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Abstract 

Creep deformation and failure in high temperature structures is a serious problem for 

industry and is becoming even more so under the current increasing pressures of power, 

economics and sustainability. Laboratory creep tests can be used in the description of 

creep damage behaviour; however, it’s usually expensive and time-consuming. Thus, 

the computer-based finite element (FE) technique is considered here for both time and 

economic efficiency. 

This project aims to develop an in-house FE software for creep damage analysis. A 

novel in-house FE software High Temperature Structural Integrity (HITSI) was 

developed through the use of Continuum Damage Mechanics (CDM) and finite element 

method (FEM) in conjunction with an advanced engineering computer programming 

language (Fortran 2003) based on an objected oriented programming (OOP) approach. 

This research provides four main contributions. First, a critical review of the current 

state of obtaining the computational capability for creep damage analysis. This critical 

review presents the advantages through the use of in-house software in analysing creep 

damage behaviour and the state-of-the-art research advancements and technologies need 

to be involved in developing in-house software. Second, the proposed OOP approach in 

design and development of in-house FE software for creep damage analysis. Third, the 

prototyping and implementation of a practical in-house FE software HITSI for 

analysing creep damage behaviour. The general flow diagram and development strategy 

of HITSI were proposed. Fourth, the benchmark test of HITSI via the numerical 

investigation of creep damage behaviour of a Cr-Mo-V steam pipe weldment case. The 

efficiency of the integration algorithms (Euler and Runge-Kutta) and normalized 

Kachanov-Rabotnov creep damage constitutive equation was investigated and 

commented. 

Generally, this project provides a novel in-house software prototype that allow the 

scientist to simulate the behaviour of creep damage in particular to analysis the 

evolution of creep damage in welds. 
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Chapter 1 Introduction 

1.1 Project Background 

Creep in the temperature field of structural components has been of interest to engineers 

for over 100 years. Demands of thermal efficiency lead to an increase in the operating 

temperature of structural components so that such components experience more creep 

deformation and damage leading to rupture. The fields where the creep phenomenon has 

been of importance in the interpretation of the structural response are the design and 

construction of nuclear power plants, gas turbine engines, refining and chemical plants, 

heat exchangers and jet engines (Wilson and Korakianitis, 2014). For safe design and 

operation, as well as for better design and the development of new creep resistant 

components, current research institutes (such as General Electric (GE), Electric Power 

Research Institute (EPRI), University of Manchester Institute of Science and 

Technology (UMIST), European Technology Development Ltd (ETD),  German Creep 

Committee (GCC) and European Creep Collaborative Committee (ECCC)) have 

utilized computer-based FE method or experimental method in the investigation of 

creep damage behaviour in structural components (Kim et al., 2002). However, some 

issues are still existing in current methods in the analysis of creep damage problem, and 

the issues can be classified as:  

1) Experimental method in creep damage analysis is usually expensive and time-

consuming, for example, the temperature field of structural components used in 

power plants and gas turbine engines are extremely expensive and are expected 

to last for 20 years or more, which makes experimental measurement 

unacceptable (Hyde et al., 1993).  

2) The standard commercial FE software can only analyse the primary-secondary 

creep stage but are unable to simulate the tertiary stage where significant 

damage occurs since the CDM approach is not readily available in standard 

commercial FE software. The ECCC has reported that primary-secondary creep 

occupied only about 20% of the total specimen (low chrome alloy) life under the 

high stress level, whilst tertiary behaviour accounted for almost 80% of the test 

(Panait et al., 2010). Hence, the tertiary creep stage should be considered in the 

FE modelling.  
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3) Though there are a few research groups such those of Hayhurst et al. (1984), 

Becker et al. (1994) and Wong (1999) have reported the development and the 

use of their in-house FE software for creep damage analysis, the source codes of 

their in-house FE software have not published. On the other hand, the OOP 

approach has not been considered within their in-house FE software. It is a time-

consuming task to maintain the FE codes for the analysis of high non-linearity 

creep damage problem, whereas the OOP approach can overcome limitations 

such as the complexity and unitary programming procedures of procedural 

programming at no additional cost (Mackie, 2008). It needs to consider 

efficiency of the programming and maintenance of FE codes when the 

development of in-house FE software is deployed.  

To overcome the issues stated above, the development of a novel dedicated in-house FE 

software should be considered for its efficiency and functionality in creep damage 

analysis. CDM and FEM in conjunction with an advanced engineering computer 

programming language (NAG Fortran 2003) based on an OOP approach can provide a 

way to develop in-house FE software that allow the scientist to simulate the creep 

damage evolution and the lifetime of high temperature structural components. The main 

challenges in developing such FE software are dealing with the time dependent high 

non-linearity behaviour, the stress redistribution and the multi-material zones. 

1.2 Aims and Objectives 

This project aims to develop the in-house FE software HITSI to describe the creep 

damage behaviour of the temperature field of structural components and predict the 

lifetime of such structural components. The target estimation accuracy of HITSI in the 

prediction of creep failure time was designed based on the Mean Magnitude of Relative 

Error (MMRE) (Briand and Wieczorek, 2002), which is the most widely used 

evaluation criterion to assess the performance of software prediction models. According 

to the estimation in software engineering (Conte et al., 1986), HITSI considers relative 

error ≤ 0.25 as acceptable for effort prediction models. The HITSI will focus on 

modelling the creep damage fields in the design and safety evolution stages in particular 

to analysis the evolution of creep damage in welds. This software can also be used as a 

research platform for helping researchers to validate the new creep damage constitutive 

equations and numerical time integration methods.  
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It is envisaged that the research will contribute to the domain knowledge in creep 

deformation, creep fracture and the state-of-the-art research advancements and 

technologies in computational creep damage mechanics. Also it will contribute to the 

development strategy, specifications of FE technologies, programming processes and 

verification procedures in developing in-house FE software for creep damage analysis.  

In order to fulfill above aims the specific objectives are detailed below, and include: 

1) a thorough understanding of the mechanisms of creep, the requirements and 

measurement techniques in preparing for creep damage analysis, and to 

investigate the current state of how to achieve computational capability for creep 

damage analysis. 

2) a general methodology for developing HITSI, and detail the specific techniques 

used in spatial discretisation by finite elements, element stiffness integration and 

assembly, solution of equilibrium equation and recovery of results at integrating 

points. 

3) an integrated framework to encompass the development of HITSI for creep 

damage analysis and to develop this software in accord with the development 

strategy (linear elastic stage, non-linear elastic-plastic stage and creep damage 

stage).  

4) a consistent strategy to validate HITSI for the analysis of creep damage 

behaviour, and to validate the FE codes in a step by step fashion according to the 

development strategy for consistency and integrity of this project.  

5) a benchmark test of HITSI via the numerical investigation of creep damage 

behaviour of a Cr-Mo-V steam pipe weldment case, and to investigate the 

efficiency of the Euler and Runge-Kutta integration methods and the normalized 

Kachanov-Rabotnov creep damage constitutive equation.  

6) user guidance for HITSI, and to develop the instructions and tutorials for users 

and researchers. 

At present, all of the above six objectives are delivered in this thesis. After achieving 

the above six objectives, the in-house FE software HITSI will enable engineers and 

researchers to use computer-based FE method in modelling creep damage behaviour in 
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structural components. Here, some limitations in the use of HITSI should be mentioned 

and outlined as: 1) weldment structure such as butt-welded pipework which contains 

pipe intersections and branches cannot be modelled by HITSI unless the complex three-

dimensional element types such as tetrahedron element are developed; 2) the FE codes 

in HITSI can be compiled by either the NAG Fortran compiler or Code::Blocks on 

Windows/ Linux systems; however, programs compiled with a 64-bit system will only 

run on 64-bit kernels with object sizes limited to 2 GB and program compiled with a 32-

bit system will only run on x86 platform with object sizes limited to 2 GB. 

1.3 Project Approach 

This project started with an extensive literature review of the sate-of-the-art in 

mechanisms of creep deformation and creep fracture, knowledge-based weldment 

component, CDM approach, FE algorithm, OOP approach, current FE software 

applications and numerical integration scheme practices. Based upon the domain 

research outlined in literature review, the development of the in-house software HITSI 

will use the following development process: 

1. Initial Design. The overall project framework will be produced that takes into 

account all the aspects of problem domains and requirements in developing in-

house FE software for creep damage analysis. To address problems highlighted 

in Section 1.1, CDM and FEM in conjunction with Fortran 2003 programming 

language based on an OOP approach are used in the development of this FE 

software. 

2. Proof-of-Concept Development. A proof-of-concept consideration was 

developed in order to understand implementation issues and develop solutions to 

those issues. This consideration also served as a demonstration of the design 

concepts and capabilities of the final system and allows various tests to evaluate 

the software system by researchers. 

3. Design Modification. After analysing and evaluating the findings from the 

various tests, the design on both the conceptual model and the functionality of 

software was refined. In this project, it was originally only aiming at the 

development of a 2D (plane stress, plane strain and axisymmetric) version. With 

successful progress on 2D version and recognising the practical importance of a 
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3D version (a more general version), the 3D version of the software was 

proposed that needs to be developed.  

4. Development and Implementation. The development of this in-house FE 

software will be undertaken with as much adherence to the design as possible, 

although further issues may arise that require modification to the design. It 

includes the linear elastic stage, the non-linear (single material and time 

independent) elastic-plastic stage and the time dependent creep deformation and 

creep damage stage. In this project, the existing standard FE subroutines (Smith 

and Griffiths, 2005) and a specific subroutine library (Feng Tan’s FE library) 

were utilized in order to make the development of HITSI more efficient.  

5. Testing and Validation. The developed software will be tested and validated to 

ensure its performance and efficiency satisfy the requirement this research. In 

this project, the FE simulated results from HITSI (uni-axial case) were 

compared with the theoretical results to demonstrate the validity of the FE 

program and a benchmark test of HITSI was performed via the numerical 

investigation of creep damage behaviour of a Cr-Mo-V steam pipe weldment 

case (multi-axial case). The expert in computational creep damage mechanics in 

the University of Huddersfield will be invited to assess the software to ensure 

that it meets the aim of the project and is of an appropriate level of quality. 

1.4 Arrangements of the Thesis 

Chapter 1 introduces the need for computational capability in creep damage analysis 

and the justification for the development of the in-house FE software HITSI. The aims 

and objectives are described. The research approaches are also demonstrated. 

Chapter 2 presents a review of literature in the context of the various knowledge 

domains relating to this project. The contents of literature review mainly focuses on the 

mechanisms of creep deformation and creep fracture for understanding the creep 

behaviour, the development of the FEM based CDM approach for obtaining the 

computational capability for creep damage analysis, the characteristics of existing 

standard commercial and in-house FE software relative to computational creep damage 

mechanics and the preference for in-house software. The investigation of the numerical 

integration methods for the analysis of creep damage behaviour is also illustrated.  
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Chapter 3 focuses on developing a unified FE algorithm for the development of the in-

house FE software HITSI and describing FE techniques that will be involved in this 

project. FE techniques such as spatial discretisation by finite elements; element stiffness 

integration; element stiffness assembly; solution of equilibrium equation and recovery 

of results at the integrating points are discussed. Then, the relevant existing standard FE 

subroutines (Smith and Griffiths, 2005) which can be used in the development of HITSI 

are introduced and demonstrated. 

Chapter 4 presents the development of HITSI. This chapter starts with a development 

strategy for ensuring the programming of HITSI in a step by step fashion, as well as to 

be logical and efficient. Then, it moves to the actual programming stage. The 

development of HITSI contains the linear elastic stage, the non-linear (single material 

and time independent) elastic-plastic stage and the time dependent creep damage stage 

(plane stress, plane strain, axisymmetric and 3D version). Each development stage in 

turn contains the correlative FE programs (sub-knowledge bases) and the specific FE 

techniques and necessary functional extensions in each FE program are presented and 

discussed in this chapter. 

Chapter 5 presents the validation of the FE codes for HITSI. The validation procedures 

are corresponding to the development stages from linear elastic stage to creep damage 

stage. The validation of each FE program is conducted through the comparisons 

between the FE simulated results from the uni-axial case and the correlative theoretical 

results. The details of each validation case are described. The results and discussions in 

each FE program validation are presented. 

Chapter 6 presents the benchmark test of HITSI via the numerical investigation of creep 

damage behaviour of a Cr-Mo-V steam pipe weldment case. The 

2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe weldment physical case (Hall and Hayhurst, 

1991) is modelled by HITSI and the FE simulated results are compared with the 

laboratory test (Coleman et al., 1985) and the results from the software Damage XX 

(Hall and Hayhurst, 1991), respectively. Furthermore, the efficiency of the Euler and 

Runge-Kutta integration methods and the normalized Kachanov-Rabotnov creep 

damage constitutive equation are investigated via this case study. 

Chapter 7 focuses on the summary of this research and contribution to knowledge. A 

discussion for the future work is also included at the end of this chapter. 
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter is a review of literature covering creep damage behaviours, the associated 

metallurgy, the FEM based CDM approach for creep damage analysis, the current state 

of how to obtain the computational capability for creep damage analysis and the 

numerical integration scheme used in the development of the in-house software HITSI.  

The following specific areas of knowledge are considered in detail: 

1) To review the mechanisms of creep deformation. The two main creep processes 

(dislocation creep and diffusion creep) involved in the mechanisms of creep 

deformation are examined to understand the nature of creep deformation 

behaviour. 

2) To review the mechanisms of creep fracture in metals and alloys. Two fracture 

classes (creep failure at temperature above one third melting point and creep 

failure at temperature under one third melting point) involved in the mechanisms 

of creep failure are reviewed to understand the nature of creep failure behaviour. 

3) To review the weldment components. The weldment zones, the creep properties 

in weldment material zones and the creep failure types of weldment components 

are reviewed. 

4) To review the development of the FEM based CDM approach for creep damage 

analysis. The development of CDM for creep damage analysis is considered 

first; then, the existing FE algorithms are reviewed and the preference for the 

explicit FE algorithm is demonstrated. It further reviews the advantages of the 

OOP approach in programming FE software. 

5) To review the existing standard commercial FE and in-house FE software. The 

advantages and disadvantages of existing FE software for creep damage analysis 

are commented upon and it concludes with a preference for in-house FE 

software.  
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6) To review the existing numerical integration schemes for the analysis of creep 

damage. The Euler and Runge-Kutta schemes are reviewed first concluding with 

a preference for the Runge-Kutta scheme. 

2.2 Mechanisms of Creep Deformation in Metals and Alloys 

Creep is defined as the time dependent plastic deformation of a material experiencing 

constant load. There are two main creep processes involved with the mechanism of  

creep deformation (Ashby and Brown, 1983). The first process is called dislocation 

creep, in which the factor controlling the creep rate is the ability of dislocations to glide. 

The second process is called diffusion creep, in which the factor controlling the creep 

rate is continuous annealing at high temperatures (Svensson and Dunlop, 1981). These 

two creep processes are inevitably interconnected, as they may both happen at the same 

time. 

The mechanism of creep may be controlled through the diffusion of vacancies or by 

motion of dislocations and it depends on the different levels of temperature and stress. 

In order to identify the mechanism of creep, Gollapudi (2007) summarized the previous 

work and reported that the particular mechanism of creep can be identified through 

knowledge of the grain size exponent, the stress exponent and the activation energy. 

2.2.1 Dislocation Creep 

Dislocation creep is a process involving the motion of dislocations through the crystal 

lattice of the material (Poirier, 1985). Dislocation creep can exist in whole creep process 

stages and the deformation tends to dominate with differential stress levels on the 

material and relatively low temperatures. Dislocations may move from one slip plane to 

another, by the mechanism known as cross-slip, which allows dislocations a further 

degree of freedom (Poirier and Nicolas, 1976). In dislocation creep processes, Harper 

Dorn (H-D), Viscous glide and Dislocation climb are mechanisms of creep that fall 

under the category of dislocation based processes (Gollapudi et al., 2008). 

The key features of the mechanisms of creep under the category of dislocation based 

processes can be classified as follows: 

a) The Harper-Dorn creep mechanism: It was first proposed by Harper and Dorn 

(1957) and this mechanism can be rate controlling at intermediate temperatures. 

The creep rate may be controlled either by lattice diffusion or by dislocation 

core diffusion (Rollason, 1973). Moreover, the stress and creep rate are 
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independent of grain size and similar creep rates are observed both in 

polycrystals and single crystals (Cadek, 1988). 

b) Viscous glide: This mechanism is usually exhibited by alloys, and the 

dislocation velocity in this case is controlled by the rate of migration of the 

solute atoms (Cottrell and Jaswon, 1949). In the viscous process, the dragging 

force is an outcome of solute atoms segregating to stacking faults and the 

ordering of the region surrounding a dislocation reduces the total energy of the 

crystal by pinning the dislocation (Gollapudi et al.2008). 

c) Dislocation climb: The earliest model to describe creep by dislocation climb was 

proposed by Weertman (1955); this mechanism considers the creep processes to 

be a result of the glide and climb of dislocations. Later, another model that 

considered the non-conservative motion of dislocations was proposed by Barrett 

and Nix (1965). These two models are similar in the sense that the rate of climb 

of the edge jogs is dependent on the concentration gradient established by the 

climbing jogs. However, Viswanathan et al. (1999) indicated that these jogs in 

the above two models could be several times larger than atomic dimensions and 

a modified jogged screw model was proposed by Viswanathan et al. (1999) to 

depict the behaviour of creep. 

There are two types of dislocation (Bauer, 1965): the edge dislocation in Figure 2.1 and 

the screw dislocation in Figure 2.2. 

 

Figure 2.1: The edge dislocation (Bauer, 1965) 
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Figure 2.2: The screw dislocation (Bauer, 1965) 

The edge dislocation and the screw dislocation can both contribute to the creep 

deformation. The schematic diagram of edge dislocation and screw dislocation are 

shown in Figure 2.1 and Figure 2.2, respectively. Edge dislocations form the edge of an 

extra layer of atoms inside the crystal lattice and they move in the direction of the 

Burgers vector (Callister, 2001), whereas screw dislocations form a line along which the 

crystal lattice jumps one lattice point and they move in a direction perpendicular to the 

Burgers vector (Poirier and Nicolas, 1976). Both edge dislocation and screw dislocation 

lines form a linear defect through the crystal lattice and the crystal can be intact on all 

sides of the line. When the distortion is spread over a large area, the movement of the 

dislocation becomes easier. Such dislocations can be called wide dislocations, and they 

normally exist in ductile metals. 

Dislocation creep can be represented by Equation 2.1 and the secondary creep strain rate 

is dependent on the applied stress raised to a power n. This equation is known as the 

Norton Law (Norton, 1929). 

𝜀𝑠̇ = 𝐾𝜎𝑛                                                              (2.1) 

Here 𝜀𝑠̇  is creep strain rate, K is a material constant, 𝜎  is stress and 𝑛  is a variable 

known as the creep exponent. The variable 𝑛 usually has a value between 1 and 10  

(Norton, 1929). 

2.2.2 Diffusion Creep 

The process of diffusion creep was first considered for the deformation of crystalline 

solids by the diffusion of vacancies through their crystal lattice by Nabarro (1948) and 

Herring (1950). Later, Coble (1963) proposed that grain boundaries can also provide an 

alternative path for stress directed diffusional mass transport to take place. In diffusion 
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creep processes, Coble and Nabarro-Herring (N-H) are mechanisms of deformation that 

fall under the category of diffusion based processes (Gollapudi, 2007). The schematic 

diagrams of the mechanism of Nabarro-Herring (bulk diffusion) and Coble (grain 

boundary diffusion) are shown in Figure 2.3 and Figure 2.4, respectively (Goretta et al., 

2001). 

 

Figure 2.3: Nabarro-Herring diffusion (Goretta et al., 2001) 

 

Figure 2.4: Coble diffusion (Goretta et al., 2001) 

The key features of the mechanisms of creep in the category of diffusion based 

processes can be classified as follows: 

a) Nabarro-Herring creep mechanism: It was first proposed by Nabarro (1948) and 

Herring (1950); and this mechanism considers the possibility of creep occurring 

by stress assisted diffusional mass transport through the lattice. The process of 

this mechanism is controlled by stress-directed atomic diffusion through the 

bulk of a metallic crystal. Atoms move through metallic crystals towards grain 

boundaries under tensile stress and conversely vacancies move towards grain 

boundaries under compressive stress. 
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b) Coble creep mechanism: The Coble creep is also called grain boundary diffusion 

and it was first proposed by Coble (1963); this mechanism considers that grain 

boundaries can also provide an alternative path for stress directed diffusional 

mass transport to take place based on the Nabarro-Herring creep mechanism.  

Nabarro-Herring diffusion and Coble diffusion can contribute to the deformation of 

creep simultaneously. The diffusion of vacancies or the motion of atoms from one grain 

boundary to another could occur through the lattice (Nabarro-Herring) or via grain 

boundaries (Coble); however, with increasing temperature Nabarro-Herring creep has a 

greater tendency to become the rate controlling mechanism (Gollapudi, 2007). 

2.3 Mechanisms of Creep Fracture in Metals and Alloys 

Creep fracture is usually caused by the growth of nucleation and mutual connection of 

micro-cavities and micro-cracks (Riedel, 1987). With the continued growth of voids, 

creep cracks grow from the cusp and ultimately weaken the cross section to the point 

where failure occurs (Kun et al., 2003). The crystalline solids can fracture by one of 

several mechanisms. The following description of fracture mechanisms is in accordance 

with Ashby (1972), Frost and Ashby (1982) and Riedel (1987). 

The fracture mechanism map as an effective way of representing the fracture model at 

any combination of stress and temperature was first proposed by Ashby (1977). The 

map indicates the different fracture mechanisms of creep operating in a material as a 

function of stress, temperature and grain size.  

The fracture mechanism maps such as Ashby (1977), Ashby et al. (1979) and 

Krishnamohanrao et al. (1986) have been summarized by (Riedel, 1987). A schematic 

diagram of the fracture-mechanism map was proposed by Riedel (1987) and is shown in 

Figure 2.5. 
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Figure 2.5: The schematic diagram of fracture mechanism map (Riedel, 1987) 

The different regions are presented for a range of stress and temperature over which a 

specific mechanism is anticipated to be the principle process of creep (Liu, 2005). The 

fracture mechanisms can be described under the category of temperature level. 

The mechanisms appearing on the fracture mechanism map in this category can be 

classified as follows (Ashby et al., 1979): 

i. Creep fracture mechanism at temperatures above one third the melting 

temperature of the material. 

ii. Creep fracture mechanism at temperatures below one third the melting 

temperature of the material.  

2.3.1 Creep Fracture Mechanism at Temperatures above One Third Melting Point 

In metals and alloys which creep at temperature above one third melting point, the key 

features of the fracture mechanisms under the category of temperatures beyond this 

point can be classified as follows: 

a) Transgranular creep fracture: Transgranular creep fracture requires either that 

voids pre-exist or voids nucleate at inclusions that concentrate stress (Ashby et 

al., 1979). The size of voids grows by creep deformation around inclusions, 

elongating them in the direction where the stress is applied and the flow stress is 

determined by the strain rate, which is governed by the creep power-law 

(Hayhurst, 2006). 
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b) Intergranular creep fracture: Intergranular creep fracture is usually found at 

lower stresses and elevated temperatures. In this fracture mechanism, void 

growth by creep becomes so slow that fracture by grain boundary cavitation 

intervenes (Riedel, 1987).  Garofalo (1965) reported that the shear deformation 

at grain boundaries observed in intergranular creep was much higher than that in 

transgranular creep. Creep void growth is controlled by dislocation creep at the 

primary-secondary creep stage when voids are small, whereas the diffusion 

creep also contributes to void and crack growth synchronously (Hayhurst, 2006). 

c) Pure diffusional fracture: Pure diffusional fracture is usually found at lower 

stresses and high temperature. In this fracture mechanism, the stress is so low 

that the power-law creep can be negligible and the voids on the grain boundaries 

grow by the mechanism of diffusion alone (Hall, 1990). With the growth of the 

cavities, this type fracture will move to either intergranular fracture or 

transgranular fracture. 

2.3.2 Creep Fracture Mechanism at Temperatures below One Third Melting Point 

In metals and alloys which creep at temperature below one third melting temperature, 

the key features of the fracture mechanisms under this category can be classified as 

follows:  

a) Cleavage: Cleavage creep fracture is usually found at low temperatures and high 

stresses. This fracture mechanism is usually initiated by plastic slipping or 

twinning, often where a slip band impinges on a coarse carbide particle (Riedel, 

1987). The cracks concentrate stress, and the formation of cracks and their 

propagation, along certain crystallographic planes (Rice and Thomson, 1974).  

b) Ductile failure: Ductile failure is usually found at low temperatures and the 

process of this fracture mechanism is similar to the transgranular creep fracture. 

Voids nucleate at inclusions and the plasticity promotes their growth. When 

voids grow big enough, they may coalesce and trigger the fracture of 

components. A new void is nucleated and it connects with other voids could 

result in fracture. Ductile fracture usually accompanies transgranular fracture. 

However,  it may accompany intergranular fracture if the void density becomes 

higher in the boundaries (Hayhurst, 2006).  
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2.4 The Weldment Component 

The weldment has been widely used in high temperature industry fields such as the 

construction of electrical power plant, gas turbine engines design, and refining and 

chemical plants design. The welding processes (Murti and Sundaresan, 1985) can 

provide a strong but straightforward and cost effective joint between components. This 

process can reduce the requirements for bolted flanges and seals; for example, fusion 

welding is the most important method for the design of high temperature power plant. 

The main characteristic of the weldment component is the multi-material zones. ECCC 

(Holdsworth, 2008) and GCC (Kern et al., 2004) have reported that the creep damage in 

the welding area is usually more serious and the weldment response is further 

complicated due to the different base materials that are joined. Hence, the weldment 

zones, the microstructure and creep property behaviour in weldment zones and the creep 

rupture types of weldment are reviewed to understand the characteristic of weldment in 

this section.  

2.4.1 Weldment Zones 

The weldment can be divided into a number of different zones, which are weld metal, 

HAZ (coarse grain, fine grain and inter-critical) and parent material. A typical diagram 

(Klenk et al., 2003) is shown in Figure 2.6 to describe the different weldment zones.  

 

Figure 2.6: The diagram of five typical weldment zones (Klenk et al., 2003) 

A weldment typically consists of five material zones, as illustrated in Figure. 2.6, the 

components in the diverse material zones of weldment are different (Klenk et al., 2003). 

The region close to the weld metal fusion boundary is called the heat affected zone 

(HAZ), which depends on the phase transformations, grain growth and refinement. 

The evolution of microstructure will vary across the weldment as well as within the 

beads during welding, and the evolution is essentially controlled by the heat cycle that 
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the material experiences and the features of the material such chemical composition and 

microstructure of the base material (Hyde et al., 1999).  

The stresses in cross-section are redistributed due to the thermal effect in the welding 

process (Hyde and Sun, 2002). Furthermore, the residual stresses can be reduced and 

the mechanical properties of the weldment constituents can be changed with a 

subsequent post weld heat treatment (Segle, 2002).  

2.4.2 Creep Properties in Weldment Material Zones  

Creep properties in weldment material zones vary with the type of microstructure. 

Furthermore, the microstructure of the weldment also varies with the welding processes; 

for example, the fusion between parent material and weld metal occurs with a heat 

treatment and the fusion becomes complex due to the changes of temperature during the 

welding processes (Hayhurst, 2006). The schematic diagram of temperature and grain 

growth relationship in a typical ferritic steel weld is shown in Figure 2.7 (Porter and 

Easterling, 1992). 

 

Figure 2.7: Schematic diagram of temperature and grain growth relationship in a typical 

ferritic steel weld (Porter and Easterling, 1992) 

Segle (2002) has summarized the relationship between the type of microstructure and 

the material zones in weldment. Material properties such as tensile strength, yield 

strength, fatigue strength, hardening, fracture toughness, hardness, creep deformation 

rate, creep rupture strength and creep ductility vary with the type of microstructure 

(Coleman et al., 1998). According to the Figure 2.7, the material zones can be 
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distinguished across the weldment, starting from the centre of the weld: weld metal, 

fusion line, coarse grained HAZ, fine grained HAZ, inter-critical HAZ and base 

material (Segle, 2002).  

The main characteristics of creep properties in weldment material zones are reviewed in 

Table 2.1. 

Table 2.1: The main characteristics of creep properties in weldment material zones 

Weldment zone The main characteristics of creep properties 

Weld metal The creep deformation rate is instability; the creep rupture strength, 

the creep ductility and rupture behaviour in weld metal are similar 

to that of the base material (Parker and Parsons, 1995) 

Coarse grained 

HAZ  

Lower creep deformation rate, higher creep rupture strength and 

lower creep ductility than that of the base material (Lee et al., 1989)  

Fine grained HAZ The fine-grained zone of HAZ contains higher density of 

dislocations than that of the base metal (Matsui et al., 2001). The 

creep deformation rate, creep rupture strength and creep ductility 

are similar to that of the base material (Parker and Parsons, 1995)  

Inter-critical HAZ Higher creep deformation rate, lower creep rupture strength and 

higher creep ductility than that of the base material (Segle, 2002) 

Base (parent) 

material 

Softening mechanism in this weld zone is known to be a process of 

creep cavitation and coarsening of the carbide precipitates (Parker 

and Parsons, 1995)  

 

The different creep properties in weldment material zones will lead to the generation of 

stress redistribution when the weldment is set in operation.  In the development of FE 

software for creep damage analysis of weldment, the multi-material zones program 

version should consider the material zones with different creep. Moreover, the stress 

and damage field variables should be updated at each iteration loop.  

2.4.3 Weldment Failure Types 

The failure types of weldment are related to both the range of microstructures developed 

during the welding processes and the effect of long-term, high temperature exposure on 
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micro-structural changes (Tu et al., 1994). The classification of cracking types in the 

weldment is presented in Figure 2.8 (Coleman and Kimmins, 1990).  

 

Figure 2.8: The classification of cracking types (Coleman and Kimmins, 1990)  

The failure appears to be the result of the heterogeneous microstructure developed 

during the welding process leading to markedly different properties within the base 

material, HAZ and weld metal (Riedel, 1987). The direction and rate of the crack 

growth depend on factors such as stress level and stress state, the material properties in 

the cracked area and the ability to off-load the crack by stress redistribution (Segle, 

2002). With the continued growth of voids, creep cracks grow from the cusp and 

ultimately weaken the cross section to the point where failure occurs (Kun et al., 2003). 

Coleman and Kimmins (1990) have classified the cracking types in weldment material 

zones. 

Table 2.2: Cracking types in weldment material zones (Coleman and Kimmins, 1990) 

Cracking type Positions in weldment zone 

Type I in weld metal 

Type II in weld metal and adjacent HAZ 

Type III in coarse grained HAZ 

Type IV in inter-critical HAZ 

 

Depending on the position in weldment material zones, cracking types are defined in 

Table 2.2 (Coleman and Kimmins, 1990). Type I and II cracking are often associated 

with the initiation of cracks in weld metal. The lower creep ductility in the coarse 

grained HAZ in conjunction with the lower creep deformation rate result in an 

enhancement in stress level due to stress redistribution during the operation; Type III 

cracking is generated by this evolution (Segle, 2002). Type IV cracking develops in the 
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inter-critical HAZ (Kimmins et al., 1996). The material in the inter-critical HAZ is 

typically characterised by a relatively lower creep strength (Viswanathan, 1989), higher 

minimum creep rate and creep ductility (Parker and Stratford, 1996). Type IV cracking 

is caused by additional loading or stress conditions being applied to the component 

which generate stresses normal to the Type IV zone. In operation, the additional stresses 

may be generated by the bending of pipes under their own weight and the constraint 

forces generated by brackets (Hayhurst, 2006).  

In the development of FE software for the creep damage analysis of weldment, the 

creep deformation and damage are integrated with regard to time. Accuracy suffers and 

instability may occur if the time increment is too large because the evolution of cracking 

types in different weldment material zones is extremely sensitive and complex. Thus, 

the selection of the size of time step associated with an appropriate numerical 

integration method is very important. The creep damage increases monotonically with 

time until the damage increases from the initial zero value to the critical value. The 

element cannot then support any further load and as such is called a failed element. The 

program should remove the failed element to ensure the accuracy. 

2.5 The Development of the FEM based CDM approach for Creep 

Damage Analysis 

The FEM based CDM approach provides the possibility to model and analyse the creep 

damage behaviour in engineering structures. Becker et al. (2002) reported that the 

characteristics of the primary-secondary (steady state) creep deformation behaviour can 

be observed by experiment or simulated by standard commercial FE software in 

conjunction with a special user routine such as UMAT; however, the mathematical 

description of tertiary creep can only be described through the use of CDM. Here, the 

in-house FE software is developed for creep damage analysis through the use of CDM.  

The specific theories in the development of the FEM based CDM approach software for 

creep damage analysis should be reviewed as follows: 

i. The development of CDM for creep damage analysis.  

ii. The FE algorithms used in developing FE software for creep damage analysis. 

iii. The advantages of the OOP approach in programming FE software. 
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2.5.1 The Review of the CDM  

The CDM approach is based on continuum mechanics where a damage parameter has 

been introduced by Kachanov (1958), Rabotnov (1969) and Murakami (1983). In creep 

CDM, the analysis of creep damage using the FEM based CDM approach has been used 

to predict the rupture lifetime of components and to investigate the initiation and growth 

of damage in structures. In FE applications, a damage parameter is defined that ranges 

from zero (no damage) to a critical damage value (full damage) and is then controlled 

throughout the creep processes. Creep failure time is defined as the time taken for the 

continuum damage level to move from no damage to full damage (Becker et al., 2002). 

The CDM approach was first proposed by Kachanov (1958) and Rabotnov (1969), and 

was extensively developed by Hayhurst (1972), Hayhurst (1973), Leckie and Hayhurst 

(1977) and Hayhurst et al. (1984) for creep damage analysis.  

The literature on CDM has now reached mature level. Initially, the CDM approach was 

developed for assessing the manufacture of components from single material; later on, it 

has been extensively used in the creep damage analysis of multi-material structures such 

as damage evolution in weldment. Other work on the description of creep damage 

evolution in weldment through the use of CDM was described by Riedel (1990), Hall 

and Hayhurst (1991), Wang and Hayhurst (1994), Murakami and Liu (1995) and Perrin 

and Hayhurst (1996b).  

The advantage of CDM is the existence of a consistent derivation through the creep 

damage processes. The feature of CDM approach is the material gets damaged does not 

essential has to be understood in detail and the damage parameter can assess the damage 

level of creep (Penny and Marriott, 1995). The FEM combined with CDM approach has 

been demonstrated by Hall and Hayhurst (1991), Hall et al. (1996) and Hyde et al. 

(2000) to be an efficient method in developing in-house FE software for assessing the 

creep damage behaviour of the structural components.  

2.5.2 The Review of FE Algorithm  

FEM is a computer-aided engineering technique for obtaining approximate numerical 

solutions to boundary value problems which predict the response of physical systems 

subjected to external loads (Szabo and Babuška, 1991). In the development of FE 

software for creep damage analysis, the key challenge is dealing with the highly non-

linear behaviour of creep. Factors such as the material inhomogeneity, the stress 
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redistribution due to tertiary creep and the multi-axial stress rupture criterion lead to a 

high non-linearity in creep damage analysis through the use of FEM based technique. 

Thus, numerical FE solution procedures to solve non-linear initial-boundary value 

problems must be developed in programming such software for creep damage analysis. 

It should be noted that many numerical techniques such those of Lemaitre (1985), Chen 

and Hsu (1988), Krishnaswamy et al. (1995), Lemaitre and Desmorat (2005) and Cao et 

al. (2008) have previously been presented; however, all approaches can be 

fundamentally classified as the explicit FE algorithm, the implicit FE algorithm and the 

mixed explicit-implicit (EI) FE algorithm.  

The key features of the FE algorithms in developing numerical FE solution procedures 

for the creep damage problem can be classified as follows: 

a) The explicit FE algorithm: The explicit algorithm (Zienkiewicz and Cheung, 

1967) involves an explicit relationship between increments of stress and 

increments of strain. The explicit procedure is based on the implementation of 

an explicit integration rule together with the use of diagonal element mass 

matrices. The equation of motion for the body is integrated using an explicit 

central difference integration rule (Sun et al., 2000).  Internal and external forces 

are summed at each node point for all elements and this process is repeated at 

each iteration step. The main advantage of the explicit FE algorithm is that the 

analysis of non-linear problems through the use of FEM can be carried out 

element-wise and no global system storage is necessary. However, the stable 

time steps may need to be very small to avoid a potential loss of stability (Smith 

et al., 2013).  

b) The implicit FE algorithm: The implicit algorithm (Lemaitre, 1985) assumes that 

the state of damage of the structure does not influence the state of stress or 

strain. The implicit procedure uses an automatic increment strategy based on the 

success rate of a full Newton iterative (Lemaitre, 1972). The main advantage of 

this algorithm is that the time step size can be selected by user. However, a large 

numerical effort is required to form, store and factorize the stiffness matrix. The 

local instabilities make force equilibrium difficult to achieve and as a result the 

unconditionally stable implicit method will encounter some difficulties in 

analysing the complicated FE model  (Rebelo et al., 1992).  
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c) The mixed explicit-implicit FE algorithm: The mixed explicit-implicit algorithm 

is a methodology to combine explicit and implicit linear integration approaches 

based on element-wise stability considerations (Fierz et al., 2011). The 

improvements have been shown by Chen and Hsu (1988) to achieve  stability 

and accuracy of results by using the mixed explicit-implicit algorithm. With the 

mixed explicit-implicit algorithm, much larger time step sizes can be employed 

with only slightly more computational effort than for the explicit scheme. 

However, the disadvantage of this algorithm for use in FEM for the highly non-

linear problems is much more complexity and extra development work.  

In FEM for highly non-linear dynamic problems, an explicit algorithm, which is 

conditionally stable, is the most adapted (Noels et al., 2004). The key feature of the 

analysis of creep damage problems through the use of FEM is dealing with the highly 

non-linear behaviour of creep. Especially in the tertiary creep stage, a large number of 

iterations are usually needed to achieve the stability and the accuracy of the FE 

solutions. In creep CDM, a damage parameter is defined to represent the continuum 

damage level from no damage to full damage and the size of time step is usually very 

small by comparison with the failure time of the components when describing the 

different damage levels in engineering structures. Thus, the many iterations will result 

in the use of a very large numbers of simultaneous equations for the solution of creep 

damage problem. In order to reduce the large storage demands and improve the 

efficiency of computational capability, the explicit FE algorithm is adapted in the 

development of HITSI for creep damage analysis. 

2.5.3 The Review of OOP Approach 

OOP approach is a relatively new philosophy of programming which using data 

structures consisting of data fields and methods together with their interactions to 

improve the overall quality of computer applications such as simulation programs, 

operating systems and graphical user interfaces (Machiels and Deville, 1997). In 

computer-based FE simulation, the first application of OOP to the FEM appeared at the 

end of the 1980s with the work by Rehak et al. (1989) and Forde et al. (1990). The 

authors abstracted out the essential components such as the element, the node, the 

boundary conditions and the loads information of the FEM as the basic objects of an 

OOP environment. Later on, Zimmermann et al. (1992), Miller et al. (1993) and Lages 

et al. (1999) described in detail the fundamental aspects relating application of OOP 
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techniques to implementation of the FEM. They also presented OOP architecture for use 

in non-linear dynamic FE analyses. 

By comparison with the typical FE program developed based on the procedure-oriented 

approach, the FE program developed based on OOP approach has obviously advantages 

(Archer, 1996). The basis of OOP approach is abstraction. The application of OOP 

philosophy in the development of FE software can make the programming more flexible. 

Generally, the reasons for choosing OOP approach can be summarised as: 

1) To apply a new algorithm or a new kind of element in the FE software system 

may easier because the alteration of one subroutine will not affect the whole 

program. 

2) The efficiency in maintenance the FE program can be significantly improved 

because it allows the reusability of the FE codes. 

3) The integrity and determination of the data structures are assured; thus it is 

easier to modify the existing FE codes and to extend the FE codes to adapt them 

for new uses, models and solution procedures. 

It is noted that most of the relevant publications focus on computational aspects 

associated with OOP, rather than on actual engineering applications. The approach 

adopted in this project consists of employing OOP as a programming approach, which 

plays an important role in the development of in-house FE software HITSI for creep 

damage analysis. Although only a few research groups such as Hayhurst et al. (2009) 

and Hyde et al. (2000) had developed non-linear FE software in creep damage analysis, 

the OOP approach was not mentioned. Consequently, to develop in-house FE software 

based on OOP for creep damage analysis is still a new area, no distributed FE system 

based on OOP has been built for creep damage analysis so far.  

The purpose of the use of OOP in current research is to make the software HITSI more 

flexible for further expansion, with low computing cost and high computing 

performance. For instance, in the FE module the different types of the creep damage 

constitutive equation are programmed based on the OOP approach. In this module, the 

data types such as variables and arrays applied to the data structure are defined to inherit 

characteristics among the different subroutines. With OOP, the developer can simply 

create a new creep damage constitutive equation subroutine that inherits many of its 



42 
 

features from existing subroutines and it can make this FE module much easier to 

modify. 

2.6 Current FE software for Creep Damage Analysis 

Computational creep damage mechanics have been developed and used to understand 

the creep deformation, creep damage evolution and creep rupture. The computational 

capability can only be obtained by the development and the application of special user 

routines either in conjunction with standard commercial software (such as ABAQUS or 

ANSYS) or with dedicated in-house FE software for creep damage analysis, each of 

which has its own advantages and disadvantages.  

In FE modelling creep damage behaviours, one of the tasks behind the simulation of 

creep rupture process is to permit the removal of failed elements from the boundary-

value problem as soon as the strength vanishes at the end of strain softening process. 

The failed element removal technique should be considered in the accurate simulation 

of creep damage behaviour because the creep rupture process includes the contact and 

impact of fragments that causes the dissipation of kinetic energy (Vignjevic et al., 2004). 

By using this technique it can be avoid the excessive distortion of the elements which 

may causes termination during the solution (Hayhurst et al., 1995).  

A review on current state of the computational FE software for creep damage analysis is 

presented as follows: 

i. The review of industrial standard commercial FE software for creep damage 

analysis 

ii. The review of dedicated in-house FE software for creep damage analysis 

iii. The preference for the development of dedicated in-house FE software 

2.6.1 The Review of Industrial Standard FE Software 

The current industrial standard commercial FE software is not able to provide the creep 

damage analysis capability; however, it can be expanded with the development and use 

of special user routines to achieve such computational capability.  

The applications and characteristics of the most popular standard commercial FE 

software are summarized in Table 2.3. 
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Table 2.3: The industrial standard FE software 

Standard 

FE software 
Samples of application 

 

Observation and Comment 

ABAQUS 

Benchmarks for FE 

analysis of creep CDM 

(Becker et al., 1994) 

 

Numerical investigation 

on the creep damage 

induced by void growth 

in HAZ of weldments 

(Yu et al., 2009) 

 

 

User must develop a user routine to incorporate 

into ABAQUS such as ABAQUS-UMAT for 

the analysis of creep damage behaviour (Becker 

et al., 1994). It can access to a wide range of 

element types, material models and other 

facilities such as efficient equation solvers, 

which are not normally available in in-house FE 

codes. 

It does not currently permit the removal of 

failed elements from the boundary-value 

problem during the solution process (Mustata et 

al., 2006). 

CDM has not been incorporated in this FE 

software;  it can analyse the primary-secondary 

creep stage but is unable to simulate the tertiary 

creep stage where significant damage occurs 

(Moberg, 1995). 

ANSYS 

On the accuracy of 

creep damage 

predictions in thin 

walled structures using 

the FEM (Altenbach et 

al., 2000) 

 

Simulation of early age 

concrete creep stress 

based on ANSYS (Li 

and Wu, 2008) 

User must develop a user routine to incorporate 

into ANSYS for the analysis of creep damage 

behaviour. The integration scheme implemented 

in the user routine should be stable to ensure the 

overall numerical stability.  

It does not currently permit the removal of 

failed elements from the boundary-value 

problem during the solution process. CDM has 

not been incorporated into this FE software as a 

result of the lack of the consideration of stress 

redistribution due to tertiary creep. (Yao et al, 

2007). 
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MSC.Marc 

software 

A size-dependent 

crystal plasticity FE 

model for creep and 

load shedding in 

polycrystalline titanium 

alloys (Venkatramani et 

al., 2007) 

 

Case studies of 

reliability analysis by 

stochastic methodology 

in BGA creep analysis 

(Sasaki, et al., 2005) 

Marc can simulate the response of the 

components under static, dynamic and multi-

physics loading conditions. User must develop a 

user routine to incorporate into Marc for the 

analysis of creep damage behaviour 

(Venkatramani et al., 2007) 

. 

Stress redistribution due to tertiary creep and the 

multi-axial stress rupture criterion have not been 

considered because of the lack of CDM. It does 

not currently permit the removal of failed 

elements. 

RFPA2D-

Creep 

Numerical Simulation 

on Floor Heave 

Mechanism of 

Roadway (Junhai, 

2010) 

 

Numerical Test Study 

on the Mechanical 

Behaviour of Rock 

Creep Fracture (Yuan et 

al., 2012) 

The development direction of RFPA2D-Creep is 

the analysis of creep behaviour in the structural 

analysis of soils and rocks. However, the creep 

behaviour of metallography such as creep 

damage in welds is not considered (Yuan et al., 

2012). 

It does not currently permit the removal of 

failed elements from the boundary-value 

problem during the solution process. CDM has 

not been incorporated in this FE software. 

 

 

2.6.2 The Review of in-house FE software 

The characteristics of the main in-house FE software have been summarized in Table 

2.4. 
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Table 2.4: The main in-house FE software 

FE software  Characterization Observation and Comment 

FE-DAMAGE 

FE-DAMAGE was 

written in FORTRAN and 

it was developed by 

Hyde’s research group at 

University of Nottingham 

and (Becker et al., 1994). 

The CDM is incorporated 

in this in-house software. 

The source codes of this FE software have 

not published. 

The OOP approach is not mentioned in this 

FE software and it could be used in future. 

DAMAGE XX 

DAMAGE XX (2D) was 

developed by Hayhurst’s 

research group at UMIST.  

The CDM is incorporated 

in this in-house software. 

It incorporates the physics 

of the creep deformation 

and rupture of individual 

phases of the weld 

materials (Hayhurst et al., 

1984). 

The source codes of this FE software have 

not published.  

This solver requires a huge computer 

resource (Hayhurst et al., 2005). According to 

Ling et al. (2000), the fourth order Runge-

Kutta integration scheme used in this solver 

might be incorrect. 

The OOP approach is not mentioned in this 

FE software. 

DNA 

DNA (2D) was developed 

by Voyiadjis’s research 

group at Louisiana State 

University. The CDM is 

incorporated in this in-

house software. 

It includes both the elastic 

and plastic analysis of 

materials incorporating 

damage effects (Kattan 

and Voyiadjis, 2002).   

The function of this software is limited to 

plastic deformation and damage in ductile 

materials. Voyiadjis has reported that this 

solver can be extended for the analysis of the 

creep problem; however, such a function has 

not yet been incorporated in this FE program.  

It is a 32-bit DOS executable file which can 

only run under the Windows 95/98/NT 

operating system. The number of nodes in a 

problem must not exceed 3000, the number of 

elements in a problem must not exceed 400  

(Kattan and Voyiadjis, 2002). 
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DAMAGE 

XXX 

DAMAGE XXX (3D) 

was developed based on 

DAMAGE XX (2D) by 

Hayhurst’s research 

group at UMIST. The 

CDM is incorporated in 

this in-house software. 

It is running on parallel 

computer parallel 

architectures (Hayhurst et 

al., 2009).  

The source codes of this FE software have 

not published. 

The technique for different loading and 

operating conditions as well as the new 

RAM-based numerical technique for solving 

a large set of simultaneous equations should 

be developed to cope with more complex 

geometries such as butt-welded pipes in 

power generation (Wong, 1999). 

According to Ling et al (2000), the fourth 

order Runge-Kutta integration scheme used 

in this solver might be incorrect. 

The OOP approach is not mentioned in this 

FE software. 

 

2.6.3 Why choose in-house FE Software 

The current industrial standard commercial FE software in conjunction with the 

development and the application of special user subroutines can produce the 

computational capability for creep damage analysis. The advantages of the analysis of 

creep damage problem in this way can be summarized as: 1) it can access a wide range 

of element types, material models and other facilities such as efficient equation solvers, 

which are not normally available to in-house FE codes; 2) the development work 

needed through the use of industrial standard FE software is less than that for the 

development of in-house FE software for creep damage analysis (Gorash et al., 2008). 

However, the author still prefers the development of dedicated in-house FE software for 

creep damage analysis for the following reasons: 

1) Computational capability such as CDM is not readily available in commercial 

general-purpose standard FE software, but it can be incorporated in in-house FE 

codes. 

2) The industrial standard commercial FE software does not currently permit the 

removal of the failed elements from the boundary-value problems during the 

solution process, but this function can be achieved through the development of 

in-house FE software.  
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3) The industrial standard FE software makes no allowance for the stress 

redistribution due to tertiary creep and the multi-axial stress rupture criterion in 

the region of the welds; however, they can be considered through the use of in-

house FE software. 

Thus, this research project is conducted through the development of dedicated in-house 

FE software for creep damage analysis and the author still believes that there are 

advantages and merits in developing and using in-house FE software for creep damage 

analysis. 

In order to advance knowledge from the investigation of existing standard commercial 

and in-house FE software in creep damage analysis, some innovative ideas and 

solutions relative to the computer-based FE modelling creep damage behaviour have 

proposed. The following paragraphs provide a brief summary for the innovative ideas 

and solutions in this project. 

1) To apply the OOP approach in design and development of in-house FE software 

for creep damage analysis. 

2) To provide a novel in-house software which includes different creep damage 

constitutive equation types and different numerical time integration methods for 

user.  

2.7 Numerical Integration Scheme for Creep Damage Problem 

In FEM for creep damage problems, the resulting equations are highly non-linear and 

stiff in nature (Zienkiewicz and Cormeau, 1974). The nature of creep damage analysis is 

time dependant and the field variables such as stress, strain, and creep damage variables 

need to be updated where an integration scheme needs to be implemented. The stability 

and accuracy of the FE solution critically depends on the selection of the time step size 

associated with an appropriate integration method (Tu et al., 2004). Thus, the numerical 

integration method should be investigated in the development of in-house FE software 

for the analysis of creep damage behaviour.  

The numerical time integration methods that are reviewed in this section can be 

classified as: 1) Euler scheme; 2) Runge-Kutta scheme. The Runge-Kutta integration 

scheme can be subdivided into the classical 4th order Runge-Kutta integration method, 
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the Runge-Kutta-Merson integration method and the Runge-Kutta-Fehlberg integration 

method.  

Finally, it is noted that the Runge-Kutta scheme has obvious advantages in the analysis 

of creep damage problem in comparison with the Euler integration method. 

2.7.1 The Review of Existing FE Integration Method  

The characteristics of existing FE integration methods for creep problem have been 

summarized in Table 2.5. 

Table 2.5: The review of existing FE integration method for creep problem 

Integration 

method 
Characterization Observation and Comment 

Euler 

method 

The Euler method is a first order 

numerical procedure for solving 

ordinary differential equations 

with a given initial value. The 

Euler method (James et al., 

1985) can be regarded as the 1st 

order Runge-Kutta method and 

can be divided into forward 

Euler’s method  and backward 

Euler’s method.  

The Euler method required extremely 

small time steps to ensure the 

convergence of iterations and accuracy of 

calculations in creep fracture problem 

(Cormeau, 1975). Due to the high 

concentration of creep strain that exists 

near the crack tip, the use of the Euler 

method for creep damage simulation is 

relatively uneconomic (Ling et al., 2000). 

Classical 4th 

order 

Runge-Kutta 

The 4th order Runge-Kutta 

method (Zolochevsky et al., 

2009) means four evaluations of 

functions per time step are 

required. For the stability 

consideration, it is usual to have 

some means of controlling the 

time step in order to obtain the 

efficiency.  

In terms of creep mechanics, the rate of 

stress redistribution greatly differs 

throughout the engineering structures and 

usually require a small time step to 

achieve accurancy. Accoring to 

Zolochevsky et al. (2009), the 4th order 

Runge-Kutta method in creep analysis has 

the advantage that it minimises the 

requirement of extra storage. Furthermore, 

the amount of round-off error can be 

reduced through use of  this method. 
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Runge-

Kutta-

Merson 

method 

The Runge-Kutta-Merson 

method (Christiansen, 1970) is a 

five-stage Runge–Kutta method 

with fourth-order accuracy. This 

method only requires a single 

start value (Hall, 1990); and 

gives an automatic and rapid 

way for determining  

the step length to be used in 

order to obtain a predetermined 

accuracy. 

This method only needs to compute five 

estimates in the next step; an estimate of 

the local error is then available from a 

weighted sum of the individual estimates 

(Ling et al., 2000). In creep damage 

analysis, this method provides an easily 

calculable local truncation error estimate, 

which can form the basis for time step 

selection with a time step control 

technique. Moreover, the Runge-Kutta-

Merson method provides reasonable 

solution accuracy and stability with a low 

computational overhead (Hayhurst et al., 

1984).  

Runge-

Kutta-

Fehlberg 

method 

The Runge-Kutta-Fehlberg 

method (Bose, 2009) uses six 

evaluations of functions per time 

step. This  method couples the 

4th and 5th  order Runge-Kutta-

methods; and the advantage is 

that only six evaluations are 

required at each step in order to 

achieve approximations from 

both the 4th and 5th order Runge-

Kutta-methods. 

In the Runge-Kutta-Fehlberg method, one 

extra calculation can estimate and control 

the error in the solution process with a 

higher order embedded method; thus, it 

can determine the choice of an adaptive 

step size automatically (Bose, 2009). Ling 

et al. (2000) commented that using the 

Runge–Kutta–Fehlberg method needs a 

larger amount of computation compared 

to the Runge-Kutta-Merson method 

because of the large number of iterations 

required in the analysis of creep damage 

through the use of FEM.  

 

2.7.2 Why the Runge-Kutta Scheme 

The well-known Euler scheme is only conditionally stable and the stability condition is 

rather stringent. Although improved versions have been developed by Zienkiewicz and 

Cormeau (1974), Krishnaswamy et al. (1995) and Cao et al. (2008), it still requires 
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extremely small time steps to ensure the convergence of iterations and accuracy of 

calculations. In creep damage analysis, the Runge-Kutta scheme has obvious advantages: 

1) With the Runge-Kutta scheme, large time steps can be employed with only 

slightly more computational effort than for the Euler scheme. The saving in total 

computation time can be considerable (Ling et al., 2000). 

2) An improvement in stability and accuracy of results can be obtained through the 

use of the Runge-Kutta scheme as demonstrated by Hayhurst and Henderson 

(1977). 

3) The high efficiency is even more pronounced for large-scale problems where 

many elements and nodes are involved (Ling et al., 2000). 

4) The Runge-Kutta scheme is particularly suitable for the creep damage analysis, 

where higher concentrations of creep strain exist near the crack tip (Hayhurst et 

al., 1984). 

It is noted that the Euler integration, the classical 4th order Runge-Kutta integration, the 

Runge-Kutta-Merson integration and the Runge-Kutta-Fehlberg integration methods 

have been programmed by the author’s colleague Feng Tan and they have been 

incorporated with the creep damage constitutive equation in the subroutine library for 

the in-house FE software HITSI. More details about the numerical integration method’s 

subroutine will be reported in Chapter 3. 

2.8 Summary 

This chapter gives a brief overview and discussion on the problem domains relating to 

this project. The mechanisms of creep deformation and creep fracture in metals and 

alloys are reviewed to understand the nature of the creep damage problem. The creep 

damage behaviour in weldment component has been identified. 

It also illustrates why this project needs to be done and why new techniques need to be 

involved. The current state of how to achieve the computational capability for creep 

damage analysis and why the in-house FE software should be developed have been 

demonstrated. It further reports on the techniques such as CDM, FE algorithm, OOP 

approach and numerical integration schemes that need to be involved in this project. 
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Chapter 3 Finite Element Method  

3.1 Introduction 

This chapter reports the general methodology, the FE algorithm, the specific FE theory 

and the existing standard FE subroutines for the development of HITSI for creep 

damage analysis. The fundamental FE procedures used in analysing the structural 

problem though the FEM can be summarized as the mesh discretization of the structure, 

element stiffness assembly, the solution of the equilibrium equation and recovery of 

results at the integrating points. 

The specific requirements for this chapter include: 

1) To consider the general methodology in the development of the in-house FE 

software HITSI for creep damage analysis.  

2) To report the FE algorithm used in developing HITSI for creep damage analysis. 

The general FE algorithm, the creep damage constitutive equation, the numerical 

integration method and the explicit stress update FE algorithm that are used in 

developing HITSI are demonstrated.  

3) To report on the finite elements (the mesh discretization of a continuous 

domain) in the development HITSI for creep damage analysis. Theoretical 

knowledge of the derivation of constitutive equations for the 2D (plane stress, 

plane strain and axisymmetric) and 3D element type are investigated, and the 

existing FE standard subroutines to set up element data are reported. 

4) To report the element stiffness assembly method in developing HITSI for creep 

damage analysis. Theoretical knowledge of element assembly is presented 

firstly; then, the existing standard FE subroutines for the element stiffness 

assembly are reported. 

