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Abstract
Macro-operator (“macro”, for short) generation is a
well-known technique that is used to speed-up the
planning process. Most published work on using
macros in automated planning relies on an offline
learning phase where training plans, that is, solu-
tions of simple problems, are used to generate the
macros. However, there might not always be a place
to accommodate training.
In this paper we propose OMA, an efficient method
for generating useful macros without an offline
learning phase, by utilising lessons learnt from ex-
isting macro learning techniques. Empirical eval-
uation with IPC benchmarks demonstrates perfor-
mance improvement in a range of state-of-the-art
planning engines, and provides insights into what
macros can be generated without training.

1 Introduction
Macros are a well-known technique for encapsulating se-
quences of operators in the same format as original operators,
and therefore can be used to reformulate planning domain
models. The idea of using macros in planning dates back to
1970s where, for example, it was applied in STRIPS [Fikes
and Nilsson, 1971] and REFLECT [Dawson and Siklóssy,
1977]. Most published work on using macros as a planner-
independent technique relies on a learning phase where train-
ing plans (solutions of simple problems) are used to generate
the macros. It is the case of MacroFF [Botea et al., 2005],
Wizard [Newton et al., 2007], and MUM [Chrpa et al., 2014].
These approaches depend to some extent on the bias of the
selection of the training problems as well as on the plan-
ners used to generate training plans. In real-world applica-
tions, however, it can be hard to identify, select, and prop-
erly manage a complete –and usually expensive– learning
phase. Moreover, the real world is dynamic and changes fre-
quently. In many applications, the structure and topology of
problems that a planner is expected to solve can change over
time, thus the training instances used for the offline learn-
ing may not be a representative example of testing problems.
Nowadays, specially in planning applications, planners can
be understood as “black boxes” taking domain and problem
descriptions as inputs and providing solution plans as output.

Hence, there is a good motivation for a macro learning tech-
nique that can be wrapped around an existing planning en-
gine and will enhance its performance. Existing online tech-
niques are mostly planner-dependent, such as Marvin [Coles
et al., 2007], which is built on top of the FF planner [Hoff-
mann and Nebel, 2001]. Although planner-dependent tech-
niques can focus on drawbacks of planners, e.g., escaping
plateaus efficiently, their adaptability for different planning
engines is usually low. Finally, there is no single planner that
outperforms all others in every known benchmark domain.
Therefore, different planners can be useful in solving prob-
lems from different domains. Hence, there is a good motiva-
tion for developing a planner-independent method that can
generate macros without an offline learning phase, but by
analysing domain and problem description only.

In this paper we introduce OMA, a method for Online
MAcro generation. Evidently, online generation requires to
be efficient, i.e., able to generates macros in a very short
time. Furthermore, the absence of training plans brings a chal-
lenge since we do not get useful information about structure
of plans, i.e., which instances of which operators and how
often they are applied consecutively. On the other hand, do-
main and problem models can still provide some information,
e.g., dependencies between planning operators and, more-
over, existing macro learning techniques can give us valuable
insights into how useful macros can be generated. In particu-
lar, macros have to be sound and should be applicable at some
point of the planning process. Also, macros are often useful
if they capture a single and meaningful activity, and have a
relatively small number of instances. OMA combines these
ideas. We empirically evaluate it using International Planning
Competition (IPC) benchmarks and a range of state-of-the-art
planning engines. The empirical evaluation demonstrates per-
formance improvement in considered planners, and provides
insights into what macros can be generated without training.

2 Background
AI planning deals with finding a partially or totally ordered
sequence of actions to transform the environment from an
initial state to a desired goal state. Classical planning is a re-
stricted form of AI planning, where environment is static and
fully observable, and actions are deterministic and instanta-
neous [Ghallab et al., 2004].

