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ABSTRACT

A wheel-rail contact formulation for analyzing thein-structure nonlinear interaction that taket® in
account the wheel and rail geometry is proposedstMbthe existing methods treat the contact foees
external forces, whereas the present formulati@s asfinite element to model the behavior in thetact
interface, based on Hertz's theory and Kalker'sslahe equations of motion are complemented with
constraint equations that relate the displacemafntise vehicle and structure, being the complettesy
solved directly using an optimized algorithm. Thenfiulation is validated with experimental data fram

test performed on a rolling stock plant.

Keywords: Wheel-rail interaction, Geometric contaciblem, Lateral dynamics, Experimental validation
1 Introduction

In more recent years, as train operating speedsase, the dynamic effects caused by trains
passing over bridges, the running safety and ridimgfort of the train have become important
issues in railway engineering. The design of higkesl railway bridges may be governed by
limit states of the train, such as the running tyafeather than by limit states of the bridge.
Therefore, the development of software capable aoumately and efficiently assessing the
vehicle-structure lateral interaction became esslefdr structural and mechanical engineers.

Taking into account the geometry of the wheel aaitl surfaces in the analysis of the lateral



effects is particularly important for an accurataleation of the vehicle-structure interaction.
Since this can significantly increase the compateti cost, the algorithm used for analyzing the
coupling of the two systems and the associated geanctontact problem is a key point of the

methodology.

Several approaches to study the wheel-rail cortalsavior can be found in the literature. A
simple methodology consists of imposing the huntingtion of the wheelset as a harmonic
prescribed displacement with amplitude and wavetergiven by the Klingel formula [1-2].
Wu et al [3] proposed a new contact element based oondensation technique that is used to
impose the constraint equations between the velaiote structure in the vertical and lateral
directions. However, the relative motion betweer thheel and rail and the corresponding
tangential forces, which are essential for adedyatedel the lateral dynamics, are neglected by

these methods.

Linear approaches [4] can be derived from the apfomof a constant conicity of the wheel
profile. However, for scenarios such as strong#hte@inds or earthquakes, the impacts between
the wheel flange and the rail strongly influencee tidynamic behavior, making the
aforementioned models restricted to the analyste@#ehicle-structure interaction under normal
operating conditions. To overcome this limitatitime geometries of the wheel and rail profiles
have to be taken into account and a fully nonlinfleamulation has to be used. In wheel-rail
contact problems, since the normal and tangentiget significantly depend on the geometric
characteristics of the surfaces near the contant,gbe accuracy used for defining these surfaces

is crucial.

The location of the contact points can be calcdlagng two different approaches. In the first
approach, called offline contact search [5-7], aalgsis of the geometry of the surfaces is

previously performed, being the location of thetach points precalculated as a function of the



relative lateral displacement between the vehiokk structure and stored in a lookup table to be
later interpolated during the dynamic analysis.sT&pproach is computationally attractive but
does not account for the penetration between theelrvdind rail, which may have a significant
influence. This limitation is overcome in the sedapproach, called online contact search [8-
11], in which a set of nonlinear equations is sdlwe each step of the dynamic analysis to
determine the exact position of the contact poirtie higher accuracy obtained with this

approach outweighs the additional computational. cos

An extension of the formulation described in [13-1Bat takes into account the lateral
dynamic effects between railway vehicles and stmest is proposed in the present article. Most
of the existing methods treat the contact forcethénnormal and tangential directions as external
forces, whereas the proposed formulation uses ite felement to model the behavior in the
contact interface. This formulation is divided irttree main parts: 1) the geometric problem
consisting of the detection of the contact poisthe normal contact problem in which the
forces are determined based on the Hertz nonlitnemry; 3) the tangential contact problem in
which the creep forces, that appear due to thengoffriction contact, are calculated. The
proposed method is based on the finite elementadetithich allows the analysis of structures
and vehicles with any degree of complexity anddtesideration of the deformations undergone
by the two systems. The present formulation is énnted in MATLAB [14]. The vehicle and

structure are modeled using ANSYS [15], being te#inctural matrices imported by MATLAB.

An experimental test performed in the rolling stdelst plant of the Railway Technical
Research Institute (RTRI) in Japan is used to asdidhe present method. This test consists of a
railway vehicle mounted over four wheel-shapedsr#ilat can be controlled independently in

order to simulate different types of rail deviasonThe results obtained with the proposed



formulation are compared with the experimental ltssand also with the results obtained using

the software DIASTARS developed by Tanabe et &l. [7

2 Whed-rail contact e ements

2.1 Enhanced contact element

In the majority of the currently available methollyr analyzing the vehicle-structure
interaction, the normal and tangential contactderare treated as external forces. However, it is
generally more efficient to use a finite elementrfolation based on the contact laws for the
normal and tangential directions. A node-to-segnoentact element that takes into account the

behavior in the contact interface is proposed éngdresent article (see Fig. 1).

Fig. 1. Target and node-to-segment contact elements

Figure 1 shows the force¥ acting at the contact interface and the displacgésnef the

contact point, which are defined in the local coordinate systérthe target elemer(bq, Yes z[).



The superscriptse andte indicate contact and target element, respectiviig x, axis has the
direction of the longitudinal axis of the targeemlent, they, axis is parallel to the track plane
and thez axis completes the right-handed system. The ii@de a nodal point of the vehicle

and the pilot point of the rigid surface of the wh& he pointCs is an auxiliary internal point of

a target element of the structure and the pilobtpai the rigid surface of the rail. The motions of
the rigid surfaces of the wheel and rail are goedriby the degrees of freedom of the
corresponding pilot node. The auxiliary poi@sandC, belong to the rigid surfaces of the wheel
and rail, respectively. When contact occurs, theppsed enhanced node-to-segment contact
element adds the internal no@gand the finite element connecting the p&@atand the nod€;

in order to take into account the contact behawidhe normal and tangential directions.

