0 (C-2 and C-6), 149.9 (ArC), 169.1 (ArC); \textbf{MS m/z [M]+} C_{13}H_{12}N_2O_4+ requires 274.08, found 274.08.

\textit{N}-(2,4-Dinitrophenyl)-3-ethylpyridinium Chloride 209d109

To a solution of 3-ethylpyridine (0.6 mL, 5.43 mmol, 1.1 equiv.) in 5.0 mL acetone was added 1-chloro-2,4-dinitrobenzene (1.00 g, 4.94 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h. Once cooled the reaction mixture was filter to yield \textit{N}-(2,4-dinitrophenyl)-3-ethylpyridinium chloride (209d, 0.92 g, 2.98 mmol, 61 %) as an off white powder; \textbf{m.p.} 197 - 199 °C (Lit.109 \textbf{m.p.} 194 - 196 °C)

\textbf{IR} \nu_{\text{max}}/\text{cm}^{-1}: 3000, 2925, 1607, 1535, 1449, 1346; \textbf{\textit{1}H NMR} (400MHz, MeOD) δ; 9.31 (1H, d, \textit{J} = 4.5 Hz, H-3'), 9.25 (1H, bs, H-2), 9.15 (1H, bd, \textit{J} = 6.0 Hz, H-6), 8.95 (1H, dd, \textit{J} = 3.5 Hz and 9.0 Hz, H-5'), 8.69 (1H, bd, \textit{J} = 7.5 Hz, H-4), 8.24 (1H, t, \textit{J} = 8.5 Hz, H-5), 8.31 (1H, d, \textit{J} = 9.0 Hz, H-6'), 3.05 (2H, \textit{q}, \textit{J} = 7.5 Hz, \textit{CH}_2\text{CH}_2(\text{Py})), 1.44 (3H, t, \textit{J} = 7.5 Hz, \textit{CH}_3\text{CH}_2(\text{Py})); \textbf{\textit{13}C NMR} (100MHz, MeOD) δ; 13.4 (\textit{CH}_2\text{CH}_2(\text{Py})), 25.6 (\textit{CH}_2\text{CH}_2(\text{Py})), 121.8 (C-3'), 127.7 (C-6'), 129.8 (C-5'), 131.1 (C-5), 138.8 (ArC), 143.2 (ArC), 143.3 (C-6), 144.8 (C-2), 145.7 (ArC), 148.2 (C-4), 149.7 (ArC); \textbf{MS m/z [M]+} C_{13}H_{12}N_2O_4+ requires 274.08, found 274.08.
N-(2,4-Dinitrophenyl)-4-phenylpyridinium Chloride 209e

To a solution of 4-phenylpyridine (0.77 g, 4.94 mmol, 1.0 equiv.) in 10.0 mL acetone was added 1-chloro-2,4-dinitrobenzene (1.00 g, 4.94 mmol, 1.0 equiv.) portion-wise. This was left to stir at reflux for 12 h. Once cooled the reaction mixture was filter to yield N-(2,4-dinitrophenyl)-4-phenylpyridinium chloride (209e, 0.86 g, 2.41 mmol, 49 %) as an off-white solid; **m.p.** 195 - 199 °C (Lit. **m.p.** 186 - 187 °C)

IR ν_{max}/cm⁻¹ 3002, 1608, 1533, 1337; **¹H NMR** (400MHz, MeOD) δ; 9.31 (1H, bs, C-3'), 9.26 (2H, d, J = 6.5 Hz, H-2 and H-6), 8.95 (1H, d, J = 8.5 Hz, H-5'), 8.73 (2H, d, J = 6.5 Hz, H-3 and H-5), 8.34 (1H, d, J = 8.5 Hz, H-6'), 8.20 (2H, d, J = 7.5 Hz, ArH(Py.)), 7.80 - 7.72 (3H, m, ArH(Py.)); **¹³C NMR** (100MHz, MeOD) δ; 121.8 (C-3'), 124.4 (C-3 and C-5), 128.4 (ArCH(Py.)), 129.7 (C-5), 129.8 (ArCH(Py.)), 131.4 (C-6'), 133.1 (ArCH(Py.)), 133.4 (ArC), 138.6 (ArC), 143.4 (ArC), 145.5 (C-2 and C-6), 149.7 (ArC), 159.4 (ArC); **MS** m/z [M]+ C₁₇H₁₃N₃O₄ requires 322.08, found 322.09.

N-(2,4-Dinitrophenyl)-4-tert-butylpyridinium Chloride 209f

To a solution of 4-tert-butylpyridine (0.7 mL, 4.94 mmol, 1.0 equiv.) in 20.0 mL MeOH was added 1-chloro-2,4-dinitrobenzene (1.00 g, 4.94 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 65 h. Once cooled the reaction mixture was concentrated under reduced pressure to yield N-(2,4-dinitrophenyl)-4-tert-butylpyridinium chloride (209f, 1.37 g, 4.55 mmol, 92 %) as a yellow solid; **m.p.** 137 - 150 °C (Lit. **m.p.** 154 -156 °C)

IR ν_{max}/cm⁻¹ 3042, 2971, 1608, 1533, 1458, 1339; **¹H NMR** (400MHz, MeOD) δ; 9.29 (1H, d, J = 2.5 Hz, H-3'), 9.16 (2H, d, J = 7.0 Hz, H-2 and H-6), 8.93 (1H, d, d, J = 2.5 Hz and 8.5 Hz, H-5'), 8.44 (2H, d, J = 7.0 Hz, H-3 and H-5), 8.29 (1H, d, J = 8.5 Hz, H-6'), 1.57 (9H, s, C(CH₃)₃(Py.)); **¹³C NMR** (100MHz, MeOD) δ; 29.1 (C(CH₃)₃(Py.)), 122.6 (C-3'), 124.5 (ArC), 125.6 (C-3 and C-5), 130.5 (C-5'), 131.3 (C-6'), 138.5 (ArC), 142.8 (ArC), 144.3 (C-2 and C-6), 149.4 (ArC), 175.7 (ArC); **MS** m/z [M]+ C₁₈H₁₈N₃O₄ requires 302.11, found 302.12.
CHAPTER 5: EXPERIMENTAL

Formation of Pyridinium Tosylates

N-(2-((4-Trifluoromethoxy)phenyl)amino)ethyl)pyridinium Tosylate 204

To a solution of 203 (1.99 g, 9.06 mmol, 3.0 equiv.) in 30.0 mL MeOH was added Zincke salt 138 (0.85 g, 3.02 mmol, 1.0 equiv.) portion-wise. This was stirred at RT for 2 h and then refluxed for a further 18 h. Once cooled the reaction mixture was, diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised pyridinium chloride as a crude yellow oil. To a solution of the crude uncyclised pyridinium chloride (0.96 g, 3.02 mmol, 1.0 equiv.) in 30.0 mL EtOAc was added sodium p-toluenesulfonate (0.59 g, 3.02 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate was concentrated under reduced pressure to yield a crude yellow slurry, which was purified via crystallisation with 100 % EtOAc to yield *N-(2-((4-trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (204, 1.07 g, 2.35 mmol, 78 %)* as a fine pale yellow powder; m.p. 111 - 118 °C

IR ν_{max}/cm$^{-1}$: 3291, 3060, 2855, 1609, 1506, 1251, 1160; 1H NMR (400MHz, MeOD) δ: 8.91 (2H, d, J = 6.0 Hz, H-2 and H-6), 8.58 (1H, t, J = 8.0 Hz, H-4), 8.09 (2H, t, J = 7.0 Hz, H-3 and H-5), 7.72 (2H, d, J = 8.0 Hz, TsH), 7.25 (2H, d, J = 8.0 Hz, TsH), 7.03 (2H, d, J = 9.0 Hz, H-3" and H-5"), 6.65 (2H, d, J = 9.0 Hz, H-2" and H-6"), 4.81 (2H, t, J = 5.0 Hz, H-2'), 3.79 (2H, t, J = 5.0 Hz, H-1'), 2.39 (3H, s, Ts(CH$_3$)); 13C NMR (100MHz, MeOD) δ: 21.2 (Ts(CH$_3$)), 44.4 (C-1'), 60.7 (C-2'), 113.1 (C-2" and C-6'"), 119.3 (ArC), 122.2 (C-3' and C-5"'), 125.8 (TsCH), 127.6 (C-3 and C-5), 129.0 (TsCH), 140.0 (ArC), 140.3 (Ar(OCF$_3$)), 143.4 (ArC), 144.4 (ArC), 145.7 (C-2 and C-6), 146.5 (C-4); MS m/z [M]$^+$ C$_{14}$H$_{14}$F$_3$N$_2$O requires 283.11, found 283.10.

4-Methyl-N-(2-((4-trifluoromethoxy)phenyl)amino)ethyl)pyridinium Tosylate 210a

To a solution of 203 (0.30 g, 1.35 mmol, 1.1 equiv.) in 20.0 mL n-butanol was added Zincke salt 209a (0.36 g, 1.23 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 18 h. Once cooled the reaction mixture was diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 4-methyl pyridinium chloride as a crude mustard yellow oil. To a solution of the crude uncyclised 4-methyl pyridinium chloride (0.41 g, 1.23 mmol, 1.0 equiv.) in 20.0 mL EtOAc was added sodium p-toluenesulfonate (0.24 g, 1.23 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate was concentrated under reduced pressure to yield a crude brown slurry,
which was purified via crystallisation with 100 % EtOAc to yield 4-methyl-N-(2-((4-((trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (210a, 0.24 g, 0.50 mmol, 41 %) as a fine pale yellow powder; m.p. 120 - 124 °C

IR νmax/cm⁻¹ 3302, 3053, 2913, 1610, 1476, 1518, 1255, 1141; ¹H NMR (400MHz, CDCl₃) δ; 8.99 (2H, d, J = 6.5 Hz, H-2 and H-6), 7.78 (2H, d, J = 8.0 Hz, TsH), 7.48 (2H, d, J = 6.5 Hz, H-3 and H-5), 7.17 (2H, d, J = 8.0 Hz, TsH), 6.83 (2H, d, J = 8.5 Hz, H-3” and H-5”), 6.49 (2H, d, J = 8.5 Hz, H-2” and H-6”), 4.98 (2H, t, J = 5.0 Hz, H-2’), 3.68 (2H, t, J = 5.0 Hz, H-1’), 2.45 (3H, s, Ts(CH₃)), 2.37 (3H, s, CH₃(Py)); ¹³C NMR (100MHz, CDCl₃) δ; 21.2 (CH₃(Py)), 21.9 (Ts(CH₃)), 44.4 (C-1’), 59.9 (C-2’), 113.1 (C-2” and C-6”), 119.3 (ArC), 122.3 (C-3” and C-5”), 125.8 (TsCH), 128.2 (C-3 and C-5), 128.9 (TsCH), 140.0 (ArC), 140.3 (Ar(OCF₃)), 143.2 (ArC), 144.7 (C-2 and C-6), 146.5 (ArC), 158.5 (ArC); MS m/z [M]+ C₁₉H₁₈N₂OF₃ requires 297.12, found 297.12.

3-Methyl-N-(2-((4-((trifluoromethoxy)phenyl)amino)ethyl)pyridinium Tosylate 210b

To a solution of 203 (0.48 g, 2.19 mmol, 1.1 equiv.) in 10.0 mL n-butanol was added Zincke salt 209b (0.59 g, 2.19 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 18 h. Once cooled the reaction mixture was diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 3-methyl pyridinium chloride as a crude yellow oil. To a solution of the crude uncyclised 3-methyl pyridinium chloride (0.66 g, 1.99 mmol, 1.0 equiv.) in 15.0 mL EtOAc was added sodium p-toluenesulfonate (0.38 g, 1.99 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate was concentrated under reduced pressure to yield a crude brown slurry, which was purified via crystallisation with 100 % EtOAc to yield 3-methyl-N-(2-((4-((trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (210b, 0.68 g, 1.45 mmol, 73 %) as a fine pale yellow powder; m.p. 221 - 223 °C

IR νmax/cm⁻¹ 3418, 3054, 2837, 1639, 1508, 1477, 1252, 1188; ¹H NMR (400MHz, CDCl₃) δ; 9.10 (1H, s, H-2), 9.04 (1H, d, J = 6.0 Hz, H-6), 7.88 (1H, d, J = 8.0 Hz, H-4), 7.80 (2H, d, J = 7.5 Hz, TsH), 7.59 (1H, t, J = 6.5 Hz, H-5), 7.18 (2H, d, J = 7.5 Hz, TsH), 6.80 (2H, d, J = 8.5 Hz, H-3” and H-5”), 6.47 (2H, d, J = 8.5 Hz, H-2” and H-6”), 5.93 (1H, t, J = 6.0 Hz, NH), 5.04 (2H, t, J = 4.5 Hz, H-2’), 3.72 (2H, q, J = 5.0 Hz, H-1’), 2.38 (3H, s, CH₃(Py)), 2.36 (3H, s, TsC(CH₃)); ¹³C NMR (100MHz, CDCl₃) δ; 17.2 (CH₃(Py)), 20.2 (Ts(CH₃)), 43.3 (C-1’), 59.6 (C-2’), 112.9 (C-2” and C-6”), 119.2 (ArC), 122.1 (C-3” and C-5”), 125.7 (TsCH), 126.9 (C-5),
128.9 (TsCH), 139.0 (ArC), 140.0 (ArC), 140.1 (Ar(OCF₃)), 142.8 (C-6), 143.3 (ArC), 145.0 (C-4), 145.3 (C-2), 146.6 (ArC); MS m/z [M]⁺ C₁₅H₁₈N₂OF₃ requires 297.12, found 297.12.

4-Ethyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridin-1-ium Tosylate 210c

To a solution of 203 (1.02 g, 4.62 mmol, 3.0 equiv.) in 20.0 mL MeOH was added Zincke salt 209c (0.48 g, 1.54 mmol, 1.0 equiv.) portion-wise. This was stirred for 2 h at RT and then refluxed for a further 16 h. Once cooled the reaction mixture was diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 4-ethyl pyridinium chloride as a crude orange slurry. To a solution of the crude uncyclised 4-ethyl pyridinium chloride (0.53 g, 1.54 mmol, 1.0 equiv.) in 20.0 mL EtOAc was added sodium p-toluenesulfonate (0.30 g, 1.54 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate was concentrated under reduced pressure to yield a crude orange slurry, which was purified via crystallisation with 100% EtOAc to yield 4-ethyl-1-(2-((4-(trifluoromethoxy)phenyl)ethyl) amino)ethyl pyridinium tosylate (210c, 0.13 g, 0.28 mmol, 18%) as a fine pale orange powder; m.p. 142 - 145 °C

IR ν_max/cm⁻¹ 3301, 3055, 2957, 1609, 1518, 1476, 1255, 1185; ¹H NMR (400MHz, CDCl₃) δ; 9.06 (2H, d, J = 6.0 Hz, H-2 and H-6), 7.80 (2H, d, J = 8.0 Hz, TsH), 7.55 (2H, d, J = 6.0 Hz, H-3 and H-5), 7.18 (2H, d, J = 8.0 Hz, TsH), 6.85 (2H, d, J = 8.5 Hz, H-3” and H-5”), 6.51 (2H, d, J = 8.5 Hz, H-2” and H-6”), 5.95 (1H, bs, NH), 5.04 (2H, t, J = 5.0 Hz, H-2’), 3.73 (2H, bs, H-1’), 2.78 (2H, q, J = 7.5 Hz, CH₂CH₃(Py)), 2.36 (3H, s, Ts(CH₃)), 1.24 (3H, t, J = 7.5 Hz, CH₂CH₃(Py)); ¹³C NMR (100MHz, CDCl₃) δ; 13.0 (CH₂CH₃(Py)), 21.3 (Ts(CH₃)), 28.7 (CH₂CH₃(Py)), 44.4 (C-1’), 60.2 (C-2’), 113.0 (C-2” and C-6”), 119.3 (ArC), 122.2 (C-3” and C-5”), 125.8 (TsCH), 126.8 (C-3 and C-5), 129.0 (TsCH), 139.9 (ArC), 140.0 (ArC), 140.3 (Ar(OCF₃)), 144.8 (C-2 and C-6), 144.9 (ArC), 146.5 (ArC); MS m/z [M]⁺ C₁₅H₁₈N₂OF₃ requires 311.14, found 311.14.

