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Abstract 

 
The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current 

metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in 

terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a 

process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods 

and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions 

in the fusion of surface metrology data are raised and potential fusion algorithms are discussed. 

 

Keywords: surface metrology, data fusion, multiple sensors 

 

1. Introduction 

 

Multi-sensor data fusion is currently one of the considered solutions for the measurement of freeform and high 

dynamic range structured surfaces. A comprehensive review of the application of data fusion techniques in 

dimensional metrology has been published elsewhere [1], but excluded some important research work on the 

development of fusion algorithms for surface metrology. The review presented here aims to be complimentary 

to the previous published work. 

 

1.1. Background  

 

Currently, structured and freeform surfaces, which are engineered for a variety of functional uses in different 

disciplines, are under development for many applications [2-4]. Typical examples include diverse freeform 

structures [5,6], and structured surfaces such as friction-resistant feature arrays, broad spectrum absorption 

surfaces and self-cleaning surfaces, which are engineered with repetitive structures on the micro-/nano-scale 

[7]. Such surfaces need full 3D characterisation (often referred to as “holistic measurement” [1]) with 

relatively large sensing areas and high resolutions, which challenges current measurement techniques. For 

example, the 3D freeform sculpture surfaces presented in [8] cannot be fully measured in any acceptable 

amount of time using any of the instruments covered in current ISO specification standards [9].  

 

1.2. The proposal and the objectives 

 

All types of surface measuring instrument have advantages and disadvantages [1]. For example, tactile co-

ordinate measuring machines (CMMs) are regarded as the most accurate instrument for macro-scale 3D 

measurement; however, they are expensive and it is time-consuming to obtain high-resolution 3D scanning 

data even for a relatively simple object. Instruments designed to measure surface texture, for example, 

coherence scanning interferometers (CSIs), have high axial resolution; however, they are only suitable for the 

measurement of topography on the micro- to nano-scales. A full measurement of a structured surface using 

CSI can require thousands of individual measurements of different areas. X-ray computed tomography is 

capable of measuring complex 3D structures; however, the measurement accuracy is normally low [10]. 

 

The combined use of different sensors can maximise the advantages of individual tools but avoid some of the 

disadvantages. Simple integration of multiple sensors in one system without actual combination of data is an 

initial step towards this objective. For example, the Leica DCM8 surface metrology system integrates 

interferometry and focus variation microscopy to increase the versatility of the system [11]. WITec GmbH 
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integrates confocal Raman microscopy, atomic force microscopy and scanning near-field optical microscopy 

into a versatile system which is capable of increasing the speed of the measurement of large area samples [12].  

 

Data fusion, which integrates multiple datasets from different sources for a unified output, is a further step to 

the sensor integration techniques described above. The aim of data fusion is to combine the advantages of the 

data from different sensors so that the fused data has improved quality or usability over that from any 

individual datasets. The benefits of data fusion usually include improved measurement reliability and 

information completeness (for example, with larger measuring range coverage or higher sample resolution) 

[13]. In surface metrology, the potential benefits of data fusion specifically include any of the following:  

 

1. increased spatial coverage or measuring range; 

2. increased sample density or resolution; 

3. improved reliability or fidelity, i.e. improved accuracy with improved robustness to sensory and 

algorithmic uncertainty; 

4. reduced measuring duration; and 

5. reduced data size. 

 

1.3. Definitions 

 

Data fusion has been used for data manipulation since the 1960s [14]. Data fusion received wide attention 

from the US defence sector, where the definition of data fusion and related terminologies were first 

standardised [15] in 1991 by the Joint Directors of Laboratories of the US Department of Defence. In this 

“Data Fusion Lexicon” [15], data fusion is defined as a “process dealing with the association, correlation and 

combination of data and information from single or multiple sources to achieve some improved estimation or 

assessments”. 

 

The definition of data fusion in different disciplines varies [16]. In surface or dimensional metrology, the 

development of data fusion is still at an early stage. The data obtained in surface metrology is a type of spatial 

data [17]. Fusion of spatial data has specific characteristics, in contrast to other types of data, such as time-

series, colour and acoustic data. For example, different surface measurement data need to be converted to a 

common format for combination, such as images with the same resolution, point clouds, statistical or 

functional models. Therefore, data fusion in surface or dimensional metrology is defined as [1]: 

 

The process of combining data from several information sources (sensors) into a common representational 

format in order that the metrological evaluation can benefit from all available sensor information and data. 

 

1.4. Fusion levels 

 

The spatial data used in surface metrology can be fused at different levels, including the signal level, feature 

level and decision level [1,18]. The signal level is the elementary fusion level in which the input data are fused 

in their original form. The feature level is an intermediate fusion level in which signal descriptors are fused. 

The decision level is the highest fusion level in which the decisions (for example, classification results) from 

individual measurements are fused. Fusion on higher levels can be more efficient, but may be more restrained 

for a specialised purpose. In surface metrology, fusion at the signal level is usually the most common situation. 

For example, fusion of AFM and CSI range images is carried out at a pixel (signal) level [19]. However, 

advanced fusion algorithms or solutions for surface metrology data could be developed at other fusion levels. 

 

1.5. Classifications 

 

The sensor configuration determines the relationship between the individual datasets. Different relationships 

determine the manner in which fusion is applied [20]. The following four fusion classifications are applied in 

current surface measurement applications.  

 

1) Fusion across sensors 
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The data comes effectively from multiple sensors or repeated measurements (with a single sensor) measuring 

the same attribute (for example, surface topography) of an object. Often redundancy in the data will be used to 

reduce error. Data from different sources in this class of fusion are homogeneous, for example, the datasets 

have the same resolution, uncertainty and measuring ranges. 

 

2) Fusion across attributes 

 

The input data corresponds to different attributes of the same object and have to be fused according to a 

relational model, taking into account the physical nature of the attributes, to gain as complete a picture as 

possible of the object from its component attributes. For example, given different attributes of a surface, such 

as surface roughness, hardness and heat transfer coefficients, a multi-variant analysis [21] of the information 

may find relational models between the attributes which can guide the control of the attributes in the processes 

of design and manufacture. 

 

3) Fusion across domains  

 

Data acquired at different scales, ranges or domains are fused to give a complete picture of the same object. 

Measurement results in different domains may include the measured range images of an object at different 

measuring scales, ranges, viewpoints and exposure conditions. Sometimes, the information in the domain of 

light intensity or colour is fused with the spatial information of an object. Fusion across domains is the most 

common case of data fusion used when measuring surface geometry, including the well-known “sub-aperture 

stitching” for large area surfaces [22]. The source data used for fusion can be homogeneous (for example, 

same-resolution range images captured at different positions), or inhomogeneous (for example, data from a 

CSI and a tactile system, computed tomography, or even non-geometry measurement tools).  

 

4) Fusion across time 

 

In this class of fusion, the data obtained from the same single or multiple sensors at different times are fused 

using a Kalman filter [23]. For example, a sensor detects a series of observations of the same surface at 

different times, and then a recursive fusion of the observation results can give an averaged estimation of the 

“real” surface geometry. 