When contact occurs, the no@g and the auxiliary poin€C, are coincident. The constraint
equations that relate the displacements of thedeshare imposed using the direct method[13],
which is extended to deal with three-dimensionaltact problems. Since in the proposed contact
element there are no moments transmitted acroseadtiact interface, the constraint equations
only relate the translational displacements inttivee directions. This approach is acceptable,
since the creep spin moments as well as the monoanised by the lateral slip are small in
comparison with other moments acting on the syqtesh The relative motions between the
wheel and rail are accounted by the finite elent@minecting the point, and the nod€;. The
irregularities present at the contact interface lmamonsidered in the constraint equations for the

vertical and lateral directions.

Since the auxiliary point€, andCs do not belong to the mesh of the structure, thesiraint
equations that relate the displacements of theiaoxpoint C, and the nod€s;, and the forces
applied at the poinC, have to be transformed in order to be associatiéd the degrees of

freedom of the nodes of the target element. A similansformation has to be applied to the



finite element connecting the poi@t and the nod€; in order to be associated with the degrees

of freedom of the nod€;.

2.2 Contact behavior in the normal and tangential directions

The stiffness and damping matrices of the contdement depicted in Fig. 1 are first
calculated in the contact point coordinate systbm y,,z.) illustrated in Fig. 2 and then

transformed to the global coordinate system. Tosil coordinate system follows the motion of

the contact point, being its origin attached todéster of the contact area.

(a) (b)

Fig. 2. Contact point coordinate system: (a) taywand (b) front view.

The z, axis is oriented along the direction normal to deaitact plane, the, axis points
towards the longitudinal direction of motion an@ tf axis completes the right-handed system.
The normal forces are defined along theaxis, and the longitudinal and lateral tangeritates
are defined along the, and y, axes, respectively. The yaw and contact angleslemeted by
¢, andy, respectively.

The transformation matrixT * from the global coordinate system to the contamintp

coordinate system is given by



TE=TETETY (1)
where

cosy, sinyg, O

TY=|-siny, cosy, O (2)
0 0 1
1 0 0
T¥={0 cosy siny (3)

0 -siny cosy
The matricesTy and T transform from the target element coordinate syste the contact
point coordinate system, and correspond to a outatf ¢/, about theZ axis and a rotation of

about theX,, respectively. The matrif ¢ represents the standard transformation from tbleag|

coordinate system to the local coordinate systetheotarget element [17].

The analysis of the behavior in the contact int&fes divided into two main problems: 1) the
normal contact problem, which results from the coeapion between the wheel and rail; 2) the
tangential contact problem, which is a consequesfcéhe local elasticity of the contacting
surfaces, and of the rolling friction phenomenoattbharacterizes the contact between two
bodies that roll over each other. Assuming that libdies in contact have the same material

properties, the normal and tangential problemsbeasolved separately.

When two non-conforming bodies are loaded they dellorm in the vicinity of the point of
first contact, touching over an area. The normaitact problem is analyzed based on the
nonlinear Hertz contact theory [18]. This theory caly deal with non-conformal contact where
the contact area is small when compared with tiheedsions of the two bodies and with the
relative radii of curvature of the surfaces. Howewbis assumption is acceptable in railway

applications, since the wheel and rail have comalig different shapes. In the present article an



elliptical contact area is assumed. The normal ainforce F, between the wheel and rail is

given by

Nlw

F =K,d

n

(4)
where d is the penetration andk, is a generalized stiffness coefficient that degead the

material properties of the bodies in contact, sashhe Young modulus and the Poisson ratio,
and on the curvatures of the surfaces at the coptact [19-20]. Since the Hertz law is given by
a closed-form expression, the tangent stiffnessixnkt can be updated at each iteration in order

to take advantage of the full Newton-Raphson mefiad

If two bodies that are compressed against eachr atlkeallowed to roll over each other, some
points on the contact area may slip while others radhere. The difference between the
tangential strains of the bodies in the adhesiea $#ads to a small apparent slip, called creep.
The creep, which depends on the relative velocibiethe two bodies at the contact point, is
crucial for the determination of the tangentialcis that develop in the contact area, called creep
forces. These forces can be calculated througle tthiraensionless parameters, called creepages,
defined with respect to the contact point coordinatystem (see Fig.2). These are the

longitudinal creepage, the lateral creepage andghecreepage.

The longitudinal creepage; and the lateral creepagg are the relative velocities between

the wheel and rail at the contact point along ¥heand y. axes, respectively, normalized to the

vehicle forward velocity, given by

a,—a, e,
I/{_( v) c )
, a-a)e, 6)



where &, and &, are the vectors of translational velocities of #iteeel and rail at the contact
point, respectively, defined with respect to thebgll coordinate system, amg ande,_are unit

base vectors of the contact point coordinate system

The spin creepagk, is the relative angular velocity between the wlzewl rail at the contact

point about thez, axis normalized to the vehicle forward velocitiyen by

v, = w 7)

in which @,, and o, are the vectors of rotational velocities of theeethand rail at the contact

point, respectively, defined with respect to thebgll coordinate system, argj_ is a unit base

vector of the contact point coordinate system.

In the present work, the longitudinal creep foreg and the lateral creep forcg, are

precalculated and stored in a lookup table, basddSETAB [22], to be later interpolated during
the dynamic analysis as a function of the creepagdghe semi-axes ratio of the contact ellipse.
As mentioned in Section 2.1, the creep moments@géected in the present work. This table has
been calculated with the software CONTACT [23] whiis based on Kalker's exact
three-dimensional rolling contact theory [24]. Theokup table uses an effective layout,
exploiting all possible symmetries between the aointorces and creepages [25]. The values of

the table are normalized and calculated accordirtgd procedure described in [22].