3-Ethyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridin-1-ium Tosylate 210d

To a solution of 203 (1.01 g, 4.59 mmol, 3.0 equiv.) in 50.0 mL MeOH was added Zincke salt 209d (0.47 g, 1.53 mmol, 1.0 equiv.) portion-wise. This was stirred at RT for 2 h and then refluxed for a further 16 h. Once cooled the reaction mixture was diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 3-ethyl
pyridinium chloride as a crude yellow oil. To a solution of the crude uncyclised 3-ethyl pyridinium chloride (0.53 g, 1.53 mmol, 1.0 equiv.) in 25.0 mL EtOAc was added sodium p-toluenesulfonate (0.30 g, 1.53 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate collected was concentrated under reduced pressure to yield a crude yellow powder, which was purified via crystallisation with 100 % EtOAc to yield 3-ethyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (210d, 0.45 g, 0.94 mmol, 63 %) as a fine pale yellow powder; m.p. 104 - 106 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3287, 3054, 2974, 1513, 1476, 1248, 1145; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 9.15 (1H, d, \(J = 6.0 \text{ Hz} \), H-6), 9.13 (1H, s, H-2), 7.91 (1H, d, \(J = 8.0 \text{ Hz} \), H-4), 7.80 (2H, d, \(J = 8.0 \text{ Hz} \), TsH), 7.62 (1H, t, \(J = 6.5 \text{ Hz} \), H-5), 7.17 (2H, d, \(J = 8.0 \text{ Hz} \), TsH), 6.77 (2H, d, 8.5 Hz, H-3" and H-5"), 6.45 (2H, d, \(J = 8.5 \text{ Hz} \), H-2" and H-6"), 6.02 (1H, bt, \(J = 6.0 \text{ Hz} \), NH), 5.07 (2H, bt, \(J = 4.5 \text{ Hz} \), H-2'), 3.73 (2H, q, \(J = 5.0 \text{ Hz} \), H-1'), 2.68 (2H, q, \(J = 7.5 \text{ Hz} \), CH\(_2\)(CH\(_3\)(Py)), 2.35 (3H, s, Ts(CH\(_3\)))); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 14.1 (CH\(_2\)(CH\(_3\)(Py))), 21.2 (Ts(CH\(_3\))), 25.6 (CH\(_2\)(CH\(_3\)(Py))), 44.2 (C-1'), 60.7 (C-2'), 112.8 (C-2" and C-6"), 119.3 (ArC), 121.8 (ArC), 122.1 (C-3" and C-5"), 125.8 (TsCH), 127.1 (C-5), 128.9 (TsCH), 139.8 (ArC), 140.1 (ArC), 143.1 (C-6), 143.6 (Ar(OCF\(_3\))), 144.8 (C-4), 145.0 (C-2), 146.7 (ArC); MS m/z [M\(^+\)] \(C_{16}H_{18}N_{2}O_{3}F_{3} \) requires 311.14, found 311.14.

4-Phenyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridinium Tosylate 210e

To a solution of 203 (0.19 g, 0.86 mmol, 2.0 equiv.) in 10.0 mL EtOH was added Zincke salt 209e (0.15 g, 0.43 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 18 h. Once cooled the reaction mixture was diluted with H\(_2\)O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 4-phenyl pyridinium chloride as a crude orange oil. To a solution of the crude uncyclised 4-phenyl pyridinium chloride (0.17 g, 0.43 mmol, 1.0 equiv.) in 15.0 mL EtOAc was added sodium p-toluene sulfonate (0.08 g, 0.43 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate collected was concentrated under reduced pressure to yield a crude yellow powder, which was purified via crystallisation with 100 % EtOAc to yield 4-phenyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (210e, 0.10 g, 0.19 mmol, 44 %) as a fine pale yellow powder; m.p. 161 - 164 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3304, 3043, 1609, 1504, 1254, 1186; \(^1\)H NMR (400MHz, MeOD) \(\delta \); 8.84 (2H, d, \(J = 7.0 \text{ Hz} \), H-2 and H-6), 8.36 (2H, d, \(J = 7.0 \text{ Hz} \), H-3 and H-5), 7.98 (2H, dd, \(J = 2.0 \text{ Hz} \) and
5.0 Hz, TsH), 7.72 (2H, d, J = 8.0 Hz, ArH(Py)), 7.68 - 7.62 (3H, m, ArH(Py)), 7.24 (2H, d, J = 8.0 Hz, TsH), 7.04 (2H, d, J = 8.0 Hz, H-3" and H-5"), 6.67 (2H, d, J = 8.0 Hz, H-2" and H-6"), 4.79 (2H, t, J = 5.5 Hz H-2), 3.80 (2H, t, J = 5.5 Hz, H-1'), 2.38 (3H, s, Ts(CH₃)); ¹³C NMR (100MHz, MeOD) δ; 19.9 (Ts(CH₃)), 43.6 (C-1'), 59.7 (C-2'), 112.6 (C-2" and C-6"), 122.0 (ArC), 122.2 (C-3" and C-5"), 124.4 (C-3 and C-5), 125.5 (ArCH(Py)), 127.7 (TsCH), 128.4 (TsCH), 129.6 (ArCH(Py)), 132.1 (ArCH(Py)), 133.9 (ArC), 140.3 (ArC), 140.4 (Ar(OCF₃)), 142.1 (ArC), 144.9 (C-2 and C-6), 146.4 (ArC), 156.7 (ArC); MS m/z [M]+ C₂₂H₁₈N₂OF₃ requires 359.14, found 359.14.

4-tert-Butyl-N-(2-((4-(trifluoromethoxy)phenyl)amino)ethyl)pyridinium Tosylate 210f

To a solution of 203 (0.16 g, 0.73 mmol, 1.1 equiv.) in 10.0 mL n-butanol was added Zincke salt 209f (0.22 g, 0.66 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 18 h. Once cooled the reaction mixture was diluted with H₂O and washed several times with DCM until no further colour was observed in the organic layer. The aqueous layer was concentrated under reduced pressure to yield uncyclised 4-tert-butyl pyridinium chloride as a crude orange oil. To a solution of the crude uncyclised 4-tert-butyl pyridinium chloride (0.25 g, 0.66 mmol, 1.0 equiv.) in 20.0 mL EtOAc was added sodium p-toluenesulfonate (0.13 g, 0.66 mmol, 1.0 equiv.) portion-wise. This was stirred at reflux for 12 h then cooled and filtered. The filtrate collected was concentrated under reduced pressure to yield a crude yellow powder, which was purified via crystallisation with 100 % EtOAc to yield 4-tert-butyl-N-(2-((4-trifluoromethoxy)phenyl)amino)ethyl)pyridinium tosylate (210f, 0.30 g, 0.58 mmol, 89 %) as a fine pale yellow powder; m.p. 81 - 86 °C

IR νₑᵥₑ /cm⁻¹: 3304, 3053, 2972, 1644, 1516, 1476, 1248, 1186; ¹H NMR (400MHz, CDCl₃): δ; 9.19 (2H, d, J = 6.5 Hz, H-2 and H-6), 7.82 (2H, d, J = 8.0 Hz, TsH), 7.62 (2H, d, J = 6.5 Hz, H-3 and H-5), 7.18 (2H, d, J = 8.0 Hz, TsH), 6.78 (2H, d, J = 8.5 Hz, H-3" and H-5"), 6.48 (2H, d, J = 8.5 Hz, H-2" and H-6"), 5.98 (1H, t, J = 6.0 Hz, NH), 5.05 (2H, t, J = 5.0 Hz, H-2'), 3.70 (2H, q, J = 4.5 Hz, H-1'), 2.35 (9H, s, C(CH₃)₃(Py)), 1.25 (3H, s, Ts(CH₃)); ¹³C NMR (100MHz, CDCl₃): δ; 21.3 (C(CH₃)₃(Py)), 29.9 (Ts(CH₃)), 36.3 (ArC), 44.4 (C-1'), 59.9 (C-2'), 113.0 (C-2" and C-6"), 122.2 (C-3" and C-5"), 124.6 (C-3 and C-5), 125.9 (TsCH), 128.9 (TsCH), 132.2 (ArC) 140.0 (ArC), 140.3 (Ar(OCF₃)), 143.2 (ArC), 145.1 (C-2 and C-6), 146.5 (ArC), 170.8 (ArC); MS m/z [M]+ C₂₂H₁₈N₂OF₃ requires 339.17, found 339.17.
Formation of N-3 Riluzole Tetrahydropyridines via the Zincke Pathway

3-(2-(4,5-Dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 159

To a solution of 204 (0.32 g, 0.70 mmol, 1.0 equiv.) and KSCN (0.82 g, 8.40 mmol, 12.0 equiv.) in 6.0 mL AcOH was added a solution of Br₂ (0.1 mL, 0.70 mmol, 1.0 equiv.) in 6.0 mL AcOH dropwise. This was stirred at RT for 16 h then diluted with 36 mL H₂O, neutralised with 30 % NaOH solution and washed twice with 100 % EtOAc. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield ring-cyclised pyridinium bromide as a crude oil. To a cooled solution of the crude ring-cyclised pyridinium bromide (0.29 g, 0.70 mmol, 1.0 equiv.) in 30.0 mL MeOH at 0 °C was added NaBH₄ (0.07 g, 0.96 mmol, 2.8 equiv.) portion-wise. This was warmed to RT and stirred for a further 18 h. This was then diluted with H₂O and washed five times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield 3-(2-(4,5-dihydropyridin-1-yl)-6-trifluoromethoxy)benzothiazol-2-imine (159, 0.16 g, 0.48 mmol, 69 %) as a pale yellow oil.

IR νmax/cm⁻¹ 3054, 2917, 1645, 1485, 1257; ¹H NMR (400MHz, CDCl₃) δ; 7.15 (1H, d, J = 1.5 Hz, H-7), 7.09 (1H, dd, J = 2.0 Hz and 8.5 Hz, H-5), 6.89 (1H, d, J = 8.5 Hz, H-4), 5.80 - 5.74 (1H, m, H-5’), 5.70 - 5.65 (1H, m, H-4’), 4.12 (2H, t, J = 7.5 Hz, H-2’), 3.11 (2H, quin, J = 3.0 Hz, H-6’), 2.73 (2H, appt, J = 6.5 Hz, H-2”), 2.70 (2H, appt, J = 6.0 Hz, H-1’), 2.21 - 2.17 (2H, m, J = 3.0 Hz, H-3’); ¹³C NMR (100MHz, CDCl₃) δ; 26.0 (C-3’), 41.1 (C-2’), 50.3 (C-1’), 52.9 (C-6’), 54.1 (C-2”), 109.4 (C-4), 115.2 (C-7), 119.6 (C-5), 121.8 (ArC), 123.8 (ArC), 124.9 (C-4”), 125.3 (C-5”), 139.4 (ArC), 143.4 (Ar(OCF₃)), 161.2 (ArC); MS m/z [M⁺]⁺ C₁₅H₁₇F₃N₂O₃S requires 344.10, found 344.10.

3-(2-(4-Methyl-5,6-dihydropyridin-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 212a

To a solution of 210a (0.17 g, 0.39 mmol, 1.0 equiv.) and KSCN (0.45 g, 4.68 mmol, 12.0 equiv.) in 2.0 mL AcOH was added a solution of Br₂ (0.02 mL, 0.39 mmol, 1.0 equiv.) in 2.0 mL AcOH dropwise at RT and stirred for 16 h. This was then diluted with 12.0 mL H₂O,
neutralised with 30 % NaOH solution and washed twice with 100 % EtOAc. The organic layers were combined, dried over Na₂SO₄, filter and concentrated under reduced pressure to yield ring-cyclised 4-methylpyridinium bromide as a crude oil. To a cooled solution of the crude ring-cyclised 4-methylpyridinium bromide (0.17 g, 0.39 mmol, 1.0 equiv.) in 10.0 mL MeOH at 0 °C was added NaBH₄ (0.04 g, 1.10 mmol, 2.8 equiv.) portion-wise. This was warmed to RT and stirred for a further 18 h. This was then diluted with H₂O and washed five times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield 3-(2-(4-methyl-5,6-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (212a, 0.04 g) as a crude red/brown oil.

IR νmax/cm⁻¹ 2911, 1650, 1585, 1485, 1255, 1160; ¹H NMR (400MHz, CDCl₃) δ; 7.14 (1H, s, H-7), 7.09 (1H, d, J = 9.0 Hz, H-5), 6.88 (1H, d, J = 9.0 Hz, H-4), 5.37 (1H, appquin, J = 1.5 Hz, H-3'), 4.12 (2H, t, J = 7.5 Hz, H-2'), 3.07 (2H, bs, CH₂(THPy.)); MS m/z [M+H]⁺ C₁₅H₁₉F₂N₂OS requires 358.11, found 358.12.

3-(2-(3-Ethyl-5,6-dihydropyridin-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 212b

To a solution of 210d (0.20 g, 0.40 mmol, 1.0 equiv.) and KSCN (0.47 g, 4.80 mmol, 12.0 equiv.) in 2.0 mL AcOH was added a solution of Br₂ (0.02 mL, 0.40 mmol, 1.0 equiv.) in 2.0 mL AcOH dropwise at RT and stirred for 16 h. This was then diluted with 12.0 mL H₂O, neutralised with 30 % NaOH solution and washed twice with 100 % EtOAc. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield ring-cyclised 3-ethylpyridinium bromide as a crude oil. To a cooled solution of the crude ring-cyclised 3-ethyl pyridinium bromide (0.18 g, 0.40 mmol, 1.0 equiv.) in 10.0 mL MeOH at 0 °C was added NaBH₄ (0.04 g, 1.12 mmol, 2.8 equiv.) portion-wise. This was warmed to RT and stirred for a further 18 h. This was then diluted with H₂O and washed five times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield 3-(2-(3-ethyl-5,6-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (212b, 0.08 g) as a crude orange oil.

IR νmax/cm⁻¹ 3293, 1648, 1486, 1257; ¹H NMR (400MHz, CDCl₃) δ; 7.15 (1H, bs, H-7), 7.09 (1H, bd, J = 8.5 Hz, H-5), 6.91 (1H, d, J = 8.5 Hz, H-4), 5.47 (1H, appsept, J = 1.5 Hz, H-4'), 4.12 (2H, t, J = 7.5 Hz, H-2'), 3.01 (2H, bs, H-2''), 2.74 (2H, t, J = 7.5 Hz, H-1'), 2.66 (2H, t, J
= 6.0 Hz, H-6”), 2.19 - 2.17 (2H, m, H-5”), 1.96 (2H, appq, J = 7.5 Hz, CH₂CH₃(THPy.)), 1.02 (3H, t, J = 7.5 Hz, CH₂CH₃(THPy.)); MS m/z [M+H]+ C₁₇H₂₁F₃N₃OS requires 372.13, found 372.14.

3-(2-(4-Phenyl-5,6-dihydropyridin-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 212c

To a solution of 210e (0.10 g, 0.20 mmol, 1.0 equiv.) and KSCN (0.22 g, 2.30 mmol, 12.0 equiv.) in 2.0 mL AcOH was added a solution of Br₂ (0.01 mL, 0.20 mmol, 1.0 equiv.) in 2.0 mL AcOH dropwise at RT and stirred for 16 h. This was then diluted with 12.0 mL H₂O, neutralised with 30 % NaOH solution and washed twice with 100 % EtOAc. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield ring-cyclised 4-phenyl pyridinium bromide as a crude oil. To a cooled solution of the crude ring-cyclised 4-phenyl pyridinium bromide (0.10 g, 0.20 mmol, 1.0 equiv.) in 10.0 mL MeOH at 0 °C was added NaBH₄ (0.02 g, 0.56 mmol, 2.8 equiv.) portion-wise. This was warmed to RT and stirred for a further 18 h. This was then diluted with H₂O and washed five times with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield 3-(2-(4-phenyl-5,6-dihydropyridin-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (212c, 0.05 g) as a crude yellow oil.

IR νmax/cm⁻¹ 3058, 2923, 1654, 1485, 1257; ¹H NMR (400MHz, CDCl₃) δ; 7.40 - 7.24 (5H, m, ArH(THPy.)), 7.15 (1H, d, J = 1.5 Hz, H-7), 7.12 (1H, dd, J = 1.0 Hz and 8.5 Hz, H-5), 6.91 (1H, d, J = 8.5 Hz, H-4), 6.07 (1H, quin, J = 2.0 Hz, H-3”), 4.16 (2H, t, J = 7.5 Hz, H-2’) 3.31 (2H, appq, J = 2.5 Hz, H-2”), 2.85 (2H, t, J = 6.0 Hz, H-6”), 2.79 (2H, t, J = 7.5 Hz, H-1’), 2.59 - 2.58 (2H, m, H-5”); MS m/z [M+H]+ C₂₁H₂₁F₃N₃OS requires 420.13, found 420.14.

Formation of 3-N-3 Riluzole Tetrahydropyridines via the Grignard Pathway

3-(2-(2-Methyl-3,4-dihydropyridin-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 220a
To a solution of 204 (0.35 g, 1.12 mmol, 1.0 equiv.) and KSCN (1.30 g, 13.44 mmol, 12.0 equiv.) in 3.0 mL AcOH was added a solution of Br₂ (0.06 mL, 1.12 mmol, 1.0 equiv.) in 3.0 mL AcOH dropwise. This was stirred at RT for 16 h. The reaction mixture was then diluted with 18.0 mL H₂O, neutralised with 30 % NaOH solution and washed twice with 100 % EtOAc. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield ring-cyclised pyridinium bromide as a crude oil. To a solution of the crude ring-cyclised pyridinium bromide (0.51 g, 1.22 mmol, 1.0 equiv.) in 5.0 mL THF cooled to -20 °C under an atmosphere of N₂ was added methylmagnesium bromide (1.2 mL) dropwise. After 1 h at -20 °C the reaction mixture was warmed to 0 °C and stirred for a further 2 h. This was then diluted with 5.0 mL 90 %aq. MeOH and NaBH₄ (0.28 g, 7.29 mmol, 6.0 equiv.) was added portion-wise. This was stirred at reflux for 1 h and then concentrated under reduced pressure, diluted with 10.0 mL H₂O, and washed twice with 10.0 mL EtOAc. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield 3-(2-(2-methyl-3,4-dihydropyridin-1-yl)ethyl)-6-(trifluoromethoxy)benothiazol-2-imine (220a, 0.18 g) as a crude orange oil.

IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 2926, 1660, 1585, 1485, 1254, 1164; \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \): 7.14 (1H, s, H-7), 7.08 (1H, d, J = 9.0 Hz, H-5), 6.89 (1H, d, 9.0 Hz, H-4), 5.73 - 5.69 (1H, m, H-3”), 5.00 (1H, ddd, J = 2.0 Hz, 4.0 Hz and 8.0 Hz, H-4”), 4.15 - 3.98 (2H, m, H-2”), 3.12 - 3.09 (1H, m, H-2”), 3.01 - 2.92 (2H, m, H-1”), 2.68 - 2.56 (2H, m, H-6”), 2.14 - 2.08 (2H, m, H-5”), 1.09 (3H, d, J = 6.5 Hz, CH₃(THPy.)); MS m/z \([\text{M}+\text{H}]^+\) C₁₆H₁₉F₃N₃OS requires 358.11, found 358.11.