 

Among these classes of fusion, fusion across domains is the most general situation in surface metrology but 

the algorithms for this class of fusion have not been well developed.  

 

In the following sections, the existing applications of data fusion in surface metrology are briefly reviewed. 

Then the common issues in general fusion activities for surface metrology are discussed. Finally, the fusion 

algorithms themselves are reviewed. 

 

 

 

2. Existing data (sensor) fusion applications 

 

2.1. Image fusion for dimensional information 

 

Image fusion has been used for many years in signal processing and is a typical case of data fusion. In surface 

metrology, fusion of grey-scale or full colour images, such as fringe images, is used with the majority of 

instruments for measuring surface topography. For example, most topography instruments based on optical 

methods [24] use a single sensor to successively capture individual images and combine them to present the 

dimensional information for an object. Other applications of image fusion for dimensional metrology include 

shape from shading, photogrammetry, fringe (structured light) projection systems and deflectometry [1]. Due 

to the difference in sensing principles and sensor configurations, the fusion algorithms applied to each 

measuring systems differ. It is, therefore, not possible to describe the diverse algorithms in a common 

framework. In other words, research on image fusion algorithms for different sensing approaches cannot be 

inductively used to develop new fusion algorithms. 
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This section gives three typical examples of image fusion to give dimensional information in surface 

metrology. More examples of image fusion for surface and dimensional metrology can be found elsewhere [1]. 

 

1) Focus variation systems 

 

Focus variation systems [24-26] were developed to achieve topography measurement of the top surfaces of an 

object by searching for the best focus position at each point on a sample. As shown in Figure 1, a series of 

images related to different depths are firstly obtained. Focus searching is then performed to find the focus 

depth for each pixel position and then a 3D rendering of the surface geometry is calculated. The core 

algorithm in this image fusion case searches for the focus position at each pixel position in the image stack, 

which has the highest contrast ratio when compared to its neighbouring pixels. 

 

 
 

1. array detector 

2. lenses 

3. white light source 

4. beam splitter 

5. objective 

6. specimen 

7. vertical scan 

8. focus curve 

9. light beam 

10. analyser 

11. polarizer 

12. ring light 

 

Figure 1. Schematic diagram of a typical focus variation system [26]. 

 

2) Coherence scanning interferometry 

 

Another application of image fusion can be found in CSI systems [24,27,28]. Figure 2a presents how the 

fringe images differ at different scanning positions on the z-axis for a typical CSI system. At a specific pixel 

position in the image, the irradiance received by the camera varies as an envelope wave depending on the 

scanning positions on the z-axis (see Figure 2b). Usually, the z-scanning position which corresponds to the 

strongest irradiance can be inferred as the surface height or depth. The task of image fusion for CSI is to find 

the peak or centre position of the irradiance signal received at each pixel position, given a stack of fringe 

images acquired at different z positions. Different peak/centre searching methods (fusion algorithms) have 

been developed (for example, [29,30]) for the CSI image fusion process.  
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(a) 

 
(b) 

Figure 2. The CSI working principle. (a) Fringe images observed on a curved surface. (b) Irradiance signal observed for each pixel 

position against the scanning positions on the z-axis [28]. 

 

3) Computed tomography 

 

X-ray computed tomography (XCT) is increasingly being applied for non-destructive 3D surface 

measurement in engineering with an uncertainty down to micrometres [31,32]. An XCT system radiates X-

rays in a cone or parallel form through the object and detects the attenuated projection images (radiographs). 

By exposing the object from different directions, a stack of 2D images are obtained which are then fused to 

reconstruct [33] the volumetric information about the object (see Figure 3). The fusion algorithms for XCT are 

often based on Radon backprojection, but see elsewhere for a short review of different reconstruction 

algorithms [32]. 

 
Figure 3. The working mechanism of a XCT system (courtesy of NPL [32]). 

 

2.2. Computed visual fusion 

 

Computed visual fusion is a process of applying visual sensors (such as video cameras) and geometrical 

measurement sensors to achieve automated measurement with the assistance of computers. Visual fusion 

provides the potential for automated manufacture and measurement in engineering. For example, a vision 

system based on video cameras can provide a preview or approximate contour knowledge about an object and 

then intelligent sampling using CMMs or other sensors for features of interest can be conducted in an efficient 

manner. Much research has been conducted for automated CMM metrology [34-37]. AFM systems have also 

recently been integrated with vision systems to achieve automatic, fast and large area measurements [38,39]. 

 

It should be noted that the data from vision systems and geometrical measurement systems are used in a 

temporal sequence. The final output of such fusion systems is generated solely from the geometrical 

measurement sensors. In other words, it is an elementary sensor fusion rather than data fusion that occurs in 

visual fusion cases. 
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2.3. Spatial data fusion 

 

1) Repeated measurements  

 

Using repeated measurements is well-known as a statistical method to reduce the uncertainty of a 

measurement. In surface or dimensional metrology, repeated measurements are widely used. For example, in a 

CSI, a sequence of measurement data from the same sensor can be obtained and averaged using the arithmetic 

mean (or weighted mean). If each individual data set has random noise or defects induced by uncertain 

environmental conditions, for example temperature, air flow, illumination, vibration, and electromagnetic 

disturbances, the mean output can be provided with higher reliability (lower uncertainty) [40]. Figure 4 shows 

the effect of a simple mean-based fusion for two noisy datasets acquired from a step signal. 

 

In some fusion situations, the measuring environment can be manually altered to obtain different results which 

can compensate each other. For example, by altering the lighting conditions, a sphere surface can have 

different measurement results under the same CSI system [41]. Figure 5 presents the resultant measurement 

data under different light settings. The lower light level result has valid data acquired at the flat region, i.e. the 

sphere top and the base, but has missing data at the inclined regions. The higher light level result presents 

complementary data. An appropriate combination of the datasets can produce a result with a larger number of 

valid sample points, i.e. higher information completeness. Figure 5c presents such a fused result by combining 

the two image datasets in a point-wise manner using the maximum sample value. 

 

 
Figure 4. The uncertainty of the arithmetic mean fusion decreases given two independent datasets. 

 

 
(a) 

 
(b) 
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(c) 

Figure 5. Individual measurement data of a sphere surface under 25 % (a) and 35 % (b) light intensity settings, and the fused result (c) 

[41]. 

 

2) Stitching 

 

Stitching of surface measurement data has been used in interferometry since the 1990s [22,42], and is a typical 

case of data fusion. A large area surface can often not be measured by a single interferogram. Therefore, 

stitching of sub-aperture images to give a larger measuring area is an obvious solution. Figure 6 is a schema of 

a typical stitching interferometer. Stitching can be applied to most existing areal surface topography 

instruments [9], such as AFM, confocal microscopy or focus variation microscopy. 

