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ABSTRACT 

A wheel-rail contact formulation for analyzing the train-structure nonlinear interaction that takes into 

account the wheel and rail geometry is proposed. Most of the existing methods treat the contact forces as 

external forces, whereas the present formulation uses a finite element to model the behavior in the contact 

interface, based on Hertz's theory and Kalker's laws. The equations of motion are complemented with 

constraint equations that relate the displacements of the vehicle and structure, being the complete system 

solved directly using an optimized algorithm. The formulation is validated with experimental data from a 

test performed on a rolling stock plant. 

Keywords: Wheel-rail interaction, Geometric contact problem, Lateral dynamics, Experimental validation 

1 Introduction 

In more recent years, as train operating speeds increase, the dynamic effects caused by trains 

passing over bridges, the running safety and riding comfort of the train have become important 

issues in railway engineering. The design of high-speed railway bridges may be governed by 

limit states of the train, such as the running safety, rather than by limit states of the bridge. 

Therefore, the development of software capable of accurately and efficiently assessing the 

vehicle-structure lateral interaction became essential for structural and mechanical engineers. 

Taking into account the geometry of the wheel and rail surfaces in the analysis of the lateral 



 

effects is particularly important for an accurate evaluation of the vehicle-structure interaction. 

Since this can significantly increase the computational cost, the algorithm used for analyzing the 

coupling of the two systems and the associated geometric contact problem is a key point of the 

methodology. 

Several approaches to study the wheel-rail contact behavior can be found in the literature. A 

simple methodology consists of imposing the hunting motion of the wheelset as a harmonic 

prescribed displacement with amplitude and wavelength given by the Klingel formula [1-2]. 

Wu et al [3] proposed a new contact element based on a condensation technique that is used to 

impose the constraint equations between the vehicle and structure in the vertical and lateral 

directions. However, the relative motion between the wheel and rail and the corresponding 

tangential forces, which are essential for adequately model the lateral dynamics, are neglected by 

these methods. 

Linear approaches [4] can be derived from the assumption of a constant conicity of the wheel 

profile. However, for scenarios such as strong lateral winds or earthquakes, the impacts between 

the wheel flange and the rail strongly influence the dynamic behavior, making the 

aforementioned models restricted to the analysis of the vehicle-structure interaction under normal 

operating conditions. To overcome this limitation, the geometries of the wheel and rail profiles 

have to be taken into account and a fully nonlinear formulation has to be used. In wheel-rail 

contact problems, since the normal and tangential forces significantly depend on the geometric 

characteristics of the surfaces near the contact point, the accuracy used for defining these surfaces 

is crucial. 

The location of the contact points can be calculated using two different approaches. In the first 

approach, called offline contact search [5-7], an analysis of the geometry of the surfaces is 

previously performed, being the location of the contact points precalculated as a function of the 



 

relative lateral displacement between the vehicle and structure and stored in a lookup table to be 

later interpolated during the dynamic analysis. This approach is computationally attractive but 

does not account for the penetration between the wheel and rail, which may have a significant 

influence. This limitation is overcome in the second approach, called online contact search [8-

11], in which a set of nonlinear equations is solved in each step of the dynamic analysis to 

determine the exact position of the contact point. The higher accuracy obtained with this 

approach outweighs the additional computational cost. 

An extension of the formulation described in [12-13] that takes into account the lateral 

dynamic effects between railway vehicles and structures is proposed in the present article. Most 

of the existing methods treat the contact forces in the normal and tangential directions as external 

forces, whereas the proposed formulation uses a finite element to model the behavior in the 

contact interface. This formulation is divided into three main parts: 1) the geometric problem 

consisting of the detection of the contact points; 2) the normal contact problem in which the 

forces are determined based on the Hertz nonlinear theory; 3) the tangential contact problem in 

which the creep forces, that appear due to the rolling friction contact, are calculated. The 

proposed method is based on the finite element method, which allows the analysis of structures 

and vehicles with any degree of complexity and the consideration of the deformations undergone 

by the two systems. The present formulation is implemented in MATLAB [14]. The vehicle and 

structure are modeled using ANSYS [15], being their structural matrices imported by MATLAB. 

An experimental test performed in the rolling stock test plant of the Railway Technical 

Research Institute (RTRI) in Japan is used to validate the present method. This test consists of a 

railway vehicle mounted over four wheel-shaped rails that can be controlled independently in 

order to simulate different types of rail deviations. The results obtained with the proposed 



 

formulation are compared with the experimental results, and also with the results obtained using 

the software DIASTARS developed by Tanabe et al. [7]. 

2 Wheel-rail contact elements 

2.1 Enhanced contact element 

In the majority of the currently available methods for analyzing the vehicle-structure 

interaction, the normal and tangential contact forces are treated as external forces. However, it is 

generally more efficient to use a finite element formulation based on the contact laws for the 

normal and tangential directions. A node-to-segment contact element that takes into account the 

behavior in the contact interface is proposed in the present article (see Fig. 1). 

 

Fig. 1. Target and node-to-segment contact elements. 

Figure 1 shows the forces X acting at the contact interface and the displacements of the 

contact point v, which are defined in the local coordinate system of the target element ( )ttt zyx ,, . 
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The superscripts ce and te indicate contact and target element, respectively. The tx  axis has the 

direction of the longitudinal axis of the target element, the ty  axis is parallel to the track plane 

and the tz  axis completes the right-handed system. The node C1 is a nodal point of the vehicle 

and the pilot point of the rigid surface of the wheel. The point C5 is an auxiliary internal point of 

a target element of the structure and the pilot point of the rigid surface of the rail. The motions of 

the rigid surfaces of the wheel and rail are governed by the degrees of freedom of the 

corresponding pilot node. The auxiliary points C2 and C4 belong to the rigid surfaces of the wheel 

and rail, respectively. When contact occurs, the proposed enhanced node-to-segment contact 

element adds the internal node C3 and the finite element connecting the point C2 and the node C3 

in order to take into account the contact behavior in the normal and tangential directions. 