In the PDDL representation, the environment



is described by predicates. States are defined as
sets of grounded predicates. We say that o =
(name(o), pre(o), eff−(o), eff+(o), cost(o)) is a plan-
ning operator, where name(o) = op name(x1, . . . , xk)
(op name is an unique operator name and x1, . . . xk are
variable symbols (arguments) appearing in the operator)
and pre(o), eff−(o) and eff+(o) are sets of (ungrounded)
predicates with variables taken only from x1, . . . xk repre-
senting o’s precondition1, negative, and positive effects, and
cost(o) is a numerical value representing o’s cost2. Actions
are grounded instances of planning operators. An action a is
applicable in a state s if and only if pre(a) ⊆ s. Application
of a in s (if possible) results in a state (s \ eff−(a))∪ eff+(a).

A planning domain model is specified by a set of predi-
cates and a set of planning operators. A planning problem is
specified via a domain model, an initial state, and a set of
goal predicates. A solution plan of a planning problem is a
sequence of actions such that their consecutive application
starting from the initial state results in a state containing all
the goal predicates. Static predicates are an important class in
this paper. A predicate is static if it is not present in the effects
of any operator in a given domain model.

A Substitution is a mapping from variable symbols to terms
that is used to determine which arguments (variable symbols)
operators share. Hereinafter, we will assume that different op-
erators have distinct parameters as arguments unless stated
otherwise. In the set operations over sets of ungrounded pred-
icates, we assume that only predicates having the same name
and the same arguments (i.e., the same parameter symbols
ordered in the same way) are equivalent.

Naturally, operators create predicates required by other op-
erators. This indicates how instances of these operators will
be ordered in plans. Such a relation is denoted as being an
achiever and is formally defined as follows.

Definition 1. We say that an operator o1 is an achiever for
an operator o2 with respect to a substitution Θ if and only if
eff+(o1) ∩ pre(Θ(o2)) 6= ∅.

Also, we may observe that some predicates cannot be
present together in any valid state (reachable by applying a
sequence of actions from an initial state), which are known as
mutex predicates.

Definition 2. We say that grounded predicates pg and qg are
mutex with respect to a problem P if and only if for every
state s such that s is reachable from the initial state of P it is
the case that {pg, qg} 6⊆ s.

Heuristically, we can determine whether grounded predi-
cates pg , qg are mutex by checking the following conditions:
i) pg , qg are not both present in an initial state, and ii) for ev-
ery action a, if pg ∈ eff+(a), then qg ∈ eff−(a) \ eff+(a), and
analogously if qg ∈ eff+(a), then pg ∈ eff−(a)\eff+(a). This
can be easily extended for determining whether ungrounded
predicates are mutex.

1including negative equality
2For domain models, where action cost is not explicitly enabled,

every operator o has implicitly cost(o) = 1.

2.1 Macro-operators
Macros can be encoded in the same way as ordinary planning
operators, but encapsulate sequences of planning operators.
This gives the technique the potential of being planner inde-
pendent. A macro oi,j is constructed by assembling planning
operators (or macros) oi and oj (in that order) with respect to
a substitution Θ (oi and oj may share some arguments), i.e.,

oi,j =name(oi) · name(oj),

pre(oi) ∪ (pre(Θ(oj)) \ eff+(oi)),

(eff−(oi) \ eff+(Θ(oj))) ∪ eff−(Θ(oj)),

(eff+(oi) \ eff−(Θ(oj))) ∪ eff+(Θ(oj)),

cost(oi) + cost(oj).

To ensure correctness of planning with macros, each macro
has to be sound. A macro oi,j is sound if and only if for all
its grounded instances (eff−(ai) \ eff+(ai)) ∩ pre(aj) = ∅,
where ai and aj are instances of oi and Θ(oj) respectively.
If soundness of oi,j is violated oi and oj cannot be applied
consecutively because oi deletes a predicate required by oj .

Macros can be understood as ‘shortcuts’ in the state space.
This property can be useful since by exploiting them it is pos-
sible to reach the goals in fewer steps. However, the num-
ber of instances of macros is often high, because they usually
have a large set of parameters, that derives from the param-
eters of the original operators that are encapsulated. This in-
creases the branching factor in the search space, which can
slow down the planning process and, moreover, increase the
memory consumption. Therefore, it is important that benefits
of macros exploitation outweigh their drawbacks. This prob-
lem is known as the utility problem [Minton, 1988].