5) To report the solution of the equilibrium equation and recovery of results at the 

integrating points methods in the development of HITSI for creep damage 

analysis. Theoretical knowledge of the solution of the equilibrium equation and 

integrating point result recovery is presented first followed by the relevant 

existing standard subroutines FE subroutines. 
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3.2 The General Methodology Consideration for the Development of 

HITSI 

The general methodology used in developing in-house FE software for creep damage 

analysis can be divided into the following four parts: 1) Planning; 2) Programming; 3) 

Validation; 4) Software maintenance. 

 Planning: The objective of this project is the development of FE software for 

creep damage analysis. A mathematical model of the creep damage behaviour 

should be formulated including the material independent equations, constitutive 

(evolution) equations as well as initial and boundary conditions (Ralph and 

Wand, 2009) . The use of the CDM approach and FEM in conjunction with an 

advanced engineering computer programming language (Fortran 2003) based on 

the OOP approach is planned in this project to develop HITSI. The existing 

standard FE subroutines adopted from Smith and Griffiths (2005) and a specific 

subroutine library provided by the author’s colleague Feng Tan should be 

utilized in developing HITSI for efficiency.  

 Programming: The development strategy and the general flow diagram for the 

development of HITSI have been developed for the description of the FE 

procedures in creep damage analysis. The development of HITSI as conducted 

includes the linear elastic stage, the non-linear (single material and time 

independent) elastic-plastic stage and the time dependent creep deformation and 

creep damage stage. Moreover, the 2D (plane stress, plane strain and 

axisymmetric) version and 3D version FE programs should be developed within 

the characteristics of updating stress and damage field variables, multi-materials 

zones and failed elements removal. 

 Validation: The validation of the FE codes for HITSI has been developed and it 

can be divided into two parts: 1) the FE simulated results from HITSI (uni-axial 

case) are compared with the theoretical results to demonstrate the validity of the 

FE program; 2) a benchmark test of HITSI via the numerical investigation of 

creep damage behaviour of a Cr-Mo-V steam pipe weldment case (multi-axial 

case) and the computational results from HITSI are compared with existing 

results to demonstrate the validity of HITSI. 
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 Software maintenance: Maintaining and enhancing software is necessary to cope 

with newly discovered faults or requirements (Keates et al., 2000). User 

guidance of the in-house software HITSI has been developed and the 

instructions have been prepared with pseudo code to improve the readability and 

sustainability for later development by new software engineers.  

3.3 The FE Algorithm for the Development of HITSI 

The numerical FE algorithm used in the development of in-house FE software for creep 

damage can be divided into the following four parts: 1) the general FE algorithm; 2) the 

creep damage constitutive equation; 3) the numerical integration method; 4) the stress 

update FE algorithm. 

3.3.1 The General FE Algorithm 

The explicit FE algorithm is used in the development of HITSI and the advantages of 

the use of this algorithm in creep damage analysis have been reviewed in Chapter 2.  

The computational solution with FEM for creep damage starts by solving the boundary 

value problem; it uses the initial elastic stresses to substitute into the creep damage 

constitutive equation, and the creep damage and strain fields are integrated with respect 

to time (Ling et al., 2000). Here, assuming the total strain ε in FE program can be 

partitioned into the elastic strain and creep strain, the total strain increment can be 

expressed as: 

𝛥𝜀 =  𝛥𝜀𝑒  + 𝛥𝜀𝑐                                                         (3.1) 

Where the 𝛥𝜀, 𝛥𝜀𝑒and 𝛥𝜀𝑐 are increments in total, elastic and creep strain components, 

respectively (Ling et al., 2000). 

The stress increment is related to the elastic and creep strain increments by: 

𝛥𝜎 = 𝐷(𝛥𝜀 −  𝛥𝜀𝑐)                                                        (3.2) 

Where 𝐷 is the stress-strain matrix and contains the elastic constants. 

The stress increments are related to the incremental displacement vector 𝛥𝑢 by: 

𝛥𝜎 = 𝐷(𝐵𝛥𝑢 −  𝛥𝜀𝑐)                                                      (3.3) 

Where 𝐵 represents the strain-displacement matrix, and the equilibrium equation to be 

satisfied any time can be expressed by: 
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∫ 𝑣𝐵𝑇𝛥𝜎 𝑑𝑣 = 𝛥𝑅                                                          (3.4) 

Where ΔR is the vector of the equivalent nodal mechanical load and 𝑣 is the element 

volume. Combining Equation 3.3 and Equation 3.4: 

∫ 𝑣𝐵𝑇𝐷(𝐵𝛥𝑢 – 𝛥𝜀𝑐) 𝑑𝑣 = 𝛥𝑅                                              (3.5) 

The ΔR is used to update the loads applied to the structure of the FE model. 

3.3.2 The Creep Damage Constitutive Equation 

The computational capability relies on the availability of a computational tool and a set 

of creep damage constitutive equations that can depict the complex creep phenomena. 

The use of the creep damage constitutive equation is proposed to depict the behaviour of 

material during creep damage (deformation and rupture) process, and especially for 

predicting the lifetime of the material. The creep damage constitutive equation is a key 

part programming and the accuracy of the lifetime prediction depends on such an 

equation.  

The most popular creep damage constitutive equations have been programmed and 

included in Feng Tan’s subroutine library. This subroutine library has been utilized in 

the development of HITSI and contains constitutive equation subroutines for the 

Kachanov-Rabotnov-Hayhurst, the Kachanov-Rabotnov and the Kachanov-Rabotnov-

Hayhurst-Xu models. The creep damage constitutive equations are presented as follows: 

a) Kachanov-Rabotnov-Hayhurst equation: 

The Kachanov-Rabotnov-Hayhurst equation (Perrin and Hayhurst, 1996a) is well-

known and is widely used in creep damage analysis and includes both uni-axial and 

multi-axial forms (Perrin and Hayhurst, 1996a). 

1. The uni-axial form: 

𝜀̇ = 𝐴 𝑠𝑖𝑛ℎ(
𝐵𝜎(1 − 𝐻)

(1 − 𝜑)(1 − 𝜔)
)                                                 (3.6) 

𝐻̇ =
ℎ

𝜎
(1 −

𝐻

𝐻∗
) 𝜀̇                                                             (3.7) 

𝜑̇ =
𝐾𝐶

3
(1 − 𝜑)4                                                             (3.8) 
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𝜔̇ = 𝐶𝜀̅̇∗                                                                      (3.9) 

Where A, B C, h, H* and 𝐾𝐶 are material parameters. H (0 < H < H*) indicates strain 

hardening during primary creep, φ (0< φ < 1) describes the evolution of spacing of the 

carbide precipitates (Perrin and Hayhurst, 1996a). 

2. The multi-axial form: 

𝜀𝑖𝑗̇ =
3𝑆𝑖𝑗

2
𝐴𝑠𝑖𝑛ℎ(

𝐵𝜎𝑒(1 − 𝐻)

(1 − 𝜑)(1 − 𝜔)
)                                          (3.10) 

𝐻̇ =
ℎ

𝜎𝑒
(1 −

𝐻

𝐻∗
) 𝜀𝑒̇                                                         (3.11) 

𝜑̇ =
𝐾𝐶

3
(1 − 𝜑)4                                                            (3.12) 

𝜔̇ = 𝐶𝜀𝑒̇ 〈
𝜎1

𝜎𝑒

〉𝜈                                                               (3.13) 

Where 𝑆𝑖𝑗 is the deviator stress tensor, 𝜎𝑒 is the Von Mises stress, σ1 is the maximum 

principal stress and ν is the stress state index defining the multi-axial stress rupture 

criterion (Perrin and Hayhurst, 1996a) 

b) Kachanov-Rabotnov equation: 

The Kachanov-Rabotnov equation (Rabotnov, 1969) is used in the validation of the in-

house FE codes and the benchmark test of HITSI via the numerical investigation of 

creep damage behaviour of a Cr-Mo-V steam pipe weldment case.  The Kachanov-

Rabotnov equation also contains uni-axial and multi-axial forms. 

1. The uni-axial form: 

  

𝜀̇ = 𝐾′ (
𝜎

1 − 𝜔
)

𝑛

                                                           (3.14) 

𝜔̇ = 𝑀′
𝜎𝜈

(1 − 𝜔)Ф
                                                           (3.15) 

Where K', M ', n, v and Ф are material constants (Hall, 1990).  

2. The multi-axial form: 
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𝜀𝑖𝑗̇ =
3

2

𝐾′𝜎𝑒
𝑛−1

(1 − 𝜔)𝑛
 𝑆𝑖𝑗 𝑓(𝑡)                                                    (3.16) 

𝜔̇ = 𝑀′
△ 𝑥(𝜎𝑖𝑗)

(1 − 𝜔)Ф
  𝑓(𝑡)                                                      (3.17) 

Where 𝑓(𝑡)  represents the primary creep region and is taken as 𝑓(𝑡) = 𝑡𝑚 and 𝑥  = 

𝜈(𝑚 + 1) to represent the time scale modification (Hall, 1990). 

c) Kachanov-Rabotnov-Hayhurst-Xu equation:  

The Kachanov-Rabotnov-Hayhurst-Xu equation (Xu, 2001) is based on the Kachanov-

Rabotnov-Hayhurst equation. Its uni-axial form is the same as the uni-axial form of the 

Kachanov-Rabotnov-Hayhurst equation; however, the improvement of the Kachanov-

Rabotnov-Hayhurst-Xu equation is that the effect of states of stress is considered in its 

multi-axial form. 

1. The multi-axial form: 

𝜀𝑖𝑗̇ =
3𝑆𝑖𝑗

2
𝐴𝑠𝑖𝑛ℎ(

𝐵𝜎𝑒(1 − 𝐻)

(1 − 𝜑)(1 − 𝜔)
)                                           (3.18) 

𝐻̇ =
ℎ𝜀𝑒̇

𝜎𝑒
(1 − (

𝐻

𝐻∗
))                                                         (3.19) 

𝜑̇ =
𝐾𝐶

3
(1 − 𝜑)4                                                             (3.20) 

𝜔̇ = 𝐶𝑁𝜀𝑒̇𝑓2                                                                   (3.21) 

𝜔̇𝑑 = 𝐶𝑁𝜀𝑒̇𝑓1                                                                  (3.22) 

𝑓1 = (
2𝜎𝑒

3𝑆1
)

𝑎

𝑒𝑥𝑝 {𝑏 [
3𝜎𝑚

𝑆𝑆
− 1]}                                               (3.23) 

𝑓2 = 𝑒𝑥𝑝 [𝑝 (1 −
𝜎1

𝜎𝑣𝑚
) + 𝑞 (

1

2
−

3𝜎𝑚

2𝜎𝑣𝑚
)]                                     (3.24) 

Where 𝑓1 and  𝑓2 are functions of stress states. The function 𝑓2 is introduced to depict 

the effect of states of stress on the damage evolution. The additional function  𝑓1 is 

introduced to better represent phenomenologically the coupling between damage and 

tertiary deformation and creep rupture (Xu, 2001). 
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3.3.3 The Numerical Integration Method 

The FE solution depends critically on the size selection of the time steps associated with 

an appropriate integration method. The most popular integration methods have been 

programmed and included in Feng Tan’s subroutine library utilized in the development 

of HITSI. This library contains integration subroutines for the Euler, the classical 4th 

order Runge-Kutta, the Runge-Kutta-Merson and the Runge-Kutta-Fehlberg methods. 

The algorithms of the integration methods are presented as follows: 

a) Euler integration method (Cormeau, 1975): 

yi+1 = yi + f(xi, yi) Δt                                                       (3.25) 

b) Classical 4th order Runge-Kutta integration method (Zolochevsky et al., 2009): 

k1 = f(xi, yi)                                                                (3.26) 

k2 = f (xi +
1

2
Δt, yi +

1

2
k1)                                                  (3.27) 

k3 = f (xi +
1

2
Δt, yi +

1

2
k2)                                                  (3.28) 

k4 = f(xi + Δt, yi + k3)                                                     (3.29) 

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)Δt                                       (3.30) 

c) Runge-Kutta-Merson integration method (Christiansen, 1970): 

 k1 = f(xi, yi)                                                                (3.31) 

k2 = f (xi +
1

3
Δt, yi +

1

3
k1)                                                  (3.32) 

k3 = f (xi +
1

3
Δt, yi +

1

6
(k1 + k2))                                           (3.33) 

k4 = f (xi +
1

2
Δt, yi +

1

8
(k1 + 3k3))                                          (3.34) 

k5 = f (xi + Δt, yi +
1

2
(k1 − 3k3 + 4k4))                                      (3.35) 

yi+1 = yi +
1

6
(k1 + 4k4 + k5)Δt                                             (3.36) 

d) Runge-Kutta-Fehlberg integration method (Bose, 2009): 

k1 = f(xi, yi)                                                               (3.37) 
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k2 = f (xi +
1

4
Δt, yi +

1

4
k1)                                                  (3.38) 

k3 = f (xi +
3

8
Δt, yi +

3

32
k1 +

9

32
k2)                                         (3.39) 

k4 = f (xi +
12

13
Δt, yi +

1932

2197
k1 −

7200

2179
k2 +

7296

2179
k3)                              (3.40) 

k5 = f (xi + Δt, yi +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4)                            (3.41) 

k6 = f (xi +
1

2
Δt, yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5)                    (3.42) 

yi+1 = yi + (
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 −

2

55
k6) Δt                      (3.43) 

3.3.4 The Stress Update FE Algorithm  

Creep deformation can be regarded as a time-related plastic deformation and the process 

of the creep damage is extremely non-linear and transient. The creep damage field 

variables such as creep strain, damage and stress should be updated with the time 

integration. The explicit FE algorithm, which has been demonstrated to have obvious 

advantages in dealing with highly non-linear creep damage problems in Chapter 2, is 

adapted for the development of a stress update FE algorithm in HITSI.  

It is noted that Hayhurst et al. (2005) and Becker et al. (1994) had developed in-house 

FE software for creep problems. Hall et al. (1991) have reported their stress update FE 

algorithm in the FE software DAMAGE XX; later on, Smith and Griffiths (2005) 

presented the stress update FE algorithm for elastic-plastic problem. Here, the explicit 

stress update FE algorithm for HITSI is developed based on the studies of Hall and 

Hayhurst (1991) and Smith and Griffiths (2005). The loop of the stress update FE 

algorithm for HITSI is shown in Figure 3.1. 



60 
 

 

Figure 3.1: The loop of the stress update FE algorithm for HITSI 

In this FE algorithm, the loads vector consists of external applied loads and self-

equilibrating “body loads” at each time iteration in the program. Thus, the body loads 

have the effect of redistributing stress within the system and the stress in the system 

should therefore be updated.  

The process of the stress update FE algorithm can be summarized as follows: 

1) Substituting the initial elastic stress into the creep damage constitutive equation 

and calculating the elemental creep strain.  

2) Substituting the elemental creep strain into the stress-strain matrix and 

calculating the elemental body nodal stress. 

3) Assembling the elemental body nodal stress into the global body stress and 

solving the equilibrium equation.  

4) Calculating the global displacement and extracting the elemental displacement 

from the global displacement vector. 
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5) Substituting the elemental displacement into the strain-displacement matrix and 

calculating the elemental elastic strain.  

6) Substituting the elemental elastic strain into stress-strain matrix and calculating 

the elemental elastic stress.  

7) Substituting the elastic stress into the creep damage constitutive equation to 

complete this loop; and to repeat the above steps for the next loop.  

The FE formulations of the stress update FE algorithm for HITSI are presented as 

follows:  

The principle of virtual work applied to the boundary value problem is given by: 

𝑃𝑙𝑜𝑎𝑑 = [𝐾𝑣] × 𝑇𝑂𝑇𝐷 − 𝑃𝑐                                              (3.44) 

Where 𝑃𝑙𝑜𝑎𝑑  is the applied force vector; [𝐾𝑣] is the global stiffness matrix, which is 

assembled by the element stiffness matrices [𝐾𝑚]; TOTD is the global vector of the 

nodal displacement and 𝑃𝑐 is the global creep force vector. 

[𝐾𝑣]  =  ∫ ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑥𝑑𝑦                                          (3.45) 

Here, [B] and [D] represent the strain-displacement and stress-strain matrices, 

respectively. 

𝑇𝑂𝑇𝐷 =  [𝐾𝑣]𝑇 × (𝑃𝑙𝑜𝑎𝑑 +  𝑃𝑐)                                        (3.46) 

The initial 𝑃𝑐 is zero and the Cholesky Method (Liu, 2005) is used for the inverse of the 

global stiffness matrix [𝐾𝑣]. Given 𝑃𝑙𝑜𝑎𝑑, the elastic strain 𝜀𝑒𝑘 and the elastic stress 𝜎𝑒𝑘 

for each element can be obtained by: 

𝜀𝑒𝑘  =  [𝐵]  ×  𝐸𝐿𝐷                                                    (3.47) 

𝜎𝑒𝑘  =  [𝐷]  × 𝜀𝑒𝑘                                                     (3.48) 

The element node displacement ELD can be found from the global displacement vector 

and the creep strain rate εckrate for each element which can be obtained by substituting 

the element elastic stress into the creep damage constitutive equation. The creep strain 

can be calculated as: 
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𝜀𝑐𝑘(𝑡 + △𝑡)  =  𝜀𝑐𝑘(𝑡)  +  𝜀𝑐𝑘𝑟𝑎𝑡𝑒  × △ 𝑡                                   (3.49) 

The nodal creep force vectors for each element are given by: 

𝑃𝑐𝑘  =  [𝐵]𝑇[𝐷] × 𝜀𝑐𝑘                                                   (3.50) 

The nodal creep force vector 𝑃𝑐𝑘 can be assembled into the global creep force vector Pc 

and the Pc is used to update Equation 3.44. Thus, the elastic strain can be updated: 

𝜀𝑡𝑜𝑡𝑘  =  [𝐵]  ×  𝐸𝐿𝐷                                                     (3.51) 

𝜀𝑡𝑜𝑡𝑘  =  𝜀𝑒𝑘 +  𝜀𝑐𝑘                                                        (3.52) 

𝜀𝑒𝑘  =  [𝐵] ×  𝐸𝐿𝐷 −  𝜀𝑐𝑘                                                 (3.53) 

Where the  𝜀𝑡𝑜𝑡𝑘 and 𝜀𝑐𝑘  represent the total strain and creep strain for each element, 

respectively; and the elastic strain 𝜀𝑒𝑘 is used to update Equation 3.48. 

3.4 Finite Elements 

The FEM is a numerical method for solving partial differential equations by discretising 

these equations in their space dimensions (Smith et al., 2013). The finite elements (sub-

domains) are dispersed by the mesh discretization of a continuous domain and such 

finite elements are connected with adjacent elements at their nodes. The generation of 

finite elements data is a process of generating the geometric data of the element and 

involves computing the coordinates of nodes, defining nodes connectivity and thus 

constructing the elements. The geometric features of generated elements influence the 

overall performance and accuracy of the FE analysis. Thus, the generation of finite 

elements data is one of the most important procedures in the development of FE 

software. 

The characteristics of finite elements have already been described in many well-known 

FEM books such as Zienkiewicz and Taylor (2000), Zienkiewicz and Taylor (2005), 

Smith and Griffiths  (2005), Oden and Reddy (2012) and Smith et al. (2013). Moreover, 

existing, and published, standard FE subroutines such as (Smith and Griffiths, 2005)  

have been utilized to set up element data in the development of HITSI.  

This project covers the development of the in-house FE software HITSI for the analysis 

of 2D (plane stress, plane strain and axisymmetric) and 3D creep damage problems. 
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Thus, the constitutive equations for the 2D (plane stress, plane strain and axisymmetric) 

and 3D element type have been investigated and the existing FE standard subroutines to 

set up element data are reported. 

3.4.1 The Characteristics of Finite Elements  

The characteristics of finite elements are investigated to understand the relationship 

between the constitutive matrix and the problem types (plane stress, plane strain, 

axisymmetric, and three-dimensional). Furthermore, the definition of the analysis type 

in the development and the application of HITSI can also be achieved through the 

investigation of the characteristics of finite elements. 

The generation of finite elements usually starts with the division of the body under 

consideration into small regions and such small regions are then subdivided into finite 

elements. The subdivision between regions should be located where there is a change in 

geometry or material properties (Cook, 2007). The generated elements that should be 

considered are those that can be joined together at nodes so that complete compatibility 

and equilibrium achieved (Smith et al., 2013).  

In FEM, the derivation of formulas for the constitutive matrix to define the analysis of 

problem type may be summarized and presented as follows:   

In a state of plane stress, the stresses in the structure must satisfy the following 

equilibrium equations (Zienkiewicz and Taylor, 2000): 
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Where  𝜎𝑥 ,  𝜎𝑦 and  𝜏𝑥𝑦  are non-zero stress components; fx and fy are body forces, such 

as gravity forces, per unit volume (Zienkiewicz and Taylor, 2000). 

For plane structures, the relationships between strain and displacement under the small 

strain and small rotation hypotheses can be written as (Smith and Griffiths, 2005): 
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In the FE method, the strain-displacement relationship can be re-written in matrix form 

(Smith and Griffiths, 2005): 
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Where u is the displacement in the x and v is the displacement in the y directions. 

According to the Hook’s Law, the stress and strain relationship (Zienkiewicz and Taylor, 

2000) can be presented by: 

Dεσ                                              (3.57) 

Where the stress and strain vectors are  Txyyyxx σ and  T
xyyyxx ε , 

respectively. D is represented by: 
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The vectors {D1}, {D2} and {D3} are the first, second and third row of the matrix D 

respectively (Zienkiewicz and Taylor, 2005). 

Thus: 
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The derivation of element stiffness can be described by the energy approach. The 

expression for the total potential energy Wp in a linearly elastic body is shown by 

(Zienkiewicz and Taylor, 2005): 
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Where u represents the displacement field; ε represents the strain field; E the elastic 

constants matrix (material property); 0ε  and 0σ are initial strains and initial stresses; F

is the body forces; Φ is the surface tractions; D  represents the vector of global nodal 

displacements and P is the loads (Zienkiewicz and Taylor, 2005). 

Displacements within an element are interpolated from the element nodal displacement 

d with the shape function matrix N and can be obtained as: 

Ndu                                              (3.61) 

Strains are obtained from displacements by Equation 3.56 and Equation 3.61. 

BdNduε                                 (3.62) 

Substitution of the Equation 3.61 and Equation 3.62 into Equation 3.60: 
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The element stiffness matrix and element equivalent nodal loads vector (Smith and 

Griffiths, 2005) are defined as: 
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Where Ve denotes the volume of an element and Se its surface and in the surface integral 

the shape function matrix is evaluated on Se  (Smith and Griffiths, 2005). 

Every degree of freedom in an element displacement vector d also appears in the vector 

of global displacement matrix, thus the global stiffness matrix and nodal force vector 

(Smith et al., 2013) can be defined as: 
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By combining Equation 3.66, Equation 3.67 and Equation 3.63, the relationship 

between the global stiffness matrix and nodal loads vector (Smith et al., 2013) can be 

shown to be: 

RKD                                     (3.68) 

In this research, the formulation of finite elements characteristics for the plane stress, 

plane strain, axisymmetric and three-dimensional element types is investigated. 

a) Plane stress: 

In the plane stress problem, the condition prevails in a flat plate in the x and y plane, 

loaded only in its own plane and without z-direction restraint, so that 𝜎𝑥 = 𝜏𝑥𝑦 = 𝜏𝑧𝑥 =

0. Thus, the constitutive matrix (Oden and Reddy, 2012) is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. 

b) Plane strain: 

In the plane strain problem, the condition that prevails is defined as a deformation state 

in which w=0 everywhere and u and v are functions of x and y but not of z. Thus, a 

typical slice of, say, an underground tunnel that lies along the z axis might deform in 

essentially plane strain conditions. The constitutive matrix (Zienkiewicz and Taylor, 

2005) is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. If needed, 
z can be 

obtained from the relationship 𝜀𝑧= 0 = (𝜎𝑧  - v𝜎𝑦 - v𝜎𝑥 ) / E after 𝜎𝑥 and 𝜎𝑦 are known. 

c) Axisymmetric: 
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In the axisymmetric problem, the condition considers a constant value of displacement 

in the circumferential direction. The stress and strain components for the element are: 
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Where the strains are defined as follows, with u and w being the displacements in the r 

and z directions respectively: 
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The constitutive matrix (Smith et al., 2013) is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. 

d) Three-dimensional: 

The three-dimensional problem usually requires a larger total number of elements to 

obtain reasonable simulated results; hence a larger storage capacity is necessary 

(Zienkiewicz and Cheung, 1967). Equations 3.54 and 3.55 may be extended to the 

three-dimensional displacement components and the stress and strain components 

(Smith et al., 2013) for the element are then: 

 zxyzxyzyx σ                               (3.75) 

 zxyzxyzyx ε                              (3.76) 

Where the strains are defined as follows, with u, v and w being the displacements in the 

x, y and z directions respectively. 
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The constitutive matrix (Smith et al., 2013)  is: 
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3.4.2 The Existing Standard FE Subroutines to Set up Element Data 

In this research, the existing standard FE subroutines (Smith and Griffiths, 2005) have 

been utilized to set up element data. The limitation imposed by using these subroutines 

is that the mesh generated by the subroutines should satisfy the order of node and 

freedom numbering rule: the first node can be located at any corner, but subsequent 

corners and freedoms must follow in a clockwise sense. The introduction and function 

of these subroutines are summarized in Table 3.1. 
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Table 3.1: The existing standard FE subroutines to set up element data (Smith and 

Griffiths, 2005) 

Subroutine name Parameter index Function 

num_to_g num, nf, g 

This subroutine returns the element steering 

vector g from the element node num and the 

nodal freedom array nf 

Geometry_3tx 
iel, nxe, aa, bb, 

coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 3-node triangles. iel is the element 

number. nxe is the number of columns of 

elements. aa and bb are the width and depth of 

element. It counts in the x-direction and local 

numbering is clockwise. 

Geometry_6tx 
iel, nxe, aa, bb, 

coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 6-node triangles. iel is the element 

number. nxe is the number of columns of 

elements. aa and bb are the width and depth of 

element. It counts in the x-direction and local 

numbering is clockwise. 

Geometry_15tyv 
iel, nye, width, 

depth, coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 15-node triangles. iel is the element 

number. nxe is the number of rows of elements. 

width and depth are the width and depth of 

element. It counts in the y-direction and local 

numbering is clockwise. 

Geometry_4qx 
iel, nxe, aa, bb, 

coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 4-node quadrilaterals. iel is the element 

number. nxe is the number of columns of 

elements. aa and bb are the width and depth of 

element. It counts in the x-direction and local 

numbering is clockwise. 



70 
 

Geometry_8qx 
iel, nxe, aa, bb, 

coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 8-node quadrilaterals. iel is the element 

number. nxe is the number of columns of 

elements. aa and bb are the width and depth of 

element. It counts in the x-direction and local 

numbering is clockwise. 

Geometry_9qx 
iel, nxe, aa, bb, 

coord, num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 9-node quadrilaterals. iel is the element 

number. nxe is the number of columns of 

elements. aa and bb are the width and depth of 

element. It counts in the x-direction and local 

numbering is clockwise. 

Geometry_8bxz 

iel, nxe, nze, aa, 

bb, cc, coord, 

num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 8-node brick elements. iel is the 

element number. nxe is the number of columns 

of elements in x direction. nze is the number of 

columns of elements in z direction. aa, bb and 

cc are the width, depth and length of the 

element. 

Geometry_20bxz 

iel, nxe, nze, aa, 

bb, cc, coord, 

num 

This subroutine forms the coordinates coords 

and the element node vector num for a mesh of 

uniform 20-node brick elements. iel is the 

element number. nxe is the number of columns 

of elements in x direction. nze is the number of 

columns of elements in z direction. aa, bb and 

cc are the width, depth and length of the 

element. 
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3.5 Element Stiffness Matrix Assembly 

3.5.1 Assembly Procedures for the Element Stiffness Matrix 

Assembly procedures (Smith et al., 2013) that are used in developing HITSI are based 

on direct summation with the use of the element connectivity array. The method of 

assembly of the global stiffness matrix from contributions of the element stiffness 

matrix can be expressed by the following procedures: 

1. Looping the total number of degrees of freedom in the domain to set the global 

stiffness matrix array. 

2. Looping the number of elements to generate the element connectivity array. 

3. Looping the number of degrees of freedom per element to calculate element 

stiffness matrix. 

4. Assembling the element stiffness matrix into the global stiffness matrix array in 

accord with the element connectivity array. 

5. Stopping the loop of the number of degrees of freedom per element. 

6. Stopping the loop of the number of elements. 

7. Stopping the loop of the total number of degrees of freedom in the domain. 

The element stiffness matrix (Smith et al., 2013) can be calculated from the following 

equations. 

The element stiffness for a plane stress and plane strain problem: 

[𝑲𝒆]  =  ∫ ∫ [𝑩]𝑻[𝑫][𝑩]𝑑𝑥𝑑𝑦                                              (3.84) 

Where B is the strain-displacement matrix and D is the stress-strain matrix.  

The element stiffness for the axisymmetric problem: 

[𝑲𝒆]  =  ∫ ∫ [𝑩]𝑻[𝑫][𝑩]𝑟𝑑𝑟𝑑𝑧                                             (3.85) 

The element stiffness for the three-dimensional problem: 

[𝑲𝒆]  =  ∫ ∫ ∫ [𝑩]𝑻[𝑫][𝑩]𝑑𝑥𝑑𝑦𝑑𝑧                                         (3.86) 



72 
 

Here, all element matrices are assembled fully in the full square global matrix. Since the 

global stiffness matrix is symmetric and sparse, these facts can be used to economize 

space and time in actual programming. 

3.5.2 The Existing Standard FE Subroutines for the Element Stiffness Matrix 

Assembly 

In this research, the existing standard FE subroutines (Smith and Griffiths, 2005) have 

been utilized to assemble the element stiffness matrix into the global stiffness matrix. 

The introduction and function of these subroutines are summarized in Table 3.2. 

Table 3.2: The existing standard FE subroutines for the element stiffness matrix 

assembly (Smith and Griffiths, 2005) 

Subroutine name Parameter index Function 

formnf nf 

This subroutine returns the nodal freedom 

array nf from boundary conditions input of 0s 

and 1s. 

formkb kb, km, g 

This subroutine returns the global full band 

matrix kb stored as a rectangle from the 

unsymmetrical element matrix km and steering 

vectors g. 

fkdiag kdiag, g 

This subroutine returns the bandwidth kdiag 

for the rows of a skyline storage system from 

steering vectors g. 

sample element, s, wt 

This subroutine returns the local coordinates s 

and weighting coefficients wt for the 

numerical integration of a finite element of 

type element. 

deemat dee, e, v 

This subroutine returns the elastic stress-strain 

matrix dee. e and v are Young’s modulus and 

Poisson’s ratio. 

shape_fun fun, points, i 

This subroutine returns the shape function fun 

at the ith integrating point. points holds the 

local coordinates of the integrating points. 
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shape_der der, points, i 

This subroutine returns the shape function 

derivatives der at the ith integrating point. 

points holds the local coordinates of the 

integrating points. 

beemat bee, deriv 

This subroutine returns the strain-

displacement matrix bee for shape function 

derivatives der. 

 

3.6 Solution of Equilibrium Equation and Recovery of Results at 

Integrating Points 

3.6.1 Solution Method 

The solution of the equilibrium equation is performed after the element stiffness 

assembly. The key feature in FEM for creep damage analysis is dealing with the highly 

non-linear behaviour; the Newton-Raphson iterative method (Leonard, 1979)  can be 

used in linearization of the non-linear problem. If the global stiffness matrix is 

assembled after the specification of boundary conditions, a typical global equilibrium 

equation (Smith et al., 2013) is given as: 

[𝑲][𝑼]  = [𝑭]                                                          (3.87) 

Where K is the global stiffness matrix, U is the global displacement matrix and F is the 

total loads. 

Practical applications of the FEM lead to large systems of simultaneous linear algebraic 

equations. Two main methods that can be used in solving the equilibrium equations are: 

the direct solution method and the iterative solution method (Smith et al., 2013).  

In the direct solution method, the Cholesky direct solution technique can be used to 

solve the sets of linear algebraic equations. In the iterative solution method, the Jacobi 

iteration, Gauss-Seidel and Conjugate Gradient iterative solution method can be used to 

solve the equations. Both the direct solution method and the iterative solution method 

have been implemented in FEM by many scientists; and the relevant standard FE 

subroutines (Smith and Griffiths, 2005) for the solution of equilibrium equation have 

been published and utilized in the development of HITSI.  
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Direct solution methods are generally used for problems of moderate size. For large 

problems, iterative methods require less computing time and hence they are preferable. 

Scientists can decide on the selection of the solution method for dealing with the non-

linear problem according to the actual situation.    

After the solution of the equilibrium equation, the nodal displacement can be computed 

and stored in the global displacement vector. The element nodal displacement can then 

be retrieved from the global displacement vector and element stiffness matrix re-

computed. At this stage, the results such stress, strain and displacement of each element 

can be calculated and the results stored in the global result vector. The results at the 

integrating points can be retrieved from the global result vector. 

3.6.2 The Existing Standard FE Subroutines in the Solution of the Equilibrium 

Equation 

In this research, the existing standard FE subroutines (Smith and Griffiths, 2005) have 

been utilized to solve the equilibrium equation. The introduction and function of these 

subroutines are summarized in Table 3.3. 

Table 3.3: The existing standard FE subroutines for the solution of the equilibrium 

equation (Smith and Griffiths, 2005) 

Subroutine name Parameter index Function 

sparin kv, kdiag 

This subroutine returns the Cholesky 

factorized vector kv stored as a skyline. 

kdiag holds the locations of the diagonal 

terms. 

spabac kv, loads, kdiag 

This subroutine returns solution loads 

which overwrite the Right Hand Side 

(RHS) by forward and back substitution 

on the Cholesky factorized vector kv 

stored as a skyline. kdiag holds the 

locations of the diagonal terms. 

sparin_gauss kv, kdiag 

This subroutine returns the Gaussian 

factorized vector kv stored as a skyline. 

kdiag holds the locations of the diagonal 

terms. 
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spabac_guass kv, loads, kdiag 

This subroutine returns solution loads 

which overwrite the RHS by forward 

and back substitution on the Gaussian 

factorized vector kv stored as a skyline. 

kdiag holds the locations of the diagonal 

terms. 

guass_band pb, work 

This subroutine returns the Gaussian 

factorized unsymmetrical full band 

matrix pb and array work. 

banred kv, neq 

This subroutine  returns the transformed 

neq of the real symmetric band matrix to 

tri-diagonal form by Jacobi rotations 

bacsub kv, loads 

This subroutine  returns the transformed 

loads of the real symmetric band matrix 

to tri-diagonal form by Jacobi rotations 

 

3.7 Summary 

This chapter analyzed the fundamental requirements for the development of in-house 

FE software for creep damage analysis, and proposed the general methodology 

considerations and the FE algorithm involved with the creep damage constitutive 

equation, numerical integration method and explicit stress update FE algorithm for the 

development of HITSI.  

The methods such as the set of element data; the element stiffness assembly; the 

solution of the equilibrium equation and recovery of results at the integrating points 

have been stated and the relevant existing standard FE subroutines which can be used in 

the development of HITSI are reported. 

The author acknowledges that some important achievements and findings in this chapter 

have been published by Liu et al. (2012b) and Liu et al. (2013a) at various stages in this 

research.  
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Chapter 4 Programming the Finite Element 

Codes for in-house Software HITSI 

4.1 Introduction  

This chapter reports the development of the in-house FE software HITSI for creep 

damage analysis. In the development of HITSI, some existing standard FE subroutines 

(Smith and Griffiths, 2005) have been adopted from the author’s supervisor Dr. Qiang 

Xu and a specific subroutine library provided by the author’s colleague Feng Tan. The 

standard FE subroutines (Smith and Griffiths, 2005) are used in HITSI for the set of 

element data, element stiffness integration and assembly, solution of equilibrium 

equation and result recovery at integrating points. The subroutine library provided by 

Feng Tan for HITSI contains subroutines for the creep damage constitutive equation, 

the time integration with time step control, a nodal force calculator for the axisymmetric 

FE program and a data transfer interface between the in-house FE software HITSI and 

the pre- and post-processor FE software FEMGV. The use of Smith’s standard FE 

subroutines and Feng Tan’s specific subroutine library was originally planned in this 

research to make the development work more efficient. This software is developed 

based on the explicit FE algorithm. 

Creep deformation can be regarded as a time-related plastic deformation and the process 

of the creep damage is an absolutely transient problem. The general method for solving 

the creep damage problem is based on the iteration of the elastic solution, via the 

Newton-Raphson iterative method (Leonard, 1979). The existing published elastic FE 

program and elastic-plastic FE program (Smith and Griffiths, 2005) adopted from 

author’s supervisor Dr. Qiang Xu were investigated and studied by the author at the 

beginning of this research to achieve familiarization with the FE program. 

In order to develop the work in a step by step fashion, as well as to be logical and 

efficient, the development strategy has been divided into eight stages:  

1) Planning stage: The general flow diagram for the development of HITSI has been 

developed to describe the FE procedures used in programming HITSI for creep 

damage analysis.  
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2) Linear elastic stage: Adoption and modification of the existing linear plane stress 

version elastic FE program (Smith and Griffiths, 2005) to become familiar with the 

structure of the FE program and the use of the existing standard FE subroutines.  

3) Non-linear elastic-plastic stage: Adoption and modification of the non-linear (single 

material and time independent) axisymmetric version of the elastic-plastic FE 

program (Smith and Griffiths, 2005) to become familiar with the FE techniques used 

in dealing with non-linearity.  

4) Plane stress creep damage stage: The plane stress version FE program for time 

dependent creep damage analysis has been developed. The stress and creep damage 

field variables are updated with the time integration. Here, the creep damage 

constitutive equation subroutines provided by Feng Tan have been utilized. The 

time-step control is integrated into the time integration subroutines and the time 

integration subroutines provided by Feng Tan have been utilized in developing this 

FE program. 

5) Plane strain creep damage stage: The plane strain version FE program for time 

dependent creep damage analysis has been developed. The stress and creep damage 

field variables are updated with the time integration. Here, the effort will be focused 

on the application of the plane strain constitutive matrix in developing this FE 

program.   

6) Axisymmetric creep damage stage: The axisymmetric version FE program for time 

dependent creep damage analysis has been developed. The stress and creep damage 

field variables are updated with the time integration. Here, a nodal force calculator 

provided by Feng Tan for the generation of the equivalent nodal loads information 

has been utilized and the axisymmetric constitutive matrix has been used in 

developing this FE program. 

7) Three-dimensional creep damage stage: The three-dimensional version FE program 

for time dependent creep damage analysis has been preliminarily developed.  The 

stress and creep damage field variables are updated with the time integration. Here, 

the effort will be focused on the application of the three-dimensional constitutive 

matrix in developing this FE program. 
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8) Multi-materials zone creep damage stage: The multi-materials zone version FE 

codes for time dependent creep damage analysis has been developed. Here, the 

effort will be focused on expanding the scope of the software’s application such as 

for creep damage analysis in weldment (multi-materials). The multi-materials zone 

FE codes have been integrated into the plane stress, plane strain, axisymmetric and 

three-dimensional FE program for HITSI. 

The in-house FE software HITSI has been developed and the current version includes 

four main programs (plane stress, plane strain, axisymmetric and three-dimensional) 

because of the different characteristics of the constitutive matrix. This chapter primarily 

consists of ten sections: 1) Introduction; 2) The flow diagram for the development of 

HITSI; 3) Adoption and modification of the linear elastic FE program; 4) Adoption and 

modification of the non-linear elastic-plastic FE program; 5) Development of the plane 

stress version creep damage FE program; 6) Development of the plane strain version 

creep damage FE program; 7) Development of the axisymmetric version creep damage 

FE program; 8) Development of the three-dimensional version creep damage FE 

program; 9) Development of the multi-materials version creep damage FE program; 10) 

Summary. 

4.2 The Flow Diagram for the Development of HITSI 

The general flow diagram for the development of HITSI has been developed for the 

description of the FE procedures in creep damage analysis. It is noted that Hyde’s 

research group (Becker et al., 2002) and Hayhurst’s research group (Hayhurst and 

Krzeczkowski, 1979) have reported the development and use of their in-house FE 

software for creep damage analysis. Hall et al. (1996) have reported the flow diagram of 

their in-house software DAMAGE XX for creep damage analysis.  

The flow diagram of the development of HITSI for creep damage mechanics has been 

developed based on several previous works: (Becker et al., 2002),  (Hayhurst and 

Krzeczkowski, 1979) and (Hall et al., 1996); the flow diagram for the development of 

HITSI is shown in Figure 4.1. 
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Figure 4.1: The flow diagram of the development of the in-house FE software HITSI 

This flow diagram can be divided into five main aspects: 

1. The mesh and element data information should be read by the program. The 

specifications, including nodes, elements, material properties, boundary 

conditions and the computational control parameters of the FE model, are input. 

The element stiffness matrices are assembled into the global matrix system and 
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the global nodal number information can be generated at this point. This 

corresponds to the development stages 1, 2 and 3. 

2. The equilibrium equation should be solved after the input and the assembly of 

element stiffness matrix. The initial elastic stress and strain can be calculated. 

Each gauss point stress can be retrieved from the global result vector. These 

correspond to the development stages 2 and 3.    

3. The creep damage constitutive equation should be embedded into the FE 

program. The creep strain rate and creep damage rate are integrated with regard 

to time and the time-step is controlled. Accuracy will suffer and instability may 

occur if the time increment is too large. The tolerance is pre-established; if the 

results are not satisfactory, the time increment is reduced by half of the previous 

time step iteration loop. These correspond to the development stages 4, 5 and 6. 

4. The creep damage field variables such as creep strain, damage and stress should 

be updated with the time integration. Body loads are produced due to the creep 

deformation and these are added into the global loads vector for the stress 

updating. These correspond to the development stages 5, 6 and 7. 

5. Stop execution and output results. The damage increases monotonically with 

time from the initial value zero to the critical value. The element cannot then 

support any further load and the Gaussian point in such an element has failed 

when damage value over the critical value. The program removes the failed 

element and the value of the element stiffness will be set to zero. Otherwise, the 

program calculates the creep damage until rupture occurs and the results output. 

This corresponds to the development stages 7 and 8. 

4.3 Adoption and Modification of the Linear Elastic FE Program 

4.3.1 The Structure of the Linear Elastic FE Program 

Smith’s linear elastic FE program: geotech / software / prog_fe / P50.F90 in (Smith and 

Griffiths, 2005) was adopted from the author’s supervisor Dr. Qiang Xu for the plane 

stress of an elastic solid using uniform 3-node triangular elements numbered in the x 

direction. The new version elastic FE program has been developed based on 

modification of Smith’s linear elastic FE program and additional modifications are 
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made in order to meet further development work. The modifications are summarized as 

follows: 

 Single precision real variables and arrays are used in Smith’s linear elastic FE 

program and subroutines; all single precision real variables and arrays are 

modified to double precision in the new version elastic FE program and 

subroutines.   

 The mesh and element data information such as the element type, global 

coordinate information and element connection information used in Smith’s 

linear elastic FE program are generated by his subroutines; the mesh and 

element data information used in new version elastic FE program are produced 

by the pre- and post-processor FE software FEMGV. The input method has been 

modified so that the new version elastic program can read the mesh and element 

data information directly. 

 The output FE codes in Smith’s linear elastic FE program are modified. The FE 

codes for the sequence and format of the results that are to be output are 

implanted in the new version elastic program to match the post-processing. 

Some basic techniques for the development of FE software have been achieved through 

familiarization with Smith’s elastic FE program. The techniques may be summarised as: 

 The technique for reading the mesh and element data information. 

 The technique for assembling the element stiffness matrix into the global 

stiffness system. 

 The technique for integrating points to find nodal coordinates and the steering 

vector. 

 The technique for factorising the global stiffness matrix and solving the 

equilibrium equation. 

 The technique for recovering stresses at the central gauss point. 

The subroutines in Tables 3.1, 3.2 and 3.3 can be used in this elastic FE program. The 

structure chart of the FE program for the analysis of linear elastic problem in Figure 4.2 

corresponds to the development stages 1 and 2. 
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Figure 4.2: Structure chart of linear elastic FE program (Smith and Griffiths, 2005)  

The structure chart in Figure 4.2 illustrates the sequence of the FE calculations for this 

program. The nodal coordinates, nodal numbering and boundary conditions can be 

obtained by the read statement after the declaration of the variables and the arrays. Then, 

the element stiffness matrix is integrated and assembled into the global stiffness matrix. 

Once all element stiffness matrices have been assembled, the equilibrium equation is 

solved. Lastly, the stress and strain at the integrating point can be calculated and 

recovered at this integration point. Specifications for programming the linear elastic FE 

program are illustrated in Section 4.3.2. 

4.3.2 Specifications in Developing Linear Elastic FE Program 

This new version linear elastic FE program is based on the modification of Smith’s 

version linear elastic FE program: geotech / software / prog_fe / P50.F90 in (Smith and 

Griffiths, 2005). In this program, the variables and arrays are declared first; then, the 

program enters the “input and initialisation” stage. The declaration of variables and 
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arrays is summarized in Table 4.1 and Table 4.2, respectively. The FE codes of the 

declaration are presented in List 4.1. 

Table 4.1: The declaration of variables in linear elastic FE program (Smith and Griffiths, 

2005) 

Variable name Declaration 

nels number of elements 

nce number of elements in x direction 

neq number of degrees of freedom in mesh 

nband semi-bandwidth of grid 

nn number of nodes in the mesh 

nr number of restrained nodes 

nip number of integration points 

nodof number of degrees of freedom per node 

nod number of nodes per element 

nst number of stress terms 

ndof number of degrees of freedom per element 

loaded_nodes number of loaded nodes 

i, k, iel simple counters 

ndim number of dimensions 

e Young’s modulus 

v Poisson’s ratio 

det determinant of the Jacobian matrix 

aa the width of element 

bb the depth of element 

element element type 

 

Table 4.2: The declaration of arrays in linear elastic FE program (Smith and Griffiths, 

2005) 

Array name Declaration 

kv global stiffness matrix 

loads nodal loads and displacement 

points integrating point local coordinates 
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dee stress strain matrix 

coord element nodal coordinates 

jac Jacobian matrix 

der shape function derivatives with respect to local coordinates 

deriv shape function derivatives with respect to global 

coordinates 

weights weighting coefficients 

bee strain displacement matrix 

km element stiffness matrix 

eld element nodal displacement 

sigma stress terms 

g_coord global nodal coordinates 

nf nodal freedom matrix 

g element steering vector 

num element node numbers vector 

g_num global element node number matrix 

g_g global element steering matrix 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!------------------------------------Codes in linear elastic program----------------------------------------- 

99998 format(1X,I4) 

integer::  nels,neq,nband,nn,nr,nip,nodof,nod, nst,ndof,i,k,iel,ndim,loaded_nodes 

doubleprecision:: e,v   

character(len=15) :: element 

doubleprecision    ,allocatable :: kv(:),loads(:),points(:,:),dee(:,:),coord(:,:),               & 

                                   jac(:,:), der(:,:),deriv(:,:), weights(:), bee(:,:),km(:,:),                      & 

                                   eld(:),sigma(:),g_coord(:,:) 

 open (10,file='p1.dat',status='old',    action='read') 

 open (11,file='p1.res',status='replace',action='write') 

 read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim 

 ndof=nod*nodof 

  allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 
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                    g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),                         & 

                    fun(nod), jac(ndim,ndim),dee(nst,nst),der(ndim,nod),                              & 

                    num(nod),km(ndof,ndof), eld(ndof),  bee(nst,ndof),                                   & 

                    deriv(ndim,nod), sigma(nst),                                                                            &     

                    tsigma(nst,nip,nels))    

List 4.1: The FE codes of the declaration in linear elastic FE program (Smith and 

Griffiths, 2005) 

After the declaration of variables and arrays in the linear elastic FE program, the 

program enters the element stiffness integration and assembly stage. Data concerning 

the mesh and its properties are presented together with the nodal freedom data. The total 

number of nodes and equations are read by main program. The elements are looped to 

generate the global array, which contains the element node numbers, the element nodal 

coordinates and the element steering vectors. The subroutine formnf is used to perform 

this task. The subroutine sample is called to return the local coordinates and weighting 

coefficients for integration. Subroutine num_to_g is used to find global coordinates and 

global node numbers. 

In the element stiffness integration and assembly, subroutine shape_der is used to 

derive the shape functions with respect to the coordinates, subroutine beemat forms the 

strain-displacement matrix and subroutine formkv is used in assembling the element 

stiffness matrix into the global stiffness. The FE codes of element stiffness integration 

and assembly are presented in List 4.2. 

!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!------------------------------------Codes in linear elastic program----------------------------------------- 

do i=1, nn; read (10,*)k,g_coord(:,i); end do 

do i=1, nels; read (10,*)k, g_num(:,i); end do 

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr) 

call formnf (nf); neq=maxval(nf); nband = 0 

elements_1   : do iel =1,nels; num=g_num(:,iel); call num_to_g ( num , nf , g ) 

                           g_g(:,iel)=g; if(nband<bandwidth(g))nband=bandwidth(g) 

end do elements_1 

dee=.0; dee(1,1)=e/(1.-v*v);dee(2,2)=dee(1,1);dee(3,3)=.5*e/(1.+v) 
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dee(1,2)=v*dee(1,1);dee(2,1)=dee(1,2); call sample(element,points,weights) 

allocate( kv(neq*(nband+1)),loads(0:neq)); kv=0.0 

elements_2: do iel = 1 , nels; num = g_num(:, iel); g = g_g( : , iel ) 

         coord = transpose(g_coord(:, num)) ; km=0.0   

         gauss_pts_1: do i = 1 , nip 

                             call shape_der(der,points,i) ; jac = matmul(der,coord)  

                             det = determinant(jac); call invert(jac) 

                            deriv = matmul(jac,der) ; call beemat (bee,deriv)  

             km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

      end do gauss_pts_1                                                   

     call formkv (kv,km,g,neq) 

end do elements_2    

List 4.2: The FE codes of element stiffness integration and assembly in elastic FE 

program (Smith and Griffiths, 2005) 

The integration loop is entered after the assembly of the stiffness matrix. Subroutine 

banred and subroutine bacsub are called for the solution of the equilibrium equation. 

The stresses can be recovered at each gauss point through the use of subroutine 

shape_der, subroutine invert and subroutine beemat. The FE codes of the solution of the 

equilibrium equation and results recovery at the integrating points are presented in List 

4.3. 

!-------------------     Solution of equilibrium equation and recover results     ------------------------ 

!------------------------------------Codes in linear elastic program----------------------------------------- 

call banred(kv,neq) ;call bacsub(kv,loads)  

nip = 1; deallocate(points,weights); allocate(points(nip,ndim),weights(nip)) 

call sample ( element , points , weights) 

elements_3:do iel = 1 , nels 

    num = g_num(: , iel);    coord =transpose( g_coord(: ,num) ) 

    g = g_g( : ,iel )    ;     eld=loads(g) 

    gauss_pts_2: do i = 1 , nip 

       call shape_der (der,points,i); jac= matmul(der,coord) 

       call invert(jac) ;    deriv= matmul(jac,der) 
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      call beemat(bee,deriv); sigma = matmul (dee,matmul(bee,eld))  

    end do gauss_pts_2  

 end do elements_3 

List 4.3: The FE codes of the solution of equilibrium equation and results recovery at 

the integrating points in elastic FE program (Smith and Griffiths, 2005) 

Adoption and modification of the existing linear elastic program is performed in order 

to obtain basic FE techniques for the development of HITSI for creep damage analysis. 

The validation of the new version elastic FE program is performed in Chapter 5. 

4.4 Adoption and Modification of the Non-linear Elastic-plastic FE 

Program 

4.4.1 The Structure of the Non-linear Elastic-plastic FE Program 

The elastic-plastic FE program is developed as a further extension of the linear elastic 

version. Smith’s version linear elastic-plastic FE program: geotech / software / prog_fe / 

P66.F90 in (Smith and Griffiths, 2005) is adopted from the author’s supervisor Dr. 

Qiang Xu for calculating the axisymmetric ‘un-drained’ strain of an elastic-plastic solid 

using 8-node quadrilateral elements. This version elastic-plastic FE program is based on 

the modification of Smith’s version elastic-plastic FE program and additional 

modifications are made in order to meet further development work. The modifications 

are summarized as follows: 

 Single precision real variables and arrays are used in Smith’s elastic-plastic FE 

program and subroutines; all single precision real variables and arrays are 

modified to double precision in this version elastic-plastic FE program and 

subroutines.   

 The output FE codes in Smith’s elastic-plastic FE program are modified. The FE 

codes for the sequence and format of the results that are to be output are 

implanted in this elastic-plastic program to match the post-processing. 

The biggest difference between the linear elastic version FE program and elastic-plastic 

FE program is that the non-linear processes pose a very much greater analytical problem 

than do the linear processes. In practice, there is no direct method to solve the non-

linear equation in mathematics. However, the Newton-Raphson iterative method 
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(Leonard, 1979) can be used in linearization of the elastic-plastic problem and such non-

linear problem can be solved using this technique. A schematic diagram of the standard 

Newton-Raphson method is shown in Figure 4.3 and the modified Newton-Raphson 

method is shown in Figure 4.4.  

 

Figure 4.3: The Schematic of standard Newton-Raphson method (Copenhaver, 1980) 

 

Figure 4.4: The Schematic of modified Newton-Raphson method (Copenhaver, 1980) 

The standard Newton-Raphson method is usually called a constant stiffness method, in 

which non-linearity is caused by iteratively modifying the total loads vector (Smith et 

al., 2013). In the constant stiffness method, the global stiffness matrix is formed only 
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once and the subroutine checon is used to check plastic convergence in this FE program. 

The modified Newton-Raphson method is usually called a tangent stiffness method and 

the global stiffness matrix may be updated occasionally with fewer iterations per load 

step.  

In this FE program, the subroutine mocouf together with subroutine formm and 

subroutine mocouq are used to check plastic convergence when using the tangent 

stiffness method. If small enough load steps are taken, the tangent stiffness method can 

save computing time because fewer iteration steps are needed in each load increment.  

The creep deformation can be regarded as a time-related plastic deformation and the 

process of the creep damage is an absolutely transient problem. The general solution 

method of elastic-plastic and creep damage problems is very similar. Some techniques 

used in the development of HITSI may be obtained through familiarization with Smith’s 

elastic-plastic FE program. The techniques have been summarized as: 

1. The technique for adding the load or displacement increment loop 

2. The technique for executing the plastic iteration loop 

3. The technique for checking plastic convergence  

4. The technique for checking whether yield is violated and update the gauss point 

stresses 

5. The technique for computing the total body loads vector 

The subroutines in Tables 3.1, 3.2 and 3.3 can be used in this FE program. The structure 

chart of the FE program for the analysis of the non-linear elastic-plastic solid problem is 

shown in Figure 4.5 correspond to the development stages 3 and 4.  
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Figure 4.5: Structure chart of elastic-plastic FE program (Smith and Griffiths, 2005) 

In a similar way to the linear elastic program the nodal coordinates, nodal numbering 

and boundary conditions can be obtained by the read statement after declaration of the 

variables and the arrays. Then, the element stiffness matrix is integrated and assembled 

into the global stiffness matrix. Once all element stiffness matrices have been assembled, 

the equilibrium equation is solved. Here, the difference between the linear elastic FE 

program and elastic-plastic FE program is that the load is variable and the solution of 

equilibrium equation is achieved based on the iterative method. Further specifications in 

developing the new version elastic-plastic FE program are illustrated in Section 4.4.2. 

4.4.2 Specifications in Developing Non-linear Elastic-plastic FE Program 

This non-linear elastic-plastic FE program is based on modification of Smith’s version 

elastic-plastic FE program: geotech / software / prog_fe / P66.F90 in (Smith and 

Griffiths, 2005). In this FE program, the variables and arrays are declared first; then, the 

program enters the “input and initialisation” stage. The declaration of new variables and 



91 
 

arrays is summarized in Table 4.3 and Table 4.4, respectively. The FE codes of the 

declaration are presented in List 4.4. 