When contact occurs, the node C3 and the auxiliary point C4 are coincident. The constraint 

equations that relate the displacements of these nodes are imposed using the direct method[13], 

which is extended to deal with three-dimensional contact problems. Since in the proposed contact 

element there are no moments transmitted across the contact interface, the constraint equations 

only relate the translational displacements in the three directions. This approach is acceptable, 

since the creep spin moments as well as the moments caused by the lateral slip are small in 

comparison with other moments acting on the system [16]. The relative motions between the 

wheel and rail are accounted by the finite element connecting the point C2 and the node C3. The 

irregularities present at the contact interface can be considered in the constraint equations for the 

vertical and lateral directions. 

Since the auxiliary points C4 and C5 do not belong to the mesh of the structure, the constraint 

equations that relate the displacements of the auxiliary point C4 and the node C3, and the forces 

applied at the point C4 have to be transformed in order to be associated with the degrees of 

freedom of the nodes of the target element. A similar transformation has to be applied to the 



 

finite element connecting the point C2 and the node C3 in order to be associated with the degrees 

of freedom of the node C1. 

2.2 Contact behavior in the normal and tangential directions 

The stiffness and damping matrices of the contact element depicted in Fig. 1 are first 

calculated in the contact point coordinate system ( )ccc zyx ,,  illustrated in Fig. 2 and then 

transformed to the global coordinate system. This local coordinate system follows the motion of 

the contact point, being its origin attached to the center of the contact area. 

 

Fig. 2. Contact point coordinate system: (a) top view and (b) front view. 

The cz  axis is oriented along the direction normal to the contact plane, the cx  axis points 

towards the longitudinal direction of motion and the cy  axis completes the right-handed system. 

The normal forces are defined along the cz  axis, and the longitudinal and lateral tangential forces 

are defined along the cx  and cy  axes, respectively. The yaw and contact angles are denoted by 

wψ  and γ , respectively. 

The transformation matrix gcT  from the global coordinate system to the contact point 

coordinate system is given by 
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The matrices tc
zT  and tc

xT  transform from the target element coordinate system to the contact 

point coordinate system, and correspond to a rotation of wψ  about the tz  axis and a rotation of γ  

about the tx , respectively. The matrix gtT  represents the standard transformation from the global 

coordinate system to the local coordinate system of the target element [17]. 

The analysis of the behavior in the contact interface is divided into two main problems: 1) the 

normal contact problem, which results from the compression between the wheel and rail; 2) the 

tangential contact problem, which is a consequence of the local elasticity of the contacting 

surfaces, and of the rolling friction phenomenon that characterizes the contact between two 

bodies that roll over each other. Assuming that the bodies in contact have the same material 

properties, the normal and tangential problems can be solved separately.  

When two non-conforming bodies are loaded they will deform in the vicinity of the point of 

first contact, touching over an area. The normal contact problem is analyzed based on the 

nonlinear Hertz contact theory [18]. This theory can only deal with non-conformal contact where 

the contact area is small when compared with the dimensions of the two bodies and with the 

relative radii of curvature of the surfaces. However, this assumption is acceptable in railway 

applications, since the wheel and rail have considerably different shapes. In the present article an 



 

elliptical contact area is assumed. The normal contact force nF  between the wheel and rail is 

given by 

 2

3

dKF hn =  (4) 

where d  is the penetration and hK  is a generalized stiffness coefficient that depends on the 

material properties of the bodies in contact, such as the Young modulus and the Poisson ratio, 

and on the curvatures of the surfaces at the contact point [19-20]. Since the Hertz law is given by 

a closed-form expression, the tangent stiffness matrix K can be updated at each iteration in order 

to take advantage of the full Newton-Raphson method [21]. 

If two bodies that are compressed against each other are allowed to roll over each other, some 

points on the contact area may slip while others may adhere. The difference between the 

tangential strains of the bodies in the adhesion area leads to a small apparent slip, called creep. 

The creep, which depends on the relative velocities of the two bodies at the contact point, is 

crucial for the determination of the tangential forces that develop in the contact area, called creep 

forces. These forces can be calculated through three dimensionless parameters, called creepages, 

defined with respect to the contact point coordinate system (see Fig. 2). These are the 

longitudinal creepage, the lateral creepage and the spin creepage. 

The longitudinal creepage ξν  and the lateral creepage ην  are the relative velocities between 

the wheel and rail at the contact point along the cx  and cy  axes, respectively, normalized to the 

vehicle forward velocity V, given by 
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where wa&  and ra&  are the vectors of translational velocities of the wheel and rail at the contact 

point, respectively, defined with respect to the global coordinate system, and 
cxe  and 

cye  are unit 

base vectors of the contact point coordinate system. 

The spin creepage φν  is the relative angular velocity between the wheel and rail at the contact 

point about the cz  axis normalized to the vehicle forward velocity, given by 

 
( )

V
czrw eωω ⋅−

=
&&

φν  (7) 

in which wω&  and rω&  are the vectors of rotational velocities of the wheel and rail at the contact 

point, respectively, defined with respect to the global coordinate system, and 
cze  is a unit base 

vector of the contact point coordinate system. 