5.2 Triazole

Imidazole-1-Sulfonyl Azide Hydrochloride 221

To a solution of NaN₃ (1.30 g, 20.00 mmol, 1.0 equiv.) in 20.0 mL MeCN under an atmosphere of N₂ cooled to 0 °C was added sulfuryl chloride (1.6 mL, 20.00 mmol, 1.0 equiv.) dropwise. The reaction mixture was warmed to RT and left to stir overnight. This was then cooled to 0 °C and imidazole (2.59 g, 38.00 mmol, 1.9 equiv.) was added portion-wise, and stirred for 3 h at RT. The reaction mixture was then diluted with 40.0 mL EtOAc, washed twice with 40.0 mL H₂O and then with 40.0 mL saturated NaHCO₃. The organic layer collected was dried over MgSO₄ and filtered. A solution of HCl in EtOH [obtained by the dropwise addition of AcCl (2.1 mL, 30.00 mmol, 1.5 equiv.) to 7.5 mL dry ethanol cooled to 0 °C] was added dropwise to the cooled filtrate to give a colourless precipitate which when filtered and washed three times with 10.0 mL EtOAc yielded imidazole-1-sulfonyl azide.
hydrochloride (221, 1.64 g, 7.85 mmol, 48 %) as a colourless solid; m.p. 118 - 120 °C (Lit.117 m.p. 100 - 102 °C)

IR νmax/cm⁻¹ 3054, 2169, 1322, 1159; ¹H NMR (400MHz, D₂O) δ; 9.05 (1H, bs, H-5), 7.84 (1H, bs, H-4), 7.42 (1H, bs, H-2); ¹³C NMR (100MHz, D₂O) δ; 119.8 (C-5); MS m/z [M+H]⁺ C₉H₆N₂O₂S requires 247.08, found 247.08.

N-(2-Azidoethyl)-4-(trifluoromethoxy)aniline 222

To a solution of 203 (0.83 g, 3.75 mmol, 1.0 equiv.), K₂CO₃ (1.21 g, 8.75 mmol, 2.3 equiv.) and CuSO₄·5H₂O (9 mg, 0.04 mmol, 0.001 equiv.) in 20.0 mL MeOH under an atmosphere of N₂ was added imidazole-1-sulfonyl azide hydrochloride 221 (0.94 g, 4.50 mmol, 1.2 equiv.) portion-wise. The reaction mixture was stirred at RT for 2 h and then diluted with 60.0 mL H₂O, acidified with conc. HCl and washed three times with 40.0 mL EtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to yield a crude orange oil. The crude oil was purified via column chromatography using 9:1 PE 40-60 °C:EtOAc to yield N-(2-azidoethyl)-4-(trifluoromethoxy)aniline (222, 0.23 g, 0.93 mmol, 25 %) as a pale yellow oil; Rᵣ 0.38 (9:1 PE 40-60 °C:EtOAc)

IR νmax/cm⁻¹ 3141, 3029, 2926, 2102, 1613, 1448, 1515, 1250; ¹H NMR (400MHz, CDCl₃) δ; 7.06 (2H, d, J = 8.0 Hz, H-3 and H-5), 6.61 (2H, d, J = 8.0 Hz, H-2 and H-6), 3.55 (2H, t, J = 6.0 Hz, H-¹¹), 3.34 (2H, t, J = 6.0 Hz, H-²); ¹³C NMR (100MHz, CDCl₃) δ; 43.3 (C-²), 50.4 (C-¹¹), 113.5 (C-2 and C-6), 119.4 (ArC), 122.6 (C-3 and C-5), 140.9 (Ar(OCF₃)), 145.9 (ArC); MS m/z [M+H]⁺ C₉H₁₀N₃F₃O requires 247.08, found 247.08.

3-(2-Azidioethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 223

To a solution of unicycled azide 222 (0.36 g, 1.46 mmol, 1.0 equiv.) and KSCN (1.70 g, 17.52 mmol, 12.0 equiv.) in 4.0 mL AcOH was added a solution of Br₂ (0.1 mL, 1.46 mmol, 1.0 equiv.) in 4.0 mL AcOH dropwise. This was stirred at RT for 2 h. The reaction mixture was then diluted with 24.0 mL H₂O, neutralised with 30 % NaOH solution and washed twice with EtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to yield a crude yellow oil. The crude oil was purified via column chromatography using 100 % EtOAc to yield 3-(2-azidioethyl)-6-
(trifluoromethoxy)benzothiazol-2-imine (223, 0.18 g, 0.59 mmol, 63 %) as a yellow oil; Rf 0.43 (100 % EtOAc)

IR νmax/cm⁻¹ 3044, 2929, 2110, 1584, 1485, 1256; ¹H NMR (400MHz, CDCl₃) δ; 7.20 (1H, bs, H-7), 7.14 (1H, bd, J = 9.0 Hz, H-5), 7.00 (1H, d, J = 9.0 Hz, H-4), 4.14 (2H, t, J = 6.0 Hz, H-1'), 3.73 (2H, t, J = 6.0 Hz, H-2'); ¹³C NMR (100MHz, CDCl₃) δ; 42.7 (C-1'), 48.5 (C-2'), 109.7 (C-4), 115.3 (C-7), 119.7 (C-5), 121.8 (ArC), 123.8 (ArC), 139.2 (ArC), 143.8 (Ar(OCF₃)), 161.2 (ArC); MS m/z [M+H]+ C₁₀H₉N₅F₃OS requires 304.05, found 304.05.

General Procedure for the [3 + 2] Cycloaddition of Azides and Terminal Alkynes

To a solution of ring-cyclised azide 223 (1.0 equiv.) and alkyne (1.5 equiv.) in a 1:1 mixture of THF and H₂O heated to 20 °C was added 1M CuSO₄ (aq) (1.0 equiv.) and freshly prepared 1M sodium ascorbate (aq) (2.0 equiv.). The reaction was monitored by TLC. After total consumption of azide 223 the reaction mixture was concentrated under reduced pressure, diluted with 2:1 DCM: conc. NH₄OH and then left to stir for 30 mins at RT. This was then washed twice with H₂O and once with brine. The organic layer collected was dried over MgSO₄, filtered and concentrated under reduced pressure to yield the crude N-3 Riluzole 1,4-substituted-1,2,3-triazole, which was further purified via flash column chromatography in a suitable solvent system.

3-(2-(4-Phenyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160a

Using the general procedure; to a solution of azide 223 (0.27 g, 0.89 mmol, 1.0 equiv.) and phenylacetylene (0.2 mL, 1.32 mmol, 1.5 equiv.) in 12.0 mL H₂O and 12.0 mL THF heated to 20 °C was added 0.9 mL 1M CuSO₄ (aq) and 1.8 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 3 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-phenyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160a, 0.14 g, 0.35 mmol, 39 %) as an off-white solid; Rf 0.21 (100 % EtOAc), m.p. 195 - 201 °C

IR νmax/cm⁻¹ 3250, 3085, 2954, 1615, 1584, 1483, 1259; ¹H NMR (400MHz, CDCl₃) δ; 7.65 (2H, d, J =18.5 Hz, ArH), 7.61 (1H, s, H-5''), 7.38 (2H, t, J = 7.0 Hz, ArH), 7.33 - 7.29 (1H, m, ArH), 7.09 (1H, bs, H-7), 6.94 (1H, bd, J = 8.5 Hz, H-5), 6.54 (1H, d, J = 9.0 Hz, H-4), 4.82
(2H, t, J = 6.0 Hz, H-1'), 4.47 (2H, t, J = 6.0 Hz, H-2'); 13C NMR (100MHz, CDCl$_3$) δ; 43.6 (C-2), 46.9 (C-1'), 109.0 (C-4), 115.3 (C-7), 119.8 (C-5), 120.8 (C-5''), 121.7 (ArC), 123.2 (ArC), 125.8 (ArCH), 128.3 (ArCH), 128.8 (ArCH), 130.2 (ArC), 138.6 (ArC), 143.9 (Ar(OCF$_3$)), 148.2 (ArC), 161.0 (ArC); MS m/z [M+H]$^+$ C$_{18}$H$_{17}$F$_3$N$_2$OS requires 406.10, found 406.09.

3-(2-(4-Benzyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160b

Using the general procedure; to a solution of azide 223 (0.22 g, 0.72 mmol, 1.0 equiv.) and 3-phenyl-1-propyne (0.1 mL, 1.07 mmol, 1.5 equiv.) in 8.6 mL H$_2$O and 8.6 mL THF heated to 20 °C was added 0.7 mL 1M CuSO$_4$ (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 3 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-benzyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160b, 0.15 g, 0.34 mmol, 50 %) as a pale yellow solid; R_f 0.15 (100 % EtOAc), m.p. 103 - 106 °C.

IR ν_{max}/cm$^{-1}$ 3232, 3064, 2970, 1602, 1580, 1484, 1256; 1H NMR (400MHz, CDCl$_3$); 7.24 - 7.20 (3H, m, ArH), 7.10 (1H, bs, H-5'''), 7.00 - 6.99 (3H, m, ArH and NH), 6.96 (1H, s, H-7), 6.91 (1H, bd, J = 9.0 Hz, H-5), 6.37 (1H, d, J = 9.0 Hz, H-4), 4.71 (2H, t, J = 6.0 Hz, H-1'), 4.37 (2H, t, J = 6.0 Hz, H-2''), 3.92 (2H, s, H-1'''''); 13C NMR (100MHz, CDCl$_3$); 31.0 (C-1'''''), 42.8 (C-2'), 45.7 (C-1''), 107.8 (C-4), 114.0 (C-5''), 118.1 (ArC) 118.7 (C-5), 120.7 (ArC), 121.7 (ArC), 122.1 (C-7), 125.5 (ArCH), 127.5 (ArCH), 127.5 (ArCH), 137.6 (ArC), 142.7 (Ar(OCF$_3$)), 147.1 (ArC), 159.6 (ArC); MS m/z [M+H]$^+$ C$_{18}$H$_{17}$F$_3$N$_2$OS requires 420.11, found 420.11.

3-(2-(4-Phenylethyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160c

Using the general procedure; to a solution of azide 223 (0.18 g, 0.59 mmol, 1.0 equiv.) and 4-phenyl-1-butyn (0.1 mL, 0.89 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO$_4$ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified
using 100 % EtOAc to yield 3-(2-(4-phenylethyl-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160c, 0.12 g, 0.28 mmol, 47 %) as an off-white solid; R_f 0.13 (100 % EtOAc), m.p. 153 - 157 °C

IR \(\nu_{\text{max}} \text{cm}^{-1} \): 3263, 3030, 2971, 1614, 1585, 1484, 1260; **\(^1\)H NMR** (500MHz, CDCl\(_3\) \(\delta \)): 7.25 (2H, appt, J = 7.5 Hz, ArH), 7.19 (1H, t, J = 6.0 Hz, ArH), 7.11 (1H, s, H-7), 7.07 (2H, d, J = 7.0 Hz, ArH), 7.03 (1H, bs, NH), 6.96 - 6.94 (2H, m, H-5 and H-5'), 6.39 (1H, d, J = 9.0 Hz, H-4), 4.69 (2H, t, J = 5.5 Hz, H-1'), 4.39 (2H, t, J = 6.0 Hz, H-2'), 2.89 (2H, t, J = 7.5 Hz, H-2''), 2.77 (2H, t, J = 8.5 Hz, H-1''); **\(^{13}\)C NMR** (125MHz, CDCl\(_3\) \(\delta \)): 26.1 (C-2''), 34.4 (C-1''), 42.8 (C-2), 45.8 (C-1'), 107.9 (C-4), 114.1 (C-7), 118.1 (ArC), 118.8 (C-5), 122.1 (C-5'), 123.2 (ArC), 125.1 (ArCH), 127.3 (ArCH), 127.4 (ArCH), 137.7 (ArC), 140.0 (ArC), 142.7 (Ar(OCF\(_3\))) 146.6 (ArC), 159.67 (ArC); **MS** m/z [M+H]\(^{+} \) C\(_{20}\)H\(_{19}\)F\(_{3}\)N\(_{2}\)OS requires 434.13 found 434.13.

3-(2-(4-(p-Toly)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160d

Using the general procedure; to a solution of azide 223 (0.31 g, 1.02 mmol, 1.0 equiv.) and 4-ethynyltoluene (0.1 mL, 1.07 mmol, 1.5 equiv.) in 10.0 mL H\(_2\)O and 10.0 mL THF heated to 20 °C was added 0.7 mL CuSO\(_4\) (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(p-toly)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160d, 0.17 g, 0.40 mmol, 56 %) as a pale yellow solid; R_f 0.27 (100 % EtOAc), m.p. 199 - 203 °C

IR \(\nu_{\text{max}} \text{cm}^{-1} \): 3273, 3014, 2943, 1626, 1586, 1479, 1386, 1252; **\(^1\)H NMR** (400MHz, CDCl\(_3\)\(\delta \)): 7.57 (1H, s, H-5''), 7.54 (2H, d, J = 8.0 Hz, ArH), 7.19 (2H, d, J = 8.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.8 (2H, t, J = 6.0 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'), 2.36 (3H, s, Ar(CH\(_3\))) ; **\(^{13}\)C NMR** (100MHz, CDCl\(_3\)\(\delta \)): 20.2 (Ar(CH\(_3\))), 42.6 (C-2'), 45.8 (C-1'), 108.0 (C-4), 114.2 (C-7), 118.1 (ArC), 118.8 (ArC), 119.4 (C-5), 120.6 (C-5''), 122.2 (ArC), 124.6 (ArCH), 126.3 (ArC), 128.4 (ArCH), 137.1 (ArC), 142.8 (Ar(OCF\(_3\))), 147.2 (ArC), 159.8 (ArC); **MS** m/z [M+H]\(^{+} \) C\(_{19}\)H\(_{17}\)F\(_{3}\)N\(_{2}\)OS requires 420.11, found 420.11.
CHAPTER 5: EXPERIMENTAL

3-(2-(4-((m-Toly)-1,2,3-triazoly)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160e

Using the general procedure; to a solution of azide 223 (0.18 g, 0.60 mmol, 1.0 equiv.) and 3-ethynyltoluene (0.1 mL, 0.90 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(m-toly)-1,2,3-triazoly)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160e, 0.15 g, 0.36 mmol, 59 %) as a pale yellow solid; Rf (100 % EtOAc), m.p. 178 - 182 °C

IR νmax/cm⁻¹ 3280, 3029, 2954, 1625, 1586, 1480, 1384, 1267; ¹H NMR (400MHz, CDCl₃) δ; 7.60 (1H, s, ArH), 7.52 (1H, s, H-5”), 7.41 (1H, d, J = 7.5 Hz, ArH), 7.26 (1H, appt, J = 6.5 Hz, ArH), 7.13 (1H, d, J = 7.5 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1’), 4.47 (2H, t, J = 6.0 Hz, H-2’), 2.37 (3H, s, Ar(CH₃)); ¹³C NMR (100MHz, CDCl₃) δ; 20.3 (Ar(CH₃)), 42.6 (C-2’), 46.9 (C-1’), 108.0 (C-4), 114.2 (C-7), 118.1 (ArC), 118.8 (ArC), 119.7 (C-5), 120.6 (C-5’), 122.2 (ArCH), 123.2 (ArC) 125.4 (ArCH), 127.6 (ArCH), 128.0 (ArCH), 129.0 (ArC), 137.5 (ArC), 142.8 (Ar(OCF₃)), 147.2 (ArC), 159.8 (ArC); MS m/z [M+H]+ C₂₂H₂₇F₃N₄OS requires 420.11, found 420.11.

3-(2-(4-((o-Toly)-1,2,3-triazoly)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160f

Using the general procedure; to a solution of ring-cyclised azide 223 (0.22 g, 0.73 mmol, 1.0 equiv.) and 2-ethynyltoluene (0.1 mL, 1.09 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ and 1.5 mL freshly prepared 1M sodium ascorbate dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(o-toly)-1,2,3-triazoly)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160f, 0.11 g, 0.27 mmol, 37 %) as an off white solid; Rf 0.15 (100 % EtOAc), m.p. 165 - 170 °C
CHAPTER 5: EXPERIMENTAL

IR $\nu_{\text{max}}/\text{cm}^{-1}$ 3227, 3077, 2960, 1601, 1581, 1484, 1382, 1260; 1H NMR (400MHz, CDCl$_3$) δ; 7.45 - 7.42 (2H, m, ArH and H-5”), 7.24 - 7.19 (3H, m, ArH), 7.09 (2H, bs, H -7 and NH), 6.92 (1H, d, J = 8.5 Hz, H-5), 6.44 (1H, d, J = 9.0 Hz, H-4), 4.86 (2H, t, J = 5.5 Hz, H-1’), 4.47 (2H, t, H-2’, J = 5.5 Hz), 2.16 (3H, s, Ar(CH$_3$)); 13C NMR (100MHz, CDCl$_3$) δ; 19.6 (Ar(CH$_3$)), 42.9 (C-2’), 45.9 (C-1’), 107.8 (C-4), 114.2 (C-7), 118.07 (ArC), 118.9 (C-5), 120.6 (ArC), 121.9 (C-5”), 122.1 (ArC), 125.0 (ArCH), 127.3 (ArCH), 128.0 (ArCH), 128.5 (ArC), 129.6 (ArCH), 134.6 (ArC), 137.66 (ArC), 142.8 (Ar(OCF$_3$)), 146.4 (ArC); MS m/z [M+H]$^+$ C$_{19}$H$_{17}$F$_{3}$N$_2$OS requires 420.11, found 420.11.