For constructing the table, the normalized creepaged semi-axes ratios have been
discretized in two intervals as in the original UB, namely0< x<1 and1< x<o, where x
is the input of the table. A linear and a logarithistribution of ten values were used for the
discretization of the first and second intervalespectively. Adopting a40x40 element

discretization of the contact ellipse, and by cdesng all possible combinations of the



creepages and semi-axes ratios, a totaB20000 calculations have been performed using the

software CONTACT.

Since the contact law based on the exact theorglirig contact proposed by Kalker cannot
be expressed with a closed-form expression, cdingléhe numerical derivatives with respect to
the nodal velocities can be computationally expensiTherefore, the initial tangent damping
matrix C is calculated based on the Kalker's linear thg®®} and is kept constant throughout

the analysis.

The nodal forcesR® corresponding to the internal element stresses,tahgent stiffness

matrix K¢ and the tangent damping mati®& are transformed from the local point coordinate

system to the global coordinate system, according t

R=T* R° 8)
K=T* K°T® (9)
C=T* Cc°T® (10)

where T% is the transformation matrix defined by Eq. (1heTsuperscript indicates that the

quantity is defined with respect to the contachpooordinate system.

3 Parameterization of therail and wheel profiles

The location of the contact points, which dependghe@ correct representation of the wheel
and rail surfaces, is a key point to obtain an eateusolution of the contact problem. In the
present formulation, the profile surfaces are patanzed as a function of surface parameters
using piecewise cubic interpolation. The paramed¢ion of each surface is performed using

cubic splines, defined from a set of control pothist are representative of the profile geometry.



In situations where the yaw rotation plays an ingoar role, such as curve negotiations or
railway turnouts, the wheel may contact the railtwo points located at different diametric
sections, namely at the tread and the flange. daetltircumstances, the flange contact point can
be located ahead or behind the tread contact pgiming origin to lead or lag contact
configurations, respectively [9]. Since only stigigrack scenarios are analyzed, this type of
analysis is beyond the scope of the present westricting the contact point search to only one

plane. Therefore, the geometrical parameterizat®rformulated in terms of two surface
parameterss and s, that define the lateral location of the contacinpan the rail and wheel,

respectively, with respect to their local coordaaystems.

3.1 Coordinate systems of the rail and wheel profiles

The rail profile coordinate systelﬁx, Y, ;) is fixed with the rail and has its origin at the
point where the wheel contacts the rail when theeldet is centered with the track. Thieand

Z axes belong to the rail cross section plane, b#siagormer oriented along the tangent to the

surface at the contact point. The transformatiomfthe target element coordinate system to the
rail profile coordinate system is given by

1 0 0
T"=/0 cosg sing (11)
0 -sing cosg

where @ is the roll rotation of the rail about the targ&gment longitudinal axis; .
The wheel profile coordinate systel(ixw, yw,zw) has the same origin of the rail profile

coordinate system, being the orientation definedheyroll rotation of the wheel about the

axis. Since the contact point search is restrithednly one plane, the yaw angle contribution is



neglected in the geometrical problem [5, 7-8]. Thhe transformation from the target element
coordinate system to the wheel profile coordingtesn can be written as

1 0 0
TY=|0 cosg, sing, (12)
0 -sing, cosg,

where g, is the roll rotation of the wheel about the targietment longitudinal axis, .

3.2 Parameterization of therail profile

The two-dimensional surface geometry of the raildesscribed in terms of the surface

parameters, as depicted in Fig. 3.

Fig. 3. Parameterization of the rail profile.

The position vectou}, of an arbitrary poinR of the rail surface, defined with respect to the

target element coordinate system, is given by

I'T r
Up =Ug +T" up (13)



where utq is the position vector of the origin of the raibfile coordinate system, defined with

respect to the target element coordinate systemh,uanis the position vector of the arbitrary
point of the rail surface defined in the rail pteftoordinate system, written as
up=[ s f(s) (14)
in which f, (Sr) is the function defining the rail surface.
In the implemented wheel-rail contact formulatitime normal and tangent vectors to the rail
surface at the contact point are necessary to le#ciis location. The tangent vector to the rail

surface at the contact point along the lateralctiva ttr]y defined with respect to the target
element coordinate system is given by
.
t, =T ), (15)
where the tangent VeCtdI?y, defined with respect to the rail profile coordmasystem, is

obtained by differentiating the rail surface funatwith respect to the surface parameter, i.e.,

t :{o 1 L(Sr)} (16)
Y dsr

Since the location of the contact point is deteadithrough a planar geometric analysis, the

tangent vector along the longitudinal directibf@ has the same direction as thkeaxis. The

normal vector to the rail surfage at the contact point defined with respect to trgdt element
coordinate system is given by
Ny =t Xt (17)

with n! pointing outwards the surface.

Finally, the contact anglg , defined between the lateral tangent vector aadrdck plane, is

given by



y= tan_l(L(Sf)J + @ (18)
ds

Note that the roll rotatior? is the angle between the rail profile coordinatstesm and the

target element coordinate system.

3.3 Parameterization of the wheel profile

The method proposed in the present paper allowddtertion of two contact points between
the wheel and rail. To this end, the wheel is patanzed by two functions, one for the tread and
another for the flange, making the location of ¢bhatact points in each region of the wheel fully

independent.

Figure 4 shows the parameterization of the whedilprin terms of a single surface parameter
S, to clarify the illustration. However, each of tlaéorementioned functions that define the

wheel surface is defined by an independent sugacameter.

Fig. 4. Parameterization of the wheel profile.