 

Stitching relies on a calibrated high-accuracy translation stage which is able to control the lateral movement of 

the sample at an accuracy level far below the pixel width. If the translation stage lacks control accuracy, the 

stitching is inexact and extra pre-stitching processes [43] (for example, pre-registration on the lateral plane or 

resampling) are needed, which increases the operational complexity. After the acquisition of a sequence of 

sub-aperture measurements at different regions, stitching is implemented.  

 

 
Figure 6. Sketch of a simple sub-aperture stitching interferometer.  

 

A typical stitching algorithm includes registration in three degrees-of-freedom, namely tip, tilt and piston [22], 

followed by a point-wise fusion process. The registration process superimposes extra offsets to each dataset 

on lower or higher orders [44], so that every individual spatial dataset can be described in the same coordinate 

system following the assumption:   

 
 𝒛𝑟𝑒𝑓(𝑥, 𝑦) =  𝒛(𝑥, 𝑦) + 𝛷𝑥𝑦𝜷 + 𝜺, (1)  

 

where z(𝑥, 𝑦) is the vector of original sample values of an individual sample set, 𝒛𝑟𝑒𝑓(𝑥, 𝑦) is the vector of 

sample values of the same sample set but linearly transformed into the reference coordinate system, 𝛷𝑥𝑦 is the 

stitching error modelling matrix and 𝜷 is the stitching parameter vector, 𝜺~𝑁(𝟎, 𝜎2𝑰). The main task of 

stitching algorithms is to estimate 𝜷 for each individual sub-aperture measurement. Therefore, given 𝑲 =
{1,2,… , 𝐾} sub-aperture images 𝒛𝑘𝜖𝑲, by setting one as the reference, for example, 𝒛𝑀 , estimation of the 

stitching parameters 𝜷𝑘𝜖𝑲,𝑘≠𝑀 becomes the following minimisation problem 

 

 

  
 

 
x 

y 

z 

Interferometer 

Translation stage 
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 𝜷 = argmin∑∑‖𝒛𝑖∩𝑗 + 𝛷𝑖∩𝑗𝜷𝒊 − 𝒛𝑗∩𝑖 −𝜱𝑗∩𝑖𝜷𝑗‖2

2

𝑗𝜖𝑲𝑖𝜖𝑲

 (2)  

 

where 𝜷𝑀 = 𝟎, 𝛷𝑖∩𝑗 = 𝛷𝑗∩𝑖  and 𝒛𝑖∩𝑗  denotes the vector of z-data of the i
th
 image corresponding to the j

th
 

image. Once the registration process ends, fusion is implemented by simply taking the arithmetic mean of the 

sample values from each individual dataset at each overlapping position. 

 

 

 
(a) Nine independent sub-aperture measurements (randomly coloured for visual discrimination) (unit: µm). 

 

 
(b) The stitching result. 

Figure 7. Stitching of nine sub-aperture measurements for an optical chip (unit: µm). 

 

In Figure 7, an example of stitching for nine sub-aperture measurements is presented. In this example, an 

initial sub-aperture measurement in nine local regions was taken on an optical chip surface [45]. By using the 

near-origin local measurement in Figure 7a as the reference, the remaining eight datasets are registered and 

the fused result presents a usable measurement.  
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3) Range image fusion  

 

Range image fusion, which deals with the fusion of resolution-inhomogeneous images, is an extension of 

general stitching. In range image fusion, the images to be fused can be from the same instrument with 

different (or the same) sensors, or from different instruments. Because there is no natural point-pair 

correspondence between overlapping datasets, a cross-resolution image registration algorithm and fusion 

algorithm need to be developed. 

 

Research into range image fusion is limited, but see recent work by Ramasamy et al. [19,46]. In Ramasamy’s 

framework, the inhomogeneous images are first resampled under the same sampling conditions. Then, a two-

stage registration process is carried out: an initial coarse matching based on the sum of absolute differences or 

normalised cross-correlation [47], and a fine registration based on an iterative closest point algorithm [48]. In 

the fusion process, because input datasets usually have different uncertainty or information richness 

(measurement bandwidths), a weighted mean is normally taken. Ramasamy introduced some weighting 

methods from image processing techniques, including the regional energy [49], regional edge intensity [50] 

and the combination of wavelet coefficients and local gradients [51]. However, uncertainty propagation based 

on these weighting methods is currently unclear. 

 

Theoretically, the choice of proper weights relies on the measurement uncertainties of each instrument. For 

example, given multiple images to be fused, and that have standard measurement uncertainties 𝜎1, 𝜎2, … , 𝜎𝑛, 

an optimal design of weights 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑛]
𝑇  should minimise the standard uncertainty of the fusion 

result, i.e. 
 argmin𝒂 𝜎𝐹

2 = 𝒂𝑇𝑉𝒂, subjected to ‖𝒂‖1 = 1, 𝒂 ∈ [0,1]𝑛, (3)  

 

where, 𝑉 = diag(𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2). Therefore, the optimised weights for individual images can be calculated as  

 
 𝑎𝑖 =

1

𝜎𝑖
2∑

1

𝜎𝑖
2

. (4)  

 

Under optimal weighting, the fusion result can always provide reduced uncertainty as 

 
 min 𝜎𝐹

2 =
1

∑
1

𝜎𝑖
2

. (5)  

 

In practice, the measurement uncertainty of individual images is usually unknown or inaccurate, especially 

when resampling is implemented in pre-processes [19,46], therefore, the theoretical weight design may not be 

optimal. 

 

4) Point cloud fusion 

 

Point cloud fusion includes the fusion of spatial data in point cloud forms, which can be widely found in 

statistical analysis [52]. Because any other spatial data forms can be represented in point cloud forms, point 

cloud fusion is becoming an important research topic in surface metrology, especially in dimensional 

metrology [1]. Surface measurement data in point cloud forms can normally be found on CMM systems or 

other dimensional metrological systems. Unlike images, which have regular grid data forms and can be 

efficiently modelled by tensor-product models, point cloud data usually needs relatively complex 

mathematical representation and analysis. For example, radial basis function (RBF) modelling has the typical 

computational complexity of the order of 𝑂(𝑚𝑛2) [53], compared to 𝑂(2𝑚𝑛) with efficient tensor-product 

methods, where m and n are the number of data points and number of RBF centres respectively. 

 

Registration of point cloud data into a common coordinate system is usually the first task before the fusion of 

data. Many algorithms for point cloud registration have been developed, such as the iterative closest point 

algorithms for fine registration [48,54,55] and diverse signature-based rough registration algorithms [56-58]. 
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Registration guarantees the individual datasets are represented in the same coordinate system so that they can 

be fused.  

 

After registration, fusion is carried out to combine the datasets in each overlapping region so that an enhanced 

output is produced. Currently, most point cloud fusion algorithms convert 3D problems into 1D problems, by 

projecting a 3D point cloud onto a reference surface so that the 3D geometry can be described by surface 

height z as a function of x and y coordinates, i.e. 𝑧 = 𝑓(𝑥, 𝑦). Thus, fusion of x, y and z data can be reduced 

down to fusion of z data only. Typical point cloud fusion algorithms include hierarchical Gaussian process 

fusion and its derivatives [59-63]. These Gaussian process-based fusion methods approximate the residuals 

between two reliability-differentiated datasets using Gaussian process models. The uncertainty propagation 

for such fusion solutions is still not clear. 