3-(2-(4-(Pyridin-2-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine
160g

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.67 mmol, 1.0 equiv.) and 2-ethynylpyridine (0.1 mL, 1.01 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO$_4$ (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using a gradient solvent system from 100 % EtOAc to 100 % MeOH to yield 3-(2-(4-(pyridin-2-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160g, 0.15 g, 0.36 mmol, 53 %) a pale yellow solid; R$_f$ 0.07 (100 % EtOAc), m.p. 156 - 160 °C

IR $\nu_{\text{max}}/\text{cm}^{-1}$ 3206, 3056, 2950, 1602, 1581, 1484, 1260; 1H NMR (400MHz, CDCl$_3$) δ; 8.52 (1H, d, J = 4.5 Hz, CH(Py.)), 8.08 (1H, d, J = 8.0 Hz, CH(Py.)), 8.02 (1H, s, H-5”), 7.75 (1H, t, J = 7.5 Hz, CH(Py.)), 7.21 (1H, t, J = 5.0 Hz, CH(Py.)), 7.11 (1H, bs, NH), 7.07 (1H, s, H-7), 6.91 (1H, d, J = 9.0 Hz, H-5), 6.54 (1H, d, J = 9.0 Hz, H-4), 4.83 (2H, d, J = 6.0 Hz, H-1’), 4.49 (2H, d, J = 6.0 Hz, H-2’); 13C NMR (100MHz, CDCl$_3$) δ; 42.5 (C-2’), 46.0 (C-1’), 107.8 (C-4), 114.3 (C-7), 119.1 (C-5), 121.9 (CH(Py.)), 122.2 (CH(Py.)), 122.4 (C-5”), 135.8 (CH(Py.)), 137.6 (ArC), 142.7 (Ar(OCF$_3$)), 144.4 (ArC), 147.6 (ArC), 148.3 (CH(Py.)), 148.8 (ArC), 149.8 (ArC), 159.8 (ArC); MS m/z [M+H]$^+$ C$_{19}$H$_{17}$F$_{3}$N$_2$OS requires 407.09, found 407.09.
3-(2-(4-(Pyridin-3-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

160h

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.51 mmol, 1.0 equiv.) and 3-ethynylpyridine (0.08 g, 0.77 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2.5 h. After work-up the crude was column purified using a gradient solvent system from 100 % EtOAc to 100 % MeOH to yield 3-(2-(4-(pyridin-3-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160h, 0.13 g, 0.32 mmol, 64 %) as a pale yellow solid; Rf 0.08 (100 % EtOAc), m.p. 195 - 197 °C

IR v_max/cm⁻¹ 3217, 3035, 2971, 1618, 1585, 1482, 1262; ¹H NMR (400MHz, CDCl₃) δ; 8.82 (1H, s, CH(Py)), 8.56 (1H, d, J = 4.0 Hz, CH(Py)), 8.04 (1H, d, J = 8.0 Hz, CH(Py)), 7.69 (1H, s, H-5''), 7.33 (1H, q, J = 5.0 Hz, CH(Py)), 7.09 (1H, s, H-7), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.84 (2H, t, J = 6.0 Hz, H-1''), 4.48 (2H, t, J = 6.0 Hz, H-2''); ¹³C NMR (100MHz, CDCl₃) δ; 42.4 (C-2'), 45.9 (C-1''), 107.8 (C-4), 114.3 (C-7), 118.8 (C-5), 120.1 (C-5''), 120.6 (ArC), 122.2 (ArC), 122.7 (ArC), 125.3 (CH(Py)), 132.0 (CH(Py)), 137.4 (ArC), 142.8 (ArOCF₃), 144.0 (ArC), 145.9 (CH(Py)), 148.3 (CH(Py)), 159.8 (ArC); MS m/z [M+H]⁺ C₁₇H₁₄F₂N₈OS requires 407.09, found 407.09.

3-(2-(4-(Pyridin-4-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

160i

Using the general procedure; to a solution of ring-cyclised azide 223 (0.25 g, 0.82 mmol, 1.0 equiv.) and 4-ethynlypyridine (0.17 g, 1.23 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO₄ (aq) and 1.6 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 9:1 DCM:MeOH to yield 3-(2-(4-(pyridin-4-yl)-1,2,3-triazol-1-
CHAPTER 5: EXPERIMENTAL

3-(2-(2-(4-(2,4-Difluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160j

Using the general procedure; to a solution of ring-cyclised azide 223 (0.31 g, 1.02 mmol, 1.0 equiv.) and 1-ethyl-2,4-difluorobenzene (0.2 mL, 1.53 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 1.0 mL 1M CuSO₄ (aq) and 2.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. The crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2,4-difluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160j), 0.22 g, 0.51 mmol, 50 %) as an off-white solid; Rf 0.33 (100 % EtOAc), m.p. 194 - 200 °C

IR ν max/cm⁻¹ 3234, 3028, 2957, 1601, 1578, 1483, 1257; ¹H NMR (400MHz, CDCl₃) δ; 8.16 (1H, td, J = 5.0 Hz and 9.0 Hz, ArH), 7.71 (1H, d, J = 3.5 Hz, H-5''), 7.09 (2H, bs, H-7 and NH), 6.97 (1H, td, J = 3.0 Hz and 9.0 Hz, ArH), 6.91 (1H, d, J = 7.0 Hz, H-5), 6.83 (1H, ddd, J = 2.5 Hz, 9.0 Hz and 11.0 Hz, ArH), 6.49 (1H, d, J = 9.0 Hz, H-4), 4.83 (2H, t, J = 6.0 Hz, H-1'), 4.47 (2H, t, J = 6.0 Hz, H-2'); ¹³C NMR (100MHz, CDCl₃) δ; 132.8 (C-6), 132.7 (C-5), 140.8 (ArC), 104.3 (ArC), 104.8 (C-4), 111.9 (ArCH), 112.1 (ArC), 114.6 (ArC), 115.3 (C-7), 119.1 (ArC), 119.8 (C-5), 123.3 (C-5''), 123.4 (ArC), 128.8 (ArCH), 138.5 (ArC), 140.8 (ArC), 143.8 (Ar(OCF₃)); MS m/z [M+H]^+ C_{18}H_{13}F_{5}N_{5}OS requires 442.08, found 442.08.

IR ν max/cm⁻¹ 3221, 3028, 2971, 1604, 1583, 1482, 1266; ¹H NMR (400MHz, CDCl₃) δ; 8.63 (2H, bs, CH(Py)), 7.77 (1H, s, H-5''), 7.57 (2H, d, J = 5.0 Hz, CH(Py)), 7.10 (1H, s, H-7), 6.91 (1H, d, J = 9.0 Hz, H-5), 6.54 (1H, d, J = 9.0 Hz, H-4), 4.85 (2H, t, J = 6.0 Hz, H-1'), 4.48 (2H, t, J = 6.0 Hz, H-2'); ¹³C NMR (100MHz, CDCl₃) δ; 42.4 (C-3), 46.0 (C-1'), 107.8 (C-4), 114.3 (C-7), 118.0 (ArC), 118.8 (C-5), 120.6 (ArC), 121.2 (CH(Py)), 122.2 (C-5''), 136.4 (ArC), 137.4 (ArC), 142.8 (Ar(OCF₃)), 144.6 (ArC), 149.4 (CH(Py)), 159.8 (ArC); MS m/z [M+H]^+ C_{17}H_{14}F_{5}N_{5}OS requires 407.09, found 407.09.

y(ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160i, 0.15 g, 0.38 mmol, 46 %) as an off white solid; Rf 0.21 (9:1 DCM:MeOH), m.p. 209 - 211 °C
3-(2-(4-(3,4-Difluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160k

Using the general procedure; to a solution of ring-cyclised azide 223 (0.15 g, 0.51 mmol, 1.0 equiv.) and 3,4-difluorophenylacetylene (0.1 mL, 0.76 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO$_4$ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(3,4-difluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160k, 0.10 g, 0.23 mmol, 44 %) as an off-white solid; R$_f$ 0.17 (100 % EtOAc), m.p. 179 - 184 °C

IR ν_{max}/cm$^{-1}$ 3227, 3043, 1580, 1483, 1266; 1H NMR (400MHz, CDCl$_3$) δ; 7.57 (1H, s, H-5''), 7.50 (1H, dddd, J = 2.0 Hz, 7.5 Hz and 10.0 Hz, ArH), 7.36 - 7.33 (1H, m, ArH), 7.16 (1H, q, J = 8.5 Hz, ArH), 7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.51 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'); 13C NMR (100MHz, CDCl$_3$) δ; 42.4 (C-2'), 45.9 (C-1'), 107.8 (C-4), 113.9 (ArC), 114.3 (ArCH), 116.6 (C-7), 116.7 (ArCH), 118.8 (C-5), 119.9 (C-5''), 120.7 (ArC), 122.2 (ArCH), 126.2 (ArC), 137.5 (ArC), 142.8 (Ar(OFC$_3$)), 145.3 (ArC), 148.2 (ArC), 150.6 (ArC), 159.7 (ArC); MS m/z [M+H]$^+$ C$_{18}$H$_{16}$F$_3$N$_2$OS requires 442.08, found 442.07.

3-(2-(4-(2,4-Difluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160l

Using the general procedure; to a solution of ring-cyclised azide 223 (0.19 g, 0.61 mmol, 1.0 equiv.) and 1-ethynyl-3,5-difluorobenzene (0.1 mL, 0.92 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.6 mL CuSO$_4$ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2,4-difluorophenyl)-
1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160l, 0.11 g, 0.25 mmol, 41 %) as an off-white solid;

\[R_f \text{ 0.23 (100 % EtOAc), } \text{m.p. 183 - 185 °C} \]

IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 3259, 3087, 2954, 1617, 1588, 1484, 1262; \[^{1}H \text{ NMR} \ (400\text{MHz, CDCl}_3) \delta; 7.62 \) (1H, s, H-5"), 7.19 (2H, d, J = 6.5 Hz, ArH), 7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.75 (1H, tt, J = 2.0 Hz and 9.0 Hz, ArH), 6.51 (1H, d, J = 9.0 Hz, H-4), 4.83 (2H, t, J = 6.0 Hz, H-1"), 4.47 (2H, t, J = 6.0 Hz, H-2"); \[^{13}C \text{ NMR} \ (100\text{MHz, CDCl}_3) \delta; 42.4 \) (C-2"), 46.0 (C-1"), 102.5 (ArCH), 107.4 (ArCH), 107.6 (ArC), 107.8 (C-4), 114.3 (C-7), 118.8 (C-5), 120.4 (C-5"), 122.2 (ArC), 132.1 (ArC), 137.4 (ArC), 142.8 (Ar(OCF_3)), 145.1 (ArC), 161.1 (ArC), 163.5 (ArC); \[\text{MS m/z [M+H]}^+ \text{ C}_{18}H_{13}F_5N_5OS \text{ requires 442.08, found 442.07.} \]

3-(2-(4-(4-Fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 160m

![Diagram of 160m](image)

Using the general procedure; to a solution of ring-cyclised azide 223 (0.21 g, 0.70 mmol, 1.0 equiv.) and 1-ethyl-4-fluorobenzene (0.1 mL, 1.05 mmol, 1.5 equiv.) in 10.0 mL H_2O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO_4 (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160m, 0.16 g, 0.39 mmol, 56 %) as an off-white solid;

\[R_f \text{ 0.15 (100 % EtOAc), m.p. 193 - 197 °C} \]

IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 3230, 3014, 1601, 1582, 1484, 1261; \[^{1}H \text{ NMR} \ (400\text{MHz, CDCl}_3) \delta; 7.61 \) (2H, dd, J = 5.5 Hz and 8.5 Hz, ArH), 7.56 (1H, s, H-5"), 7.09 (2H, bs, H-7 and NH), 7.06 (2H, appt, J = 8.5 Hz, ArH), 6.93 (1H, d, J = 8.5 Hz, H-5), 6.52 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1"), 4.46 (2H, t, J = 6.0 Hz, H-2"); \[^{13}C \text{ NMR} \ (100\text{MHz, CDCl}_3) \delta; 42.5 \) (C-2"), 45.9 (C-1"), 107.9 (C-4), 114.2 (C-7), 114.7 (ArCH), 114.9 (ArCH), 114.9 (C-5), 119.5 (C-5"), 122.2 (ArC), 126.4 (ArC), 126.5 (ArC), 137.5 (ArC), 142.8 (Ar(OCF_3)), 146.3 (ArC), 159.8 (ArC), 162.9 (ArC); \[\text{MS m/z [M+H]}^+ \text{ C}_{18}H_{13}F_5N_5OS \text{ requires 424.09, found 424.08.} \]
3-(2-(4-(3-Fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-amine

Using the general procedure; to a solution of ring-cyclised azide 223 (0.26 g, 0.84 mmol, 1.0 equiv.) and 1-ethyl-3-fluorobenzene (0.2 mL, 1.27 mmol, 1.5 equiv.) in 15.0 mL H₂O and 15.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO₄ (aq) and 1.7 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(3-fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-amine (160n, 0.16 g, 0.37 mmol, 44 %) as an off-white solid; Rf 0.19 (100 % EtOAc), m.p. 185 - 190 °C

IR νmax/cm⁻¹: 3242, 3079, 2953, 1614, 1583, 1482, 1257; ¹H NMR (400MHz, CDCl₃) δ: 7.61 (1H, s, H-5’), 7.40 (2H, appt, J = 7.5 Hz, ArH), 7.34 (1H, appq, J = 8.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 7.01 (1H, t, J = 8.5 Hz, ArH), 6.94 (1H, d, J = 9.5 Hz, H-5), 6.52 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1’), 4.47 (2H, t, J = 6.0 Hz, H-2’); ¹³C NMR (100MHz, CDCl₃) δ: 43.5 (C-2’), 47.0 (C-1’), 108.9 (C-4’), 112.6 (ArC), 112.8 (ArCH), 115.0 (ArCH), 115.2 (ArC), 115.3 (C-7), 119.9 (C-5), 121.1 (C-5’’), 121.3 (ArCH), 123.2 (ArC), 130.4 (ArCH), 132.2 (ArC), 138.5 (ArC), 143.9 (Ar(OCF₃)), 147.1 (ArC), 160.8 (ArC); MS m/z [M+H]⁺ C₁₆H₁₂F₃N₅OS requires 424.09, found 424.08.

3-(2-(4-(2-Fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-amine

Using the general procedure; to a solution of ring-cyclised azide 223 (0.28 g, 0.93 mmol, 1.0 equiv.) and 1-ethyl-2-fluorobenzene (0.2 mL, 1.39 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.9 mL 1M CuSO₄ (aq) and 1.9 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2-fluorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoro...
(Ar4), 109 (Ar(d, J = 9.0 Hz, C7 (1H, d, J = 7.5 Hz, Arp)), 118.7 (1H, d, J = 9.0 Hz, Ht, J = 7.5 Hz, Arp) = 1.5 Hz and 7.5 Hz, Arp); IR νmax/cm⁻¹ 3243, 3068, 2958, 1576, 1483, 1254; ¹H NMR (400MHz, CDCl3) δ; 8.17 (1H, td, J = 1.5 Hz and 7.5 Hz, ArH), 7.77 (1H, d, J = 3.5 Hz, H-5″), 7.31 - 7.28 (1H, m, ArH), 7.22 (1H, t, J = 7.5 Hz, ArH), 7.09 - 7.00 (3H, m, ArH, NH, and H-7), 6.91 (1H, d, J = 8.5 Hz, H-5), 6.50 (1H, d, J = 9.0 Hz, H-4), 4.84 (2H, t, J = 6.0 Hz, H-1″), 4.47 (2H, t, J = 6.0 Hz, H-2″); ¹³C NMR (100MHz, CDCl3) δ; 42.5 (C-2″), 45.8 (C-1), 107.8 (C-4), 114.2 (C-7), 114.5 (ArCH), 117.1 (ArC), 118.7 (C-5), 122.2 (ArC), 122.8 (C-5″), 123.5 (ArCH), 126.7 (ArCH), 128.4 (ArCH), 137.5 (ArC), 140.4 (ArC), 142.7 (Ar(OCF3)), 156.8 (ArC), 159.8 (ArC), 159.8 (ArC); MS m/z [M+H]+ C18H12F3N5O5S requires 424.09, found 424.08.