The position vectou,, of an arbitrary pointV of the wheel surface, defined with respect to

the target element coordinate system, is given by



Uy =Ug, + T Y (19)
in which utow Is the position vector of the origin of the wheebfile coordinate system, defined

with respect to the target element coordinate syst@nd uy,, is the position vector of the

arbitrary point of the wheel surface defined inwieeel profile coordinate system, written as

uy=[0 s, f(s) (20)

where f,(s,) is the function defining the tread or flange scef

The tangent and normal vectors to the wheel sudatiee contact poinit,‘wvy andn, , defined

with respect to the target element coordinate systge calculated in an analogous way as in

Section 3.2.

4 Geometric contact problem

To determine the location of the potential contpoints between the wheel and rail, the

following set of nonlinear equations is used.

t, [, =0
{tt’y m! =0 (21)
w,y r

wheret; , t|  andn, are defined in Section 3 ant}, is the vector that defines the relative

position of the point of the wheel with respecthe point of the rail, given by
di, =ul, —ul (22)

wr

where u}, and u}, are given by Egs. (19) and (13). The first conditdescribed by Eq. (21)

ensures that the tangent vector to the rail is guedjgular to the vector defining the relative
position of the point of the wheel with respecttle point of the rail. The second condition
ensures that the normal vector to the rail is pajpailar to the tangent vector to the wheel, as

depicted in Fig. 5.



(b)

Fig. 5. Potential contact points between the twfases: (a) actual contact and (b) no contact.

It is important to notice that the system of equagi(21) may have multiple solutions if one of
the contact surfaces is not convex. Thereforectimcave region in the transition zone between

the tread and flange is neglected, and an approximeo the surface is adopted [9].

In the present formulation, an internal functionMATLAB is used to solve the nonlinear
algebraic equations (21). This function uses aratitee scheme based on the Newton method
together with a trust-region technique to improkie tobustness of the algorithm and handle

situations where the Jacobian matrix of the algelequations is singular [14].

The potential contact points determined with thecpdure described above have to fulfill a
last condition, that is, the parametric surfacegeha intersect each other. As shown in Fig. 5b,
the conditions described in Eq. (21) are satisbatthere is no contact. This condition can be

expressed mathematically as

d,, m; <0 (23)
which means that the intersection between two Isodiguaranteed only if the vectad§, and
n; point in opposite directions, as shown in Fig. Bae penetratiod between the two bodies in

contact is given by

d=[du| (@4)



Since the contact point detection is a nonlineabl@m, an initial estimate for the solution has
to be given to solve the iterative process. In neages, in order to reduce the number of
iterations, the solution obtained in the previaesation/step is used as an initial guess to solve
the current iteration. However, if flange contacturs, the contact point position suffers an
abrupt jump from the tread to the flange and thevipus obtained solution may not be an
appropriate estimation for the current iteratiohisTcan cause the solution to converge very slow
or even diverge. Therefore, an accurate prediafgnmps in the contact point position leads to
a faster solution and eliminates some of the caresgmnsible for convergence problems during

the contact solver.

The contact point jump detection proposed in tlapgy consists of precalculating a lookup
table, similar to those used in the offline multlgoformulations [5-7]. These lookup tables
follow the assumption of a rigid contact betweereelhand rail, in which the surface parameters
that define the contact point position can be caegbuas a function of the relative lateral
displacement between the center of mass of the lsgtesnd the track centerline. Thereatfter, the
proposed table can predict if there is a contaattpa the flange for a given relative lateral
displacement. Since the proposed methodology isdbas the finite element method instead of a
multibody formulation, this table is only used tstimate if there is flange contact. If so, the
surface parameters obtained by table interpolasie used as an initial guess to detect the
potential new flange contact point. Thus, when isgithe nonlinear algebraic equations (21), a
higher convergence rate is achieved due to a nurerae initial estimate. The procedure for

implementing the contact lookup table is descriivefippendix B.



5 Formulation of the vehicle-structure interaction problem

Neves et al. [13] developed an accurate and efiticedgorithm, referred to as the direct
method, in which the governing equilibrium equasioof the vehicle and structure are
complemented with additional constraint equatidret relate the displacements of the contact
nodes of the vehicle with the corresponding nodsdldcements of the structure. These equations
form a single system, with displacements and coritaices as unknowns, that is solved directly

using an optimized block factorization algorithm.

5.1 Governing equations of motion

Considering the: method [26], the equations of motion of the vekslructure system can be

written as

M &" +(1+a) R™ —a R' = (L+a) F"™ —a F' (25)
where M is the mass matrixR are the nodal forces corresponding to the integd@ment
stressesk- are the externally applied nodal loads anare the nodal displacements. The elastic
and damping forces depend nonlinearly on the nddadlacements and velocities due to the
nonlinear nature of contact. In the present wohle honlinear inertia effects, such as the
centrifugal and gyroscopic effects, are negleciduke superscripts and t + At indicate the

previous and current time step, respectively.

To solve Eq. (25) let th& type degrees of freedom (d.o.f.) represent the fredal d.o.f.,
whose values are unknown, and let Ehgype d.o.f. represent the prescribed nodal dwHhgse
values are known. Thus, the load vector can beesspd as

F. =P. +D® X®+D® X® (26)

F. =P, +D§, X*+S (27)



where P corresponds to the externally applied nodal loatlsese values are knowf, are the
support reactions and are the forces acting at the contact interfacevahia Fig. 1. Each matrix
D relates the contact forces, defined with respetté target element coordinate system, with the

nodal forces defined in the global coordinate syste
According to Newton’s third law, the forces actiagthe contact interface must be of equal
magnitude and opposite direction (see Fig. 1), i.e.