Table 4.3: The declaration of new variables in elastic-plastic FE program (Smith and 

Griffiths, 2005) 

New variable name Declaration 

nxe number of elements in x direction 

nye number of elements in y direction 

iters the counters of plastic iterations 

limit plastic iteration ceiling 

incs number of load increments 

converged set to .true. if plastic iterations have converged 

iy simple counter 

phi friction angle 

psi dilation angle 

dsbar invariant 

dq1, dq2, dq3 plastic potential derivative 

lode_theta lode angle 

sigm mean stress 

pi set to 3.1415 

c cohesion 

dt critical visco-plastic time step 

snph sine of phi 

ptot holds running total of applied pressure 

tol plastic convergence tolerance 

presc wall displacement increment 

cons consolidating stress 

bulk apparent fluid bulk modulus 

radius radius 
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Table 4.4: The declaration of new arrays in elastic-plastic FE program (Smith and 

Griffiths, 2005) 

New array name Declaration 

bdylds self-equilibrating global body loads 

totd holds running total of nodal displacement 

evpt holds running total of visco-plastic strains 

oldis nodal displacement from previous iteration 

width the width of the element 

depth the depth of the element  

stress stress term increment 

storkv holds augmented stiffness diagonal terms 

eps strain terms 

bload self-equilibrating element body loads 

eload integrating point contribution to bload 

evp plastic strain rate increment 

devp plastic force 

m1, m2, m3 used to compute stress rate 

flow holds stress rate 

tensor holds running total of all integrating point stress terms 

etensor holds running total of all integrating point strain terms 

pore holds running total of all integrating point pore pressures 

fun shape function 

no fixed freedom numbers vector 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!--------------------------------Codes in linear elastic-plastic program------------------------------------ 

99998 format(1X,I4) 

integer: :nels,nxe,nye,neq,nband,nn,nr,nip,nodof=2,nod=8,nst=4,ndof,                      &  

                i,j,k,iel,iters,limit,incs,iy,ndim=2,loaded_nodes 

logical:: converged; character (len=15):: element='quadrilateral' 
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doubleprecision:: e,v,det,phi,c,psi,dt,f,dsbar,dq1,dq2,dq3,lode_theta,                         & 

sigm,pi,snph,bulk,cons,presc,ptot,radius,tol 

doubleprecision ,allocatable:: kv(:),loads(:),points(:,:),bdylds(:),totd(:),                 & 

                               evpt(:,:,:),oldis(:),width(:),depth(:),stress(:),                                    & 

                              dee(:,:),coord(:,:),jac(:,:),weights(:),storkv(:),                                   & 

                             der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:),                                     & 

                             sigma(:),bload(:),eload(:),erate(:),g_coord(:,:),                                & 

                             evp(:),devp(:),m1(:,:),m2(:,:),m3(:,:),flow(:,:),                                    & 

                            tensor(:,:,:),etensor(:,:,:),pore(:,:),fun(:) 

integer, allocatable:: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:) 

open (10,file='p2.dat',status='old',action='read') 

open (11,file='p2.res',status='replace',action='write') 

read (10,*) phi,c,psi,e,v,bulk,cons, nels,nxe,nye,nn,nip 

ndof=nod*nodof 

allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn),            & 

                 width(nxe+1),depth(nye+1),num(nod),evpt(nst,nip,nels),                        & 

                 coord(nod,ndim),g_g(ndof,nels),tensor(nst,nip,nels),fun(nod),               & 

                 etensor(nst,nip,nels),dee(nst,nst),pore(nip,nels),stress(nst),                   & 

                 jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels),       & 

                bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),                    & 

                bload(ndof),eload(ndof),erate(nst),evp(nst),devp(nst),g(ndof),            & 

               m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst)) 

List 4.4: The FE codes of the declaration in elastic-plastic FE program (Smith and 

Griffiths, 2005) 

After declaration in the linear elastic finite element program, the program enters the 

element stiffness integration and assembly stage. Data concerning the mesh and its 

properties are presented together with the nodal freedom data. The total number of 

nodes and equations can be generated by subroutine geometry_8qyv. The subroutine 

geometry_8qyv produces rectangular 8-node elements with the numbering in the y 

direction. The elements are looped to generate the “global” array, which contains the 

element node numbers, the element nodal coordinates and the element steering vectors. 
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The subroutine deemat and subroutine sample are used in this stage. The subroutine 

sample is called to return the local coordinates and weighting coefficients for the 

integration. Subroutine geometry_8qyv and subroutine num_to_g are used to find global 

coordinates and global node numbers. 

In element stiffness matrix integration and assembly, subroutine shape_der is used to 

derive the shape functions with respect to the coordinates and subroutine shape_fun 

returns the shape function at the integrating point. Then, subroutine bmataxi formed the 

strain-displacement matrix and subroutine formkv is used in assembling the element 

stiffness matrix into the global stiffness system. The FE codes of element stiffness 

integration and assembly are presented in List 4.5. 

!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!-----------------------------------Codes in elastic-plastic program----------------------------------------- 

nf=1; read (10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr) 

call  formnf(nf); neq=maxval(nf); read(10,*) width , depth; nband = 0 

elements_1:   do iel = 1, nels 

                    call  geometry_8qyv(iel,nye,width,depth,coord,num) 

                    call num_to_g(num,nf,g) ;    g_num(:,iel)=num 

                    g_coord(: , num )=transpose(coord); g_g( : , iel ) = g 

                   if (nband<bandwidth(g)) nband = bandwidth(g) 

end do elements_1 

allocate(kv(neq*(nband+1)),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq)) 

                 kv=0.0; oldis=0.0; totd=0.0 ; tensor = 0.0; etensor = 0.0 

call deemat(dee,e,v); call sample(element,points,weights) 

do i=1,nst; do j=1,nst;if(i/=3.and.j/=3) dee(i,j)=dee(i,j)+bulk; end do; end do 

pi = acos( -1. ); snph = sin(phi*pi/180.) 

dt = 4.*(1.+ v)*(1.-2.*v)/(e*(1.-2.*v+snph*snph)) 

elements_2: do iel=1, nels 

                      num = g_num(: ,iel ) ; coord = transpose (g_coord(: ,num )) 

                      g = g_g( : ,iel );  km=0.0 

               gauss_pts_1:  do i =1 , nip    ; call shape_fun(fun,points,i) 

                    call shape_der (der,points,i);  jac = matmul(der,coord) 
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                    det = determinant(jac)  ;   call invert(jac) 

                   deriv=matmul(jac,der);call bmataxi(bee,radius,coord,deriv,fun) 

                km=km+matmul(matmul(transpose(bee),dee),bee)*det*weights(i)*radius 

                tensor(1:2,i,iel)=cons; tensor(4,i,iel)=cons 

          end do gauss_pts_1 

       call formkv (kv,km,g,neq) 

end do elements_2 

List 4.5: The FE codes of element stiffness integration and assembly in elastic-plastic 

FE program (Smith and Griffiths, 2005) 

After all element stiffness matrices are assembled, the equilibrium equation is solved. 

Here, the difference between the linear elastic FE program and non-linear elastic-plastic 

FE program is that the loads information is variable. The loads and the senses of 

freedom are read by the main program. Then, the plastic convergence tolerance, 

iteration ceiling, the number of constant loads increment and the magnitude of loads 

increment are associated by the main program with a read statement.  

The loads increment, iteration loops and integration loops are entered after the global 

stiffness matrix has been assembled. Subroutine shape_der generates the shape function 

with respect to the coordinates, subroutine bmataxi forms the strain-displacement matrix 

and subroutine formkv assembles the stiffness matrix into the global stiffness. 

Subroutine banred and subroutine bacsub perform the solution of the equilibrium 

equation. The FE codes for adding the loads increment loop and solving the equilibrium 

equation are presented in List 4.6. 

!-----------------     loads increment loop and solution of equilibrium equation     ------------------ 

!-----------------------------------Codes in elastic-plastic program----------------------------------------- 

read(10,*) loaded_nodes ; allocate(no(loaded_nodes),storkv(loaded_nodes)) 

read(10,*)no , presc  , incs , tol , limit 

             do i=1,loaded_nodes 

                   kv(nf(2,no(i)))=kv(nf(2,no(i)))+1.e20  

                  storkv(i)=kv(nf(2,no(i))) 

             end do;  call banred(kv,neq) 

call deemat(dee,e,v); load_increments: do iy=1,incs; ptot = presc * iy 
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iterations: do 

            iters=iters+1;  loads = .0 

           do i=1,loaded_nodes;loads(nf(2,no(i)))=storkv(i)*presc; end do 

           loads = loads + bdylds  ;  call bacsub(kv,loads) 

List 4.6: The FE codes for adding loads increment loop and solving equilibrium 

equation in elastic-plastic FE program (Smith and Griffiths, 2005) 

In the iteration loop, the total loads vector is updated as a result of the loads increment. 

The input variables such as the convergence tolerance and the maximum number of 

iterations are used to control the loads increment loop. The subroutine checon can be 

used to check convergence. The body loads are updated at each iteration loop. At 

convergence, the stresses are updated for the next iteration loop. The running 

information such as stress terms, strain terms, nodal displacements and plastic strains 

are stored in the dynamic arrays. Subroutine mocouf, subroutine mocouq and subroutine 

form can be used to check whether yield is violated. The FE codes for checking 

convergence and yield are presented in List 4.7. 

!---------------------     Checking convergence and whether yield is violated    ----------------------- 

!-----------------------------------Codes in elastic-plastic program----------------------------------------- 

call checon(loads,oldis,tol,converged) 

if(iters==1)converged=.false. 

elements_3: do iel = 1 , nels; bload=.0 

   num = g_num( : , iel ) ; coord = transpose( g_coord( : , num )) 

   g = g_g( : , iel ) ; eld = loads ( g ) 

   gauss_points_2 : do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der ( der,points,i) 

           jac=matmul(der,coord); det = determinant(jac) 

           call invert(jac); deriv = matmul(jac,der); call bmataxi (bee,radius,coord,deriv,fun) 

             eps=matmul(bee,eld); det = det * radius;  eps=eps-evpt(:,i,iel) 

            sigma=matmul(dee,eps)  ;    stress=sigma+tensor(: , i , iel) 

         call invar(stress,sigm,dsbar,lode_theta); call mocouf (phi, c , sigm, dsbar , lode_theta , f ) 

          if (f>=.0) then; call mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3) 

         call formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3) 



97 
 

           erate=matmul(flow,stress) 

           evp=erate*dt; evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=matmul(dee,evp) 

       eload=matmul(devp,bee)    ; bload=bload+eload*det*weights(i); end if 

    if (converged.or.iters==limit)  then 

       tensor(:,i,iel)=stress; etensor(:,i,iel)=etensor(:,i,iel)+eps+evpt(:,i,iel) 

       pore(i,iel)=(etensor(1,i,iel)+etensor(2,i,iel)+etensor(4,i,iel))*bulk 

    end if 

   end do gauss_points_2 

   bdylds( g ) = bdylds( g ) + bload ; bdylds(0) = .0 

end do elements_3; if(converged.or.iters==limit)exit; end do iterations 

totd = totd + loads; if(iters==limit)stop; end do load_increments 

List 4.7: The FE codes for checking convergence and yield in elastic-plastic FE program 

(Smith and Griffiths, 2005) 

The calculated results are stored in dynamic arrays. The load increment method in this 

program is very similar to the time increment method in creep damage analysis. 

Therefore, this non-linear elastic-plastic version program is investigated to obtain the 

techniques for dealing with the non-linear problem in programming HITSI for creep 

damage mechanics. The validation of the FE codes for the elastic-plastic program is 

performed in Chapter 5. 

4.5 Development of the Plane Stress Version Creep Damage FE 

Program  

4.5.1 The Structure of the Creep Damage FE Program for Plane Stress Problem 

The FE codes for plane stress version creep damage FE program have been developed 

based on the investigation of the elastic and elastic-plastic FE programs. The creep 

deformation can be regarded as a time-related plastic deformation and the process of the 

creep damage is an absolutely transient problem. In creep damage FEM, the time 

domain should be discretization. Some of the techniques used in developing this FE 

program are based on the investigation of the linear elastic and non-linear elastic-plastic 

version programs. Here, four aspects need to be addressed: 

 The general FE algorithm for the creep damage problem  
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 The creep damage constitutive equation 

 The numerical time integration method 

 The updating of stress and creep damage field variables  

The structure chart of the FE program in Figure 4.6 represents the creep analysis of the 

plane stress problem. This corresponds to the development stage 4. 

 

Figure 4.6: Structure chart of plane stress version FE program for creep damage 

problem 

The initial stress method involves an explicit relationship between the increments of 

stress and increments of strain is used in developing this FE program. The initial elastic 

stresses are substituted into the creep damage constitutive equation and the creep 

damage fields such as creep strain rate and creep damage rate are integrated with respect 

to time. The FE algorithm for updating stress in Section 3.3.4 is used here for updating 

the total loads vector. The total loads vector consists of external applied loads and self-
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equilibrating “body loads” at each time iteration. For each iterative step, compatibility 

and force equilibrium are explicitly satisfied. 

In creep constitutive relationships, the complex creep damage phenomena can be 

depicted by a set of creep damage constitutive equations. The creep damage constitutive 

equation’s subroutines used in this program have been introduced in Section 3.3.2 and 

included in Feng Tan’s subroutine library. The library is based on the OOP approach 

and it contains constitutive equation subroutines for the Kachanov-Rabotnov-Hayhurst, 

the Kachanov-Rabotnov and the Kachanov-Rabotnov-Hayhurst-Xu methods. The user 

can select a different creep damage constitutive equation subroutine with a call 

statement according to the actual requirement. 

In the numerical integration algorithm, the accuracy of the FE solution critically 

depends on the selection of the time step size associated with an appropriate integration 

method. The numerical integration algorithms used in this program have been reviewed 

in Chapter 2 and introduced in Section 3.3.3.  The integration subroutines such as those 

for the Euler, the classical 4th order Runge-Kutta, the Runge-Kutta-Merson and the 

Runge-Kutta-Fehlberg methods are programmed with an OOP approach and are 

included in Feng Tan’s subroutine library. The user can select a different integration 

algorithm with a call statement. 

The creep damage increases monotonically with the time from the initial value zero to 

the critical value. An element that cannot support any further loads is said to be a failed 

element and the program will remove such elements. Here, the main program checks the 

creep damage value and forces the value of the element stiffness to zero when the creep 

damage value exceeds the critical value. Otherwise, the program calculates the creep 

damage until the rupture time occurs. Further specifications in the development of the 

FE program for creep damage analysis of the plane stress problem are illustrated in 

Section 4.5.2.  

4.5.2 Specifications in Developing Plane Stress Version Creep Damage FE 

Program 

This FE program is based on the development of the non-linear elastic-plastic FE 

program for creep analysis of the plane stress problem. In this program, the variables 

and arrays are declared first; then, the program enters the “input and initialisation” stage. 
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The declaration of new variables and arrays is summarized in Table 4.5 and Table 4.6, 

respectively. The FE codes for the declaration are presented in List 4.8. 

Table 4.5: The declaration of new variables in creep damage FE program for plane 

stress problem 

New variable name Declaration 

oppo 
number of parameters in the creep damage constitutive 

equation 

iy, iy, ii, ij simple counters 

iters counts creep iterations 

key1 output index for general geometry information 

key2 output index for node number 

key3 output index for element number 

key4 output index for node displacements 

key5 output index for body loads 

key6 output index for the coordinates of integrating points 

key7 output index for the stress  

key8 output index for the strain  

key9 output index for creep strain 

key10 output index for creep damage 

key11 output index for data transfer program 

ESS the equivalent stress 

MPSS the maximum principal stress 

T time increment 

T0 the initial time point 
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Table 4.6: The declaration of new arrays in creep damage FE program for plane stress 

problem 

New array name Declaration 

ABV 
contains creep damage, strain, strain hardening, 

coarsening and material constant 

crate 
contains creep damage rate, strain rate, strain hardening 

rate and material constant rate 

prop element properties 

evp creep strain rate increment 

devp creep force 

evpt holds running total of creep strains 

tabv 
holds running total of creep damage, strain, strain 

hardening,  coarsening and material constant 

material parameters in creep damage constitutive equation 

tsigma holds running total of stress terms 

tevp holds running total of creep strain increment 

tdevp holds running total of creep force 

gc integrating point coordinates 

tgc holds running total of integrating point coordinates 

teps holds running total of strain terms 

bload 
self-equilibrating element body loads due creep 

deformation 

eload integrating point  creep force contribution to bload 

bdylds 
self-equilibrating global body loads due to creep 

deformation 

 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!----------------------Codes in plane stress version creep damage FE program------------------------ 

99998 format(1X,I4) 

integer:: nels,neq,nband,nn,nr,nip,nodof,nod,nst,ndof,oppo, i,k,iel,ndim,                     & 

                loaded_nodes ,nprops,np_types,iy,j,ix,iters,ii,ij,key1=1,key2=2,                       & 
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                key3=3,key4=4,key5=5,key6=6,key7=7,key8=8,key9=9,                                   & 

               key10=10,key11=9999 

logical:: converged; character(len=15) :: element 

doubleprecision::  ESS, MPSS,T,t0, e, v,det     

doubleprecision, dimension (5):: ABV,crate 

doubleprecision,  allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                      & 

                              km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),bee(:,:)  ,                      & 

                             coord(:,:),loads(:),eld(:),sigma(:), prop(:,:), eps(:), evp(:),                 & 

                         devp(:), bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                        & 

                         material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),tdevp(:,:,:),                       & 

                         gc(:),tgc(:,:,:),teps(:,:,:) 

integer,  allocatable :: g_num(:,:) ,nf(:,:),g(:),num(:),g_g(:,:),etype(:),no(:)               

open (10,file='p1.dat',status='old',    action='read') 

open (11,file='p1.res',status='replace',action='write') 

read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo; ndof=nod*nodof 

allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),             & 

            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),                    & 

           num(nod),km(ndof,ndof), eld(ndof), sigma(nst),etype(nels),                         & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                   & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                        & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), dee(nst,nst),                                        & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                              & 

           teps(nst,nip,nels)) 

List 4.8: The FE codes of the declaration in plane stress version creep damage FE 

program 

After the declaration in the plane stress version creep damage FE program, the program 

enters the element stiffness integration and assembly stage. Data concerning the mesh 

and its properties are presented together with the nodal freedom data. The total number 

of nodes and elements are provided by the pre-process FE software FEMGV. The 

elements are looped to generate “global” arrays containing the element node numbers, 
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the element nodal coordinates and the element steering vectors. Here, the subroutine 

num_to_g is used to find global coordinates and global node numbers. Then, the 

subroutine formnf is called to return the nodal freedom array from the boundary 

conditions. Finally, subroutine sample is called to return the local coordinates and 

weighting coefficients for the numerical integration of the element type.  

In element stiffness integration and assembly, subroutine shape_der is used to derive 

the shape functions with respect to the coordinates and subroutine shape_fun returns the 

shape function fun at the integrating point. Then, subroutine beemat returns the strain-

displacement matrix for the shape function derivatives. Lastly, subroutine formkv is 

used to assemble the element stiffness matrix into the global stiffness. The FE codes of 

element stiffness integration and assembly is presented in List 4.9. 

!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!----------------------Codes in plane stress version creep damage FE program----------------------- 

do i=1, nn; read (10,*) k, g_coord(:,i); end do 

do i=1, nels; read (10,*)k, g_num(:,i); end do 

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k, nf(:,k), i=1,nr) 

call formnf (nf); neq=maxval(nf); nband = 0 

elements_1:   do iel = 1, nels 

                    num=g_num(:,iel); call num_to_g(num,nf,g) ; g_g(:,iel)=g 

                    e=prop(1,etype(iel)); v=prop(2,etype(iel)) 

                   if(nband<bandwidth(g))nband=bandwidth(g) 

 end do elements_1 

        dee=.0; dee(1,1)=e/(1.-v*v);dee(2,2)=dee(1,1);dee(3,3)=.5*e/(1.+v) 

       dee(1,2)=v*dee(1,1);dee(2,1)=dee(1,2) 

call sample(element,points,weights) 

allocate( kv(neq*(nband+1)),loads(0:neq),bdylds(0:neq)); kv=0.0 

elements_2: do iel = 1, nels; num = g_num(:, iel);  g = g_g( : , iel ) 

                     coord = transpose(g_coord(:, num)) ; km=0.0 

          gauss_pts_1: do i = 1, nip; call shape_fun(fun,points,i) 

                    call shape_der(der,points,i) ; jac = matmul(der,coord) 

                   det = determinant(jac); call invert(jac);  gc=matmul(fun,coord) 
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                   tgc(:,i,iel)=gc; deriv = matmul(jac,der) ; call beemat (bee,deriv) 

               km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

        end do gauss_pts_1; call formkv (kv,km,g,neq) 

 end do elements_2 

List 4.9: The FE codes of element stiffness integration and assembly in plane stress 

version creep damage FE program 

After the assembly of all element stiffness matrices, the equilibrium equation is solved. 

Here, the difference from the non-linear elastic-plastic program is that the loads variable 

in the elastic-plastic program is replaced by the time variable. The stress, strain, nodal 

displacement, body loads and creep damage field variables are updated with the time 

increment. The loads and the sense of freedoms are first read by the main program. 

Then, subroutine bacsub is called to solve the equilibrium equation and the initial stress 

can be recovered at this stage. The iterations of elements and integrating points are 

looped again to recover the initial stress at each integrating point. Subroutine shape_der 

is used to derive the shape functions with respect to the coordinates and subroutine 

shape_fun returns the shape function fun at the integrating point. The strain-

displacement matrix for the shape function derivatives is returned by subroutine beemat; 

the displacement, stress and strain at each integrating point can be recovered through the 

above operation. The FE codes for solving the equilibrium equation and recovering the 

initial stress at each integrating point are presented in List 4.10. 

!-----------------     loads increment loop and solution of equilibrium equation     ------------------ 

!----------------------Codes in plane stress version creep damage FE program----------------------- 

evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 

read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

             call banred(kv,neq); bdylds=.0; T=1; t0=0 

                   do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0             

                  end do;  end do; end do 

           tsigma=0; tevp=0; tdevp=0; do ii=1,2; ij=ii*iy; do iy=1,2; t0=t0+t 

iters=0;bdylds=0;evpt=0; do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 
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loads = loads + bdylds; call bacsub(kv,loads) 

elements_3: do iel = 1 , nels; bload=.0 

   num = g_num( : , iel ) ; coord = transpose( g_coord( : , num )) 

   g = g_g( : , iel ) ; eld = loads ( g ) 

   integrating_pts_2 : do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der ( der,points,i) 

           jac=matmul(der,coord); call invert(jac) 

          deriv = matmul(jac,der); call beemat(bee,deriv) 

          eps=matmul(bee,eld); teps(:,i,iel)=eps;  det = determinant(jac) 

          eps=eps-evpt(:,i,iel);  sigma=matmul(dee,eps) 

          tsigma(:,i,iel)=sigma; abv=tabv(:,i,iel) 

List 4.10: The FE codes for solving the equilibrium equation and recovering the initial 

stress at each integrating point in plane stress version creep damage FE program 

Once the initial stress is calculated by the program, the time increment loop is executed. 

The equivalent stress and the maximum principal stress is obtained by substituting the 

initial stress into subroutine rdmpes. Then, the equivalent stress and the maximum 

principal stress are substituted into the creep damage constitutive equation for obtaining 

the creep damage variables. The Kachanov-Rabotnov creep damage constitutive 

equations with the Runge-Kutta integration method are used in calculating creep 

damage variables and the subroutine RK4_KR is used to perform the above tasks.  

The creep strain is used in the calculation of body loads at each iteration loop. An 

element cannot support any further loads if the damage value increases from the initial 

value zero to the critical value and such an element is said to be a failed element and the 

program removes it. Here, the main program checks the creep damage value; the 

program forces the value of the element stiffness to zero when the creep damage value 

exceeds the critical value. Lastly, the element body loads are assembled into the global 

body load vector and the global body load is substituted into the equilibrium equation 

for the stress updating. The FE codes for calculating creep damage variables and stress 

updating are presented in List 4.11. 

!-------------------------     creep damage variables and stress updating    ---------------------------- 

!----------------------Codes in plane stress version creep damage FE program----------------------- 
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call rdmpes (sigma,mpss,ess);  do ix=1, oppo; material(ix)=prop(ix+2,etype(iel)) 

end do; call RK4_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

      tabv(:,i,iel)=abv; evp(1)=crate(1)*t;evp(2)=crate(2)*t 

      evp(3)=crate(3)*2*t; evp(4)=crate(4)*t; tevp(:,i,iel)=evp 

  evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=matmul(dee,evp) 

 tdevp(:,i,iel)=devp; eload=matmul(devp,bee) 

 bload=bload+eload*det*weights(i) 

 end do integrating_pts_2  

bdylds( g ) = bdylds( g )+ bload ; bdylds(0) = 0 

end do elements_3; end do; end do 

List 4.11: The FE codes for calculating creep damage variables and stress updating in 

plane stress version creep damage FE program 

The program calculates the creep damage until the rupture time occurs. The results such 

as the coordinates of integrating points, node displacement, stress, strain, creep strain 

and creep damage are output for the post-processing. The FE codes for the output of all 

calculated results are presented in List 4.12. 

!---------------------------------------     output the results    ------------------------------------------------- 

!----------------------Codes in plane stress version creep damage FE program----------------------- 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 

write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 
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write(11,99998) key11; end program planestress 

List 4.12: The FE codes for the output of all calculated results in plane stress version 

creep damage FE program 

The running results are stored in dynamic arrays and they can be output by a write 

statement in main program. The plain strain, axisymmetric and three-dimension 

versions of the FE programs are based on the plane stress version creep damage FE 

program. The main difference between them is the different constitutive relationship 

and this has been introduced in Chapter 3.  The validation of this FE program is 

performed in Chapter 5. 

4.6 Development of the Plane Strain Version Creep Damage FE 

Program 

4.6.1 The Structure of the Creep Damage FE Program for Plane Strain Problem 

The FE codes for the plane strain version creep damage FE program have been 

developed based on the plane stress version creep damage FE program. The FE 

algorithm of plane strain is very similar to that of plane stress for creep damage analysis, 

the main difference being the constitutive matrix. In the plane strain problem, a typical 

slice of, say, an underground tunnel that lies along the z axis might deform in essentially 

plane strain conditions. The plane stress and plane strain constitutive matrices are 

presented in Section 3.4.1. In this program, the element stiffness integration, element 

stiffness assembly and the solution of the general equilibrium equation are focused on 

the plane strain constitutive relationship. The structure chart of the FE program in 

Figure 4.7 is presented for the creep damage analysis of the plane strain problem. This 

corresponds to the development stage 5. 
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Figure 4.7: Structure chart of plane strain version FE program for creep damage 

problem 

The creep damage constitutive equation’s subroutines with the time integration method 

used in this program are included in Feng Tan’s subroutine library and they have been 

introduced in Section 3.3.2 and Section 3.3.3. The library contains subroutines for the 

Kachanov-Rabotnov-Hayhurst, the Kachanov-Rabotnov and the Kachanov-Rabotnov-

Hayhurst-Xu equations. The integration subroutines such as the Euler, the classical 4th 

order Runge-Kutta, the Runge-Kutta-Merson and the Runge-Kutta-Fehlberg methods 

are used in this program. The user can select a different creep damage constitutive 

equation subroutine and different time integration method with a call statement 

according to the actual requirement. 

The FE algorithm for updating the stress and creep damage field variables, introduced in 

Section 3.3.4, is used in developing this program. Further specifications in the 

development of the FE program for the creep damage analysis of the plane strain 

problem are illustrated in Section 4.6.2. 
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4.6.2 Specifications in Developing Creep Damage FE Program for Plane Strain 

Problem 

This FE program has been developed for creep damage analysis of the plane strain 

problem. The different two-dimensional element types for this program have been 

described in Section 3.4.2. In this program, the variables and arrays are declared first; 

then, the program enters the “input and initialisation” stage. The declaration of variables 

has been summarized in Table 4.5 and a new dynamic array used in this program is 

shown in Table 4.7. The FE codes of the declaration are presented in List 4.13. 

Table 4.7: The declaration of new array in creep damage FE program for plane strain 

problem 

New array name Declaration 

kdiag diagonal term location vector 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!----------------------Codes in plane strain version creep damage FE program------------------------ 

99998 format(1X,I4) 

integer:: nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,i,k,iel,ndim,                                   & 

                loaded_nodes ,nprops,np_types,iy,j,ix,iters,ii,ij,key1=1,                                     & 

               key2=2, key3=3,key4=4,key5=5,key6=6,key7=7,key8=8,                                   & 

               key9=9,key10=10,key11=9999 

doubleprecision::  ESS, MPSS,T,t0, e, v,det     

doubleprecision, dimension (5):: ABV,crate 

character(len=15) :: element 

doubleprecision,  allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                      & 

                              km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),bee(:,:)  ,                      & 

                             coord(:,:),loads(:),eld(:),sigma(:), prop(:,:), eps(:), evp(:),                 & 

                             devp(:), bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                     & 

                             material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),tdevp(:,:,:),                    & 

                             gc(:),tgc(:,:,:),teps(:,:,:) 

integer,  allocatable :: g_num(:,:) ,nf(:,:),g(:),num(:),g_g(:,:),etype(:),no(:),              & 

                            kdiag(:) 
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open (10,file='p2.dat',status='old',    action='read') 

open (11,file='p2.res',status='replace',   action='write') 

read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

ndof=nod*nodof 

allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),             & 

            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),                    & 

           num(nod),km(ndof,ndof), eld(ndof), sigma(nst),etype(nels),                         & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                   & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                        & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), dee(nst,nst),                                        & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                              & 

           teps(nst,nip,nels)) 

List 4.13: The FE codes of the declaration in plane strain version creep damage FE 

program 

After the declaration, the program enters the element stiffness integration and assembly 

stage. Data information concerning the mesh and its properties is provided by the pre-

processing FE software FEMGV. The elements are looped to generate “global” arrays 

containing the element node numbers, the element nodal coordinates and the element 

steering vectors. Here, the subroutine num_to_g is used to find global coordinates and 

global node numbers. Then, the subroutine formnf is called to return the nodal freedom 

array from boundary conditions and subroutine fkdiag is used to hold the diagonal term 

location. Finally, subroutine sample is called to return the local coordinates and 

weighting coefficients for the numerical integration of an element type.  

In the element stiffness integration and assembly, subroutine beemat is used to return 

the strain-displacement matrix for the shape function derivatives and subroutine 

shape_der derives the shape functions with respect to the coordinates. Then, subroutine 

shape_fun returns the shape function fun at the integrating point and subroutine deemat 

returns the elastic stress-strain. Lastly, subroutine fsparv is used in assembling the 

element stiffness matrix into the global stiffness matrix. The FE codes of element 

stiffness integration and assembly are presented in List 4.14. 
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!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!----------------------Codes in plane strain version creep damage FE program----------------------- 

do i=1, nn; read (10,*) k, g_coord(:,i); end do 

do i=1, nels; read (10,*)k, g_num(:,i); end do 

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k, nf(:,k), i=1,nr) 

call formnf (nf); neq=maxval(nf); allocate(kdiag(neq)) ;  kdiag = 0 

elements_1:   do iel = 1, nels 

                    num=g_num(:,iel); call num_to_g(num,nf,g) ; g_g(:,iel)=g 

                   call fkdiag(kdiag,g)  

end do elements_1 

        kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do 

allocate( kv(kdiag(neq)),loads(0:neq),bdylds(0:neq)); kv=0.0 

call sample(element,points,weights) 

elements_2: do iel = 1, nels; num = g_num(:, iel);  g = g_g( : , iel ) 

                     coord = transpose(g_coord(:, num)) ; km=0.0 

          gauss_pts_1: do i = 1, nip; e=prop(1,etype(iel)); v=prop(2,etype(iel)); 

                     call deemat(dee,e,v); call shape_fun(fun,points,i) 

                    call shape_der(der,points,i) ; jac = matmul(der,coord) 

                   det = determinant(jac); call invert(jac);  gc=matmul(fun,coord) 

                   tgc(:,i,iel)=gc; deriv = matmul(jac,der) ; call beemat (bee,deriv) 

               km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

        end do gauss_pts_1; call fsparv (kv,km,g,kdiag) 

 end do elements_2 

List 4.14: The FE codes of element stiffness integration and assembly in plane strain 

version creep damage FE program 

After the assembly of all element stiffness matrices, the equilibrium equation is solved. 

Here, unlike the plane stress version creep damage FE program, the solution loads 

overwrite the RHS by forward and back substitution on the Cholesky factorized global 

stiffness matrix stored as a skyline. The stress, strain, nodal displacement, body loads 

and creep damage field variables are updated with the time increment of. Then, 

subroutine sparin and subroutine spabac are called to solve the equilibrium equation 
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and the initial stress will be given at this stage. The iteration of elements and integrating 

points is looped again to recover the initial stress at each integrating point. Subroutine 

shape_der derives the shape functions with respect to the coordinates and subroutine 

shape_fun returns the shape function at the integrating point. The strain-displacement 

matrix for the shape function derivatives is returned by subroutine beemat; the 

displacement, stress and strain at each integrating point can be recovered through the 

above operation. The FE codes for solving the equilibrium equation and recovering the 

initial stress at each integrating point are presented in List 4.15. 

!-----------------     loads increment loop and solution of equilibrium equation     ------------------ 

!----------------------Codes in plane strain version creep damage FE program----------------------- 

evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 

read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

             call sparin (kv,kdiag); bdylds=.0; T=1; t0=0 

                   do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0             

                  end do;  end do; end do 

           tsigma=0; tevp=0; tdevp=0; do ii=1,2; ij=ii*iy; do iy=1,2; t0=t0+t 

iters=0;bdylds=0;evpt=0; do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 

loads = loads + bdylds; call spabac(kv,loads,kdiag) 

elements_3: do iel = 1 , nels; bload=.0 

   num = g_num( : , iel ) ; coord = transpose( g_coord( : , num )) 

   g = g_g( : , iel ) ; eld = loads ( g ) 

   integrating_pts_2 : do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der ( der,points,i) 

           jac=matmul(der,coord); det = determinant(jac) 

          call invert(jac);deriv = matmul(jac,der) 

          call beemat(bee,deriv);eps=matmul(bee,eld) 

          eps=eps-evpt(:,i,iel);  sigma=matmul(dee,eps) 

          tsigma(:,i,iel)=sigma; 
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       abv=tabv(:,i,iel) 

List 4.15: The FE codes for solving the equilibrium equation and recovering the initial 

stress at each integrating point in plane strain version creep damage FE program 

Once the initial stress is obtained by the program, the time increment loop will be 

executed. The equivalent stress and the maximum principal stress are calculated by 

supplying the initial stress to subroutine rdmpes. The equivalent stress and the 

maximum principal stress will be substituted into the creep damage constitutive 

equation for the calculation of creep damage variables. The subroutine EULER_KR is 

used to calculate the creep damage variables and the creep strain is used in the 

calculation of element body loads at each element. Lastly, the element body loads are 

assembled into the global body loads and the global body loads will be substituted into 

the equilibrium equation for updating the stress. The FE codes for calculating creep 

damage variables and stress updating are presented in List 4.16. 

!-------------------------     creep damage variables and stress updating    ---------------------------- 

!----------------------Codes in plane strain version creep damage FE program----------------------- 

call rdmpes (sigma,mpss,ess);  do ix=1, oppo; material(ix)=prop(ix+2,etype(iel)) 

end do; call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

      tabv(:,i,iel)=abv; evp(1)=crate(1)*t;evp(2)=crate(2)*t 

      evp(3)=crate(3)*2*t; evp(4)=crate(4)*t; tevp(:,i,iel)=evp 

  evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=matmul(dee,evp) 

 tdevp(:,i,iel)=devp; eload=matmul(devp,bee) 

 bload=bload+eload*det*weights(i) 

 end do integrating_pts_2  

bdylds( g ) = bdylds( g )+ bload ; bdylds(0) = 0 

end do elements_3; end do; end do 

List 4.16: The FE codes for calculating creep damage variables and stress updating in 

plane strain version creep damage FE program 

The creep damage increases monotonically with the time until the rupture time occurs. 

The results such as the coordinates of integrating points, node displacement, stress, 

strain, creep strain and creep damage are output by the main program for post-
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processing. The FE codes for the output of all calculated results are presented in List 

4.17. 

!---------------------------------------     output the results    ------------------------------------------------- 

!----------------------Codes in plane stress version creep damage FE program----------------------- 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 

write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 

write(11,99998) key11; end program planestrain 

List 4.17: The FE codes for the output of all calculated results in plane strain version 

creep damage FE program 

The running results are stored in dynamic arrays and they can be output at the end of 

program by a write statement. This program is based on the plane stress version creep 

damage FE program and the validation is performed in Chapter 5. 

4.7 Development of the Axisymmetric Version Creep Damage FE 

Program 

4.7.1 The Structure of the Creep Damage FE Program for Axisymmetric Problem 

The FE codes for the axisymmetric version creep damage FE program have been 

developed based on the plane strain version creep damage FE program. The FE 

algorithm for both axisymmetric and plane strain version program for creep damage 

analysis is very similar, the main variation being the different constitutive relationship. 
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In the axisymmetric problem, a constant value of displacement in the circumferential 

direction should be considered. The axisymmetric constitutive matrix in the FE method 

is presented in Section 3.4.1. In this program, the element stiffness integration, element 

stiffness assembly and solution of the general equilibrium equation are focused on the 

axisymmetric constitutive relationship. The structure chart of the FE program in Figure 

4.8 is presented for the creep analysis of the axisymmetric problem. This corresponds to 

the development stage 6.  

  

Figure 4.8: Structure chart of axisymmetric version FE program for creep damage 

problem 

The creep damage constitutive equation’s subroutines with the time integration method 

used in this program are included in Feng Tan’s subroutine library and they have been 

introduced in Section 3.3.2 and Section 3.3.3. The library contains subroutines for the 

Kachanov-Rabotnov-Hayhurst, the Kachanov-Rabotnov and the Kachanov-Rabotnov-

Hayhurst-Xu equations. The integration subroutines such as the Euler, the classical 4th 

order Runge-Kutta, the Runge-Kutta-Merson and the Runge-Kutta-Fehlberg methods 
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are used in this program.  The user can select a different creep damage constitutive 

equation subroutine and different time integration method with a call statement 

according to the actual requirement. 

The FE algorithm for updating the stress and creep damage field variables, introduced in 

Section 3.3.4, is used in developing this program. Further specifications in the 

development of the FE program for the creep damage analysis of the plane strain 

problem are illustrated in Section 4.7.2. 

4.7.2 Specifications in Developing Creep Damage FE Program for Axisymmetric 

Problem 

This FE program has been developed for the creep damage analysis of the axisymmetric 

problem. The different two-dimensional element types for this program have been 

described in Section 3.4.2. In this program, the variables and arrays are declared first; 

then, the program enters the “input and initialisation” stage. Since a constant value of 

displacement in the circumferential direction should be considered, one extra variable 

and one extra dynamic array are used in the development of this program. The 

declaration of the new variable and array is summarized in Table 4.8 and Table 4.9, 

respectively. The FE codes of the declaration are presented in List 4.18. 

Table 4.8: The declaration of new variable in creep damage FE program for 

axisymmetric problem 

New variable name Declaration 

radius r-coordinates of Gauss point 

 

Table 4.9: The declaration of new array in creep damage FE program for axisymmetric 

problem 

New array name Declaration 

S component of stress 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!----------------------Codes in axisymmetric version creep damage FE program---------------------- 

99998 format(1X,I4) 

integer:: nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,i,k,iel,ndim,                                   & 
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                loaded_nodes ,nprops,np_types,iy,j,ix,iters,ii,ij,key1=1,                                     & 

               key2=2, key3=3,key4=4,key5=5,key6=6,key7=7,key8=8,                                   & 

               key9=9,key10=10,key11=9999 

doubleprecision::  ESS, MPSS,T,t0, e, v,det, radius 

doubleprecision, dimension (5):: ABV,crate 

doubleprecision, dimension (4)::S 

character(len=15) :: element 

doubleprecision,  allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                      & 

                              km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),bee(:,:)  ,                      & 

                             coord(:,:),loads(:),eld(:),sigma(:), prop(:,:), eps(:), evp(:),                 & 

                             devp(:), bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                     & 

                             material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),tdevp(:,:,:),                    & 

                             gc(:),tgc(:,:,:),teps(:,:,:) 

integer,  allocatable :: g_num(:,:) ,nf(:,:),g(:),num(:),g_g(:,:),etype(:),no(:),            

open (10,file='p3.dat',status='old',    action='read') 

open (11,file='p3.res',status='replace',   action='write') 

read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

ndof=nod*nodof 

allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),             & 

            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),                    & 

           num(nod),km(ndof,ndof), eld(ndof), sigma(nst),etype(nels),                         & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                   & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                        & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), dee(nst,nst),                                        & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                              & 

           teps(nst,nip,nels)) 

List 4.18: The FE codes of the declaration in axisymmetric version creep damage FE 

program 

After the declaration, the program enters the element stiffness integration and assembly 

stage. Data information concerning the mesh and its properties are provided by the pre-
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processing FE software FEMGV. The elements are looped to generate “global” arrays 

containing the element node numbers, the element nodal coordinates and the element 

steering vectors. Here, the subroutine formnf is called to return the nodal freedom array 

from boundary conditions. Then, the subroutine num_to_g is used to find global 

coordinates and global node numbers and subroutine sample is called to return the local 

coordinates and weighting coefficients for the numerical integration of an element type. 

In the element stiffness integration and assembly, subroutine deemat returns the elastic 

stress-strain matrix. Then, subroutine shape_der is used to derive the shape functions 

with respect to the coordinates and subroutine shape_fun returns the shape function at 

the integrating point. The subroutine bmataxi is called to form the strain-displacement 

matrix. Lastly, subroutine formkv is used to assemble the element stiffness matrix into 

the global stiffness system. The FE codes of element stiffness integration and assembly 

are presented in List 4.19. 

!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!---------------------Codes in axisymmetric version creep damage FE program---------------------- 

do i=1, nn; read (10,*) k, g_coord(:,i); end do 

do i=1, nels; read (10,*)k, g_num(:,i); end do 

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k, nf(:,k), i=1,nr) 

call formnf (nf); neq=maxval(nf); nband=0 

elements_1:   do iel = 1, nels 

                    num=g_num(:,iel); call num_to_g(num,nf,g) ; g_g(:,iel)=g 

                   if(nband<bandwidth(g))nband=bandwidth(g) 

end do elements_1 

call sample(element,points,weights) 

allocate( kv(neq*(nband+1)),loads(0:neq),bdylds(0:neq)); kv=0.0 

elements_2: do iel = 1, nels; num = g_num(:, iel);  g = g_g( : , iel ) 

                     coord = transpose(g_coord(:, num)) ; km=0.0 

                     e=prop(1,etype(iel)); v=prop(2,etype(iel)) 

                    call deemat(dee,e,v); do ix=1, oppo 

                    material(ix)=prop(ix+2,etype(iel)); end do 

          gauss_pts_1: do i = 1, nip; call shape_fun(fun,points,i) 
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                   call shape_der(der,points,i); jac=matmul(der,coord) 

                   det = determinant(jac); call invert(jac);  gc=matmul(fun,coord) 

                   tgc(:,i,iel)=gc; deriv = matmul(jac,der)  

                  call bmataxi(bee,radius,coord,deriv,fun); det =det*radius 

               km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

        end do gauss_pts_1; call formkv (kv,km,g,neq) 

 end do elements_2 

List 4.19: The FE codes of element stiffness integration and assembly in axisymmetric 

version creep damage FE program 

After the assembly of all element stiffness matrices, the equilibrium equation is solved. 

Here, the difference with the plane strain version creep damage FE program is the 

constitutive relationship, and the solution method in the axisymmetric program is based 

on Jacobi rotations (Smith et al., 2013). The stress, strain, nodal displacement, body 

loads and creep damage field variables are updated with the time increment. Then, 

subroutine banred and subroutine bacsub are called to solve the equilibrium equation 

and the initial stress will be given at this time. The iteration of elements and integrating 

points is looped again to recover the initial stress at each integrating point. Subroutine 

shape_der is used to derive the shape function with respect to the coordinates and 

subroutine shape_fun returns the shape function at the integrating point. The strain-

displacement matrix for the shape function derivatives is returned by subroutine 

bmataxi; the displacement, stress and strain at each integrating point can be recovered 

through the above operation. The FE codes for solving the equilibrium equation and 

recovering the initial stress at each integrating point are presented in List 4.20. 

!-----------------     loads increment loop and solution of equilibrium equation     ------------------ 

!---------------------Codes in axisymmetric version creep damage FE program---------------------- 

read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

             call banred(kv,neq); bdylds=.0; T=1; t0=0 

                   do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0             

                  end do;  end do; end do 

           tsigma=0; tevp=0; tdevp=0; do ii=1,2; ij=ii*iy; do iy=1,2; t0=t0+t 
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iters=0;bdylds=0;evpt=0; do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 

loads = loads + bdylds; call bacsub(kv,loads) 

elements_3: do iel = 1 , nels; bload=.0 

   num = g_num( : , iel ) ; coord = transpose( g_coord( : , num )) 

   g = g_g( : , iel ) ; eld = loads ( g ) 

   integrating_pts_2 : do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der ( der,points,i) 

           jac=matmul(der,coord); call invert(jac) 

          deriv=matmul(jac,der); call bmataxi(bee,radius,coord,deriv,fun) 

          eps=matmul(bee,eld); teps(:,i,iel)=eps; det=det*radius 

         eps=eps-evpt(:,i,iel)); sigma=matmul(dee,eps) 

         tsigma(:,i,iel)=sigma; abv=tabv(:,i,iel) 

List 4.20: The FE codes for solving the equilibrium equation and recovering the initial 

stress at each integrating point in axisymmetric version creep damage FE program 

Once the initial stress is calculated by the program, the time increment loop will be 

executed. In order to obtain the equivalent stress and the maximum principal stress 

subroutine stress_deviator_2D, subroutine equivalent_stress_2D and subroutine 

max_principal_stress_2D, developed by the author’s colleague Feng Tan, are used. The 

component of stress can be obtained by substituting the initial stress into subroutine 

stress_deviator_2D. The equivalent stress and the maximum principal stress are 

calculated by subroutine equivalent_stress_2D and subroutine 

max_principal_stress_2D, respectively. The equivalent stress and the maximum 

principal stress will be substituted into the creep damage constitutive equation for the 

calculation of creep damage variables. The subroutine Euler_KR is used to calculate the 

creep damage variables and the creep strain is used in the calculation of body loads at 

each element. Lastly, the element body loads are assembled to get the global body loads 

vector and the global body loads will be substituted into the equilibrium equation for 

updating stress. The FE codes for calculating creep damage variables and stress 

updating are presented in List 4.21. 

!-------------------------     creep damage variables and stress updating    ---------------------------- 

!---------------------Codes in axisymmetric version creep damage FE program---------------------- 

do ix=1, oppo; material(ix)=prop(ix+2,etype(iel)) 
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call STRESS_DEVIATOR_2D (sigma,S); call equivalent_stress_2D (S,ESS) 

           call  max_PRINCIPAL_STRESS_2D (sigma,MPSS) 

call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

     if(tabv(5,i,iel)>=0.99)then; tabv(5,i,iel)=0.9999 

     tevp(1,i,iel)=0.0; tevp(2,i,iel)=0.0; tevp(3,i,iel)=0.0 

     tevp(4,i,iel)=0.0; km=0.0; else; tabv(:,i,iel)=abv 

  tevp(:,i,iel)=evp; evpt(:,i,iel)=evpt(:,i,iel)+evp 

  end if 

      devp=matmul(dee,evp); tdevp(:,i,iel)=devp 

eload=matmul(devp,bee); bload=bload+eload*det*weights(i) 

  end do integrating_pts_2  

bdylds( g ) = bdylds( g )+ bload ; bdylds(0) = 0 

end do elements_3; end do; end do 

List 4.21: The FE codes for calculating creep damage variables and stress updating in 

axisymmetric version creep damage FE program 

The creep damage increases monotonically with the time until the rupture time occurs. 

The results such as the coordinates of integrating points, node displacement, stress, 

strain, creep strain and creep damage are output by the main program for the post-

processing. The FE codes for the output of all calculated results are presented in List 

4.22. 

!---------------------------------------     output the results    ------------------------------------------------- 

!---------------------Codes in axisymmetric version creep damage FE program---------------------- 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 
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write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 

write(11,99998) key11; end program axisymmetric 

List 4.22: The FE codes for the output of all calculated results in axisymmetric version 

creep damage FE program 

The running results are stored in dynamic arrays and they can be output at the end of 

program by a write statement. This program based on the plane strain version creep 

damage FE program and the validation is performed in Chapter 5. 

4.8 Development of the Three-dimensional Version Creep Damage FE 

Program 

4.8.1 The Structure of the Creep Damage FE Program for Three-dimensional 

Problem 

The three-dimensional FE program for creep damage analysis has been preliminarily 

developed based on the two-dimensional version FE program.  In three dimensions, the 

number of degrees of freedoms of a three-dimensional element is much larger than of a 

two-dimensional element; thus, it will result in a very large number of simultaneous 

equations for the solution of practical three-dimensional problems. The conventional 

storage and solution strategies (Smith et al., 2013) can be used in developing this FE 

program; however, the skyline stiffness vector requires many more locations than that 

of a two-dimensional problem and the bandwidth of the equations system may become 

very large leading to huge computer storage requirements (Hall, 1990). In order to 

improve the computing efficiency for three-dimensional problems, a one dimension 

variable-bandwidth storage method (Smith et al., 2013) to store the data of the global 

matrix, so that the storage is minimised, is used in programming this three-dimensional 

FE program for creep damage analysis. 

The general FE algorithm for the three-dimensional and two-dimensional programs for 

creep damage analysis is very similar. In actual programming, the constitutive matrix 

for the two cases is different. The three-dimensional constitutive matrix is introduced in 

Section 3.4.1. Thus, different strategies for element stiffness integration, element 
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stiffness assembly and the solution of general equilibrium equation are used in 

developing the three-dimensional version FE program. The structure chart of the FE 

program in Figure 4.9 is for the creep damage analysis of the three-dimensional 

problem. This corresponds to the development stage 7. 

 

Figure 4.9: Structure chart of three-dimensional version FE program for creep damage 

problem 

The Kachanov-Rabotnov creep damage constitutive equation and Euler integration 

method are used in this FE program. The FE algorithm introduced in Section 3.3.4 for 

updating stress and creep damage field variables is utilized. Further specifications in the 

development of FE program for the creep damage analysis of the three-dimensional 

problem are illustrated in Section 4.8.2. 

4.8.2 Specifications in Developing Creep Damage FE Program for Three-

dimensional Problem 

This FE program has been developed for the creep damage analysis of three-

dimensional problem. Several element types in Section 3.4.2 can be utilized in 
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developing this FE program. In this program, the variables and arrays are declared first; 

then, the program enters the “input and initialisation” stage. The declaration of the new 

variable and the new dynamic arrays has been summarized in Table 4.10 and Table 4.11, 

respectively. The FE codes of the declaration are presented in List 4.23. 

Table 4.10: The declaration of new variable in creep damage FE program for three-

dimensional problem 

New variable name Declaration 

fixed_nodes number of fixed nodes 

 

Table 4.11: The declaration of new arrays in creep damage FE program for three-

dimensional problem 

New array name Declaration 

sense hold fixed-node information 

value applied nodal load weightings 

 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!-------------------Codes in three-dimensional version creep damage FE program------------------- 

99998 format(1X,I4) 

integer:: nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,i,k,iel,ndim,                                   & 

                loaded_nodes ,nprops,np_types,iy,j,ix,iters,ii,ij,key1=1,                                     & 

               key2=2, key3=3,key4=4,key5=5,key6=6,key7=7,key8=8,                                   & 

               key9=9,key10=10,key11=9999, fixed_nodes 

doubleprecision::  ESS, MPSS,T,t0, e, v,det 

doubleprecision, dimension (5):: ABV,crate 

character(len=15) :: element 

doubleprecision,  allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                      & 

                              km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),bee(:,:)  ,                      & 

                             coord(:,:),loads(:),eld(:),sigma(:), prop(:,:), eps(:), evp(:),                 & 

                             devp(:), bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                     & 

                             material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),tdevp(:,:,:),                    & 

                             load_store(:),value(:) ,gc(:),tgc(:,:,:),teps(:,:,:) 
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integer,  allocatable :: g_num(:,:) ,nf(:,:),g(:),num(:),g_g(:,:),etype(:),no(:),              &     

             kdiag(:),sense(:), node(:) 

open (10,file='p4.dat',status='old',    action='read') 

open (11,file='p4.res',status='replace',   action='write') 

read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

ndof=nod*nodof 

allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),             & 

            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),                    & 

           num(nod),km(ndof,ndof), eld(ndof), sigma(nst),etype(nels),                         & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                   & 

           evpt(nst,nip,nels), tabv(7,nip,nels), material(oppo),                                        & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), dee(nst,nst),                                        & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                              & 

           teps(nst,nip,nels)) 

List 4.23: The FE codes of the declaration in three-dimensional version creep damage 

FE program 

After the declaration, the program enters the element stiffness integration and assembly 

stage. The elements are looped to generate the “global” arrays for containing the 

element node numbers, the element nodal coordinates and the element steering vectors. 

Here, the subroutine num_to_g is used to find global coordinates and global node 

numbers. Then, subroutine sample is called to return the local coordinates and 

weighting coefficients for the numerical integration of a finite element type. In the 

element stiffness integration and assembly, subroutine shape_der is used to derive the 

shape function with respect to the coordinates. The subroutine beemat returns the strain-

displacement matrix for the shape function derivatives. Lastly, subroutine fsparv is used 

to assemble the element stiffness matrix into the global stiffness. The FE codes of 

element stiffness integration and assembly are presented in List 4.24. 

!-------------------------     Element stiffness integration and assembly     ------------------------------ 

!-------------------Codes in three-dimensional version creep damage FE program------------------ 

do i=1, nn; read (10,*) k, g_coord(:,i); end do 
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do i=1, nels; read (10,*)k, g_num(:,i); end do 

nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k, nf(:,k), i=1,nr) 

call formnf (nf); neq=maxval(nf); allocate(kdiag(neq) ;   kdiag = 0 

elements_1:   do iel = 1, nels 

                    num=g_num(:,iel); call num_to_g(num,nf,g)  

                    g_g(:,iel)=g ; call fkdiag(kdiag,g) 

end do elements_1 

kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do 

allocate( kv(kdiag(neq)),loads(0:neq),bdylds(0:neq), load_store(0:neq)); kv=0.0  

call sample(element,points,weights) 

elements_2: do iel = 1, nels; num = g_num(:, iel);  g = g_g( : , iel ) 

                     coord = transpose(g_coord(:, num)) ; km=0.0 

          gauss_pts_1: do i = 1, nip; e=prop(1,etype(iel)) 

                    v=prop(2,etype(iel)); call deemat(dee,e,v)  

                   call shape_der(der,points,i); jac=matmul(der,coord) 

                   det = determinant(jac); call invert(jac);  gc=matmul(fun,coord) 

                   tgc(:,i,iel)=gc; deriv = matmul(jac,der); call beemat (bee,deriv) 

               km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

        end do gauss_pts_1; call fsparv (kv,km,g,kdiag) 

 end do elements_2 

List 4.24: The FE codes of element stiffness integration and assembly in three-

dimensional version creep damage FE program 

After the assembly of all element stiffness matrices, the equilibrium equation is solved. 

Here, the one dimension variable-bandwidth method (Smith et al., 2013) is used to store 

the data of the global matrix. The stress, strain, nodal displacement, body loads and 

creep damage field variables are updated with the time increment. Then, subroutine 

sparin and subroutine spabac are called to solve the equilibrium equation and the initial 

stress will be given at this stage. The iteration of elements and integrating points is 

looped again for recovering the initial stress at each integrating point. Subroutine 

shape_der is used to derive the shape function with respect to the coordinates. The 

strain-displacement matrix for the shape function derivatives is returned by subroutine 
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beemat, the displacement, stress and strain at each integrating point can be recovered 

through the above operation. The FE codes for solving the equilibrium equation and 

recovering the initial stress at each integrating point are presented in List 4.25. 

!-----------------     loads increment loop and solution of equilibrium equation     ------------------ 

!-------------------Codes in three-dimensional version creep damage FE program------------------ 

evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 

read(10,*) loaded_nodes; if(loaded_nodes/=0) then 

     read(10,*)(k,loads(nf(:,k)),i=1,loaded_nodes); load_store = loads 

       end if 

read(10,*) fixed_nodes; if(fixed_nodes /=0) then 

     allocate(node(fixed_nodes),sense(fixed_nodes),value(fixed_nodes),        & 

              no(fixed_nodes),storkv(fixed_nodes)) 

     read(10,*) (node(i), sense(i), value(i),i=1,fixed_nodes) 

     do i=1,fixed_nodes; no(i)=nf(sense(i),node(i)); end do 

     kv(kdiag(no)) = kv(kdiag(no)) + 1.e20  ; storkv = kv(kdiag(no)) 

    end if 

             call sparin (kv,kdiag); bdylds=.0; T=1; t0=0 

                   do i=1,nels; do j=1,nip; do k=1,7 

                       tabv(k,j,i)=0             

                  end do;  end do; end do 

           tsigma=0; tevp=0; tdevp=0; do ii=1,2; ij=ii*iy; do iy=1,2; t0=t0+t 

iters=0;bdylds=0;evpt=0; loads =.0; if(loaded_nodes/=0) loads = load_store 

if(fixed_nodes/=0) loads(no) = storkv * value 

loads = loads + bdylds; call spabac(kv,loads,kdiag) 

elements_3: do iel = 1 , nels; bload=.0 

   num = g_num( : , iel ) ; coord = transpose( g_coord( : , num )) 

   g = g_g( : , iel ) ; eld = loads ( g ) 

   integrating_pts_2 : do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der ( der,points,i) 

           jac=matmul(der,coord); det = determinant(jac) 
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          call invert(jac);deriv = matmul(jac,der) 

          call beemat(bee,deriv);eps=matmul(bee,eld) 

          eps=eps-evpt(:,i,iel);  sigma=matmul(dee,eps) 

          tsigma(:,i,iel)=sigma; abv=tabv(:,i,iel) 

List 4.25: The FE codes for solving the equilibrium equation and recovering the initial 

stress at each integrating point in three-dimensional version creep damage FE program 

Once the initial stress is obtained by the program, the time increment loop will be 

executed. The components of stress will be substituted into the creep damage 

constitutive equation for obtaining the creep damage variables. Here, the Kachanov-

Rabotnov creep damage constitutive equation and Euler integration method are used. 

Then, the creep strain is used in the calculation of body loads at each element and the 

element body loads are assembled to get the global body loads vector for updating the 

equilibrium equation. The FE codes for calculating creep damage variables and stress 

updating are presented in List 4.26. 