 

There are other fusion algorithms available for point cloud data, such as Kalman filter methods based on 

parametric approximation [64]. All these algorithms for point cloud fusion rely on different approximation 

techniques, such as B-splines and Gaussian process approximation [53,65,66]. A review of these detailed 

algorithms is given in section 4.  

 

 

3. Common issues in fusion processes for spatial data 

 

Among the applications of spatial data fusion, the complexity of input data forms increases, from repeated 

measurements, to stitching, range image fusion and point cloud fusion (see Figure 8). Fusion of simpler forms 

of input data can, therefore, usually be implemented using the algorithms for complex forms of data. For 

example, repeated measurement fusion does not require registration. A stitching algorithm can hence be 

applied to repeated measurements but with the registration process omitted. Table 1 shows the main 

registration and fusion methods used for different spatial data fusion applications, in which it can be observed 

that the complexity of algorithms increases, as shown in Figure 8.  

 

 
Figure 8. Scopes of spatial data fusion methods. 

 
Table 1. Different methods of spatial data fusion and their corresponding registration and fusion methods. 

 

            Fusion 

 

Registration 

Simple mean 

(min/max) 

Weighted 

average 

Approximated 

fusion 

NA Repeated 

measurements 

  

3DoF 

registration 

Stitching   

5~6DoF 

registration 

 Range image 

fusion 

Point cloud 

fusion 

 

In spite of the differences, there are some common processes among the fusion methods. In most situations, 

the sequence of complete fusion processes for spatial data includes [1,19]: 

 

 

Point cloud fusion 

 

Range image fusion 

 

Stitching 

Repeated 

measurements 

Complex Simple 
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 pre-processes (denoising, downsampling, etc.),  

 registration,  

 fusion, and  

 post-processes (data reduction, rendering, spatial database management, etc.). 

 

In this section, some common issues in the above list of processes for surface measurement are discussed.  

 

3.1. Data forms  

 

Diverse forms or formats of data can be found in surface metrology. These different forms of data can 

represent different types of geometry and have different levels of computational complexity. Table 2 

summarises the typical forms of data found with surface measuring instruments, where xD implies that a 

dataset has full x degrees-of-freedom in the x-dimension; x.5D implies that a dataset has 𝑥 + 1 dimensions in 

total, with one dimension of data being a function of the other x dimension’s data. For example, 2.5D means 

that a dataset has three dimensions in total, but one dimension’s information is a dependent variable of the 

other two dimensional variables.  

 

Fusion algorithms for different forms of data are different. For example, the sum of absolute difference-based 

registration [47] is only applicable to images. Iterative closest point registration is only applicable to point 

cloud data [67]. In the fusion of mixed forms of data, there should be a common form of data which is 

computationally convenient in the processes of registration and fusion, and can be easily converted to other 

forms of data. 

 

The convertibility between these data forms is presented in Figure 9, in which, the data processing speed 

increases for the data forms from left to right. In Figure 9, the green arrows indicate a direct conversion is 

available with a small number of, or zero, operations; the red arrows indicate that the conversion needs 

algorithms, such as projection [68], interpolation [65,69-71] or iso-surface extraction [72,73]. Among the 

different forms of data, point clouds can be seen as the most popular form to which other forms of data can 

conveniently be converted. Therefore, point clouds are recommended as a common form of data for the fusion 

of mixed forms of spatial data.  

 
Table 2. Different data forms found in surface measurement. 

Level Name Data storage Instrument 

applications 

Surface function models  Complexity in linear 

modelling 

5 
3.5D  

volume data 
[𝑉]𝐾×𝐿×𝑃(𝐾𝐿𝑃=𝑁) CT 

Iso-surface to be extracted 

out 
Highly complex 

4 
3D  

point cloud 
[
𝑋
𝑌
𝑍
]

𝑁

 CMM 

𝑥𝑛 = 𝑓𝑥(𝑢𝑛 , 𝑣𝑛), 
𝑦𝑛 = 𝑓𝑦(𝑢𝑛, 𝑣𝑛), 

𝑧𝑛 = 𝑓𝑧(𝑢𝑛, 𝑣𝑛). 
𝑂(3𝑃(𝑚2𝑁)) 

3 
3D  

grid data 
{

[𝑋]𝐾×𝐿
[𝑌]𝐾×𝐿
[𝑍]𝐾×𝐿

}

(𝐾𝐿=𝑁)

 CMM  

𝑥𝑘,𝑙 = 𝑓𝑥(𝑢𝑘,𝑙 , 𝑣𝑘,𝑙), 

𝑦𝑘,𝑙 = 𝑓𝑦(𝑢𝑘,𝑙 , 𝑣𝑘,𝑙), 

𝑧𝑘,𝑙 = 𝑓𝑧(𝑢𝑘,𝑙 , 𝑣𝑘,𝑙).  

≤ 𝑂(3𝑃(𝑚2𝑁)) 

2 
2.5D  

scattered data 
[
𝑋
𝑌
𝑍
]

𝑁

 CMM 
𝑧𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛), 
𝑛 = 1,… ,𝑁. 

𝑂(𝑃(𝑚2𝑁)) 

1 
2.5D  

profile set 

{
 

 
[𝑍]𝑁1
[𝑍]𝑁2
⋮

[𝑍]𝑁𝐾}
 

 

(∑𝑁𝑘=𝑁)

 Stylus 

𝑧𝑘,𝑛𝑘 = 𝑓(𝑥𝑘 , 𝑦𝑛𝑘) 

𝑘 = 1,… ,𝐾, 
𝑛𝑘 = 1,… ,𝑁𝑘 . 

≤ 𝑂(𝑃(𝑚2𝑁)) 

0 
2.5D  

range image 
[𝑍]𝐾×𝐿(𝐾𝐿=𝑁) 

CSI, AFM, SL 

scanner, FV, 

confocal, stylus 

𝑧𝑘,𝑙 = 𝑓(𝑥𝑘 , 𝑦𝑙), 

𝑘 = 1,… ,𝐾, 
𝑙 = 1,… , 𝐿. 

≤ 𝑂(𝑃(𝑚2𝑁)) 

Note: P(·) denotes the algorithm complexity of matrix multiplication, m is the number of modelling parameters, N is the data size. 
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Figure 9. The convertibility between different forms of data. 

 

 

3.2. Pre-processes 

1) Levelling rotation  

 

For the fusion of point clouds, levelling rotation [74] is an optional step before registration. The coordinate 

system of a dataset is rotated so that the surface points lie approximately horizontally. In this way, surface 

samples can be modelled explicitly by 𝑧𝑖 = 𝑓(𝑥𝑖, 𝑦𝑖)𝑖=1,…,𝑁 . Surface data with re-entrant features needs 

complex fusion algorithms, which are beyond the scope of many of the existing fusion solutions introduced in 

section 4.  