X*®+X*®=0 (28)
Substituting Eq. (28) into Egs. (26) and (27) letds

F. =P.+D,, X (29)
F, =P, +Dy X+S (30)

where
X=X (31)
Dy =D -D, (32)
Dex =—Dix (33)

Substituting Eqgs. (29) and (30) into Eq. (25), aaditioning intoF andP type d.o.f., gives
M M at+At R1+At Rt
|: " FP:||:--IF+At:|+(1+a)|: 1F+At:|_a|: :::|
Mp Mp || 85 Rp Rp
:(1_}_0‘){ P't:+At +DtF+XAt xt+At }_a|: P't: +D1Fx X! }
Plt;—At + DtP-*-XAt xt+At +SI+AI I:)ll3 + DIPX Xt +St
Considering only the first row of Eq. (34) and s#mring the unknowns to the left-hand size
leads to
M &7+ L+ a)REY - (1+0) DB X "= F, (35)
where

F. =(1+a)Pt™-aP.-a D\, X'-M_a7*+aRL (36)



Since the present problem has a nonlinear natgrg3B) is rewritten in the form
v, (at;m N ) _0 37)
where y . is the residual force vector, given by
el X )= M % -0 a)RE + () D X @)
The nodal velocities and accelerations depend emdidal displacements and for this reason

are not independent unknowns. According todhmeethod, the following approximations for the

acceleration and velocity at the current time st&ap be obtained [13].

P =i2(at+m _at)_i at _(i_]} 4t (39)
SOt Bt 2p
PR :L(anm _ at)_'_(l_l] al +At (1_Lj 4t (40)
SO B 2

where f and y are parameters that control the stability and @aguof the method.

An iterative scheme based on the Newton methodiR1lsed to solve Eq. (37). Assuming

that the solution at thieh Newton iteration has been evaluated and negkpstécond and higher

t+

order terms, the Taylor series for. about(aF At ,X”m") is given by

v, (atF+At,i+l, Xt+At,i+1)= v, (atF+At,i Xt )+ oy,

t+At

t+At i +1 t+At,i
e -ae)
aaF F F

(atF+At,i xUHAL )

(41)

oy,
axt+AI

(Xt+At,i+1 _ Xt+At,i)

(atF+At,i xUHAL j

Substituting Eqgs. (38) to (40) into Eqg. (41), ars$waning that the residual force vector at

iterationi+1 fulfils the condition given by Eq. (37), leads t

1 Mee - (1+ Ot) OR, (at,:At gl )

CT IVl I
\I’F( F ) ,BAIZ aatF+Al atF+At,i (42)

+ (1+ a) DtF+XAt,i (xt+At,i+1 EVC ) -0



Transforming Eq. (42) into an incremental form le&al
KFF AaiF+1 _ (1+ a) D’;:+XAt,i Axi+1 - ‘l’iF (43)

whereK . is the current effective stiffness matrix defirimd

K. :ﬁm . +(1+a)[;a_ﬁ§; ] (44)
ag
and
falt = gt g (45)
AX'™H = XA (46)
we =wela X)) (@)
In matrix notation, Eq. (43) can be expressed as
[— = AaiF+l — i
K e DFX]{AX‘”} =y (48)
being
Dp = =(L+a) D (49)

After evaluating the solution at iteratiomtl, the residual force vector is calculated using

Eq. (38). The iteration scheme continues untilcbvedition

i+l

H‘I’F
t+at
P

<€ (50)

is fulfilled, where ¢ is a specified tolerance.

5.2 Contact constraint equations

When contact occurs, the additional internal noti¢he contact element and the auxiliary
point belonging to the rigid surface of the targkment are coupled in the three directions (see

Section 2.1). Thus, the following constraint eqoréi must be imposed:



-ve=r (51)
wherer are the irregularities between the contact angetaelements in the vertical and lateral
directions. The displacements of the additionadrmal nodes (see Fig. 1) are given by
Vce - H ():(eF a’;:At,i +1 (52)

where the transformation matrkx relates the displacements of the additional irtienodes of
the contact element, defined in the global cootéirsystem, with the displacements defined in
the local coordinate system of the correspondingetaelement. The displacements of the
auxiliary points of the target elements are givgn b

Ve =HY aftttt +HYE, ap® (53)
where each transformation matrik relates the nodal displacements of the target exiésn
defined in the global coordinate system, with tisplcements of the auxiliary points defined in

the target element coordinate system.

Substituting Egs. (52) and (53) into Eq. (51) yseld

Hy, a™®'™=r-H,, a™ (54)

where
Hye =HS -HS (55)
Hy =-H% (56)

Rearranging Eq. (45) in terms af*'"* and substituting into Eq. (54) leads to
H AaiF+1 =r-H, atP+At ~H,, atF+At,i (57)
Multiplying Eq. (57) by—(1+a) gives
H,. Aa* =T (58)
where

Hye = —(1+Oc) H e (59)



and
F=-(+a)(r—H, al™ -H, a") (60)

5.3 Complete system of equations

The incremental formulation of the governing equadi of motion of the vehicle-structure
system is applicable to either linear or nonlineaalyses. These equations and the contact
constraints form a complete system whose unknowasnaremental nodal displacements and
incremental contact forces. Equations (48) and ¢a8) be expressed in matrix form leading to

the following system of equations

EFF BFX Aa‘l{t - ‘Il_iF (61)
H, 0 |[ax F

Using Betti’'s theorem, it can be demonstrated thatmatrix in Eq. (61) is symmetric. The
corresponding proof is not presented here due &oesfimitations. Since the time required to
solve the system of linear equations presentedjin@.) may represent a significant percentage
of the total solution time, the efficiency of thehger is very important. The system matrix is

partitioned into the following form in order to imqve the efficiency of the solver.