!-------------------------     creep damage variables and stress updating    ---------------------------- 

!-------------------Codes in three-dimensional version creep damage FE program----------------- 

call rdmpes (sigma,mpss,ess);  do ix=1, oppo; material(ix)=prop(ix+2,etype(iel)) 

end do; call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

      tabv(:,i,iel)=abv; tevp(:,i,iel)=evp; evpt(:,i,iel)=evpt(:,i,iel)+evp 

      devp=matmul(dee,evp); tdevp(:,i,iel)=devp 

      eload=matmul(devp,bee) 

  bload=bload+eload*det*weights(i) 

if(tabv(7,i,iel)>=0.99)then 

          tabv(7,i,iel)=0.99;  tevp(:,i,iel)=0.0 

               km=0.0 ; else; tabv(:,i,iel)=abv 

                tevp(:,i,iel)=evp 

            evpt(:,i,iel)=evpt(:,i,iel)+evp 

                        end if 

           end do integrating_pts_2  

bdylds( g ) = bdylds( g )+ bload  

    bdylds(0) = 0 
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 end do elements_3; end do; end do 

List 4.26: The FE codes for calculating creep damage variables and stress updating in 

three-dimensional version creep damage FE program 

The creep damage increases monotonically with the time until the rupture time occurs. 

The running results are stored in dynamic arrays and they can be output at the end of 

program by a write statement. The output method is the same as the two-dimensional 

version creep damage FE program. This program is based on the two-dimensional 

version creep damage FE program and the validation is performed in Chapter 5. 

4.9 Development of the Multi-materials Version Creep Damage FE 

Codes 

The components of weldment are complex, thus the multi-materials version FE codes 

have been developed to cope with this situation. Some new dynamic arrays are used in 

the development of such FE codes. The element materials information and boundary 

conditions are stored in a “dat” file and they can be read by the main program. The 

declaration of new variables and new array is shown in Table 4.12 and Table 4.13, 

respectively.  The FE codes of the declaration are presented in List 4.27. 

Table 4.12: The declaration of new variables in multi-materials version creep damage 

FE program 

New variable name Declaration 

nprops number of material property 

np_types number of different property type 

 

Table 4.13: The declaration of new arrays in multi-materials version creep damage FE 

program 

New array name Declaration 

etype element property type vector 

prop element properties 
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!-------------------------------------------      Declaration     ---------------------------------------------------- 

!---------------------Codes in multi-materials version creep damage FE program--------------------- 

99998 format(1X,I4) 

integer:: nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,i,k,iel,ndim,                                   & 

                loaded_nodes ,nprops,np_types,iy,j,ix,iters,ii,ij,key1=1,                                     & 

               key2=2, key3=3,key4=4,key5=5,key6=6,key7=7,key8=8,                                   & 

               key9=9,key10=10,key11=9999 

doubleprecision::  ESS, MPSS,T,t0, e, v,det     

doubleprecision, dimension (5):: ABV,crate 

character(len=15) :: element 

doubleprecision,  allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                      & 

                              km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),bee(:,:)  ,                      & 

                             coord(:,:),loads(:),eld(:),sigma(:), prop(:,:), eps(:), evp(:),                 & 

                             devp(:), bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                     & 

                             material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),tdevp(:,:,:),                    & 

                             gc(:),tgc(:,:,:),teps(:,:,:) 

integer,  allocatable :: g_num(:,:) ,nf(:,:),g(:),num(:),g_g(:,:),etype(:),no(:)    

open (10,file='p5.dat',status='old',    action='read') 

open (11,file='p5.res',status='replace',   action='write') 

read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

ndof=nod*nodof 

allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),          & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),             & 

            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),                    & 

           num(nod),km(ndof,ndof), eld(ndof), sigma(nst),etype(nels),                         & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                   & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                        & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), dee(nst,nst),                                        & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                              & 

           teps(nst,nip,nels)) 
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read(10,*) nprops , np_types; allocate(prop(nprops,np_types)) 

read(10,*) prop; etype = 1 ; if(np_types>1) 

 read(10,*) etype 

List 4.27: The FE codes of the declaration in multi-materials version creep damage FE 

program 

In this program, nprops and np_types are two integer variables representing the number 

of the material property and number of the different property type, respectively. The 

definition of these integer variables is stored in an input file. etype is a dynamic integer 

array and it represents the element property type vector. prop is a dynamic real array 

and it represents the element properties. The definition of these arrays is stored in an 

input file; the user can define different element material properties and element types in 

the input file.  Whether a single material model or multi-material model, the program 

can check the material property type automatically and all the material parameters are 

provided by an “input-dat” file.  

Once the element material’s property and element type are defined, the program will 

assemble them into the global stiffness matrix. The FE codes for the multi-material 

zones problem have been implanted into the 2D (plane stress, plane strain and 

axisymmetric) and 3D version creep damage FE programs to cope with the creep 

damage analysis of weldment components.  

4.10 Summary 

This chapter presents the development of the in-house FE software HITSI for creep 

damage analysis. Subsequently, the general flow diagram for the development of HITSI 

and the strategy used with eight development stages are proposed. 

HITSI has been developed and the current version includes four main version FE codes 

(plane stress, plane strain, axisymmetric and three-dimensional) due to the different 

characteristics of the constitutive matrix. The OOP approach has been considered in 

developing this FE software; for example the numerical integration method and the 

creep damage constitutive equation were built in the FE library under this approach; 

however, the standard FE library (Smith and Griffiths, 2005) was programmed in the 

Fortran 90 programming language under a structured programming approach. Smith’s 

FE library can be modified and programmed using the OOP approach, and this work 
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will be reported in Chapter 7. Furthermore, treatment of multi-material zones, failed 

element removal and stress and creep damage field variables updating has been 

achieved in the development of HITSI. User guidance of this FE software has been 

developed and it has been attached in Appendix D. 

Originally, the project was implicitly only aiming at the development of a 2D version of 

software. With successful progress on the 2D version and recognising the practical 

importance of a more general 3D version, the 3D version software has also been 

developed. This required some additional work but did not significantly deviate from 

the overall project. 

The author acknowledges that some important achievements and findings in this chapter 

have been published in Liu et al. (2013b) and Liu et al. (2013c) at various stages in this 

research. 
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Chapter 5 Validation of the Finite Element Codes 

for in-house Software HITSI 

5.1 Introduction 

This chapter reports the validation of the FE codes for in-house FE software HITSI for 

creep damage analysis. In order to make the procedure work in a step by step fashion, as 

well as to be logical and efficient, the strategy in this validation can be described in 

seven stages corresponding to the development strategy in Chapter 4. The validation 

stages can be summarized as follows: 

1) For the linear elastic FE program, techniques such as input and initialisation, 

loop elements to find bandwidth and number of equations, element stiffness 

integration and assembly, equation solution and stress recovery at the central 

gauss-point have been validated. 

2) For the non-linear (single material and time independent) elastic-plastic FE 

program, techniques such as adding load or displacement increment loop, 

executing the plastic iteration loop, checking plastic convergence, updating the 

gauss point stresses and computing the total body loads vector have been 

validated based on the validation in stage 1.  

3) For the in-house FE codes for the plane stress creep damage problem, a two-

dimensional uni-axial tension model is used in the validation of the FE codes for 

adding time increment loop, creep damage constitutive equations, the time 

integration algorithm, updating the gauss point stress and damage field 

variables.  

4) For the in-house FE codes for the plane strain creep damage problem, a two-

dimensional uni-axial tension model is used in the validation of the FE codes for 

the expanded techniques such as element stiffness integration, element stiffness 

assembly and the solution of the general equilibrium equation in the plane strain 

problem based the validation in stage 3.  

5) For the in-house FE codes for the axisymmetric creep damage problem, a simple 

thick wall pipe case is used to validate the FE codes for the expanded techniques 

such as element stiffness integration, element stiffness assembly and the solution 



134 
 

of the general equilibrium equation in the axisymmetric problem based on the 

validation in stage 4.  

6) For the in-house FE codes for the three-dimensional creep damage problem, a 

simple three-dimensional uni-axial tension model is used in testing the FE codes 

for the expanded techniques such as element stiffness integration, element 

stiffness assembly and the solution of the general equilibrium equation in the 

three-dimensional problem based on the validation in stage 5. 

7) For the in-house FE codes for the multi-materials creep damage problem, a two-

dimensional uni-axial tension model is used to validate the multi-material zones 

version FE codes. 

In this chapter, the validation of each FE program is conducted through the comparisons 

between the FE simulated results from the uni-axial case and the correlative theoretical 

results. To simulate accurately the rupture time of creep the parameters such as Young's 

modulus E and Poisson's ratio υ must be well characterised since they strongly influence 

the stress-strain matrix relationship in FEM, and therefore the initial stress values to 

creep damage constitutive equation. Kachanov-Rabotnov creep constitutive equation 

exhibits a stress range dependent description of the creep and damage behaviour, which 

has to be taken into account for the use of Kachanov-Rabotnov creep constitutive 

equation in this chapter. The parameter choice in the analytical model should be 

ensuring the effects of stress and strain states are taken into account in a 

phenomenological sense. Consequently, in order to make the comparisons between the 

FE simulated results and theoretical results more intuitionistic the choice of parameter 

should meet the stress range condition in Kachanov-Rabotnov creep constitutive 

equation. 

This chapter primarily consists of nine sections: 1) Introduction; 2) Validation of the 

elastic FE program; 3) Validation of the elastic-plastic FE program; 4) Validation of the 

plane stress version creep damage FE program; 5) Validation of the plane strain version 

creep damage FE program; 6) Validation of the axisymmetric version creep damage FE 

program; 7) Validation of the three-dimensional version creep damage FE program; 8) 

Validation of the FE codes for multi-materials version FE codes; 9) Summary. 
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5.2 Validation of the Elastic FE Program 

5.2.1 Introduction 

The validation of elastic FE program is conducted via a two-dimensional tension model 

which is adopted from Smith’s version linear elastic FE program: geotech / software / 

prog_fe / P50.F90 in (Smith and Griffiths, 2005). Here, the uniform 3-node triangular 

element numbered in the x-direction is selected for calculating the plane stress of an 

elastic solid. In this validation, some basic techniques which have been used in 

developing HITSI can be validated and can be summarized as: 

 The technique for reading the mesh, loads and boundary conditions information. 

 The technique for assembling element the stiffness matrix into the global 

system. 

 The technique for integrating points to find nodal coordinates and the steering 

vector. 

 The technique for factorising the global stiffness matrix and solving the 

equation. 

 The technique for recovering stresses at the central gauss-point. 

In this simulation, the FE model is shown in Figure 5.1.  

  

Figure 5.1: The two-dimensional tension model for validating elastic FE codes 
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The mesh, loads information and boundary conditions for this FE model are given in 

Table 5.1 

Table 5.1: The mesh, loads information and boundary conditions for elastic FE model 

Number of elements 
Number of elements in x-

coordinates direction 
Number of nodes  

Number of integrating 

points per element 

8 2 9 1 

x-coordinates of mesh layout y-coordinates of mesh layout E V 

0.5 0.5 2.e6 0.3 

Number of restrained nodes 

5 

K (simple counter), nodal freedom matrix (:, K), I=1, number of restrained nodes 

1 (0, 1); 4(0, 1); 7(0, 0); 8(1, 0); 9(1, 0) r 

Number of loaded nodes 

3 

K (simple counter),  loads (nodal freedom matrix (:, K)), I=1, number of loaded nodes 

1 (0,-30); 2(0, -60); 3 (0, -30) 

5.2.2 Result and Discussion 

The global node number connection information for this FE model are output in the “res” 

file and presented in Table 5.2.  

Table 5.2: The global node number connection information for elastic FE model 

Element number Global node number 

Element 1 1  2  4 

Element 2 5  4  2 

Element 3 2  3  5 

Element 4 6  5  7 

Element 5 4  5  7 

Element 6 8  7  5 

Element 7 5  6  8 

Element 8 9  8  6 

There are 12 equations and the half-bandwidth is 6 

The program enters the “input and initialisation” stage after the declaration of arrays. 

Data concerning the mesh and the element properties are presented together with the 

nodal freedom data. The total number of nodes and equations are provided by 

subroutine geometry_3tx. Then, the elements are looped to generate “global” arrays for 
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finding the element node numbers, the element nodal coordinates and the element 

steering vectors.  

Once the global stiffness matrix has been assembled, the node connection information, 

number of equations and the bandwidth of stiffness matrix can be calculated. At this 

stage, the technique for reading the mesh, loads and boundary conditions information 

and the technique for assembling element stiffness matrix into global system have been 

validated. Then, the global coordinate and nodal displacements for this elastic solid FE 

model have been output and are shown in Table 5.3. 

Table 5.3: The global coordinate and nodal displacements for the FE model 

Node number Global coordinates Nodal displacements 

1 (0.0000E+00  0.0000E+00) (0.0000E+00  -0.6000E-04) 

2 (0.5000E+00  0.0000E+00) (0.9000E-05   -0.6000E-04) 

3 (0.1000E+01  0.0000E+00) (0.1800E-04  -0.6000E-04) 

4 (0.0000E+00 -0.50000E+00) (0.0000E+00  -0.3000E-04) 

5 (0.5000E+00  -0.5000E+00) (0.9000E-05  -0.3000E-04) 

6 (0.1000E+01  -0.5000E+00) (0.1800E-04  -0.3000E-04) 

7 (0.0000E+00  -0.1000E+01) (0.0000E+00  0.0000E+00) 

8 (0.5000E+00  -0.1000E+01) (0.9000E-05  0.0000E+00) 

9 (0.1000E+01 -0.1000E+01) (0.1800E-04  0.0000E+00) 

The local coordinates of each integrating point are extracted from the point array, and 

the derivatives of the shape functions with respect to those coordinates are provided by 

the library subroutine shape_der (Smith and Griffiths, 2005).. The loads and fixed 

nodes are read by the main program. The global node number connection information 

and the global coordinate with the nodal displacement for this FE model have been 

correctly output in Table 5.2 and Table 5.3, respectively. Thus, the technique for 

integrating points to find nodal coordinates and the steering vector has been validated.  

The stresses can be calculated by computing the strain-displacement matrix and the 

stress-strain matrix at the stage of recovering stresses at integration points. The central 

point stresses for the elastic solid model are shown in Table 5.4. 
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Table 5.4:  The central gauss point stresses for the FE model 

Element 

number 

The central point stress in 

x-coordinates 

The central point stress 

in y-coordinates 

The central point shear 

stress 𝛕xy 

1 -0.2547E-04 -0.1200E+03 -0.5597E-05 

2 -0.1261E-04 -0.1200E+03 -0.9795E-05 

3 -0.4984E-05 -0.1200E+03 0.1399E-05 

4 -0.1871E-06 -0.1200E+03 0.0000E+00 

5 -0.5418E-05 -0.1200E+03 -0.2798E-05 

6 -0.1871E-06 -0.1200E+03 -0.2798E-05 

7 -0.1871E-06 -0.1200E+03 0.4198E-05 

8 0.4610E-05 -0.1200E+03 -0.2798E-05 

The theoretical stress in y direction is 120 Pa. The stress in x direction and shear stress 

should be zero. According to Table 5.4, the simulated stress in y direction has been 

shown to be in good agreement with the theoretical values. The simulated stress in the x 

direction and the simulated shear stress are negligible. Thus, the technique for 

factorising the global stiffness matrix, solving the equilibrium equation and the 

technique for recovering stresses at central gauss-point have been validated.  

Through the investigation of the FE program for elastic solid analysis, the techniques 

such as input and initialisation, loop elements to find bandwidth and number of equation, 

element stiffness integration and assembly, equation solution and recovering stresses at 

central gauss-point have been validated and such techniques will be used in the future 

development of the FE program for the creep damage analysis. 

5.3 Validation of the Elastic-plastic FE Program 

5.3.1 Introduction 

The validation of the elastic-plastic FE program is conducted via an axisymmetric ‘un-

drained’ strain of an elastic-plastic solid case which was introduced in: geotech / 

software / prog_fe / P66.F90 in (Smith and Griffiths, 2005) and the 8-node quadrilateral 

element is selected in this validation. The biggest difference between the linear elastic 

version program and this elastic-plastic program is that the non-linear processes pose 

much greater analytical problems than do the linear processes. The techniques used in 

this FE program have been validated and are summarized in following: 

 The technique for adding load or displacement increment loop 
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 The technique for executing the plastic iteration loop 

 The technique for checking plastic convergence  

 The technique for checking whether yield is violated and updating the gauss 

point stresses 

 The technique for computing the total body loads vector 

In this simulation, the FE model is shown in Figure 5.2. 

 

Figure 5.2: The FE model for validating elastic-plastic FE program 

The FE mesh, loads information and boundary conditions for this elastic solid FE model 

are given in Table 5.5. 

Table 5.5: The FE mesh, load information and boundary conditions for elastic-plastic 

solid model 

Friction 

angle 

(degrees): 30 

Cohesion: 0 

Dilation angle 

(degrees): 0 (a); 

30 (b) 

E: 2.5E4 V: 0.25 

Fluid bulk 

modulus: 

1.E6 

Consolidating 

stress: -20 

Number of 

elements: 1 

Number of element in 

x-coordinates: 1 

Number of element in 

y-coordinates: 1 

Number of nodes 

in mesh: 8 

Number of 

integrating points: 4 

Number of restrained nodes: 5 

Restrained nodes information: 1 (0, 1); 2(0, 1); 3(0, 0); 5(1, 0); 8(1, 0) 

Width: 1.0 Depth: -2.0 

Number of loaded nodes: 3;  I=1,  number of loaded nodes:  1   4   6 

Pressure: -5.e-4 
Number of load 

increments: 6 

Plastic convergence 

tolerance: 0.0001 

Plastic iteration 

ceiling: 50 
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This case has been investigated by Smith and Griffiths (2005); the maximum iterations 

to converge is 4 at the 6th load increment and the pore pressure is 0.07934 MPa; the 

minimum iterations to converge is 2 at the 1st load increment and the pre pressure is 

0.02451 MPa. This case is re-investigated here for the validation of the techniques for 

dealing with the non-linear problem. 

5.3.2 Result and Discussion 

The global node number connection information for the elastic-plastic FE model is 

shown in Table 5.6 and the displacement, the stress and the number of iterations to 

converge are shown in Table 5.7. 

Table 5.6: The global node number connection information for elastic-plastic FE model 

Node number Global coordinates 

1 (0.0000E+00  0.0000E+00) 

2 (0.0000E+00 -0.1000E+01) 

3 (0.0000E+00 -0.2000E+01) 

4 (0.5000E+00  0.0000E+00) 

5 (0.5000E+00 -0.2000E+01) 

6 (0.1000E+01  0.0000E+00) 

7 (0.1000E+01 -0.1000E+01) 

8 (0.1000E+01 -0.2000E+01) 

Global node numbers 

Element     1            3    2    1    4    6    7    8    5 

 

Table 5.7: The displacement, stress and the number of iterations to converge for elastic-

plastic FE model 

Load 

increment 
Displacement 

Effective 

stress in x-

coordinates 

Effective 

stress in x-

coordinates 

Effective shear 

stress 𝛕xy 

Deviator 

stress 
pore pressure 

Iterations 

to 

converge 

1 -0.5000E-03 -0.1755E+02 -0.2502E+02 -0.1755E+02 0.7475E+01 -0.2451E+01 2 

2 -0.1000E-02 -0.1510E+02 -0.3005E+02 -0.1510E+02 0.1495E+02 -0.4902E+01 2 

3 -0.1500E-02 -0.1265E+02 -0.3507E+02 -0.1265E+02 0.2243E+02 -0.7353E+01 2 

4 -02000E-02 -0.1207E+02 -0.3626E+02 -0.1207E+02 0.2419E+02 -0.7931E+01 4 

5 -0.2500E-02 -0.1207E+02 -0.3626E+02 -0.1207E+02 0.2420E+02 -0.7934E+02 4 

6 -0.3000E-02 -0.1207E+02 -0.3626E+02 -0.1207E+02 0.2420E+02 -0.7934E+02 4 
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The local coordinates of each integrating point are extracted from the dynamic array 

points. Subroutine shape_der is used to derive the shape function with respect to the 

coordinates and subroutine shape_fun returns the shape function fun at the integrating 

point; this process is similar to the linear elastic FE program. The results in Table 5.7 

have been shown to be in good agreement with the results from Smith and Griffiths 

(2005). 

According to Table 5.7, the technique for adding loads increment loop has been 

validated and the total number of the load increment is 6, which is the same as the 

maximum load increment set in the input file. Then, the technique for executing the 

plastic iteration loop and the technique for checking plastic convergence have been 

shown to be in good agreement with the results from Smith and Griffiths (2005). Lastly, 

the techniques for checking whether yield is violated and updating the gauss point stress 

as well as computing the total body loads vector have been validated through comparing 

the computed results with Smith and Griffiths (2005).  The above techniques have been 

tested and they can be used in the development of the non-linear FE program. 

Through the investigation of the FE program for non-linear elastic-plastic solid analysis, 

the techniques associated with the non-linear problem such as add load or displacement 

increment loop, execute the plastic iteration loop, check plastic convergence, check 

whether yield is violated and update the gauss point stresses have been validated and 

such techniques will be used in the development of the non-linear FE program for creep 

damage analysis. 

5.4 Validation of the in-house FE Codes for Plane Stress Creep 

Damage Problem 

5.4.1 The FE Model and Boundary Conditions 

The validation of the in-house FE codes for the plane stress problem is performed in this 

section and is conducted via the two-dimensional tension model in Figure 5.3. The 

length of a side is set to 1 metre. The Young's modulus E and Poisson's ratio υ are set to 

170 GPa and 0.3, respectively. A uniformly distributed linear load of 40 MPa is applied 

on the top line of this uni-axial tension model. The Kachanov-Rabotnov creep damage 

constitutive equation is used. Comparisons are made between the simulated results 

predicted by the plane stress version creep damage FE program and the theoretical 

values.  
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Figure 5.3: 2D plane stress tension FE model 

This is a two-dimensional plane stress uni-axial tension case and the boundary 

conditions should preserve the uni-axial tension’s characteristics. The boundary 

conditions and loads information are listed in Table 5.8. 

Table 5.8: The boundary conditions for 2D plane stress tension mode 

Node number Constraint in x direction Constraint in y direction Load in x direction Load in y direction 

Node No.1 shut open 0  10 

Node No.2 open open 0  20 

Node No.3 open open 0  10 

Node No.4 shut open 0  0  

Node No.5 open open 0  0  

Node No.6 open open 0  0  

Node No.7 shut shut 0  0  

Node No.8 open shut 0  0  

Node No.9 open shut 0  0  

 

5.4.2 Results and Discussion 

The simulated results will be compared with the theoretical values to validate the FE 

codes. The stress in the x direction should be zero. The stress values should remain the 

same throughout the creep test up to failure. The theoretical stress in the y direction can 

be calculated by: 

𝜎𝑦 =
𝑃

𝐴
=

40

1.0
= 40 MPa                                                    (5.1) 
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Thus, the theoretical stress in the y direction is 40 MPa and by substituting the 

theoretical stress value into the Kachanov-Rabotnov creep damage constitutive equation 

with the Euler integration method, the theoretical rupture time and creep damage can be 

obtained by the proven subroutine developed by the author’s colleague Feng Tan. The 

theoretical rupture time and creep damage are shown in Table 5.9.  

Table 5.9: The theoretical rupture time and creep damage 

Rupture time Creep damage 

23773 0.99 

 

The stress distributions in the y direction and the x direction obtained from FE software, 

with the stress updating invoked due to creep deformation, are shown in Figure 5.4 and 

Figure 5.5 separately. The initial elastic stress for each element, without stress updating, 

and the stress involving creep deformation with stress updating are shown in Table 5.10 

and Table 5.11, respectively. Both confirmed the uniform distribution of stresses, and 

the values of stress in the y direction obtained from FE software are correct, and the 

stress in the x direction is negligible. 

  

Figure 5.4: The simulated stress distribution in the y direction with stress updating at 

rupture time 
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Figure 5.5: The simulated stress distribution in the x direction with stress updating at 

rupture time 

Table 5.10: The initial elastic stress obtained from plane stress version FE program 

without stress updating for each element 

Element number Stress in x-direction Stress in y-direction 

Element No.1 -7.1054E-06 0.4000E+02 

Element No.2 0.0000E-000 0.4000E+02 

Element No.3 1.7764E-06 0.4000E+02 

Element No.4 - 8.8818E-06 0.4000E+02 

Element No.5 -1.7764E-06 0.4000E+02 

Element No.6 1.7764E-06 0.4000E+02 

Element No.7 -1.7764E-06 0.4000E+02 

Element No.8 -1.7764E-06 0.4000E+02 

 

Table 5.11: The stress obtained from plane stress version FE program with stress 

updating for each element 

Element number Stress in x-direction Stress in y-direction 

Element No.1 -1.3871E-04 0.4000E+02 

Element No.2 -2.8081E-04 0.4000E+02 

Element No.3 -8.6551E-05 0.4000E+02 

Element No.4 -1.9584E-04 0.4000E+02 

Element No.5 -1.4892E-04 0.4000E+02 

Element No.6 -2.7864E-04 0.4000E+02 

Element No.7 -7.7958E-05 0.4000E+02 

Element No.8 -2.0437E-04 0.4000E+02 
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Using the Kachanov-Rabotnov creep damage constitutive equation and a one hour time 

step with the Euler integration method, the rupture time and creep damage values from 

the FE software at rupture time can be obtained and they are shown in Table 5.12. 

Table 5.12: Rupture time and creep damage obtained from plane stress version FE 

program at failure time 

Element number Rupture time Creep damage 

Element No.1 23774 0.99E+00 

Element No.2 23774 0.99E+00 

Element No.3 23774 0.99E+00 

Element No.4 23774 0.99E+00 

Element No.5 23774 0.99E+00 

Element No.6 23774 0.99E+00 

Element No.7 23774 0.99E+00 

Element No.8 23774 0.99E+00 

 

Table 5.13: The relative error between theoretical rupture time and simulated rupture 

time from plane stress version FE program 

Rupture time relative error = |
23773 − 23774

23773
| = 0.000042 

 

A comparison of the results shown in Table 5.9 and Table 5.12 and an examination of 

the percentage errors shown in Table 5.13 clearly show the results obtained from the 

plane stress version FE program agree with the expected theoretical values and the 

relative error is negligible.  

5.5 Validation of the in-house FE Codes for Plane Strain Creep 

Damage Problem 

5.5.1 The FE Model and Boundary Conditions 

The validation of the in-house codes for the plane strain problem is performed in this 

section and is conducted via the two-dimensional tension model in Figure 5.6. The 

width of this model is set to 4 metres. The Young's modulus E and Poisson's ratio υ are 

set to 1,000 GPa and 0.29, respectively. A uniformly linear distributed load of 60 MPa 

is applied on the top line of this uni-axial tension model. The Kachanov-Rabotnov creep 

damage constitutive equation is used. Comparisons are made between the simulated 
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results predicted by the plane strain version creep damage FE program and the 

theoretical values. 

 

Figure 5.6: Plane strain tension FE model 

This is a two-dimensional plane strain tension case and the boundary conditions should 

preserve the uni-axial tension’s characteristics. The boundary conditions and loads 

information have been listed in Table 5.14. 

Table 5.14: The boundary conditions for 2D plane strain tension FE mode 

Node number Constraint in x direction Constraint in y direction Load in x direction Load in y direction 

Node No.1 shut open 0  30 

Node No.2 open open 0  60 

Node No.3 open open 0  60 

Node No.4 open open 0  60 

Node No.5 open open 0  30 

Node No.6 shut open 0  0  

Node No.11 shut open 0  0  

Node No.16 shut open 0  0  

Node No.21 shut open 0  0  

Node No.26 shut open 0  0  

Node No.31 shut shut 0  0  

Node No.32 open shut 0  0  

Node No.33 open shut 0  0  

Node No.34 open shut 0  0  

Node No.35 open shut 0  0  
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5.5.2 Results and Discussion 

The simulated results will be compared with the theoretical values to validate the in-

house FE codes. The theoretical stress in the y direction can be shown by: 

𝜎𝑦 =
𝑃

𝐴
=

240

4.0
= 60 MPa                                                   (5.2) 

The theoretical stress in the z direction can be shown by: 

σz = E ∗ ϵz = E ∗ υ ∗ ϵy = E ∗ υ ∗
σy

E
= 0.29 ∗ 60 = 17.4 MPa                  (5.3) 

By substituting the theoretical stress value into the Kachanov-Rabotnov creep damage 

constitutive equation with the Euler integration method, the theoretical rupture time and 

creep damage may be obtained by the proven subroutine developed by the author’s 

colleague Feng Tan. The theoretical rupture time and creep damage are shown in Table 

5.15. 

Table 5.15: The theoretical rupture time and creep damage for plane strain case 

Rupture time Creep damage 

7004 0.99 

 

The stress in the y and z directions obtained from the plane strain version creep damage 

FE program, with stress updating invoked due to creep deformation, are shown in 

Figure 5.7 and Figure 5.8. The displacements in the y and x directions are shown in 

Figure 5.9 and Figure 5.10, respectively. 

  

Figure 5.7: Stress distribution in y direction  
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Figure 5.8: Stress distribution in z direction 

  

Figure 5.9: Displacement distribution in y axis 

  

Figure 5.10: Displacement distribution in x axis 
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The damage distribution obtained from plane strain version creep damage FE program 

at failure is shown in Figure. 5.11. 

  

Figure 5.11: Damage distribution on 7039h 

Figures 5.7 and 5.8 show that the results obtained from the plane strain version creep 

damage FE program agree with the expected theoretical values. The displacement is 

distributed reasonably in Figures 5.9 and 5.10. Table 5.15 and Figure 5.11 show that the 

rupture time and damage obtained from the FE software are in good agreement with the 

theoretical values obtained from the subroutine directly. 

5.6 Validation of the in-house FE Codes for Axisymmetric Creep 

Damage Problem 

5.6.1 The FE Model and Boundary Conditions 

The validation of the in-house FE codes for the axisymmetric problem is performed in 

this section and is conducted via a two-dimensional uni-axial tension model in Figure 

5.12. The Young's modulus E and Poisson's ratio υ are set to 100 GPa and 0.3, 

respectively. The thickness of the pipe is set to 60 mm. A uniformly distributed tensile 

force of 50 MPa is applied on the bottom line of this uni-axial tension model. The 

Kachanov-Rabotnov creep damage constitutive equation subroutine, developed by the 

author’s colleague Feng Tan, has been used. Comparisons are made between the 

simulated results predicted by the axisymmetric version creep damage FE program and 

the theoretical values. 
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Figure 5.12: Axisymmetric FE model 

This is a two-dimensional axisymmetric tension case and the boundary conditions 

should preserve the uni-axial tension’s characteristics. The nodal loads information is 

calculated by the nodal force calculator developed by the author’s colleague Feng Tan. 

The boundary conditions and loads information are listed in Table 5.16. 

Table 5.16: The boundary conditions for axisymmetric tension FE mode 

Node number 
Constraint in x 

direction 

Constraint in y 

direction 

Load in radial 

direction 

Load in axial 

direction 

Node No.1 open open 0  9.3750000E+04 

Node No.2 open open 0  2.1750000E+05  

Node No.3 open open 0  1.2375000E+05  

Node No.4 open open 0  0 

Node No.5 open open 0  0  

Node No.6 open open 0  0  

Node No.7 open open 0  0 

Node No.8 open open 0  0  

Node No.9 open open 0  0  

Node No.10 open shut 0  0 

Node No.11 open shut 0  0  

Node No.12 open shut 0  0  

5.6.2 Results and Discussion 

By substituting the theoretical stress value into the Kachanov-Rabotnov creep damage 

constitutive equation, the theoretical rupture time and creep damage can be obtained and 

the theoretical results are shown in Table 5.17. 



151 
 

Table 5.17: The theoretical rupture time and creep damage for axisymmetric case 

Rupture time Creep damage 

10692 0.99 

 

The simulated stress from the axisymmetric version creep damage FE program is shown 

in Figure 5.13 and the displacement in axial and radial directions obtained from FE 

software, with the stress updating invoked due to creep deformation, are shown in 

Figure 5.14 and Figure 5.15, respectively. 

  

Figure 5.13: Stress distribution in axial direction 

  

Figure 5.14: Displacement distribution in axial direction 
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Figure 5.15: Displacement distribution in radial direction 

The damage distribution obtained from the axisymmetric version creep damage FE 

program at failure is shown in Figure 5.16. 

  

Figure 5.16: Damage distribution on 10693h 
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The stress has been uniformly distributed in Figure 5.13 and agrees with the theoretical 

values. Rupture time and damage obtained from the axisymmetric version creep damage 

FE program have been shown to have a good agreement with the theoretical values. 

5.7 Validation of the in-house FE Codes for Three-dimensional Creep 

Damage Problem 

5.7.1 The FE Model and Boundary Conditions 

The validation of the in-house FE codes for the three-dimensional problem is conducted 

via a three-dimensional uni-axial tension model in Figure 5.17. The length of a side is 

set to 1 metre and a uniformly distributed displacement of 0.0005 m was applied on the 

top surface of this uni-axial tension model. The Young's modulus E and Poisson's ratio 

υ are set to 170 GPa and 0.3, respectively. The Kachanov-Rabotnov creep damage 

constitutive equation subroutine with Euler integration method has been used. 

Comparisons are made between the simulated results predicted by the three-dimensional 

version creep damage FE program and the theoretical values. 

 

Figure 5.17: The three-dimensional uni-axial tension model 

This is a three-dimensional uni-axial tension case and the boundary conditions should 

keep the uni-axial tension’s characteristics. The boundary conditions and loads 

information are listed in Table 5.18.
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Table 5.18: The boundary conditions for three-dimensional uni-axial tension model 

Node number 
Constraint in x 

direction 

Constraint in y 

direction 

Constraint in z 

direction 

Displacement in z 

direction 

Node No.1 shut shut open 0.0005 

Node No.2 open shut open 0.0005 

Node No.3 open shut open 0.0005 

Node No.4 shut shut open 0  

Node No.5 open shut open 0  

Node No.6 shut shut shut 0  

Node No.7 open shut shut 0  

Node No.8 open shut shut 0  

Node No.9 shut open open 0.0005 

Node No.10 open open open 0.0005 

Node No.11 shut open shut 0  

Node No.12 open open shut 0  

Node No.13 shut open open 0.0005 

Node No.14 open open open 0.0005 

Node No.15 open open open 0.0005 

Node No.16 shut open open 0  

Node No.17 open open open 0 

Node No.18 open shut open 0 

Node No.19 open open shut 0  

Node No.20 open open shut 0  

 

5.7.2 Results and Discussion 

The uniformly distributed displacement of 0.0005 m was applied on the top surface of 

this uni-axial tension model. Thus the theoretical stress can be calculated: 

𝜎 = 𝐸 ∗ ℇ = 𝐸 ∗
𝛥𝑙

𝑙
= 170000 MPa ∗

0.0005

1.0
= 85 MPa                          (5.4) 

The theoretical stress in the z direction is 85 MPa. The stress in the x and y directions 

should be zero and these stress values should remain the same throughout the creep test 

up to failure. The stress obtained from the three-dimensional version creep damage FE 

program, with the stress updating, is shown in Table 5.19 and a one hour time step is 

selected with the Euler integration method. 

Table 5.19 shows that the results obtained from the three-dimensional version creep 

damage FE program agree with the expected theoretical values. The stress involving 
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creep deformation and stress updating confirmed the uniform distribution of the stresses, 

that the values of stress in the z direction obtained from FE software are correct, and 

that the stress in the x and y directions is negligible. 

Table 5.19: The stress obtained from three-dimensional version creep damage FE 

program with stress updating  

Integration point 𝛔𝐱 𝛔𝐲 𝛔𝐳 

No. 1 8.5265E-014 -2.8422E-014 8.5E+01 

No. 2 8.5265E-014 -2.8422E-014 8.5E+01 

No. 3 1.2789E-013 6.3948E-014 8.5E+01 

No. 4 7.8160E-014 0.0000E-014 8.5E+01 

No. 5 2.1316E-014 -2.8422E-014 8.5E+01 

No. 6 4.2633E-014 4.2633E-014 8.5E+01 

No. 7 8.5265E-014 3.5527E-014 8.5E+01 

No. 8 -7.1054E-015 -7.1054E-015 8.5E+01 

 

Table 5.20: The theoretical values and FE results from three-dimensional version creep 

damage FE program 

The results Theoretical values FE results 

Rupture time 1602 1603 

Damage 0.99 0.99 

The lifetime and creep strain at failure, and other field variables can be obtained for the 

simple tensile case that has been illustrated in above. The theoretical values are obtained 

by direct integration of the uni-axial version of constitutive equation for a given stress. 

FE results are produced by the three-dimensional version creep damage FE program. 

Table 5.20 shows that the FE results are in good agreement with the theoretical values 

obtained from the subroutine directly.  

5.8 Validation of the in-house FE Codes for Multi-materials Version 

Program 

5.8.1 The FE Model and Boundary Conditions 

The validation of the in-house FE codes for the multi-materials version is conducted via 

a two-dimensional tension model in Figure 5.18. In this program, the number of 

material properties nprops is set to 1 and 2 separately. The number of different property 

types np_types is set 2 (Young's modulus E and Poisson's ratio υ).  The length of a side 
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is set to 1 metre. The Young's modulus E and Poisson's ratio υ are set to 1,000 MPa and 

0.3 respectively. A uniformly distributed linear load of 40 KN/m was applied to the top 

line of this uni-axial tension model. Table 5.22 shows the material property of each 

element when nprops is set to 1 and when nprops is set to 2 respectively. 

 

Figure 5.18: 2D tension model 

This is a two-dimensional plane strain tension case and the boundary conditions should 

preserve the uni-axial tension’s characteristics. The boundary conditions and loads 

information are listed in Table 5.21. 

Table 5.21: The boundary conditions for 2D tension FE mode 

Node number 
Constraint in x 

direction 

Constraint in y 

direction 

Load in x 

direction 

Load in y 

direction 

Node No.1 shut open 0 KN 10 KN 

Node No.2 open open 0 KN 20 KN 

Node No.3 open open 0 KN 10 KN 

Node No.4 shut open 0 KN 0 KN 

Node No.5 open open 0 KN 0 KN 

Node No.6 open open 0 KN 0 KN 

Node No.7 shut shut 0 KN 0 KN 

Node No.8 open shut 0 KN 0 KN 

Node No.9 open shut 0 KN 0 KN 
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In order to test the multi-materials version program, the material properties of each 

element have been divided into nprops = 1 and nprops =2, respectively. Comparisons 

are made between the simulated results predicted when nprops = 1 and nprops =2. The 

material properties of each element when nprops = 1 and nprops = 2 have been shown 

in Table 5.22. 

Table 5.22: The material properties of each element when nprops = 1 and nprops =2  

nprops Materials group 1 (E and υ) Materials group 2 (E and υ) 

nprops=1 Element No.1, 2, 3, 4, 5, 6, 7 and 8 No element 

nprops=2 Element No.1, 2, 3 and 4 Element No 5, 6, 7 and 8 

 

5.8.2 Results and Discussion 

Comparisons are made between the simulated stress distribution in the y direction at 

rupture time predicted by nprops = 1 and nprops =2. The stress distribution in the y 

direction at rupture time when the nprops = 1 is shown in Figure 5.19 and the stress 

distribution in the y direction at rupture time when the nprops = 2 is shown in Figure 

5.20. 

 

Figure 5.19: The stress distribution in y direction at rupture time when nprops = 1 
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Figure 5.20: The stress distribution in y direction at rupture time when nprops = 2 

When nprops = 2, there are two kinds of material properties. In the program, we can 

assume two kinds of material properties in model; however, the values of material 

properties in the “input-dat” file are the same from nprops = 1 to nprops = 2. Thus, the 

stresses distribution in the y direction between nprops = 1 and nprops = 2 should be 

same.  Figure 5.19 and Figure 5.20 show a good agreement with this deduction. 

A reliable prediction of the creep damage behaviour of materials in dependence on the 

stress regime and the temperature is a very complex challenge. Especially multi-

material zones in responsible structures need to be characterized very exactly. In FEM 

for the analysis of creep damage in multi-material zones, different body loads in the 

material regions are produced with the growth of creep deformation and this 

phenomenon causes the stresses to redistribute. Subsequently, the non-linear behaviour 

is appeared due to stress redistribution and there is no direct method to solve the non-

linear equation in mathematics. As a result the non-linear creep behaviour is difficult to 

depict through the investigation of analytical solutions. Here the values of above two 

material properties are defined as same in order to test the FE codes through the 

comparison of the stresses distribution by different settings in program. To validate the 

multi-materials version FE program for creep damage analysis, a real multi-materials 

Cr-Mo-V steam pipe weldment case in chapter 6 will be investigated. 
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5.9 Summary 

This chapter presents the validation of the FE codes for the in-house FE software HITSI 

for creep damage analysis. A step by step validation in accord with the development 

strategy is proposed. The FE simulated results from HITSI (uni-axial case) are 

compared with the theoretical results to demonstrate the validity of the FE program. All 

results have been shown to be in good agreement with the expected or theoretical values.  

The author acknowledges that some important achievements and findings in this chapter 

have been published in Liu et al. (2013d) and Liu et al. (2013e) at various stages in this 

research.  
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Chapter 6 Benchmark Test of HITSI via the 

Numerical Investigation of Creep Damage 

Behaviour of a Cr-Mo-V Steam Pipe Weldment 

Case 

6.1 Introduction 

The computational FEM based CDM approach for the in-house FE software HITSI has 

been developed and applied to the analysis of deformation and creep damage in welds. 

This chapter presents the benchmark test of HITSI via the numerical investigation of 

creep damage behaviour of a Cr-Mo-V steam pipe weldment case. It should be noted 

that some benchmark tests of FE in-house software such those of Hall and Hayhurst  

(1991), Wong (1999) and (Becker et al., 2002) have previously been presented; here, 

benchmark test of HITSI are performed based on the studies of Hall and Hayhurst 

(1991), Wong (1999) and (Becker et al., 2002). Furthermore, Ling et al. (2000) reported 

the fourth order Runge-Kutta integration scheme used in Hall and Hayhurst (1991) 

might be incorrect. Through the study and comparison of Ling et al. (2000) and Hall 

and Hayhurst (1991), the author concludes that the expression of Runge-Kutta 

integration equations between Ling et al. (2000) and Hall and Hayhurst (1991) is 

different and the use of  Runge-Kutta integration method in Hall and Hayhurst (1991), 

which has published by the Royal Society, is correct and this argument is not affecting 

the benchmark test of HITSI.. 

This chapter primarily consists of two parts: firstly, the damage evolution of a 2.25Cr 

1Mo: 0.5Cr 0.5Mo 0.25V thick steam pipe weldment from a constant pressure (455 bar) 

vessel test (Coleman et al., 1985), at a constant temperature of 565°C, is modelled by 

HITSI and the benchmark test against the known results is presented; secondly, the 

efficiency and accuracy of the integration schemes (Euler and Runge-Kutta) and the 

normalized Kachanov-Rabotnov creep damage constitutive equation (Hayhurst et al., 

1984)  are investigated and commented upon.  

The specific knowledge relevant to this chapter is presented below in detail and includes: 
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1) The verification of HITSI via the numerical investigation of creep damage 

behaviour of a steam pipe weldment case; the computational results, such as 

damage distributions, stress and failure times, are compared with the known 

results from laboratory tests (Coleman et al., 1985) and another FE software 

program, Damage XX (Hall and Hayhurst, 1991), respectively. Finally, the in-

house software HITSI is shown to predict reasonably well the failure history of 

the pressure vessel weldment. 

2) The investigation of the efficiency and accuracy of the numerical integration 

schemes (Euler and Runge-Kutta) through the analysis of creep damage 

behaviour in this weldment case; the result reveals that the total computation 

time can be reduced by the Runge-Kutta method in a problem with a large set of 

system equations. 

3) The investigation of the normalized Kachanov-Rabotnov creep damage 

constitutive equation (Hayhurst et al., 1984) through the analysis of creep 

damage behaviour in this weldment case;  the result reveals that the computing 

efficiency can be increased through the use of a normalized Kachanov-Rabotnov 

creep damage constitutive equation. 

6.2 Description of the Cr-Mo-V Steam Pipe Weldment Case 

6.2.1 Description of the Experiment 

The creep strain data and the whole rupture history of a 2.25Cr 1Mo: 0.5Cr 0.5Mo 

0.25V thick steam pipe weldment from a constant pressure (455 bar) vessel test at a 

constant temperature of 565°C were compiled by Coleman et al. (1985) and some 

details have been described by Hall and Hayhurst (1991). The micrograph in Figure 6.1 

shows a section through a 2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V multi-materials weldment, 

which is identical to the welds used in the thick steam pipe tests (Coleman et al., 1985). 

According to Coleman et al. (1985), the wall thickness of this steam pipe section is 60 

mm, the external radius is 175 mm and the external to internal diameter ratio is 

approximately 1.52. The end caps of the vessel were forged and the seamless pipe 

sections of the parent metal were hot drawn. 
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Figure 6.1: Micrograph showing a section through a 2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V 

multi-materials weld, identical to the welds used in the thick steam pipe tests of 

Coleman et al. (1985) 

A summary of rupture evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe 

weldment from the pressure vessel test by Coleman et al. (1985) is shown in Table 6.1. 

In Section 6.6, the computational results from HITSI will be compared with the 

experimental results to allow verification of HITSI. 

Table 6.1: A summary of rupture evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam 

pipe weldment from a pressure vessel test by Coleman et al. (1985) 

Time/h t/tf Observation 

20000 43% 
Creep cracks appear on the pressure vessel, as transverse cracks in 

the coarse columnar regions of the weld metal and HAZ 

35000 76% 
More clearly defined transverse cracks in capping weld bead and 

the depth are less than 5mm 

35000 >76% 
Circumferential cracks appear in the weld metal coarse columnar 

regions  close to the fusion boundaries 

42000 91% 

Obvious circumferential cracks can be observed; the transverse 

cracks increased significantly with a depth of 20mm and extend 

through the weld metal, across the HAZ into the parent metal 

46000 100% 

Numerous transverse and circumferential cracks lead to steam 

leakage in a bulged region of the pressure vessel; the pressure vessel 

has reached its rupture life 
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6.2.2 Description of the FE Model in FE Software Damage XX  

The deformation and failure processes through macroscopic cracking in the pressure 

vessel test (Coleman et al., 1985) were modelled by Hall and Hayhurst (1991) through 

the use of FE software Damage XX. A three materials weld FE model is used and the 

discrete regions of the FE model are assigned the creep properties of the parent metal, 

HAZ and the weld metal. The Kachanov-Rabotnov creep damage constitutive equation 

was embedded into Damage XX for this investigation; the axisymmetric FE model used 

to represent the thick-steam pipe weldment is shown in Figure 6.2. 

 

Figure 6.2: The diagram showing the axisymmetric FE model that be used to represent 

the thick-steam pipe weld laboratory test (Hall and Hayhurst, 1991) 

A brief summary of rupture evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe 

weldment from the FE model by Damage XX (Hall and Hayhurst, 1991) is shown in 

Table 6.2. In Section 6.6, the computational results from HITSI will be compared with 

the results from Damage XX to allow verification of HITSI. 
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Table 6.2:  A brief summary of rupture evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V 

steam pipe weldment from the FE model by Damage XX (Hall and Hayhurst, 1991) 

Time/h t/tf Observation 

50 0.12% 
The maximum elastic stress elements are concentrating on the inner 

bore and the initial damage rate is highest at this position. 

17682 45.2% 

The damage distribution in the weld is more uniform and the 

maximum damaged region occurs along the fusion boundary between 

the weld metal and the HAZ 

24841 63.5% The most damaged zone on the fusion boundary has become wider 

30199 77.2% 
The maximum damaged zone on the fusion boundary close to surface 

is becoming more and more intense 

31608 80.8% 
The centroid of the damaged zone has moved slightly off the fusion 

boundary into the weld metal 

34034 87.0% 
The intense damage on the fusion boundary spreads both inward and 

outwards 

38728 99% 
The damaged zone on the fusion boundary now has higher damage 

levels 

39119 99.9% 
The coalescence of the most damaged zones into two main localized 

damaged regions 

 

6.2.3 The Relative Error between Experimental Results and Simulated Results by 

Damage XX 

The actual failure time of the pressure vessel test by Coleman et al. (1985) is 46000 

hours and the simulated failure time by Hall and Hayhurst (1991) through the use of 

Damage XX is 39119 hours. Thus, the relative error between the simulated failure time 

by Damage XX and the failure time of the pressure vessel test can be summarized in 

Table 6.3. 

Table 6.3: The relative error between the simulated failure time by Damage XX and the 

failure time of the pressure vessel test  

Rupture time from Damage XX Rupture time from  laboratory test 

39119 hours 46000 hours 

Rupture time relative error = |
39119 − 46000

46000
| = 0.15 
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The simulated results from the FE weldment model by Damage XX gave a lifetime 

prediction 15% less than the real failure time of the weldment laboratory test. Due to the 

complexity of creep damage behaviour in weldment, Hall and Hayhurst (1991) reported 

that good predictions were obtained through the use of Damage XX to simulate the 

pressure vessel laboratory test.  

6.3 Details of the Nodal Force Calculator for the Internal Pressure 

Loading of the Tube 

In order to set the internal pressure loads for the tube, a uniform load should be 

considered and a nodal force calculator developed by the author’s colleague Feng Tan is 

utilized to calculate the equivalent nodal loads information for the FE model. The 

calculator includes two parts: the axial nodal force information and the radial nodal 

force information. 

a) Axial nodal force information:  

The calculator for the axial nodal force requires the inner and outer radius of each 

element and the expected uniform load. The nodal forces for each node from inner to 

outer can be calculated given the inner radius of each element, outer radius of each 

element and the expected uniform load. 

The axial nodal force applied on the top boundary of the FE model can be calculated by: 

𝐹𝑖 =
1

6
(𝑟𝑖+1

2 + 𝑟𝑖𝑟𝑖+1 − 2𝑟𝑖
2)𝜎𝑧                                               (6.1) 

𝐹𝑖+1 =
1

6
(2𝑟𝑖+1

2 − 𝑟𝑖𝑟𝑖+1 − 𝑟𝑖
2)𝜎𝑧                                            (6.2) 

Where the F is the nodal force; 𝜎𝑧 is the axial stress; r is the radius; i and i+1 are nodal 

numbers in the radial direction. 

b) Radial nodal force information: 

The calculator for the radial nodal force requires the total element number in the radial 

direction, the outer radius of the FE model, the expected uniform load and the distance 

between the adjacent two nodes on the inner surface of the model.  

The nodal forces for each node from bottom node to top node on the inner surface can 

be given from the outer radius of the FE model, the expected uniform load and the 
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distance between the adjacent two nodes on the inner surface of the model. The radial 

nodal force applied on the vertical boundary of the FE model can be calculated by: 

𝐹𝑗 = 𝐹𝑗+1 =
𝜎𝑟

2
𝑟𝑗𝑗+1𝐿𝑗𝑗+1                                                    (6.3) 

Where the F is the nodal force; 𝜎𝑟 is the radial stress; r is the radius; L is the distance 

between node j and j+1; j and j+1 are nodal numbers. 

6.4 Specifications of the Weldment FE Model in HITSI 

6.4.1 The Mesh and Boundary Conditions 

The diagram in Figure 6.2 shows the axisymmetric FE model used to represent the 

thick-steam pipe weldment case; this diagram is also used in HITSI for the generation 

of mesh and boundary conditions information.  

The FE model with the mesh information is shown in Figure 6.3 and this FE model has 

140 nodes and 233 elements. 

 

Figure 6.3: The FE mesh information 

The boundary conditions are summarized in Table 6.4. 
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Table 6.4: The boundary conditions 

Node number 
Node 

No.1 

Node 

No.2 

Node 

No.3 

Node 

No.4 

Node 

No.5 

Node 

No.6 

Node 

No.7 

Node 

No.8 

Constraint in 

x direction 
open open open open open open open open 

Constraint in 

y direction 
shut shut shut shut shut shut shut shut 

 

6.4.2 The Material Properties 

The material constants of the Kachanov-Rabotnov creep damage constitutive equation 

have been reported by Hall and Hayhurst (1991). The material constants are given units 

of stress in (MPa), strain in (%) and time in hours. These constants are shown in Table 

6.5 and have been used in the verification of HITSI through the numerical investigation 

of the same steam pipe weldment case.  

Table 6.5: The material constants used for the creep damage test of 

2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe weldment (Hall and Hayhurst, 1991) 

Material 
Stress 

Range 
K n m M Ф χ ɑ 

Parent 

Metal 

σ ≤  σˆ 

σ > σˆ 

2.8531d-14 

1.3485d-25 

4.8971 

10.3442 

-0.2031 

-0.2031 

1.4522d-10 

8.8846d-19 

5.4141 

12.5486 

3.0110 

6.9613 

0.5955 

0.5955 

HAZ 

(G.C.P.) 

σ ≤  σˆ 

σ > σˆ 

1.0358d-7 

8.7207d-25 

1.3654 

8.9364 

-0.1700 

-0.1700 

2.3062d-10 

1.3459d-9 

1.4231 

14.8589 

2.7858 

9.0982 

0.4298 

0.4298 

Weld 

Metal 

(Fine) 

σ ≤  σˆ 

σ > σˆ 

2.93965d-12 

1.3485d-25 

4.3680 

7.2496 

-0.2031 

-0.2031 

1.15878d-9 

1.7418d-15 

4.9667 

8.9029 

2.8554 

5.7669 

0.4298 

0.4298 

The different material zones in this FE model are presented in Figure 6.4. 
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Figure 6.4: The different material zones in FE model 

The three materials weldment FE model is used and the discrete regions of the FE mesh 

are assigned the creep properties of the parent metal in blue, the HAZ in yellow and the 

weld metal in red. According to the laboratory test (Coleman et al., 1985), the elastic 

modulus E of each material zone in this weldment case is assumed to be the same, with 

a value of E = 170 GPa. 

6.4.3 The Internal Pressure Loading Information 

In this FE model, the uniform loads in the axial and radial directions are 34.6 MPa and 

45.5 MPa, respectively. The equivalent nodal loads information can be obtained by the 

nodal force calculator for this FE model and are shown in Table 6.6 and Table 6.7 for 

the axial and radial directions, respectively. 
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Table 6.6: The equivalent nodal loads information in axial direction 

Node number Node force 

Node No.138 6.4875000E+04 

Node No.139 1.5051000E+05 

Node No.140 8.5635000E+04 

 

Table 6.7: The equivalent nodal loads information in radial direction 

Node number Node force 

Node No.1 3.9243750E+03 

Node No.9 7.8487500E+03 

Node No.18 7.8487500E+03 

Node No.29 7.8487500E+03 

Node No.42 1.4389375E+04 

Node No.57 3.1395000E+04 

Node No.72 5.2325000E+04 

Node No.85 7.3255000E+04 

Node No.96 9.4185000E+04 

Node No.105 1.1511500E+05 

Node No.112 1.3604500E+05 

Node No.117 1.5697500E+05 

Node No.120 1.7790500E+05 

Node No.123 1.9883500E+05 

Node No.126 2.1976500E+05 

Node No.129 2.4069500E+05 

Node No.132 2.6162500E+05 

Node No.135 2.6685700E+05 

Node No.138 1.3081200E+05 

6.5 Verification the FE codes in FE Model 

Verification of the FE codes (to ensure the validity of the mesh information, the 

boundary conditions, the loads information, the element stiffness integration and 

assembly, the solution of the equilibrium equation and results recovery at integrating 

points that are used in this complex multi-material zones weldment case) is essential 
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before analysis of the creep damage stage. The thick-steam pipe weldment FE model in 

Figure 6.3 is utilized in the verification. 

In this case, the uniform pressure in the axial directions is 34.6 MPa and it should be 

distributed uniformly in the FE model. Thus, the initial stress values and distributions 

calculated by HITSI before the start of the time loop iteration should agree with the 

expected stress values. The initial stresses in the axial directions are shown in Figure 6.5. 

Furthermore, the displacement and initial strain distributions in the FE model are shown 

in Figure 6.6 and Figure 6.7, respectively. 

 

Figure 6.5: The initial stress distribution in axial direction 
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Figure 6.6: The displacement distribution in axial direction 
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Figure 6.7: The elastic strain distribution in axial direction 

Figure 6.5 shows that the initial stress distributions in the axial direction are uniformly 

distributed and the stress value is shown to be in good agreement with the expected 

stress values. Figure 6.6 and Figure 6.7 show the displacement and elastic strain are 

both distributed uniformly. Therefore, the validity of the mesh information, the 

boundary conditions, the loads information, the element stiffness integration and 

assembly, the solution of the equilibrium equation and the recovery of results at 

integrating points have been verified and the FE codes can be used in further 

investigations. 
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6.6 Evolution of Creep Damage Fields 

6.6.1 Damage Distribution 

The predicted damage distributions from HITSI are presented against the background of 

the life fractions of 0.12%, 20.4%, 45.2%, 63.5%, 77.2%, 80.8%, 87.0% and 99.9%. 

The first failed element occurred at element number 56 with the life fraction of 20.4%. 

 

Figure 6.8: The damage distribution at life fractions of 0.12% 

 

 

Figure 6.9: The damage distribution at life fractions of 20.4% 
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Figure 6.10: The damage distribution at life fractions of 45.2% 

 

 

Figure 6.11: The damage distribution at life fractions of 63.5% 
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Figure 6.12: The damage distribution at life fractions of 77.2% 

 

 

Figure 6.13: The damage distribution at life fractions of 80.8% 
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Figure 6.14: The damage distribution at life fractions of 87.0% 

 

 

Figure 6.15: The damage distribution at life fractions of 99.9% 
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Table 6.8: A brief summary of damage evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V 

steam pipe weldment from the FE model in HITSI 

Time/h t/tf Characteristics 

50 0.12% 

The creep damage rate is increasing rapidly at this stage and the 

initial damage rate is highest between the HAZ and weld at the inner 

bore. 