In the present work, the longitudinal creep force ξF  and the lateral creep force ηF  are 

precalculated and stored in a lookup table, based on USETAB [22], to be later interpolated during 

the dynamic analysis as a function of the creepages and the semi-axes ratio of the contact ellipse. 

As mentioned in Section 2.1, the creep moments are neglected in the present work. This table has 

been calculated with the software CONTACT [23] which is based on Kalker's exact 

three-dimensional rolling contact theory [24]. The lookup table uses an effective layout, 

exploiting all possible symmetries between the contact forces and creepages [25]. The values of 

the table are normalized and calculated according to the procedure described in [22]. 

For constructing the table, the normalized creepages and semi-axes ratios have been 

discretized in two intervals as in the original USETAB, namely 10 ≤≤ x  and ∞<≤ x1 , where x  

is the input of the table. A linear and a logarithmic distribution of ten values were used for the 

discretization of the first and second intervals, respectively. Adopting a 4040×  element 

discretization of the contact ellipse, and by considering all possible combinations of the 



 

creepages and semi-axes ratios, a total of 000320  calculations have been performed using the 

software CONTACT. 

Since the contact law based on the exact theory of rolling contact proposed by Kalker cannot 

be expressed with a closed-form expression, calculating the numerical derivatives with respect to 

the nodal velocities can be computationally expensive. Therefore, the initial tangent damping 

matrix C is calculated based on the Kalker's linear theory [25] and is kept constant throughout 

the analysis. 

The nodal forces cR  corresponding to the internal element stresses, the tangent stiffness 

matrix cK  and the tangent damping matrix cC  are transformed from the local point coordinate 

system to the global coordinate system, according to 

 cTgc RTR =  (8) 

 gccTgc TKTK =  (9) 

 gccTgc TCTC=  (10) 

where gcT  is the transformation matrix defined by Eq. (1). The superscript c indicates that the 

quantity is defined with respect to the contact point coordinate system. 

3 Parameterization of the rail and wheel profiles 

The location of the contact points, which depends on the correct representation of the wheel 

and rail surfaces, is a key point to obtain an accurate solution of the contact problem. In the 

present formulation, the profile surfaces are parameterized as a function of surface parameters 

using piecewise cubic interpolation. The parameterization of each surface is performed using 

cubic splines, defined from a set of control points that are representative of the profile geometry. 



 

In situations where the yaw rotation plays an important role, such as curve negotiations or 

railway turnouts, the wheel may contact the rail in two points located at different diametric 

sections, namely at the tread and the flange. In these circumstances, the flange contact point can 

be located ahead or behind the tread contact point, giving origin to lead or lag contact 

configurations, respectively [9]. Since only straight track scenarios are analyzed, this type of 

analysis is beyond the scope of the present work, restricting the contact point search to only one 

plane. Therefore, the geometrical parameterization is formulated in terms of two surface 

parameters rs  and ws  that define the lateral location of the contact point in the rail and wheel, 

respectively, with respect to their local coordinate systems. 

3.1 Coordinate systems of the rail and wheel profiles 

The rail profile coordinate system ( )rrr zyx ,,  is fixed with the rail and has its origin at the 

point where the wheel contacts the rail when the wheelset is centered with the track. The ry  and 

rz  axes belong to the rail cross section plane, being the former oriented along the tangent to the 

surface at the contact point. The transformation from the target element coordinate system to the 

rail profile coordinate system is given by 
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where rφ  is the roll rotation of the rail about the target element longitudinal axis tx . 

The wheel profile coordinate system ( )www zyx ,,  has the same origin of the rail profile 

coordinate system, being the orientation defined by the roll rotation of the wheel about the tx  

axis. Since the contact point search is restricted to only one plane, the yaw angle contribution is 



 

neglected in the geometrical problem [5, 7-8]. Thus, the transformation from the target element 

coordinate system to the wheel profile coordinate system can be written as 
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where wφ  is the roll rotation of the wheel about the target element longitudinal axis tx . 

3.2 Parameterization of the rail profile  

The two-dimensional surface geometry of the rail is described in terms of the surface 

parameter rs , as depicted in Fig. 3. 

 

Fig. 3. Parameterization of the rail profile. 

The position vector t
Ru  of an arbitrary point R of the rail surface, defined with respect to the 

target element coordinate system, is given by 
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where t
Or

u  is the position vector of the origin of the rail profile coordinate system, defined with 

respect to the target element coordinate system, and r
Ru  is the position vector of the arbitrary 

point of the rail surface defined in the rail profile coordinate system, written as 

 ( )[ ]T
rrr

r
R sfs0=u  (14) 

in which ( )rr sf  is the function defining the rail surface. 

In the implemented wheel-rail contact formulation, the normal and tangent vectors to the rail 

surface at the contact point are necessary to calculate its location. The tangent vector to the rail 

surface at the contact point along the lateral direction t
yr ,t  defined with respect to the target 

element coordinate system is given by 

 r
yr

Ttrt
yr ,, tTt =  (15) 

where the tangent vector r yr ,t , defined with respect to the rail profile coordinate system, is 

obtained by differentiating the rail surface function with respect to the surface parameter, i.e., 
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Since the location of the contact point is determined through a planar geometric analysis, the 

tangent vector along the longitudinal direction t
xr ,t  has the same direction as the tx  axis. The 

normal vector to the rail surface trn  at the contact point defined with respect to the target element 

coordinate system is given by 

 t
yr

t
xr

t
r ,, ttn ×=  (17) 

with t
rn  pointing outwards the surface. 

