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Detection of multiple solutions using a mid-cell back
substitution technique applied to computational fluid

dynamics

S R Kendall* and H V Rao

School of Engineering, The University of Huddersfield, West Yorkshire, UK

Abstract: Computational models for fluid flow based on the Navier—Stokes equations for com-
pressible fluids led to numerical procedures requiring the solution of simultanecous non-linear alge-
braic equations. These give rise to the possibility of multiple solutions, and hence there is a need to
monitor convergence towards a physically meaningful flow field. The number of possible solutions
that may arise is examined, and a mid-cell back substitution technique (MCBST) is developed to
detect and avoid convergence towards apparently spurious solutions. The MCBST was used suc-
cessfully for flow modelling in micron-sized flow passages, and was found to be particularly useful in
the early stages of computation, optimizing the speed of convergence.

Keywords: mid-cell back substitution, computational fluid dynamics, compressible fluids, flow

modelling

NOTATION

E; error resulting from the back substitution
of the mid-cell (y;m) values into the original
finite difference flow equations

H passage depth (m)

Ly passage length (m)

m maximum grid mesh number in the y
direction

n maximum grid mesh number in the x
direction

N> nitrogen gas

P pressure (N/m?)

u velocity component in the x direction (m)

v velocity component in the y direction (m)

w velocity component in the z direction (m)

X, ),z coordinates (m)

Ax, Ay, Az grid size in the x, y and z directions (m)

Yio solution of the unknown values for u, v
and p at the nodal points of the flow mesh

Vim extrapolated values for u, v and p at the

mid-cell positions of the flow mesh

The MS was received on 20 August 1999 and was accepted after revision
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1 INTRODUCTION

The non-linecar nature of the sultancous algebraic
equations encountered in the numerical solution of the
Navier—Stokes equations governing the flow of fluid
gives rise to the possibility of multiple solutions [1].
However, only one of these numerical solutions will be a
true representation of the actual physical flow field.
Hence, it is necessary to monitor the convergence of the
solution in order to detect and avoid physically mean-
ingless solutions.

In this paper the number of possible numerical solu-
tions that may arise is examined using an alternative
approach, which may also be confirmed with the more
general technique known as Bezout’s theorem [2]. A
mid-cell back substitution technique (MCBST) is
developed for monitoring solution convergence.

2 THEORY

2.1 Occurrence of multiple solutions in numerical
procedures employing the Navier—Stokes equations

The numerical solution of the Navier—Stokes equations
based upon the finite difference equations, along with
appropriate boundary conditions, may be assumed to
result in algebraic equations up to a third degree: Ny =
number of linear algebraic equations; N, = number of
quadratic algebraic equations; N3 = number of cubic
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algebraic equations. The procedure may readily be
extended to accommodate higher than third-order
algebraic equations, when necessary.

The total number of algebraic equations, N, is given
by

N=(N;+ N, + N3)

The above equations are written in terms of the
unknown values of u, v and p at various nodal points for
a steady state problem. It is shown in the Appendix that
the total possible sets of solutions is given by

Nyt =20 x 3% (1)

It is possible that some of these roots may be imaginary.

2.2 Mid-cell back substitution technique

Let the finite difference equations for the unknown u, v
and p values at the nodal points within a two-dimen-
sional flow field be represented by the following N
equations:

f/(J’I,yZa---ayN):O fOI‘j:l,Z,...,N (2)

where y;, i=1,2,..., N are the unknown values of u, v
and p at the nodal points.

If yio, i=1,2,..., N is one of the solutions to the N
algebraic equations, then

j}(y109y203---7y/\’0)=0 forj=1,2,...,N (3)

The solution of the unknown values for u, v and p are
represented by y;( at various grid nodal points shown in
Fig. 1, and these y;( values may be used to extrapolate
mid-cell values denoted by the symbol y;, for
i=1,2,...,N.