2.2 Outer Entanglements
Outer Entanglements are relations between planning opera-
tors and initial or goal predicates, and have been introduced as
a technique for eliminating potentially unnecessary instances
of these operators [Chrpa and McCluskey, 2012].

Generally speaking, entanglements by init (hereinafter en-
tInit) capture situations, where only instances of a given op-
erator that requires instances of a certain predicate present in
the initial state are needed to solve the problem. Similarly, en-
tanglements by goal (entGoal) capture situations, where only
instances of a given operator that achieves instances of a cer-
tain predicates present in the set of goal predicates are needed
to solve the problem.

For example, in the BlocksWorld domain, the operator un-
stack is entInit with the predicate on, since we need to un-
stack blocks only from their initial positions. Similarly, the
operator stack is entGoal with the predicate on, since we
need to stack blocks only to their goal positions.
Definition 3. Let P be a planning problem, where I is the
initial state and G is a set of goal predicates. Let o be a plan-
ning operator and p be a predicate defined in P . We say that
operator o is entangled by init (resp., goal) with predicate p
if and only if p ∈ pre(o) (resp., p ∈ eff+(o)) and there exists
a solution plan π of P such that for every o’s instance a ∈ π
and for every p’s grounded instance pgnd it holds: pgnd ∈
pre(a)⇒ pgnd ∈ I (resp., pgnd ∈ eff+(a)⇒ pgnd ∈ G).



Outer entanglements have been used as a reformulation
technique, as they can be directly encoded into a problem and
domain model. The way outer entanglements are encoded is
inspired by one of their properties: given a static predicate
ps, an operator o is entangled by init with ps if and only if
ps ∈ pre(o) [Chrpa and Barták, 2009]. For an operator o be-
ing entangled by init (resp., goal) with a predicate p, a sup-
plementary static predicate p′ that “clones” p is introduced
and put into pre(o). Initial (resp., goal) instances of p are
“cloned” and put into the initial state. For a formal description
of the reformulation process, the interested reader is referred
to [Chrpa and McCluskey, 2012].

2.3 Estimating the Number of Operator Instances
Estimating the number of instances of a macro is impor-
tant for a more accurate determination of its utility [Chrpa
et al., 2014]. For example, in the Depots domain the opera-
tor Lift(?h - hoist ?c -crate ?s - surface ?p - place) can
potentially have #hoists · #crates · #surfaces · #places
instances. In Lift’s precondition, there is a static predicate (at
?h ?p) constraining a hoist to be at exactly one place. Hence,
the number of Lift’s instances can drop to #hoists ·#crates ·
#surfaces . It can be observed that Lift is entangled by init
with predicates (on ?c ?s) and (at ?c ?p). A crate can be
initially stacked only on one surface (another crate or a pallet)
and be at one place. Hence, if the entanglements are involved
the potential number of Lift’s instances can drop to #crates.

Static predicates and outer entanglements thus provide
matching between arguments (parameters) of planning opera-
tors. For every operator, we can construct an argument match-
ing graph (or a simple argument matching graph if only static
predicates are involved) such that arguments of the operator
are nodes and edges are between nodes whose corresponding
arguments appear together in a static predicate present in op-
erator’s precondition or in a predicate involved in the outer
entanglement relation with the operator (for the formal defi-
nition, see [Chrpa et al., 2014]).

Given the problem description, it is possible to determine
whether the number of instances of static predicates or pred-
icates involved in an entanglement relation in the initial or
goal situation is bounded by O(n) (n stands for the number
of objects). Predicates that do not follow this are not consid-
ered when constructing (simple) argument matching graphs.
Let n be the number of objects defined in a planning problem,
o be a planning operator, and c be the number of components
of the (simple) argument matching graph of o. Then, the num-
ber of o’s instances is estimated asO(nc). It will be useful for
estimating impact of generated macros on branching factor.

3 Online Macros Learning
A wrapper, which enables a planning engine to exploit
macros without altering the planner, can be designed as fol-
lows: i) macros are generated online by analysing the original
domain and problem model; ii) reformulated models, that in-
clude extracted knowledge, are prepared; iii) the planning en-
gine is run using reformulated models; iv) the solution plan
is passed to a “macro unfolding” tool that replaces macros
by corresponding sequences of actions. Hereinafter, we will
focus on the OMA module for online macros generation.