3-(2-(4-(2-Methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160p

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.67 mmol, 1.0 equiv.) and 2-ethynylanisole (0.1 mL, 1.01 mmol, 1.5 equiv.) in 10.0 mL H2O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO4 (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2-methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160p, 0.22 g, 0.52 mmol, 77 %) as a pale yellow solid; Rf 0.20 (100 % EtOAc), m.p. 155 - 160 °C

IR νmax/cm⁻¹ 3287, 3011, 2835, 1632, 1585, 1481, 1245; ¹H NMR (400MHz, CDCl3) δ; 8.21 (1H, d, J = 7.5 Hz, ArH), 7.86 (1H, s, H-5″), 7.29 (1H, appt, J = 8.0 Hz, ArH), 7.08 (2H, bs, C-7 and NH), 7.05 (1H, appt, J = 7.5 Hz, ArH), 6.92 (1H, d, J = 8.5 Hz, ArH and C-5), 6.51 (1H, d, J = 9.0 Hz, C-4), 4.81 (2H, t, J = 6.0 Hz, H-1″), 4.46 (2H, t, J = 6.0 Hz, H-2″), 3.82 (3H, s, Ar(OCH3)); ¹³C NMR (100MHz, CDCl3) δ; 42.6 (C-2″), 45.7 (C-1), 108.0 (C-4), 109.7 (ArCH), 114.0 (C-7), 118.0 (ArC), 118.8 (C-5), 120.0 (ArCH), 120.6 (ArC), 122.1 (ArC), 123.1 (C-5″), 126.6 (ArCH), 128.0 (ArCH), 137.7 (ArC), 142.4 (ArC), 142.7 (Ar(OCF3)), 154.5 (ArC), 159.9 (ArC); MS m/z [M+H]+ C19H17F3N5O5S requires 436.11, found 436.10.
3-(2-(4-(3-Methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160q

Using the general procedure; to a solution of ring-cyclised azide 223 (0.18 g, 0.58 mmol, 1.0 equiv.) and 3-ethynylanisole (0.1 mL, 0.87 mmol, 1.5 equiv.) in 10.0 mL H_2O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO_4 (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(3-methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160q, 0.17 g, 0.39 mmol, 67 %) as an off white solid; R_f 0.18 (100 % EtOAc), m.p. 170 - 174 °C

IR ν_{max}/cm^{-1} 3253, 3097, 2835, 1606, 1584, 1485, 1364, 1258; ^1H NMR (400MHz, CDCl_3) δ; 7.61 (1H, s, H-5’), 7.28 (2H, d, J = 5.0 Hz, ArH), 7.17 (1H, d, J = 7.5 Hz, ArH), 7.09 (2H, bs, C-7 and NH), 6.94 (1H, d, J = 8.5 Hz, C-5), 6.86 (1H, d, J = 7.0 Hz, ArH), 6.54 (1H, d, J = 9.0 Hz, C-4), 4.82 (2H, t, J = 6.0 Hz, H-1’), 4.47 (2H, t, J = 6.0 Hz, H-2’), 3.85 (3H, s, Ar(OCH_3)); ^13C NMR (100MHz, CDCl_3) δ; 42.5 (C-2’), 45.9 (C-1’), 54.3 (Ar(OCH_3)), 108.0 (C-4), 109.8 (ArCH), 113.3 (ArCH), 114.2 (C-7), 117.1 (ArCH), 118.1 (ArC), 118.8 (C-5), 120.0 (C-5’), 120.6 (ArC), 122.2 (ArC), 128.8 (ArCH), 130.4 (ArC), 137.5 (ArC), 142.8 (Ar(OCF_3)) 147.0 (ArC), 158.9 (ArC); MS m/z [M+H]^+ C_{19}H_{17}F_3N_2O_2S requires 436.11, found 436.11.

3-(2-(4-(4-Methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160r

Using the general procedure; to a solution of ring-cyclised azide 223 (0.14 g, 0.46 mmol, 1.0 equiv.) and 4-ethynylanisole (0.1 mL, 0.69 mmol, 1.5 equiv.) in 5.0 mL H_2O and 5.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO_4 (aq) and 0.9 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-methoxyphenyl)-1,2,3-triazolyl)ethyl)-6-
(trifluoromethoxy)benzothiazol-2-imine (160r, 0.09 g, 0.21 mmol, 47 %) an off white solid; Rf 0.21 (100 % EtOAc), m.p. 187 - 197 °C

IR νmax/cm⁻¹ 3262, 3029, 2835, 1619, 1584, 1485, 1362, 1265; ¹H NMR (400MHz, CDCl₃) δ; 7.57 (2H, d, J = 9.0 Hz, ArH), 7.52 (1H, s, H-5”), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.0 Hz, H-5), 6.91 (2H, d, J = 9.0 Hz, ArH), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.80 (2H, t, J = 6.0 Hz, H-1”), 4.46 (2H, t, J = 6.0 Hz, H-2”), 3.83 (3H, s, Ar(OCH₃)); ¹³C NMR (100MHz, CDCl₃) δ; 42.6 (C-2”), 45.8 (C-1”), 54.3 (Ar(OCH₃)), 108.0 (C-4), 113.2 (ArCH), 114.2 (C-7), 118.1 (ArC), 118.8 (C-5), 119.0 (C-5”), 121.8 (ArC), 122.2 (ArC), 126.0 (ArCH), 137.6 (ArC), 142.8 (Ar(OCF₃)), 147.0 (ArC), 158.6 (ArC), 159.8 (ArC); MS m/z [M+H]+ C₁₉H₁₇F₃N₅O₂S requires 436.11, found 436.10.

4-(1-(2-(2-imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline
160s

Using the general procedure; to a solution of ring-cyclised azide 223 (0.24 g, 0.78 mmol, 1.0 equiv.) and 4-ethynylaniline (0.14 g, 1.17 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO₄ (aq) and 1.6 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 4-(1-(2-(2-imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline (160s, 0.09 g, 0.21 mmol, 27 %) as a pale yellow solid; Rf 0.10 (100 % EtOAc), m.p. 196 - 200 °C

IR νmax/cm⁻¹ 3373, 3318, 3028, 2962, 1609, 1585, 1484, 1252; ¹H NMR (400MHz, CDCl₃) δ; 7.47 (1H, s, H-5”), 7.44 (2H, d, J = 8.5 Hz, ArH), 7.09 (2H, bs, H-7” and NH), 6.94 (1H, d, J = 9.0 Hz, H-5””), 6.68 (2H, d, J = 8.5 Hz, ArH), 6.53 (1H, d, J = 9.0 Hz, H-4””), 4.78 (2H, t, J = 6.0 Hz, H-1””), 4.45 (2H, t, J = 6.0 Hz, H-2””), 3.74 (2H, bs, Ar(NH₂)); ¹³C NMR (100MHz, CDCl₃) δ; 43.6 (C-2”), 46.8 (C-1”), 109.1 (C-4””), 115.2 (ArCH and C-7””), 119.6 (C-5”), 119.9 (C-5”), 120.6 (ArC), 121.7 (ArC), 123.2 (ArC), 127.0 (ArCH), 138.6 (ArC), 143.8 (Ar(OCF₃)), 146.6 (ArC), 148.5 (ArC), 160.9 (ArC); MS m/z [M+H]+ C₁₈H₁₈F₃N₅O₂S requires 421.11, found 421.11.
CHAPTER 5: EXPERIMENTAL

3-(1-(2-(2-Imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline 160t

Using the general procedure; to a solution of ring-cyclised azide 223 (0.25 g, 0.82 mmol, 1.0 equiv.) and 3-ethynylaniline (0.1 mL, 1.23 mmol, 1.5 equiv.) in 10.0 mL H\textsubscript{2}O and 10.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO\textsubscript{4} (aq) and 1.6 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(1-(2-(2-imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline (160t, 0.15 g, 0.37 mmol, 45 %) as a pale yellow solid; R\textsubscript{f} 0.10 (100 % EtOAc), m.p. 196 - 199 °C

IR \nu\textsubscript{max}/cm-1 3461, 3295, 3036, 2919, 1620, 1586, 1481, 1262; 1H NMR (400MHz, CDCl\textsubscript{3}) \delta; 7.60 (1H, s, H-5'), 7.14 (1H, t, J = 7.5 Hz, ArH), 7.10 (2H, s, H-7''' and ArH), 6.95 (2H, d, J = 8.0 Hz, H-5''' and ArH), 6.64 (1H, dd, J = 1.5 Hz and 8.0 Hz, ArH), 6.56 (1H, d, J = 9.0 Hz, H-4'''), 5.30 (2H, s, Ar(NH\textsubscript{2})), 4.80 (2H, t, J = 6.0 Hz, H-1'''), 4.47 (2H, t, J = 6.0 Hz, H-2'''); 13C NMR (100MHz, CDCl\textsubscript{3}) \delta; 42.5 (C-2''), 45.8 (C-1'''), 108.0 (C-4'''), 111.2 (ArCH), 114.0 (ArCH), 114.2 (C-7'''), 115.0 (ArCH), 118.8 (C-5'''), 119.8 (C-5), 120.6 (ArC), 122.2 (ArC), 128.7 (ArCH), 130.1 (ArC), 137.5 (ArC), 142.8 (Ar(OC\textsubscript{F}\textsubscript{3})), 145.8 (ArC), 147.2 (ArC), 160.0 (ArC); MS m/z [M+H]+ C\textsubscript{19}H\textsubscript{18}F\textsubscript{3}N\textsubscript{6}OS requires 421.11, found 421.11.

2-(1-(2-(2-Imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline 160u

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.65 mmol, 1.0 equiv.) and 2-ethynylaniline (0.1 mL, 0.97 mmol, 1.5 equiv.) in 10.0 mL H\textsubscript{2}O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO\textsubscript{4} (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 2-(1-(2-(2-imino-6-trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)aniline (160u, 0.13 g, 0.32 mmol, 49 %) as a pale yellow solid; R\textsubscript{f} 0.20 (100 % EtOAc), m.p. 193 - 195 °C
CHAPTER 5: EXPERIMENTAL

IR ν_{max}/cm^{-1} 3345, 3278, 3029, 2971, 1610, 1585, 1484, 1255; \(^{1}\text{H} \text{NMR} \) (400MHz, CDCl₃) δ; 7.63 (1H, s, H-5’), 7.12 - 7.08 (4H, m, H-7’’’, ArH and NH), 6.96 (1H, d, J = 8.5 Hz, H-5’’’), 6.73 (1H, d, J = 8.0 Hz, ArH), 6.67 (1H, t, J = 7.5 Hz, ArH), 6.53 (1H, d, J = 9.0 Hz, H-4’’’), 5.24 (2H, bs, Ar(NH$_2$)), 4.83 (2H, t, J = 6.0 Hz, H-1’’’), 4.47 (2H, t, J = 6.0 Hz, H-2’’’); \(^{13}\text{C} \text{NMR} \) (100MHz, CDCl₃) δ; 43.5 (C-1’’’), 46.9 (C-1’’’), 108.9 (C-4’’’), 116.6 (ArCH), 117.4 (ArCH), 119.9 (C-5’’’), 121.1 (C-5’), 123.3 (ArC), 127.8 (ArCH), 129.2 (ArCH), 138.6 (ArC), 143.9 (Ar(OCF$_3$)), 148.7 (ArC), 154.1 (ArC), 157.9 (ArC), 160.1 (ArC); MS m/z [M+H]$^+$ C$_{18}$H$_{16}$F$_3$N$_6$OS requires 421.11, found 421.11.

3-(2-(4-(4-Chlorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxybenzothiazol-2-imine 160v

![Chemical Structure](image)

Using the general procedure; to a solution of ring-cyclised azide 223 (0.25 g, 0.81 mmol, 1.0 equiv.) and 1-chloro-4-ethynylbenzene (0.17 g, 1.21 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO$_4$ (aq) and 1.6 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-chlorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxybenzothiazol-2-imine (160v, 0.19 g, 0.44 mmol, 55 %) as an off-white solid; R$_f$ 0.18 (100 % EtOAc), m.p. 206 -209 °C

IR ν_{max}/cm^{-1} 3255, 3086, 2958, 1617, 1586, 1484, 1237, 827; \(^{1}\text{H} \text{NMR} \) (400MHz, CDCl₃) δ; 7.60 (1H, s, H-5’’’), 7.58 (2H, d, J = 5.0 Hz, ArH), 7.35 (2H, d, J = 8.5 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1’’’), 4.46 (2H, t, J = 6.0 Hz, H-2’’’); \(^{13}\text{C} \text{NMR} \) (100MHz, CDCl₃) δ; 43.5 (C-2’’’), 46.9 (C-1’’’), 108.9 (C-4), 115.3 (C-7), 119.9 (C-5), 120.8 (C-5’’’), 123.2 (ArC), 127.0 (ArCH), 129.0 (ArCH), 132.9 (ArC), 134.0 (ArC), 138.5 (ArC), 143.9 (Ar(OCF$_3$)), 147.1 (ArC), 154.7 (ArC), 160.9 (ArC); MS m/z [M+H]$^+$ C$_{18}$H$_{16}$F$_3$N$_6$OS requires 440.06, found 440.05.
CHAPTER 5: EXPERIMENTAL

3-(2-(4-(3-Chlorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 160w

![Chemical structure](image)

Using the general procedure; to a solution of ring-cyclised azide 223 (0.30 g, 0.98 mmol, 1.0 equiv.) and 3-chloro-1-ethynylbenzene (0.2 mL, 1.47 mmol, 1.5 equiv.) in 15.0 mL H2O and 15.0 mL THF heated to 20 °C was added 1.0 mL 1M CuSO4 (aq) and 2.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(3-chlorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160w, 0.25 g, 0.57 mmol, 58 %) as an off-white solid; Rf 0.23 (100 % EtOAc), m.p. 183 - 187 °C

IR νmax/cm⁻¹ 3242, 3043, 2953, 1612, 1581, 1481, 1254, 794; ¹H NMR (400MHz, CDCl₃) δ;
7.67 (1H, s, ArH), 7.63 (1H, s, H-5’), 7.53 (1H, d, J = 7.0 Hz, ArH), 7.33 - 7.26 (2H, m, ArH),
7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.82
(2H, t, J = 6.0 Hz, H-1’), 4.47 (2H, t, J = 6.0 Hz, H-2’); ¹³C NMR (100MHz, CDCl₃) δ; 43.5 (C-
2’), 47.0 (C-1’), 108.9 (C-4), 115.3 (C-7), 119.9 (C-4’), 121.1 (C-5’’), 123.2 (ArC), 123.8
(ArCH), 125.8 (ArCH), 128.3 (ArCH), 130.1 (ArCH), 131.9 (ArC), 134.8 (ArC), 138.5 (ArC),
143.8 (Ar(OCF₃)), 146.9 (ArC), 156.6 (ArC), 160.8 (ArC); MS m/z [M+H]^+ C₁₈H₁₄ClF₃N₅OS
requires 440.06, found 440.05.

3-(2-(4-(2-Chlorophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 160x

![Chemical structure](image)

Using the general procedure; to a solution of ring-cyclised azide 223 (0.17 g, 0.56 mmol, 1.0 equiv.) and 1-chloro-2-ethynylbenzene (0.1 mL, 0.84 mmol, 1.5 equiv.) in 10.0 mL H2O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO4 (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2-chlorophenyl)-1,2,3-triazol-
1-(1-ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160x, 0.13 g, 0.30 mmol, 53 %) as a pale yellow solid; Rf 0.30 (100 % EtOAc), m.p. 154 - 157 °C

IR ν_{max}/cm^{-1} 3245, 3093, 2955, 1614, 1584, 1484, 1253, 757; \(^1\)H NMR (400MHz, CDCl\(_3\)) δ; 8.03 (1H, d, J = 8.0 Hz, ArH), 7.94 (1H, s, H-5''), 7.37 (1H, d, J = 8.0 Hz, ArH), 7.33 (1H, t, J = 7.0 Hz, ArH), 7.26 - 7.23 (1H, m, ArH), 7.08 (2H, bs H-7 and NH), 6.90 (1H, d, J = 9.0 Hz, H-5), 6.42 (1H, d, J = 9.0 Hz), 4.86 (2H, d, J = 5.5 Hz, H-1'), 4.46 (2H, d, J = 6.0 Hz, H-2'); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) δ; 42.6 (C-2'), 45.9 (1H, d, J = 8.0 Hz, ArH), 114.2 (C-7), 118.8 (C-4), 120.6 (ArC), 122.2 (ArC), 123.3 (C-5''), 126.1 (ArCH), 127.8 (ArC), 128.1 (ArCH), 128.8 (ArCH), 129.0 (ArCH), 130.2 (ArC), 137.6 (ArC), 142.8 (ArOCF\(_3\)), 143.3 (ArC), 159.8 (ArC); MS m/z [M+H]\(^+\) \(C_{18}H_{14}ClF_3N_2OS\) requires 440.06, found 440.05.

4-(1-(2-(2-Imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzonitrile 160y

Using the general procedure; to a solution of ring-cyclised azide 223 (0.21 g, 0.70 mmol, 1.0 equiv.) and 4-ethylbenzonitrile (0.13 g, 1.05 mmol, 1.5 equiv.) in 10.0 mL H\(_2\)O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO\(_4\) (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 4-(1-(2-(2-Imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzonitrile 4 (160y, 0.18 g, 0.32 mmol, 59 %) as an off-white solid; Rf 0.12 (100 % EtOAc), m.p. 193 - 198 °C

IR ν_{max}/cm^{-1} 3320, 3048, 2938, 2222, 1612, 1584, 1483, 1252; \(^1\)H NMR (400MHz, CDCl\(_3\)) δ; 7.77 (2H, d, J = 8.0 Hz, ArH), 7.71 (1H, s, H-5'), 7.67 (2H, d, J = 8.0 Hz, ArH), 7.10 (2H, bs, H-7'' and NH), 6.93 (1H, d, J = 8.5 Hz, H-5''), 6.53 (1H, d, J = 9.0 Hz, H-4''), 4.85 (2H, t, J = 6.0 Hz, H-1'), 4.48 (2H, t, J = 6.0 Hz, H-2''); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) δ; 43.4 (C-2''), 47.0 (C-1''), 108.8 (C-4''), 111.7 (ArC), 115.4 (C-7''), 118.7 (Ar(CN)), 119.1 (ArC), 119.9 (C-5''), 121.9 (C-5'), 123.3 (ArC), 126.1 (ArCH), 132.7 (ArCH), 134.5 (ArC), 138.5 (ArC), 143.8 (ArOCF\(_3\)), 146.3 (ArC), 160.8 (ArC); MS m/z [M+H]\(^+\) \(C_{18}H_{14}ClF_3N_2OS\) requires 431.09, found 431.09.
3-(2-(4-(4-Nitrophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine
160z

Using the general procedure; to a solution of ring-cyclised azide 223 (0.15 g, 0.48 mmol, 1.0 equiv.) and 1-ethynyl-4-nitrobenzene (0.11 g, 0.72 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-nitrophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160z, 0.14 g, 0.30 mmol, 63 %) as a pale yellow solid; R₁ 0.15 (100 % EtOAc), m.p. 181 - 186 °C

IR ν max/cm⁻¹ 3322, 3077, 2950, 1605, 1581, 1514, 1484, 1354, 1331, 1257; ¹H NMR (400MHz, CDCl₃) δ; 8.25 (2H, d, J = 8.5 Hz, ArH), 7.84 (2H, d, J = 8.5 Hz, ArH), 7.77 (1H, s, H-5″), 7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 9.0 Hz, H-5), 6.55 (1H, d, J = 9.0 Hz, H-4), 4.86 (2H, t, J = 6.0 Hz, H-1″), 4.49 (2H, t, J = 6.0 Hz, H-2″); ¹³C NMR (100MHz, CDCl₃) δ; 42.3 (C-2″), 46.0 (C-1″), 107.8 (C-4), 114.5 (C-7), 118.8 (C-5), 120.6 (ArC), 121.3 (C-5″), 122.3 (ArC), 123.2 (ArCH), 125.1 (ArC), 135.4 (ArC), 137.4 (ArC), 142.8 (Ar(OCF₃)), 144.8 (ArC), 146.3 (ArC), 159.7 (ArC); MS m/z [M+H]⁺ C₁₉H₁₄F₃N₅O₂S requires 451.08, found 451.08.