R|| K|R Kw le Aaifrl ‘|’i|
ERI ERR ERY ?RX AaiRJrl - ‘I’iR (62)
Ky Kw Ky Dy Aaivﬂ \ViY
Hy Huw Hy 0 J[AX™] | T

TheF type d.o.f. are partitioned inloR andY type d.o.f. TheY type d.o.f. correspond to the
d.o.f of the internal nodes added by the contashehts (see nodg; in Fig. 1). These d.o.f. have
to be grouped together because they are only asfivan contact occurs, and so the size of the
matrices relating these d.o.f. is time-dependemiceSthe laws for the contact interface are
nonlinear, the matrices of the contact elements ase time-dependent. The type d.o.f.

correspond to all the nodal d.o.f of the contaetrents, except for thétype d.o.f., which have



already been separately grouped together (see @Gpde Fig. 1). Thel type d.o.f. are all the
remainingF type d.o.f. TheR type d.o.f. can also include the d.o.f of otheité elements that
have nonlinear behavior such as the spring-dampedgeling the suspensions of vehicles. The
present method adopts an efficient block factoiapaslgorithm (see Appendix A), based on the

one developed by Neves et al. [12].

5.4 Algorithm for solving the vehicle-structure interaction problem

The proposed vehicle-structure interaction methasl lieen implemented in MATLAB, being
the vehicles and structures modeled with ANSYS.tAd data regarding these models, such as
the structural matrices, the definition of the &rglements, the contact nodes of the vehicle and
the support conditions are exported by ANSYS irclhhahode and subsequently imported by
MATLAB. The remaining data, namely the irregulagibetween the wheel and rail, the external
applied loads, the contact lookup table and thdrobpoints defining the rail and wheel profile

surfaces are stored in an external database arattedpdirectly by MATLAB.

After all the data is imported and processed, @ralrstatic analysis is performed in order to
obtain the initial conditions of the dynamic prableThe flowchart depicted in Fig. 6 illustrates

all the aspects regarding the dynamic analysib@#ehicle-structure interaction.
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Fig. 6. Flowchart of the algorithm for analyzing thehicle-structure dynamic interaction.



6 Application case

High-speed railway lines require a more rigorousinteaance when compared with
conventional lines. Since the displacements ofsthgctures may contribute to significant track
deviations, and subsequently influence the ridioghfort or the running safety of the train,
deflection limits should be imposed during the desif railway structures. Such precautions are
particularly important in countries prone to earthkes, where large lateral displacements may
occur during a seismic event. Japan, with one efdhgest railway networks in the world, is one
of those countries. Thus, the Committee on Dispreese Limit of Structures Associated with the
Runnability of Railway Vehicles, consisting of emgers and academics specialized in the design
of railway structures and in the study of vehiclgnamics, proposed a displacement limit
standard for railway structures based on numenca experimental results [27]. One of the
experimental tests, conducted in the rolling stiesk plant in RTRI, consists in the analysis of a
railway vehicle mounted over four wheel-shapedsraintrolled by independent actuators that
can simulate different types of rail deviationse(deig. 7). A detailed discussion about the

experimental test can be found in [28].

Measurement Pomt Carbody
of acceleration

_.~ Wheel-shaped rail

Secondary Driving device
suspensions

Bogie

Primary suspensions

Wheelset

Actuator

lateral vibration

(a) (b)

Actuator for
vertical vibration

Fig. 7. Experimental test: (a) rolling stock telstrpp [29] and (b) test setup (adapted from [30]).



In the present application, the test mentioned abswsimulated using the proposed method
and the software DIASTARS developed by Tanabe ef33], being the results obtained

compared with the experimental data.

The test vehicle consists on a narrow gauge pno¢otyar specially developed for the
experimental test. A schematic representation ef dignamic model of the test vehicle is
illustrated in Fig. 8. The springs and dampershef suspensions are denotedkigndc and the
masses and rotary inertias are indicatednbyand I. The longitudinal, lateral and vertical
distances are denoted ayb andh, respectivelys refers to the lateral distance between the initial
contact points an&, is the nominal rolling radius. The subscripbs b andw indicate carbody,

bogie and wheelset, respectively.

Fig. 8. Dynamic model of the test vehicle: (a) lateiew and (b) front view.

The carbody, bogies and wheelsets are modeled us&agn finite elements, and the
suspensions are modeled using spring-dampers ithtee directions, as depicted in Fig. 9. The
masses and rotary inertias are modeled using nmass gdements, located at the center of mass

of each component.
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Fig. 9. Finite element model of the test vehictg:f(ll perspective and (b) detail of the bogie.

The numerical mode shapes and the correspondiggeneies of the test train presented in

Fig. 10 were computed with ANSYS. The carbody andgié are denoted by CB and BG,

respectively.

*»z?ﬂ}‘*
(a) CB: f'rolling - 0.82 Hz
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|

=

(d) CB: pitching - 2.08 Hz

(9) BG: rolling - 12.21 Hz
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r
(b) CB: bouncing - 1.71 Hz
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‘};&} N

(e) CB™%rolling - 2.15 Hz
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(h) BG: pitching - 14.2¢&

(cBCyawing - 2.03 Hz

N
L N

™

N

(f) BG: bouncing - 11.64 Hz

(i) BG: yawing - 29.95 Hz

Fig. 10. Numerical frequencies and mode shapdseafdilway vehicle.



The structure shown in Fig. 11 is modeled withdifinite elements, being the track deviation
included as an irregularity in the lateral direntioThese deviations can occur due to the
deflection of the bridge during a seismic eventistbausing high levels of vibrations in the train
that can jeopardize the running safety. The defledypes considered in the present application
are divided into two: a bending shape (BS), assediavith the bending of two consecutive
spans, and a translation shape (TS), in which oné/span rotates while the other is subjected to
a translation (see Fig. 11). In the present apiphioa span lengthd of 20 m and 40 m are

considered.

Track stiffness
(b) (©)

Fig. 11. Deflection models: (a) BS, (b) TS anddedail of the transition.

