Computing and Library Services - delivering an inspiring information environment

Comparative efficacy of novel platinum(IV) compounds with established chemotherapeutic drugs in solid tumour models

Hall, M.D., Martin, C., Ferguson, D.J., Phillips, Roger M., Hambley, T.W. and Callaghan, R. (2004) Comparative efficacy of novel platinum(IV) compounds with established chemotherapeutic drugs in solid tumour models. Biochemical Pharmacology, 67 (1). pp. 17-30. ISSN 0006-2952

Metadata only available from this repository.


Platinum(II)-based anticancer drugs are associated with high reactivity and thus a poor biological stability. The platinum(IV)-complexes display potential advantages due to their greater stability and bioreductive activation, thereby allowing a greater proportion of the drug to arrive at the target intact. All compounds tested were able to produce cytotoxicity in monolayer cell cultures, however, the potencies of platinum(IV) drugs were lower than that observed for the platinum(II) compounds or established organic chemotherapeutic agents. There was no significant alteration in the potency of platinum(II) or (IV) compounds to produce cytotoxicity in multicellular tumour spheroids (MCTS) compared to monolayer cultures. All the organic and platinum-based cytotoxic agents produced, to varying degrees, either a retardation or reduction in MCTS growth. Proliferating cells were restricted to the outer two to three cellular layers in intermediate (d=350 microm) and large (d=600 microm) MCTS. Regardless of MCTS size, drug treatment produced a larger and more widely distributed proliferating cell population, consistent with the recruitment of quiescent cells to the proliferating pool following cytotoxic damage. Histology indicated that the predominant morphological change was that of apoptosis, although there was some drug-dependent effects such as the metaphase arrest produced by vinblastine and chromatin dispersal to the periphery of nuclei produced by doxorubicin. In summary, whilst the platinum(IV) derivatives were able to produce cytotoxicity via apoptosis, the introduction of a stable axial group significantly retarded the rate at which this occurred.

Item Type: Article
Subjects: R Medicine > RM Therapeutics. Pharmacology
Schools: School of Applied Sciences
Related URLs:
Depositing User: Roger Phillips
Date Deposited: 14 May 2015 09:33
Last Modified: 28 Aug 2021 11:50


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©