8320 20.4% The first failed element occurs between the weld metal and HAZ 

18387 45.2% 
The damage rate is declining at this stage and the intense damage on 

the fusion boundary spread both inward and outwards 

25832 63.5% 

The damage distribution in the weld is more uniform and becoming 

wider towards to outer bore and the growth of creep damage rate is 

beginning to stabilize at this stage  

31405 77.2% 
The maximum damaged zone is becoming more and more intense in 

the weld metal and the HAZ at this stage  

32869 80.8% The centroid of the damaged zone has moved into the weld metal 

35392 87.0% 
the damaged zone on the fusion boundary and weld metal now have 

higher damage levels  

40680 99.9% 
The coalescence of the most damaged zones into two main localized 

damaged regions and the weldment is called failure at this stage 

 

6.6.2 Creep Strain Rate in FE Model 

The distributions of the predicted creep strain rate from HITSI are presented against the 

background of life fractions from when the first failed element occurred to the final 

failure time. 
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Figure 6.16: The creep strain rate in radial direction when the first failed element 

occurred 

 

  

Figure 6.17: The creep strain rate in axial direction when the first failed element 

occurred 
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Figure 6.18: The creep strain rate in shear stress (r-z) direction when the first failed 

element occurred 

 

  

Figure 6.19: The creep strain rate in hoop stress direction when the first failed element 

occurred 
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Figure 6.20: The creep strain rate in radial direction at failure time 

 

  

Figure 6.21: The creep strain rate in axial direction at failure time 
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Figure 6.22: The creep strain rate in shear stress (r-z) direction at failure time 

 

  

Figure 6.23: The creep strain rate in hoop stress direction at failure time 
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6.6.3 The Stress and Displacement Distribution at Failure Time 

  

Figure 6.24: The radial stress distribution at failure time 

 

  

Figure 6.25: The axial stress distribution at failure time 
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Figure 6.26: The shear stress (r-z) distribution at failure time 

 

  

Figure 6.27: The hoop stress distribution at failure time 
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Figure 6.28: The radial displacement distribution at failure time 

 

 

Figure 6.29: The axial displacement distribution at failure time 
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6.6.4 Discussion 

The elements with the maximum elastic stress concentrate on the inner bore. Therefore 

the creep damage rate increases rapidly and the initial damage rate is highest between 

the HAZ and the weld at the inner bore at the lifetime fraction of 0.12% in Figure 6.8. 

Due to the different material zones in this case, different body loads in the three regions 

are produced with the growth of creep deformation and this phenomenon causes the 

stresses to redistribute radially outwards. Thus, a first failed element is observed in 

Figure 6.9 and more failed elements are observed on the fusion boundary spreading 

both inward and outwards in Figure 6.10. Figure 6.11 and Figure 6.12 show that the 

damage distribution in the weld is more uniform and becomes wider towards to outer 

bore; the growth of the creep damage rate is beginning to stabilize at this stage because 

of the nature of the creep damage constitutive equations. With the increasing time, the 

centroid of the damaged zone moved into the weld metal in Figure 6.13 and the 

damaged zone on the fusion boundary and weld metal have obviously higher damage 

levels in Figure 6.14. Lastly, the crack has propagated through the pipe at lifetime 

fraction of 99% in Figure 6.15 and the weldment is called failure at this time. 

The stress redistribution causes the different creep damage rates in weldment. Odqvist 

(1974) has presented the analysis of an internally pressurised thick walled pressure 

vessel due to Bailey (1935). The equations for the hoop, radial and axial stresses have 

been derived by Odqvist (1974) and the equations are shown as follows: 

𝜎𝜃 =
𝑃0

{(
𝑎
𝑏

)
2
𝑛 − 1}

 {1 − (1 −
2

𝑛
)(

𝑟

𝑏
)

−2
𝑛 }                                          (6.4)  
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)
2
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𝑟

𝑏
)

−2
𝑛 }                                                 (6.5)  

𝜎𝑧 =
1

2
 (𝜎𝑟 + 𝜎𝜃)                                                           (6.6)  

Where n is the creep exponent of stress in Norton’s law; 𝜎𝜃 is the hoop stress; 𝜎𝑟 is the 

radial stress; 𝜎𝑧  is axial stress; 𝑃0  is internal stress; r is radial distance and a/b the 

internal diameter ratio (Odqvist, 1974).  

It is noted that Hall and Hayhurst (1991) used FEM to represent the thick pressure 

vessel of Odqvist (1974) in the analysis of creep damage behaviour of weldment 
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through the use of Damage XX. In order to verify the in-house FE software HITSI, the 

FE results such as hoop stress, shear stress, radial and axial stresses have been 

compared with the analytical results from Odqvist’s equations. The FE simulated results 

such as the radial stress, axial stresses, shear stress and hoop stress are shown in Figure 

6.24, Figure 6.25, Figure 6.26 and Figure 6.27. The FE results have been shown to be in 

good agreement with the analytical results by Odqvist (1974). 

According to Table 6.1, the transverse cracks have been observed in the coarse 

columnar regions of the weld metal and HAZ; the cracks then spread into the weld 

metal to cause the rupture. Thus, good agreement of the creep damage evolution has 

been obtained by a comparison between Table 6.1 and Table 6.8 for the same weldment 

case and approximate damage distributions have been predicted on the centre line of the 

weld at the steam pipe surface. The lifetime prediction’s relative error between the 

software HITSI and pressure vessel laboratory test by Coleman is shown in Table 6.9. 

Table 6.9: The lifetime prediction’s relative error between HITSI and pressure vessel 

laboratory test  

Rupture time from in-house software 

HITSI 

Rupture time from  pressure vessel 

laboratory test  

40680 hours 46000 hours 

Rupture time relative error = |
40680 − 46000

46000
| = 0.12 

The FE simulated results for the evolution of creep damage distributions and the rupture 

time in Table 6.9 are seen to be in good agreement between the pressure vessel 

laboratory test and FE simulated results by HITSI. 

According to Hall and Hayhurst (1991), the predicted damage distributions in the 

weldment FE model through the use of Damage XX are presented against the 

background of failure time at life fractions of 0.12%, 45.2%, 63.5%, 77.2%, 80.8%, 

87.0%, 99% and 99.9%. By a comparison between Table 6.2 and Table 6.8, the damage 

evolution and distributions for the weldment case from the FE software Damage XX 

and HITSI show a similar description. The lifetime prediction’s relative error between 

the FE model of the weldment case by Damage XX and HITSI is shown in Table 6.10. 
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Table 6.10: The lifetime prediction’s relative error between the in-house FE software 

HITSI and the FE solver Damage XX 

Rupture time from in-house software 

HITSI 

Rupture time from  FE solver Damage 

XX 

40680 hours 39119 hours 

Rupture time relative error = |
40680 − 39119

39119
| = 0.04 

 

The predicted failure time by HITSI is 40680 hours. Table 6.9 and Table 6.10 show that 

the results obtained from HITSI agree with the actual failure time of the pressure vessel 

laboratory test and the results obtained from Damage XX, respectively.  

Table 6.3 shows the relative error between the simulated failure time from Damage XX 

and the failure time of the pressure vessel laboratory test is 0.15. In Table 6.9, the 

lifetime prediction’s relative error between HITSI and the pressure vessel laboratory test 

is 0.12, which is closer the actual failure time of the pressure vessel laboratory test.  

The in-house FE software HITSI has been shown to predict reasonably well the creep 

damage behaviour and failure history of the pressure vessel weldment. 

6.7 Investigation of Different Numerical Integration Methods 

6.7.1 Introduction 

The FE solution critically depends on the selection of the size of time steps associated 

with an appropriate integration method. The Euler integration subroutine and the 4th 

order Runge-Kutta integration subroutine have been developed by the author’s 

colleague Feng Tan in this research group. The two subroutines have been tested and 

applied to HITSI for the weldment case. The computational efficiency and accuracy 

have been investigated and discussed. The creep damage distribution at failure time 

with the Euler integration scheme is in Figure 6.15, while the creep damage distribution 

at failure time with the 4th order Runge-Kutta integration subroutine is shown in Figure 

6.30. 

The evaluation of creep damage fields for the 2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V thick 

steam pipe weldment case using the Euler and the Runge-Kutta integration methods is 

very similar; however, the biggest difference is that the cost of computing time by the 
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Runge-Kutta integration method for this case is less than that of the Euler integration 

method. The computational efficiency between the Euler and the Runge-Kutta 

integration methods has been summarised in Table 6.11. 

  

Figure 6.30: The creep damage distribution at failure time with Runge-Kutta integration 

method 

 

Table 6.11: The computational efficiency between the Euler integration scheme and the 

Runge-Kutta integration scheme 

Integration method Computing time Rupture time/hour 

Euler 89s 40680 

Runge-Kutta 81s 40510 

 

According to Table 6.11, the cost of computing time for the thick steam pipe weldment 

case by the Runge-Kutta integration method is almost 10% less than that by the Euler 

integration method. The rupture time obtained by the Euler method is approximately 0.5% 

longer than that obtained by Runge-Kutta integration method.  

6.7.2 Discussion 

The well-known Euler method is only conditionally stable and the stability condition is 

rather stringent. It requires extremely small time steps to ensure the convergence of 

iterations and accuracy of calculations. The 4th order Runge-Kutta integration method 

gives a higher order of accuracy at intermediate points (Hagler, 1987), while the local 
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truncation error for the Runge-Kutta method is △t5 and for the Euler Method is △t2. The 

4th order Runge-Kutta method requires solving the set of system equations four times in 

each integration step, while the Euler method requires solving the set of system 

equations only once. Thus, each integration method has its advantages and 

disadvantages; but for a large set of system equations problem, the Runge-Kutta method 

has obvious advantages because the fewer iterations can improve the computational 

efficiency significantly. 

In this case, the number of elements and nodes are 233 and 140, respectively. The 

number of system equilibrium equations is 420.  Although the Runge-Kutta method 

requires solving the set of system equations a factor of four times more than the Euler 

method (and the larger integration time per step may be a cost to the Runge-Kutta 

method) fewer iterations can still improve the computational efficiency significantly and 

large time steps can be employed with only slightly more computational effort than for 

the Euler method. Therefore, the total computation time cost can be reduced by the 

Runge-Kutta method in problems with a large set of system equations. In this weldment 

case, the use of Runge-Kutta integration method can save the cost of computing time. 

6.8 Investigation of Normalized Creep Damage Constitutive Equation 

6.8.1 Introduction  

This section investigates the efficiency of the normalization of the constitutive and 

damage laws (Hayhurst et al., 1984) via the analysis of creep damage behaviour of the 

Cr-Mo-V steam pipe weldment case. Hayhurst’s research group (Hayhurst et al., 1984) 

has proposed the algorithm of the normalization of the constitutive and damage laws; 

later on, Hall and Hayhurst (1991) reported that the normalization of the constitutive 

and damage laws can reduce the round-off error. The normalized Kachanov-Rabotnov 

creep damage constitutive equation’s subroutine was developed by the author’s 

colleague Feng Tan in this research group and this subroutine has been used in 

modelling the steam pipe weldment case for investigating the efficiency of the 

normalized creep damage constitutive equation.  Comparisons are made between the 

creep damage behaviours predicted by the normalized creep damage constitutive 

equation and non-normalized creep damage constitutive equation. The results show that 

the normalized constitutive and damage laws can improve the computing efficiency. 
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6.8.2 The Normalized Creep Damage Constitutive Equation and Material Property  

According to the normalization of the constitutive and damage laws (Hayhurst et al., 

1984), the normalized stress and strain are defined as Σij = σij / σ0, Sij = sij / σ0 and Vij = εij 

/ e0, where the e0 is the uni-axial elastic strain at a constant stress of σ0 and this constant 

stress has been selected as the internal pressure, given as e0 = σ0 / E where E is Young’s 

modulus. The Kachanov-Rabotnov creep damage constitutive equation can be rewritten 

as: 

𝑑𝑉𝑖𝑗

𝑑𝑡
=

3

2

𝐾𝐸𝜎0
𝑛−1𝑡𝑚
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                                             (6.7) 

𝑑𝜔

𝑑𝑡
= 𝑔

𝑀

∅ + 1

𝜎0
𝑥𝑡𝑚

(1 − 𝜔)∅
  (

△ (𝜎𝑖𝑗)

𝜎0
)𝑛                                    (6.8) 

The normalized time Tn and the constant Vu are shown as: 

𝑑𝑇𝑛 = 𝐾𝐸𝜎0
𝑛−1𝑡𝑚𝑑𝑡                                                      (6.9) 

𝑉𝑢 =
𝐾𝐸

𝑀
𝜎0

(𝑛−𝑥−1)                                                      (6.10) 

Thus, the Equation 6.7 and Equation 6.8 can be represented as: 

𝑑𝑉𝑖𝑗
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△ 𝑥

𝑉𝑢(∅ + 1)

𝛴𝑖𝑗

(1 − 𝜔)∅
                                            (6.12) 

Where K, n, m, M, Ф, χ and ɑ are material constants used for the creep damage test of 

the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe weldment; 𝜔  is creep damage, 𝜎0  is 

spherical stress tensor and 𝑆𝑖𝑗 is deviator stress tensor. Equation 6.11 and Equation 6.12 

are used in the FE program for the analysis of steam pipe weldment case. 

The normalized material constants used in this case have been defined by Hall and 

Hayhurst (1991) and they are shown in Table 6.12. 
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Table 6.12: The normalized material constants (Hall and Hayhurst, 1991) 

Material 
Stress 

Range 
K n m M Ф χ ɑ 

Parent 

Metal 

σ ≤  σˆ 

σ > σˆ 

2.8531d-14 

1.3485d-25 

4.8971 

10.3442 

-0.2031 

-0.2031 

3.2641d-11 

8.8846d-19 

5.4141 

12.5486 

3.0110 

6.9613 

0.5955 

0.5955 

HAZ 

(G.C.P.) 

σ ≤  σˆ 

σ > σˆ 

1.0358d-7 

8.7207d-25 

1.3654 

8.9364 

-0.1700 

-0.1700 

9.5176d-11 

1.3459d-9 

1.4231 

14.8589 

2.7858 

9.0982 

0.4298 

0.4298 

Weld 

Metal 

(Fine) 

σ ≤  σˆ 

σ > σˆ 

2.93965d-12 

1.3485d-25 

4.3680 

7.2496 

-0.2031 

-0.2031 

1.9421d-10 

1.7418d-15 

4.9667 

8.9029 

2.8554 

5.7669 

0.4298 

0.4298 

 

6.8.3 Damage Field and Macro-cracking 

The weld model is a three-material model, namely the parent metal, the HAZ and the 

weld metal. The FE model has 140 nodes and 233 elements. The normalized Kachanov-

Rabotnov creep damage constitutive equation and material constants are used in the FE 

modelling of the damage evolution for the weldment case. Firstly, the processes of the 

damage evolution obtained by HITSI are shown in Figure 6.31, Figure 6.32 and Figure 

6.33 at life fractions of 0.12%, 20.4% and 99.9%. Then, the normalized radial stress, 

axial stress and hoop stress at the failure time are shown in Figure 6.34, Figure 6.35 and 

Figure 6.36. Lastly, the characteristics of creep damage fields by the normalized creep 

damage constitutive equation are summarised in Table 6.13. 
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Figure 6.31: The damage distribution with normalized constitutive equation at life 

fractions of 0.12% 

 

  

Figure 6.32: The damage distribution with normalized constitutive equation at life 

fractions of 20.4% 
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Figure 6.33: The damage distribution with normalized constitutive equation at life 

fractions of 99.9% 

 

  

Figure 6.34: The normalized radial stress distribution at failure time 
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Figure 6.35: The normalized axial stress distribution at failure time 

 

  

Figure 6.36: The normalized hoop stress distribution at failure time 
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Table 6.13: A brief summary of damage evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V 

steam pipe weldment by in-house FE software HITSI with normalized creep damage 

constitutive equation 

Time/h t/tf Characteristics 

48 0.12% 

The creep damage rate is increasing rapidly at this stage and the 

initial damage rate is highest between the heat affected zone (HAZ) 

and weld at the inner bore 

7961 20.4% 
The first failed element occurs between the weld metal and the heat 

affected zone (HAZ) 

17818 45.2% 

The damage rate is declining at this stage and  maximum damaged 

region occurring along the fusion boundary between the weld metal 

and the heat affected zone (HAZ) 

25032 63.5% 
The damage distribution in the weld is more uniform and becomes 

wider 

30432 77.2% 
The maximum damaged zone on the fusion boundary are becoming 

more and more intense 

31851 80.8% The centroid of the damaged zone has moved into the weld metal 

34295 87.0% 
The damaged zone on the fusion boundary and weld metal now have 

higher damage levels 

39420 99.9% 
The coalescence of the most damaged zones into two main localized 

damaged regions 

 

The creep damage rate increases rapidly at the primary stage and the initial damage rate 

is highest between the HAZ and the weld at the inner bore since the elements with 

maximum normalized stress are concentrated on the inner bore. This phenomenon 

causes the stresses to redistribute radially outwards. Thus, more damage has been 

observed in the weld metal and the first failed element occurred close the inner bore in 

Figure 6.32. With increasing time, the crack grows until it exists across the pipe from 

the inner bore to the outer bore and the weldment is called failure at this time. The 

damage evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe weldment by the FE 

software HITSI with normalized creep damage constitutive equation has been 

summarized in Table 6.13. 
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6.8.4 Discussion  

According to the damage evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe 

weldment simulated by HITSI in Table 6.8 and Table 6.13, the results from the non-

normalized constitutive equation and normalized constitutive equation give similar 

descriptions of the damage evolution in weldment where the non-normalized failure 

time is 40680 hours and normalized failure time is 39420 hours. Both agree with the 

experimental test by Coleman; however, the biggest difference is the cost of computing 

time where the non-normalized computing time is 89 seconds and the normalized 

computing time is 62 seconds. 

Hall and Hayhurst (1991) reported that the normalization of the constitutive and damage 

laws can reduce the round-off error, which is the difference between the calculated 

approximation of a number and its exact mathematical value. In this FE model, the 

numerical analysis specifically tries to estimate the error by using the creep damage 

constitutive equation with a time integration algorithm.  

Finite digits are used to represent real numbers. For example, the normalized axial stress 

is 0.78000000 MPa and it is rounded to two decimal places (0.78); the non-normalized 

axial stress is 34.627743691915313 MPa and it is also rounded to two decimal places 

(34.63). With the growth of the integrating calculations, numerical errors may 

accumulate due to the round-off error.  

In order to reduce the round-off error, the number of digits should be increased to 

represent the real number. For example, the non-normalized axial stress 

34.627743691915313 MPa can be rounded to ten decimal places (34.6277436919) and 

the numerical errors could be reduced with the growth of integrating calculations. 

However, the computer needs more storage to store the extra precision.  As a result, the 

computing efficiency is reduced by increasing the number of digits. Thus, the use of 

normalized constitutive equation can significantly increase the computing efficiency. 

6.9 Summary  

This chapter presents the benchmark test of the computational FEM based CDM 

approach in-house FE software HITSI via the analysis of creep deformation and damage 

evolution of the 2.25Cr1Mo:0.5Cr0.5Mo0.25V steam pipe weldment case. The in-house 

FE software HITSI has been shown to predict reasonably well the failure history of the 

pressure vessel weldment. 
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The efficiency and accuracy of the numerical time integration schemes (Euler and 

Runge-Kutta) in FEM for creep damage analysis of weldment have been investigated in 

this chapter; the results reveal that the total computation time cost can be reduced by use 

of the Runge-Kutta method in problems with a large set of system equations. 

The normalized creep damage laws (the Kachanov-Rabotnov creep damage constitutive 

equation) in FEM for creep damage analysis of weldment have also been investigated in 

this chapter; the results reveal that the computing efficiency can be increased through 

use of the normalized creep damage laws. 

The author acknowledges that some important achievements and findings in this chapter 

have been reorganised and submitted to International Journal of Computational 

Materials Science.  
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Chapter 7 Conclusions and Future Work 

This chapter summarizes the outcomes of this research and highlights the contributions 

in the relevant research topics, which were described in previous chapters. Future work 

relative to the development of in-house FE software HITSI for creep damage analysis 

are also discussed. 

7.1 Contributions and Conclusions 

This dissertation has documented the design and development of the in-house FE 

software HITSI for creep damage analysis. A novel in-house FE software prototype  

HITSI which allow the scientist to simulate the behaviour of creep damage in particular 

to analysis the evolution of creep damage in welds has provided. This research work can 

contribute to the computational creep damage mechanics in general and in particular to 

the structural design of components and the evolution of creep damage in weldment. It 

is perceived that the dissertation has made several contributions to the domain 

knowledge.  

7.1.1 The Review of Computational FE software for Creep Damage Analysis 

The first contribution of this project is a critical review of the current state of obtaining 

the computational capability for creep damage analysis. A brief overview and 

discussion on the problem domains relating to this project are presented. The 

mechanisms of creep deformation and creep fracture in metals and alloys are reviewed 

to understand the nature of the creep damage problem. The creep damage behaviour in 

weldment components has been identified. It also illustrates why this project needed to 

be done and why new techniques need to be involved. The current state of how 

computational capability is achieved for creep damage analysis and reasons to develop 

the in-house FE software have been demonstrated. It further reports on techniques such 

as CDM, FE algorithms, the OOP approach and numerical integration schemes that 

need to be involved in this project. 

 The major advantages of the development and use of in-house FE software for 

creep damage analysis are presented. Three aspects are considered including the 

use of CDM, the removal of the failed element and the allowance for the stress 

redistribution due to tertiary creep and the multi-axial stress rupture criterion. 
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 Based on the CDM approach, a damage parameter is defined ranging from zero 

(no damage) to critical damage value (full damage) and is then controlled 

throughout the creep processes (primary, secondary and tertiary).  

 Based on an explicit FE algorithm, the large storage demands can be reduced 

and the efficiency of computational capability can be improved in highly non-

linear creep damage problem.  

 Based on the OOP approach, the developer can simply create a new subroutine 

that inherits many of its features from existing subroutines making the program 

much easier to modify and maintain. 

 Based on the Runge-Kutta scheme, improvement in stability and accuracy of 

results can be achieved; furthermore, the high efficiency is even more 

pronounced for large-scale problems in creep damage analysis.  

7.1.2 The FEM in the Development of Computational Software for Creep Damage 

Analysis 

The second contribution of this project is the outline of the use of FEM in the 

development of computational software for creep damage analysis. The general 

methodology consideration, the FE algorithm, the specific FE programming procedures 

and the existing standard FE subroutines that can be utilized in programming in-house 

FE software are stated. 

 The fundamental requirement and the general methodology consideration in the 

development of in-house FE software for creep damage analysis are outlined; it 

further presents the FE algorithm involved with the creep damage constitutive 

equation, numerical integration method and explicit stress update algorithm for 

the development of HITSI.  

 The specific FE methods such as the set of element data; the element stiffness 

assembly; the solution of equilibrium equation and results recovery at 

integrating points have been stated. Moreover, the relevant existing standard FE 

subroutines which can be utilized in the development of HITSI are reported to 

make the program work more efficiently. 
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7.1.3 Programming the FE Codes for in-house FE Software HITSI 

The third contribution of this project is that the programming of the FE codes for the in-

house FE software HITSI for creep damage analysis is presented. The general flow 

diagram and development strategy of the development of HITSI for creep damage 

analysis are proposed. The in-house FE software HITSI as developed involves the plane 

stress, plane strain, axisymmetric and three-dimensional version FE programs for creep 

damage problem. The use of Smith’s standard FE library and Feng Tan’s FE library is 

demonstrated in programming this software.   

 The development of the linear elastic FE program contributes to specific FE 

techniques such as the input and initialisation, loop elements to find bandwidth 

and number of equations, element stiffness integration and assembly, 

equilibrium equation solution and stress recovery at the central gauss-point. The 

use of the relevant standard FE subroutines to achieve the computational 

capability for the linear elastic problem is also demonstrated.  

 The development of the non-linear elastic-plastic FE program contributes to 

specific FE techniques such as how to add the load or displacement increment 

loop, execute the plastic iteration loop, check plastic convergence, update the 

gauss point stresses and compute the total body loads vector. The use of the 

relevant standard FE subroutines to achieve the computational capability for 

non-linear (material only and time independent) elastic-plastic problem is also 

demonstrated. 

 The development of HITSI involves the plane stress, plane strain, axisymmetric 

and three-dimensional version FE programs for creep damage problem and 

contributes to specific FE techniques such as how to add the time increment 

loop, use of the creep damage constitutive equation, use of the numerical 

integration method, dealing with the stress redistribution, update of the stresses 

and creep damage field variables with the time integration, remove the failed 

element, dealing with the multi-material zones and different types (plane stress, 

plane strain, axisymmetric and three-dimensional) of problem. The use of the 

relevant standard FE subroutines to achieve the computational capability for 

creep damage analysis is also demonstrated. 
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7.1.4 Validation of the Finite Element Codes for in-house Software HITSI 

The fourth contribution of this project is the validation of the FE codes of HITSI for 

creep damage analysis. A step by step validation according to the development strategy 

is proposed. The FE simulated results from HITSI (uni-axial case) are compared with 

the theoretical results to demonstrate the validity of the FE program. Adding to the 

domain knowledge, the FE codes of HITSI as validated involves the plane stress, plane 

strain, axisymmetric and three-dimensional version FE programs to satisfy the 

requirements of the development of HITSI for creep damage analysis. 

 The validation of the linear elastic FE program contributes to ensure specific FE 

techniques, such as the read of the data information from FE model, the 

assembly of element stiffness matrix into global system, the integration of the 

gauss-point to find nodal coordinates and steering vector, the solution of the 

equilibrium equation and the recovery of stresses at central gauss-point, satisfy 

the requirements for the development of the in-house FE software. 

 The validation of the non-linear elastic-plastic FE program contributes to ensure 

specific FE techniques, such as adding load or displacement increment loop, 

executing the plastic iteration loop, checking plastic convergence, updating the 

gauss point stresses and computing the total body loads vector, satify the 

requirements for the development of the in-house FE software. 

 The validation of HITSI involved with the plane stress, plane strain, 

axisymmetric and three-dimensional version FE programs contributes to ensure 

specific FE techniques, such as how to add the time increment loop, use of the 

creep damage constitutive equation, use of the numerical integration method, 

dealing with the stress redistribution, update of the stresses and creep damage 

field variables with the time integration, remove the failed element, dealing with 

the multi-material zones and different types (plane stress, plane strain, 

axisymmetric and three-dimensional) of problem, satisfy the requirements for 

the development of the in-house FE software. 

7.1.5 Benchmark Test of HITSI via the Numerical Investigation of Creep Damage 

Behaviour of a Steam Pipe Weldment Case 

The fifth contribution of this project is the verification of HITSI via the numerical 

investigation of creep damage behaviour of a Cr-Mo-V steam pipe weldment case and 
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the investigation of the efficiency and accuracy of the integration algorithms (Euler and 

Runge-Kutta) and the normalized creep damage laws (Kachanov-Rabotnov creep 

damage constitutive equation).  

 Verification of HITSI via the numerical investigation of creep damage behaviour 

of a steam pipe weldment case; the in-house software HITSI has been shown to 

predict reasonably well for the failure history of the pressure vessel weldment 

 Investigation of the efficiency and accuracy of the numerical time integration 

algorithms (Euler and Runge-Kutta) in the FE method for creep damage 

analysis; the results reveal that the total computation time cost can be reduced 

significantly by the Runge-Kutta method in problems with a large set of system 

equations 

 Investigation of the normalized creep damage laws (Kachanov-Rabotnov creep 

damage constitutive equation) in creep damage analysis of weldment; the results 

reveal that the computing efficiency can be increased through use of the 

normalized creep damage laws 

7.2 Future Work 

7.2.1 Disadvantages of the in-house FE Software HITSI 

The computational FEM based CDM in-house software HITSI has been developed and 

applied for the analysis of creep deformation and damage; however, some disadvantages 

and limitations of this in-house software should be mentioned and outlined as follows:  

1) Current FE codes provide limited element types and creep damage constitutive 

equations for the assessment of high temperature creep damage behaviour of 

weldment structures. In reality, weldment structure such as butt-welded 

pipework contains more complex structural features of a truly three-dimensional 

nature because of the existence of pipe intersections and branches. Therefore, 

the current research needs to be extended to cope with these features by, for 

example, the development of more complex element types such as tetrahedron 

elements.  

2) Smith’s standard subroutine FE library is utilized in the development of HITSI; 

however, the limitation imposed by using these subroutines is that the mesh 

generated by the subroutines should satisfy the order of node and freedom 
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numbering rule: the first node can be located at any corner, but subsequent 

corners and freedoms must follow in a clockwise sense. Furthermore, Smith’s 

standard subroutine FE library was programmed based on the structured 

programming approach and in future the OOP approach should be considered.  

3) The current version of the in-house FE software HITSI includes four main 

programs (plane stress, plane strain, axisymmetric and three-dimensional). The 

disadvantage of the use of HITSI is that user needs to define the analysis type 

for the problem; and then selects the relevant program for the analysis. This 

disadvantage increases complexity of interaction between the user and HITSI. 

4) Current FE codes provide the computational capability for creep damage 

analysis; however, the calculation is performed for a continuum damage level 

from no damage to full damage and this requires a lot of storage on the 

computer. An output and restart control should be considered for reducing the 

storage requirement on the computer and increasing the computational 

efficiency.  

7.2.2 Future Work  

After the research work that has been done in this thesis, the author believes there are 

several ideas that should be taken forward: 

1) The element types and creep damage constitutive equations in the assessment of 

high temperature creep damage behaviour of weldment structures should be 

extended to cope with more complex structural features and conditions. 

2) The OOP approach has been considered in the development of HITSI; however, 

it not yet fully implemented in HITSI. Smith’s standard subroutines can be 

reorganised and programmed based on the OOP approach. 

3) The plane stress, plane strain, axisymmetric and three-dimensional version FE 

programs can be integrated into one program and an operation interface could be 

developed to increase the interaction between the user and this in-house FE 

software. 

4) An output and restart control function should be developed for reducing the 

requirement of computer storage and increasing the computational efficiency for 

this in-house software. 
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5) The validation of the three-dimensional version FE program of HITSI has been 

conducted through a very simple uni-axial case; the data transfer interface 

between the FEMGV and three-dimensional version FE program of HITSI 

should be developed and the real three-dimensional (multi-axial) case should be 

used to validate the three-dimensional version FE program.  

6) Butt-welded pipework may be subjected to more complicated loading and 

operating conditions that depend upon the location of the weldment in the 

pipework circuit; thus, it is important to develop the nodal loading calculator 

system for butt-welded pipework. 

  



205 
 

Reference 

1. Altenbach, H., Kolarow, G., Morachkovsky, O. and Naumenko, K. (2000). On the accuracy 

of creep-damage predictions in thinwalled structures using the finite element method. 

Computational mechanics, 25(1), 87-98.  

2. Archer, G. C. (1996). Object-oriented finite element analysis. (Doctoral dissertation, 

University of California at Berkeley). 

3. Ashby, M. (1977). Progress in the development of fracture mechanism maps. Paper 

presented at the ICF4, Waterloo, Canada. 

4. Ashby, M., Gandhi, C. and Taplin, D. (1979). Overview No. 3 Fracture-mechanism maps 

and their construction for fcc metals and alloys. Acta Metallurgica, 27(5), 699-729.  

5. Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 

20(7), 887-897.  

6. Ashby, M. F. and Brown, L. M. (1983). Perspectives in creep fracture. Oxford and New 

York: Pergamon Press.  

7. Bailey, R. (1935). The utilization of creep test data in engineering design. Proceedings of 

The Institution of Mechanical Engineers, 131(1), 131-349.  

8. Barrett, C. and Nix, W. (1965). A model for steady state creep based on the motion of 

jogged screw dislocations. Acta Metallurgica, 13(12), 1247-1258.  

9. Bauer, C. L. (1965). Polygonization of Rock Salt. Trans. Metall. Soc. of AIME, 223(4), 846-

847. 

10. Becker, A., Hyde, T., Sun, W. and Andersson, P. (2002). Benchmarks for finite element 

analysis of creep continuum damage mechanics. Computational Materials Science, 25(1), 

34-41.  

11. Becker, A., Hyde, T. and Xia, L. (1994). Numerical analysis of creep in components. The 

Journal of Strain Analysis for Engineering Design, 29(3), 185-192.  

12. Bose, S. K. (2009). Numeric computing in Fortran. Oxford: Alpha Science International. 

13. Briand, L. C. and Wieczorek, I. (2002). Resource modeling in software engineering. In: J. J. 

Marciniak (Ed.), Encyclopaedia of software engineering (2nd version). Chichester: John 

Wiley & Sons. 

14. Cadek, J. (1988). Creep in metallic materials (Materials Science Monographs). Michigan: 

Elsevier Science Ltd  



206 
 

15. Callister, W. D. (2001). Fundamentals of Materials Science and Engineering: An Interactive 

eText. New York: John Wiley & Sons. 

16. Cao, J., Lin, J. and Dean, T. (2008). An implicit unitless error and step-size control method 

in integrating unified viscoplastic/creep ODE-type constitutive equations. International 

journal for numerical methods in engineering, 73(8), 1094-1112.  

17. Chen, G. and Hsu, T. (1988). A mixed explicit-implicit (EI) algorithm for creep stress 

analysis. International journal for numerical methods in engineering, 26(2), 511-524.  

18. Christiansen, J. (1970). Numerical solution of ordinary simultaneous differential equations 

of the 1st order using a method for automatic step change. Numerische Mathematik, 14(4), 

317-324.  

19. Coble, R. (1963). A model for boundary diffusion controlled creep in polycrystalline 

materials. Journal of Applied Physics, 34(6), 1679-1682.  

20. Coleman, M. and Kimmins, S. (1990). The behaviour of 1/2Crl/2Mol/4V pipe weldments in 

high temperature plant. Paper presented at the Proc. Inst. Mech. Engrs. Conf. on Life of 

Welds at High Temperature, London, United Kingdom. 

21. Coleman, M., Miller, D. and Stevens, R. (1998). Reheat cracking and strategies to assure 

integrity of type 316 welded components. Paper presented at the Integrity of High-

Temperature Welds, International Conference, Nottingham, United Kingdom. 

22. Coleman, M., Parker, J. and Walters, D. (1985). The behaviour of ferritic weldments in thick 

section 12Cr12Mo14V pipe at elevated temperature. International Journal of Pressure 

Vessels and Piping, 18(4), 277-310.  

23. Conte, S. D., Dunsmore, H. E. and Shen, V. Y. (1986). Software engineering metrics and 

models. Redwood City: Benjamin-Cummings Publishing Co., Inc. 

24. Cook, R. D. (2007). Concepts and applications of finite element analysis. New York: John 

Wiley & Sons. 

25. Copenhaver, B. (1980). Jewish theologies of space in the scientific revolution: Henry More, 

Joseph Raphson, Isaac Newton and their predecessors. Annals of Science, 37(5), 489-548.  

26. Cormeau, I. (1975). Numerical stability in quasi-static elasto/visco-plasticity. International 

journal for numerical methods in engineering, 9(1), 109-127.  

27. Cottrell, A. and Jaswon, M. (1949). Distribution of solute atoms round a slow dislocation. 

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 

199(1056), 104-114.  

28. Fierz, B., Spillmann, J. and Harders, M. (2011). Element-wise mixed implicit-explicit 

integration for stable dynamic simulation of deformable objects. Paper presented at the 



207 
 

Proceedings of the 2011 ACM Eurographics Symposium on Computer Animation, 

Vancouver, Canada. 

29. Forde, B. W., Foschi, R. O. and Stiemer, S. F. (1990). Object-oriented finite element 

analysis. Computers & Structures, 34(3), 355-374. 

30. Frost, H. J. and Ashby, M. F. (1982). Deformation mechanism maps: the plasticity and 

creep of metals and ceramics. Oxford: Pergamon press. 

31. Garofalo, F. (1965). Fundamentals of creep and creep-rupture in metals. London: 

Macmillan. 

32. Gollapudi, S. (2007). Creep mechanisms in titanium alloy tubing. Michigan: ProQuest. 

33. Gollapudi, S., Charit, I. and Murty, K. (2008). Creep mechanisms in Ti–3Al–2.5 V alloy 

tubing deformed under closed-end internal gas pressurization. Acta Materialia, 56(10), 

2406-2419.  

34. Gorash, Y., Altenbach, H. and Naumenko, K. (2008). Modeling of primary and secondary 

creep for a wide stress range. PAMM, 8(1), 10207-10208.  

35. Goretta, K., Cruse, T., Koritala, R., Routbort, J., Mélendez-Martı́nez, J. and de Arellano-

López, A. (2001). Compressive creep of polycrystalline ZrSiO4. Journal of the European 

Ceramic Society, 21(8), 1055-1060.  

36. Hagler, M. (1987). Spreadsheet solution of partial differential equations. Education, IEEE 

Transactions on(3), 130-134.  

37. Hall, F. (1990). Development of continuum damage mechanics models to predict the creep 

deformation and failure of high temperature structures. (Doctoral dissertation, University of 

Manchester).    

38. Hall, F. and Hayhurst, D. (1991). Continuum damage mechanics modelling of high 

temperature deformation and failure in a pipe weldment. Proceedings of the Royal Society of 

London. Series A: Mathematical and Physical Sciences, 433(1888), 383-403.  

39. Hall, F., Hayhurst, D. and Brown, P. (1996). Prediction of plane-strain creep-crack growth 

using continuum damage mechanics. International Journal of Damage Mechanics, 5(4), 

353-383.  

40. Harper, J. and Dorn, J. E. (1957). Viscous creep of aluminum near its melting temperature. 

Acta Metallurgica, 5(11), 654-665.  

41. Hayhurst, C. J., Ranson, H. J., Gardner, D. J. and Birnbaum, N. K. (1995). Modelling of 

microparticle hypervelocity oblique impacts on thick targets. International journal of impact 

engineering, 17(1), 375-386. 



208 
 

42. Hayhurst, D. R. (1972). Creep rupture under multi-axial states of stress. Journal of the 

Mechanics and Physics of Solids, 20(6), 381-382.  

43. Hayhurst, D. R., Brown, P. and Morrison, C. (1984). The role of continuum damage in creep 

crack growth. Philosophical Transactions of the Royal Society of London. Series A, 

Mathematical and Physical Sciences, 131-158.  

44. Hayhurst, D. R., Hayhurst, R. J. and Vakili-Tahami, F. (2005). Continuum damage 

mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a 

medium bore branched pipe under constant pressure at 590° C using a five-material weld 

model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Science, 461(2060), 2303-2326.  

45. Hayhurst, D. R. and Henderson, J. (1977). Creep stress redistribution in notched bars. 

International Journal of Mechanical Sciences, 19(3), 133-146.  

46. Hayhurst, D. R. and Krzeczkowski, A. (1979). Numerical solution of creep problems. 

Computer Methods in Applied Mechanics and Engineering, 20(2), 151-171.  

47. Hayhurst, D. R. (1973). Stress redistribution and rupture due to creep in a uniformly 

stretched thin plate containing a circular hole. Journal of Applied Mechanics, 40(1), 244-250.  

48. Hayhurst, D. R., Dimmer, P. and Morrison, C. (1984). Development of continuum damage 

in the creep rupture of notched bars. Philosophical Transactions of the Royal Society of 

London. Series A, Mathematical and Physical Sciences, 311(1516), 103-129.  

49. Hayhurst, R. J. (2006). Creep lifetime predictions of welded structures using parallel 

processing algorithms. (Doctoral dissertation, University of Manchester).    

50. Hayhurst, R. J., Vakili-Tahami, F. and Hayhurst, D. R. (2009). Verification of 3-D parallel 

CDM software for the analysis of creep failure in the HAZ region of Cr–Mo–V crosswelds. 

International Journal of Pressure Vessels and Piping, 86(8), 475-485.  

51. Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. Journal of Applied 

Physics, 21(5), 437-445.  

52. Holdsworth, S. (2008). The European Creep Collaborative Committee (ECCC) approach to 

creep data assessment. Journal of Pressure Vessel Technology, 130(2), 024001.  

53. Hyde, T. and Sun, W. (2002). Effect of bending load on the creep failure behaviour of a 

pressurised thick walled CrMoV pipe weldment. International journal of pressure vessels 

and piping, 79(5), 331-339.  

54. Hyde, T., Sun, W. and Becker, A. (2000). Failure prediction for multi-material creep test 

specimens using a steady-state creep rupture stress. International journal of mechanical 

sciences, 42(3), 401-423.  



209 
 

55. Hyde, T., Sun, W. and Williams, J. (1999). Creep behaviour of parent, weld and HAZ 

materials of new, service-aged and repaired 1/2Cr1/2Mo1/4V: 2 1/4Cr1Mo pipe welds at 

640 C. Materials at high temperatures, 16(3), 117-129.  

56. Hyde, T., Yehia, K. and Becker, A. (1993). Interpretation of impression creep data using a 

reference stress approach. International journal of mechanical sciences, 35(6), 451-462.  

57. James, M. L., Smith, G. M. and Wolford, J. (1985). Applied numerical methods for digital 

computation (Vol. 2). New York: Harper & Row. 

58. Junhai, W. (2010). Numerical Simulation on Floor Heave Mechanism of Roadway. Modern 

Mining, 26(12), 52-54.  

59. Kachanov, L. (1958). Time of the rupture process under creep conditions. Isv. Akad. Nauk. 

SSR. Otd Tekh. Nauk, 8, 26-31.  

60. Kattan, P. I. and Voyiadjis, G. Z. (2002). Damage mechanics with finite elements: practical 

applications with computer tools (Vol. 1). Berlin: Springer. 

61. Keates, S., Clarkson, P. J., Harrison, L. A. and Robinson, P. (2000). Towards a practical 

inclusive design approach. Paper presented at the Proceedings on the 2000 conference on 

Universal Usability, Washington, United States. 

62. Kern, T. U., Merckling, G. and Yagi, K. (2004). Introduction Creep Properties of Heat 

Resistant Steels and Superalloys: Berlin: Springer. 

63. Kim, Y. J., Kim, J. S., Huh, N. S. and Kim, Y. J. (2002). Engineering C integral estimates 

for integral estimates for generalised creep behaviour and finite element validation. 

International journal of pressure vessels and piping, 79(6), 427-443.  

64. Kimmins, S., Walker, N. and Smith, D. (1996). Creep deformation and rupture of low alloy 

ferritic weldments under shear loading. The Journal of Strain Analysis for Engineering 

Design, 31(2), 125-133.  

65. Klenk, A., Schemmel, J. and Maile, K. (2003). Numerical modelling of ferritic welds and 

repair welds. Numerical Modelling of Ferritic Welds and Repair Welds. 2(2), 1-14.  

66. Krishnamohanrao, Y., Kutumbarao, V. and Rao, P. R. (1986). Fracture mechanism maps for 

titanium and its alloys. Acta Metallurgica, 34(9), 1783-1806.  

67. Krishnaswamy, P., Brust, F. and Ghadiali, N. (1995). A finite element algorithm to study 

creep cracks based on the creep hardening surface. International journal for numerical 

methods in engineering, 38(6), 969-987.  

68. Kun, F., Moreno, Y., Hidalgo, R. and Herrmann, H. (2003). Creep rupture has two 

universality classes. EPL (Europhysics Letters), 63(3), 347.  



210 
 

69. Lages, E. N., Paulino, G. H., Menezes, I. F. and Silva, R. R. (1999). Nonlinear finite 

element analysis using an object-oriented philosophy–Application to beam elements and to 

the Cosserat continuum. Engineering with Computers, 15(1), 73-89. 

70. Leckie, F. A. and Hayhurst, D. (1977). Constitutive equations for creep rupture. Acta 

Metallurgica, 25(9), 1059-1070.  

71. Lee, S., Kim, B. and Lee, D. (1989). Fracture mechanism in coarse grained HAZ of HSLA 

steel welds. Scripta metallurgica, 23(6), 995-1000.  

72. Lemaitre, J. (1972). Evaluation of dissipation and damage in metals submitted to dynamic 

loading. Mechanical behavior of materials, 540-549.  

73. Lemaitre, J. (1985). Coupled elasto-plasticity and damage constitutive equations. Computer 

Methods in Applied Mechanics and Engineering, 51(1), 31-49.  

74. Lemaitre, J. and Desmorat, R. (2005). Engineering damage mechanics: ductile, creep, 

fatigue and brittle failures. Springer Science & Business Media. 

75. Leonard, J. W. (1979). Newton-Raphson iterative method applied to circularly towed cable-

body system. Engineering Structures, 1(2), 73-80.  

76. Li, X. C. and Wu, S. X. (2008). Simulation of Early-age Concrete Creep Stress Based on 

ANSYS . Journal of System Simulation, 20(15), 3944-3947.  

77. Ling, X., Tu, S. T. and Gong, J. M. (2000). Application of Runge–Kutta–Merson algorithm 

for creep damage analysis. International journal of pressure vessels and piping, 77(5), 243-

248.  

78. Liu, A. F. (2005). Mechanics and mechanisms of fracture: an introduction. Ohio: ASM 

International. 

79. Liu, D. Z., Xu, Q. and Lu, Z. Y. (2013e). Research in the development of finite element 

software for creep damage analysis. Journal of communication and computer, 10(8), 1019-

1030.  

80. Liu, D. Z., Xu, Q., Lu, Z. Y., Barrans, S. and Glover, I. (2013c). The development of finite 

element software for creep deformation and damage analysis of weldment. Paper presented 

at the 6th International ‘HIDA’ Conference: Life/Defect Assessment & Failures in High 

Temperature Plant, Nagasaki, Japan.  

81. Liu, D. Z., Xu, Q., Lu, Z. Y. and Xu, D. L. (2012b). Research in the development of 

computational FE software for creep damage mechanics. Paper presented at the 18th 

International Conference on Automation and Computing (ICAC), Loughborough, United 

Kingdom. 



211 
 

82. Liu, D. Z., Xu, Q., Lu, Z. Y., Xu, D. L. and Tan, F. (2013a). The development of finite 

element analysis software for creep damage analysis. Paper presented at the 2013 World 

Congress in Computer Science and Computer Engineering and Application, Las Vegas, 

United States. 

83. Liu, D. Z., Xu, Q., Lu, Z. Y. and Xu, D. L. (2012a). The review of computational FE 

software for creep damage mechanics. Advanced Materials Research, 510, 495-499.  

84. Liu, D. Z., Xu, Q., Lu, Z. Y., Xu, D. L. and Tan, F. (2013d). The validation of 

computational FE software for creep damage mechanics. Advanced Materials Research, 744, 

205-210.  

85. Liu, D. Z., Xu, Q., Lu, Z. Y., Xu, D. L. and Xu, Q. H. (2013b). The techniques in 

developing finite element software for creep damage analysis. Advanced Materials Research, 

744, 199-204.  

86. Machiels, L. and Deville, M. (1997). Fortran 90: an entry to object-oriented programming 

for the solution of partial differential equations. ACM Transactions on Mathematical 

Software (TOMS), 23(1), 32-49.  

87. Mackie, R. I. (2008). Programming distributed finite element analysis: an object oriented 

approach. Stirling: Saxe-Coburg Publications. 

88. Matsui, M., Tabuchi, M., Watanabe, T., Kubo, K., Kinugawa, J. and Abe, F. (2001). 

Degradation of creep strength in welded joint of 9% Cr steel. ISIJ international, 41, S126-

S130.  

89. Miller, G. R., & Rucki, M. D. (1993). A program architecture for interactive nonlinear 

dynamic analysis of structures. Paper presented at the ASCE Conference on Computing in 

Civil and Building Engineering, Anaheim, United States. 

90. Moberg, F. (1995). Implementation of constitutive equations for creep damage mechanics 

into the ABAQUS finite element code. Sweden: SAQ Kontroll AB Certifiering.  

91. Murakami, S. (1983). Notion of continuum damage mechanics and its application to 

anisotropic creep damage theory. Journal of Engineering Materials and Technology, 105(2), 

99-105.  

92. Murakami, S. and Liu, Y. (1995). Mesh-dependence in local approach to creep fracture. 

International Journal of Damage Mechanics, 4(3), 230-250.  

93. Murti, K., and Sundaresan, S. (1985). Thermal Behavior of Austenitic-Ferritic Transition 

Joints Made by Friction Welding. Welding Journal, 64(12), S327-S334.  

94. Mustata, R., Hayhurst, R., Hayhurst, D. and Vakili-Tahami, F. (2006). CDM predictions of 

creep damage initiation and growth in ferritic steel weldments in a medium-bore branched 



212 
 

pipe under constant pressure at 590 C using a four-material weld model. Archive of Applied 

Mechanics, 75(8-9), 475-495.  

95. Nabarro, F. R. (1948). Report of a Conference on the Strength of Solids. The Physical 

Society, London, 18, 524. 

96. Noels, L., Stainier, L. and Ponthot, J. P. (2004). Combined implicit/explicit time-integration 

algorithms for the numerical simulation of sheet metal forming. Journal of Computational 

and Applied Mathematics, 168(1), 331-339.  

97. Norton, F. H. (1929). The creep of steel at high temperatures. New York: McGraw-Hill 

Book Company, Incorporated. 

98. Oden, J. T. and Reddy, J. N. (2012). An introduction to the mathematical theory of finite 

elements. New York: Courier Corporation. 

99. Odqvist, F. K. G. (1974). Mathematical theory of creep and creep rupture. Oxford: 

Clarendon Press Oxford. 

100. Panait, C., Bendick, W., Fuchsmann, A., Gourgues-Lorenzon, A. F. and Besson, J. 

(2010). Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep 

exposure at 600 °C. International journal of pressure vessels and piping, 87(6), 326-335.  

101. Parker, J. and Parsons, A. (1995). High temperature deformation and fracture 

processes in 214Cr1Mo-12Cr12Mo14V weldments. International journal of pressure 

vessels and piping, 63(1), 45-54.  

102. Parker, J. and Stratford, G. (1996). Strain localization in creep testing of samples 

with heterogeneous microstructures. International journal of pressure vessels and piping, 

68(2), 135-143.  

103. Penny, R. K. and Marriott, D. L. (1995). Design for creep. London:  Chapman & 

Hall. 

104. Perrin, I. and Hayhurst, D. (1996a). Creep constitutive equations for a 0.5 Cr–0.5 

Mo–0.25 V ferritic steel in the temperature range 600–675 C. The Journal of Strain Analysis 

for Engineering Design, 31(4), 299-314.  

105. Perrin, I. and Hayhurst, D. (1996b). A method for the transformation of creep 

constitutive equations. International journal of pressure vessels and piping, 68(3), 299-309.  

106. Poirier, J. P. (1985). Creep of crystals: high-temperature deformation processes in 

metals, ceramics and minerals. Cambridge: Cambridge University Press. 

107. Poirier, J. P. and Nicolas, A. (1976). Crystalline plasticity and solid state flow in 

metamorphic rocks. London: John Wiley & Sons. 



213 
 

108. Porter, D. A. and Easterling, K. E. (1992). Phase Transformations in Metals and 

Alloys, (Revised Reprint). Florida: CRC press. 

109. Rabotnov, Y. N. (1969). Creep problems in structural members. London: John 

Wiley & Sons.  

110. Ralph, P. and Wand, Y. (2009). A proposal for a formal definition of the design 

concept. Design requirements engineering: A ten-year perspective, 14, 103-136. 

111. Rebelo, N., Nagtegaal, J., Taylor, L. and Passman, R. (1992). Comparison of implicit 

and explicit finite element methods in the simulation of metal forming processes. Paper 

presented at the ABAQUS Users Conf., Newport, Rhode Island. 

112. Rehak, D. R. and Baugh, J. W. (1989). Alternative programming techniques for 

finite element program development. Paper presented at the IABSE Colloquium on Expert 

Systems in Civil Engineering, Bergamo, Italy. 

113. Rice, J. R. and Thomson, R. (1974). Ductile versus brittle behaviour of crystals. 

Philosophical magazine, 29(1), 73-97.  

114. Riedel, H. (1987). Fracture at high temperatures. Berlin: Springer-Verlag. 

115. Riedel, H. (1990). Creep crack growth under small-scale creep conditions. 

International Journal of Fracture, 42, 173-188. 

116. Rollason, E. C. (1973). Metallurgy for engineers. London: Edward Arnold London. 

117. Sasaki, S., Tateishi, M., Ishikawa, I. and Vanderwalt, P. (2005). Case studies of 

reliability analysis by stochastic methodology in BGA creep analysis. Paper presented at the 

2005 International Symposium on Electronics Materials and Packaging, Tokyo, Japan. 

118. Segle, P. (2002). Numerical simulation of weldment creep response (Doctoral 

dissertation, Department of Materials Science and Engineering Royal Institute of 

Technology, Swedish Institute for Metals Research Drottning Kristinas).  

119. Smith, I. M. and Griffiths, D. V. (2005). Programming the finite element method (4th 

version). London: John Wiley & Sons. 

120. Smith, I. M., Griffiths, D. V. and Margetts, L. (2013). Programming the finite 

element method (5th version).Oxford: Wiley-Blackwell. 

121. Sun, J., Lee, K. and Lee, H. (2000). Comparison of implicit and explicit finite 

element methods for dynamic problems. Journal of Materials Processing Technology, 

105(1), 110-118.  

122. Svensson, L.-E., & Dunlop, G. (1981). Growth of intergranular creep cavities. 

International Metals Reviews, 26(1), 109-131.  



214 
 

123. Szabo, B. A. and Babuška, I. (1991). Finite element analysis. London: John Wiley & 

Sons. 

124. Tu, S. T., Segle, P. and Gong, J. M. (2004). Creep damage and fracture of weldments 

at high temperature. International journal of pressure vessels and piping, 81(2), 199-209.  

125. Tu, S. T., Wu, R. and Sandström, R. (1994). Design against creep failure for 

weldments in 0.5Cr0.5Mo0.25V pipe. International journal of pressure vessels and piping, 

58(3), 345-354.  

126. Venkatramani, G., Ghosh, S. and Mills, M. (2007). A size-dependent crystal 

plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys. 

Acta Materialia, 55(11), 3971-3986.  

127. Vignjevic, R., Campbell, J. C. and Lepage, S. (2004). Numerical simulation of high 

velocity impacts on thin metallic targets I and II. Paper presented at the 6th International 

Conference on Dynamics and Control of Systems and Structures in Space (DCSSS), 

Riomaggiore, Italy. 

128. Viswanathan, G., Vasudevan, V. and Mills, M. (1999). Modification of the jogged-

screw model for creep of γ-TiAl. Acta Materialia, 47(5), 1399-1411.  

129. Viswanathan, R. (1989). Damage mechanisms and life assessment of high 

temperature components. Ohio: ASM international. 

130. Wang, Z. and Hayhurst, D. (1994). The use of supercomputer modelling of high-

temperature failure in pipe weldments to optimize weld and heat affected zone materials 

property selection. Proceedings of the Royal Society of London. Series A: Mathematical and 

Physical Sciences, 446(1926), 127-148.  

131. Weertman, J. (1955). Theory of Steady-State Creep Based on Dislocation Climb. 

Journal of Applied Physics, 26(10), 1213-1217.  

132. Wilson, D. G. and Korakianitis, T. (2014). The design of high-efficiency 

turbomachinery and gas turbines (2nd version). Cambridge: MIT press. 

133. Wong, M. T. (1999). Three-dimensional finite element analysis of creep continuum 

damage growth and failure in weldments. (Doctoral dissertation, University of Manchester).    

134. Xu, Q. (2001). Creep damage constitutive equations for multi-axial states of stress 

for 0.5 Cr0. 5Mo0. 25V ferritic steel at 590 C. Theoretical and applied fracture mechanics, 

36(2), 99-107.  

135. Yao, H. T., Xuan, F. Z., Wang, Z. and Tu, S. T. (2007). A review of creep analysis 

and design under multi-axial stress states. Nuclear Engineering and Design, 237(18), 1969-

1986.  



215 
 

136. Yu, T., Yatomi, M. and Shi, H. J. (2009). Numerical investigation on the creep 

damage induced by void growth in heat affected zone of weldments. International Journal 

of Pressure Vessels and Piping, 9(86), 578-584.  

137. Yuan, H. P., Zhu, L. G., Zhai, Y. J. and Chen, S. M. (2012). Numerical Test Study 

on the Mechanical Behavior of Rock Creep Fracture. Applied Mechanics and Materials, 204, 

526-533.  

138. Zienkiewicz, O. and Cheung, Y. (1967). The finite element method in structural and 

continuum mechanics. New York: McGraw-Hill.  

139. Zienkiewicz, O. and Cormeau, I. (1974). Visco-plasticity-plasticity and creep in 

elastic solids-a unified numerical solution approach. International journal for numerical 

methods in engineering, 8(4), 821-845.  

140. Zienkiewicz, O. C. and Taylor, R. L. (2000). The finite element method: Solid 

mechanics (Vol. 2). Oxford: Butterworth-heinemann. 

141. Zienkiewicz, O. C. and Taylor, R. L. (2005). The finite element method for solid and 

structural mechanics. Oxford: Butterworth-heinemann. 

142. Zimmermann, T., Dubois, Y. and Bomme, P. (1992). Object-oriented finite element 

programming: I. Governing principles. Computer methods in applied mechanics and 

engineering, 98(2), 291-303. 