Using Taylor’s expansion [3]

N ay; (Ax i (Ay
ylm’\’y10+8x (2>+ay (2

Therefore
Yim = yio + i
where
8i = Yim — Yio “4)

Substition of yim, i =1, 2, ..., N into the functions fj,
j=1,2,..., N defined in equation (2) provides magni-
tudes of f; that are equated to E; as defined below:

Ei=fi(yim: Y2ms - ¥m)s J=12,...,N (5

where Ej;, j=1,2,..., N represent the ‘error’ resulting
from the back substitution of the mid-node (y;y,) values
into equation (2); E; may alternatively be expressed as
follows:

Ej :f_;(ylma Yom, - .- 7me) —f/"(J/lo, Y20, - .- ’yNO)

=N Bf,) :|
= — 8i
; |:<8y i Yi=Yio

+(terms of §; raised to the power of 2 and above)

(6)

where §; are defined in equation (4).
The partial derivatives (9f; /dy:),,—,,, may have mag-
nitudes that result in the following possible inequalities:

Emax

E 7
S < By ™
E N
S Ey ®)
max

where

Smin = minimum of the absolute values of §;, i=

1,2,...,N
Smax = maximum of the absolute values of §;, i =
1,2,...,N

SR

Ay + | +

> MID-NODES
Yim

_,’_A/‘

+ NODAL POINTS
Yio

“Y

Fig. 1 Two-dimensional flow field depicting the grid system and mid-nodes
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Enin = minimum of the absolute values of Ej;, j=

1,2,...,N
Enax = maximum of the absolute values of Ej, j=
1,2,...,N

Ey =a positive number suitably selected dependent
upon the grid aspect ratio (Ay/Ax), usually
having a value between 1 and 10.

If the solution of the y;y values are such that the
inequality in (7) is valid, then the solution is considered
acceptable. If inequality (8) is true, then the corre-
sponding solution is rejected.

2.3 Principle of the back substitution technique

If the y;, values were inserted into the equations
represented by (2), they would result in an error Ej, as
given in equation (5). Where the condition given by
inequality (7) is satisfied, the maximum error Ep,x will
be small. On the other hand, if the solutions for y;q
result in E; values that satisfy the condition given in
inequality (8), then this will lead to a large value of Ejax.

In the mid-cell back substitution procedure described
in Section 2.2, a sequence of iterates is generated that
converges to the solution of the system, provided that
the initial approximations, y;o, derived from the inlet
boundary conditions, are sufficiently close to the true
solution. By monitoring the convergence of the solution
using the mid-cell substitution extrapolations, any
divergence of the generated errors can be detected at an
early stage in the solution procedure. The initial
approximations y;o may then be adjusted within pre-
determined increments and limits, and the whole solu-
tion procedure reinitiated. Hence the mid-cell back
substitution procedure is a means of avoiding solutions
vio that generate large values of (9f;/y;) leading to
excessively large E; values.

2.4 Computer Resources

The computer used extensively in the solution of the
present numerical flow model was a Fujitsu
MCCVPX240/10 supercomputer located at the
University of Manchester, Oxford Road, Manchester.
Access to this computing system was confined to 12h
slots, once or twice a week, depending on overall demand.

3 RESULTS

3.1 Results obtained using an experimental test rig

Experimental and computational programs were con-
ducted with various passage depths measured in
micrometres, two fluids and a variety of inlet flowrates
as determined by the positive displacement of a piston.
Figure 2 shows a schematic layout of the unique

C11799 © IMechE 2000

experimental test rig employed in the validation of the
computational results.

3.2 Results from the computational model

From experience, the permissible error in the finite dif-
ference equations arising from back substitution can be
related to the size of the flow field mesh. A satisfactory
back substitution error value is governed by the size of
the flow field mesh employed.

A weighted correction technique was employed within
the iterative solution procedure. Using the dependent
variable u as an example of the dependent variables u, v
and p, the weighted correction in u is defined as

Weighted correction (u)

accumulative change in u owing to solution procedure
- accumulative u terms

or

> [(uo x )/ (up + u)]
> (uo)

where uy is the initial estimate for the u velocity, i is the
change in u; as produced by the iterative solution pro-
cedure. If the weighted correction in either u, v or p is
greater than the desired permissible levels, then new
initial estimates are obtained using the following equa-
tion, and the whole iterative solution procedure is
resumed:

)

Weighted correction (u) =

Uy = uy + v (10)

To promote stability of a solution, especially in the early
stages of convergence, a relaxation factor can be applied
to the dependent variables u, v and p by introducing a
relaxation coefficient into equation (10) in the following
manner:

uy = ug +ar x u (11)

The corrections in the dependent variables were deter-
mined using the LU decomposition procedure [4], and
the relaxation coefficient g was usually set between 0
and 1 (i.e. underrelaxation). The optimum relaxation
coefficient can vary, dependent upon the type of fluid,
the number of nodal points on the finite difference mesh
and the mesh spacing itself. Keeping the relaxation
coefficient constant throughout the entire convergence
procedure was found to be inefficient. Therefore, a sys-
tem that monitors convergence was incorporated which
gradually adjusts the relaxation coefficient in accordance
with the convergence trends exhibited by the dependent
variables.