Finally, the contact angle γ , defined between the lateral tangent vector and the track plane, is 

given by 
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Note that the roll rotation rφ  is the angle between the rail profile coordinate system and the 

target element coordinate system. 

3.3 Parameterization of the wheel profile 

The method proposed in the present paper allows the detection of two contact points between 

the wheel and rail. To this end, the wheel is parameterized by two functions, one for the tread and 

another for the flange, making the location of the contact points in each region of the wheel fully 

independent. 

Figure 4 shows the parameterization of the wheel profile in terms of a single surface parameter 

ws  to clarify the illustration. However, each of the aforementioned functions that define the 

wheel surface is defined by an independent surface parameter. 

  

Fig. 4. Parameterization of the wheel profile. 

The position vector t
Wu  of an arbitrary point W of the wheel surface, defined with respect to 

the target element coordinate system, is given by 
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in which t
Ow

u  is the position vector of the origin of the wheel profile coordinate system, defined 

with respect to the target element coordinate system, and w
Wu  is the position vector of the 

arbitrary point of the wheel surface defined in the wheel profile coordinate system, written as 

 ( )[ ]T
www

w
W sfs0=u  (20) 

where ( )ww sf  is the function defining the tread or flange surfaces.  

The tangent and normal vectors to the wheel surface at the contact point, t yw,t  and t
wn , defined 

with respect to the target element coordinate system, are calculated in an analogous way as in 

Section 3.2. 

4 Geometric contact problem 

To determine the location of the potential contact points between the wheel and rail, the 

following set of nonlinear equations is used. 
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where t
yr ,t , t

yw ,t  and t
rn  are defined in Section 3 and twrd  is the vector that defines the relative 

position of the point of the wheel with respect to the point of the rail, given by 

 t
R

t
W

t
wr uud −=  (22) 

where t
Wu  and t

Ru  are given by Eqs. (19) and (13). The first condition described by Eq. (21) 

ensures that the tangent vector to the rail is perpendicular to the vector defining the relative 

position of the point of the wheel with respect to the point of the rail. The second condition 

ensures that the normal vector to the rail is perpendicular to the tangent vector to the wheel, as 

depicted in Fig. 5. 



 

 

Fig. 5. Potential contact points between the two surfaces: (a) actual contact and (b) no contact. 

It is important to notice that the system of equations (21) may have multiple solutions if one of 

the contact surfaces is not convex. Therefore, the concave region in the transition zone between 

the tread and flange is neglected, and an approximation to the surface is adopted [9]. 

In the present formulation, an internal function of MATLAB is used to solve the nonlinear 

algebraic equations (21). This function uses an iterative scheme based on the Newton method 

together with a trust-region technique to improve the robustness of the algorithm and handle 

situations where the Jacobian matrix of the algebraic equations is singular [14]. 

The potential contact points determined with the procedure described above have to fulfill a 

last condition, that is, the parametric surfaces have to intersect each other. As shown in Fig. 5b, 

the conditions described in Eq. (21) are satisfied but there is no contact. This condition can be 

expressed mathematically as 

 0≤⋅ t
r

t
wr nd  (23) 

which means that the intersection between two bodies is guaranteed only if the vectors t
wrd  and 

t
rn  point in opposite directions, as shown in Fig. 5a. The penetration d between the two bodies in 

contact is given by 

 t
wrd d=  (24) 
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Since the contact point detection is a nonlinear problem, an initial estimate for the solution has 

to be given to solve the iterative process. In most cases, in order to reduce the number of 

iterations, the solution obtained in the previous iteration/step is used as an initial guess to solve 

the current iteration. However, if flange contact occurs, the contact point position suffers an 

abrupt jump from the tread to the flange and the previous obtained solution may not be an 

appropriate estimation for the current iteration. This can cause the solution to converge very slow 

or even diverge. Therefore, an accurate prediction of jumps in the contact point position leads to 

a faster solution and eliminates some of the causes responsible for convergence problems during 

the contact solver.  

The contact point jump detection proposed in this paper consists of precalculating a lookup 

table, similar to those used in the offline multibody formulations [5-7]. These lookup tables 

follow the assumption of a rigid contact between wheel and rail, in which the surface parameters 

that define the contact point position can be computed as a function of the relative lateral 

displacement between the center of mass of the wheelset and the track centerline. Thereafter, the 

proposed table can predict if there is a contact point in the flange for a given relative lateral 

displacement. Since the proposed methodology is based on the finite element method instead of a 

multibody formulation, this table is only used to estimate if there is flange contact. If so, the 

surface parameters obtained by table interpolation are used as an initial guess to detect the 

potential new flange contact point. Thus, when solving the nonlinear algebraic equations (21), a 

higher convergence rate is achieved due to a more accurate initial estimate. The procedure for 

implementing the contact lookup table is described in Appendix B. 



 

5 Formulation of the vehicle-structure interaction problem 

Neves et al. [13] developed an accurate and efficient algorithm, referred to as the direct 

method, in which the governing equilibrium equations of the vehicle and structure are 

complemented with additional constraint equations that relate the displacements of the contact 

nodes of the vehicle with the corresponding nodal displacements of the structure. These equations 

form a single system, with displacements and contact forces as unknowns, that is solved directly 

using an optimized block factorization algorithm. 