3-(2-(4-(4-Hexylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine
160aa

Using the general procedure; to a solution of ring-cyclised azide 223 (0.18 g, 0.61 mmol, 1.0 equiv.) and 1-ethynyl-4-hexylbenzene (0.2 mL, 0.91 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-hexylphenyl)-1,2,3-
CHAPTER 5: EXPERIMENTAL

triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160aa, 0.21 g, 0.44 mmol, 72%) as a pale yellow solid; Rf 0.24 (100 % EtOAc), m.p. 175 - 180 °C

IR νmax/cm⁻¹ 3276, 3044, 2926, 1626, 1585, 1481, 1381, 1255; ¹H NMR (400MHz, CDCl₃) δ; 7.57 (1H, s, H-5”), 7.55 (2H, d, J = 8.0 Hz, ArH), 7.19 (2H, d, J = 8.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 9.0 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, d, J = 6.0 Hz, H-1’), 4.45 (2H, t, J = 6.0 Hz, H-2’), 2.60 (2H, t, J = 7.5 Hz, H-1”’), 1.59 (2H, quin, H-2”’), 1.34 - 1.30 (6H, m, H-3””, H-4”” and H-5””), 0.88 (3H, t, J = 6.5 Hz, H-6””); ¹³C NMR (100MHz, CDCl₃) δ; 13.1 (C-6”), 30.3 (C-3””), 30.7 (C-4””), 34.7 (C-1””), 42.6 (C-2’), 45.8 (C-1’), 108.0 (C-4), 114.2 (C-7), 118.8 (C-5), 119.4 (C-5”), 120.6 (ArC), 122.2 (ArC), 124.6 (ArCH), 126.5 (ArC), 127.8 (ArCH), 137.6 (ArC), 142.2 (ArC), 142.8 (Ar(OCF₃)), 147.2 (ArC), 159.8 (ArC); MS m/z [M+H]⁺ C₂₃H₂₇F₃N₅OS requires 490.19, found 490.19.

3-(2-(4-(4-Pentylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ab

Using the general procedure; to a solution of ring-cyclised azide 223 (0.17 g, 0.55 mmol, 1.0 equiv.) and 1-ethyl-4-pentylbenzene (0.2 mL, 0.82 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-pentylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ab, 0.18 g, 0.38 mmol, 68%) as a pale yellow solid; Rf 0.21 (100 % EtOAc), m.p. 184 - 187 °C

IR νmax/cm⁻¹ 3276, 3044, 2926, 1626, 1585, 1481, 1382, 1256; ¹H NMR (400MHz, CDCl₃) δ; 7.59 (1H, s, H-5”), 7.56 (2H, d, J = 8.0 Hz, ArH), 7.19 (2H, d, J = 8.0 Hz, ArH), 7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.55 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-2’), 2.60 (2H, t, J = 7.5 Hz, H-1”’), 1.65 - 1.58 (2H, m, H-2””), 1.33 - 1.32 (4H, m, H-3”” and H-4””) 0.89 (3H, t, J = 6.5 Hz, H-6””); ¹³C NMR (100MHz, CDCl₃) δ; 13.2 (C-5”), 21.5 (C-4’”), 30.0 (C-2”’), 30.4 (C-3””), 34.7 (C-1””), 42.6 (C-2’), 45.8 (C-1’), 108.0 (C-4), 114.2 (C-7), 118.8 (C-5), 119.4 (C-5”), 120.6 (ArC), 123.2 (ArC), 124.6
(ArCH), 126.5 (ArC), 127.8 (ArCH), 137.6 (ArCH), 142.2 (ArC), 142.8 (Ar(OCF₃)), 147.2 (ArC), 159.9 (ArC); MS m/z [M+H]+ C₂₃H₂₆F₃N₅O₅S requires 476.18, found 476.17.

3-(2-(4-(4-Butylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ac

Using the general procedure; to a solution of ring-cyclised azide 223 (0.15 g, 0.49 mmol, 1.0 equiv.) and 1-butyl-4-ethynylbenzene (0.1 mL, 0.74 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-butylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ac, 0.16 g, 0.35 mmol, 72 %) as a pale yellow solid; Rf 0.21 (100 % EtOAc), m.p. 183 - 186 °C

IR νmax/cm⁻¹ 3230, 3048, 2967, 1617, 1581, 1484, 1257; ¹H NMR (400MHz, CDCl₃) δ; 7.58 (1H, s, H-5'''), 7.56 (2H, d, J = 7.5 Hz, ArH), 7.19 (2H, d, J = 7.5 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 7.5 Hz, H-5), 6.54 (1H, d, J = 8.5 Hz, H-4), 4.81 (2H, bs, H-1'), 4.48 (2H, bs, H-2'), 2.61 (2H, t, J = 7.5 Hz, H-1'''), 1.60 (2H, quin, J = 7.5 Hz, H-2'''), 1.36 (2H, sext, J = 7.5 Hz, H-3''''), 0.92 (3H, t, J = 7.5 Hz, H-4''''); ¹³C NMR (100MHz, CDCl₃) δ; 12.9 (C-4'''''), 21.3 (C-3'''''), 32.5 (C-2''''''), 34.4 (C-1''''), 42.6 (C-2'), 45.8 (C-1'), 108.0 (C-4), 114.2 (C-7), 118.8 (C-5), 119.5 (C-5'''), 120.6 (ArC), 122.2 (ArC), 124.6 (ArCH), 126.5 (ArC), 127.8 (ArCH), 137.6 (ArC), 142.2 (ArC), 142.8 (Ar(OCF₃)), 147.3 (ArC), 160.3 (ArC); MS m/z [M+H]+ C₂₂H₃₅F₃N₅O₅S requires 462.16, found 462.16.
CHAPTER 5: EXPERIMENTAL

3-(2-(4-(4-Propylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

160ad

Using the general procedure; to a solution of ring-cyclised azide 223 (0.18 g, 0.56 mmol, 1.0 equiv.) and 1-ethynyl-4-propylbenzene (0.1 mL, 0.87 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-Propylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ad, 0.19 g, 0.42 mmol, 75 %) as an off-white solid; Rf 0.23 (100 % EtOAc), m.p. 190 - 196 °C

IR νmax/cm⁻¹ 3274, 3043, 2931, 1626, 1585, 1480, 1380, 1252; ¹H NMR (400MHz, CDCl₃) δ; 7.59 (3H, d, J = 8.0 Hz, H-5'' and ArH), 7.19 (2H, d, J = 8.0 Hz, ArH), 7.09 (2H, b, s, H-7 and NH), 6.93 (1H, d, J = 9.0 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'), 2.59 (2H, t, J = 7.5 Hz, H-1''), 1.63 (2H, sext, J = 7.5 Hz, H-2'''), 0.94 (3H, t, J = 7.5 Hz, H-3''''); ¹³C NMR (100MHz, CDCl₃) δ; 127.6 (C-1'''), 125.1 (C-2'''), 42.6 (C-2'), 45.8 (C-1'), 108.0 (C-4), 114.2 (C-7), 118.8 (C-5), 119.5 (C-5''), 120.6 (ArC), 122.2 (ArC), 124.6 (ArCH), 126.6 (ArC), 127.8 (ArCH), 137.6 (ArC), 141.9 (ArC), 142.8 (Ar(O(CF₃))), 147.2 (ArC), 159.9 (ArC); MS m/z [M+H]^+ C₂₁H₂₁F₃N₅OS requires 448.14, found 448.14.

3-(2-(4-(4-Ethylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

160ae

Using the general procedure; to a solution of ring-cyclised azide 223 (0.19 g, 0.62 mmol, 1.0 equiv.) and 1-ethyl-4-ethynylbenzene (0.1 mL, 0.93 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.2 mL freshly prepared
1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-ethylphenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ae, 0.17 g, 0.40 mmol, 67 %) as an off-white solid; Rf 0.20 (100 % EtOAc), m.p. 189 - 193 °C

IR νmax/cm⁻¹ 3278, 3044, 2930, 1626, 1585, 1481, 1382, 1256; ¹H NMR (400MHz, CDCl₃) δ; 7.57 (3H, d, J = 7.0 Hz, H-5” and ArH), 7.21 (2H, d, J = 8.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.93 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-2’), 2.66 (2H, q, J = 7.5 Hz, H-1”), 1.24 (3H, t, J = 7.5 Hz, H-2”’);
¹³C NMR (100MHz, CDCl₃) δ; 14.5 (C-2”’), 27.6 (C-1””), 42.6 (C-2’), 45.8 (C-1’), 108.0 (C-7), 114.2 (C-4), 118.8 (C-5), 119.5 (C-5”), 120.6 (ArC), 122.2 (ArC), 124.7 (ArCH), 126.5 (ArC), 127.3 (ArCH), 137.6 (ArC), 142.8 (ArOCF₃), 143.5 (ArC), 147.2 (ArC), 159.8 (ArC); MS m/z [M+H]+ C₂₀H₁₉F₃N₂OS requires 434.13, found 434.12.

3-(2-(4-(Napthalen-1-yl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160af

Using the general procedure; to a solution of ring-cyclised azide 223 (0.17 g, 0.55 mmol, 1.0 equiv.) and 1-ethynlnapthalene (0.1 mL, 0.83 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO₄ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(napthalen-1-yl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160af, 0.15 g, 0.34 mmol, 61 %) as a red solid; Rf 0.20 (100 % EtOAc), m.p. 161 - 163 °C

IR νmax/cm⁻¹ 3273, 3014, 2939, 1632, 1582, 1481, 1254; ¹H NMR (400MHz, CDCl₃) δ; 7.87 - 7.84 (3H, m, ArH), 7.60 (1H, s, H-5’’), 7.52 - 7.39 (4H, m, ArH), 7.12 (2H, bs, H-7 and NH), 6.95 (1H, d, J = 8.5 Hz, H-5), 6.49 (1H, d, J = 9.0 Hz, H-4), 4.93 (2H, t, J = 5.5 Hz, H-1’), 4.52 (2H, t, J = 5.5 Hz, H-2”); ¹³C NMR (100MHz, CDCl₃) δ; 42.9 (C-2’), 46.0 (C-1’), 107.8 (C-4), 114.2 (C-7), 118.8 (C-4), 120.6 (ArC), 122.2 (ArC), 122.8 (C-5”), 123.9 (ArCH), 124.2 (ArCH), 125.0 (ArCH), 125.5 (ArCH), 126.2 (ArCH), 126.6 (ArC), 127.3 (ArCH), 127.9 (ArCH), 130.0 (ArC), 132.7 (ArC), 138.6 (ArC), 142.8 (ArOCF₃), 146.0 (ArC), 159.7 (ArC); MS m/z [M+H]+ C₂₂H₁₇F₃N₂OS requires 456.11, found 456.11.
3-(2-(4-(4-(tert-Butyl)phenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ag

Using the general procedure; to a solution of ring-cyclised azide 223 (0.21 g, 0.68 mmol, 1.0 equiv.) and 4-tert-butylphenylacetylene (0.2 mL, 1.01 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-(tert-butyl)phenyl)-1,2,3-triazolyl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ag, 0.23 g, 0.50 mmol, 73 %) as a pale yellow solid; Rₜ 0.24 (100 % EtOAc), m.p. 176 - 180 °C

IR νₘₚₑₓ/cm⁻¹ 3321, 3007, 2953, 1604, 1583, 1483, 1361, 1256; ¹H NMR (400MHz, CDCl₃) δ; 7.58 (3H, d, J = 7.0 Hz, ArH and H-5''), 7.40 (2H, d, J = 8.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.93 (1H, d, J = 9.0 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.81 (2H, t, J = 6.0 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'), 1.32 (9H, s, ArC(CH₃)₃); ¹³C NMR (100MHz, CDCl₃) δ; 30.2 (ArC(CH₃)₃), 33.6 (ArC), 42.6 (C-2'), 45.9 (C-1'), 107.8 (C-4), 114.2 (C-7), 118.8 (C-5), 119.5 (C-5''), 120.6 (ArC), 122.2 (ArC), 124.5 (ArCH), 124.7 (ArCH), 126.3 (ArC), 137.6 (ArC), 142.8 (Ar(OCF₃)), 147.1 (ArC), 150.4 (ArC), 159.8 (ArC); MS m/z [M+H]+ C₂₂H₂₃F₃N₅OS requires 462.16, found 462.16.

3-(2-(4-(Thiophen-2-yl)-1,2,3-triazol-1-ly)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ah

Using the general procedure; to a solution of ring-cyclised azide 223 (0.21 g, 0.70 mmol, 1.0 equiv.) and 2-ethynylthiophene (0.1 mL, 1.05 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude
was column purified using 100 % EtOAc to yield 3-(2-(4-(thiophen-2-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ah, 0.15 g, 0.37 mmol, 53 %) as a pale yellow solid; Rf 0.19 (100 % EtOAc), m.p. 172 - 176 °C

IR ν_{max}(cm$^{-1}$) 3245, 3068, 2954, 1605, 1583, 1483, 1256; 1H NMR (400MHz, CDCl$_3$) δ; 7.54 (1H, s, H-5’), 7.28 - 7.26 (1H, m, ArH), 7.23 (1H, d, J = 3.0 Hz, ArH), 7.10 (2H, bs, H-7 and NH), 7.03 (1H, t, J = 4.0 Hz, ArH), 6.96 (1H, d, J = 8.5 Hz, H-5), 6.54 (1H, d, J = 9.0 Hz, H-4), 4.80 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-2’); 13C NMR (100MHz, CDCl$_3$) δ; 42.4 (C-2’), 45.9 (C-1’), 107.9 (C-4), 114.2 (C-7), 118.8 (C-5), 119.3 (C-5’), 119.5 (C-3’), 119.6 (C-5’), 120.2 (ArC), 122.2 (ArC), 123.3 (ArC), 124.2 (ArC), 126.5 (ArC), 131.3 (ArC), 137.5 (ArC), 142.0 (ArC), 142.8 (Ar(COF$_3$)), 159.8 (ArC); MS m/z [M+H]$^+$ C$_{16}$H$_{13}$F$_3$N$_3$OS$_2$ requires 412.05, found 412.05.

3-(2-(4-(Thiophen-3-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ai

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.67 mmol, 1.0 equiv.) and 3-ethynylthiophene (0.1 mL, 1.00 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO$_4$ (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(thiophen-3-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ai, 0.15 g, 0.37 mmol, 55 %) as an off white solid; Rf 0.17 (100 % EtOAc), m.p. 185 - 188 °C

IR ν_{max}(cm$^{-1}$) 3246, 3081, 2954, 1615, 1585, 1483, 1258; 1H NMR (400MHz, CDCl$_3$) δ; 7.55 (1H, d, J = 2.0 Hz, ArH), 7.53 (1H, s, H-5”), 7.35 - 7.33 (1H, m, ArH), 7.30 (1H, d, J = 5.0 Hz, ArH), 7.09 (2H, bs, H-7 and NH), 6.95 (1H, d, J = 8.5 Hz, H-5), 6.55 (1H, d, J = 9.0 Hz, H-4), 4.80 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-2’); 13C NMR (100MHz, CDCl$_3$) δ; 42.5 (C-2’), 45.8 (C-1’), 108.0 (C-4), 114.2 (C-7), 118.8 (C-5), 119.6 (C-5’), 120.2 (ArCH), 120.6 (ArC), 122.2 (ArC), 124.7 (ArCH), 125.3 (ArCH), 130.3 (ArC), 137.5 (ArC), 142.8 (Ar(COF$_3$)), 143.2 (ArC), 159.8 (ArC); MS m/z [M+H]$^+$ C$_{16}$H$_{13}$F$_3$N$_3$OS$_2$ requires 412.05, found 412.05.
3-(2-(4-Cyclopropyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.66 mmol, 1.0 equiv.) and cyclopropylacetylene (0.1 mL, 0.99 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-cyclopropyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160aj, 0.16 g, 0.44 mmol, 67 %) as a pale yellow solid; Rᵣ 0.10 (100 % EtOAc), m.p. 149 - 152 °C

IR ν_{max/cm⁻¹} 3220, 3089, 2950, 1601, 1580, 1484, 1256; ¹H NMR (400MHz, CDCl₃) δ; 7.10 (1H, s, H-7), 7.01 (1H, s, H-5”), 6.93 (1H, d, J = 9.0 Hz, H-5), 6.33 (1H, d, J = 9.0 Hz, H-4), 4.70 (2H, t, J = 5.5 Hz, H-1”), 4.37 (2H, t, J = 6.0 Hz, H-2”), 1.78 (1H, tt, J = 5.0 Hz and 13.5 Hz, H-1””), 0.83 (2H, dt, J = 4.5 Hz and 15.0 Hz, H-2”” and H-3””), 0.57 (2H, dt, J = 4.5 Hz and 11.0 Hz, H-2”” and H-3””), ¹³C NMR (100MHz, CDCl₃) δ; 5.3 (C-1””), 6.5 (C-2”” and C-3””), 42.7 (C-2”), 45.7 (C-1), 107.8 (C-4), 114.1 (C-7), 118.5 (C-5), 119.8 (C-5”), 120.7 (ArC), 122.0 (ArC), 137.6 (ArC), 142.7 (Ar(OCF₃)), 149.7 (ArC), 159.6 (ArC); MS m/z [M+H]⁺ C₁₉H₁₅F₂N₅OS requires 370.10, found 370.10.