OMA has only the problem and domain model that is avail-
able from the input to work with. In summary, macros are
often useful when: i) they capture some “coherent and mean-
ingful” activity (e.g., moving an object from its initial to its
goal position), ii) they do not have a considerably larger num-
ber of instances than original operators, iii) the number of
learnt macros is small. While iii) is easy to accommodate,
there are some fundamental issues regarding i) and ii). To
tackle these issues, we use insights from existing techniques,
namely, MUM [Chrpa et al., 2014], MacroFF [Botea et al.,
2005], and DHG [Armano et al., 2004]. OMA incorporates
the idea of using outer entanglements to reduce the number
of instances of macros exploited by MUM. As in MUM, we
apply entanglements only on macros (so completeness is not
compromised). However, we cannot extract entanglements
from training plans as MUM could. Instead, OMA makes
an informed selection of them from the problem and domain
model descriptions.

3.1 Identifying Outer Entanglements
Deciding outer entanglements is intractable (PSPACE-
complete) in general: entanglements are heuristically ex-
tracted from training plans [Chrpa and McCluskey, 2012].
However, without training plans, we have to derive entangle-
ments from the domain and problem description only.

It has been observed from training-based approaches (e.g.,
MUM) that a higher number of initial or goal instances of a
predicate with respect to the number of objects relevant to the
predicate makes the chance that the predicate is in an outer
entanglement relation rise. Where we have all the possible
initial or goal instances of a predicate, then the predicate is
certainly involved in the entanglement relation, while hav-
ing no initial or goal instance of the predicate, the predicate
might be involved in the entanglement relation only with an
operator that is not used in plan generation. We have to com-
promise in order to achieve a satisfactory level of accuracy
of entanglement identification (i.e., the number of initial or
goal instances of the predicate should not be too low) and ex-
ploiting the pruning power of outer entanglements (i.e., the
number of initial or goal instances of the predicate should not
be too high).

From the observation above, we derive the following for-
mula that determines whether a predicate p is a suitable candi-
date for the outer entanglement relation. Notice that #p is the
number of p’s initial or goal instances. Assume each predicate
argument is typed and it is possible to calculate the number
of possible objects that can fill each argument. Then #x is
defined as the maximum of the number of possible objects
in each argument. (e.g., having a predicate (at ?truck ?place),
and 10 trucks and 15 places, then #x = 15).

c1 ·#x ≤ #p ≤ c2 ·#x, 0 < c1 ≤ c2
Hence, the most suitable candidate for the outer entangle-

ment is determined by having the number of initial or goal in-
stances within “reasonable” bounds. c2 should not be greater
than 1.0 in order to sustain the accuracy of instances esti-
mation by the Argument Matching Graphs (see Section 2.3).
With a decreasing value of c1 the risk of “false positives” (i.e.,
identification of incorrect entanglements) rises.



Algorithm 1 The OMA algorithm.
1: IdentifyEntanglements()
2: for all o, o′ ∈ ops, o′ 6= o, not Conn(o), not Conn(o′), not

HasEG(o), HasEI(o) or HasEG(o′) do
3: Φ = {Θ | o is an achiever for o′ w.r.t Θ}
4: while Φ 6= ∅ do
5: Θ = PopMostSpecific(Φ)
6: ma = CreateMacro(o, o′,Θ)
7: if UsefulMacro(ma) and (AMG(ma)≤AMG(o) or

AMG(ma)≤AMG(o′)) then
8: ops = ops ∪ {ma}
9: break

10: end if
11: end while
12: end for
13: FilterMacros()

If a predicate is considered for the entInit (or entGoal) re-
lation with two (or more) operators and one operator deletes
an effect achieved by (one of) the other operator(s), then the
predicate is unlikely to be in the entanglement relation with
both. This is because such operators often take place in differ-
ent phases of plans (e.g., in Depots, Lift acts in the initial stage
and Drop acts in the final stage while both have the entangle-
ment candidate (at ?crate ?surface) in their preconditions).
In the EntInit case, one operator whose instances are more
“likely” to be applicable in the initial state than instances of
the other operator is a good candidate for the EntInit relation
with the predicate.
Definition 4. Let o1 and o2 be planning operators. o1 is more
likely to be applicable in the initial state than o2, denoted as
o1 ≺ o2, is determined as follows. For every p ∈ pre(o1)
such that for no substitution Θ, Θ(p) ∈ pre(o2), it holds that
c1 ·#x ≤ #p ≤ c2 ·#x (c1, c2, #p and #x have the same
meaning as before).