Transition sections have been included at both @fidsach span due to the continuity of

rotations of the rail (see Fig. 11c). The half l#ngf the total transition zone is denoted Ly

the span rotation b¥ and the distance from the start of the transitiome byx . This procedure

avoids numerical problems associated with unréalistpacts that may occur if the transitions

are abrupt. Hence, according to [28, 30], the tdekationy, in the transition zone is given by

f_tﬂeﬂ(x"“’{COS[ﬂ(&—L)]+sin[/3(>9—h)]} ; 0sx <L,
Y=1g (63)
eteaos] (e -1)]sinlAlx L) +olx L) ¢ L <x 2,

where [ is the relative bending stiffness of the rails gads in the lateral direction, given by



kp
P=12E] (©4)

wherek  is the pad stiffnessk the Young modulus of the steel ahdthe moment of inertia of

the rail. The parameters used for defining thesiteon zones are summarized in Table 1.

Tablel
Parameters of the transition zones.

Variable  Value

|_[ 3m
Kk, 4.£x 10° kN/m/m
[ 509 cn*

The rail profile used in the numerical analysishie JIS60 profile, while the wheel is a conic
and arc profile wheel with diameter of 860 mm [32ne as that used in the Shinkansen trains
(see Fig. 12). Since the geometric problem may hauttiple solutions if one of the contact

surfaces is concave, an approximation to the tiianszone between the tread and flange is

adopted.
20 >
----------- Rail
— Wheel tread
or e Wheel flange
Transition zone
0 — i
g %A i
g —10 4 !
>~ \ i
\ i/
=207 \ i
\ ;
\.\ //'
=307 e
—40 ‘ ‘ : — :
60 40 20 0 20 40 -60 —80

X (mm)

Fig. 12. Wheel and rail profiles used in simulation

During the experimental test, the carbody latecakterations were measured above the rear

bogie. The test was conducted with a railway vehiaing over the test stand at 300 km/h and



subjected to lateral vibrations caused by the #&otsa The maximum deflection amplitude

considered in all scenarios &=8mm (see Fig. 11).

The time step used in all the performed analysiAtis 0001s and the total number of time

steps is 2500. Since DIASTARS uses the Newmarlgiaten scheme to solve the equations of
motion, no numerical dissipation is considered he ¢ method in order to establish a more

reliable comparison. Therefore, the parametees0, = 025 and y = 05 are adopted.

The comparison between the lateral accelerationssuned in the carbody above the rear
bogie and the results obtained with the proposeitiadeand DIASTARS is depicted in Fig. 13.
A good agreement can be observed between the meeladata and the numerical results. The
differences observed may be justified by the faat the numerical model of the vehicle does not
consider the flexibility of some components, esacthe carbody, where the accelerations were
measured. The lack of additional experimental dataalibrate the vehicle model may also
contribute to these differences. When comparingitiraerical results obtained with the proposed
method and with DIASTARS an excellent agreement lsarobserved. The slight differences
may be due to the fact that the two numerical féatons are based on different wheel-rail
contact models. The DIASTARS uses an offline cantsarch algorithm and a creep model
based on Kalker's linear theory with a saturatiomtlfor high creepages, whereas the proposed
method uses an online contact search formulationtlz USETAB tables to compute the creep

forces.
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Fig. 13. Lateral accelerations in the carbody alibegear bogie: (a) BS - 40 m span; (b) BS - 2fpan;
(c) TS-40 mspan; (d) TS - 20 m span.

As previously mentioned, the experimental datasricted to the acceleration in the carbody
above the rear bogie. Nevertheless, for a moreratcwvalidation, the results obtained with the
proposed method in other components of the railwelycle are compared with those obtained

with DIASTARS. Only results regarding the BS testhma 20 m span and the TS test with a

40 m span are presented hereafter due to spadations.

The lateral displacements and accelerations atehter of mass of the first wheelset obtained

in the BS and TS tests are plotted in Figs. 141&mdespectively.
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Fig. 14. Lateral response of the first wheelseaioled in the BS test: (a) displacements and

(b) accelerations.
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Fig. 15. Lateral response of the first wheelsesiolgd in the TS test: (a) displacements and
(b) accelerations.

Finally, the contact forces in the wheels of thstfwheelset for the BS and TS tests are
plotted in Figs. 16 and 17, respectively. In the 8BS, three flange impacts can be observed
when the contact force suddenly increases: oneenetft wheel, approximately at 1.1 s, and two
in the right wheel, at 0.8 s and 1.4 s. The fumstidefining the BS and TS deflection models are

the same for the first span (see Fig. 11). Theegfibre higher contact forces obtained in the BS



test, when the wheelset enters the first sparmj@eehe fact that span deviation is more abrupt in
the BS test, .i.e., the maximum deflection ampktigithe same in both tests but the span lengths

are different. Again the results obtained with bathmerical methods show an excellent

agreement.
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Fig. 16. Lateral contact force obtained in the BS:t(a) left wheel and (b) right wheel of thetfirs
wheelset.
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Fig. 17. Lateral contact force obtained in the @8:t(a) left wheel and (b) right wheel of thetfirs



7 Conclusions

A wheel-rail contact formulation for analyzing tlme®nlinear dynamic interaction between
vehicles and structures is proposed in this artithes method takes into account the geometry of

the wheel and rail surfaces in order to accurageituate the lateral interaction.

An enhanced node-to-segment contact element is fwedodeling the behavior in the
contact interface in the normal and tangential aioms. This approach is generally more
efficient than treating the normal and tangent@itact forces as external forces. The constraint
equations that relate the displacements of thecleslaind structure are imposed using a direct
method. In contrast with other contact formulati@ush as the penalty method, the proposed
formulation does not require additional penalty goaeters and is less likely to lead to

ill-conditioned systems.