5.1 Governing equations of motion 

Considering the α method [26], the equations of motion of the vehicle-structure system can be 

written as 

 ( ) ( ) tttttttt αααα FFRRaM −+=−++ ∆+∆+∆+ 11&&  (25) 

where M is the mass matrix, R are the nodal forces corresponding to the internal element 

stresses, F are the externally applied nodal loads and a are the nodal displacements. The elastic 

and damping forces depend nonlinearly on the nodal displacements and velocities due to the 

nonlinear nature of contact. In the present work, the nonlinear inertia effects, such as the 

centrifugal and gyroscopic effects, are neglected. The superscripts t  and tt ∆+  indicate the 

previous and current time step, respectively. 

To solve Eq. (25) let the F type degrees of freedom (d.o.f.) represent the free nodal d.o.f., 

whose values are unknown, and let the P type d.o.f. represent the prescribed nodal d.o.f., whose 

values are known. Thus, the load vector can be expressed as 

 tete
FX

cece
FXFF XDXDPF ++=  (26) 

 SXDPF ++= tete
PXPP  (27) 



 

where P corresponds to the externally applied nodal loads whose values are known, S are the 

support reactions and X are the forces acting at the contact interface shown in Fig. 1. Each matrix 

D relates the contact forces, defined with respect to the target element coordinate system, with the 

nodal forces defined in the global coordinate system. 

According to Newton’s third law, the forces acting at the contact interface must be of equal 

magnitude and opposite direction (see Fig. 1), i.e., 

 0XX =+ tece  (28) 

Substituting Eq. (28) into Eqs. (26) and (27) leads to 

 XDPF FXFF +=  (29) 

 SXDPF ++= PXPP  (30) 

where 

 ceXX=  (31) 

 te
FX

ce
FXFX DDD −=  (32) 

 te
PXPX DD −=  (33) 

Substituting Eqs. (29) and (30) into Eq. (25), and partitioning into F and P type d.o.f., gives 
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Considering only the first row of Eq. (34) and transferring the unknowns to the left-hand size 

leads to 
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where 
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Since the present problem has a nonlinear nature, Eq. (35) is rewritten in the form 

 ( ) 0Xaψ =∆+∆+ tttt
FF ,  (37) 

where Fψ  is the residual force vector, given by 
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FFFF
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The nodal velocities and accelerations depend on the nodal displacements and for this reason 

are not independent unknowns. According to the α method, the following approximations for the 

acceleration and velocity at the current time step can be obtained [13]. 
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where β  and γ  are parameters that control the stability and accuracy of the method. 

An iterative scheme based on the Newton method [21] is used to solve Eq. (37). Assuming 

that the solution at the ith Newton iteration has been evaluated and neglecting second and higher 

order terms, the Taylor series for Fψ  about ( )ittitt
F

,, , ∆+∆+ Xa  is given by 
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Substituting Eqs. (38) to (40) into Eq. (41), and assuming that the residual force vector at 

iteration i+1 fulfils the condition given by Eq. (37), leads to 
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Transforming Eq. (42) into an incremental form leads to 
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where FFK  is the current effective stiffness matrix defined by 
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and 
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In matrix notation, Eq. (43) can be expressed as 
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being 

 ( ) itt
FXFX α ,1 ∆++−= DD  (49) 

After evaluating the solution at iteration i+1, the residual force vector is calculated using 

Eq. (38). The iteration scheme continues until the condition 

 ε≤
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+
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ψ
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 (50) 

is fulfilled, where ε  is a specified tolerance. 

5.2 Contact constraint equations 

When contact occurs, the additional internal node of the contact element and the auxiliary 

point belonging to the rigid surface of the target element are coupled in the three directions (see 

Section 2.1). Thus, the following constraint equations must be imposed: 



 

 rvv =− tece  (51) 

where r  are the irregularities between the contact and target elements in the vertical and lateral 

directions. The displacements of the additional internal nodes (see Fig. 1) are given by 

 1, +∆+= itt
F

ce
XF

ce aHv  (52) 

where the transformation matrix H relates the displacements of the additional internal nodes of 

the contact element, defined in the global coordinate system, with the displacements defined in 

the local coordinate system of the corresponding target element. The displacements of the 

auxiliary points of the target elements are given by 

 tt
P

te
XP

itt
F
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XF

te ∆++∆+ += aHaHv 1,  (53) 

where each transformation matrix H relates the nodal displacements of the target elements, 

defined in the global coordinate system, with the displacements of the auxiliary points defined in 

the target element coordinate system. 

Substituting Eqs. (52) and (53) into Eq. (51) yields 

 tt
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itt
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∆++∆+ −= aHraH 1,  (54) 

where 
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Rearranging Eq. (45) in terms of 1, +∆+ itt
Fa  and substituting into Eq. (54) leads to 
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Multiplying Eq. (57) by ( )α+− 1  gives 

 raH =∆ +1i
FXF  (58) 

where 

 ( ) XFXF α HH +−= 1  (59) 



 

and 

 ( ) ( )itt
FXF

tt
PXPα ,1 ∆+∆+ −−+−= aHaHrr  (60) 

5.3 Complete system of equations 

The incremental formulation of the governing equations of motion of the vehicle-structure 

system is applicable to either linear or nonlinear analyses. These equations and the contact 

constraints form a complete system whose unknowns are incremental nodal displacements and 

incremental contact forces. Equations (48) and (58) can be expressed in matrix form leading to 

the following system of equations 
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Using Betti’s theorem, it can be demonstrated that the matrix in Eq. (61) is symmetric. The 

corresponding proof is not presented here due to space limitations. Since the time required to 

solve the system of linear equations presented in Eq. (61) may represent a significant percentage 

of the total solution time, the efficiency of the solver is very important. The system matrix is 

partitioned into the following form in order to improve the efficiency of the solver. 
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The F type d.o.f. are partitioned into I, R and Y type d.o.f. The Y type d.o.f. correspond to the 

d.o.f of the internal nodes added by the contact elements (see node C3 in Fig. 1). These d.o.f. have 

to be grouped together because they are only active when contact occurs, and so the size of the 

matrices relating these d.o.f. is time-dependent. Since the laws for the contact interface are 

nonlinear, the matrices of the contact elements are also time-dependent. The R type d.o.f. 