 

2) Filling missing data  

 

In range image fusion, missing data should be replaced by neighbouring sample values or other meaningful 

values [75], for example, zero, or min/max values, to avoid later computation failures. However, not all 

existing algorithms fail for images with missing data. Filling missing data is, therefore, an optional procedure 

which is not recommended when there are concerns about the reliability of fusion.  

 

3) Removing outliers  

 

Due to effects of the measurement environment, outliers can exist and they vary a lot in shape depending on 

different sensing methods. Registration of outlier-contaminated datasets produces registration errors. The 

registration-induced errors can be magnified in the final fusion results. Therefore, outliers must be identified, 

and removed or corrected [76]. 

 

4) Denoising  

 

Noise, such as white noise and pink noise, can be found in any measurements. There are some mature 

algorithms developed for computational efficiency with range images, such as least-squares spline methods, 

total variation-minimisations [77,78] and algorithms for higher dimensional data [75]. Currently, advanced 

algorithms, such as L1 spline methods, are under development, which can avoid oscillations for abrupt change 

signals and are insensitive to outliers [79,80].  

 

Denoising as a pre-process is optional because many registration [48] and fusion [62] processes are insensitive 

to noise. In some fusion methods, denoising is included in the fusion process, such as in Gaussian process 

fusion [63].  
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3.3. Registration 

 

All fusion methods for spatial data, except repeated measurements, need a registration process to linearly 

transform different datasets to the same coordinate system before fusion (see Figure 10). Practical registration 

processes usually proceed in an initial course registration and are followed by a fine registration. The former 

process globally searches for a rough registration position which speeds up the latter fine registration and 

avoids the whole registration failing by being trapped at a local optimisation point. 

 

1) Coarse registration 

 

Coarse registration aims to initially place a dataset in the same coordinate system as a design (template) 

model or another dataset. Many methods have been developed for this purpose, most of which efficiently 

conduct the task by simply matching a set of fiducial marks or points, instead of using all the sample 

points [56-58,81,82]. For course registration of range images, the sum of absolute differences and 

normalised cross-correlation [47] are usually efficient solutions [41].  
 

2) Fine registration 

 

Fine registration usually applies to all the sample points to determine final registration parameters by 

minimising the distance between two sets of data. Fine registration provides the six parameters 

[𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝛼, 𝛽, 𝛾] for output, which respectively denote the relative translations and rotations on/around the x-, 

y- and z-axes.  

 

Iterative closest point (ICP) algorithms [48,54,55] are a set of widely preferred methods for fine registration. 

ICP algorithms search for the corresponding closest points from a dataset for each sample point of a template 

(or another dataset), and then calculate registration parameters for the established correspondence relationship, 

iteratively until a condition is achieved. The selection of an appropriate closest point searching algorithm 

usually determines the registration accuracy. Typical closest point searching methods include brute-force 

search, Delaunay triangulation and kD-tree methods [83]. For surface measurement data, with numbers of 

sample points that is usually in the thousands, kD-tree is normally the recommended method due to its high 

computational efficiency. Once a point-correspondence relationship is established, calculation of the 

registration parameters can be implemented in a least-squares manner, for example, based on singular value 

decomposition [68] or quaternions [84]. Further details on ICP algorithms can be found elsewhere [67]. 

 

For very dense input datasets, downsampling is usually implemented to speed up registration computations 

[67]. The selected downsampling methods influence the accuracy of registration and hence the accuracy of the 

final fusion. Simple random downsampling [85] has been shown to be unbiased to the prediction of 

registration parameters. Other intelligent sampling [86] methods are expected to improve the convergence rate 

[87] by densely reserving sample points at the feature-rich regions. The features can include peaks, pits, 

saddle points and feature edges. For example, intelligent sampling by adapting sample points to surface 

curvatures [67] has been demonstrated to improve the registration accuracy and speed.  

 

 

3.4. Fusion 

1) Preparation of data for fusion 

 

As described in section 3.1, fusion of mixed forms of data is expected to be carried out under a common data 

form, for example, point clouds. For the data in point cloud forms, a further conversion to scattered data forms 

is needed to simplify 3D fusion problems to fusion of z data only. 

 

Data fusion should be carried out on the data points within the overlapping areas between two or multiple 

datasets. The peripheral points outside the overlapping areas should be removed for computational efficiency. 

In-hull indexing algorithms [88] can be employed for this purpose by respectively applying one dataset as the 
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template hull and searching for the data points of other datasets within the hull. Figure 10 shows the role of in-

hull indexing.  

 


Figure 10. Schema of the effects of registration and in-hull indexing. 

 

2) Fusion of data 

 

For simple data fusion solutions, such as repeated measurements, stitching and range image fusion, fusion of 

data is implemented by averaging (simple mean or weighted mean) each pair of correspondent points in a 

point wise manner from individual sets of data. For point clouds or scattered data, different datasets usually 

have varied sampling conditions, which indicate that there is usually no naturally existed point-

correspondence relationship. Therefore, fusion of point clouds or scattered data needs advanced algorithms. 

 

Currently, most fusion solutions for point clouds rely on appropriate surface fitting techniques. For example, 

in references [60,62,63], Gaussian process-based surface fitting techniques are used to approximate the 

residuals between each pair of input datasets. Other fitting techniques, such as B-spline wavelets-based [89,90] 

surface approximation techniques, may also provide good fusion results.  

 

Another classical fusion technique for point clouds is weighted least-squares fusion based on parametric linear 

fitting [91]. Linear fitting ensures the fusion is simplified for uncertainty control and fast for numerical 

computation. However, flexible and robust fitting models are difficult to construct for practical signals, 

especially signals with abrupt changes. Therefore, there has only been limited work in dimensional metrology 

on linear fitting. Despite the difficulty of fitting, weighted least-squares fusion can be applied for smooth 

surfaces, which can be efficiently approximated using many common fitting models [53]. 

 

In section 4, detailed mathematical descriptions of the two methods, i.e. residual fitting-based fusion and 

weighted least-squares fusion, are given.  

 

 

3.5. Post-processes 

 

There are normally three post-processes for data fusion, including data reduction, storage and rendering, with 

the assistance of a spatial database management system. 

 

Once a fusion result is obtained, the original datasets become redundant and can be abandoned. However, 

from the concern of traceability, the redundant data points may need to be reserved for further validation of 

the fusion reliability. Also, fusion results are usually in the form of a parametric or non-parametric model that 

can be directly saved as a set of model parameters (encoding) or a set of designed samples drawn from the 

fused model. Storage in the form of model parameters is usually efficient (small in memory size), but requires 

a variety of model-predicating algorithms (decoding) to render the fusion results in a Cartesian space. Storage 

in a set of extracted samples may be larger in size, but has the consistent form of expression as the unfused 

data in the peripheral areas (as in Figure 10). Such homogeneous outputs simplify the computational 

requirement for the tools of data communication and rendering. In summary, fusion results can be saved as a 

slimmed-down version with the model parameters, or a medium-sized version with a designed sample set 

extracted from the fused model, or a full version with all the original data preserved. The medium-sized 
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version, with appropriate sample design, can be set as a default output due to its merits on storage space and 

management.   