Typical results for fluid flow in micron-sized passages
can be exemplified by the relationship between the
centre-line velocity u of the fluid and the length of pas-
sage through which it flows. Figure 3 shows how this

Proc Instn Mech Engrs Vol 214 Part C
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value for the centre-line velocity u initially peaks fol-
lowing inlet to the passageway and then steadies out. It
is this type of flow behaviour that benefited from the
inclusion of the MCBST because it enhanced the like-
lihood of the numerical solution converging.

3.3 Comparison of results using the friction factor
variable

Since small Reynolds numbers may be associated with
micropassage flows, the relationship between the friction
factor f and the Reynolds number in laminar steady
flows through micron-sized passages was examined.
Friction factors were obtained for a range of micro-
passage flow cases, using both computational and
experimentally determined pressure gradients (dp/dx).
The Fanning friction factor [S] is defined by the fol-
lowing equation:

f-: (d];/d/\)zDeq (12)

PmUy,

The friction factors determined from the computational
and experimental results are compared with theoreti-
cally predicted values for one-dimensional incompres-
sible laminar steady flow [6], given by the following
equation:

24

/= %e

The results for friction factors from the experimental
work with micropassages, the corresponding computa-
tional results based on two-dimensional laminar steady
flow and traditional correlations for one-dimensional
fully developed laminar flow between parallel plates are
presented in Table 1. The comparison of friction factors
determined from computational and experimental

(13)

T U-VELOCITY

results exhibits a good correlation. The theoretically
predicted traditional values are, however, consistently
lower than the other two. An error analysis for the
experimentally determined friction factors has been
carried out.

3.4 Convergence of the computational procedure

The convergence of the numerical solution utilizing a
55 um deep passageway and nitrogen gas as the working
fluid (hence the passage designation N55a) is shown in
Fig. 4. It can be observed from the figure that con-
vergence was a little erratic at first, indicating the value
of the mid-cell back substitution procedure in helping to
avoid divergence of the solution in the early stages of
computation.

4 CONCLUSIONS

The procedure is particularly useful in the early stages of
computation, where early detection of spurious solu-
tions can avoid unnecessary computing time. The
simulation of fluid flow in passages < 20 um in depth
demonstrated a good deal of sensitivity to inlet bound-
ary conditions, in addition to aspect ratios. The mid-cell
back substitution technique avoided unnecessary
pursuance of non-physical solutions.

The adoption of the mid-cell back substitution pro-
cedure can be used as an alternative to the ‘staggered
grid’ technique [7], whereby the velocity and pressure
components are calculated at separate grid locations.
The staggered grid technique requires additional com-
puter storage space, which is not necessary with the mid-
cell back substitution procedure.

21.044mfs F--78- "= == e
20334mfs ¥ . T ]
1 2 3 & 5 6 1 9 10 M 12 13 1 15 16 17
PASSAGE PASSAGE LENGTH (mm) PASSAGE
INLET
PLANE EXIT
PLANE

Fig. 3 Variation in the centre-line velocity u along the length of the passage
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Table 1 Comparison between theoretical, computational and experimentally found friction
factors in micron-sized passages
Friction factor f' Friction factor f
calculated from calculated from
Passage depth Friction factor f computational experimental
and type of Reynolds calculated using pressure pressure
fluid number equation variations along variations along
respectively Re f=24/Re micropassages micropassages
30 pm,
distilled water 13.2 1.818 2.349 2.463
30 pm,
nitrogen gas 493 0.487 0.643 0.706
55 pm,
distilled water 82.4 0.291 0.379 0.405
55 pm,
nitrogen gas 109.6 0.219 0.239 0.239*
1 mm,
distilled water 800 0.03 0.046 —
*Probable error £0.0207
IE- [l
o S0
-
-
& 300
S
-2
g o
£ 0 +—— t t t t t
I 3 5 7 % 11 B3 181719 21 33 15 27T @ 31 X3 35 37 3@
Namber of Compuiational Passes along the Passage
Fig. 4 Convergence of the computational procedure
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If yi0, i=1,2,..., N are possible solutions to the N
equations in (1), then the y;o solution values can be
denoted as follows:

V1,0, 2,05 - -5 VN;,0 = F1, 72, ..., IN,

s VNI4+N>,0 = 81,82, ... 8N,

yN1+1,0s J’N1+2,0, e

VNI4N241,05 YN 4N2 42,05 - - - » YN, O = L5 Ly oo I,

(McGraw-Hill Book Company). (14)
6 Sucec, J. Heat Transfer, 1985, pp. 434-435 (Wm C. Brown

Publishers). Thus, 1,12, ooy TNy ST, 82, 0025 SN, and 1, o, ..., INy Ar€
7 Patankar, S. V. Numerical Heat Transfer and Fluid Flow, the alternative nomenclature for the y;0, i=1,2,..., N

1980, pp. 115-126. (Hemisphere Publishing Corporation). values.
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Also, let the equations in (1) be represented as fol-
lows:

Nj linear equations /i, /..., Iy,
N, quadratic equations qi, g2, . . ., gn,
N3 cubic equations ¢y, ¢z, ..., Cy;

Step A. Assume that ry, 7y, ..., 7N, t1, t2, ..., Iy, and
$2, 83, ..., Sy, are known. Substituting these values into
the quadratic equation ¢; gives

F(s1) =0 (15)

where F(s;) will be a quadratic expression of s;. Hence,
in principle, two roots of s, are obtained from (3), which
are represented as s| and s 7.

Now, substituting (11,72, ..., 75, t1,t2,... ,21N3, st
83, ...,88,) and (rFi, 1, o TN B By e BN, ST 83,
sn,) into the quadratic equation ¢, gives

Fli(s)=0 (16)

F3(s)=0 17

where F! and F? are quadratic expressions of s».
Hence, in principle, it is possible to find roots of s as
s1,53,53,53. Thus, there are four possible sets of roots:

ri, s},s;,...,s;vz, t;
ri, s},s%,...,s/vz, t;
ri, s%,sg,...,sNz, t;
I‘l‘,S%,S;, ces SN L

It is possible to proceed in this manner until 2" sets of
roots are obtained.

C11799 © IMechE 2000

Step B. Consider that ry, r2, ..., Fn,, S1,82, ..., 8y, and
ta, ..., tn, are known values. Then, substituting these
values into equation ¢; will give

G(1)=0 (18)

where G(¢)) is a cubic expression of ;.
In principle, there are three possible roots from 1,

denoted as 7}, t7and 3. Now, substituting r1, r2, . .., Iy,
slss21---asNgyt}7t3a"'7tNg;rlaVZa"'7"N19S17S27"-1SN23
l%,l3,...,l]v3; and 172y oo s INYs 1582, 05 SN, l%,l3,
., ty, into the cubic expression ¢, gives
G'(n)=0
G(t)=0
G’(1)=0
(19)

where G!, G?, G* are cubic expressions of 7.

In principle, nine roots of #, can then be obtained. Let
these roots be denoted by 71,13, 73, ..., t5. Hence, there
are nine possible sets of roots and, continuing along
these lines, 3V possible sets of roots are obtained.

Step C. Since step A can be carried out with each of

the possible 3" sets of roots, 11,1, ..., tn;, a total of
(2™ x 3M3) sets of roots can be established.

Step D. For all the (2™ x 3™3) sets of roots in step C,

S1,82,...,8y, and ty, fr, ..., ty,, linear equations /y, b,
..., Iy, can be set up for r, s, ..., ry,. Hence, unique
values are obtained for ry, 12, ..., ry, for each of the sets
of 51, 82, L SN, and 11, 1, ..., IN,.

Thus, the total possible sets of ry,ra, ..., 71y,
$1,82,...,8y, and 11, ta, ..., ty, are given by

Net =2V x 3% fori=1,2,...,N (1)
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