Assume we have a predicate p such that p is, according to
the previous formula, a suitable candidate for the entangle-
ment relation. Further, assume we have operators o1 and o2
such that p is present in both o1 and o2’s precondition (resp.,
positive effects). Entanglements are determined according to
following rules (second and third rules apply only to entInit):

• If there is no substitution Θ such that eff−(o1) ∩
eff+(Θ(o2)) 6= ∅ or eff+(o1) ∩ eff−(Θ(o2)) 6= ∅, then
both o1 or o2 are entInit (resp., entGoal) with p.
• If o1 ≺ o2 and o2 6≺ o1, then o1 is entInit with p.
• If o2 ≺ o1 and o1 6≺ o2, then o2 is entInit with p.

This approach can be easily extended for situations where
more than two operators are candidates for the entanglement
relation with the same predicate.

3.2 Generating Macros
For OMA’s purpose, we define a special class of macros,

called “connected macros”. A connected macro contains both
the entInit and entGoal relations in which the same object is
involved. Connected macros thus transform the object state
from a given initial state to a required goal one (a similar
idea was previously used as a heuristic for identifying useful

macros in the work of [McCluskey and Porteous, 1997]).
For example, in the Gripper domain, Pick-Move-Drop is a
connected macro, since it moves a ball from its initial to its
goal position.

OMA is depicted in Algorithm 1. As a preliminary step,
we identify possible outer entanglements as described in the
previous subsection. Lines 2–12 contain the main loop, where
pairs of (different) operators (including macros generated in
the iterative process) are checked whether they are suitable
to become macros. The loop terminates when either all the
pairs have been checked or a number (l) of extracted macros
is reached. Since the macro generation process is performed
online, it is of critical importance to avoid the generation of
large number of macros. Check of limit l is not shown in Al-
gorithm 1 for the sake of readability. For a potential macro
candidate composed by o and o′ (in this order), it must hold
that neither o nor o′ is a connected macro, o has not any ent-
Goal, o has an entInit with a non-static predicate or o′ has an
entGoal. Connected macros already capture coherent activi-
ties, so they do not have to be expanded. In other cases, orig-
inal operators are chained starting by one having an entInit
(with a non-static predicate) or ending by one having an ent-
Goal. Moreover, an original operator having an entGoal can
be only the last in the chain. So, outer entanglements serve
as a heuristics for devising macros capturing a “meaningful”
activity, i.e., those that come out of initial state or achieves
goal predicates.

We require that o is an achiever for o′ (i.e., the “chaining
rule” in MacroFF), so we compute all substitutions for which
it holds (Line 3) (arguments appearing in the definition of o′
can be substituted only for arguments appearing in the defini-
tion of o). If o is not an achiever for o′, then no substitution is
found (notice that if o achieves a nullary predicate for o′, an
empty substitution is found). The most specific substitution,
i.e., the substitution which substitutes the largest number of
arguments, is taken (Line 5). Then, a new macro ma is cre-
ated (Line 6) with entanglements considered in its encoding.
If ma passes the “usefulness check” (Line 7), ma is added
into the set of operators and we go back to Line 2. If ma fails
the “usefulness check” (Line 7), we go back to Line 4 and try
the next most specific substitution, or (if no substitution left)
try other macro candidates.