143. Zolochevsky, A., Sklepus, S., Hyde, T., Becker, A. and Peravali, S. (2009). 

Numerical modeling of creep and creep damage in thin plates of arbitrary shape from 

materials with different behavior in tension and compression under plane stress conditions. 

International journal for numerical methods in engineering, 80(11), 1406-1436.  

 

  



216 
 

Appendix A: Source Codes of the Main Program 

for FE Software HITSI 

!< Source codes of the main program for FE software HITSI 

!>--------------------------------------------------------------------------------------------------------- 

!< The in-house FE software HITSI has been developed and the current version  

!< includes four main programs (plane stress, plane strain, axisymmetric and  

!<three-dimensional) 

!>--------------------------------------------------------------------------------------------------------- 

!< The existing standard FE subroutines from I M Smith’s book: Programming  

!< the Finite Element Method are modified and utilized in HITSI for the spatial  

!< discretisation by finite elements, element stiffness integration and assembly, 

!<  solution of equilibrium equation and recover results at integrating points. 

!>--------------------------------------------------------------------------------------------------------- 

!< The specific subroutine library is provided by Feng Tan for HITSI and it contains  

!< the creep damage constitutive equation’s subroutine, the time integration’s  

!< subroutine, a nodal force calculator for axisymmetric FE program and a  

!< data transfer interface between the in-house FE software HITSI and the  

!< pre- and post-processor FE software FEMGV. 

!>--------------------------------------------------------------------------------------------------------- 

program planestress 

!>-------------------------------------------introdution----------------------------------------------- 

!< This  main program is developed for solving plane stress creep damage problem 

use new_library;  use  geometry_lib;  use lib_add;  implicit none 

99998 format(1X,I4) 

!>------------------------ --------The declaration of variables  ---------------------------------- 

integer::    nels,neq,nband,nn,nr,nip,nodof,nod,nst,ndof,oppo,                   & 

                   i,k,iel,ndim,loaded_nodes,nprops,np_types,iy,j,ix,                        & 

                  iters,ii,ij,key1=1,key2=2,key3=3,key4=4,key5=5,key6=6,           & 
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                key7=7,key8=8,key9=9,key10=10,key11=9999 

 doubleprecision::   ESS, MPSS, T, t0, e,v,det 

!>---------------------------------- The declaration of arrays  --------------------------------- 

 doubleprecision, dimension (5)::ABV,crate 

 character(len=15) :: element 

!--------------------------------------- dynamic arrays-------------------------------------------- 

 doubleprecision    ,allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),                & 

                         km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),tabv(:,:,:),                       & 

                         bee(:,:),coord(:,:),loads(:),eld(:),sigma(:), tevp(:,:,:),                             & 

                         prop(:,:), eps(:), evp(:),devp(:),  teps(:,:,:)                                                 & 

                         bload(:),eload(:),evpt(:,:,:),bdylds(:),                                                        & 

                         material(:),storkv(:,:),tsigma(:,:,:),                                                           & 

                         tdevp(:,:,:),gc(:),tgc(:,:,:), 

 integer, allocatable :: g_num(:,:) ,nf(:,:), g(:)  , num(:)  ,  g_g(:,:),                             & 

                         etype(:), no(:) 

!-----------------------------------input and initialisation-------------------------------------- 

  open (10,file='p1.dat',status='old',    action='read') 

  open (11,file='p1.res',status='replace',action='write') 

  read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

  ndof=nod*nodof 

  allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),     & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),           & 

            jac(ndim,ndim),dee(nst,nst),der(ndim,nod),deriv(ndim,nod),                     & 

           num(nod),km(ndof,ndof), eld(ndof),  sigma(nst),etype(nels),                      & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                                 & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                      & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), bee(nst,ndof),                                   & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                   & 

           teps(nst,nip,nels)) 

 read(10,*) nprops , np_types 

 allocate(prop(nprops,np_types)) ; read(10,*) prop 
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        etype = 1 ; if(np_types>1) read(10,*) etype 

           do i=1, nn 

                 read (10,*)k,g_coord(:,i) 

          end do 

          do i=1, nels 

                read (10,*)k, g_num(:,i) 

         end do 

  nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr) 

  call formnf (nf);neq=maxval(nf); nband = 0 

!-----------------------loop the elements to find bandwidth and neq---------------------- 

     elements_1   : do iel =1,nels 

                   num=g_num(:,iel) 

                          call num_to_g ( num , nf , g ); 

                             g_g(:,iel)=g 

                          e=prop(1,etype(iel)); v=prop(2,etype(iel)) 

                 if(nband<bandwidth(g))nband=bandwidth(g) 

    end do elements_1 

  dee=.0; dee(1,1)=e/(1.-v*v);dee(2,2)=dee(1,1);dee(3,3)=.5*e/(1.+v) 

  dee(1,2)=v*dee(1,1);dee(2,1)=dee(1,2) 

  call sample(element,points,weights) 

  allocate( kv(neq*(nband+1)),loads(0:neq),bdylds(0:neq)); kv=0.0 

!--------------------- element stiffness integration and assembly-------------------------- 

 elements_2: do iel = 1 , nels 

             num = g_num(:, iel);     g = g_g( : , iel ) 

             coord = transpose(g_coord(:, num)) ;       km=0.0 

          gauss_pts_1: do i = 1 , nip 

               call shape_fun(fun,points,i) 

                call shape_der(der,points,i) ; jac = matmul(der,coord) 

                det = determinant(jac); call invert(jac) 

                gc=matmul(fun,coord);  tgc(:,i,iel)=gc 
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               deriv = matmul(jac,der) ; call beemat (bee,deriv) 

             km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

         end do gauss_pts_1 

     call formkv (kv,km,g,neq) 

 end do elements_2 

!------------------------ solution of equilibrium equation--------------------------------- 

 bdylds=.0; evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

 evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 

read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

    call banred(kv,neq) 

         T=1;  t0=0 

             do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0 

              end do; end do; end do              

   tsigma=0; tevp=0; tdevp=0 

    do ii=1,23774; ij=ii*iy; do iy=0,1 

      t0=t0+t; iters=0;bdylds=0;evpt=0 

       do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 

        loads = loads + bdylds 

 call bacsub(kv,loads) 

!---------------------------- recover initial elastic stress----------------------------------- 

elements_3:do iel=1,nels; bload=0 

            num = g_num(:,iel) ; coord = transpose(g_coord(:,num)) 

            g = g_g( : , iel)  ;     eld=loads(g) 

           integrating_pts_2: do i = 1 , nip 

            call shape_fun(fun,points,i); call shape_der(der,points,i) 

            jac=matmul(der,coord); call invert(jac) 

           deriv=matmul(jac,der); call beemat(bee,deriv) 

           eps=matmul(bee,eld); teps(:,i,iel)=eps    

           det = determinant(jac); eps=eps-evpt(:,i,iel) 
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        sigma=matmul(dee,eps); tsigma(:,i,iel)=sigma 

!-------------------- creep damage variables and stress updating ---------------------- 

abv=tabv(:,i,iel); call rdmpes (sigma,mpss,ess) 

do ix=1, oppo; material(ix)=prop(ix+2,etype(iel));  end do 

   call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

    tabv(:,i,iel)=abv; evp(1)=crate(1)*t;evp(2)=crate(2)*t; 

    evp(3)=crate(3)*2*t; evp(4)=crate(4)*t; tevp(:,i,iel)=evp 

evpt(:,i,iel)=evpt(:,i,iel)+evp 

    devp=matmul(dee,evp); tdevp(:,i,iel)=devp 

        eload=matmul(devp,bee) 

                  bload=bload+eload*det*weights(i) 

    if(tabv(5,i,iel)>=0.99)then 

                tabv(5,i,iel)=0.99; tevp(:,i,iel)=0.0; km=0.0 

                       else 

     tabv(:,i,iel)=abv; tevp(:,i,iel)=evp 

                 evpt(:,i,iel)=evpt(:,i,iel)+evp 

                     end if 

      end do integrating_pts_2 

   bdylds( g ) = bdylds( g )+ bload      ; bdylds(0) = 0 

 end do elements_3 

end do; end do 

!----------------- output of all calculated results for post-processing------------------ 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 
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write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 

 write(11,99998) key1 

 write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v, key1 

 write(11,99998) key2 

 do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

 write(11,99998) key3 

 do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

 write(11,99998) key11 

end program planestress 

 

!>--------------------------------------------------------------------------------------------------------- 

program planestrain 

!>-------------------------------------------introdution----------------------------------------------- 

!< This  main program is developed for solving plane strain creep damage problem 

use new_library   ;   use  geometry_lib  ; use lib_add;     implicit none 

99998 format(1X,I4) 

 integer::    nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,                                              & 

              i,k,iel,ndim,loaded_nodes,nprops,np_types,iy,j,ix,                                           & 

             iters,ii,ij,key1=1,key2=2,key3=3,key4=4,key5=5,key6=6,                              & 

             key7=7,key8=8,key9=9,key10=10,key11=9999 

 doubleprecision::   ESS, MPSS, T, t0, e,v,det 

doubleprecision, dimension (5)::ABV,crate 

 character(len=15) :: element 

!---------------------------------------- dynamic arrays-------------------------------------------- 

 doubleprecision    ,allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),            & 

                         km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),                                    & 

                         bee(:,:),coord(:,:),loads(:),eld(:),sigma(:),                                           & 

                         prop(:,:), eps(:), evp(:),devp(:),                                                              & 
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                        bload(:),eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                                & 

                        material(:),storkv(:,:),tsigma(:,:,:),tevp(:,:,:),                                    & 

                        tdevp(:,:,:),gc(:),tgc(:,:,:),teps(:,:,:) 

 integer, allocatable :: g_num(:,:) ,nf(:,:), g(:)  , num(:)  ,  g_g(:,:),                       & 

                       etype(:), no(:),kdiag(:) 

!-------------------------------------input and initialisation--------------------------------------- 

  open (10,file='p2.dat',status='old',    action='read') 

  open (11,file='p2.res',status='replace',action='write') 

  read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

  ndof=nod*nodof 

  allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),  & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),       & 

           jac(ndim,ndim),dee(nst,nst),der(ndim,nod),deriv(ndim,nod),                  & 

           num(nod),km(ndof,ndof), eld(ndof),  sigma(nst),etype(nels),                  & 

           eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                             & 

           evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                  & 

           tsigma(nst,nip,nels),tevp(nst,nip,nels), bee(nst,ndof),                               & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                        & 

           teps(nst,nip,nels)) 

     read(10,*) nprops , np_types 

     allocate(prop(nprops,np_types)) ; read(10,*) prop 

       etype = 1 ; if(np_types>1) read(10,*) etype 

             do i=1, nn 

                        read (10,*)k,g_coord(:,i) 

             end do 

            do i=1, nels 

                       read (10,*)k, g_num(:,i) 

            end do 

  nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr) 
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call formnf (nf);neq=maxval(nf); allocate(kdiag(neq))     ; kdiag = 0 

!------------------------loop the elements to find bandwidth and neq----------------------- 

     elements_1   : do iel =1,nels 

                     num=g_num(:,iel) 

                          call num_to_g ( num , nf , g ); 

                                  g_g(:,iel)=g 

                           call fkdiag(kdiag,g) 

          end do elements_1 

            kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do 

                  call sample(element,points,weights) 

       allocate( kv(kdiag(neq)),loads(0:neq),bdylds(0:neq)); kv=0.0 

       call sample(element,points,weights) 

!----------------------- element stiffness integration and assembly------------------------- 

 elements_2: do iel = 1 , nels 

             num = g_num(:, iel);     g = g_g( : , iel ) 

             coord = transpose(g_coord(:, num)) ;       km=0.0 

          gauss_pts_1: do i = 1 , nip 

                e=prop(1,etype(iel)); v=prop(2,etype(iel)); call deemat(dee,e,v) 

                call shape_fun(fun,points,i);    call shape_der(der,points,i)  

                 jac = matmul(der,coord);      det = determinant(jac) 

                 call invert(jac);  gc=matmul(fun,coord) 

                    tgc(:,i,iel)=gc 

                 deriv = matmul(jac,der) ; call beemat (bee,deriv) 

             km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

          end do gauss_pts_1 

     call fsparv (kv,km,g,kdiag) 

 end do elements_2 

!------------------------ solution of equilibrium equation--------------------------------- 

 bdylds=.0;   evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

 evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 
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read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

 read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

     call sparin (kv,kdiag) 

      T=1;  t0=0 

             do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0 

               end do; end do; end do              

                 tsigma=0; tevp=0; tdevp=0 

               do ii=0,7038;   ij=ii*iy; do iy=0,0;   t0=t0+t   

                  iters=0;bdylds=0;evpt=0 

           do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 

         loads = loads + bdylds 

      call spabac(kv,loads,kdiag) 

!---------------------------- recover initial elastic stress----------------------------------- 

elements_3:do iel=1,nels;     bload=0 

              num = g_num(:,iel) ; coord = transpose(g_coord(:,num)) 

              g = g_g( : , iel)  ;     eld=loads(g) 

           integrating_pts_2: do i = 1 , nip 

              call shape_fun(fun,points,i);  call shape_der(der,points,i) 

                jac=matmul(der,coord); det = determinant(jac) 

                  call invert(jac);     deriv=matmul(jac,der) 

                 call beemat(bee,deriv)  ; eps=matmul(bee,eld) 

                eps=eps-evpt(:,i,iel); sigma=matmul(dee,eps) 

              tsigma(:,i,iel)=sigma 

!-------------------- creep damage variables and stress updating ---------------------- 

        abv=tabv(:,i,iel); call rdmpes (sigma,mpss,ess) 

        do ix=1, oppo; material(ix)=prop(ix+2,etype(iel)); end do 

          call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

           tabv(:,i,iel)=abv; evp(1)=crate(1)*t;evp(2)=crate(2)*t 
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               evp(3)=crate(3)*2*t; evp(4)=crate(4)*t    

               tevp(:,i,iel)=evp; evpt(:,i,iel)=evpt(:,i,iel)+evp 

                  devp=matmul(dee,evp); tdevp(:,i,iel)=devp 

                  eload=matmul(devp,bee) 

                                bload=bload+eload*det*weights(i) 

    if(tabv(5,i,iel)>=0.99)then 

                tabv(5,i,iel)=0.99; tevp(:,i,iel)=0.0; km=0.0 

                       else 

     tabv(:,i,iel)=abv; tevp(:,i,iel)=evp 

                 evpt(:,i,iel)=evpt(:,i,iel)+evp 

                     end if 

      end do integrating_pts_2 

   bdylds( g ) = bdylds( g )+ bload      ; bdylds(0) = 0 

 end do elements_3 

end do; end do 

!----------------- output of all calculated results for post-processing------------------ 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 

write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 

 write(11,99998) key1 

 write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v, key1 
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 write(11,99998) key2 

 do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

 write(11,99998) key3 

 do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

 write(11,99998) key11 

end program planestrain 

 

!>--------------------------------------------------------------------------------------------------------- 

program axisy 

!>-------------------------------------------introdution----------------------------------------------- 

!< This  main program is developed for solving axisymmetric creep damage problem 

 use new_library   ;  use  geometry_lib   ; use lib_add; implicit none 

 99998 format(1X,I4) 

 integer::    nels,neq,nband,nn,nr,nip,nodof,nod,nst,ndof,oppo,                                    & 

              i,k,iel,ndim,loaded_nodes,nprops,np_types,iy,j,ix,                                              & 

             iters,ii,ij,key1=1,key2=2,key3=3,key4=4,key5=5,key6=6,                                 & 

             key7=7,key8=8,key9=9,key10=10,key11=9999 

 doubleprecision::   ESS, MPSS, T, t0, e,v,det ,radius 

doubleprecision, dimension (5)::ABV,crate 

doubleprecision, dimension (4)::S 

 character(len=15) :: element 

!----------------------------- --------- dynamic arrays---------------------------------------------- 

 doubleprecision    ,allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),               & 

                         km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),                                       & 

                         bee(:,:),coord(:,:),loads(:),eld(:),sigma(:),                                              & 

                         prop(:,:), eps(:), evp(:),devp(:), bload(:),                                                & 

                         eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                                                    & 

                         material(:),storkv(:,:),tsigma(:,:,:),                                                         & 

                         tevp(:,:,:),  tdevp(:,:,:),gc(:),                                                                       & 

                         tgc(:,:,:),teps(:,:,:) 
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 integer, allocatable :: g_num(:,:) ,nf(:,:), g(:)  , num(:)  ,  g_g(:,:),                         & 

                         etype(:), no(:) 

!---------------------------------input and initialisation-------------------------------------- 

  open (10,file='p3.dat',status=    'old',action='read') 

  open (11,file='p3.res',status='replace',action='write') 

  read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

  ndof=nod*nodof 

  allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels), & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),       & 

            jac(ndim,ndim),dee(nst,nst),der(ndim,nod),deriv(ndim,nod),                 & 

            num(nod),km(ndof,ndof), eld(ndof),  sigma(nst),etype(nels),                 & 

            eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                            & 

            evpt(nst,nip,nels), tabv(5,nip,nels), material(oppo),                                 & 

            tsigma(nst,nip,nels),tevp(nst,nip,nels), bee(nst,ndof),                              & 

            tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                       & 

            teps(nst,nip,nels)) 

     read(10,*) nprops , np_types 

     allocate(prop(nprops,np_types)) ; read(10,*) prop 

       etype = 1 ; if(np_types>1) read(10,*) etype 

             do i=1, nn 

                        read (10,*)k,g_coord(:,i) 

             end do 

            do i=1, nels 

                       read (10,*)k, g_num(:,i) 

            end do 

     nf=1; read(10,*) nr ;if(nr>0) read(10,*) (k,nf(:,k),i=1,nr) 

    call formnf(nf); neq=maxval(nf) 

!--------------- loop the elements to find nband and set up global arrays ------------ 

      nband=0 

      elements_1   : do iel =1,nels 

                     num=g_num(:,iel); call num_to_g ( num , nf , g ); g_g(:,iel)=g 
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                if(nband<bandwidth(g))nband=bandwidth(g) 

               end do elements_1 

                  call sample(element,points,weights) 

       allocate( kv(neq*(nband+1)),loads(0:neq),bdylds(0:neq)); kv=0.0 

!-------------------- element stiffness integration and assembly------------------------ 

  elements_2: do iel=1,nels 

                num=g_num(:,iel)  ; coord =transpose( g_coord(:,num)) 

                g = g_g(: ,iel)   ;     km=0.0 

                 e=prop(1,etype(iel)); v=prop(2,etype(iel)) 

                 call deemat(dee,e,v);  do ix=1, oppo 

                 material(ix)=prop(ix+2,etype(iel)); end do 

        integrating_pts_1:  do i=1,nip 

                 call shape_fun(fun,points,i)  ;  call shape_der(der,points,i) 

                  jac=matmul(der,coord)   ;   det= determinant(jac) 

                  call invert(jac); gc=matmul(fun,coord) 

                    tgc(:,i,iel)=gc;  deriv = matmul(jac,der) 

                    call bmataxi(bee,radius,coord,deriv,fun) 

                       det =det*radius 

                km= km+matmul(matmul(transpose(bee),dee),bee)*det*weights(i) 

              end do integrating_pts_1 

           call formkv (kv,km,g,neq) 

     end do elements_2 

!------------------------ solution of equilibrium equation--------------------------------- 

     read (10,*) loaded_nodes;allocate(no(loaded_nodes),storkv(loaded_nodes,ndim)) 

     read (10,*)(no(i),storkv(i,:),i=1,loaded_nodes) 

         call banred(kv,neq) 

         bdylds=.0;  T=1;  t0=0 

             do i=1,nels; do j=1,nip; do k=1,5 

                       tabv(k,j,i)=0 

               end do; end do; end do              
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                 tsigma=0; tevp=0; tdevp=0 

        do ii=0,10692;  ij=ii*iy;  do iy=0,0;   t0=t0+t 

            iters=0;bdylds=0;evpt=0 

         do i=1, loaded_nodes; loads(nf(:,no(i)))=storkv(i,:);end do 

        loads = loads + bdylds 

     call bacsub(kv,loads) 

!---------------------------- recover initial elastic stress----------------------------------- 

 elements_3:  do iel=1, nels;  bload=0 

            num = g_num(:,iel) ; coord = transpose(g_coord(:,num)) 

            g = g_g( : , iel)  ;     eld=loads(g) 

          integrating_pts_2: do i = 1 , nip 

            call shape_fun(fun,points,i);   call shape_der(der,points,i) 

            jac=matmul(der,coord);     call invert(jac) 

              deriv=matmul(jac,der) 

                call bmataxi(bee,radius,coord,deriv,fun) 

                eps=matmul(bee,eld);   teps(:,i,iel)=eps 

             det=det*radius;   eps=eps-evpt(:,i,iel) 

         sigma=matmul(dee,eps); tsigma(:,i,iel)=sigma 

!-------------------- creep damage variables and stress updating ---------------------- 

   abv=tabv(:,i,iel); do ix=1, oppo        

   material(ix)=prop(ix+2,etype(iel));  end do 

      call STRESS_DEVIATOR_2D (sigma,S) 

         call equivalent_stress_2D (S,ESS) 

           call  max_PRINCIPAL_STRESS_2D (sigma,MPSS) 

      call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

                if(tabv(5,i,iel)>=0.99)then 

                tabv(5,i,iel)=0.99; tevp(:,i,iel)=0.0; km=0.0 

                       else 

     tabv(:,i,iel)=abv; tevp(:,i,iel)=evp 

                 evpt(:,i,iel)=evpt(:,i,iel)+evp 

                     end if 
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      devp=matmul(dee,evp);  tdevp(:,i,iel)=devp 

             eload=matmul(devp,bee) 

            bload=bload+eload*det*weights(i) 

        end do integrating_pts_2 

   bdylds( g ) = bdylds( g )+ bload      ; bdylds(0) = 0 

 end do elements_3 

end do; end do 

!----------------- output of all calculated results for post-processing------------------ 

write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 

write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(5,j,i); end do;  end do 

 write(11,99998) key1 

 write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v, key1 

 write(11,99998) key2 

 do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

 write(11,99998) key3 

 do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

 write(11,99998) key11 

end program axisy 

 

!>--------------------------------------------------------------------------------------------------------- 
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program D3 

!>-------------------------------------------introdution----------------------------------------------- 

!< This main program is developed for solving three-dimensional creep damage problem 

use new_library   ;   use  geometry_lib  ; use lib_add;     implicit none 

99998 format(1X,I4) 

 integer::    nels,neq,nn,nr,nip,nodof,nod,nst,ndof,oppo,                                                 & 

              i,k,iel,ndim,loaded_nodes,nprops,np_types,iy,j,ix,                                              & 

             iters,ii,ij,fixed_nodes,key1=1,key2=2,key3=3,key4=4,                                       & 

            key5=5,key6=6, key7=7,key8=8,key9=9,key10=10,key11=9999 

doubleprecision::   ESS, MPSS, T, t0, e,v,det 

doubleprecision, dimension (7):: ABV,crate 

 character(len=15) :: element 

!----------------------------------------- dynamic arrays---------------------------------------------- 

 doubleprecision    ,allocatable :: g_coord(:,:),points(:,:),weights(:),kv(:),              & 

                         km(:,:),dee(:,:),fun(:),der(:,:),jac(:,:),deriv(:,:),                                      & 

                         bee(:,:),coord(:,:),loads(:),eld(:),sigma(:),                                             & 

                         prop(:,:), eps(:), evp(:),devp(:), bload(:),                                               & 

                        eload(:),evpt(:,:,:),bdylds(:),tabv(:,:,:),                                                    & 

                        material(:),storkv(:),tsigma(:,:,:),value(:) ,                                           & 

                       tdevp(:,:,:),load_store(:), ,gc(:),tevp(:,:,:) 

                       tgc(:,:,:),teps(:,:,:) 

 integer, allocatable :: g_num(:,:) ,nf(:,:), g(:)  , num(:)  ,  g_g(:,:),                          & 

                       etype(:), no(:),kdiag(:),sense(:), node(:) 

!----------------------------------input and initialisation------------------------------------------ 

  open (10,file='p4.dat',status=    'old',action='read') 

  open (11,file='p4.res',status='replace',action='write') 

  read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,oppo 

  ndof=nod*nodof 

 allocate ( g_coord(ndim,nn),g_num(nod,nels),nf(nodof,nn), g_g(ndof,nels),   & 

            g(ndof),points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod),       & 

            jac(ndim,ndim), der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),             & 
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            num(nod),km(ndof,ndof), eld(ndof),  sigma(nst),etype(nels),               & 

            eps(nst), evp(nst), devp(nst), bload(ndof),eload(ndof),                          & 

            evpt(nst,nip,nels), tabv(7,nip,nels), material(oppo),                               & 

            tsigma(nst,nip,nels),tevp(nst,nip,nels),dee(nst,nst),                                & 

           tdevp(nst,nip,nels),gc(ndim),tgc(ndim,nip,nels),                                      & 

           teps(nst,nip,nels)) 

   read(10,*) nprops , np_types 

  allocate(prop(nprops,np_types)) ; read(10,*) prop 

       etype = 1 ; if(np_types>1) read(10,*) etype 

             do i=1, nn 

               read (10,*)k,g_coord(:,i) 

            end do 

           do i=1, nels 

              read (10,*)k, g_num(:,i) 

          end do 

 nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr) 

call formnf (nf);neq=maxval(nf); allocate(kdiag(neq))     ; kdiag = 0 

!----------------- loop the elements to set up global arrays and kdiag ------------------- 

       elements_1   : do iel =1, nels 

                     num=g_num(:,iel)  ;  call num_to_g ( num , nf , g ) 

                      g_g(:,iel)=g;    call fkdiag(kdiag,g)       

                    end do elements_1 

          kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do 

allocate( kv(kdiag(neq)),loads(0:neq),bdylds(0:neq), load_store(0:neq)); kv=0.0 

        call sample(element,points,weights) 

!--------------- element stiffness integration and assembly & set stresses-------------- 

elements_2: do iel = 1 , nels 

             num = g_num(:, iel);     g = g_g( : , iel ) 

             coord = transpose(g_coord(:, num)) ;       km=0.0 

          gauss_pts_1: do i = 1 , nip 
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               e=prop(1,etype(iel)); v=prop(2,etype(iel)); call deemat(dee,e,v) 

                 call shape_der(der,points,i) ; jac = matmul(der,coord) 

                   det = determinant(jac); call invert(jac) 

                   gc=matmul(fun,coord); tgc(:,i,iel)=gc 

               deriv = matmul(jac,der) ; call beemat (bee,deriv) 

           km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i) 

      end do gauss_pts_1 

   call fsparv (kv,km,g,kdiag) 

 end do elements_2 

!------------------------ solution of equilibrium equation--------------------------------- 

  bdylds=.0;   evpt(1,nip,nels)=0.0;  evpt(2,nip,nels)=0.0 

  evpt(3,nip,nels)=0.0;  evpt(4,nip,nels)=0.0 

     read(10,*) loaded_nodes;   if(loaded_nodes/=0) then 

     read(10,*)(k,loads(nf(:,k)),i=1,loaded_nodes); load_store = loads 

    end if 

    read(10,*) fixed_nodes;  if(fixed_nodes /=0) then 

     allocate(node(fixed_nodes),sense(fixed_nodes),value(fixed_nodes),        & 

              no(fixed_nodes),storkv(fixed_nodes)) 

     read(10,*) (node(i), sense(i), value(i),i=1,fixed_nodes) 

     do i=1,fixed_nodes; no(i)=nf(sense(i),node(i)); end do 

     kv(kdiag(no)) = kv(kdiag(no)) + 1.e20  ; storkv = kv(kdiag(no)) 

    end if 

         call sparin (kv,kdiag); bdylds=.0; T=1;  t0=0 

             do i=1,nels; do j=1,nip; do k=1,7 

                       tabv(k,j,i)=0 

               end do; end do; end do 

           tsigma=0; tevp=0; tdevp=0     

    do ii=1,1603;  ij=ii*iy; do iy=0,0;  t0=t0+t 

           iters=0;bdylds=0;evpt=0; loads =.0 

        if(loaded_nodes/=0) loads = load_store 

      if(fixed_nodes/=0) loads(no) = storkv * value 
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       loads = loads + bdylds 

      call spabac(kv,loads,kdiag) 

!---------------------------- recover initial elastic stress----------------------------------- 

 elements_3:do iel=1,nels; bload=0    

            num = g_num(:,iel) ; coord = transpose(g_coord(:,num)) 

            g = g_g( : , iel)  ;     eld=loads(g) 

        integrating_pts_2: do i = 1 , nip 

           call shape_fun(fun,points,i); call shape_der(der,points,i)   

            jac=matmul(der,coord); det = determinant(jac) 

                 call invert(jac);  deriv=matmul(jac,der) 

                 call beemat(bee,deriv); eps=matmul(bee,eld) 

             eps=eps-evpt(:,i,iel);  sigma=matmul(dee,eps) 

          tsigma(:,i,iel)=sigma 

!-------------------- creep damage variables and stress updating ---------------------- 

 abv=tabv(:,i,iel);   call rdmpes (sigma,mpss,ess) 

 do ix=1, oppo; material(ix)=prop(ix+2,etype(iel));  end do 

    call EULER_KR (abv,crate,t,t0,sigma,ess,mpss,material) 

       tabv(:,i,iel)=abv; tevp(:,i,iel)=evp 

        evpt(:,i,iel)=evpt(:,i,iel)+evp 

            devp=matmul(dee,evp); tdevp(:,i,iel)=devp 

               eload=matmul(devp,bee) 

            bload=bload+eload*det*weights(i) 

       if(tabv(7,i,iel)>=0.99)then 

                tabv(7,i,iel)=0.99; tevp(:,i,iel)=0.0; km=0.0 

                       else 

     tabv(:,i,iel)=abv; tevp(:,i,iel)=evp 

                 evpt(:,i,iel)=evpt(:,i,iel)+evp 

                     end if 

      end do integrating_pts_2 

 bdylds( g ) = bdylds( g )+ bload      ; bdylds(0) = 0 
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end do elements_3; end do; end do 

!----------------- output of all calculated results for post-processing------------------ 

 write(11,99998) key1; write(11,*)ndim,nn,nod,nels,element,nst,nip,t0,e,v 

write(11,99998) key2;  do k=1,nn; write(11,*) k ,g_coord(:,k);end do 

write(11,99998) key3;  do k = 1 , nels; write(11,*) k ,g_num(:,k), key1; end do 

write(11,99998) key4; do k=1,nn; write(11,*) k,loads(nf(:,k)); end do 

write(11,99998) key5; do k=1,nn; write(11,*) k,bdylds(nf(:,k)); end do 

write(11,99998) key7;  do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*) j, tsigma(:,j,i); end do;  end do 

write(11,99998) key8; do i=1,nels; write(11,*) i 

           do j=1,nip; write(11,*)  j, teps(:,j,i); end do; end do 

write(11,99998) key9; do i=1,nels;  write(11,*) i 

           do j=1,nip; write(11,*)  j, evpt(:,j,i);  end do; end do 

write(11,99998) key10;  do i=1,nels; write(11,*) i 

          do j=1,nip; write(11,*)  j, tabv(7,j,i); end do;  end do 

write(11,99998) key11 

end program D3 
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Appendix B: Source Codes of Smith’s Subroutine 

Library for HITSI 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!---------- geotech / software / prog_fe / GEOMETRY.F90 in (Smith and Griffiths, 2005) -------- 

!----------- geotech / software / prog_fe /NEW_LIBR.F90 in (Smith and Griffiths, 2005) -------- 

!---------------- Source codes of Smith’s subroutines that have been used in HITSI ----------------- 

module geometry_lib 

contains 

!----------------Node to freedom number conversion ---------------------------- 

 subroutine num_to_g(num,nf,g) 

 !finds the g vector from num and nf 

 implicit none 

 integer,intent(in)::num(:),nf(:,:)  ; integer,intent(out):: g(:) 

 integer::i,k,nod,nodof ; nod=ubound(num,1) ; nodof=ubound(nf,1) 

  do i = 1 , nod 

      k = i*nodof  ; g(k-nodof+1:k) = nf( : , num(i) ) 

  end do 

 return 

 end subroutine num_to_g 

!----------------------------- Triangles -------------------------------------- 

subroutine geometry_3tx(iel,nxe,aa,bb,coord,num) 

!      this subroutine forms the coordinates and node vector 

!      for a rectangular mesh of uniform 3-node triangles 

!      counting in the x-direction    ; local numbering clockwise 

  implicit none 

 doubleprecision,intent(in):: aa,bb; integer,intent(in):: iel,nxe 

 doubleprecision,intent(out) :: coord(:,:); integer,intent(out):: num(:) 

  integer::ip,iq,jel 

      jel= (2*nxe+iel-1)/(2*nxe) 
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      if(iel/2*2==iel)then; iq=2*jel; else; iq=2*jel-1; end if 

      ip= (iel-2*nxe*(jel-1)+1)/2 

      if(mod(iq,2)/=0) then 

       num(1)=(nxe+1)*(iq-1)/2+ip  ;   num(3)=(nxe+1)*(iq+1)/2+ip 

       num(2)=num(1)+1              ;   coord(1,1)=(ip-1)*aa 

       coord(1,2)=-(iq-1)/2*bb      ;   coord(3,1)=(ip-1)*aa 

       coord(2,2)=coord(1,2)        ;   coord(2,1)=ip*aa 

       coord(3,2)=-(iq+1)/2*bb 

      else 

       num(1)=(nxe+1)*iq/2+ip+1     ;   num(3)=(nxe+1)*(iq-2)/2+ip+1 

       num(2)=num(1)-1               ;   coord(1,1)=ip*aa 

       coord(1,2)=-iq/2*bb           ;   coord(3,1)=ip*aa 

       coord(3,2)=-(iq-2)/2*bb       ;   coord(2,1)=(ip-1)*aa 

       coord(2,2)=coord(1,2) 

      end if 

     return 

   end subroutine geometry_3tx  

 

subroutine geometry_6tx(iel,nxe,aa,bb,coord,num) 

!      this subroutine forms the coordinates and nodal vector 

!      for a rectangular mesh of uniform 6-node triangles 

!      counting in the x-direction ; local numbering clockwise 

  implicit none 

  doubleprecision ,intent(in):: aa,bb; integer,intent(in):: iel,nxe 

  doubleprecision,intent(out) :: coord(:,:); integer,intent(out)::  num(:) 

  integer::ip,iq,jel,i 

      jel= (2*nxe+iel-1)/(2*nxe) 

      if(iel/2*2==iel)then; iq=2*jel; else; iq=2*jel-1; end if 

      ip= (iel-2*nxe*(jel-1)+1)/2 

      if(mod(iq,2)/=0) then 

       num(1)=(iq-1)*(2*nxe+1)+2*ip-1     ;   num(2)=num(1)+1 
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       num(3)=num(1)+2                    ;   num(4)=num(2)+1 

       num(6)=(iq-1)*(2*nxe+1)+2*nxe+2*ip ;   num(5)=(iq+1)*(2*nxe+1)+2*ip-1 

       coord(1,1)=(ip-1)*aa               ;   coord(1,2)=-(iq-1)/2*bb 

       coord(5,1)=(ip-1)*aa               ;   coord(5,2)=-(iq+1)/2*bb 

       coord(3,1)=ip*aa                   ;   coord(3,2)=coord(1,2) 

       else 

       num(1)=iq*(2*nxe+1)+2*ip+1       ; num(6)=(iq-2)*(2*nxe+1)+2*nxe+2*ip+2 

       num(5)=(iq-2)*(2*nxe+1)+2*ip+1    ; num(4)=num(2)-1 

       num(3)=num(1)-2                   ; num(2)=num(1)-1 

       coord(1,1)=ip*aa                  ; coord(1,2)=-iq/2*bb 

       coord(5,1)=ip*aa                  ; coord(5,2)=-(iq-2)/2*bb 

       coord(3,1)=(ip-1)*aa              ; coord(3,2)=coord(1,2) 

      end if 

      do  i=1,2 

      coord(2,i)=.5*(coord(1,i)+coord(3,i)) 

      coord(4,i)=.5*(coord(3,i)+coord(5,i)) 

      coord(6,i)=.5*(coord(5,i)+coord(1,i)) 

      end do 

      return 

   end subroutine geometry_6tx 

 

  subroutine geometry_15tyv(iel,nye,width,depth,coord,num) 

!      this subroutine forms the coordinates and node vector 

!      for a rectangular mesh of nonuniform 15-node triangles 

!      counting in the y-direction ; local numbering clockwise 

 implicit none 

 doubleprecision,intent(in) :: width(:),depth(:)  

 doubleprecision,intent(out) :: coord(:,:) 

 integer, intent(in) ::  iel,nye; integer,intent(out)::num(:) 

 integer::ip,iq,jel,i , fac1,fac2 

   jel = (iel - 1)/nye; ip= jel+1; iq=iel-nye*jel 
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    if(mod(iq,2)/=0) then 

      fac1=4*(2*nye+1)*(ip-1)+2*iq-1 ; num(1)=fac1;  num(12)=fac1+1 

      num(11)=fac1+2 ;  num(10)=fac1+3 ; num(9)=fac1+4 ; num(8)=fac1+2*nye+4 

      num(7)=fac1+4*nye+4 ;  num(6)=fac1+6*nye+4 ;  num(5)=fac1+8*nye+4 

      num(4)=fac1+6*nye+3 ;  num(3)=fac1+4*nye+2 ;  num(2)=fac1+2*nye+1 

      num(13)=fac1+2*nye+2 ;  num(15)=fac1+2*nye+3  ;  num(14)=fac1+4*nye+3 

      coord(1,1)=width(ip) ;  coord(1,2)=depth((iq+1)/2) 

      coord(9,1)=width(ip)   ;  coord(9,2)=depth((iq+3)/2) 

      coord(5,1)=width(ip+1)   ;  coord(5,2)=depth((iq+1)/2) 

    else 

      fac2=4*(2*nye+1)*(ip-1)+2*iq+8*nye+5 ;  num(1)=fac2 ;  num(12)=fac2-1 

      num(11)=fac2-2 ;  num(10)=fac2-3 ;  num(9)=fac2-4; num(8)=fac2-2*nye-4 

      num(7)=fac2-4*nye-4 ; num(6)=fac2-6*nye-4  ;  num(5)=fac2-8*nye-4 

      num(4)=fac2-6*nye-3 ; num(3)=fac2-4*nye-2 ; num(2)=fac2-2*nye-1 

      num(13)=fac2-2*nye-2  ; num(15)=fac2-2*nye-3 ; num(14)=fac2-4*nye-3 

      coord(1,1)=width(ip+1) ;  coord(1,2)=depth((iq+2)/2) 

      coord(9,1)=width(ip+1) ;  coord(9,2)=depth(iq/2) 

      coord(5,1)=width(ip)   ;   coord(5,2)=depth((iq+2)/2) 

    end if 

    do  i=1,2 

      coord(3,i)=.5*(coord(1,i)+coord(5,i)) 

      coord(7,i)=.5*(coord(5,i)+coord(9,i)) 

      coord(11,i)=.5*(coord(9,i)+coord(1,i)) 

      coord(2,i)=.5*(coord(1,i)+coord(3,i)) 

      coord(4,i)=.5*(coord(3,i)+coord(5,i)) 

      coord(6,i)=.5*(coord(5,i)+coord(7,i)) 

      coord(8,i)=.5*(coord(7,i)+coord(9,i)) 

      coord(10,i)=.5*(coord(9,i)+coord(11,i)) 

      coord(12,i)=.5*(coord(11,i)+coord(1,i)) 

      coord(15,i)=.5*(coord(7,i)+coord(11,i)) 

      coord(14,i)=.5*(coord(3,i)+coord(7,i)) 
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      coord(13,i)=.5*(coord(2,i)+coord(15,i)) 

    end do 

  return 

 end subroutine geometry_15tyv 

!---------------------- Quadrilaterals ---------------------------------------- 

subroutine geometry_4qx(iel,nxe,aa,bb,coord,num) 

! coordinates and nodal vectors for equal four node quad 

! elements, numbering in x 

implicit none 

integer,intent(in)::iel,nxe; doubleprecision,intent(in)::aa,bb 

doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

integer :: ip,iq    ; iq=(iel-1)/nxe+1; ip=iel-(iq-1)*nxe 

   num=(/iq*(nxe+1)+ip,(iq-1)*(nxe+1)+ip,   & 

         (iq-1)*(nxe+1)+ip+1, iq*(nxe+1)+ip+1/) 

   coord(1:2,1)=(ip-1)*aa; coord(3:4,1)=ip*aa 

   coord(1:4:3,2)=-iq*bb; coord(2:3,2)=-(iq-1)*bb 

 return 

end subroutine geometry_4qx 

 

   subroutine geometry_4qy(iel,nye,aa,bb,coord,num) 

   ! rectangles of equal 4-node quads numbered in y 

   implicit none 

   integer,intent(in)::iel,nye; doubleprecision,intent(in)::aa,bb 

   doubleprecision,intent(out)::coord(:,:);integer,intent(out)::num(:) 

       num=(/iel+(iel-1)/nye+1,iel+(iel-1)/nye,iel+(iel-1)/nye+nye+1,  & 

             iel+(iel-1)/nye+nye+2/) 

       coord(1:2,1)= aa*((iel-1)/nye); coord(3:4,1)=aa*((iel-1)/nye+1) 

       coord(1:4:3,2)=-(iel-((iel-1)/nye)*nye)*bb; coord(2:3,2)=coord(1,2)+bb 

     return 

   end subroutine geometry_4qy 
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subroutine geometry_4qyv(iel,nye,width,depth,coord,num) 

!  coordinates and steering vector for a variable rectangular 

!  mesh of 4-node quad elements numbering in the y-direction 

  implicit none 

  doubleprecision,intent(in)::width(:),depth(:); integer,intent(in)::iel,nye 

  doubleprecision,intent(out)::coord(:,:); integer,intent(out):: num(:) 

  integer:: ip,iq; ip=(iel-1)/nye+1; iq=iel-(ip-1)*nye 

  num(1)=(ip-1)*(nye+1)+iq+1; num(2)=num(1)-1 

  num(3)=ip*(nye+1)+iq;num(4)= num(3) + 1 

  coord(1:2,1)=width(ip); coord(3:4,1)=width(ip+1) 

  coord(1,2)=depth(iq+1); coord(2:3,2)=depth(iq); coord(4,2)=coord(1,2) 

 return 

end subroutine geometry_4qyv 

subroutine geometry_8qx(iel,nxe,aa,bb,coord,num) 

! coordinates and steering vector for a rectangular mesh of 

! equal  8-node  elements  numbering in x 

implicit none 

 doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

 integer,intent(in)::iel,nxe; doubleprecision,intent(in)::aa,bb 

 integer:: ip,iq ; iq=(iel-1)/nxe+1; ip=iel-(iq-1)*nxe 

 num(1)=iq*(3*nxe+2)+2*ip-1; num(2)=iq*(3*nxe+2)+ip-nxe-1 

 num(3)=(iq-1)*(3*nxe+2)+2*ip-1; num(4)=num(3)+1 

 num(5)=num(4)+1; num(6)=num(2)+1; num(7)=num(1)+2; num(8)=num(1)+1 

 coord(1:3,1)=aa*(ip-1); coord(5:7,1)=aa*ip 

 coord(4,1)=.5*(coord(3,1)+coord(5,1)) 

 coord(8,1)=.5*(coord(7,1)+coord(1,1)) 

 coord(1,2)=-bb*iq; coord(7:8,2)=-bb*iq 

 coord(3:5,2)=-bb*(iq-1); coord(2,2)=.5*(coord(1,2)+coord(3,2)) 

 coord(6,2)=.5*(coord(5,2)+coord(7,2)) 

return 

end subroutine geometry_8qx 
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subroutine geometry_8qy(iel,nye,aa,bb,coord,num) 

!  coordinates and steering vector for a constant rectangular 

!  mesh of 8-node quad elements numbering in the y-direction 

  implicit none 

  doubleprecision,intent(in):: aa,bb ; integer,intent(in):: iel,nye 

  doubleprecision,intent(out)::coord(:,:); integer,intent(out):: num(:) 

  integer:: ip,iq; ip=(iel-1)/nye+1; iq=iel-(ip-1)*nye 

  num(1)=(ip-1)*(3*nye+2)+2*iq+1; num(2)=num(1)-1; num(3)=num(1)-2 

  num(4)=(ip-1)*(3*nye+2)+2*nye+iq+1;num(5)=ip*(3*nye+2)+2*iq-1 

  num(6)=num(5)+1; num(7)=num(5)+2; num(8)=num(4)+1 

  coord(1:3,1)=(ip-1)*aa; coord(5:7,1)=ip*aa 

  coord(4,1)=.5*(coord(3,1)+coord(5,1)) 

  coord(8,1)=.5*(coord(7,1)+coord(1,1)) 

  coord(1,2)=-iq*bb; coord(7:8,2)=-iq*bb; coord(3:5,2)=-(iq-1)*bb 

  coord(2,2)=.5*(coord(1,2)+coord(3,2)) 

  coord(6,2)=.5*(coord(5,2)+coord(7,2)) 

 return 

end subroutine geometry_8qy 

 

subroutine geometry_8qxv(iel,nxe,width,depth,coord,num) 

! nodal coordinates and node vector for a variable mesh of 

! 8-node quadrilaterals numbering in the x-direction 

implicit none 

  integer,intent(in)::iel,nxe; doubleprecision,intent(in)::width(:),depth(:) 

  doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

  integer::ip,iq; iq=(iel-1)/nxe+1; ip=iel-(iq-1)*nxe 

  num(1)=iq*(3*nxe+2)+2*ip-1; num(2)=iq*(3*nxe+2)+ip-nxe-1 

  num(3)=(iq-1)*(3*nxe+2)+2*ip-1; num(4)=num(3)+1;num(5)=num(4)+1 

  num(6)=num(2)+1; num(7)=num(1)+2; num(8)=num(1)+1 

  coord(1:3,1)=width(ip); coord(5:7,1)=width(ip+1) 
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  coord(4,1)=.5*(coord(3,1)+coord(5,1));coord(8,1)=.5*(coord(7,1)+coord(1,1)) 

  coord(1,2)=depth(iq+1); coord(7:8,2)=depth(iq+1); coord(3:5,2)=depth(iq) 

  coord(2,2)=.5*(coord(1,2)+coord(3,2));coord(6,2)=.5*(coord(5,2)+coord(7,2)) 

 return 

end subroutine geometry_8qxv 

 

subroutine geometry_8qyv(iel,nye,width,depth,coord,num) 

!  coordinates and steering vector for a variable rectangular 

!  mesh of 8-node quad elements numbering in the y-direction 

  implicit none 

  doubleprecision,intent(in)::width(:),depth(:); integer,intent(in)::iel,nye 

  doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

  integer::ip,iq; ip=(iel-1)/nye+1; iq=iel-(ip-1)*nye 

  num(1)=(ip-1)*(3*nye+2)+2*iq+1; num(2)=num(1)-1; num(3)=num(1)-2 

  num(4)=(ip-1)*(3*nye+2)+2*nye+iq+1;num(5)=ip*(3*nye+2)+2*iq-1 

  num(6)=num(5)+1; num(7)=num(5)+2; num(8)=num(4)+1 

  coord(1:3,1)=width(ip); coord(5:7,1)=width(ip+1) 

  coord(4,1)=.5*(coord(3,1)+coord(5,1)) 

  coord(8,1)=.5*(coord(7,1)+coord(1,1)) 

  coord(1,2)=depth(iq+1); coord(7:8,2)=depth(iq+1); coord(3:5,2)=depth(iq) 

  coord(2,2)=.5*(coord(1,2)+coord(3,2)) 

  coord(6,2)=.5*(coord(5,2)+coord(7,2)) 

 return 

end subroutine geometry_8qyv 

 

 subroutine geometry_9qx(iel,nxe,aa,bb,coord,num) 

!      this subroutine forms the coordinates and steering vector 

!      for equal 9-node Lagrangian quads counting in x-direction 

 implicit none 

 doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

 integer,intent(in)::iel,nxe; doubleprecision,intent(in)::aa,bb 
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 integer:: ip,iq ;iq=(iel-1)/nxe+1;ip=iel-(iq-1)*nxe 

   num(1)=iq*(4*nxe+2)+2*ip-1 ; num(2)=iq*(4*nxe+2)+2*ip-nxe-4 

   num(3)= (iq-1)*(4*nxe+2)+2*ip-1 ;   num(4)=num(3)+1 

   num(5)=num(4)+1; num(6)=num(2)+2 ;  num(7)=num(1)+2 

   num(8)=num(1)+1      ;   num(9)=num(2)+1 

   coord(1,1)=(ip-1)*aa  ;  coord(3,1)=(ip-1)*aa   ; coord(5,1)=ip*aa 

   coord(7,1)=ip*aa ;   coord(1,2)=-iq*bb ;  coord(3,2)=-(iq-1)*bb 

   coord(5,2)=-(iq-1)*bb    ;  coord(7,2)=-iq*bb 

   coord(2,1)=.5*(coord(1,1)+coord(3,1)); coord(2,2)=.5*(coord(1,2)+coord(3,2)) 

   coord(4,1)=.5*(coord(3,1)+coord(5,1)); coord(4,2)=.5*(coord(3,2)+coord(5,2)) 

   coord(6,1)=.5*(coord(5,1)+coord(7,1)); coord(6,2)=.5*(coord(5,2)+coord(7,2)) 

   coord(8,1)=.5*(coord(1,1)+coord(7,1)); coord(8,2)=.5*(coord(1,2)+coord(7,2)) 

   coord(9,1)=.5*(coord(2,1)+coord(6,1)); coord(9,2)=.5*(coord(4,2)+coord(8,2)) 

  return 

 end subroutine geometry_9qx 

!-----------------------Hexahedra "Bricks" ------------------------------------ 

 subroutine geometry_8bxz(iel,nxe,nze,aa,bb,cc,coord,num) 

!      this subroutine forms the coordinates and nodal vector 

!      for boxes of 8-node brick elements counting x-z planes in y-direction 

 implicit none 

   integer,intent(in)::iel,nxe,nze;integer,intent(out)::num(:) 

   doubleprecision,intent(in)::aa,bb,cc; doubleprecision,intent(out)::coord(:,:) 

   integer::ip,iq,is,iplane 

   iq=(iel-1)/(nxe*nze)+1 ; iplane = iel -(iq-1)*nxe*nze 

   is=(iplane-1)/nxe+1; ip = iplane-(is-1)*nxe 

   num(1)=(iq-1)*(nxe+1)*(nze+1)+is*(nxe+1)+ip ;  num(2)=num(1)-nxe-1 

   num(3)=num(2)+1 ;   num(4)=num(1)+1 ; num(5)=num(1)+(nxe+1)*(nze+1) 

   num(6)=num(5)-nxe-1 ;   num(7)=num(6)+1    ;   num(8)=num(5)+1 

   coord(1,1)=(ip-1)*aa ; coord(2,1)=(ip-1)*aa ;  coord(5,1)=(ip-1)*aa 

   coord(6,1)=(ip-1)*aa ; coord(3,1)=ip*aa ;   coord(4,1)=ip*aa 

   coord(7,1)=ip*aa   ;   coord(8,1)=ip*aa 
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   coord(1,2)=(iq-1)*bb  ;   coord(2,2)=(iq-1)*bb ; coord(3,2)=(iq-1)*bb 

   coord(4,2)=(iq-1)*bb  ;   coord(5,2)=iq*bb  ;    coord(6,2)=iq*bb 

   coord(7,2)=iq*bb ;    coord(8,2)=iq*bb ;   coord(1,3)=-is*cc 

   coord(4,3)=-is*cc  ;   coord(5,3)=-is*cc ;   coord(8,3)=-is*cc 

   coord(2,3)=-(is-1)*cc ; coord(3,3)=-(is-1)*cc  ;  coord(6,3)=-(is-1)*cc 

   coord(7,3)=-(is-1)*cc 

  return 

 end subroutine geometry_8bxz 

 

subroutine geometry_20bxz(iel,nxe,nze,aa,bb,cc,coord,num) 

! nodal vector and nodal coordinates for boxes of 20-node 

! bricks counting x-z planes in the y-direction 

implicit none 

  integer,intent(in)::iel,nxe,nze; doubleprecision,intent(in)::aa,bb,cc 

  doubleprecision,intent(out)::coord(:,:); integer,intent(out)::num(:) 

  integer::fac1,fac2,ip,iq,is,iplane 

  iq = (iel-1)/(nxe*nze)+1; iplane = iel-(iq-1)*nxe*nze 

  is = (iplane-1)/nxe+1 ; ip = iplane-(is-1)*nxe 

  fac1=((2*nxe+1)*(nze+1)+(2*nze+1)*(nxe+1))*(iq-1) 

  fac2=((2*nxe+1)*(nze+1)+(2*nze+1)*(nxe+1))*iq 

  num(1)=fac1+(3*nxe+2)*is+2*ip-1 

  num(2)=fac1+(3*nxe+2)*is-nxe+ip-1; num(3)=num(1)-3*nxe-2 

  num(4)=num(3)+1; num(5)=num(4)+1; num(6)=num(2)+1 

  num(7)=num(1)+2; num(8)=num(1)+1 

  num(9)=fac2-(nxe+1)*(nze+1)+(nxe+1)*is+ip 

  num(10)=num(9)-nxe-1; num(11)=num(10)+1; num(12)=num(9)+1 

  num(13)=fac2+(3*nxe+2)*is+2*ip-1 

  num(14)=fac2+(3*nxe+2)*is-nxe+ip-1 

  num(15)=num(13)-3*nxe-2; num(16)=num(15)+1; num(17)=num(16)+1 

  num(18)=num(14)+1; num(19)=num(13)+2; num(20)=num(13)+1 

  coord(1:3,1)=(ip-1)*aa; coord(9:10,1)=(ip-1)*aa; coord(13:15,1)=(ip-1)*aa 
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  coord(5:7,1)=ip*aa; coord(11:12,1)=ip*aa; coord(17:19,1)=ip*aa 

  coord(4,1)=.5*(coord(3,1)+coord(5,1));coord(8,1)=.5*(coord(1,1)+coord(7,1)) 

  coord(16,1)=.5*(coord(15,1)+coord(17,1)) 

  coord(20,1)=.5*(coord(13,1)+coord(19,1)) 

  coord(1:8,2)=(iq-1)*bb; coord(13:20,2)=iq*bb 

  coord(9,2)=.5*(coord(1,2)+coord(13,2)) 

  coord(10,2)=.5*(coord(3,2)+coord(15,2)) 

  coord(11,2)=.5*(coord(5,2)+coord(17,2)) 

  coord(12,2)=.5*(coord(7,2)+coord(19,2)) 

  coord(1,3)=-is*cc; coord(7:9,3)=-is*cc; coord(12:13,3)=-is*cc 

  coord(19:20,3)=-is*cc; coord(3:5,3)=-(is-1)*cc 

  coord(10:11,3)=-(is-1)*cc; coord(15:17,3)=-(is-1)*cc 

  coord(2,3)=.5*(coord(1,3)+coord(3,3)) 

  coord(6,3)=.5*(coord(5,3)+coord(7,3)) 

  coord(14,3)=.5*(coord(13,3)+coord(15,3)) 

  coord(18,3)=.5*(coord(17,3)+coord(19,3)) 

 return 

end subroutine geometry_20bxz 

end module geometry_lib 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

module new_library 

contains 

subroutine sparin_gauss(kv,kdiag) 

! Gaussian factorisation of a skyline matrix 

implicit none 

doubleprecision,intent(out)::kv(:) ; integer,intent(in)::kdiag(:) 

doubleprecision::num,den,fac; integer::n,ii,i,j,k,l,kk,l1,l2,l3; n = ubound(kdiag,1) 

 do j = 1 , n-1 

    den = kv(kdiag(j)) 

    ii = 0 

    do i = j+1 , n 
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    ii = ii + 1 ;   l = kdiag(i) - ii 

     if(l-kdiag(i-1)>.0) then 

       num = kv(l)   ; fac = num/den ; kk = -1 

       do k = i , n 

          kk = kk + 1; l1=kdiag(i+kk)-kk;  l2=l1-ii; l3=kdiag(i+kk-1) 

          if(l2-l3>.0) then 

             kv(l1) = kv(l1) - fac*kv(l2) 

          end if 

       end do 

     end if 

    end do 

 end do 

 return 

end subroutine sparin_gauss 

 

subroutine spabac_gauss(kv,loads,kdiag) 

! Gaussian back-substitution on a skyline matrix 

implicit none 

doubleprecision,intent(in)::kv(:);doubleprecision,intent(inout)::loads(0:) 

integer,intent(in)::kdiag(:) 

doubleprecision::num,den,fac,asum;integer::i,j,l,n,ii,jj,l1,l2; n=ubound(kdiag,1) 

 do j = 1 , n-1 

    den = kv(kdiag(j))  ;  ii = 0 

    do i = j+1 , n 

       ii = ii + 1      ; l = kdiag(i) - ii 

       if(l-kdiag(i-1)>.0) then 

          num = kv(l)   ; fac = num/den  ; loads(i)=loads(i)-fac*loads(j) 

       end if 

    end do 

 end do 

 loads(n) = loads(n)/kv(kdiag(n)) 
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 do i = n-1 , 1 , -1 

    jj = 0     ;  asum = .0 

    do j = i+1 , n 

       jj = jj + 1 ; l1 = kdiag(i+jj)-jj ;  l2 = kdiag(i+jj-1) 

       if(l1-l2>.0) then 

          asum = asum + kv(l1) * loads(j) 

       end if 

    end do 

    loads(i) = (loads(i) - asum)/kv(kdiag(i)) 

 end do 

 return 

end subroutine spabac_gauss 

 

subroutine bandred(a,d,e,e2) 