 

Rendering of fusion outputs relies on the development of a fast and user-friendly interface. In this interface, 

rendering of all fused datasets in a specific field of view is not necessary due to the limitations of the 

computation speed. An indexing process is needed instead to select the relevant datasets for a given field of 

view. The indexed datasets for a field of view should only include the datasets sampled from the top surfaces 

for a specific field of view. When rendering fused results in the form of 3D point clouds, the indexing needs 

more complicated solutions than range images in which the indexing proceeds only in a 2D plane. Meshing 

[92,93] of point clouds is another requirement for rendering. A meshing process, for example Delaunay 

triangulation [69], finds the neighbouring points for any point in a cloud, by which a set of discrete spatial 

points can be rendered as closely connected small facets. Meshing-based rendering can express real-world 

entities in a visually friendly manner.  

 

With the exception of the main post-processes described above, there are other processes users may need, 

such as measurement (for example, measuring the distance between two spatial points), editing (for example, 

adding or removing a data point or other types of geometry) and analysis [94]. All these post-processes are 

carried out based on a specialised spatial database management tool. Different from any existing database 

management systems in surface or dimensional metrology, this spatial data management tool should be able to 

effectively process large data. For example, an automated measurement of a large area surface by stitching 

hundreds to thousands of sub-aperture range images may produce a file of gigabytes or more. Manipulation of 

such large file may easily suffer from slow processing and large memory requirements.  

 

 

 

4. Spatial data fusion algorithms 

 

Repeated measurements, stitching or range images use simple or weighted means [19] as the fusion solutions. 

Fusion of point clouds needs advanced fusion solutions. Some existing fusion solutions for data in the form of 

point clouds rely on advanced surface fitting techniques, by either fitting the source surface signal or the 

residuals between two independent datasets with some common models. In this section, some promising 

fusion algorithms for spatial data in point cloud forms are discussed. 

 

4.1. Weighted least-squares fusion 

 

Weighted least-squares fusion is a classical fusion technique relying on parametric linear fitting [91] of source 

surface signals. Given a linear measuring system,  

 
 𝒛 = 𝐻𝒙 + 𝜺, (6)  

 

where x is a n-vector comprised of the model parameters to be measured, H is a m×n (𝑚 > 𝑛) model basis 

function matrix (or measurement matrix), z is a m-vector of the measurement results,  is a normal and 

independent and identically-distributed noise vector with 𝜺~𝑁(𝟎, 𝜎2𝑰). Such linear systems can approximate 

most practical surfaces, with an appropriate design of the measurement matrix. With multiple and independent 

measurement results from different instruments for the same object, say {𝒛𝑘 ∈ ℝ𝑚𝑘
}
𝑘∈𝐾

, with the noise levels 

𝜺𝑘~𝑁(𝟎, 𝜎𝑘
2𝐼), the model parameter vector x of the object can be estimated by minimising the cost function 

 
 ∑ 𝑤𝑘‖𝒛𝑘 − 𝐻𝑘𝒙‖

2
𝑘∈𝐾 , (7)  

 

where 𝑤𝑘  is a designed weight for each dataset. By setting the weights 𝑤𝑘 =
1

𝜎𝑘
2, the best linear unbiased 

estimation (BLUE) of the model parameters can be achieved, which has the minimum variance [91], i.e. the 

minimum evaluation uncertainty in this case.  
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The minimisation can be achieved by forcing the partial differential of the function (equation (7)) to 𝜶 equal 

to 0. Hence, the weighted least-squares fusion for the estimation of the model parameter x has the form 

 
 𝒙 = (𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊𝒛, (8)  

 

where 𝐻 = [

𝐻1
𝐻2
⋮
𝐻𝐾

], 𝑊 = diag(𝑊1,𝑊2, … ,𝑊𝐾) with 𝑊𝑘 = diag(𝑤𝑘, 𝑤𝑘 , … , 𝑤𝑘)𝑚𝑘
, and 𝒛 = [

𝒛1
𝒛2
⋮
𝒛𝐾

].  

 

The prediction output and its variance of the fused model vary at different observation positions [53]. 

However, a typical prediction of the model output can usually be obtained at the observation positions, which 

are the same as all the individual measurement datasets, i.e.  

 
 �̂� = 𝐻𝒙 = 𝐻(𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊𝒛. (9)  

 

The following shows that such a typical prediction has a minimum variance compared to the predictions based 

on any individual dataset only.  

 

Since the prediction error �̂� = �̂� − 𝐻𝒙 has the covariance 

 
 𝑉(�̂�) = 𝐻(𝐻𝑇𝑊𝐻)−1𝐻𝑇 = 𝑊−1 2⁄ 𝑄𝑤1𝑄𝑤1

𝑇𝑊−1 2⁄ , (10)  

 

where 𝑉 = 𝑊−1 = 𝑊−1 2⁄ 𝑊−1 2⁄  and 𝑊1 2⁄ 𝐻 has the QR factorisation as 𝑊1 2⁄ 𝐻 = 𝑄𝑤𝑅𝑤 = 𝑄𝑤1𝑅𝑤1. The 

squared standard prediction uncertainty, i.e. the mean squared error of the prediction in equation (9), can be 

expressed as 

 
 

𝑢2(�̂�) = MSE(�̂�) =
1

∑ 𝑚𝑘𝑘∈𝐾

𝑡𝑟(𝑉(�̂�))                                   

=
1

∑ 𝑚𝑘𝑘∈𝐾

∑ (
1

𝑤𝑘
2 ∑ ∑𝑞𝑖,𝑗

2

𝑛

𝑗=1

∑ 𝑚𝑠𝑠=1,…,𝑘

𝑖=1+∑ 𝑚𝑠𝑠=1,…,𝑘−1

)
𝑘=1,…,𝐾

≈
𝑛

∑
𝑚𝑘

𝜎𝑘
2𝑘∈𝐾

                                                                          

 (11)  

 

where 𝑞𝑖,𝑗 are the entries of 𝑄𝑤1. By substituting K by 1 in the equation (11), the squared standard prediction 

uncertainty of the least-squares fitting of each individual dataset without fusion can be obtained as 

 
 𝑢2(�̂�𝑖) =

𝑛

𝑚𝑖
𝜎𝑖
2. (12)  

 

Therefore, it can be easily shown that 𝑢2(�̂�) < 𝑢2(�̂�𝑖), i.e. the fused result always has a smaller prediction 

uncertainty than that without fusion. 

 

The weighted least-squares fusion described above is well known for its advantage in fast computation. 

However, if new sets of sample data are dynamically added in, the fusion result has to be updated by 

involving all previous datasets. A Kalman filter [23, 64] provides an alternative execution algorithm to the 

weighted least-squares fusion, by successively integrating new datasets with previously fused results, without 

reference to every previous set of data [64]. 