correspond to all the nodal d.o.f of the contact elements, except for the Y type d.o.f., which have 



 

already been separately grouped together (see node C1 in Fig. 1). The I type d.o.f. are all the 

remaining F type d.o.f. The R type d.o.f. can also include the d.o.f of other finite elements that 

have nonlinear behavior such as the spring-dampers modeling the suspensions of vehicles. The 

present method adopts an efficient block factorization algorithm (see Appendix A), based on the 

one developed by Neves et al. [12]. 

5.4 Algorithm for solving the vehicle-structure interaction problem 

The proposed vehicle-structure interaction method has been implemented in MATLAB, being 

the vehicles and structures modeled with ANSYS. All the data regarding these models, such as 

the structural matrices, the definition of the target elements, the contact nodes of the vehicle and 

the support conditions are exported by ANSYS in batch mode and subsequently imported by 

MATLAB. The remaining data, namely the irregularities between the wheel and rail, the external 

applied loads, the contact lookup table and the control points defining the rail and wheel profile 

surfaces are stored in an external database and imported directly by MATLAB. 

After all the data is imported and processed, an initial static analysis is performed in order to 

obtain the initial conditions of the dynamic problem. The flowchart depicted in Fig. 6 illustrates 

all the aspects regarding the dynamic analysis of the vehicle-structure interaction. 



 

 

Fig. 6. Flowchart of the algorithm for analyzing the vehicle-structure dynamic interaction. 
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6 Application case 

High-speed railway lines require a more rigorous maintenance when compared with 

conventional lines. Since the displacements of the structures may contribute to significant track 

deviations, and subsequently influence the riding comfort or the running safety of the train, 

deflection limits should be imposed during the design of railway structures. Such precautions are 

particularly important in countries prone to earthquakes, where large lateral displacements may 

occur during a seismic event. Japan, with one of the largest railway networks in the world, is one 

of those countries. Thus, the Committee on Displacement Limit of Structures Associated with the 

Runnability of Railway Vehicles, consisting of engineers and academics specialized in the design 

of railway structures and in the study of vehicle dynamics, proposed a displacement limit 

standard for railway structures based on numerical and experimental results [27]. One of the 

experimental tests, conducted in the rolling stock test plant in RTRI, consists in the analysis of a 

railway vehicle mounted over four wheel-shaped rails controlled by independent actuators that 

can simulate different types of rail deviations (see Fig. 7). A detailed discussion about the 

experimental test can be found in [28]. 

 
 

(a) (b) 

Fig. 7. Experimental test: (a) rolling stock test plant [29] and (b) test setup (adapted from [30]). 
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In the present application, the test mentioned above is simulated using the proposed method 

and the software DIASTARS developed by Tanabe et al. [31], being the results obtained 

compared with the experimental data. 

The test vehicle consists on a narrow gauge prototype car specially developed for the 

experimental test. A schematic representation of the dynamic model of the test vehicle is 

illustrated in Fig. 8. The springs and dampers of the suspensions are denoted by k and c and the 

masses and rotary inertias are indicated by m and I. The longitudinal, lateral and vertical 

distances are denoted by a, b and h, respectively, s refers to the lateral distance between the initial 

contact points and R0 is the nominal rolling radius. The subscripts cb, b and w indicate carbody, 

bogie and wheelset, respectively. 

 

Fig. 8. Dynamic model of the test vehicle: (a) lateral view and (b) front view. 

The carbody, bogies and wheelsets are modeled using beam finite elements, and the 

suspensions are modeled using spring-dampers in the three directions, as depicted in Fig. 9. The 

masses and rotary inertias are modeled using mass point elements, located at the center of mass 

of each component. 
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(a) (b) 

Fig. 9. Finite element model of the test vehicle: (a) full perspective and (b) detail of the bogie. 

The numerical mode shapes and the corresponding frequencies of the test train presented in 

Fig. 10 were computed with ANSYS. The carbody and bogie are denoted by CB and BG, 

respectively. 

   

(a) CB: 1st rolling - 0.82 Hz (b) CB: bouncing - 1.71 Hz (c) CB: yawing - 2.03 Hz 

   

(d) CB: pitching - 2.08 Hz (e) CB: 2nd rolling - 2.15 Hz (f) BG: bouncing - 11.64 Hz 

   

(g) BG: rolling - 12.21 Hz (h) BG: pitching - 14.29 Hz (i) BG: yawing - 29.95 Hz 

Fig. 10. Numerical frequencies and mode shapes of the railway vehicle. 
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The structure shown in Fig. 11 is modeled with rigid finite elements, being the track deviation 

included as an irregularity in the lateral direction. These deviations can occur due to the 

deflection of the bridge during a seismic event, thus causing high levels of vibrations in the train 

that can jeopardize the running safety. The deflection types considered in the present application 

are divided into two: a bending shape (BS), associated with the bending of two consecutive 

spans, and a translation shape (TS), in which only one span rotates while the other is subjected to 

a translation (see Fig. 11). In the present application, span lengths L of 20 m and 40 m are 

considered. 