The proposed formulation is validated using theultesobtained in an experimental test
performed in the rolling stock test plant of theillRay Technical Research Institute in Japan.
This test consists of a full scale railway vehialening over four wheel-shaped rails controlled
by actuators that impose rail deviations in theritdirection. The lateral accelerations inside th
carbody have been measured and compared with titaamed with the proposed method and
with DIASTARS. The results show a good agreemespeeially when the two numerical
methods are compared. Regarding the experimerdaltse the discrepancies observed may be
caused by the fact that vehicle is modeled usigid bhars and thus important deformations were

not considered.

An application of the proposed method regarding ekieluation of a real running safety
scenario of a train crossing a bridge subjecteghtrthquakes will be presented in a forthcoming

publication.
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Appendix A. Block factorization solver

Since the submatrix,, presented in Eq. (62) may be indefinite and tlgeemay not have a
stable factorization without pivoting, the linesddazolumns of the system matrix corresponding to
the incremental displacemenfs&, and contact forcedX have to be grouped together. Hence
the block factorization of the system of equati(6®) is presented below using the following

notation.

Ay, AL A-:I;l Xy b,
Ay Ay Agz X, |=| b, (A1)
Ay A Agl|Xs b,

where x, and x, correspond toAa, and Aag, respectively, and, corresponds to the group
formed by Aa, and AX. The coefficient matrix presented in Eq. (A.1) a@dmhe following
factorization

Ay A;l Agl L,, O 0 LT11 LT21 LT31
An Ay Agz =|L, Ly 0% 0 LT22 LT32 (A.2)
Ag Ay Ay Ly Lap L 0 0 U

where L and U are lower and upper triangular matrices, respelgtivFor simplicity, the
permutation matrices associated with the factaomabf A,, are not represented. The block

factorization solver is divided into three stageBich are described below.

By equating part of the corresponding blocks in g2) the following relations are obtained



A, =L,L%, (A.3)
Al =L,LY, (A.4)
The first stage consists of factoriziifyy ,, which is assumed to be symmetric positive definit
and therefore admits a Cholesky factorization [38ld calculating-,, by forward substitution.
Since A;; and A}, are time-independent, the operations associatéd Edgs. (A.3) and (A.4)

have to be performed only once at the beginninpe@fnalysis.

By equating the remaining blocks in Eq. (A.2) th#dwing relations are obtained

Al =L,LY, (A.5)
A,,=L,L%, (A.6)
AL =L,LY +L,,L%, (A7)
A,=L,U, (A.8)
where
A,=A,,-L, L%, (A.9)
A=A,-L, L%, -L,L%, (A.10)

The second stage consists of obtaining the rengimatrices of the right hand side of
Eq. (A.2) in an analogous way. It is assumed thetatrix A,, admits a Cholesky factorization,
whereas the submatricés, and U,, are obtained using arU factorization with pivoting. Since
the matrices involved in Egs. (A.5) to (A.8) depem the time and contact conditions, the

operations belonging to the second stage have petfermed in each Newton iteration.

Finally, the third stage of the block factorizatialgorithm consists of obtaining the solution

of the system of equations through the following steps.

(A.11)

—
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LT11 LT21 LT31 Xy Y1
0 LT22 LT32 X | =1Y2 (A.12)
0 0 Ugl|X; Y3

The vectory, to Y, are obtained by forward substitution as following

L.y, =b, (A.13)
Lzzyz = bz - L21y1 (A.14)
LasYs=bs=Layy,—LsY, (A.15)

being the solution of the system of equations (Alitpined by back substitution

Uz X3 =Y (A.16)
LT22X2 =Y, _LT32 X3 (A.17)
LT11 X, =Y~ I-T21X2 - LT31 X3 (A.18)

Appendix B. Implementation of the contact lookup table

For computing the contact lookup table, the trac#t wheelset are assumed to be rigid. The

relative motion between them occurs in ty)e, plane, being the wheelset allowed to rotate about
the longitudinal x, axis (roll rotation). Furthermore, the contactvwetn the wheel and rail
occurs at only one point and no separation is a@tbwJnder these assumptions, the surface

parameterss ands, can be computed as a function of the relativedatiisplacement\y.

Since the accuracy of the contact table dependseodegree of discretization used, the wheel
and rail surfaces are discretized by a set of paimt reliably represent the profile geometry.
Hence, for a given relative lateral displacementhef wheelset, the vertical distances between
each point of the wheel and rail surfaces are ewatlh Using this set of vertical distances, the

points with maximum absolute value, which belonghi® intersection between the wheel and rail



surfaces, are considered to be potential contanotpdince the wheelset is rigid, the potential

contact points are in contact only if the followiogndition is met

AZ" -AZ" |<e (B.1)

max max

where Az, is the maximum absolute vertical distance betvtberwheel and rail in the region

where the surfaces intersect each other, and a specified tolerance. The superscrifitand

rht indicate left and right side of the wheelset, extpely.

If the condition (B.1) is not fulfilled, the wheelsroll rotation ¢, has to be iteratively

adjusted. According to [34], the number of iteraiocan be substantially reduced if the roll

rotation of the wheelset is adjusted by an adgje given by

AZ’l:]t _Azl’ht
A% - ax I’max (BZ)
Yovax ~ Vi

wherey, s the lateral displacement of the points of thee@t with maximum absolute vertical

distance to the rail, in the region where the si@$antersect each other, with respect to the targe
element coordinate system. The contact searchpeated until the tolerance specified in the

condition (B.1) is satisfied.

It is important to emphasize that the contact Igokable is used exclusively to obtain an
initial estimate for the solution of the nonlineaquations (21) and to predict if there is a contact

jump between the wheel tread and the flange.
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