 

The difficulty of weighted least-squares fusion is that it requires a good design or measurement model to 

approximate the source surface. For surfaces with an unknown design model, or if the manufacturing error is 

large, some common models with a high degree of flexibility can be used for general fusion purposes. Typical 

common models include diverse B-spline models with different knot settings [65,89,90,95], which can 
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approximate general smooth signals well. For signals with abrupt changes in geometry, weighted least-squares 

fusion may not be recommended because the fitting solutions for such complex geometries are usually not 

available.  

 

To the authors’ knowledge, there is a lack of experimental research on weighted least-squares fusion for 

surface measurement. As an inspiring example, Figure 11 presents the fusion results of two uncertainty-

distinct datasets from a cubic B-spline curve, with the knots set at [−0.5,−0.4,0,0.4,0.6], with 2000 random 

simulations. Within every simulation, the measurement noise is randomly generated. This simulation shows a 

steady reduction of the estimation error by approximately 1/10 from that of the individual set with the smaller 

estimation error.  

 
Figure 11. Simulation of the effect of the weighted least-squares fusion. 

 

Another application difficulty of weighted least-squares fusion is derived from the calculation of the weights. 

Because the optimised weights are the reciprocal of the standard measurement uncertainty of each individual 

dataset, the reliability of the knowledge about the individual measurement determines the accuracy of fusion. 

However, the information about each individual measurement is usually fuzzy due to variable environmental 

conditions. Therefore, the feasibility of weighted least-squares fusion in practical situations has not been 

satisfactorily demonstrated. 

 

 

4.2. Residual approximation-based fusion 

 

Residual approximation (RA)-based fusion is a fusion solution which applies approximation to the systematic 

offset (residuals) between two individual datasets from different sensors. An analytical expression of the 

uncertainty propagation of the RA-based fusion methods is currently unavailable. However, many existing 

simulations have shown that such methods can provide uncertainty-reduced fusion results when compared 

with those from any individual set. As a competitive solution to weighted least-squares methods, RA-based 

fusion can be applied effectively for both smooth and non-smooth signals. 
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Figure 12. Schema of two-sensor data fusion for multi-sensor data fusion. 

 

RA-based multi-sensor data fusion proceeds in an ordered sequence with a common fusion process for every 

two sets of data; a process known as two-sensor data fusion [96]. As shown in Figure 12, individual datasets 

are first ordered according to their reliability level ranking. Then, from the dataset with the lowest reliability, 

RA-based fusion is carried out for each dataset with the previously fused result (or dataset), until all the input 

data are integrated. If there is no difference in the uncertainty for input datasets or the datasets are ranked 

inappropriately [60], the performance of RA-based fusion is uncertain. 

 

1) Gaussian process fusion  

 

A typical RA-based fusion method is Gaussian process (GP) fusion, which links two datasets by 

approximating their residuals as a GP function [59,61,62]. GP approximation is a non-parametric fitting 

method [66]. Given a set of residual data (x, y), with 𝒙 ∈ ℝ𝑑, a GP model, which is determined by a hyper-

parameter set 𝜽 , can be trained by maximising the marginal likelihood function (usually expressed in 

logarithmic form): 

 
 𝐿 = log𝐏(𝒚|𝒙, 𝜽) = −

1

2
log|𝑉𝜽| −

1

2
(𝒚 − 𝝁𝜽)

T𝑉𝜽
−1(𝒚 − 𝝁𝜽) −

𝑛

2
log(2𝜋), (13)  

 

where 𝑉𝜽 is the covariance matrix defined by the sample points x and the hyper-parameters 𝜽, and 𝝁𝜽 is the 

mean vector defined by 𝜽. The optimisation problem in equation (13) can be solved by using many well-

known algorithms, such as diverse interior-point methods [97] and trust-region-reflective methods, using 

MATLAB [98]. Another effective minimisation algorithm can be found in the GPML toolbox [99]. Once the 

hyper-parameters are optimised, the fitting prediction values 𝒚∗  can be calculated based on the posterior 

Gaussian model  

 
 𝒚∗|𝒚 ~ 𝑁(𝝁∗ + 𝑉∗

𝑇𝑉−1(𝒚 − 𝝁), 𝑉∗∗ − 𝑉∗
𝑇𝑉−1𝑉∗), (14)  

 

where V is the covariance matrix defined between the sample positions of the training dataset and themselves, 

𝑉∗ is the covariance matrix defined between the sample positions of the training dataset and the prediction 

positions, 𝑉∗∗ is the covariance matrix defined between the prediction positions and themselves, 𝝁 and 𝝁∗ are 

respectively the mean value (usually the predictions from previously fused result or another dataset with lower 

reliability, in GP fusion) vectors on the sample positions of the training dataset and the prediction positions. In 

short, the prediction and prediction variances can be efficiently computed by the linear system in equation 

(14). 

 

Given two sets of input data, with one as the high reliability (HR) set 𝒛1 and the other as the low reliability 

(LR) set 𝒛2, GP fusion links the two datasets by approximating the residuals of the two datasets as a GP 

function. For example, a typical fusion model [60] has the form of 
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 𝑧1(𝑥𝑖 , 𝑦𝑖) = 𝛽(𝑥𝑖 , 𝑦𝑖)�̂�2(𝑥𝑖 , 𝑦𝑖) + 𝛿(𝑥𝑖 , 𝑦𝑖) + 𝜀1, 𝜀1~𝑁(0, 𝜎1

2),

𝑧2(𝑥𝑖 , 𝑦𝑖) = �̂�2(𝑥𝑖 , 𝑦𝑖) + 𝜀2, 𝜀2~𝑁(0, 𝜎2
2),

𝛽(𝑥𝑖 , 𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑦𝑖 ,

𝛿~𝐺𝑃(𝑚𝑟 , 𝑘𝑙𝑟,𝜎𝑟2),

   (15)  

 

where �̂�2 is a fitted (or denoised) version of the LR set 𝑧2, with �̂�2 ≅ 𝑧2, 𝛿, defined by the mean function 𝑚𝑟 

and the covariance function 𝑘𝑙𝑟,𝜎𝑟2, is the GP linkage function which describes the systematic offset between 

the two input datasets, 𝛽 is a rescaling function which reduces the scale offset between the two input datasets, 

and 𝜀1  and 𝜀2  are white noise. 𝛽  can be substituted by other polynomial functions. However, it has been 

claimed [8] that a simple 1
st
 degree polynomial rescaling is flexible enough for most practical cases. 𝛽 can 

simply be set as unity if there is no scale bias between 𝒛1 and 𝒛2. Based on the linkage model in equation 

Error! Reference source not found., the fusion result can be expressed by a composition of the denoised LR 

data and the GP linkage function:  

 
 𝑧𝐹 = 𝛽(𝑥𝑖 , 𝑦𝑖)�̂�2(𝑥𝑖 , 𝑦𝑖) + 𝛿(𝑥𝑖 , 𝑦𝑖). (16)  

 

The fitting method for the LR set in equation (15) is free to be defined. Different constructions of the LR 

model  �̂�2 influence the reliability of the later GP fusion. For example, �̂�2 can be another GP model with 0 as 

the mean, i.e. 
 �̂�2(𝑥𝑖 , 𝑦𝑖)~𝐺𝑃(𝟎, 𝑘𝑙2,𝜎22). (17)  

 

The 0-mean GP model can provide a flexible approximation for smooth signals [66]. By combining the fitting 

models in equations (15) and (17), a hierarchical GP model is constructed, which is also called the Bayesian 

hierarchical Gaussian process [60,62]. �̂�2 can also be approximated by using some linear models, i.e.  