 

Fig. 11. Deflection models: (a) BS, (b) TS and (c) detail of the transition. 

Transition sections have been included at both ends of each span due to the continuity of 

rotations of the rail (see Fig. 11c). The half length of the total transition zone is denoted by tL , 

the span rotation by tθ  and the distance from the start of the transition zone by tx . This procedure 

avoids numerical problems associated with unrealistic impacts that may occur if the transitions 

are abrupt. Hence, according to [28, 30], the track deviation ty  in the transition zone is given by 
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where β  is the relative bending stiffness of the rails and pads in the lateral direction, given by 
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where pk  is the pad stiffness, E  the Young modulus of the steel and rI  the moment of inertia of 

the rail. The parameters used for defining the transition zones are summarized in Table 1. 

Table 1 
Parameters of the transition zones. 

Variable Value 

tL  3 m 

pk  4.8× 105 kN/m/m 

rI  509 cm4 

The rail profile used in the numerical analysis is the JIS60 profile, while the wheel is a conic 

and arc profile wheel with diameter of 860 mm [32] same as that used in the Shinkansen trains 

(see Fig. 12). Since the geometric problem may have multiple solutions if one of the contact 

surfaces is concave, an approximation to the transition zone between the tread and flange is 

adopted. 

 

Fig. 12. Wheel and rail profiles used in simulation. 

During the experimental test, the carbody lateral accelerations were measured above the rear 

bogie. The test was conducted with a railway vehicle riding over the test stand at 300 km/h and 
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subjected to lateral vibrations caused by the actuators. The maximum deflection amplitude 

considered in all scenarios is mm8=δ  (see Fig. 11). 

The time step used in all the performed analysis is s001.0=∆t  and the total number of time 

steps is 2500. Since DIASTARS uses the Newmark integration scheme to solve the equations of 

motion, no numerical dissipation is considered in the α method in order to establish a more 

reliable comparison. Therefore, the parameters 0=α , 25.0=β  and 5.0=γ  are adopted. 

The comparison between the lateral accelerations measured in the carbody above the rear 

bogie and the results obtained with the proposed method and DIASTARS is depicted in Fig. 13. 

A good agreement can be observed between the measured data and the numerical results. The 

differences observed may be justified by the fact that the numerical model of the vehicle does not 

consider the flexibility of some components, especially the carbody, where the accelerations were 

measured. The lack of additional experimental data to calibrate the vehicle model may also 

contribute to these differences. When comparing the numerical results obtained with the proposed 

method and with DIASTARS an excellent agreement can be observed. The slight differences 

may be due to the fact that the two numerical formulations are based on different wheel-rail 

contact models. The DIASTARS uses an offline contact search algorithm and a creep model 

based on Kalker's linear theory with a saturation limit for high creepages, whereas the proposed 

method uses an online contact search formulation and the USETAB tables to compute the creep 

forces. 

 



 

  

(a) (b) 

  

(c) (d) 

Fig. 13. Lateral accelerations in the carbody above the rear bogie: (a) BS - 40 m span; (b) BS - 20 m span; 

(c) TS - 40 m span; (d) TS - 20 m span. 

As previously mentioned, the experimental data is restricted to the acceleration in the carbody 

above the rear bogie. Nevertheless, for a more accurate validation, the results obtained with the 

proposed method in other components of the railway vehicle are compared with those obtained 

with DIASTARS. Only results regarding the BS test with a 20 m span and the TS test with a 

40 m span are presented hereafter due to space limitations. 

The lateral displacements and accelerations at the center of mass of the first wheelset obtained 

in the BS and TS tests are plotted in Figs. 14 and 15, respectively. 
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(a) (b) 

Fig. 14. Lateral response of the first wheelset obtained in the BS test: (a) displacements and 

(b) accelerations. 

  

(a) (b) 

Fig. 15. Lateral response of the first wheelset obtained in the TS test: (a) displacements and 

(b) accelerations. 

Finally, the contact forces in the wheels of the first wheelset for the BS and TS tests are 

plotted in Figs. 16 and 17, respectively. In the BS test, three flange impacts can be observed 

when the contact force suddenly increases: one in the left wheel, approximately at 1.1 s, and two 

in the right wheel, at 0.8 s and 1.4 s. The functions defining the BS and TS deflection models are 

the same for the first span (see Fig. 11). Therefore, the higher contact forces obtained in the BS 
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test, when the wheelset enters the first span, are due the fact that span deviation is more abrupt in 

the BS test, .i.e., the maximum deflection amplitude is the same in both tests but the span lengths 

are different. Again the results obtained with both numerical methods show an excellent 

agreement. 

  

(a) (b) 

Fig. 16. Lateral contact force obtained in the BS test: (a) left wheel and (b) right wheel of the first 

wheelset. 

  

(a) (b) 

Fig. 17. Lateral contact force obtained in the TS test: (a) left wheel and (b) right wheel of the first 

wheelset. 
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7 Conclusions 

A wheel-rail contact formulation for analyzing the nonlinear dynamic interaction between 

vehicles and structures is proposed in this article. This method takes into account the geometry of 

the wheel and rail surfaces in order to accurately evaluate the lateral interaction. 

An enhanced node-to-segment contact element is used for modeling the behavior in the 

contact interface in the normal and tangential directions. This approach is generally more 

efficient than treating the normal and tangential contact forces as external forces. The constraint 

equations that relate the displacements of the vehicle and structure are imposed using a direct 

method. In contrast with other contact formulations such as the penalty method, the proposed 

formulation does not require additional penalty parameters and is less likely to lead to 

ill-conditioned systems. 