3-(2-(4-Cyclopentyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

Using the general procedure; to a solution of ring-cyclised azide 223 (0.21 g, 0.68 mmol, 1.0 equiv.) and cyclopentylacetylene (0.1 mL, 1.02 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-cyclopentyl-1,2,3-triazol-1-yl)ethyl)-6-
(trifluoromethoxy)benzothiazol-2-imine (160ak, 0.16 g, 0.40 mmol, 59 %) as an off white solid; \(R_f \) 0.13 (100 % EtOAc), m.p. 174 - 179 °C

3-(2-(4-Cyclohexyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160al

![Diagram of 160al]

Using the general procedure; to a solution of ring-cyclised azide 223 (0.23 g, 0.75 mmol, 1.0 equiv.) and cyclohexylacetylene (0.2 mL, 1.12 mmol, 1.5 equiv.) in 10.0 mL H\(_2\)O and 10.0 mL THF heated to 20 °C was added 0.8 mL 1M CuSO\(_4\) (aq) and 1.5 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-cyclohexyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160al, 0.17 g, 0.41 mmol, 55 %) as a pale yellow solid; \(R_f \) 0.15 (100 % EtOAc), m.p. 178 - 182 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 3220, 3028, 2925, 1581, 1483, 1254; \(^1\text{H NMR} \) (400MHz, CDCl\(_3\)) \(\delta \): 7.09 (2H, bs, H-7 and NH), 6.99 (1H, s, H-5”), 6.90 (1H, d, J = 9.0 Hz, H-5), 6.27 (1H, d, J = 9.0 Hz, H-4), 4.74 (2H, t, J = 5.5 Hz, H-1’), 4.37 (2H, t, J = 5.5 Hz, H-2’), 2.58 (1H, ttt, J = 3.5 Hz and 11.5 Hz, H-1’”), 1.78 - 1.75 (2H, m, H-2”’ and H-6’”), 1.70 - 1.64 (3H, m, H-3’”, H-4’” and H-5’”), 1.35 - 1.25 (2H, m, H-2’” and H-6’”), 1.20 - 1.06 (3H, m, H-3’”, H-4’” and H-5’”), \(^{13}\text{C NMR} \) (100MHz, CDCl\(_3\)) \(\delta \): 25.1 (C-3’”), C-4’” and C-5’”), 31.9 (C-2’” and C-6’”), 34.0 (C-1’”), 42.9 (C-2’), 45.7 (C-1’), 107.8 (C-4), 114.0 (C-7), 118.1 (ArC), 118.8 (C-5), 119.6 (C-5”), 120.6 (ArC), 121.9 (ArC), 137.7 (ArC), 142.6 (Ar(COF\(_3\))), 153.1 (ArC), 159.6 (ArC); **MS** m/z [M+H]+ \(\text{C}_{18}\text{H}_{21}\text{F}_3\text{N}_5\text{Os} \) requires 412.14, found 412.14.
3-(2-(4-(tert-Butyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine

160am

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.53 mmol, 1.0 equiv.) and 3,3-dimethyl-1-butyne (0.1 mL, 0.80 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(tert-butyl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160am, 0.13 g, 0.34 mmol, 64 %) as a pale yellow solid; Rₛ 0.13 (100 % EtOAc), m.p. 150 - 154 °C

IR νmax/cm⁻¹ 3256, 3068, 2979, 1605, 1580, 1484, 1384, 1258; **¹H NMR** (400MHz, CDCl₃) δ; 7.09 (1H, s, H-7), 7.07 (1H, bs, NH), 6.98 (1H, s, H-5''), 6.89 (1H, d, J = 9.0 Hz, H-5), 6.25 (1H, d, J = 9.0 Hz, H-4), 4.74 (2H, t, J = 5.5 Hz, H-1'), 4.36 (2H, t, J = 5.5 Hz, H-2'), 1.12 (9H, s, ArC(CH₃)₃); **¹³C NMR** (100MHz, CDCl₃) δ; 29.1 (ArC(CH₃)₃), 42.9 (C-2'), 45.6 (C-1'), 107.7 (C-4), 114.0 (C-7), 118.1 (ArC), 118.7 (C-5), 118.8 (C-5''), 120.7 (ArC), 123.2 (ArC), 137.7 (ArC), 142.6 (Ar(OCF₃)), 157.1 (ArC), 159.6 (ArC); **MS** m/z [M+H]⁺ C₁₆H₁₃F₃N₅OS requires 386.13, found 386.13.

Ethyl 1-(2-(2-Imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazole-4-carboxylate 160an

Using the general procedure; to a solution of ring-cyclised azide 223 (0.15 g, 0.48 mmol, 1.0 equiv.) and ethyl propiolate (0.1 mL, 0.72 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield ethyl 1-(2-(2-imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazole-4-carboxylate (160an, 0.12 g, 0.29 mmol, 61 %) as a pale yellow solid; Rₛ 0.15 (100 % EtOAc), m.p. 159 - 163 °C
IR $\nu_{\text{max}}/\text{cm}^{-1}$ 3276, 3043, 2979, 1721, 1631, 1583, 1485, 1377, 1261; 1H NMR (400MHz, CDCl$_3$); 7.95 (1H, s, H-5’), 7.11 (1H, s, H-7’’), 7.09 (1H, bs, NH), 6.97 (1H, d, $J = 8.5$ Hz, H-5’’), 6.49 (1H, d, $J = 9.0$ Hz, H-4’’), 4.84 (2H, t, $J = 6.0$ Hz, H-1’’), 4.46 (2H, t, $J = 6.0$ Hz, H-2’’), 4.37 (2H, q, $J = 7.0$ Hz, H-3’), 1.37 (3H, t, $J = 7.0$ Hz, H-4); 13C NMR (100MHz, CDCl$_3$); 14.2 (C-4), 43.3 (C-2’’), 47.2 (C-1’’), 61.4 (C-3), 108.7 (C-4’’), 115.4 (C-7’’), 119.9 (C-5’’), 121.7 (ArC), 123.4 (ArC), 128.6 (C-5’), 138.4 (ArC), 140.4 (ArC), 143.9 (ArOCF$_3$), 160.4 (ArC), 160.8 (ArC); MS m/z [M+H]$^+$ C$_{15}$H$_{15}$F$_3$N$_2$O$_3$S requires 402.09, found 402.08.

3-(2-(4-Isopentyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ao

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.54 mmol, 1.0 equiv.) and 5-methyl-1-hexyne (0.1 mL, 0.81 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO$_4$ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-isopentyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ao, 0.14 g, 0.34 mmol, 63 %) as a pale yellow solid; R_f 0.11 (100 % EtOAc), m.p. 126 - 129 °C

IR $\nu_{\text{max}}/\text{cm}^{-1}$ 3232, 3072, 2958, 1602, 1581, 1484, 1384, 1257; 1H NMR (400MHz, CDCl$_3$) δ; 7.09 (2H, bs, H-7 and NH), 7.07 (1H, s, H-5’), 6.92 (1H, d, $J = 9.0$ Hz, H-5), 6.36 (1H, d, $J = 9.0$ Hz, H-4), 4.73 (2H, t, $J = 5.5$ Hz, H-1’), 4.39 (2H, t, $J = 6.0$ Hz, H-2’), 2.54 (2H, t, $J = 8.0$ Hz, H-1’’’), 1.46 - 1.36 (1H, m, H-3’’’), 1.34 - 1.28 (2H, m, H-2’’’), 0.85 (6H, d, $J = 6.5$ Hz, H-4’’’ and H-1’’’’); 13C NMR (100MHz, CDCl$_3$ δ; 22.2 (C-4’’’ and C-1’’’’), 26.3 (C-1’’’), 37.4 (C-2’’’ and C-3’’’), 42.8 (C-2’), 45.7 (C-1’), 107.9 (C-4), 114.0 (C-7), 118.1 (ArC), 118.7 (C-5), 120.7 (C-5’), 122.1 (ArC), 137.6 (ArC), 142.7 (ArOCF$_3$), 147.9 (ArC), 159.7 (ArC); MS m/z [M+H]$^+$ C$_{17}$H$_{21}$F$_3$N$_2$OS requires 400.14, found 400.14.
6-(Trifluoromethoxy)-3-(2-(4-(4-(trifluoromethyl)phenyl)-1,2,3-triazol-1-y1)ethyl)benzothiazol-2-imine 160ap

Using the general procedure; to a solution of ring-cyclised azide 223 (0.22 g, 0.72 mmol, 1.0 equiv.) and 4-ethynyl-α,α,α-trifluorotoluene (0.2 mL, 1.09 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO$_4$ (aq) and 1.4 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 6-(trifluoromethoxy)-3-(2-(4-(4-(trifluoromethyl)phenyl)-1,2,3-triazol-1-y1)ethyl)benzothiazol-2-imine (160ap, 0.12 g, 0.25 mmol, 35 %) as a pale yellow solid; R$_f$ 0.17 (100 % EtOAc), m.p. 218 - 221 °C

IR ν_{max}/cm$^{-1}$ 3253, 3021, 2953, 1613, 1584, 1484, 1326, 1234; 1H NMR (400MHz, CDCl$_3$) δ; 7.78 (2H, d, J = 8.0 Hz, ArH), 7.69 (1H, s, H-5'), 7.63 (2H, d, J = 8.0 Hz, ArH), 7.10 (2H, t, J = 5.5 Hz, H-7), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.84 (2H, t, J = 5.5 Hz, H-1'), 4.48 (2H, t, J = 5.5 Hz, H-2'); 13C NMR (100MHz, CDCl$_3$) δ; 43.5 (C-2'), 47.0 (C-1'), 108.9 (C-4), 115.5 (C-7), 119.9 (C-5), 121.6 (C-5''), 122.7 (ArC), 123.3 (Ar(CF$_3$)), 123.7 (ArC), 125.8 (ArCH), 129.7 (ArC), 130.0 (ArC), 130.3 (ArC), 133.6 (ArC), 138.6 (Ar(OCF$_3$)), 143.9 (ArC), 146.8 (ArC); MS m/z [M+H]$^+$ C$_{16}$H$_{14}$F$_6$N$_5$O$_3$S requires 474.08, found 474.08.

6-(Trifluoromethoxy)-3-(2-(3-(3-(trifluoromethyl)phenyl)-1,2,3-triazol-1-y1)ethyl)benzothiazol-2-imine 160aq

Using the general procedure; to a solution of ring-cyclised azide 223 (0.18 g, 0.59 mmol, 1.0 equiv.) and 3-ethynyl-α,α,α-trifluorotoluene (0.1 mL, 0.88 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO$_4$ (aq) and 1.2 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-
up the crude was column purified using 100 % EtOAc to yield 6-(trifluoromethoxy)-3-(2-(4-(3-
(trifluoromethyl)phenyl)-1,2,3-triazol-1-yl)ethyl)benzothiazol-2-imine (160aq, 0.18 g, 0.39
mmol, 66 %) as a yellow/green solid; \(R_t \) 0.21 (100 % EtOAc), \textbf{m.p.} 145 - 149 °C

\[
\text{IR } \nu_{\text{max}}^{\text{cm}^{-1}} 3246, 3071, 2958, 1578, 1483, 1322, 1253; \quad \text{1H NMR} (400MHz, CDCl}_3) \delta; 7.91
(1H, s, ArH), 7.85 (1H, d, J = 7.5 Hz, ArH), 7.70 (1H, s, H-5''), 7.57 (1H, d, J = 8.0 Hz, ArH),
7.50 (1H, t, J = 7.5 Hz, ArH), 7.10 (2H, bs, H-7 and NH), 6.94 (1H, d, J = 8.0 Hz, H-5), 6.54
(1H, d, J = 9.0 Hz, H-4), 4.84 (2H, bs, H-2'), 4.48 (2H, bs, H-2'); \quad \text{13C NMR} (100MHz, CDCl}_3) \delta;
42.4 (C-2'), 45.9 (C-1'), 107.8 (C-4), 114.3 (C-7), 118.8 (C-5), 120.3 (C-5''), 120.6 (ArC),
121.4 (ArCH), 121.6 (ArC), 122.2 (Ar(CF}_3), 123.8 (ArCH), 124.3 (ArC), 127.8 (ArCH), 128.3
(ArCH), 130.1 (ArC), 130.4 (ArC), 137.5 (Ar(OCF}_3)), 142.8 (ArC), 145.8 (ArC); \quad \text{MS m/z [M+H]}^+ \quad
\text{C}_{19}\text{H}_{12}\text{F}_6\text{N}_2\text{OS requires 474.08, found 474.08.}

6-(Trifluoromethoxy)-3-(2-(4-(2-(trifluoromethyl)phenyl)-1,2,3-triazol-1-
yl)ethyl)benzothiazol-2-imine 160ar

Using the general procedure; to a solution of ring-cyclised azide \textbf{223} (0.22 g, 0.74 mmol, 1.0
equiv.) and 2-ethynyl-\(\alpha,\alpha,\alpha\)-trifluorotoluene (0.2 mL, 1.11 mmol, 1.5 equiv.) in 10.0 mL Hø2
and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO\textsubscript{4} (aq) and 1.5 mL freshly
prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-
up the crude was column purified using 100 % EtOAc to yield \textbf{6-(trifluoromethoxy)-3-(2-(4-(2-
(trifluoromethyl)phenyl)-1,2,3-triazol-1-yl)ethyl)benzothiazol-2-imine (160ar, 0.21 g, 0.43
mmol, 59 %) as an off white solid; \(R_t \) 0.32 (100 % EtOAc), \textbf{m.p.} 186 - 190 °C

\[
\text{IR } \nu_{\text{max}}^{\text{cm}^{-1}} 3245, 3081, 2954, 1616, 1585, 1485, 1318, 1256; \quad \text{1H NMR} (400MHz, CDCl}_3) \delta;
7.69 (2H, t, J = 7.5 Hz, ArH), 7.57 (2H, t, J = 9.5 Hz, ArH and H-5''), 7.45 (1H, t, J = 7.5 Hz,
ArH), 7.08 (2H, bs, H-7 and NH), 6.93 (1H, d, J = 9.0 Hz, H-5), 6.45 (1H, d, J = 9.0 Hz, H-4),
4.87 (2H, t, J = 5.5 Hz, H-1'), 4.47 (2H, t, J = 5.5 Hz, H-2'); \quad \text{13C NMR} (100MHz, CDCl}_3) \delta; 42.8
(C-2'), 46.0 (C-1'), 107.7 (C-4), 114.2 (C-7), 118.7 (C-4), 122.2 (ArC), 123.0 (Ar(CF}_3)), 124.2
(C-5'), 125.0 (ArC), 126.2 (ArCH), 126.5 (ArC), 127.3 (ArC), 128.0 (ArCH), 130.6 (ArCH),
130.9 (ArCH), 137.6 (Ar(OCF}_3)), 142.7 (ArC), 143.6 (ArC), 159.8 (ArC); \quad \text{MS m/z [M+H]}^+ \quad
\text{C}_{19}\text{H}_{12}\text{F}_6\text{N}_2\text{OS requires 474.08, found 474.08.}

121
6-(Trifluoromethoxy)-3-(2-(4-(3,4,5-trifluorophenyl)-1,2,3-triazol-1-yl)ethyl)benzothiazol-2-imine 160as

Using the general procedure; to a solution of ring-cyclised azide 223 (0.14 g, 0.46 mmol, 1.0 equiv.) and 3,4,5-trifluorophenylacetylene (0.11 g, 0.69 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 0.9 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 6-(trifluoromethoxy)-3-(2-(4-(3,4,5-trifluorophenyl)-1,2,3-triazol-1-yl)ethyl)benzothiazol-2-imine (160as, 0.16 g, 0.34 mmol, 74 %) as a pale yellow solid; Rf 0.21 (100 % EtOAc), m.p. 166 - 170 °C

IR νmax/cm⁻¹ 3229, 3077, 2958, 1607, 1518, 1483, 1257; ¹H NMR (400MHz, CDCl₃) δ; 7.59 (1H, s, H-5'), 7.32 - 7.24 (2H, m, Ar), 7.11 (2H, d, J = 1.5 Hz, H-7 and NH), 6.94 (1H, d, J = 8.5 Hz, H-5), 6.51 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'); ¹³C NMR (100MHz, CDCl₃) δ; 42.4 (C-2'), 46.0 (C-1'), 107.8 (C-4), 108.6 (Ar), 108.9 (ArCH), 114.4 (C-7), 118.8 (C-5), 120.2 (C-5''), 122.2 (ArC), 137.4 (ArC), 139.8 (Ar(CF)), 142.8 (Ar(OCCF₃)), 144.4 (ArC), 149.3 (ArC), 151.8 (Ar(CF)), 159.8 (ArC); MS m/z [M+H]⁺ C₁₈H₁₂F₆N₂O₄ requires 460.07, found 460.07.