The usefulness of a potential macro ma is assessed by
the following checks. First, o must not delete a predicate
required by o′, otherwise the macro ma is not sound. Sec-
ond, ma cannot contain mutex predicates in its precondi-
tion, since otherwise no instance of ma is applicable in any
point. A similar constraint has been used by DHG. Third,
ma cannot contain consecutive inverse (original) operators,
that is, operators which reverse each other effects. Fourth,
no operator can be present more than once in ma. This is a
stronger form of “anti-recursion rule” (i.e., preventing recur-
sions within macros such as Lift-Load-Lift-Load) that was
used by MUM. Our experience indicates that useful macros
do not usually contain any of the original operators more than
once. Fifth, ma cannot contain more variants of some static
predicate in the precondition than o or o′ contains. It is not
allowed, for instance, to have predicates (at ?h ?p1) and (at
?h ?p2) in the precondition of a Lift-Load macro, since the



original operators Lift and Load contain only one variant of
the at predicate. This is a stronger form of the “locality rule”
used by Macro-FF, and helps macros to be focused on a sin-
gle activity. Sixth, the number of components of Argument
Matching Graph of ma (AMG(ma)) cannot be larger than
that for o or that for o′ (for original operators, we consider
Simple Argument Matching Graphs). This constraint (derived
by MUM) prevents generating macros with a large number of
instances.

Out of the generated macros, OMA prefers (in this order)
macros that have fewer possible instances, connected macros,
or macros that contain less operators. Therefore, filtering is
composed of the following steps. First, a macro ma such
that AMG(ma)≥

∑
o∈O AMG(o)

|O| is filtered out (O is a set
of original operators). Second, macros are ordered accord-
ing to their “potential utility”. A macro ma is considered
as “better” than a macro ma′ if: i) AMG(ma)<AMG(ma′),
or ii) AMG(ma)=AMG(ma′), and ma is connected,
while ma′ is not, or iii) AMG(ma)=AMG(ma′), and
Length(ma)<Length(ma′). Notice that Length(ma) denotes
the number of original operators incorporated in ma. Finally,
top k macros are selected (k is a OMA parameter)3.

4 Experimental Analysis
The aims of this experimental analysis are: i) to evaluate the
effectiveness of OMA, with respect to increasing the speed
and coverage of plan generation over a range of domains and
planning engine combinations, and ii) to compare OMA to
the state-of-the-art of conventional macro generation methods
which have the benefit of training plans. All the experiments
were run on 3.0 Ghz machine CPU with 4GB of RAM. The
constants c1, c2, l and k (see the previous section) were set to
0.4, 1.0, min(8, 2 · |ops|) and min(4, |ops|) respectively for
all the benchmarks. They were set by considering results on a
small set of problems/domains. In this experimental analysis,
IPC score as defined in IPC-7 is used [Coles et al., 2012]. For
a planner C and a problem p, Score(C, p) is 0 if p is unsolved,
and 1/(1 + log10(Tp(C)/T ∗p )), where Tp(C) is the CPU-time
needed by planner C to solve problem p and T ∗p is the CPU-
time needed by the best considered planner, otherwise. The
IPC score on a set of problems is given by the sum of the
scores achieved on each considered problem.

4.1 Results of Macros Use
Since macros primarily aim at speeding-up the planning pro-
cess, we decided to use the same methodology for evaluating
the performance as the one used in the Agile track of the last
International Planning Competition (IPC-8). We have consid-
ered all the benchmark domains from this track. As bench-
marking planners, we chose the top 7 performing planners of
the Agile track, namely, Yahsp3, Mpc, Probe, Bfs-f, Cedalion,
Freelunch, and Arvandherd. The interested reader can find de-
scription of planners in the IPC booklet [Vallati et al., 2014].
Different versions of a planner were not included. A runtime
cutoff of 300 CPU seconds (as in Agile track) was used.

3If k is too high, we might keep many useless macros.