The proposed formulation is validated using the results obtained in an experimental test 

performed in the rolling stock test plant of the Railway Technical Research Institute in Japan. 

This test consists of a full scale railway vehicle running over four wheel-shaped rails controlled 

by actuators that impose rail deviations in the lateral direction. The lateral accelerations inside the 

carbody have been measured and compared with those obtained with the proposed method and 

with DIASTARS. The results show a good agreement, especially when the two numerical 

methods are compared. Regarding the experimental results, the discrepancies observed may be 

caused by the fact that vehicle is modeled using rigid bars and thus important deformations were 

not considered. 

An application of the proposed method regarding the evaluation of a real running safety 

scenario of a train crossing a bridge subjected to earthquakes will be presented in a forthcoming 

publication. 
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Appendix A. Block factorization solver 

Since the submatrix YYK  presented in Eq. (62) may be indefinite and therefore may not have a 

stable factorization without pivoting, the lines and columns of the system matrix corresponding to 

the incremental displacements Ya∆  and contact forces X∆  have to be grouped together. Hence 

the block factorization of the system of equations (62) is presented below using the following 

notation. 
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where 1x  and 2x  correspond to Ia∆  and Ra∆ , respectively, and 3x  corresponds to the group 

formed by Ya∆  and X∆ . The coefficient matrix presented in Eq. (A.1) admits the following 

factorization 
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where L  and U are lower and upper triangular matrices, respectively. For simplicity, the 

permutation matrices associated with the factorization of 33A  are not represented. The block 

factorization solver is divided into three stages, which are described below. 

By equating part of the corresponding blocks in Eq. (A.2) the following relations are obtained 



 

 T
111111 LLA =  (A.3) 

 TT
211121 LLA =  (A.4) 

The first stage consists of factorizing 11A , which is assumed to be symmetric positive definite 

and therefore admits a Cholesky factorization [33], and calculating 21L  by forward substitution. 

Since 11A  and T
21A  are time-independent, the operations associated with Eqs. (A.3) and (A.4) 

have to be performed only once at the beginning of the analysis. 

By equating the remaining blocks in Eq. (A.2) the following relations are obtained 

 TT
311131 LLA =  (A.5) 

 T
222222 LLA =  (A.6) 

 TTT
3222312132 LLLLA +=  (A.7) 

 333333 ULA =  (A.8) 

where 
 T

21212222 LLAA −=  (A.9) 

 TT
323231313333 LLLLAA −−=  (A.10) 

The second stage consists of obtaining the remaining matrices of the right hand side of 

Eq. (A.2) in an analogous way. It is assumed that the matrix 22A  admits a Cholesky factorization, 

whereas the submatrices 33L  and 33U  are obtained using an LU factorization with pivoting. Since 

the matrices involved in Eqs. (A.5) to (A.8) depend on the time and contact conditions, the 

operations belonging to the second stage have to be performed in each Newton iteration. 

Finally, the third stage of the block factorization algorithm consists of obtaining the solution 

of the system of equations through the following two steps. 
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The vectors1y  to 3y  are obtained by forward substitution as following 

 1111 byL =  (A.13) 

 1212222 yLbyL −=  (A.14) 

 2321313333 yLyLbyL −−=  (A.15) 

being the solution of the system of equations (A.1) obtained by back substitution 

 3333 yxU =  (A.16) 

 3322222 xLyxL TT −=  (A.17) 

 3312211111 xLxLyxL TTT −−=  (A.18) 

Appendix B. Implementation of the contact lookup table 

For computing the contact lookup table, the track and wheelset are assumed to be rigid. The 

relative motion between them occurs in the tt zy  plane, being the wheelset allowed to rotate about 

the longitudinal tx  axis (roll rotation). Furthermore, the contact between the wheel and rail 

occurs at only one point and no separation is allowed. Under these assumptions, the surface 

parameters rs  and ws  can be computed as a function of the relative lateral displacement y∆ . 

Since the accuracy of the contact table depends on the degree of discretization used, the wheel 

and rail surfaces are discretized by a set of points that reliably represent the profile geometry. 

Hence, for a given relative lateral displacement of the wheelset, the vertical distances between 

each point of the wheel and rail surfaces are evaluated. Using this set of vertical distances, the 

points with maximum absolute value, which belong to the intersection between the wheel and rail 



 

surfaces, are considered to be potential contact points. Since the wheelset is rigid, the potential 

contact points are in contact only if the following condition is met 

 ε<∆−∆ rhtlft zz maxmax  (B.1) 

where maxz∆  is the maximum absolute vertical distance between the wheel and rail in the region 

where the surfaces intersect each other, and ε  is a specified tolerance. The superscripts lft and 

rht indicate left and right side of the wheelset, respectively.  

If the condition (B.1) is not fulfilled, the wheelset roll rotation wφ  has to be iteratively 

adjusted. According to [34], the number of iterations can be substantially reduced if the roll 

rotation of the wheelset is adjusted by an angle wφ∆  given by 

 
rhttlftt

rhtlft

w yy

zz
,

max
,

max

maxmax

−
∆−∆=∆φ  (B.2) 

where tymax is the lateral displacement of the points of the wheel with maximum absolute vertical 

distance to the rail, in the region where the surfaces intersect each other, with respect to the target 

element coordinate system. The contact search is repeated until the tolerance specified in the 

condition (B.1) is satisfied. 

It is important to emphasize that the contact lookup table is used exclusively to obtain an 

initial estimate for the solution of the nonlinear equations (21) and to predict if there is a contact 

jump between the wheel tread and the flange. 
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