6-(Trifluoromethoxy)-3-(2-(4-(3,5-bis(trifluoromethyl)phenyl)-1,2,3-triazol-1-yl)ethyl)benzothiazol-2-imine 160at

Using the general procedure; to a solution of ring-cyclised azide 223 (0.14 g, 0.47 mmol, 1.0 equiv.) and 1-ethynyl-3,5-bis(trifluoromethyl) benzene (0.1 mL, 0.71 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 0.9 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 6-(trifluoromethoxy)-3-(2-
(4-(3,5-bis(trifluoromethyl)phenyl)-1,2,3-triazol-1-ly)ethyl)benzothiazol-2-imine (160at, 0.22 g, 0.41 mmol, 87%) as a pale yellow solid; Rf 0.31 (100 % EtOAc), m.p. 184 - 188 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3240, 3087, 2950, 1614, 1584, 1484, 1254, 757; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.61 (1H, s, H-5”), 7.54 - 7.49 (4H, m, ArH), 7.10 (2H, d, J = 1.5 Hz, H-7 and NH), 6.94 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-1’); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 43.5 (C-1’), 46.9 (C-2’), 108.9 (C-4), 115.3 (C-7), 119.8 (C-5), 120.9 (C-5”), 121.7 (ArC), 122.2 (ArC), 123.2 (ArC), 127.2 (ArCH), 129.1 (ArC), 132.0 (ArCH), 138.5 (ArC), 143.9 (Ar(OFCF\(_3\))), 147.1 (ArC), 160.8 (ArC); MS m/z [M+H] \(^+\) C\(_{19}\)H\(_{13}\)BrF\(_3\)N\(_5\)OS requires 484.01, found 484.00.

3-(2-(4-(4-Bromophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 160au

Using the general procedure; to a solution of ring-cyclised azide 223 (0.17 g, 0.55 mmol, 1.0 equiv.) and 1-bromo-4-ethynyldibenzene (0.15 g, 0.82 mmol, 1.5 equiv.) in 10.0 mL H\(_2\)O and 10.0 mL THF heated to 20 °C was added 0.6 mL 1M CuSO\(_4\) (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(4-bromophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160au, 0.18 g, 0.38 mmol, 69%) as an off-white solid; Rf 0.17 (100 % EtOAc), m.p. 213 - 215 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3240, 3087, 2950, 1614, 1584, 1484, 1254, 757; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.61 (1H, s, H-5”), 7.54 - 7.49 (4H, m, ArH), 7.10 (2H, d, J = 1.5 Hz, H-7 and NH), 6.94 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.53 (1H, d, J = 9.0 Hz, H-4), 4.82 (2H, t, J = 6.0 Hz, H-1’), 4.46 (2H, t, J = 6.0 Hz, H-1’); \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 43.5 (C-1’), 46.9 (C-2’), 108.9 (C-4), 115.3 (C-7), 119.8 (C-5), 120.9 (C-5”), 121.7 (ArC), 122.2 (ArC), 123.2 (ArC), 127.2 (ArCH), 129.1 (ArC), 132.0 (ArCH), 138.5 (ArC), 143.9 (Ar(OFCF\(_3\))), 147.1 (ArC), 160.8 (ArC); MS m/z [M+H] \(^+\) C\(_{19}\)H\(_{13}\)BrF\(_3\)N\(_5\)OS requires 484.01, found 484.00.
3-(2-(4-(2-Bromophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine 160av

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.53 mmol, 1.0 equiv.) and 1-bromo-2-ethynylbenzene (0.1 mL, 0.80 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was left to stir at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-(2-bromophenyl)-1,2,3-triazol-1-yl)ethyl)-6-trifluoromethoxy)benzothiazol-2-imine (160av, 0.13 g, 0.26 mmol, 50 %) as a pale yellow solid; Rᵣ 0.25 (100 % EtOAc), m.p. 169 - 174 °C

IR νₘₐₓ/cm⁻¹ 3254, 3083, 2961, 1616, 1584, 1484, 1234; ¹H NMR (400MHz, CDCl₃) δ; 7.97 (1H, s, H-5'), 7.87 (1H, dd, J = 1.5 Hz and 8.0 Hz, ArH), 7.57 (1H, dd, J = 1.0 Hz and 8.0 Hz, ArH), 7.36 (1H, td, J = 1.0 Hz and 7.5 Hz, ArH), 7.17 (1H, td, J = 1.5 Hz and 8.0 Hz, ArH), 7.08 (2H, d, J = 1.5 Hz, H-7 and NH), 6.90 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.41 (1H, d, J = 9.0 Hz, H-4), 4.87 (2H, t, J = 5.5 Hz, H-1'), 4.46 (2H, t, J = 6.0 Hz, H-2'); ¹³C NMR (100MHz, CDCl₃) δ; 42.8 (C-2'), 46.0 (C-1'), 107.8 (C-4), 114.2 (C-7), 118.8 (C-5), 120.2 (ArC), 120.6 (ArC), 122.2 (ArC), 123.2 (C-5''), 126.6 (ArCH), 128.4 (ArCH), 129.5 (ArCH), 129.8 (ArC), 132.3 (ArCH), 137.6 (ArC), 142.8 (Ar(OCF₃)), 144.7 (ArC), 159.8 (ArC); MS m/z [M+H]⁺ C₁₈H₁₂BrF₃N₅O₂S requires 484.01, found 484.00.

Methyl 4-(1-(2-(2-imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzoate 160aw

Using the general procedure; to a solution of ring-cyclised azide 223 (0.14 g, 0.45 mmol, 1.0 equiv.) and methyl-4-ethynylbenzoate (0.11 g, 0.67 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 0.9 mL freshly prepared
1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield methyl 4-(1-(2-(2-imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzoate (160aw, 0.12 g, 0.26 mmol, 59 %) as an off white solid; Rf 0.19 (100 % EtOAc), m.p. 196 - 199 °C

IR ν_{max}/cm$^{-1}$: 3276, 3099, 2955, 1721, 1604, 1582, 1485, 1366, 1261; 1H NMR (400MHz, CDCl$_3$) δ: 8.05 (2H, d, J = 8.5 Hz, ArH), 7.74 (2H, d, J = 8.5 Hz, ArH), 7.71 (1H, s, H-5'), 7.10 (2H, d, J = 1.5 Hz, H-7'' and NH), 6.94 (1H, d, J = 8.5 Hz, H-5''), 6.55 (1H, d, J = 9.0 Hz, H-4'''), 4.84 (2H, t, J = 6.0 Hz, H-1''), 4.48 (2H, t, J = 6.0 Hz, H-2''), 3.93 (3H, s, H-3''''); 13C NMR (100MHz, CDCl$_3$) δ: 43.5 (C-2'), 47.0 (C-1''), 52.2 (C-3'''), 109.0 (C-4'''), 115.3 (C-7'''), 119.1 (ArC), 120.0 (C-5'''), 121.7 (C-5'), 123.3 (ArC), 125.3 (ArCH), 129.7 (ArC), 130.2 (ArCH), 134.4 (ArC), 138.5 (ArC), 143.9 (Ar(OCF$_3$)), 147.1 (ArC), 161.0 (ArC), 166.7 (ArC); MS m/z [M+H]$^+$ C$_{20}$H$_{17}$F$_3$N$_5$O$_3$S requires 464.10, found 464.10.

4-(1-(2-(2-imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzoic acid 160ax

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.53 mmol, 1.0 equiv.) and 4-ethynylbenzoic acid (0.12 g, 0.79 mmol, 1.5 equiv.) in 10.0 mL H$_2$O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO$_4$ (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. Once washed with brine a precipitate formed. This was filtered to yield 4-(1-(2-(2-imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)benzoic acid (160ax, 0.14 g, 0.31 mmol, 59 %) as an off-white solid; m.p. 380 - 384 °C

IR ν_{max}/cm$^{-1}$: 3238, 2974, 1585, 1484, 1262; 1H NMR (500MHz, MeOD) δ: 8.32 (1H, s, H-5'), 8.00 (2H, d, J = 10.0 Hz, ArH), 7.71 (2H, d, J = 5.0 Hz, ArH), 7.33 (1H, s, H-7''), 6.99 (1H, d, J = 10.0 Hz, H-5''), 6.77 (1H, d, J = 10.0 Hz, H-4'''), 4.88 (2H, t, J = 5.0 Hz, H-1''), 4.52 (2H, t, J = 5.0 Hz, H-2''); 13C NMR (125MHz, MeOD) δ: 42.7 (C-2''), 46.7 (C-1''), 109.2 (C-4'''), 115.1 (C-7''), 119.1 (C-5'''), 119.6 (ArC), 122.3 (C-5'), 123.9 (ArC), 124.6 (ArCH), 129.6 (ArCH), 132.0 (ArC), 138.7 (Ar(OCF$_3$)), 143.7 (ArC), 147.4 (ArC), 157.9 (ArC), 162.3 (ArC), 173.0 (ArC); MS m/z [M+H]$^+$ C$_{19}$H$_{15}$F$_3$N$_5$O$_3$S requires 450.09, found 450.08.
4-(1-(2-(2-Imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)-N,N-dimethylaniline 160ay

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.67 mmol, 1.0 equiv.) and 4-ethynyl-N,N-dimethylaniline (0.15 g, 1.01 mmol, 1.5 equiv.) in 10.0 mL H2O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO4 (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 4-(1-(2-(2-Imino-6-(trifluoromethoxy)benzothiazol-3-yl)ethyl)-1,2,3-triazol-4-yl)-N,N-dimethylaniline (160ay, 0.17 g, 0.39 mmol, 58 %) as a pale yellow solid; Rf 0.17 (100 % EtOAc), m.p. 214 - 217 °C

IR ν_{max}/cm^{-1} 3246, 3014, 2945, 1614, 1584, 1483, 1352, 1251; ¹H NMR (400MHz, CDCl₃) δ; 7.53 (2H, d, J = 9.0 Hz, ArH), 7.49 (1H, s, H-5'), 7.09 (2H, d, J = 1.5 Hz, H-7'' and NH), 6.94 (1H, d, J = 9.0 Hz, H-5'''), 6.72 (2H, d, J = 9.0 Hz, ArH), 6.55 (1H, d, J = 9.0 Hz, H-4'''), 4.80 (2H, t, J = 6.0 Hz, H-1''), 4.45 (2H, t, J = 6.0 Hz, H-2''), 2.99 (6H, s, ArN(CH₃)₂); ¹³C NMR (100MHz, CDCl₃) δ; 134.6 (ArN(CH₃)₂), 118.4 (ArC), 119.3 (C-5'), 119.8 (C-5'''), 121.7 (ArC), 123.2 (ArC), 126.7 (ArCH), 138.6 (ArC), 143.8 (Ar(OCF₃), 148.7 (ArC), 150.5 (ArC), 160.9 (ArC); MS m/z [M+H]^+ C₂₀H₂₀F₃N₆O require 449.14, found 449.14.

3-(2-(4-(1-Methyl-1H-imidazol-5-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160az

Using the general procedure; to a solution of ring-cyclised azide 223 (0.20 g, 0.66 mmol, 1.0 equiv.) and 5-ethynyl-1-methyl-1H-imidazole (0.1 mL, 0.99 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.7 mL 1M CuSO₄ (aq) and 1.3 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 9:1 DCM:MeOH to yield 3-(2-(4-(1-methyl-1H-
imidazol-5-yl)-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160az, 0.18 g, 0.44 mmol, 67 %) as an off white solid; \(R_t \) 0.52 (9:1 DCM:MeOH), m.p. 220 - 225 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3161, 2958, 1626, 1585, 1484, 1386, 1267; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.52 (1H, s, H-5”), 7.48 (1H, bs, H-2”), 7.11 (1H, d, J = 1.5 Hz, H-7), 7.06 (1H, bs, H-5”), 6.94 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.51 (1H, d, J = 9.0 Hz, H-4), 4.84 (2H, t, J = 5.5 Hz, H-1”), 4.47 (2H, t, J = 6.0 Hz, H-2”), 3.73 (3H, s, N(CH\(_3\))); \(^13\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 32.2 (N(CH\(_3\))), 42.5 (C-2”), 45.8 (C-1”), 107.7 (C-4), 114.3 (C-7), 118.1 (ArC), 118.6 (C-5), 120.7 (ArC), 121.4 (C-5”), 122.4 (ArC), 123.2 (ArC), 129.1 (C-5”), 137.5 (C-2”), 137.6 (ArC), 142.8 (Ar(OCF\(_3\))), 159.6 (ArC); MS m/z [M+H]^+ \(\text{C}_{16}\text{H}_{18}\text{F}_3\text{N}_7\text{OS} \) requires 410.10, found 410.10.

3-(2-(4-Isobutyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160ba

Using the general procedure; to a solution of ring-cyclised azide 223 (0.14 g, 0.48 mmol, 1.0 equiv.) and 4-methyl-1-pentyne (0.1 mL, 0.72 mmol, 1.5 equiv.) in 10.0 mL H\(_2\)O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO\(_4\) (aq) and 1.0 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-isobutyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160ba, 0.18 g, 0.47 mmol, 98 %) as an off-white solid; \(R_t \) 0.19 (100 % EtOAc), m.p. 165 -170 °C

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3237, 3065, 2955, 1580, 1485, 1383, 1263; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta \); 7.07 (3H, bs, H-7, H-5” and NH), 6.91 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.38 (1H, d, J = 9.0 Hz, H-4), 4.76 (2H, t, J = 5.5 Hz, H-1”), 4.40 (2H, t, J = 6.0 Hz, H-2”), 2.42 (2H, d, J = 6.0 Hz, H-1”), 1.70 (1H, sept, J = 6.5 Hz, H-2”), 0.72 (6H, d, J = 6.5 Hz, H-3”” and H-1””), \(^13\)C NMR (100MHz, CDCl\(_3\)) \(\delta \); 20.9 (C-1””), 27.5 (C-2”), 32.4 (C-1”), 42.9 (C-2”), 45.7 (C-1”), 107.9 (C-4), 114.1 (C-7), 118.8 (C-5), 120.7 (ArC), 121.4 (C-5”), 122.1 (ArC), 137.7 (ArC), 142.7 (Ar(OCF\(_3\))), 146.4 (ArC), 159.7 (ArC); MS m/z [M+H]^+ \(\text{C}_{16}\text{H}_{18}\text{F}_3\text{N}_7\text{OS} \) requires 386.13, found 386.13.
3-(2-(4-Propyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine 160bb

Using the general procedure; to a solution of ring-cyclised azide 223 (0.16 g, 0.53 mmol, 1.0 equiv.) and 1-pentyne (0.1 mL, 0.79 mmol, 1.5 equiv.) in 10.0 mL H₂O and 10.0 mL THF heated to 20 °C was added 0.5 mL 1M CuSO₄ (aq) and 1.1 mL freshly prepared 1M sodium ascorbate (aq) dropwise. This was stirred at 20 °C for 2 h. After work-up the crude was column purified using 100 % EtOAc to yield 3-(2-(4-propyl-1,2,3-triazol-1-yl)ethyl)-6-(trifluoromethoxy)benzothiazol-2-imine (160bb, 0.09 g, 0.23 mmol, 44 %) as a pale yellow solid; R_f 0.14 (100 % EtOAc), m.p. 134 - 138 °C

IR ν_max/cm⁻¹ 3334, 3072, 2961, 1602, 1580, 1484, 1383, 1257; ¹H NMR (400MHz, CDCl₃) δ;
7.09 (2H, d, J = 1.5 Hz, H-7 and NH), 7.06 (1H, s, H-5''), 6.92 (1H, dd, J = 1.5 Hz and 9.0 Hz, H-5), 6.35 (1H, d, J = 9.0 Hz, H-4), 4.74 (2H, t, J = 5.5 Hz, H-1''), 4.39 (2H, t, J = 6.0 Hz, H-2''), 2.52 (2H, t, J = 7.5 Hz, H-1'''), 1.44 (2H, sext, J = 7.5 Hz, H-2''''), 0.78 (3H, t, J = 7.5 Hz, H-3'''''); ¹³C NMR (100MHz, CDCl₃) δ; 12.4 (C-3'''), 21.6 (C-2'''), 26.3 (C-1'''), 42.9 (C-2'), 45.7 (C-1'), 107.8 (C-4), 114.1 (C-7), 118.8 (C-5), 120.7 (ArC), 120.9 (C-5''), 122.0 (ArC), 137.7 (ArC), 142.7 (Ar(OCF₃)), 147.5 (ArC), 159.7 (ArC); MS m/z [M+H]^+ C₁₅H₁₉F₃N₅O₃S requires 372.11, found 372.11.
CHAPTER 6: REFERENCES

54 Anzini, M.; Chelini, A.; Mancini, A.; Cappelli, A.; Frosini, M.; Ricci, L.; Valoti, M.; Magistretti, J.; Castelli, L.; Giordani, A.; Makovec, J.; Wrobel, J.; C.; Castelli, L.; Giordani, A.; Makovec, J.; Wrobel, J.; C.
CHAPTER 6: REFERENCES

118 Experimental Procedure adapted from; Uppal, B. S. (2012). ‘Click’ chemistry in coordination and supramolecular chemical applications (Published PhD thesis). University of Huddersfield, Huddersfield.