IPC score Solved Runtime
Domain P O P O P O
Floortile 29.9 47.7 32 48 28.0 21.6
GED 80.0 76.4 86 84 69.4 72.5
Hiking 62.9 60.0 64 61 70.8 65.4
Parking 11.2 25.0 12 25 206.7 148.0
Transport 43.9 41.5 44 43 73.5 78.9
Planner P O P O P O
ArvandHerd 32.6 36.9 34 38 153.2 146.3
Bfs-f 16.7 20.6 18 21 62.6 44.3
Cedalion 36.5 53.5 38 54 107.8 98.1
Freelunch 11.9 12.7 12 13 30.3 28.4
Mpc 44.3 34.6 45 35 42.3 35.4
Probe 34.1 40.8 36 43 73.2 71.7
Yahsp3 51.7 51.4 55 57 14.5 27.3

Table 1: Cumulative IPC score, coverage, and average run-
time of planners exploiting original (P) and OMA enhanced
(O) problems. Average runtime considers only problems
solved by both P and O, only. Results are cumulative with re-
gards to domains (top table) or planners (bottom table). The
best results in boldface.

CPU-time required by OMA for learning and unfolding
macros is usually smaller than 0.1 seconds, and is included.
In Floortile, GED, and Parking, macros were found for each
problem, while in Transport and Hiking, respectively in 5 and
13 instances. Usually, between 1 and 3 macros were gener-
ated per problem, and they included 2 or 3 operators. On the
other hand, in Barman, Child-Snack, Tetris, Thoughtful, and
Visitall no macros were found in any of the benchmarks, often
because no entanglements were generated. The remaining do-
mains include features that are not currently supported (e.g.,
conditional effects). Notice that failing to find macros leaves
the domain and problem encoding the same as the original
one, and has negligible impact on CPU time.

Results of the evaluation are presented in Table 1, where
we compared the performance achieved by planners exploit-
ing OMA against their performance on original formulations.
Values consider domains in which OMA generated at least
one macro for at least one problem, only. Generally, we can
see that macros improved performance of the planners ex-
cept Mpc, where macros performed very poorly in the GED
domain. From the domains perspective, the performance in
Floortile and Parking have been improved considerably for
most of the planners, while in the rest of the domains it has
remained nearly the same. Regarding plan quality, 47% of
the solved problems have same quality, while using macros
improved quality in 22%. Concerning domains, only in GED
we observed that some planners provided often worse qual-
ity solutions when using macros. Figure 1 provides a better
overview of the impact of OMA online macros on planners’
performance. It can be seen that online macros improves per-
formance of the planners in most of the cases, both in terms
of runtime and coverage (see the right edge of the graph). It is
worth noting that many original problems are quickly solved,
without leaving much space for improvements.



Figure 1: CPU time of planners exploiting problems extended
with online macros (y-axis) w.r.t original problem formula-
tion (x-axis) for all the considered benchmarks.

4.2 Comparison with other Online Technique
We compared OMA with Marvin [Coles et al., 2007], a state-
of-the-art planner-specific online macro learning technique.
For the comparison, we used the same benchmarks and the
same methodology as in the Agile track of the IPC-8 (as in
the previous subsection). Although Marvin is able to carry
macros forward (i.e., macros learnt in one problem can be
used for solving another problem), we did not use this feature
in order to provide fair comparison.

On considered benchmarks the overall difference of IPC
scores with respect to original encodings is−20.7 for Marvin
and −4.5 for OMA (we used the Marvin implementation of
FF). OMA did not perform very well in Hiking and Floortile,
while Marvin was considerably worse in the Barman domain,
where OMA did not generate any macro. It is worth noting
that FF did not solve a large number of benchmark instances
and, therefore, it might not be sufficient to draw conclusions.

4.3 Comparison with Offline Technique
In order to compare OMA with a state-of-the-art approach
that extract macros offline, we compare it against MUM
[Chrpa et al., 2014]. For avoiding issues related to a pos-
sible selection bias of training problems, and to consider a
broader range of benchmarks, the comparison has been run
using the same setup that Chrpa et al. used in their analy-
sis. Therefore, we use all the benchmark instances used in the
learning track of IPC-7. As benchmarking planners we use
Metric-FF [Hoffmann and Nebel, 2001], LPG-td [Gerevini
et al., 2003], LAMA-11 [Richter and Westphal, 2010], Mp
[Rintanen, 2012] and Probe [Lipovetzky and Geffner, 2011].
A runtime cutoff of 900 CPU seconds (as in learning tracks of
IPC) was used. Table 2 shows the results of such comparison,
in terms of improvement gap between performance achieved
by using original domain formulation and reformulation that
include macros (respectively, MUM or OMA). Remarkably,
OMA macros are able to improve the performance of plan-
ners in terms of both coverage and runtime, and never de-
crease their overall performance. Surprisingly, out of 5 plan-
ers, two of them (LPG and Probe) performed better on on-