!      this subroutine transforms a real symmetric band matrix a, 

!      of order n and band width iw,to tridiagonal form by an appropriate 

!      sequence of jacobi rotations. during the transformation the 

!      property of the band matrix is maintained. the method yields 

!      a tridiagonal matrix, the diagonal elements of which are in 

!      d(n) and off-diagonal elements in e(n). 

implicit none 

doubleprecision,intent(in out)::a(:,:) 

doubleprecision,intent(out)::d(0:),e(0:),e2(0:) 

      integer::  iw, n2, n, k, maxr, irr, ir, kr, j, jm, iugl, j2,          & 

                 l, jl, maxl, i 

      doubleprecision ::    g, b, s, c, c2, s2, cs, u, u1 

       n=ubound(a,1) ; iw = ubound(a,2)-1 

      n2 = n - 2 

      if (n2>=1) then 

      do 160 k=1,n2 

         maxr = iw      ;     if (n-k<iw) maxr = n - k 
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         do 140 irr=2,maxr 

            ir = 2 + maxr - irr  ;     kr = k + ir 

            do 120 j=kr,n,iw 

               if (j==kr) go to 20  ;  if (g==0.0) go to 140 

               jm = j - iw   ; b = -a(jm-1,iw+1)/g   ; iugl = j - iw 

               go to 40 

       20      if (a(k,ir+1)==0.0) go to 140 

               b = -a(k,ir)/a(k,ir+1) ;  iugl = k 

       40      s = 1.0/sqrt(1.0+b*b);  c = b*s; c2 = c*c ;s2 = s*s  ; cs = c*s 

               u = c2*a(j-1,1) - 2.0*cs*a(j-1,2) + s2*a(j,1) 

               u1 = s2*a(j-1,1) + 2.0*cs*a(j-1,2) + c2*a(j,1) 

               a(j-1,2) = cs*(a(j-1,1)-a(j,1)) + (c2-s2)*a(j-1,2) 

               a(j-1,1) = u        ;   a(j,1) = u1 ;     j2 = j - 2 

               do  l=iugl,j2 

                  jl = j - l      ;   u = c*a(l,jl) - s*a(l,jl+1) 

                  a(l,jl+1) = s*a(l,jl) + c*a(l,jl+1) ;   a(l,jl) = u 

               end do 

               jm = j - iw 

               if (j/=kr) a(jm-1,iw+1) = c*a(jm-1,iw+1) - s*g 

               maxl = iw - 1     ; if (n-j<iw-1) maxl = n - j 

               if (maxl>0) then 

                do  l=1,maxl 

                  u = c*a(j-1,l+2) - s*a(j,l+1) 

                  a(j,l+1) = s*a(j-1,l+2) + c*a(j,l+1) ;  a(j-1,l+2) = u 

                end do 

               end if 

            if (j+iw>n) go to 120 

               g = -s*a(j,iw+1)   ;   a(j,iw+1) = c*a(j,iw+1) 

     120    continue 

     140    continue 

     160 continue 
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   end if 

    e(1) = 0.0 

      d(1:n) = a(1:n,1)  ;   if (2>n) go to 240 

      do  i=2,n    ;    e(i) = a(i-1,2)  ;   end do 

    240  e2 = e*e 

   return 

 end subroutine bandred 

 

   subroutine formnf(nf) 

   ! reform nf 

   implicit none 

   integer,intent(in out)::nf(:,:) 

    integer:: i,j,m 

    m=0 

    do j=1,ubound(nf,2) 

       do i=1,ubound(nf,1) 

          if(nf(i,j)/=0) then 

             m=m+1; nf(i,j)=m 

          end if 

       end do 

    end do 

    return 

  end subroutine formnf 

 

  subroutine invert(matrix) 

  ! invert a small square matrix onto itself 

  implicit none 

  doubleprecision,intent(in out)::matrix(:,:) 

  integer::i,k,n; doubleprecision::con  ; n= ubound(matrix,1) 

  do k=1,n 

     con=matrix(k,k); matrix(k,k)=1. 
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     matrix(k,:)=matrix(k,:)/con 

     do i=1,n 

        if(i/=k) then 

           con=matrix(i,k); matrix(i,k)=0.0 

           matrix(i,:)=matrix(i,:) - matrix(k,:)*con 

        end if 

     end do 

  end do 

  return 

 end subroutine invert 

 

 function determinant (jac) result(det) 

 ! returns the determinant of a 1x1 2x2 3x3 jacobian matrix 

 implicit none    ; doubleprecision :: det 

 doubleprecision,intent(in)::jac(:,:); integer:: it ; it = ubound(jac,1) 

 select case (it) 

   case (1) 

    det=1.0 

   case (2) 

    det=jac(1,1)*jac(2,2) - jac(1,2) * jac(2,1) 

   case (3) 

    det= jac(1,1)*(jac(2,2) * jac(3,3) -jac(3,2) * jac(2,3)) 

    det= det-jac(1,2)*(jac(2,1)*jac(3,3)-jac(3,1)*jac(2,3)) 

    det= det+jac(1,3)*(jac(2,1)*jac(3,2)-jac(3,1)*jac(2,2)) 

   case default 

    print*,' wrong dimension for jacobian matrix' 

 end select 

 return 

 end function determinant 

 

 subroutine deemat(dee,e,v) 
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 ! returns the elastic dee matrix for given ih 

 ! ih=3,plane strain; =4,axisymmetry or plane strain elastoplasticity 

 ! =6 , three dimensional 

 implicit none 

   doubleprecision,intent(in)::e,v; doubleprecision,intent(out)::dee(:,:) 

 ! local variables 

   doubleprecision::v1,v2,c,vv; integer :: i,ih;  dee=0.0  ; ih = ubound(dee,1) 

         v1 = 1. - v; c = e/((1.+v)*(1.-2.*v)) 

   select case (ih) 

          case(3) 

             dee(1,1)=v1*c; dee(2,2)=v1*c; dee(1,2)=v*c; dee(2,1)=v*c 

             dee(3,3)=.5*c*(1.-2.*v) 

          case(4) 

             dee(1,1)=v1*c; dee(2,2)=v1*c; dee(4,4)=v1*c 

             dee(3,3)=.5*c*(1.-2.*v) ; dee(1,2)=v*c; dee(2,1)=v*c 

             dee(1,4)=v*c; dee(4,1)=v*c; dee(2,4)=v*c; dee(4,2)=v*c 

          case(6) 

             v2=v/(1.-v); vv=(1.-2.*v)/(1.-v)*.5 

             do i=1,3; dee(i,i)=1.;end do; do i=4,6; dee(i,i)=vv; end do 

             dee(1,2)=v2; dee(2,1)=v2; dee(1,3)=v2; dee(3,1)=v2 

             dee(2,3)=v2; dee(3,2)=v2 

             dee = dee*e/(2.*(1.+v)*vv) 

          case default 

             print*,'wrong size for dee matrix' 

   end select 

 return 

 end subroutine deemat 

 

 subroutine beemat(bee,deriv) 

 ! bee matrix for 2-d elasticity or elastoplasticity (ih=3 or 4 respectively) 

 ! or for 3-d (ih = 6) 
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 implicit none 

 doubleprecision,intent(in)::deriv(:,:);  doubleprecision,intent(out)::bee(:,:) 

 ! local variables 

 integer::k,l,m,n , ih,nod; doubleprecision::x,y,z 

 bee=0. ; ih = ubound(bee,1); nod = ubound(deriv,2) 

     select case (ih) 

       case(3,4) 

        do m=1,nod 

           k=2*m; l=k-1; x=deriv(1,m); y=deriv(2,m) 

           bee(1,l)=x; bee(3,k)=x; bee(2,k)=y; bee(3,l)=y 

        end do 

       case(6) 

        do m=1,nod 

           n=3*m;  k=n-1; l=k-1 

           x=deriv(1,m); y=deriv(2,m); z=deriv(3,m) 

           bee(1,l)=x; bee(4,k)=x; bee(6,n)=x 

           bee(2,k)=y; bee(4,l)=y; bee(5,n)=y 

           bee(3,n)=z; bee(5,k)=z; bee(6,l)=z 

        end do 

       case default 

        print*,'wrong dimension for nst in bee matrix' 

      end select 

  return 

 end subroutine beemat 

 

 subroutine bmataxi(bee,radius,coord,deriv,fun) 

 ! b matrix for axisymmetry 

doubleprecision,intent(in)::deriv(:,:),fun(:),coord(:,:) 

doubleprecision,intent(out)::bee(:,:),radius 

 integer::nod ,k,l,m; doubleprecision :: x,y 

  radius = sum(fun * coord(:,1))  ; nod = ubound(deriv , 2) ; bee = .0 
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  do m = 1 , nod 

   k=2*m; l = k-1 ; x = deriv(1,m); bee(1,l) = x; bee(3 , k) = x 

   y = deriv(2,m); bee(2,k)=y; bee(3,l) = y; bee(4,l)=fun(m)/radius 

  end do 

  return 

 end subroutine bmataxi 

 

 subroutine sample(element,s,wt) 

 ! returns the local coordinates of the integrating points 

 implicit none 

  doubleprecision,intent(out)::s(:,:),wt(:)  ; character(*),intent(in):: element 

  integer::nip ;  doubleprecision:: root3, r15 , w(3),v(9),b,c 

  root3 = 1./sqrt(3.)   ;  r15 = .2*sqrt(15.) 

  nip = ubound( s , 1 ) 

         w = (/5./9.,8./9.,5./9./); v=(/5./9.*w,8./9.*w,5./9.*w/) 

     select case (element) 

            case('line') 

             select case(nip) 

              case(1) 

               s(1,1)=0.  ;  wt(1)=2. 

              case(2) 

               s(1,1)=root3  ; s(2,1)=-s(1,1)  ;  wt(1)=1.  ; wt(2)=1. 

              case(3) 

               s(1,1)=r15 ; s(2,1)=.0     ; s(3,1)=-s(1,1) 

               wt = w 

              case(4) 

               s(1,1)=.861136311594053  ; s(2,1)=.339981043584856 

               s(3,1)=-s(2,1)  ; s(4,1)=-s(1,1) 

               wt(1)=.347854845137454 ; wt(2)=.652145154862546 

               wt(3)=wt(2) ; wt(4)=wt(1) 

              case(5) 
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               s(1,1)=.906179845938664 ; s(2,1)=.538469310105683 

               s(3,1)=.0 ; s(4,1)=-s(2,1) ; s(5,1)=-s(1,1) 

               wt(1)=.236926885056189 ; wt(2)=.478628670499366 

               wt(3)=.568888888888889 ; wt(4)=wt(2) ; wt(5)=wt(1) 

              case(6) 

               s(1,1)=.932469514203152 ; s(2,1)=.661209386466265 

               s(3,1)=.238619186083197 

               s(4,1)=-s(3,1) ; s(5,1)=-s(2,1) ; s(6,1)=-s(1,1) 

               wt(1)=.171324492379170 ; wt(2)=.360761573048139 

               wt(3)=.467913934572691 

               wt(4)=wt(3); wt(5)=wt(2) ; wt(6)=wt(1) 

                    case default 

                     print*,"wrong number of integrating points for a line" 

             end select 

            case('triangle') 

             select case(nip) 

              case(1)   ! for triangles weights multiplied by .5 

                s(1,1)=1./3.  ; s(1,2)=1./3.  ;  wt(1)= .5 

              case(3) 

               s(1,1)=.5 ;  s(1,2)=.5 ;  s(2,1)=.5 

               s(2,2)=0.;  s(3,1)=0.  ;  s(3,2)=.5 

               wt(1)=1./3.  ;  wt(2)=wt(1) ; wt(3)=wt(1)   ; wt = .5*wt 

              case(6) 

 s(1,1)=.816847572980459  ; s(1,2)=.091576213509771 

 s(2,1)=s(1,2);  s(2,2)=s(1,1) ;  s(3,1)=s(1,2); s(3,2)=s(1,2) 

 s(4,1)=.108103018168070 ;  s(4,2)=.445948490915965 

 s(5,1)=s(4,2) ;   s(5,2)=s(4,1) ;  s(6,1)=s(4,2)  ; s(6,2)=s(4,2) 

 wt(1)=.109951743655322 ;   wt(2)=wt(1)  ;   wt(3)=wt(1) 

 wt(4)=.223381589678011 ;   wt(5)=wt(4)  ;   wt(6)=wt(4)    ; wt = .5*wt 

              case(7) 

 s(1,1)=1./3. ; s(1,2)=1./3.;s(2,1)=.797426985353087 ;s(2,2)=.101286507323456 



256 
 

 s(3,1)=s(2,2) ;  s(3,2)=s(2,1) ; s(4,1)=s(2,2) ;  s(4,2)=s(2,2) 

 s(5,1)=.470142064105115 ;   s(5,2)=.059715871789770 

 s(6,1)=s(5,2) ; s(6,2)=s(5,1);  s(7,1)=s(5,1);  s(7,2)=s(5,1) 

 wt(1)=.225 ; wt(2)=.125939180544827 ;  wt(3)=wt(2);  wt(4)=wt(2) 

 wt(5)=.132394152788506;  wt(6)=wt(5)      ;  wt(7)=wt(5)     ;wt = .5*wt 

              case(12) 

 s(1,1)=.873821971016996 ; s(1,2)=.063089014491502 

 s(2,1)=s(1,2) ;  s(2,2)=s(1,1);  s(3,1)=s(1,2) ;  s(3,2)=s(1,2) 

 s(4,1)=.501426509658179 ;  s(4,2)=.249286745170910 

 s(5,1)=s(4,2); s(5,2)=s(4,1)   ;  s(6,1)=s(4,2) ;  s(6,2)=s(4,2) 

 s(7,1)=.636502499121399 ;      s(7,2)=.310352451033785 

 s(8,1)=s(7,1) ;  s(8,2)=.053145049844816 ;  s(9,1)=s(7,2) ; s(9,2)=s(7,1) 

 s(10,1)=s(7,2) ; s(10,2)=s(8,2) ; s(11,1)=s(8,2);   s(11,2)=s(7,1) 

 s(12,1)=s(8,2) ;  s(12,2)=s(7,2) 

 wt(1)=.050844906370207 ; wt(2)=wt(1); wt(3)=wt(1) 

 wt(4)=.116786275726379 ; wt(5)=wt(4); wt(6)=wt(4) 

 wt(7)=.082851075618374 ; wt(8:12)=wt(7)           ; wt = .5*wt 

              case(16) 

 s(1,1)=1./3. ;  s(1,2)=1./3.  ;  s(2,1)=.658861384496478 

 s(2,2)=.170569307751761 ; s(3,1)=s(2,2)   ;  s(3,2)=s(2,1) 

 s(4,1)=s(2,2)  ; s(4,2)=s(2,2) 

 s(5,1)=.898905543365938 ; s(5,2)=.050547228317031 

 s(6,1)=s(5,2);  s(6,2)=s(5,1) ; s(7,1)=s(5,2)  ;  s(7,2)=s(5,2) 

 s(8,1)=.081414823414554; s(8,2)=.459292588292723 

 s(9,1)=s(8,2)  ;  s(9,2)=s(8,1);  s(10,1)=s(8,2) ;  s(10,2)=s(8,2) 

 s(11,1)=.008394777409958; s(11,2)=.263112829634638 

 s(12,1)=s(11,1)    ;  s(12,2)=.728492392955404 

 s(13,1)=s(11,2) ;   s(13,2)=s(11,1)  ;  s(14,1)=s(11,2); s(14,2)=s(12,2) 

 s(15,1)=s(12,2) ;  s(15,2)=s(11,1) ;  s(16,1)=s(12,2) ;  s(16,2)=s(11,2) 

 wt(1)=.144315607677787 ; wt(2)=.103217370534718 ; wt(3)=wt(2); wt(4)=wt(2) 

 wt(5)=.032458497623198 ; wt(6)=wt(5)   ;  wt(7)=wt(5) 
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 wt(8)=.095091634267284 ; wt(9)=wt(8)   ;  wt(10)=wt(8) 

 wt(11)=.027230314174435 ; wt(12:16) = wt(11)  ;     wt = .5*wt 

              case default 

                  print*,"wrong number of integrating points for a triangle" 

             end select 

            case ('quadrilateral') 

             select case (nip) 

              case(1) 

                s(1,1) = .0 ; wt(1) = 4. 

              case(4) 

                s(1,1)=-root3; s(1,2)= root3 

                s(2,1)= root3; s(2,2)= root3 

                s(3,1)=-root3; s(3,2)=-root3 

                s(4,1)= root3; s(4,2)=-root3 

                wt = 1.0 

              case(9) 

                s(1:7:3,1) = -r15; s(2:8:3,1) = .0 

                s(3:9:3,1) =  r15; s(1:3,2)   = r15 

                s(4:6,2)   =  .0 ; s(7:9,2)   =-r15 

                     wt= v 

              case default 

                print*,"wrong number of integrating points for a quadrilateral" 

            end select 

            case('tetrahedron') 

             select case(nip) 

              case(1)          ! for tetrahedra weights multiplied by 1/6 

                 s(1,1)=.25    ; s(1,2)=.25  ;  s(1,3)=.25   ; wt(1)=1./6. 

              case(4) 

               s(1,1)=.58541020 ; s(1,2)=.13819660  ;  s(1,3)=s(1,2) 

               s(2,2)=s(1,1) ; s(2,3)=s(1,2)  ;  s(2,1)=s(1,2) 

               s(3,3)=s(1,1) ; s(3,1)=s(1,2)  ;  s(3,2)=s(1,2) 
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               s(4,1)=s(1,2) ; s(4,2)=s(1,2)  ;  s(4,3)=s(1,2) ; wt(1:4)=.25/6. 

              case(5) 

                s(1,1)=.25  ;  s(1,2)=.25   ; s(1,3)=.25 ;  s(2,1)=.5 

                s(2,2)=1./6. ;  s(2,3)=s(2,2);  s(3,2)=.5 

                s(3,3)=1./6.  ;   s(3,1)=s(3,3)   ;   s(4,3)=.5 

                s(4,1)=1./6. ;    s(4,2)=s(4,1);    s(5,1)=1./6. 

                s(5,2)=s(5,1) ;  s(5,3)=s(5,1) 

                wt(1)=-.8  ;  wt(2)=9./20. ;   wt(3:5)=wt(2)   ; wt =wt/6. 

              case(6) 

         wt = 4./3.        ;  s(6,3) = 1. 

         s(1,1)=-1. ;s(2,1)=1. ; s(3,2)=-1. ; s(4,2)=1. ;  s(5,3)=-1. 

              case default 

               print*,"wrong number of integrating points for a tetrahedron" 

            end select 

            case('hexahedron') 

             select case ( nip ) 

              case(1) 

                     s(1,1) = .0 ; wt(1) = 8. 

              case(8) 

                     s(1,1)= root3;s(1,2)= root3;s(1,3)= root3 

                     s(2,1)= root3;s(2,2)= root3;s(2,3)=-root3 

                     s(3,1)= root3;s(3,2)=-root3;s(3,3)= root3 

                     s(4,1)= root3;s(4,2)=-root3;s(4,3)=-root3 

                     s(5,1)=-root3;s(5,2)= root3;s(5,3)= root3 

                     s(6,1)=-root3;s(6,2)=-root3;s(6,3)= root3 

                     s(7,1)=-root3;s(7,2)= root3;s(7,3)=-root3 

                     s(8,1)=-root3;s(8,2)=-root3;s(8,3)=-root3 

                     wt = 1.0 

              case(14) 

          b=0.795822426     ;      c=0.758786911 

          wt(1:6)=0.886426593   ; wt(7:) =  0.335180055 
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          s(1,1)=-b ; s(2,1)=b  ;  s(3,2)=-b ;   s(4,2)=b 

          s(5,3)=-b   ;     s(6,3)=b 

          s(7:,:) = c 

          s(7,1)=-c  ;  s(7,2)=-c  ; s(7,3)=-c ; s(8,2)=-c ;   s(8,3)=-c 

          s(9,1)=-c  ;  s(9,3)=-c  ; s(10,3)=-c; s(11,1)=-c 

          s(11,2)=-c ;  s(12,2)=-c ; s(13,1)=-c 

              case(15) 

          b=1.     ;      c=0.674199862 

          wt(1)=1.564444444 ;  wt(2:7)=0.355555556  ; wt(8:15)=0.537777778 

          s(2,1)=-b  ;    s(3,1)=b  ;    s(4,2)=-b  ;    s(5,2)=b 

          s(6,3)=-b  ;    s(7,3)=b  ;    s(8:,:)=c  ;    s(8,1)=-c 

          s(8,2)=-c  ;    s(8,3)=-c ;    s(9,2)=-c  ;    s(9,3)=-c 

          s(10,1)=-c ;    s(10,3)=-c  ;  s(11,3)=-c ;    s(12,1)=-c 

          s(12,2)=-c ;    s(13,2)=-c  ;  s(14,1)=-c 

              case(27) 

                     wt = (/5./9.*v,8./9.*v,5./9.*v/) 

                     s(1:7:3,1) = -r15; s(2:8:3,1) = .0 

                     s(3:9:3,1) =  r15; s(1:3,3)   = r15 

                     s(4:6,3)   =  .0 ; s(7:9,3)   =-r15 

                     s(1:9,2)   = -r15 

                     s(10:16:3,1) = -r15; s(11:17:3,1) = .0 

                     s(12:18:3,1) =  r15; s(10:12,3)   = r15 

                     s(13:15,3)   =  .0 ; s(16:18,3)   =-r15 

                     s(10:18,2)   = .0 

                     s(19:25:3,1) = -r15; s(20:26:3,1) = .0 

                     s(21:27:3,1) =  r15; s(19:21,3)   = r15 

                     s(22:24,3)   =  .0 ; s(25:27,3)   =-r15 

                     s(19:27,2)   =  r15 

               case default 

                 print*,"wrong number of integrating points for a hexahedron" 

             end select 
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            case default 

             print*,"not a valid element type" 

     end select 

   return 

 end subroutine sample 

 

 subroutine shape_der(der,points,i) 

 implicit none 

 integer,intent(in):: i; doubleprecision,intent(in)::points(:,:) 

 doubleprecision,intent(out)::der(:,:) 

 doubleprecision::eta,xi,zeta,xi0,eta0,zeta0,etam,etap,xim,xip,c1,c2,c3 ! local variables 

  doubleprecision:: t1,t2,t3,t4,t5,t6,t7,t8,t9 ,x2p1,x2m1,e2p1,e2m1,zetam,zetap,x,y,z 

  integer :: xii(20), etai(20), zetai(20) ,l,ndim , nod   ! local variables 

  ndim = ubound(der , 1); nod = ubound(der , 2) 

  select case (ndim) 

   case(1) ! one dimensional case 

         xi=points(i,1) 

     select case (nod) 

         case(2) 

           der(1,1)=-0.5 ; der(1,2)=0.5 

         case(3) 

           t1=-1.-xi ; t2=-xi  ; t3=1.-xi 

           der(1,1)=-(t3+t2)/2.  ; der(1,2)=(t3+t1) 

           der(1,3)=-(t2+t1)/2. 

         case(4) 

           t1=-1.-xi ; t2=-1./3.-xi ; t3=1./3.-xi ; t4=1.-xi 

           der(1,1)=-(t3*t4+t2*t4+t2*t3)*9./16. 

           der(1,2)=(t3*t4+t1*t4+t1*t3)*27./16. 

           der(1,3)=-(t2*t4+t1*t4+t1*t2)*27./16. 

           der(1,4)=(t2*t3+t1*t3+t1*t2)*9./16. 

         case(5) 



261 
 

           t1=-1.-xi ; t2=-0.5-xi ; t3=-xi ; t4=0.5-xi ; t5=1.-xi 

           der(1,1)=-(t3*t4*t5+t2*t4*t5+t2*t3*t5+t2*t3*t4)*2./3. 

           der(1,2)=(t3*t4*t5+t1*t4*t5+t1*t3*t5+t1*t3*t4)*8./3. 

           der(1,3)=-(t2*t4*t5+t1*t4*t5+t1*t2*t5+t1*t2*t4)*4. 

           der(1,4)=(t2*t3*t5+t1*t3*t5+t1*t2*t5+t1*t2*t3)*8./3. 

           der(1,5)=-(t2*t3*t4+t1*t3*t4+t1*t2*t4+t1*t2*t3)*2./3. 

     case default 

       print*,"wrong number of nodes in shape_der" 

     end select 

   case(2)      ! two dimensional elements 

       xi=points(i,1); eta=points(i,2) ; c1=xi ; c2=eta ; c3=1.-c1-c2 

       etam=.25*(1.-eta); etap=.25*(1.+eta); xim=.25*(1.-xi); xip=.25*(1.+xi) 

       x2p1=2.*xi+1. ;   x2m1=2.*xi-1. ;  e2p1=2.*eta+1. ;   e2m1=2.*eta-1. 

     select case (nod) 

      case(3) 

       der(1,1)=1.;der(1,3)=0.;der(1,2)=-1. 

       der(2,1)=0.;der(2,3)=1.;der(2,2)=-1. 

      case(6) 

       der(1,1)=4.*c1-1. ;  der(1,6)=4.*c2;  der(1,5)=0.  ; der(1,4)=-4.*c2 

       der(1,3)=-(4.*c3-1.);  der(1,2)=4.*(c3-c1);   der(2,1)=0. 

       der(2,6)=4.*c1 ; der(2,5)=4.*c2-1.; der(2,4)=4.*(c3-c2) 

       der(2,3)=-(4.*c3-1.)  ; der(2,2)=-4.*c1 

      case(15) 

       t1=c1-.25  ;  t2=c1-.5 ;  t3=c1-.75   ;   t4=c2-.25 

       t5=c2-.5   ;  t6=c2-.75 ;  t7=c3-.25  ;   t8=c3-.5 ;  t9=c3-.75 

       der(1,1)=32./3.*(t2*t3*(t1+c1)+c1*t1*(t3+t2)) 

       der(1,12)=128./3.*c2*(t2*(t1+c1)+c1*t1) ;  der(1,11)=64.*c2*t4*(t1+c1) 

       der(1,10)=128./3.*c2*t4*t5  ; der(1,9)=0. ; der(1,8)=-128./3.*c2*t4*t5 

       der(1,7)=-64.*c2*t4*(t7+c3) ; der(1,6)=-128./3.*c2*(t8*(t7+c3)+c3*t7) 

       der(1,5)=-32./3.*(t8*t9*(t7+c3)+c3*t7*(t8+t9)) 

       der(1,4)=128./3.*(c3*t7*t8-c1*(t8*(t7+c3)+c3*t7)) 
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       der(1,3)=64.*(c3*t7*(t1+c1)-c1*t1*(t7+c3)) 

       der(1,2)=128./3.*(c3*(t2*(t1+c1)+c1*t1)-c1*t1*t2) 

       der(1,13)=128.*c2*(c3*(t1+c1)-c1*t1) ;  der(1,15)=128.*c2*t4*(c3-c1) 

       der(1,14)=128.*c2*(c3*t7-c1*(t7+c3)) 

       der(2,1)=0.0 ;  der(2,12)=128./3.*c1*t1*t2;  der(2,11)=64.*c1*t1*(t4+c2) 

       der(2,10)=128./3.*c1*(t5*(t4+c2)+c2*t4) 

       der(2,9)=32./3.*(t5*t6*(t4+c2)+c2*t4*(t6+t5)) 

       der(2,8)=128./3.*((c3*(t5*(t4+c2)+c2*t4))-c2*t4*t5) 

       der(2,7)=64.*(c3*t7*(t4+c2)-c2*t4*(t7+c3)) 

       der(2,6)=128./3.*(c3*t7*t8-c2*(t8*(t7+c3)+c3*t7)) 

       der(2,5)=-32./3.*(t8*t9*(t7+c3)+c3*t7*(t8+t9)) 

       der(2,4)=-128./3.*c1*(t8*(t7+c3)+c3*t7) 

       der(2,3)=-64.*c1*t1*(t7+c3)  ;  der(2,2)=-128./3.*c1*t1*t2 

       der(2,13)=128.*c1*t1*(c3-c2) 

       der(2,15)=128.*c1*(c3*(t4+c2)-c2*t4) 

       der(2,14)=128.*c1*(c3*t7-c2*(c3+t7)) 

      case (4) 

       der(1,1)=-etam; der(1,2)=-etap; der(1,3)=etap; der(1,4)=etam 

       der(2,1)=-xim; der(2,2)=xim; der(2,3)=xip; der(2,4)=-xip 

      case(8) 

       der(1,1)=etam*(2.*xi+eta); der(1,2)=-8.*etam*etap 

       der(1,3)=etap*(2.*xi-eta); der(1,4)=-4.*etap*xi 

       der(1,5)=etap*(2.*xi+eta); der(1,6)=8.*etap*etam 

       der(1,7)=etam*(2.*xi-eta); der(1,8)=-4.*etam*xi 

       der(2,1)=xim*(xi+2.*eta); der(2,2)=-4.*xim*eta 

       der(2,3)=xim*(2.*eta-xi); der(2,4)=8.*xim*xip 

       der(2,5)=xip*(xi+2.*eta); der(2,6)=-4.*xip*eta 

       der(2,7)=xip*(2.*eta-xi); der(2,8)=-8.*xim*xip 

     case(9) 

       etam = eta - 1.; etap = eta + 1.; xim = xi - 1.; xip = xi + 1. 

       der(1,1)=.25*x2m1*eta*etam  ;   der(1,2)=-.5*x2m1*etap*etam 
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       der(1,3)=.25*x2m1*eta*etap  ;   der(1,4)=-xi*eta*etap 

       der(1,5)=.25*x2p1*eta*etap  ;   der(1,6)=-.5*x2p1*etap*etam 

       der(1,7)=.25*x2p1*eta*etam  ;   der(1,8)=-xi*eta*etam 

       der(1,9)=2.*xi*etap*etam    ;   der(2,1)=.25*xi*xim*e2m1 

       der(2,2)=-xi*xim*eta        ;   der(2,3)=.25*xi*xim*e2p1 

       der(2,4)=-.5*xip*xim*e2p1   ;   der(2,5)=.25*xi*xip*e2p1 

       der(2,6)=-xi*xip*eta        ;   der(2,7)=.25*xi*xip*e2m1 

       der(2,8)=-.5*xip*xim*e2m1   ;   der(2,9)=2.*xip*xim*eta 

     case default 

       print*,"wrong number of nodes in shape_der" 

     end select 

   case(3)  ! three dimensional elements 

       xi=points(i,1); eta=points(i,2); zeta=points(i,3) 

       etam=1.-eta ; xim=1.-xi;  zetam=1.-zeta 

       etap=eta+1. ; xip=xi+1. ;  zetap=zeta+1. 

    select case (nod) 

     case(4) 

      der(1:3,1:4) = .0 

      der(1,1)=1.;  der(2,2)=1.  ;  der(3,3)=1. 

      der(1,4)=-1. ;  der(2,4)=-1. ;  der(3,4)=-1. 

     case(8) 

      der(1,1)=-.125*etam*zetam    ;   der(1,2)=-.125*etam*zetap 

      der(1,3)=.125*etam*zetap     ;   der(1,4)=.125*etam*zetam 

      der(1,5)=-.125*etap*zetam    ;   der(1,6)=-.125*etap*zetap 

      der(1,7)=.125*etap*zetap     ;   der(1,8)=.125*etap*zetam 

      der(2,1)=-.125*xim*zetam     ;   der(2,2)=-.125*xim*zetap 

      der(2,3)=-.125*xip*zetap     ;   der(2,4)=-.125*xip*zetam 

      der(2,5)=.125*xim*zetam      ;   der(2,6)=.125*xim*zetap 

      der(2,7)=.125*xip*zetap      ;   der(2,8)=.125*xip*zetam 

      der(3,1)=-.125*xim*etam      ;   der(3,2)=.125*xim*etam 

      der(3,3)=.125*xip*etam       ;   der(3,4)=-.125*xip*etam 
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      der(3,5)=-.125*xim*etap      ;   der(3,6)=.125*xim*etap 

      der(3,7)=.125*xip*etap       ;   der(3,8)=-.125*xip*etap 

 case(14) ! type 6 element 

  x= points(i,1)    ;   y= points(i,2)  ;    z= points(i,3) 

  der(1,1)=((2.*x*y+2.*x*z+4.*x+y*z+y+z)*(y-1.)*(z-1.))/8. 

  der(1,2)=((2.*x*y-2.*x*z-4.*x+y*z+y-z)*(y+1.)*(z-1.))/8. 

  der(1,3)=((2.*x*y+2.*x*z+4.*x-y*z-y-z)*(y-1.)*(z-1.))/8. 

  der(1,4)=((2.*x*y-2.*x*z-4.*x-y*z-y+z)*(y+1.)*(z-1.))/8. 

  der(1,5)=-((2.*x*y-2.*x*z+4.*x-y*z+y-z)*(y-1.)*(z+1.))/8. 

  der(1,6)=-((2.*x*y+2.*x*z-4.*x-y*z+y+z)*(y+1.)*(z+1.))/8. 

  der(1,7)=-((2.*x*y-2.*x*z+4.*x+y*z-y+z)*(y-1.)*(z+1.))/8. 

  der(1,8)=-((2.*x*y+2.*x*z-4.*x+y*z-y-z)*(y+1.)*(z+1.))/8. 

  der(1,9)=-(y+1.)*(y-1.)*(z-1.)*x  ;   der(1,10)=(y+1.)*(y-1.)*(z+1.)*x 

  der(1,11)=-(y-1.)*(z+1.)*(z-1.)*x ;   der(1,12)=(y+1.)*(z+1.)*(z-1.)*x 

  der(1,13)=-((y+1.)*(y-1.)*(z+1.)*(z-1.))/2. 

  der(1,14)=((y+1.)*(y-1.)*(z+1.)*(z-1.))/2. 

  der(2,1)=((2.*x*y+x*z+x+2.*y*z+4.*y+z)*(x-1.)*(z-1.))/8. 

  der(2,2)=((2.*x*y-x*z-x+2.*y*z+4.*y-z)*(x-1.)*(z-1.))/8. 

  der(2,3)=((2.*x*y+x*z+x-2.*y*z-4.*y-z)*(x+1.)*(z-1.))/8. 

  der(2,4)=((2.*x*y-x*z-x-2.*y*z-4.*y+z)*(x+1.)*(z-1.))/8. 

  der(2,5)=-((2.*x*y-x*z+x-2.*y*z+4.*y-z)*(x-1.)*(z+1.))/8. 

  der(2,6)=-((2.*x*y+x*z-x-2.*y*z+4.*y+z)*(x-1.)*(z+1.))/8. 

  der(2,7)=-((2.*x*y-x*z+x+2.*y*z-4.*y+z)*(x+1.)*(z+1.))/8. 

  der(2,8)=-((2.*x*y+x*z-x+2.*y*z-4.*y-z)*(x+1.)*(z+1.))/8. 

  der(2,9)=-(x+1.)*(x-1.)*(z-1.)*y 

  der(2,10)=(x+1.)*(x-1.)*(z+1.)*y 

  der(2,11)=-((x+1.)*(x-1.)*(z+1.)*(z-1.))/2. 

  der(2,12)=((x+1.)*(x-1.)*(z+1.)*(z-1.))/2. 

  der(2,13)=-(x-1.)*(z+1.)*(z-1.)*y 

  der(2,14)=(x+1.)*(z+1.)*(z-1.)*y 

  der(3,1)=((x*y+2.*x*z+x+2.*y*z+y+4.*z)*(x-1.)*(y-1.))/8. 
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  der(3,2)=((x*y-2.*x*z-x+2.*y*z+y-4.*z)*(x-1.)*(y+1.))/8. 

  der(3,3)=((x*y+2.*x*z+x-2.*y*z-y-4.*z)*(x+1.)*(y-1.))/8. 

  der(3,4)=((x*y-2.*x*z-x-2.*y*z-y+4.*z)*(x+1.)*(y+1.))/8. 

  der(3,5)=-((x*y-2.*x*z+x-2.*y*z+y-4.*z)*(x-1.)*(y-1.))/8. 

  der(3,6)=-((x*y+2.*x*z-x-2.*y*z+y+4.*z)*(x-1.)*(y+1.))/8. 

  der(3,7)=-((x*y-2.*x*z+x+2.*y*z-y+4.*z)*(x+1.)*(y-1.))/8. 

  der(3,8)=-((x*y+2.*x*z-x+2.*y*z-y-4.*z)*(x+1.)*(y+1.))/8. 

  der(3,9)=-((x+1.)*(x-1.)*(y+1.)*(y-1.))/2. 

  der(3,10)=((x+1.)*(x-1.)*(y+1.)*(y-1.))/2. 

  der(3,11)=-(x+1.)*(x-1.)*(y-1.)*z  ; der(3,12)=(x+1.)*(x-1.)*(y+1.)*z 

  der(3,13)=-(x-1.)*(y+1.)*(y-1.)*z  ; der(3,14)=(x+1.)*(y+1.)*(y-1.)*z 

    case(20) 

      xii=(/-1,-1,-1,0,1,1,1,0,-1,-1,1,1,-1,-1,-1,0,1,1,1,0/) 

      etai=(/-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,1,1,1,1,1,1,1,1/) 

      zetai=(/-1,0,1,1,1,0,-1,-1,-1,1,1,-1,-1,0,1,1,1,0,-1,-1/) 

      do l=1,20 

         xi0=xi*xii(l); eta0=eta*etai(l); zeta0=zeta*zetai(l) 

         if(l==4.or.l==8.or.l==16.or.l==20) then 

          der(1,l)=-.5*xi*(1.+eta0)*(1.+zeta0) 

          der(2,l)=.25*etai(l)*(1.-xi*xi)*(1.+zeta0) 

          der(3,l)=.25*zetai(l)*(1.-xi*xi)*(1.+eta0) 

         else if(l>=9.and.l<=12)then 

          der(1,l)=.25*xii(l)*(1.-eta*eta)*(1.+zeta0) 

          der(2,l)=-.5*eta*(1.+xi0)*(1.+zeta0) 

          der(3,l)=.25*zetai(l)*(1.+xi0)*(1.-eta*eta) 

         else if(l==2.or.l==6.or.l==14.or.l==18) then 

          der(1,l)=.25*xii(l)*(1.+eta0)*(1.-zeta*zeta) 

          der(2,l)=.25*etai(l)*(1.+xi0)*(1.-zeta*zeta) 

          der(3,l)=-.5*zeta*(1.+xi0)*(1.+eta0) 

         else 

          der(1,l)=.125*xii(l)*(1.+eta0)*(1.+zeta0)*(2.*xi0+eta0+zeta0-1.) 
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          der(2,l)=.125*etai(l)*(1.+xi0)*(1.+zeta0)*(xi0+2.*eta0+zeta0-1.) 

          der(3,l)=.125*zetai(l)*(1.+xi0)*(1.+eta0)*(xi0+eta0+2.*zeta0-1.) 

         end if 

      end do 

     case default 

       print*,"wrong number of nodes in shape_der" 

   end select 

  case default 

   print*,"wrong number of dimensions in shape_der" 

  end select 

 return 

 end subroutine shape_der 

 

 subroutine shape_fun(fun,points,i) 

  implicit none 

  integer,intent(in):: i; doubleprecision,intent(in)::points(:,:) 

  doubleprecision,intent(out)::fun(:) 

  doubleprecision :: eta,xi,etam,etap,xim,xip,zetam,zetap,c1,c2,c3     !local variables 

  doubleprecision :: t1,t2,t3,t4,t5,t6,t7,t8,t9,x,y,z 

  doubleprecision :: zeta,xi0,eta0,zeta0; integer::xii(20),etai(20),zetai(20),l,ndim,nod 

        ndim = ubound(points , 2 ); nod = ubound(fun , 1 ) 

    select case (ndim) 

      case(1) ! one dimensional cases 

           xi=points(i,1) 

        select case(nod) 

         case(2) 

           t1=-1.-xi ; t2=1.-xi 

           fun(1)=t2/2. ; fun(2)=-t1/2. 

         case(3) 

           t1=-1.-xi ; t2=-xi ; t3=1.-xi 

           fun(1)=t2*t3/2. ; fun(2)=-t1*t3 ; fun(3)=t1*t2/2. 
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         case(4) 

           t1=-1.-xi ; t2=-1./3.-xi ; t3=1./3.-xi ; t4=1.-xi 

           fun(1)=t2*t3*t4*9./16.  ; fun(2)=-t1*t3*t4*27./16. 

           fun(3)=t1*t2*t4*27./16. ; fun(4)=-t1*t2*t3*9./16. 

         case(5) 

           t1=-1.-xi ; t2=-0.5-xi ; t3=-xi ; t4=0.5-xi ; t5=1.-xi 

           fun(1)=t2*t3*t4*t5*2./3. ; fun(2)=-t1*t3*t4*t5*8./3. 

           fun(3)=t1*t2*t4*t5*4. ; fun(4)=-t1*t2*t3*t5*8./3. 

           fun(5)=t1*t2*t3*t4*2./3. 

          case default 

             print*,"wrong number of nodes in shape_fun" 

        end select 

      case(2) ! two dimensional cases 

           c1=points(i,1); c2=points(i,2); c3=1.-c1-c2 

           xi=points(i,1);  eta=points(i,2) 

           etam=.25*(1.-eta); etap=.25*(1.+eta) 

           xim=.25*(1.-xi); xip=.25*(1.+xi) 

        select case(nod) 

          case(3) 

            fun = (/c1,c3,c2/) 

          case(6) 

            fun(1)=(2.*c1-1.)*c1 ;  fun(6)=4.*c1*c2 ;  fun(5)=(2.*c2-1.)*c2 

            fun(4)=4.*c2*c3      ;  fun(3)=(2.*c3-1.)*c3 ; fun(2)=4.*c3*c1 

          case(15) 

            t1=c1-.25  ;  t2=c1-.5 ;  t3=c1-.75   ;   t4=c2-.25 

            t5=c2-.5   ;  t6=c2-.75 ;  t7=c3-.25  ;   t8=c3-.5 ;  t9=c3-.75 

            fun(1)=32./3.*c1*t1*t2*t3   ;  fun(12)=128./3.*c1*c2*t1*t2 

            fun(11)=64.*c1*c2*t1*t4     ;  fun(10)=128./3.*c1*c2*t4*t5 

            fun(9)=32./3.*c2*t4*t5*t6   ;  fun(8)=128./3.*c2*c3*t4*t5 

            fun(7)=64.*c2*c3*t4*t7      ;  fun(6)=128./3.*c2*c3*t7*t8 

            fun(5)=32./3.*c3*t7*t8*t9   ;  fun(4)=128./3.*c3*c1*t7*t8 
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            fun(3)=64.*c3*c1*t1*t7      ;  fun(2)=128./3.*c3*c1*t1*t2 

            fun(13)=128.*c1*c2*t1*c3    ;  fun(15)=128.*c1*c2*c3*t4 

            fun(14)=128.*c1*c2*c3*t7 

          case(4) 

            fun=(/4.*xim*etam,4.*xim*etap,4.*xip*etap,4.*xip*etam/) 

          case(8) 

            fun=(/4.*etam*xim*(-xi-eta-1.),32.*etam*xim*etap,& 

                  4.*etap*xim*(-xi+eta-1.),32.*xim*xip*etap, & 

                  4.*etap*xip*(xi+eta-1.), 32.*etap*xip*etam,& 

                  4.*xip*etam*(xi-eta-1.), 32.*xim*xip*etam/) 

          case(9) 

            etam = eta - 1.; etap= eta + 1.; xim = xi - 1.; xip = xi + 1. 

            fun=(/.25*xi*xim*eta*etam,-.5*xi*xim*etap*etam,& 

                  .25*xi*xim*eta*etap,-.5*xip*xim*eta*etap,& 

                  .25*xi*xip*eta*etap,-.5*xi*xip*etap*etam,& 

                  .25*xi*xip*eta*etam,-.5*xip*xim*eta*etam,xip*xim*etap*etam/) 

          case default 

             print*,"wrong number of nodes in shape_fun" 

        end select 

      case(3) ! three dimensional cases 

       xi=points(i,1); eta=points(i,2); zeta=points(i,3) 

       etam=1.-eta ;  xim=1.-xi  ;  zetam=1.-zeta 

       etap=eta+1. ;  xip=xi+1.   ;  zetap=zeta+1. 

       select case(nod) 

        case(4) 

         fun(1)=xi   ;   fun(2)= eta ;  fun(3)=zeta 

         fun(4)=1.-fun(1)-fun(2)-fun(3) 

        case(8) 

         fun=(/.125*xim*etam*zetam,.125*xim*etam*zetap,.125*xip*etam*zetap,& 

               .125*xip*etam*zetam,.125*xim*etap*zetam,.125*xim*etap*zetap,& 

               .125*xip*etap*zetap,.125*xip*etap*zetam/) 
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        case(14) !type 6 element 

    x = points(i,1);  y = points(i,2);  z = points(i,3) 

  fun(1)=((x*y+x*z+2.*x+y*z+2.*y+2.*z+2.)*(x-1.)*(y-1.)*(z-1.))/8. 

  fun(2)=((x*y-x*z-2.*x+y*z+2.*y-2.*z-2.)*(x-1.)*(y+1.)*(z-1.))/8. 

  fun(3)=((x*y+x*z+2.*x-y*z-2.*y-2.*z-2.)*(x+1.)*(y-1.)*(z-1.))/8. 

  fun(4)=((x*y-x*z-2.*x-y*z-2.*y+2.*z+2.)*(x+1.)*(y+1.)*(z-1.))/8. 

  fun(5)=-((x*y-x*z+2.*x-y*z+2.*y-2.*z+2.)*(x-1.)*(y-1.)*(z+1.))/8. 

  fun(6)=-((x*y+x*z-2.*x-y*z+2.*y+2.*z-2.)*(x-1.)*(y+1.)*(z+1.))/8. 

  fun(7)=-((x*y-x*z+2.*x+y*z-2.*y+2.*z-2.)*(x+1.)*(y-1.)*(z+1.))/8. 

  fun(8)=-((x*y+x*z-2.*x+y*z-2.*y-2.*z+2.)*(x+1.)*(y+1.)*(z+1.))/8. 

  fun(9)=-((x+1.)*(x-1.)*(y+1.)*(y-1.)*(z-1.))/2. 

  fun(10)=((x+1.)*(x-1.)*(y+1.)*(y-1.)*(z+1.))/2. 

  fun(11)=-((x+1.)*(x-1.)*(y-1.)*(z+1.)*(z-1.))/2. 

  fun(12)=((x+1.)*(x-1.)*(y+1.)*(z+1.)*(z-1.))/2. 

  fun(13)=-((x-1.)*(y+1.)*(y-1.)*(z+1.)*(z-1.))/2. 

  fun(14)=((x+1.)*(y+1.)*(y-1.)*(z+1.)*(z-1.))/2. 

        case(20) 

           xii=(/-1,-1,-1,0,1,1,1,0,-1,-1,1,1,-1,-1,-1,0,1,1,1,0/) 

           etai=(/-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,1,1,1,1,1,1,1,1/) 

           zetai=(/-1,0,1,1,1,0,-1,-1,-1,1,1,-1,-1,0,1,1,1,0,-1,-1/) 

           do l=1,20 

            xi0=xi*xii(l); eta0=eta*etai(l); zeta0=zeta*zetai(l) 

            if(l==4.or.l==8.or.l==16.or.l==20) then 

              fun(l)=.25*(1.-xi*xi)*(1.+eta0)*(1.+zeta0) 

            else if(l>=9.and.l<=12)then 

              fun(l)=.25*(1.+xi0)*(1.-eta*eta)*(1.+zeta0) 

            else if(l==2.or.l==6.or.l==14.or.l==18) then 

              fun(l)=.25*(1.+xi0)*(1.+eta0)*(1.-zeta*zeta) 

            else 

              fun(l)=.125*(1.+xi0)*(1.+eta0)*(1.+zeta0)*(xi0+eta0+zeta0-2) 

            end if 
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           end do 

          case default 

           print*,"wrong number of nodes in shape_fun" 

        end select 

      case default 

        print*,"wrong number of dimensions in shape_fun" 

    end select 

  return 

 end subroutine shape_fun 

 

subroutine formkv(bk,km,g,n) 

!global stiffness matrix stored as a vector (upper triangle) 

implicit none 

doubleprecision,intent(in)::km(:,:);doubleprecision,intent(out)::bk(:) 

integer,intent(in)::g(:),n 

integer::idof,i,j,icd,ival 

idof=size(km,1) 

     do i=1,idof 

        if(g(i)/=0) then 

           do j=1,idof 

              if(g(j)/=0) then 

                 icd=g(j)-g(i)+1 

                 if(icd-1>=0) then 

                    ival=n*(icd-1)+g(i) 

                    bk(ival)=bk(ival)+km(i,j) 

                 end if 

               end if 

            end do 

         end if 

     end do 

return 
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end subroutine formkv 

 

subroutine fsparv(bk,km,g,kdiag) 

! assembly of element matrices into skyline global matrix 

implicit none 

doubleprecision,intent(in)::km(:,:); integer,intent(in)::g(:),kdiag(:) 

doubleprecision,intent(out)::bk(:) ;  integer::i,idof,k,j,iw,ival 

 idof=ubound(g,1) 

   do i=1,idof 

      k=g(i) 

      if(k/=0) then 

         do j=1,idof 

            if(g(j)/=0) then 

               iw=k-g(j) 

               if(iw>=0) then 

                   ival=kdiag(k)-iw 

                   bk(ival)=bk(ival)+km(i,j) 

                end if 

            end if 

         end do 

      end if 

   end do 

 return 

end subroutine fsparv 

 

subroutine banred(bk,n) 

! gaussian reduction on a vector stored as an upper triangle 

implicit none 

doubleprecision,intent(in out)::bk(:);integer,intent(in)::n 

integer::i,il1,kbl,j,ij,nkb,m,ni,nj,iw ; doubleprecision::sum 

 iw = ubound(bk,1)/n-1 
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       do i=2,n 

          il1=i-1;kbl=il1+iw+1 

          if(kbl-n>0)kbl=n 

          do j=i,kbl 

             ij=(j-i)*n+i;sum=bk(ij);nkb=j-iw 

             if(nkb<=0)nkb=1 

             if(nkb-il1<=0)then 

                do m=nkb,il1 

                   ni=(i-m)*n+m ; nj=(j-m)*n+m 

                   sum=sum-bk(ni)*bk(nj)/bk(m) 

                end do 

             end if 

             bk(ij)=sum 

           end do 

       end do 

return 

end subroutine banred 

 

subroutine bacsub(bk,loads) 

! performs the complete gaussian backsubstitution 

implicit none 

doubleprecision,intent(in)::bk(:);doubleprecision,intent(in out)::loads(0:) 

integer::nkb,k,i,jn,jj,i1,n,iw;doubleprecision::sum 

n = ubound(loads,1); iw = ubound(bk,1)/n - 1 

loads(1)=loads(1)/bk(1) 

   do i=2,n 

      sum=loads(i);i1=i-1 ; nkb=i-iw 

      if(nkb<=0)nkb=1 

      do k=nkb,i1 

         jn=(i-k)*n+k;sum=sum-bk(jn)*loads(k) 

      end do 
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      loads(i)=sum/bk(i) 

   end do 

   do jj=2,n 

      i=n-jj+1;sum=.0;i1=i+1;nkb=i+iw 

      if(nkb-n>0)nkb=n 

      do k=i1,nkb 

           jn=(k-i)*n+i  ; sum=sum+bk(jn)*loads(k) 

      end do 

      loads(i)=loads(i)-sum/bk(i) 

   end do 

return 

end subroutine bacsub 

 

subroutine sparin(a,kdiag) 

! Choleski factorisation of variable bandwidth matrix a 

! stored as a vector and overwritten 

implicit none 

doubleprecision,intent(in out)::a(:);integer,intent(in)::kdiag(:) 

integer::n,i,ki,l,kj,j,ll,m,k; doubleprecision::x 

 n=ubound(kdiag,1)  ; a(1)=sqrt(a(1)) 

 do i=2,n 

    ki=kdiag(i)-i;  l=kdiag(i-1)-ki+1 

    do j=l,i 

       x=a(ki+j);  kj=kdiag(j)-j 

       if(j/=1) then 

          ll=kdiag(j-1)-kj+1; ll=max0(l,ll) 

          if(ll/=j) then 

              m=j-1 

              do k=ll,m ; x=x-a(ki+k)*a(kj+k) ; end do 

          end if 

       end if 



274 
 

       a(ki+j)=x/a(kj+j) 

    end do 

    a(ki+i)=sqrt(x) 

 end do 

 return 

end subroutine sparin 

 

subroutine spabac(a,b,kdiag) 

! Choleski forward and backward substitution combined 

! variable bandwidth factorised matrix a stored as a vector 

implicit none 

doubleprecision,intent(in)::a(:);doubleprecision,intent(in 
out)::b(0:);integer,intent(in)::kdiag(:) 

integer::n,i,ki,l,m,j,it,k; doubleprecision::x 

n=ubound(kdiag,1) 

 b(1)=b(1)/a(1) 

  do i=2,n 

     ki=kdiag(i)-i;  l=kdiag(i-1)-ki+1 ; x=b(i) 

     if(l/=i) then 

        m=i-1 

        do j=l,m ; x=x-a(ki+j)*b(j); end do 

     end if 

     b(i)=x/a(ki+i) 

  end do 

  do it=2,n 

     i=n+2-it; ki=kdiag(i)-i; x=b(i)/a(ki+i); b(i)=x; l=kdiag(i-1)-ki+1 

     if(l/=i) then 

       m=i-1 

       do k=l,m; b(k)=b(k)-x*a(ki+k); end do 

     end if 

  end do 
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 b(1)=b(1)/a(1) 

 return 

end subroutine spabac 

 

subroutine formkb(kb,km,g) 

! lower triangular global stiffness kb stored as kb(n,iw+1) 

implicit none 

doubleprecision,intent(in)::km(:,:);doubleprecision,intent(out)::kb(:,:) 

integer,intent(in)::g(:);integer::iw,idof,i,j,icd 

idof=size(km,1);  iw=size(kb,2)-1 

   do i=1,idof 

      if(g(i)>0) then 

         do j=1,idof 

            if(g(j)>0) then 

               icd=g(j)-g(i)+iw+1 

               if(icd-iw-1<=0) kb(g(i),icd)= kb(g(i),icd) +km(i,j) 

            end if 

         end do 

      end if 

   end do 

 return 

end subroutine formkb 

 

subroutine fkdiag(kdiag,g) 

! finds the maximum bandwidth for each freedom 

implicit none 

 integer,intent(in)::g(:); integer,intent(out)::kdiag(:) 

 integer::idof,i,iwp1,j,im,k 

  idof=size(g) 

  do i = 1,idof 

     iwp1=1 
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     if(g(i)/=0) then 

        do j=1,idof 

           if(g(j)/=0) then 

              im=g(i)-g(j)+1 

              if(im>iwp1) iwp1=im 

           end if 

        end do 

        k=g(i);   if(iwp1>kdiag(k))kdiag(k)=iwp1 

     end if 

  end do 

 return 

end subroutine fkdiag 

 

subroutine invar(stress,sigm,dsbar,theta) 

! forms the stress invariants in 2-d or 3-d 

implicit none 

  doubleprecision,intent(in)::stress(:) 

 doubleprecision,intent(out)::sigm,dsbar,theta 

 doubleprecision::sx,sy,sz,txy,dx,dy,dz,xj3,sine,s1,s2,s3,s4,s5,s6,ds1,ds2,ds3,d2,d3,sq3 

 integer :: nst ; nst = ubound(stress,1) 

 select case (nst) 

 case(4) 

  sx=stress(1); sy=stress(2); txy=stress(3); sz=stress(4) 

  sigm=(sx+sy+sz)/3. 

  dsbar=sqrt((sx-sy)**2+(sy-sz)**2+(sz-sx)**2+6.*txy**2)/sqrt(2.) 

  if(dsbar<1.e-10) then 

     theta=.0 

  else 

     dx=(2.*sx-sy-sz)/3.; dy=(2.*sy-sz-sx)/3.; dz=(2.*sz-sx-sy)/3. 

     xj3=dx*dy*dz-dz*txy**2 

     sine=-13.5*xj3/dsbar**3 
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     if(sine>1.) sine=1. 

     if(sine<-1.) sine=-1. 

     theta=asin(sine)/3. 

  end if 

 case(6) 

  sq3=sqrt(3.);  s1=stress(1)  ;  s2=stress(2) 

  s3=stress(3) ;  s4=stress(4);  s5=stress(5);  s6=stress(6) 

  sigm=(s1+s2+s3)/3. 

  d2=((s1-s2)**2+(s2-s3)**2+(s3-s1)**2)/6.+s4*s4+s5*s5+s6*s6 

  ds1=s1-sigm ;  ds2=s2-sigm  ;  ds3=s3-sigm 

  d3=ds1*ds2*ds3-ds1*s5*s5-ds2*s6*s6-ds3*s4*s4+2.*s4*s5*s6 

  dsbar=sq3*sqrt(d2) 

  if(dsbar==0.)then 

      theta=0. 

    else 

      sine=-3.*sq3*d3/(2.*sqrt(d2)**3) 

      if(sine>1.)sine=1. ;  if(sine<-1.)sine=-1. ; theta=asin(sine)/3. 

  end if 

 case default 

  print*,"wrong size for nst in invar" 

 end select 

 return 

end subroutine invar 

 

subroutine formm(stress,m1,m2,m3) 