 
 �̂�2(𝑥𝑖 , 𝑦𝑖) = 𝑪𝜶, (18)  

 

where 𝑪 is a design matrix and 𝜶 are the modelling control parameters. Many mature linear interpolation and 

smoothing algorithms can be applicable to linear fitting, including diverse spline methods and Delaunay 

triangulation-based interpolation methods [65,69-71,89,100]. In simplified cases, for example in which 𝑧1 and 

𝑧2 have the same sample positions or the sample noise is relatively small, �̂�2 can simply be substituted by the 

source data 𝑧2. The linear approximation given by equation (18) and the simple replacement by the source 

data are computationally efficient when the data size is too large. 

 

2) Other fusion models 

 

Approximation of the residuals between any two sets of data can also be implemented by using other models, 

either, parametric or non-parametric. Because the input datasets usually have different sizes, a flexible and 

efficient approximation method must be found, for which the fusion accuracy is insensitive to data size. A 

typical such approximation method is multilevel B-spline approximation (MBA) [89]. MBA predicts at a 

location far from the available input data points as 0 in default and works stably with any size of a dataset. 

Such stability means that MBA is a promising fusion solution. 

 

MBA provides an approximation of a source surface with a sum of multiple model surfaces at different 

resolution levels, i.e. 

 
 𝒛 = 𝒛0 + 𝒛1 +⋯+ 𝒛𝐾, (19)  

 

where 𝒛𝑘 ∈ 𝑆𝑘 and {𝑆𝑘} is a nested sequence of subspaces with 𝑆0 ⊂ 𝑆1 ⊂ ⋯ ⊂ 𝑆𝐾. For example, given a set 

of sample points within a square domain, Ω = [0,𝑚] × [0, 𝑛]. A hierarchy of control lattices {Φ𝑘}𝑘=0,1,…,𝐾 

can be designed overlaid on the domain Ω with (2𝑘 + 3) × (2𝑘 + 3) control points, based on cubic B-splines 

[95].  
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By assigning the maximum approximation level K, MBA proceeds by iteratively estimating the parameters of 

each level of control lattice in a weighted and least-squares sense. Then, via an appropriate reconstruction 

algorithm, for example, knot refinement [95], the original surface can be simply fitted (smoothed or 

interpolated) and predicted through a linear system at any desired position.  

 

Other approximation models include regular grid or non-regular grid B-spline fitting models [65,95], radial 

basis function models, Fourier series models and wavelet models [53]. However, these models do not have 

such stable characteristics as the MBA method. Therefore, the feasibility of these alternative models for 

practical fusion is unclear and needs validation. 

 

3) Discussion 

 

RA-based fusion methods, especially GP fusion, are well-behaved fusion methods which have been 

demonstrated with experiments and simulations [60,62,63]. GP fusion, which uses one dataset as the mean 

and approximates the residuals between the dataset and another using a GP model, effectively avoids 

miscellaneous design of the parametric models for a complex surface.  

 

From a statistical standpoint, a prediction based on a HR set solely can be understood as a posterior estimation 

with null prior; GP fusion can be understood as a posterior estimation with a rough prior estimate based on a 

LR set. Therefore, with a prior estimate, RA-based fusion may have a high probability to provide improved 

fusion results with reduced uncertainty. For smooth (with small maximum local curvature) signals, a rough 

prior estimate may contribute insignificantly. But for non-smooth (with abrupt changes) signals, a rough prior 

estimate influences the fusion result with a higher weight than the HR dataset, especially when predicting at 

the observation positions near abrupt change areas. In addition, for the situations when a HR dataset is dense, 

a rough prior estimate is insignificant. But, if a HR dataset is sparse, a rough prior estimate, based on a high 

density LR sample set, may contribute effectively for the fusion output, especially when predicting at the 

observation positions with sparse HR sample points. 

 

Figure 13 presents a RA-based fusion example for a set of typical freeform surface measurement data from a 

tactile CMM and structured light (SL) scanner [63]. The CMM measurement is slow but highly accurate and 

100 CMM sample points are used as the HR set. The SL measurement is fast but with large systematic error 

and 4695 SL sample points are used as the LR set. Reconstruction of each individual set with natural-

neighbour interpolation produces large root-mean-square-error (RMSE), either due to the high measurement 

uncertainty of the SL set, or low sample density of the CMM set (see Figure 13b and c). Fusion of the two 

datasets with GP approximation or MBA successfully produces better reconstruction results with reduced 

errors.  

 

 
(a) The reference surface with the CMM 

(red) and SL (blue) sample sets [63]. 

 
(b) The errormap of the natural-neighbour 

interpolation reconstruction of the SL set, 

RMSE = 0.30. 

 
(c) The errormap of the natural neighbour 

interpolation reconstruction of the CMM set, 

RMSE = 0.69. 
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(d) The errormap of the RA-based fusion with GP approximation, 

RMSE = 0.22. 

 
(e) The errormap of the RA-based fusion with MBA, RMSE = 0.17. 

Figure 13. The performance of some residual approximation-based fusion methods (courtesy of [63]). 

 

 

5. Summary and outlook 

 

Holistic measurement of a workpiece is becoming the necessity in modern engineering. Workpieces with full 

3D geometry or re-entrant features, or comprised of high-dynamic range structures, which need to be 

measured with multiple local measurements, are the driving force for the development of (multi-sensor) 

spatial data fusion techniques in surface and dimensional metrology. Some existing data fusion methods can 

be found in many non-tactile instruments based on image processing. However, fusion of spatial data is 

relatively new in surface metrology and only a small number of industrial applications have been implemented, 

in particular for the fusion of point cloud data.  

 

Most spatial data fusion solutions under development follow a similar process framework comprised of pre-

processes, registration, fusion and post-processes. The registration process has been widely investigated and 

some high quality algorithms are available. The fusion process is at an early stage and limited algorithms are 

in development. Among the existing fusion methods, residual approximation-based fusion solutions, in 

particular GP fusion, can be effective for both smooth and non-smooth surfaces, but the uncertainty 

propagation has not been analytically analysed. Weighted least-squares fusion based on linear systems can be 

efficient, but only applicable for surfaces with smooth geometry. The advantages and disadvantages, and 

versatility of these fusion solutions need to be further investigated. 

 

Some post-processes have not been well resolved for spatial data fusion, such as data reduction, storage, 

rendering and other manipulations, with the assistance of a specialised spatial database management system. 

Therefore, the development of such spatial database management systems should form one of the next 

development phases for multi-sensor measurement techniques. 
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