∆ IPC score ∆ Solved
Domain M O M O
Bw 30.0 73.3 19 49
Depots 24.3 0.2 13 -5
Gripper 59.0 -0.7 63 4
Parking – 22.7 – 21
Rovers 6.5 – 12 –
Satellite -2.9 – 2 –
Spanner 12.8 – 16 –
TPP 14.6 3.1 9 1
Planner M O M O
FF 35.5 3.0 35 2
LAMA 85.3 19.1 77 14
LPG -30.8 9.5 -13 4
Mp 34.1 17.9 33 18
Probe 20.9 40.3 6 23

Table 2: ∆ of performance between planners exploiting
macros and original domain models. M stands for offline
macros learned by MUM technique, O for online macros.

line macros than offline ones generated by MUM. In terms
of per-domain analysis, in Barman none of the methods ex-
tracted any macro. OMA performed considerably well in BW
and Parking and considerably outperformed MUM. In BW, in
some cases no macro was extracted by MUM because of the
poor quality of training plans. In the other domains OMA’s
performance was nearly the same as for original problems.

4.4 Discussion
In summary, OMA demonstrated that in most cases we can
improve the performance of planning engines by exploiting
macros learned in a very quick and effective pre-processing
step. The time needed for identifying macros and extending
the domain and problem models is marginal (usually tens of
milliseconds), which, in contrary to offline macro learning
methods brings a lot of flexibility. The results indicate that
OMA can be successful on a number of domains (e.g., Park-
ing, BW), in which it was able to generate very useful macros,
while in the others achieved performance is comparable – nei-
ther much better nor much worse – to those achievable by
using original models. Of course, this observation might be
related to a kind of conservative strategy OMA uses for gen-
erating and filtering macros – heavily focusing on the number
of their possible instances.

The space of macros OMA can generate is huge (infinite,
if macros’ length is not limited). The only actual hard con-
straint that can be used for pruning the “macro” space is
soundness (i.e., within the macro, an operator cannot delete a
predicate required by another operator). Even macros having
mutex predicates in their preconditions might be useful, for
instance, while computing heuristics on delete-relaxed Plan-
ning Graph, as showed by Newton et al. (2007). Overall, the
rules OMA used for generating and filtering macros provided
a good guidance for identifying useful macros.

We observed that OMA does not perform well in
‘Logistic’-like domains. It often did not generate macros such
as load-move-unload, or generated some counter-intuitive
and possibly useless macros (e.g. move-load-unload). In
the Gripper domain, MUM generated only the macro pick-



move-drop, while OMA generated macros such as pick-
drop. Therefore, the rules for pruning the space of macros
do not filter all the potentially useless macros; extending do-
main models with useless macros lead to decrementing per-
formance. However, we should not forget that the usefulness
of types of macro might heavily depend on the specific for-
mulation of the domain (e.g., vehicle capacity, road network)
and, to some extent, on the planner that will exploit them.

5 Conclusions
In this paper we introduced OMA, a method for online gen-
eration of macros that can be wrapped around standard plan-
ning engines. An extensive empirical evaluation shows that
OMA improves the performance of planning engines by re-
ducing the time to generate plans and increasing the number
of solved problems, on benchmarks from IPC-8 (agile track)
and IPC-7 (learning track). Interestingly, OMA outperformed
Marvin –a planner-specific macro generating method– and in
some cases also MUM –an offline macro generating method–
despite their clear advantages. OMA is thus a good alterna-
tive for situations, where it is not possible to use an offline
technique to generate macros.

As part of future research, we want to investigate the ex-
ploitation of predictive models based on planning features
– real numbers that characterise some aspects of a planning
problem – [Cenamor et al., 2013; Fawcett et al., 2014] for
improving the selection of macros.
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