! forms the derivatives of the invariants with respect to stress 2- or 3-d 

 implicit none 

  doubleprecision,intent(in)::stress(:) 

  doubleprecision,intent(out)::m1(:,:),m2(:,:),m3(:,:) 

 doubleprecision::sx,sy,txy,tyz,tzx,sz,dx,dy,dz,sigm ; integer::nst , i , j 

  nst=ubound(stress,1) 
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  select case (nst) 

  case(4) 

  sx=stress(1); sy=stress(2); txy=stress(3); sz=stress(4) 

  dx=(2.*sx-sy-sz)/3.; dy=(2.*sy-sz-sx)/3.; dz=(2.*sz-sx-sy)/3. 

  sigm=(sx+sy+sz)/3. 

  m1=.0; m2=.0; m3=.0 

  m1(1,1:2)=1.; m1(2,1:2)=1.; m1(4,1:2)=1. 

  m1(1,4)=1.; m1(4,4)=1.; m1(2,4)=1. 

  m1=m1/9./sigm 

  m2(1,1)=.666666666666666; m2(2,2)=.666666666666666; m2(4,4)=.666666666666666 

  m2(2,4)=-.333333333333333;m2(4,2)=-.333333333333333;m2(1,2)=-.333333333333333 

  m2(2,1)=-.333333333333333;m2(1,4)=-.333333333333333;m2(4,1)=-.333333333333333 

  m2(3,3)=2.; m3(3,3)=-dz 

  m3(1:2,3)=txy/3.; m3(3,1:2)=txy/3.; m3(3,4)=-2.*txy/3.; m3(4,3)=-2.*txy/3. 

  m3(1,1)=dx/3.; m3(2,4)=dx/3.; m3(4,2)=dx/3. 

  m3(2,2)=dy/3.; m3(1,4)=dy/3.; m3(4,1)=dy/3. 

  m3(4,4)=dz/3.; m3(1,2)=dz/3.; m3(2,1)=dz/3. 

 case(6) 

  sx=stress(1); sy=stress(2)    ;   sz=stress(3) 

  txy=stress(4)  ;   tyz=stress(5) ;   tzx=stress(6) 

  sigm=(sx+sy+sz)/3. 

  dx=sx-sigm  ;   dy=sy-sigm ;  dz=sz-sigm 

  m1 = .0; m2 = .0; m1(1:3,1:3) = 1./(3.*sigm) 

  do  i=1,3 ; m2(i,i)=2. ;  m2(i+3,i+3)=6. ; end do 

  m2(1,2)=-1.; m2(1,3)=-1. ; m2(2,3)=-1.; m3(1,1)=dx 

  m3(1,2)=dz ; m3(1,3)=dy ; m3(1,4)=txy  ;  m3(1,5)=-2.*tyz 

  m3(1,6)=tzx ; m3(2,2)=dy ; m3(2,3)=dx ; m3(2,4)=txy 

  m3(2,5)=tyz ; m3(2,6)=-2.*tzx ;  m3(3,3)=dz 

  m3(3,4)=-2.*txy; m3(3,5)=tyz ;  m3(3,6)=tzx 

  m3(4,4)=-3.*dz ;  m3(4,5)=3.*tzx;  m3(4,6)=3.*tyz 

  m3(5,5)=-3.*dx;  m3(5,6)=3.*txy ;  m3(6,6)=-3.*dy 



279 
 

  do  i=1,6 ;  do  j=i,6 

      m1(i,j)=m1(i,j)/3.;  m1(j,i)=m1(i,j) ;  m2(i,j)=m2(i,j)/3. 

      m2(j,i)=m2(i,j)   ;  m3(i,j)=m3(i,j)/3. ; m3(j,i)=m3(i,j) 

  end do; end do 

 case default 

  print*,"wrong size for nst in formm" 

 end select 

 return 

 end subroutine formm 

end module new_library 
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Appendix C: Source Codes of Feng Tan’s 

Subroutine Library for HITSI 

!-------------------------------------------      Declaration     ---------------------------------------------------- 

!---------------------- Source codes of Feng Tan’s subroutine library for HITSI ---------------------- 

module lib_add 

        !> \brief 

        ! The lib-add is developing for extend the creep damage analysis capability 

        ! of an in-house finite element analysis (FEA) software HITSI 

        !   1. transformation of stress state (rdmpes) 

        !   2. constitutive equations (KRH,KR) 

        !   3. numerical methods (EULER,RK4) 

         

      contains 

      subroutine rdmpes (sigma,mpris,equs) 

        !> \brief 

        ! The RDMPES is used to return the value of stress deviator, 

        ! maximum principal stress, and the equivalent stress. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: sigma(:)!< stress component & deviator 

        doubleprecision, intent(out) :: mpris,equs!< maximum principal stress  

    & equivalent stress 

        doubleprecision :: sx,sy,sz,txy,tyz,tzx,pi,j2,j3,sig0,loang 

        doubleprecision, dimension(3) :: mps 

        integer :: nst 

        nst=ubound(sigma,1) 

        pi=3.1415926 

        select case (nst) 

        !> \brief 
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        ! case 4 is 2D problem, and case 6 is 3D problem 

        !! 

        case (4) 

            sig0=(sigma(1)+sigma(2)+sigma(4))/3 

            sx=sigma(1); sy=sigma(2); txy=sigma(3); sz=sigma(4) 

            j2=((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+txy**2 

            j3=(sx-sig0)*(sy-sig0)*(sz-sig0)-(sz-sig0)*txy**2 

            loang=asin((-sqrt(27.)*j3)/(2*sqrt(j2**3)))/3 

            mps(1)=2*sqrt(j2)/sqrt(3.)*sin(loang+2*pi/3)+sig0 

            mps(2)=2*sqrt(j2)/sqrt(3.)*sin(loang)+sig0 

            mps(3)=2*sqrt(j2)/sqrt(3.)*sin(loang-2*pi/3)+sig0 

            mpris=maxval(mps) 

            equs=1/sqrt(2.)* 

     &    sqrt((mps(1)-mps(2))**2+(mps(2)-mps(3))**2+(mps(3)-mps(1))**2) 

            sigma(1)=sigma(1)-sig0; sigma(2)=sigma(2)-sig0 

            sigma(4)=sigma(4)-sig0 

            case (6) 

                sig0=(sigma(1)+sigma(2)+sigma(3))/3 

                sx=sigma(1); sy=sigma(2); sz=sigma(3) 

                txy=sigma(4); tyz=sigma(5); tzx=sigma(6) 

                j2=((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+ 

     &    txy**2+tyz**2+tzx**2 

                j3=(sx-sig0)*(sy-sig0)*(sz-sig0)+2*txy*tyz*tzx- 

     &    (sx-sig0)*tyz**2-(sz-sig0)*txy**2-(sy-sig0)*tzx**2 

                loang=asin((-sqrt(27.)*j3)/(2*sqrt(j2**3)))/3 

                mps(1)=2*sqrt(j2)/sqrt(3.)*sin(loang+2*pi/3)+sig0 

                mps(2)=2*sqrt(j2)/sqrt(3.)*sin(loang)+sig0 

                mps(3)=2*sqrt(j2)/sqrt(3.)*sin(loang-2*pi/3)+sig0 

                mpris=maxval(mps) 

                equs=1/sqrt(2.)* 

     &    sqrt((mps(1)-mps(2))**2+(mps(2)-mps(3))**2+(mps(3)-mps(1))**2) 
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                sigma(1)=sigma(1)-sig0; sigma(2)=sigma(2)-sig0 

                sigma(3)=sigma(3)-sig0 

                case default 

                    print*, "wrong size for nst in rdmpes" 

                    end select 

                return 

                end subroutine rdmpes 

 

      subroutine KRH (f,x,sigma,equs,mpris,matpro) 

        !> \brief 

        ! KRH is used to return the creep strain and its damage value, 

        ! this subroutine include the uni-axial and multi-axial format 

        ! of KRH constitutive equation. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: x(:),f(:)!< creep rates and its absolute values 

        doubleprecision, intent(in) :: sigma(:), matpro(:)!< material property 

        doubleprecision, intent(in) :: equs, mpris 

        doubleprecision :: A, B, C, h, Hstar, Kc, v 

        integer :: N, i, nst 

        A=matpro(1); B=matpro(2); C=matpro(3); h=matpro(4) 

        Hstar=matpro(5); Kc=matpro(6); v=matpro(7) 

        if (mpris>0) then!< recognition of the value of N 

            N=1 

            else if (mpris<=0) then 

                N=0 

                end if 

        nst=ubound(sigma,1) 

        select case (nst) 

                !> \brief 

                ! case 1 is uni-axial form of constitutive equation 
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                ! case 4 is multi-axial form for 2D problem 

                ! case 6 is multi-axial form for 3D problem 

                !! 

                case (1) 

                f(1)=A*sinh((B*sigma(1)*(1-x(2)))/((1-x(3))*(1-x(4)))) 

                f(2)=h*f(1)/sigma(1)*(1.-(x(2)/Hstar)) 

                f(3)=Kc/3.*(1-x(3))**4 

                f(4)=C*f(1) 

        case (4) 

            do i=1, 4 

                f(i)=(3./2.)*(sigma(i)/equs)*A* 

     &  sinh((B*equs*(1-x(6)))/((1-x(7))*(1-x(8)))) 

                end do 

                f(5)=sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2)) 

                f(6)=h*f(5)/equs*(1.-(x(6)/Hstar)) 

                f(7)=Kc/3.*(1.-x(7))**4 

                f(8)=C*N*f(5)*(mpris/equs)**v 

                case (6) 

                        do i=1, 6 

                            f(i)=(3./2.)*(sigma(i)/equs)*A* 

     &  sinh((B*equs*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                            end do 

                            f(7)=sqrt((2./3.)*(f(1)**2+f(2)**2+ 

     &  f(3)**2+2*f(4)**2+2.*f(5)**2+2*f(6)**2)) 

                            f(8)=h*f(7)/equs*(1.-(x(8)/Hstar)) 

                            f(9)=Kc/3.*(1-x(9))**4 

                            f(10)=C*N*f(7)*(mpris/equs)**v 

                            case default 

                                print*, "wrong size for nst in KRH" 

                                end select 

                                return 
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                                end subroutine KRH 

 

      subroutine KR (f,y,time,sigma,equs,mpris,matpro) 

        !> \brief 

        ! KR is used to return the creep strain and its damage value, 

        ! this subroutine include the uni-axial and multi-axial format 

        ! of KR constitutive equation. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: f(:), y(:)!< creep rates and its absolute values 

        doubleprecision, intent(in) :: sigma(:), matpro(:)!< material property 

        doubleprecision, intent(in) :: mpris, equs, time 

        doubleprecision :: A, n, m, B, phi, X, aerfa, rups 

        integer :: i, nst 

        A=matpro(1); n=matpro(2); m=matpro(3); B=matpro(4) 

        phi=matpro(5); X=matpro(6); aerfa=matpro(7) 

        rups=aerfa*mpris+(1.-aerfa)*equs!< return the value of rupture stress 

        nst=ubound(sigma,1) 

        select case (nst) 

        !> \brief 

        ! case 1 is uni-axial form of constitutive equation 

        ! case 4 is multi-axial form for 2D problem 

        ! case 6 is multi-axial form for 3D problem 

        !! 

        case (1) 

                f(1)=A*((sigma(1)/(1-y(2)))**n)*(time**m) 

                f(2)=B*(sigma(1)**X)/((1-y(2))**phi)*(time**m) 

        case (4) 

            do i=1,4 

                f(i)=(3./2.)*(sigma(i)/equs)*A* 

     &          ((equs/(1-y(5)))**n)*(time**m) 
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                end do 

                f(5)=B*(rups**X)/((1-y(5))**phi)*(time**m) 

                case (6) 

                    do i=1,6 

                        f(i)=(3./2.)*(sigma(i)/equs)*A* 

     &                  ((equs/(1-y(7)))**n)*(time**m)/2 

                        end do 

                        f(7)=B*(rups**X)/((1-y(7))**phi)*(time**m) 

                        case default 

                            print*, "wrong size of nst in KR" 

                            end select 

                            return 

                            end subroutine KR 

 

      subroutine EULER_KRH (x,incx,dt,sigma,equs,mpris,matpro) 

        !> \brief 

        ! The EULER_KRH is used to integrate KRH constitutive equation 

        ! with euler's method. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: x(:), incx(:) 

        doubleprecision, intent(in) :: sigma(:), matpro(:) 

        doubleprecision, intent(in) :: equs, mpris, dt 

        doubleprecision, allocatable, dimension(:) :: k 

        integer :: nst, n 

        nst=ubound(sigma,1) 

        if (nst==1) then 

            n=4 

            elseif (nst==4) then 

                n=8 

                elseif (nst==6) then 
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                    n=10 

                    end if 

                    allocate(k(n)) 

                    call KRH(k,x,sigma,equs,mpris,matpro) 

                    incx=k*dt 

                    x=x+k*dt 

                    return 

                    end subroutine EULER_KRH 

 

      subroutine EULER_KR (x,incx,dt,time,sigma,equs,mpris,matpro) 

        !> \brief 

        ! The EULER_KR is used to integrate KR constitutive equation 

        ! with euler's method. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: x(:), incx(:) 

        doubleprecision, intent(in) :: sigma(:), matpro(:) 

        doubleprecision, intent(in) :: equs, mpris, dt, time 

        doubleprecision, allocatable, dimension(:) :: k 

        integer :: nst, n 

        nst=ubound(sigma,1) 

        if (nst==1) then 

            n=4 

            elseif (nst==4) then 

                n=8 

                elseif (nst==6) then 

                    n=10 

                    end if 

                    allocate(k(n)) 

                    call KR(k,x,time,sigma,equs,mpris,matpro) 

                    incx=k*dt 
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                    x=x+k*dt 

                    return 

                    end subroutine EULER_KR 

 

      subroutine RK4_KRH (x,incx,dt,sigma,equs,mpris,matpro) 

        !> \brief 

        ! The EULER_KRH is used to integrate KRH constitutive equation 

        ! with classical 4th order Runge-Kutta method. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: x(:), incx(:) 

        doubleprecision, intent(in) :: sigma(:), matpro(:) 

        doubleprecision, intent(in) :: equs, mpris, dt 

        doubleprecision, allocatable, dimension(:) :: k1, k2, k3, k4, 

     &  x1, x2, x3, x4 

        integer :: nst, n 

        nst=ubound(sigma,1) 

        if (nst==1) then 

            n=4 

            elseif (nst==4) then 

                n=8 

                elseif (nst==6) then 

                    n=10 

                    end if 

                    allocate(k1(n),k2(n),k3(n),k4(n)) 

                    x1=x 

                    call KRH(k1,x,sigma,equs,mpris,matpro) 

                    x2=x+dt/2*k1 

                    call KRH(k2,x2,sigma,equs,mpris,matpro) 

                    x3=x+dt/2*k2 

                    call KRH(k3,x3,sigma,equs,mpris,matpro) 
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                    x4=x+dt*k3 

                    call KRH(k4,x4,sigma,equs,mpris,matpro) 

                    incx=(k1+2*k2+2*k3+k4)*dt/6 

                    x=x+(k1+2*k2+2*k3+k4)*dt/6 

                    return 

                    end subroutine RK4_KRH 

 

      subroutine RK4_KR (x,incx,dt,time,sigma,equs,mpris,matpro) 

        !> \brief 

        ! The EULER_KR is used to integrate KR constitutive equation 

        ! with classical 4th order Runge-Kutta method. 

        !! 

        implicit none 

        doubleprecision, intent(inout) :: x(:), incx(:) 

        doubleprecision, intent(in) :: sigma(:), matpro(:) 

        doubleprecision, intent(in) :: equs, mpris, dt, time 

        doubleprecision, allocatable, dimension(:) :: k1, k2, k3, k4, 

     &  x1, x2, x3, x4 

        integer :: nst, n 

        nst=ubound(sigma,1) 

        if (nst==1) then 

            n=2 

            elseif (nst==4) then 

                n=5 

                elseif (nst==6) then 

                    n=7 

                    end if 

                    allocate(k1(n),k2(n),k3(n),k4(n)) 

                    x1=x 

                    call KR(k1,x1,time,sigma,equs,mpris,matpro) 

                    x2=x+dt/2*k1 
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                    call KR(k2,x2,time,sigma,equs,mpris,matpro) 

                    x3=x+dt/2*k2 

                    call KR(k3,x3,time,sigma,equs,mpris,matpro) 

                    x4=x+dt*k3 

                    call KR(k4,x4,time,sigma,equs,mpris,matpro) 

                    incx=(k1+2*k2+2*k3+k4)*dt/6 

                    x=x+(k1+2*k2+2*k3+k4)*dt/6 

                    return 

                    end subroutine RK4_KR 

 

        subroutine stress_deviator_2D (x,y) 

        implicit none 

        doubleprecision, dimension(3) :: x 

        doubleprecision, dimension(4) :: y 

        doubleprecision :: z 

        z=(x(1)+x(2))/3. 

        y(1)=x(1)-z 

        y(2)=x(3) 

        y(3)=x(2)-z 

        y(4)=-z 

        return 

        end subroutine stress_deviator_2D 

 

        subroutine equivalent_stress_2D (x,y) 

        implicit none 

        doubleprecision, dimension(4) :: x 

        doubleprecision :: y 

        y=sqrt(3.*(x(1)**2+2.*x(2)**2+x(3)**2+x(4)**2)/2.) 

        return 

        end subroutine equivalent_stress_2D 
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        subroutine max_principal_stress_2D (x,y) 

        implicit none 

        doubleprecision, dimension(3) :: x 

        doubleprecision, dimension(2) :: z 

        doubleprecision :: y 

        z(1) = (x(1)+x(2))/2.+sqrt(((x(1)-x(2))/2)**2+x(3)**2) 

        z(2) = (x(1)+x(2))/2.-sqrt(((x(1)-x(2))/2)**2+x(3)**2) 

            if (z(1)-z(2)>0) then 

            y=z(1) 

            else 

            y=z(2) 

            end if 

            return 

        end subroutine max_principal_stress_2D 

 

       subroutine KRHX (f,x,t,stress,material,nost,nocmp,noce) 

        !>--------------------------introduction-------------------------- 

        !< KRH returns the creep strain and damage rate according to 

        !< Kachanov-Rabotnov-Hayhurst-Xu constitutive equation. noce == 9, 

        !< 2D problem; noce == 11, 3D problem. 

        !! 

          implicit none 

          integer, intent(in) :: nost, nocmp, noce 

          doubleprecision, intent(in) :: stress(nost), material(nocmp), 

     &                                   x(noce) 

          doubleprecision, intent(in) :: t 

          doubleprecision, intent(out) :: f(noce) 

          doubleprecision :: sx, sy, sz, txy, tyz, tzx, ps1, ps2, ps3, 

     &                       es, Ss, sm, S1 

          doubleprecision :: A, B, C, h, Hstar, Kc, v, a1, b1, p, q 

          integer :: N 
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          select case (nost) 

          case (8) 

              sx = stress(1); sy = stress(2); txy = stress(3) 

              sz = stress(4); ps1 = stress(5); ps2 = stress(6) 

              ps3 = stress(7); es = stress(8); tyz = 0.0; tzx = 0.0 

              case (10) 

                  sx = stress(1); sy = stress(2); sz = stress(3) 

                  txy = stress(4); tyz = stress(5); tzx = stress(6) 

                  ps1 = stress(7); ps2 = stress(8); ps3 = stress(9) 

                  es = stress(10) 

                  case default 

                      print*, "wrong size for nost in KRHX" 

                      end select 

          A = material(1); B = material(2); C = material(3) 

          h = material(4); Hstar = material(5); Kc = material(6) 

          v = material(7); a1 = material(8); b1 = material(9) 

          p = material(10); q = material(11) 

          sm = (ps1+ps2+ps3)/3; Ss = sqrt(ps1**2+ps2**2+ps3**2) 

          S1 = ps1-sm 

          if (ps1>0) then 

              N=1 

              else if (ps1<=0) then 

                  N=0 

                  end if 

          select case (noce) 

          case (9) 

              f(1) = (3./2.)*(sx/es)*A* 

     &               sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

              f(2) = (3./2.)*(sy/es)*A* 

     &               sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

              f(3) = (3./2.)*(txy/es)*A* 
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     &               sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

              f(4) = (3./2.)*(sz/es)*A* 

     &               sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

              f(5) = sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2)) 

              f(6) = h*f(5)/es*(1.-(x(6)/Hstar)) 

              f(7) = Kc/3.*(1.-x(7))**4 

              f(8) = C*N*f(5)* 

     &               (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1) 

              f(9) = f(8)*((2/3)*(es/S1))**a1*exp(b1*(3*sm/Ss-1)) 

              case (11) 

                  f(1) = (3./2.)*(sx/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(2) = (3./2.)*(sy/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(3) = (3./2.)*(sz/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(4) = (3./2.)*(txy/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(5) = (3./2.)*(tyz/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(6) = (3./2.)*(tzx/es)*A* 

     &                   sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                  f(7) = sqrt((2./3.)*(f(1)**2+f(2)**2+f(3)**2+2*f(4)**2 

     &                   +2.*f(5)**2+2*f(6)**2)) 

                  f(8)=h*f(7)/es*(1.-(x(8)/Hstar)) 

                  f(9)=Kc/3.*(1-x(9))**4 

                  f(10) = C*N*f(5)* 

     &                   (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1) 

                  f(11) = f(10)*((2/3)*(es/S1))**a1*exp(b1*(3*sm/Ss-1)) 

                  case default 

                      print*, "wrong size for noce in KRHX" 
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                      end select 

                      return 

                      end subroutine KRHX 

 

        subroutine NOR_KR (f,x,t,stress,material,nost,nocmp,noce) 

        !>--------------------------introduction-------------------------- 

        !< NORKR returns the creep strain and damage rate according to 

        !< normalized Kachanov-Rabotnov constitutive equation. noce == 9, 

        !< 2D problem; noce == 11, 3D problem. 

        !! 

          implicit none 

          !>-----------------------variables list------------------------- 

          !< Scalar integers: 

          !< i            simple counter 

          !< noc          number of components 

          !< 

          !< Scalar reals: 

          !< mps          maximum principal stress 

          !< es           equivalent stress 

          !< rs           rupture stress 

          !< ip           internal pressure 

          !< cfs          creep failure strain 

          !< alpha        creep material property 

          !< beta         creep material property 

          !< m            creep material property 

          !< n            creep material property 

          !< phi          creep material property 

          !< chi          creep material property 

          !< e            young¡¯s modulus 

          !< a            stress state coefficient 

          !< t            current total time 
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          !< 

          !< Dynamic real arrays: 

          !< f            creep strain rate components and damage rate 

          !< y            creep strain value components and damage value 

          !< cmp          creep material properties 

          !< edstc        elastic deviatoric stress tensor components 

          !! 

        integer, intent(in) :: nost, nocmp, noce 

        doubleprecision, intent(in) :: stress(nost), material(nocmp), 

     &                                 x(noce) 

        doubleprecision, intent(in) :: t 

        doubleprecision, intent(out) ::  f(noce) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es, cfs 

        doubleprecision :: A, n, m, B, phi, chi, alpha, rs, e, ip 

        select case (nost) 

        case (8) 

            sx = stress(1); sy = stress(2); txy = stress(3) 

            sz = stress(4); mps = stress(5); es = stress(8) 

            tyz = 0.0; tzx = 0.0; ip = stress(9) 

            case (10) 

                sx = stress(1); sy = stress(2); sz = stress(3) 

                txy = stress(4); tyz = stress(5); tzx = stress(6) 

                mps = stress(7); es = stress(10); ip = stress(11) 

                case default 

                    print*, "wrong size for nost in NOR_KR" 

                       end select 

        A = material(1); n = material(2); m = material(3) 

        B = material(4); phi = material(5); chi = material(6) 

        alpha = material(7); e =  material(8) 

        rs = alpha*mps+(1.-alpha)*es 

        cfs = (A*e/B)*(ip**(n-chi-1.)) 
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        select case (noce) 

        case (5) 

            f(1)=(3./2.)*(sx/es)*((es/(1-x(5)))**n) 

            f(2)=(3./2.)*(sy/es)*((es/(1-x(5)))**n) 

            f(3)=(3./2.)*(txy/es)*((es/(1-x(5)))**n) 

            f(4)=(3./2.)*(sz/es)*((es/(1-x(5)))**n) 

            f(5) = (rs**chi)/(cfs*(1.+phi)*((1.-x(5))**phi)) 

            case (7) 

                f(1)=(3./2.)*(sx/es)*((es/(1-x(7)))**n) 

                f(2)=(3./2.)*(sy/es)*((es/(1-x(7)))**n) 

                f(3)=(3./2.)*(sz/es)*((es/(1-x(7)))**n) 

                f(4)=(3./2.)*(txy/es)*((es/(1-x(7)))**n) 

                f(5)=(3./2.)*(tyz/es)*((es/(1-x(7)))**n) 

                f(6)=(3./2.)*(tzx/es)*((es/(1-x(7)))**n) 

                f(7) = (rs**chi)/(cfs*(1.+phi)*((1.-x(7))**phi)) 

                case default 

                    print*, "wrong size of noce in NOR_KR" 

                    end select 

                    return 

                    end subroutine NOR_KR 

 

        subroutine RKM (func,y,t,dt,stress,material,nost,nocmp,noce,rcv) 

        !>-------------------------introduction------------------------- 

        !< RKM returns the solution of creep strains and creep damage 

        !< variables according to Runge-Kutta-Merson method. 

        !! 

          implicit none 

          !>-----------------------variables list----------------------- 

          !< external function: 

          !< func               creep constitutive equation 

          !< 
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          !< Scalar integers: 

          !< rcv              re-do control value 

          !< nost             number of stress terms 

          !< nocmp            number of creep material properties 

          !< noce             number of constitutive equations 

          !< 

          !< Scalar reals: 

          !< dt              time increment 

          !< t               current total time 

          !< 

          !< Dynamic real arrays: 

          !< k                    creep strain and damage rate 

          !< y                    creep strain and damage value 

          !< mfs                  mean function slope 

          !< material             creep material properties 

          !< stress               stress terms 

          !< loer                 local error 

          !< aoi                  acceptance of integration 

          !! 

          external :: func 

          integer, intent(in) :: nost, nocmp, noce 

          doubleprecision, intent(inout) :: y(noce) 

          doubleprecision, intent(in) :: stress(nost), material(nocmp) 

          doubleprecision, intent(in) :: t, dt 

          integer, intent(out) :: rcv 

          doubleprecision :: maoi 

          doubleprecision :: k1(noce), k2(noce), k3(noce), k4(noce), 

     &                       k5(noce), mfs(noce), loer(noce), aoi(noce) 

          call func(k1,y,t,stress,material,nost,nocmp,noce) 

          call func(k2,y+dt/3*k1,t+dt/3,stress,material,nost,nocmp,noce) 

          call func(k3,y+dt/6*(k1+k2),t+dt/3,stress,material,nost,nocmp, 
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     &              noce) 

          call func(k4,y+dt/8*(k1+3*k3),t+dt/2,stress,material,nost, 

     &              nocmp,noce) 

          call func(k5,y+dt/2*(k1-3*k3+4*k4),t+dt,stress,material,nost, 

     &              nocmp,noce) 

          mfs = (k1+4*k4+k5)/6 

          y = y+mfs*dt 

          loer = (2*k1-9*k3+8*k4-k5)/30 

          aoi = loer/mfs 

          maoi = maxval(aoi) 

          if (maoi<0.001) then 

            rcv = 0 

            else 

                rcv = 1 

                end if 

                return 

                end subroutine RKM 

 

        subroutine RKF (func,y,t,dt,stress,material,nost,nocmp,noce,rcv) 

        !>-------------------------introduction------------------------- 

        !< RKF returns the solution of creep strains and creep damage 

        !< variables according to Runge-Kutta-Fehlberg method. 

        !! 

          implicit none 

          !>-----------------------variables list----------------------- 

          !< external function: 

          !< func               creep constitutive equation 

          !< 

          !< Scalar integers: 

          !< rcv              re-do control value 

          !< nost             number of stress terms 
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          !< nocmp            number of creep material properties 

          !< noce             number of constitutive equations 

          !< 

          !< Scalar reals: 

          !< dt              time increment 

          !< t               current total time 

          !< 

          !< Dynamic real arrays: 

          !< k                    creep strain and damage rate 

          !< y                    creep strain and damage value 

          !< mfs                  mean function slope 

          !< material             creep material properties 

          !< stress               stress terms 

          !< aoi                  acceptance of integration 

          !! 

          external :: func 

          integer, intent(in) :: nost, nocmp, noce 

          doubleprecision, intent(inout) :: y(noce) 

          doubleprecision, intent(in) :: stress(nost), material(nocmp) 

          doubleprecision, intent(in) :: t, dt 

          integer, intent(out) :: rcv 

          doubleprecision :: maoi 

          doubleprecision :: k1(noce), k2(noce), k3(noce), k4(noce), 

     &                       k5(noce), k6(noce), mfs4(noce), mfs5(noce), 

     &                       aoi(noce), ybar(noce) 

          call func(k1,y,t,stress,material,nost,nocmp,noce) 

          call func(k2,y+dt/4*k1,t+dt/4,stress,material,nost,nocmp,noce) 

          call func(k3,y+dt/32*(3*k1+9*k2),t+3*dt/8,stress,material, 

     &              nost,nocmp,noce) 

          call func(k4,y+dt/2179*(1932*k1-7200*k2+7296*k3),t+12*dt/13, 

     &              stress,material,nost,nocmp,noce) 
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          call func(k5,y+dt/4104*(8341*k1-32832*k2+29440*k3-845*k4),t+dt 

     &              ,stress,material,nost,nocmp,noce) 

          call func(k6,y+dt*(-(8/27)*k1+2*k2-(3544/2565)*k3+(1859/4104) 

     &              *k4-(11/40)*k5),t+dt/2,stress,material,nost,nocmp, 

     &              noce) 

          mfs4 = (25/216)*k1+(1408/2565)*k3+(2197/4104)*k4-(1/5)*k5 

          mfs5 = (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5 

     &        -(2/55)*k6 

          ybar = y+mfs4*dt 

          y = y+mfs5*dt 

          aoi = abs(y-ybar) 

          maoi = maxval(aoi) 

          if (maoi<1d-5) then 

            rcv = 0 

            else 

                rcv = 1 

                end if 

                return 

                end subroutine RKF 

 

                end module lib_add 
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Contents 

This user guidance contains a brief description of the in-house FE software HITSI, 

step-by-step instructions for a demonstration (using the data files included) and a 

tutorial with 4 examples illustrating data preparation for the features of this in-house FE 

software. 

The technical manual describes the features of HITSI in full, with descriptions of 

element types, problem types, and the data sections. A summary of the format of these 

data sections and general information about data entry is given in the help facility of the 

program. 

1) Introduction 

2) Analysis types 

3) Tutorial on data preparation 

4) Tutorial on output results  

A set of lecture notes on the FEM for creep deformation and problems, with exercises 

and examples for the use of HITSI, is also available. 
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1. Introduction 

HITSI is a FEM based CDM approach in-house software for the analysis of creep 

deformation and damage. It is easy to use, and capable of solving different problems of 

stress, strain, creep damage and deformation analysis, and the prediction of the failure 

time of components (plane stress, plane strain, axisymmetric and three-dimensional). 

HITSI was designed for two-dimensional creep damage analysis, but it is suitable for 

practical use on a range of problems, offering multiple element types include 2D and 3D 

(not yet fully implemented) and additional features such as different creep constitutive 

damage equations and integration methods. 

HITSI comprises the main executable file ***.EXE, a data file ***.DAT (a table of 

standard materials), a blocks project file ***.CBP, a depend file ***.DEPEND, a results 

file ***.RES, a layout file ***.LAYOUT, and a number of object files called ***.OBJ. 

The sequence of operation: 1) a data file should be created or modified; 2) click the 

main executable file. Once the finite element mesh, materials constants, boundary 

conditions and loads information are acceptable, the finite element analysis is done, and 

finally the results are stored in a results file. If errors occurred, return to the data file and 

check the format of the mesh, materials constants, boundary conditions and loads 

information and run the main program again. Here, the blocks project file, depend file 

and layout file need to be deleted before executing the main program. 

The editing rule for the different analysis types (plane stress, plane strain, 

axisymmetric and three-dimensional) is incorporated, for creating or modifying data 

files, and this gives the appropriate format and some data checking.  The user can use 

this rule to create or modify files.  The most efficient way to do this is to create a simple 

file with the pre-processing and post-processing FE software FEMGV, then modify it 

via a pre-processing data transfer program and use the editing rules to check the format 

in data file. FEMGV contains facilities to interpolate sequences of nodes and elements, 

and to replicate blocks, enabling the input of quite large meshes with few lines of data. 

Hence, less time and fewer errors result if the above steps are used to create data file. 

The calculation module implements eight types of element: 1) three, six and fifteen 

node triangles element type; 2) four, eight and nine node quadrilaterals element type; 3) 

eight and twenty node 3D brick element type. The different analysis types are carried 
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out by the different constitutive matrix; and the different subroutines are used in 

element stiffness assembly, integration and the solution of equilibrium equation. 

The graphics are carried out by a post-processing data transfer program and the pre-

processing and post-processing FE software FEMGV. The results are output according 

to the output rules in main program. Then, the format of the results file can be 

transferred with the post-processing data transfer program and can be read by FEMGV.    

This user guidance primarily consists of four main parts: 1) Introduction; 2) Analysis 

types; 3) Tutorial on data preparation; 4) Tutorial on output results. The four parts 

should be joined together in the use of in-house FE software HITSI. 
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2. Analysis types 

HITSI is developed for solving the creep damage problem and it covers plane stress, 

plane strain, axisymmetric and three-dimensional analysis types. The FE codes for 

the spatial discretisation by finite elements, element stiffness integration, element 

stiffness assembly, solution of equilibrium equation, creep damage constitutive equation, 

the numerical time integration method, the stress and creep damage field variables 

updating are used in the analysis of the creep damage problem under the different 

constitutive matrix. Thus, the analysis type should be defined before the use of HITSI.  

The analysis types of this software are summarised in following: 

1. Plane stress  

In plane stress problem, the condition prevails in a flat plate in the x and y plane, loaded 

only in its own plane and without z-direction restraint, so that 𝜎𝑥 = 𝜏𝑥𝑦 = 𝜏𝑧𝑥 = 0. 

Thus, the constitutive matrix is: 
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Where the E is the Young's modulus and  is the Poisson's ratio.   

Users need to define the nature of the case before building the FE model. If the nature of 

problem satisfies the plane stress constitutive matrix; user should select the plane stress 

index in HITSI. 

2. Plane strain 

In plane strain problem, the condition prevailing is defined as a deformation state in 

which total potential energy is zero everywhere and u and v are functions of x and y but 

not of z. Thus, a typical slice of an underground tunnel that lies along the z axis might 

deform in essentially plane strain conditions. The constitutive matrix is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. If needed, 
z can be 

obtained from the relation 𝜀𝑧= 0 = (𝜎𝑧  - v𝜎𝑦 - v𝜎𝑥 ) / E after 𝜎𝑥 and 𝜎𝑦 are known. 

If the nature of problem satisfies the plane strain constitutive matrix; user should select 

the plane strain index in HITSI. 

3. Axisymmetric 

In axisymmetric problem, the condition considers a constant value of displacement in 

the circumferential direction. The constitutive matrix is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. 

If the nature of problem satisfies the axisymmetric constitutive matrix; user should 

select the axisymmetric index in HITSI. 

4. Three-dimensional 

In three-dimensional problem, the condition considers the stereo features, u, v and w 

being the displacements in the x, y and z directions respectively. The constitutive matrix 

is: 
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Where the E is the Young's modulus and  is the Poisson's ratio. 

If the nature of problem satisfies the three-dimensional constitutive matrix; user should 

select the 3D index in HITSI. 
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3. Tutorial on data preparation 

Full instructions are given in this section for the demonstration of the analysis types, 

using data files provided. 

1) Plane stress 

2) Plane strain 

3) Axisymmetric 

4) Three-dimensional 

The format, mesh information, material constants, boundary conditions and loads 

information for the above problem types in data file are demonstrated. Then, four 

examples are presented in order to understand the editing rules and to show the features 

of HITSI.  

If the selected main program has been compiled together with the example data file, 

make sure the current directory contains the main executable file and data file to 

associate the information of different files; and the program will be able to save the 

output files. 
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3.1 Data preparation for plane stress problem 

3.1.1 Data preparation 

The sequence of data preparation is as follows: 

1) In main program: read (10,*) element, nels, nn, nip, nodof, nod, nst, ndim, oppo.  

The corresponding command in data file: element type, number of elements, number 

of nodes in the mesh, number of integration points, number of degrees of freedom 

per node, number of nodes per element, number of stress terms, number of 

dimensions and number of parameters in creep damage constitutive equation. 

2) In main program: read (10,*) nprops, np_types. The corresponding command in 

data file: number of material property and number of different property type. 

3) In main program: read (10,*) prop. The corresponding command in data file: 

element properties. 

4) In main program: read (10,*) etype. The corresponding command in data file: 

element property type vector. 

5) In main program: read (10,*) k, g_coord (:, i). The corresponding command in data 

file: global nodal coordinates. 

6) In main program: read (10,*) k, g_num (:, i). The corresponding command in data 

file: global element node number vector. 

7) In main program: read (10,*) nr; if (nr>0) read (10,*) (k, nf (:, k), i=1, nr). The 

corresponding command in data file: number of restrained nodes. 

8) In main program: read (10,*) loaded_nodes; allocate (no (loaded_nodes), storkv 

(loaded_nodes, ndim)). The corresponding command in data file: number of loaded 

nodes. 

9) In main program: read (10,*) (no (i), storkv (i, :), i=1, loaded_nodes). The 

corresponding command in data file: nodal loads information. 

The creep damage constitutive equation subroutines for the Kachanov-Rabotnov-

Hayhurst, the Kachanov-Rabotnov and the Kachanov-Rabotnov-Hayhurst-Xu models 

are available in this solver. The corresponding commands in main program: the 

subroutine KRH, the subroutine KR and subroutine KRHX.  User can select the different 

constitutive equation models with a simple call statement in main program. 
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 Kachanov-Rabotnov-Hayhurst equation: call subroutine KRH in main program; 

the order of parameters (oppo = 7) in creep damage constitutive equation  in 

data file can be represented by: A, B C, h, H*,  𝐾𝐶 and v.  

 Kachanov-Rabotnov equation: call subroutine KR in main program; the order of 

parameters (oppo = 7) in creep damage constitutive equation in data file can be 

represented by: K, n, m, M, Ф, χ and ɑ. 

 Kachanov-Rabotnov-Hayhurst-Xu equation: call subroutine KRHX in main 

program; the order of parameters (oppo = 11) in creep damage constitutive 

equation in data file can be represented by: A, B, C, h, H*, 𝐾𝐶, v, a, b, p and q. 

3.1.2 Example 

A uni-axial tension FE model which is adopted from Smith’s version linear elastic FE 

program: geotech / software / prog_fe / P50.F90 in (Smith and Griffiths, 2005) with 

uniform 3-node triangular elements numbered in the x-direction is used for the 

demonstration of data preparation. 

 The FE model is shown as follows: 

 

In data file, the input information corresponds to the sequence of data preparation in 

Section 3.1.1 and is presented as follows: 

1)  

'triangle'  8  9  3  2  3  4  2  7     

2) 

9   

3) 
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2 

4) 

100000.0  .3  2.93965d-12  4.3680  -0.2031  1.15878d-9  4.9667  2.8554  0.4298    

100000.0  .3  2.93965d-12  4.3680  -0.2031  1.15878d-9  4.9667  2.8554   0.4298       

5) 

 1  1  1  1 

 2  2  2  2 

6) 

Node    1         0.0000E+00  0.0000E+00 

Node    2         0.5000E+00  0.0000E+00 

Node    3         0.1000E+01  0.0000E+00 

Node    4         0.0000E+00 -0.5000E+00 

Node    5         0.5000E+00 -0.5000E+00 

Node    6         0.1000E+01 -0.5000E+00 

Node    7         0.0000E+00 -0.1000E+01 

Node    8         0.5000E+00 -0.1000E+01 

Node    9         0.1000E+01 -0.1000E+01 

7) 

Element     1     1  2  4 

Element     2     5  4  2 

Element     3     2  3  5 

Element     4     6  5  3 

Element     5     4  5  7 

Element     6     8  7  5 

Element     7     5  6  8 

Element     8     9  8  6 

8) 

5      

1  0  1  4  0  1  7  0  0  8  1  0  9  1  0 

9) 

3 

1  0.0  10.0 

2  0.0  20.0 
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3  0.0  10.0 

This model contains 8 elements and 9 nodes. The length of a side is set to 1 metre. The 

Young's modulus E and Poisson's ratio υ are set to 1,000 MPa and 0.3 respectively. A 

uniformly linear distributed load of 10 KN/m is applied on the top line of this uni-axial 

tension model. 
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3.2 Data preparation for plane strain problem 

3.2.1 Data preparation 

The sequence of data preparation is as follows: 

1) In main program: read (10,*) element, nels, nn, nip, nodof, nod, nst, ndim, oppo.  

The corresponding command in data file: element type, number of elements, number 

of nodes in the mesh, number of integration points, number of degrees of freedom 

per node, number of nodes per element, number of stress terms, number of 

dimensions and number of parameters in creep damage constitutive equation. 

2) In main program: read (10,*) nprops, np_types. The corresponding command in 

data file: number of material property and number of different property type. 

3) In main program: read (10,*) prop. The corresponding command in data file: 

element properties. 

4) In main program: read (10,*) etype. The corresponding command in data file: 

element property type vector. 

5) In main program: read (10,*) k, g_coord (:, i). The corresponding command in data 

file: global nodal coordinates. 

6) In main program: read (10,*) k, g_num (:, i). The corresponding command in data 

file: global element node number vector. 

7) In main program: read (10,*) nr; if (nr>0) read (10,*) (k, nf (:, k), i=1, nr). The 

corresponding command in data file: number of restrained nodes. 

8) In main program: read (10,*) loaded_nodes; allocate (no (loaded_nodes), storkv 

(loaded_nodes, ndim)). The corresponding command in data file: number of loaded 

nodes. 

9) In main program: read (10,*) (no (i), storkv (i, :), i=1, loaded_nodes). The 

corresponding command in data file: nodal loads information. 

3.2.2 Example 

A uni-axial tension FE model with uniform 3-node triangular elements numbered in the 

x-direction is used for the demonstration of data preparation.  

The FE model is shown as follows: 
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In data file, the input information corresponds to the sequence of data preparation in 

Section 3.2.1 and is presented as follows: 

1) 

'triangle'  48  35  3  2  3  4  2   

2) 

2   

3) 

3 

4) 

1000000.0  .3   

1000000.0  .3 

1000000.0  .3 

5)   

1  1  1  1  1  1  1  1 

1  1  1  1  1  1  1  1 

2  2  2  2  2  2  2  2 

2  2  2  2  2  2  2  2 

3  3  3  3  3  3  3  3 

3  3  3  3  3  3  3  3 

6) 

Node    1         0.0000E+00  0.1000E+01 

Node    2         0.1000E+01  0.0000E+00 

Node    3         0.2000E+01  0.0000E+00 
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Node    4         0.3000E+01  0.0000E+00 

Node    5         0.4000E+01  0.0000E+00 

Node    6         0.0000E+00 -0.1000E+01 

Node    7         0.1000E+01 -0.1000E+01 

Node    8         0.2000E+01 -0.1000E+01 

Node    9         0.3000E+01 -0.1000E+01 

Node   10         0.4000E+01 -0.1000E+01 

Node   11         0.0000E+00 -0.2000E+01 

Node   12         0.1000E+01 -0.2000E+01 

Node   13         0.2000E+01 -0.2000E+01 

Node   14         0.3000E+01 -0.2000E+01 

Node   15         0.4000E+01 -0.2000E+01 

Node   16         0.0000E+00 -0.3000E+01 

Node   17         0.1000E+01 -0.3000E+01 

Node   18         0.2000E+01 -0.3000E+01 

Node   19         0.3000E+01 -0.3000E+01 

Node   20         0.4000E+01 -0.3000E+01 

Node   21         0.0000E+00 -0.4000E+01 

Node   22         0.1000E+01 -0.4000E+01 

Node   23         0.2000E+01 -0.4000E+01 

Node   24         0.3000E+01 -0.4000E+01 

Node   25         0.4000E+01 -0.4000E+01 

Node   26         0.0000E+00 -0.5000E+01 

Node   27         0.1000E+01 -0.5000E+01 

Node   28         0.2000E+01 -0.5000E+01 

Node   29         0.3000E+01 -0.5000E+01 

Node   30         0.4000E+01 -0.5000E+01 

Node   31         0.0000E+00 -0.6000E+01 

Node   32         0.1000E+01 -0.6000E+01 

Node   33         0.2000E+01 -0.6000E+01 

Node   34         0.3000E+01 -0.6000E+01 

Node   35         0.4000E+01 -0.6000E+01 

7) 
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Element     1     1  2  6 

Element     2     7  6  2 

Element     3     2  3  7 

Element     4     8  7  3 

Element     5     3  4  8 

Element     6     9  8  4 

Element     7     4  5  9 

Element     8    10  9  5 

Element     9     6  7 11 

Element    10    12 11  7 

Element    11     7  8 12 

Element    12    13 12  8 

Element    13     8  9 13 

Element    14    14 13  9 

Element    15     9 10 14 

Element    16    15 14 10 

Element    17    11 12 16 

Element    18    17 16 12 

Element    19    12 13 17 

Element    20    18 17 13 

Element    21    13 14 18 

Element    22    19 18 14 

Element    23    14 15 19 

Element    24    20 19 15 

Element    25    16 17 21 

Element    26    22 21 17 

Element    27    17 18 22 

Element    28    23 22 18 

Element    29    18 19 23 

Element    30    24 23 19 

Element    31    19 20 24 

Element    32    25 24 20 

Element    33    21 22 26 
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Element    34    27 26 22 

Element    35    22 23 27 

Element    36    28 27 23 

Element    37    23 24 28 

Element    38    29 28 24 

Element    39    24 25 29 

Element    40    30 29 25 

Element    41    26 27 31 

Element    42    32 31 27 

Element    43    27 28 32 

Element    44    33 32 28 

Element    45    28 29 33 

Element    46    34 33 29 

Element    47    29 30 34 

Element    48    35 34 30 

8) 

11      

1  0  1  6  0  1  11  0  1  16  0  1  21  0  1  26  0  1  31  0  0  32  1  0  33  1  0  34  1  0  35  1  0 

9) 

5 

1  0.0  5.0 

2  0.0  10.0 

3  0.0  10.0 

4  0.0  10.0 

5  0.0  5.0                                                     

This model contains 48 elements and 35 nodes. The width of this model is set to 5 

metres. The Young's modulus E and Poisson's ratio υ are set to 1,000 MPa and 0.3 

respectively. A uniformly linear distributed load of 10 KN/m is applied on the top line 

of this uni-axial tension model. 
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3.3 Data preparation for axisymmetric problem 

3.3.1 Data preparation 

The sequence of data preparation is as follows: 

1) In main program: read (10,*) element, nels, nn, nip, nodof, nod, nst, ndim, oppo.  

The corresponding command in data file: element type, number of elements, number 

of nodes in the mesh, number of integration points, number of degrees of freedom 

per node, number of nodes per element, number of stress terms, number of 

dimensions and number of parameters in creep damage constitutive equation. 

2) In main program: read (10,*) nprops, np_types. The corresponding command in 

data file: number of material property and number of different property type. 

3) In main program: read (10,*) prop. The corresponding command in data file: 

element properties. 

4) In main program: read (10,*) etype. The corresponding command in data file: 

element property type vector. 

5) In main program: read (10,*) k, g_coord (:, i). The corresponding command in data 

file: global nodal coordinates. 

6) In main program: read (10,*) k, g_num (:, i). The corresponding command in data 

file: global element node number vector. 

7) In main program: read (10,*) nr; if (nr>0) read (10,*) (k, nf (:, k), i=1, nr). The 

corresponding command in data file: number of restrained nodes. 

8) In main program: read (10,*) loaded_nodes; allocate (no (loaded_nodes), storkv 

(loaded_nodes, ndim)). The corresponding command in data file: number of loaded 

nodes. 

9) In main program: read (10,*) (no (i), storkv (i, :), i=1, loaded_nodes). The 

corresponding command in data file: nodal loads information. 

 

3.3.2 Example 

A uni-axial tension FE model with uniform 4-node quadrilateral elements numbered in 

the x-direction is used for the demonstration of data preparation. 

The FE model is shown as follows: 
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In data file, the input information corresponds to the sequence of data preparation in 

Section 3.3.1 and is presented as follows: 

1) 

'quadrilateral'  8  15  4  2  4  4  2  7   

2) 

2   

3) 

2 

4) 

1000000.0  .3   

1000000.0  .3 

5)   

1  1  1  1  1  1  1  1 

2  2  2  2  2  2  2  2 

6) 

Node    1         0.0000E+00  0.0000E+00 

Node    2         0.0000E+00 -0.4000E+01 

Node    3         0.0000E+00 -0.8000E+01 

Node    4         0.4000E+01  0.0000E+00 

Node    5         0.4000E+01 -0.4000E+01 

Node    6         0.4000E+01 -0.8000E+01 

Node    7         0.8000E+01  0.0000E+00 

Node    8         0.8000E+01 -0.4000E+01 

Node    9         0.8000E+01 -0.8000E+01 



318 
 

Node   10         0.1200E+02  0.0000E+00 

Node   11         0.1200E+02 -0.4000E+01 

Node   12         0.1200E+02 -0.8000E+01 

Node   13         0.1600E+02  0.0000E+00 

Node   14         0.1600E+02 -0.4000E+01 

Node   15         0.1600E+02 -0.8000E+01 

7) 

Element     1            2    1    4    5 

Element     2            3    2    5    6 

Element     3            5    4    7    8 

Element     4            6    5    8    9 

Element     5            8    7   10   11 

Element     6            9    8   11   12 

Element     7           11   10   13   14 

Element     8           12   11   14   15 

8) 

5 

3  0  0  6  1  0  9  1  0  12  1  0  15  1  0 

9) 

5 

1  .0  1.  4  .0  6.  7  .0  12.  10  .0  18.  13  .0  11 

This model contains 8 elements and 15 nodes. The Young's modulus E and Poisson's 

ratio υ are set to 1,000 MPa and 0.3 respectively. The length of each element is 4m. A 

uniformly distributed tensile force 0.375 KN/m2 is applied on the top line of this uni-

axial tension model. 
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3.4 Data preparation for three-dimensional problem 

3.4.1 Data preparation 

The sequence of data preparation is as follows: 

1) In main program: read (10,*) element, nels, nn, nip, nodof, nod, nst, ndim.  The 

corresponding command in data file: element type, number of elements, number of 

nodes in the mesh, number of integration points, number of degrees of freedom per 

node, number of nodes per element, number of stress terms, number of dimensions 

and number of parameters in creep damage constitutive equation. 

2) In main program: read (10,*) nprops, np_types. The corresponding command in 

data file: number of material property and number of different property type. 

3) In main program: read (10,*) prop. The corresponding command in data file: 

element properties. 

4) In main program: read (10,*) etype. The corresponding command in data file: 

element property type vector. 

5) In main program: read (10,*) k, g_coord(:, i). The corresponding command in data 

file: global nodal coordinates. 

6) In main program: read (10,*) k, g_num(:, i). The corresponding command in data 

file: global element node number vector. 

7) In main program: read (10,*) nr; if (nr>0) read (10,*) (k, nf (:, k), i=1, nr). The 

corresponding command in data file: number of restrained nodes. 

8) In main program: read (10,*) loaded_nodes; allocate (no (loaded_nodes), storkv 

(loaded_nodes, ndim)). The corresponding command in data file: number of loaded 

nodes. 

9) In main program: read (10,*) (no (i), storkv (i, :), i=1, loaded_nodes). The 

corresponding command in data file: nodal loads information. 

 

3.4.2 Example 

A uni-axial tension FE model which is adopted from Smith’s version linear elastic FE 

program: geotech / software / prog_fe / P58.F90 in (Smith and Griffiths, 2005) with a 

brick three-dimensional element is used for the demonstration of data preparation.  

The FE model is shown as follows: 
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In data file, the input information corresponds to the sequence of data preparation in 

Section 3.4.1 and is presented as follows: 

1) 

'hexahedron'  1  20  27  3  20  6  3   

2) 

6    

3) 

1 

4) 

1000000.  .3  30.  0.  0.  -20. 

5) 

1 

6) 

Node    1         0.0000E+00  0.0000E+00  0.0000E+00 

Node    2         0.5000E+00  0.0000E+00  0.0000E+00 

Node    3         0.1000E+01  0.0000E+00  0.0000E+00 

Node    4         0.0000E+00  0.0000E+00 -0.5000E+00 

Node    5         0.1000E+01  0.0000E+00 -0.5000E+00 

Node    6         0.0000E+00  0.0000E+00 -0.1000E+01 

Node    7         0.5000E+00  0.0000E+00 -0.1000E+01 

Node    8         0.1000E+01  0.0000E+00 -0.1000E+01 

Node    9         0.0000E+00  0.5000E+00  0.0000E+00 

Node   10         0.1000E+01  0.5000E+00  0.0000E+00 

Node   11         0.0000E+00  0.5000E+00 -0.1000E+01 

Node   12         0.1000E+01  0.5000E+00 -0.1000E+01 

Node   13         0.0000E+00  0.1000E+01  0.0000E+00 

Node   14         0.5000E+00  0.1000E+01  0.0000E+00 
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Node   15         0.1000E+01  0.1000E+01  0.0000E+00 

Node   16         0.0000E+00  0.1000E+01 -0.5000E+00 

Node   17         0.1000E+01  0.1000E+01 -0.5000E+00 

Node   18         0.0000E+00  0.1000E+01 -0.1000E+01 

Node   19         0.5000E+00  0.1000E+01 -0.1000E+01 

Node   20         0.1000E+01  0.1000E+01 -0.1000E+01 

7) 

Element     1     6  4  1  2  3  5  8  7 11  9 10 12 18 16 13 14 15 17 20 1916 

8) 

1  0  0  1  2  1  0  1  3  1  0  1  4  0  0  1  5  1  0  1 

6  0  0  0  7  1  0  0  8  1  0  0  9  0  1  1  11  0  1  0 

12  1  1  0  13  0  1  1  16  0  1  1  18  0  1  0  19  1  1  0  20  1  1  0 

9) 

 8 

 1  3  -10.05 

 2  3  -10.05 

 3  3  -10.05 

 9  3  -10.05 

10  3  -10.05 

13  3  -10.05 

14  3  -10.05 

15  3  -10.05   

This model contains 1 element and 20 nodes. The Young's modulus E and Poisson's 

ratio υ are set to 1,000 MPa and 0.3 respectively. The length of a side is set to 1 metre 

and a uniformly distributed load of 5 KN was applied on the top surface of this uni-axial 

tension model. 
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4. Tutorial on output results 

The running results are stored in dynamic arrays and they can be output in the end of 

program by a write statement. The results can be displayed in results file. The sequence 

of the calculated results is showing as follows: 

1) In main program: write (11, 99998) key1; write (11,*) ndim, nn, nod, nels, element, 

nst, nip, t0, e, v, key1. The corresponding command in results file: number of 

dimensions, number of nodes, number of nodes per element, number of elements, 

element type, number of stress terms, number of integrating points, total time, 

Young’s modulus, Poisson’s ratio and output index for node number.  

2) In main program: write (11, 99998) key2; do k=1, nn; write (11,*) k, g_coord (:, k); 

end do. The corresponding command in results file: global nodal coordinates. 

3) In main program: write (11, 99998) key3; do k = 1, nels; write (11,*) k, g_num (:, k), 

key1; end do. The corresponding command in results file: global element node 

number matrix. 

4) In main program: write (11, 99998) key4; do k=1, nn; write (11,*) k, loads (nf (:, k)); 

end do. The corresponding command in results file: nodal loads and displacement. 

5) In main program: write (11, 99998) key5; do k=1, nn; write (11,*) k, loads (nf (:, k)); 

end do. The corresponding command in results file: nodal freedom matrix. 

6) In main program: write (11, 99998) key6; do i=1, nels; write (11,*) I; do j=1, nip; 

write (11,*) j, tgc (:, j, i); end do; end do. The corresponding command in results 

file: The coordinates of integrating points. 

7) In main program: write (11, 99998) key7; do i=1, nels; write (11,*) I; do j=1, nip; 

write (11,*) j, tsigma(:, j, i); end do; end do. The corresponding command in results 

file: The stress terms.  

8) In main program: write (11, 99998) key8; do i=1, nels; write (11,*) I; do j=1, nip; 

write (11,*) j, teps (:, j, i); end do; end do. The corresponding command in results 

file: The strain terms. 

9) In main program write (11, 99998) key9; do i=1, nels; write (11,*) I; do j=1, nip; 

write (11,*) j, evpt (:, j, i); end do; end do. The corresponding command in results 

file: The creep strain terms. 

10)  In main program: write (11, 99998) key10; do i=1, nels; write (11,*) I; do j=1, nip; 

write (11,*) j, tabv (5, j, i); end do; end do. The corresponding command in results 

file: The creep damage 
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11)  In main program: write (11, 99998) key11. The corresponding command in results 

file: The output index 

The graphics are carried out by a post-processing data transfer program and the pre-

processing and post-processing FE software FEMGV. The results are output according 

to the output rules above. Then, the format of the results file can be transferred with the 

post-processing data transfer program and read by FEMGV.    

 

 

 


